WorldWideScience

Sample records for linear gait parameters

  1. Energy Expenditure of Trotting Gait Under Different Gait Parameters

    Science.gov (United States)

    Chen, Xian-Bao; Gao, Feng

    2017-07-01

    Robots driven by batteries are clean, quiet, and can work indoors or in space. However, the battery endurance is a great problem. A new gait parameter design energy saving strategy to extend the working hours of the quadruped robot is proposed. A dynamic model of the robot is established to estimate and analyze the energy expenditures during trotting. Given a trotting speed, optimal stride frequency and stride length can minimize the energy expenditure. However, the relationship between the speed and the optimal gait parameters is nonlinear, which is difficult for practical application. Therefore, a simplified gait parameter design method for energy saving is proposed. A critical trotting speed of the quadruped robot is found and can be used to decide the gait parameters. When the robot is travelling lower than this speed, it is better to keep a constant stride length and change the cycle period. When the robot is travelling higher than this speed, it is better to keep a constant cycle period and change the stride length. Simulations and experiments on the quadruped robot show that by using the proposed gait parameter design approach, the energy expenditure can be reduced by about 54% compared with the 100 mm stride length under 500 mm/s speed. In general, an energy expenditure model based on the gait parameter of the quadruped robot is built and the trotting gait parameters design approach for energy saving is proposed.

  2. Relationships of stroke patients' gait parameters with fear of falling.

    Science.gov (United States)

    Park, Jin; Yoo, Ingyu

    2014-12-01

    [Purpose] The purpose of this study was to assess the correlation of gait parameters with fear of falling in stroke survivors. [Subjects] In total, 12 patients with stroke participated. [Methods] The subjects performed on a Biodex Gait Trainer 2 for 5 min to evaluate characteristic gait parameters. The kinematic gait parameters measured were gait speed, step cycle, step length, and time on each foot (step symmetry). All the subjects also completed a fall anxiety survey. [Results] Correlations between gait parameters and fear of falling scores were calculated. There was a moderate degree of correlation between fear of falling scores and the step cycle item of gait parameters. [Conclusions] According to our results, the step cycle gait parameter may be related to increased fall anxiety.

  3. Relationships of Stroke Patients’ Gait Parameters with Fear of Falling

    OpenAIRE

    Park, Jin; Yoo, Ingyu

    2014-01-01

    [Purpose] The purpose of this study was to assess the correlation of gait parameters with fear of falling in stroke survivors. [Subjects] In total, 12 patients with stroke participated. [Methods] The subjects performed on a Biodex Gait Trainer 2 for 5 min to evaluate characteristic gait parameters. The kinematic gait parameters measured were gait speed, step cycle, step length, and time on each foot (step symmetry). All the subjects also completed a fall anxiety survey. [Results] Correlations...

  4. Spatial-temporal parameters of gait in women with fibromyalgia.

    Science.gov (United States)

    Heredia Jiménez, José María; Aparicio García-Molina, Virginia A; Porres Foulquie, Jesús M; Delgado Fernández, Manuel; Soto Hermoso, Victor M

    2009-05-01

    The aim of the present study was to determine if there are differences in such parameters among patients affected by fibromyalgia (FM) and healthy subjects and whether the degree of affectation by FM can decrease the gait parameters. We studied 55 women with FM and 44 controls. Gait analysis was performed using an instrumented walkway for measurement of the kinematic parameters of gait (GAITRite system), and patients completed a Spanish version of Fibromyalgia Impact Questionnaire (FIQ). Significant differences (p Gait parameters of women affected by FM were severely impaired when compared to those of healthy women. Different factors such as lack of physical activity, bradikinesia, overweight, fatigue, and pain together with a lower isometric force in the legs can be responsible for the alterations in gait and poorer life quality of women with FM.

  5. Evaluation of Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis: Analysis of kinematics.

    Science.gov (United States)

    Severini, Giacomo; Manca, Mario; Ferraresi, Giovanni; Caniatti, Luisa Maria; Cosma, Michela; Baldasso, Francesco; Straudi, Sofia; Morelli, Monica; Basaglia, Nino

    2017-06-01

    Clinical Gait Analysis is commonly used to evaluate specific gait characteristics of patients affected by Multiple Sclerosis. The aim of this report is to present a retrospective cross-sectional analysis of the changes in Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis. In this study a sample of 51 patients with different levels of disability (Expanded Disability Status Scale 2-6.5) was analyzed. We extracted a set of 52 parameters from the Clinical Gait Analysis of each patient and used statistical analysis and linear regression to assess differences among several groups of subjects stratified according to the Expanded Disability Status Scale and 6-Minutes Walking Test. The impact of assistive devices (e.g. canes and crutches) on the kinematics was also assessed in a subsample of patients. Subjects showed decreased range of motion at hip, knee and ankle that translated in increased pelvic tilt and hiking. Comparison between the two stratifications showed that gait speed during 6-Minutes Walking Test is better at discriminating patients' kinematics with respect to Expanded Disability Status Scale. Assistive devices were shown not to significantly impact gait kinematics and the Clinical Gait Analysis parameters analyzed. We were able to characterize disability-related trends in gait kinematics. The results presented in this report provide a small atlas of the changes in gait characteristics associated with different disability levels in the Multiple Sclerosis population. This information could be used to effectively track the progression of MS and the effect of different therapies. Copyright © 2017. Published by Elsevier Ltd.

  6. Gait parameter control timing with dynamic manual contact or visual cues

    Science.gov (United States)

    Shi, Peter; Werner, William

    2016-01-01

    We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms

  7. Gait parameter control timing with dynamic manual contact or visual cues.

    Science.gov (United States)

    Rabin, Ely; Shi, Peter; Werner, William

    2016-06-01

    We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms

  8. Guidelines for Assessment of Gait and Reference Values for Spatiotemporal Gait Parameters in Older Adults: The Biomathics and Canadian Gait Consortiums Initiative

    Directory of Open Access Journals (Sweden)

    Olivier Beauchet

    2017-08-01

    Full Text Available Background: Gait disorders, a highly prevalent condition in older adults, are associated with several adverse health consequences. Gait analysis allows qualitative and quantitative assessments of gait that improves the understanding of mechanisms of gait disorders and the choice of interventions. This manuscript aims (1 to give consensus guidance for clinical and spatiotemporal gait analysis based on the recorded footfalls in older adults aged 65 years and over, and (2 to provide reference values for spatiotemporal gait parameters based on the recorded footfalls in healthy older adults free of cognitive impairment and multi-morbidities.Methods: International experts working in a network of two different consortiums (i.e., Biomathics and Canadian Gait Consortium participated in this initiative. First, they identified items of standardized information following the usual procedure of formulation of consensus findings. Second, they merged databases including spatiotemporal gait assessments with GAITRite® system and clinical information from the “Gait, cOgnitiOn & Decline” (GOOD initiative and the Generation 100 (Gen 100 study. Only healthy—free of cognitive impairment and multi-morbidities (i.e., ≤ 3 therapeutics taken daily—participants aged 65 and older were selected. Age, sex, body mass index, mean values, and coefficients of variation (CoV of gait parameters were used for the analyses.Results: Standardized systematic assessment of three categories of items, which were demographics and clinical information, and gait characteristics (clinical and spatiotemporal gait analysis based on the recorded footfalls, were selected for the proposed guidelines. Two complementary sets of items were distinguished: a minimal data set and a full data set. In addition, a total of 954 participants (mean age 72.8 ± 4.8 years, 45.8% women were recruited to establish the reference values. Performance of spatiotemporal gait parameters based on the recorded

  9. Estimation of Temporal Gait Parameters Using a Wearable Microphone-Sensor-Based System

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-12-01

    Full Text Available Most existing wearable gait analysis methods focus on the analysis of data obtained from inertial sensors. This paper proposes a novel, low-cost, wireless and wearable gait analysis system which uses microphone sensors to collect footstep sound signals during walking. This is the first time a microphone sensor is used as a wearable gait analysis device as far as we know. Based on this system, a gait analysis algorithm for estimating the temporal parameters of gait is presented. The algorithm fully uses the fusion of two feet footstep sound signals and includes three stages: footstep detection, heel-strike event and toe-on event detection, and calculation of gait temporal parameters. Experimental results show that with a total of 240 data sequences and 1732 steps collected using three different gait data collection strategies from 15 healthy subjects, the proposed system achieves an average 0.955 F1-measure for footstep detection, an average 94.52% accuracy rate for heel-strike detection and 94.25% accuracy rate for toe-on detection. Using these detection results, nine temporal related gait parameters are calculated and these parameters are consistent with their corresponding normal gait temporal parameters and labeled data calculation results. The results verify the effectiveness of our proposed system and algorithm for temporal gait parameter estimation.

  10. Real-Time Gait Cycle Parameter Recognition Using a Wearable Accelerometry System

    Directory of Open Access Journals (Sweden)

    Jun-Ming Lu

    2011-07-01

    Full Text Available This paper presents the development of a wearable accelerometry system for real-time gait cycle parameter recognition. Using a tri-axial accelerometer, the wearable motion detector is a single waist-mounted device to measure trunk accelerations during walking. Several gait cycle parameters, including cadence, step regularity, stride regularity and step symmetry can be estimated in real-time by using autocorrelation procedure. For validation purposes, five Parkinson’s disease (PD patients and five young healthy adults were recruited in an experiment. The gait cycle parameters among the two subject groups of different mobility can be quantified and distinguished by the system. Practical considerations and limitations for implementing the autocorrelation procedure in such a real-time system are also discussed. This study can be extended to the future attempts in real-time detection of disabling gaits, such as festinating or freezing of gait in PD patients. Ambulatory rehabilitation, gait assessment and personal telecare for people with gait disorders are also possible applications.

  11. Reliability of diabetic patients' gait parameters in a challenging environment.

    Science.gov (United States)

    Allet, L; Armand, S; de Bie, R A; Golay, A; Monnin, D; Aminian, K; de Bruin, E D

    2008-11-01

    Activities of daily life require us to move about in challenging environments and to walk on varied surfaces. Irregular terrain has been shown to influence gait parameters, especially in a population at risk for falling. A precise portable measurement system would permit objective gait analysis under such conditions. The aims of this study are to (a) investigate the reliability of gait parameters measured with the Physilog in diabetic patients walking on different surfaces (tar, grass, and stones); (b) identify the measurement error (precision); (c) identify the minimal clinical detectable change. 16 patients with Type 2 diabetes were measured twice within 8 days. After clinical examination patients walked, equipped with a Physilog, on the three aforementioned surfaces. ICC for each surface was excellent for within-visit analyses (>0.938). Inter-visit ICC's (0.753) were excellent except for the knee range parameter (>0.503). The coefficient of variation (CV) was lower than 5% for most of the parameters. Bland and Altman Plots, SEM and SDC showed precise values, distributed around zero for all surfaces. Good reliability of Physilog measurements on different surfaces suggests that Physilog could facilitate the study of diabetic patients' gait in conditions close to real-life situations. Gait parameters during complex locomotor activities (e.g. stair-climbing, curbs, slopes) have not yet been extensively investigated. Good reliability, small measurement error and values of minimal clinical detectable change recommend the utilization of Physilog for the evaluation of gait parameters in diabetic patients.

  12. Gait parameters in patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Cristina Elena Prado Teles Fregonesi

    2010-02-01

    Full Text Available Diabetes mellitus is a chronic disease that results in sensorimotor alterations. These changes affect balance and walking and predispose affected patients to falls. The aim of this review was to identify studies in the recent literature that assess gait parameters and aspects involved in walking. The MEDLINE, SciELO, LILACS and PEDro databases were searched using the following combination of keywords: diabetic neuropathies x gait; diabetes mellitus x gait, and diabetic foot x gait. After the application of selection criteria, 15 articles were retrieved, summarized, discussed, and are included in this review. Diabetic neuropathy was found to lead to deficits in step amplitude, gait velocity and gait cadence on flat surfaces, without sudden changes in direction or stops, and to balance and coordination deficits on inclined and uneven terrain. Diabetic neuropathies also increase plantar pressure rates and lead to difficulties in the terminal stance phase and pre-swing phase due to changes in triceps surae activation. Thus, the next initial contact occurs in an inadequate manner, with the forefoot and without absorption of shocks.

  13. Effects of Postprandial Blood Pressure on Gait Parameters in Older People

    Directory of Open Access Journals (Sweden)

    Shailaja Nair

    2016-04-01

    Full Text Available Postprandial hypotension (PPH, a fall in systolic blood pressure (SBP within 2 h of a meal, may detrimentally affect gait parameters and increase the falls risk in older people. We aimed to determine the effects of postprandial SBP on heart rate (HR, gait speed, and stride length, double-support time and swing time variability in older subjects with and without PPH. Twenty-nine subjects were studied on three days: glucose (“G”, water and walk (“WW”, glucose and walk (“GW”. Subjects consumed a glucose drink on “G” and “GW” and water on “WW”. The “G” day determined which subjects had PPH. On “WW” and “GW” gait was analyzed. Sixteen subjects demonstrated PPH. In this group, there were significant changes in gait speed (p = 0.040 on “WW” and double-support time variability (p = 0.027 on “GW”. The area under the curve for the change in gait parameters from baseline was not significant on any study day. Among subjects without PPH, SBP increased on “WW” (p < 0.005 and all gait parameters remained unchanged on all study days. These findings suggest that by changing gait parameters, PPH may contribute to an increased falls risk in the older person with PPH.

  14. The effect of uphill and downhill walking on gait parameters: A self-paced treadmill study.

    Science.gov (United States)

    Kimel-Naor, Shani; Gottlieb, Amihai; Plotnik, Meir

    2017-07-26

    It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters. Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and -10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed. Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors. Copyright © 2017. Published by Elsevier Ltd.

  15. Gait recognition using kinect and locally linear embedding ...

    African Journals Online (AJOL)

    This paper presents the use of locally linear embedding (LLE) as feature extraction technique for classifying a person's identity based on their walking gait patterns. Skeleton data acquired from Microsoft Kinect camera were used as an input for (1). Multilayer Perceptron (MLP) and (2). LLE with MLP. The MLP classification ...

  16. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke.

    Science.gov (United States)

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-05-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved significantly in the CGT and GTBWS groups. Walking speed also improved significantly in both groups. [Conclusion] These results suggest that the GTBWS in company with CGT may be, in part, an effective method of gait training for restoring gait ability in patients after a stroke.

  17. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke

    OpenAIRE

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-01-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved signifi...

  18. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds.

    Science.gov (United States)

    Vieira, Marcus Fraga; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; Magnani, Rina Márcia; Lehnen, Georgia Cristina; Andrade, Adriano O

    2017-06-01

    This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (-8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial-lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior-posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.

  19. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking

    NARCIS (Netherlands)

    Zijlstra, W; Hof, AL

    2003-01-01

    This paper studies the feasibility of an analysis of spatio-temporal gait parameters based upon accelerometry. To this purpose, acceleration patterns of the trunk and their relationships with spatio-temporal gait parameters were analysed in healthy subjects. Based on model predictions of the body's

  20. Effect of Sacroiliac Joint Manipulation on Selected Gait Parameters in Healthy Subjects.

    Science.gov (United States)

    Wójtowicz, Sebastian; Sajko, Igor; Hadamus, Anna; Mosiołek, Anna; Białoszewski, Dariusz

    2017-08-31

    The sacroiliac joints have complicated biomechanics. While the movements in the joints are small, they exert a significant effect on gait. This study aimed to assess how sacroiliac joint manipulation influences selected gait parameters. The study enrolled 57 healthy subjects. The experimental group consisted of 26 participants diagnosed with dysfunction of one sacroiliac joint. The control group was composed of 31 persons. All subjects from the experimental group underwent sacroiliac joint manipulation. The experimental group showed significant lengthening of the step on both sides and the stride length in this group increased as well. Moreover, the duration of the stride increased (p=0.000826). The maximum midfoot pressure was higher and maximum heel pressure decreased. The differences were statistically significant. 1. Subclinical dysfunctions of the sacroiliac joints may cause functional gait disturbance. 2. Manipulation of the iliosacral joint exerts a significant effect on gait parameters, which may lead to improved gait economy and effec-tiveness. 3. Following manipulation of one iliosacral joint, altered gait parameters are noted on both the manipulated side and the contralateral side, which may translate into improved quality of locomotion.

  1. Automated extraction and validation of children's gait parameters with the Kinect.

    Science.gov (United States)

    Motiian, Saeid; Pergami, Paola; Guffey, Keegan; Mancinelli, Corrie A; Doretto, Gianfranco

    2015-12-02

    Gait analysis for therapy regimen prescription and monitoring requires patients to physically access clinics with specialized equipment. The timely availability of such infrastructure at the right frequency is especially important for small children. Besides being very costly, this is a challenge for many children living in rural areas. This is why this work develops a low-cost, portable, and automated approach for in-home gait analysis, based on the Microsoft Kinect. A robust and efficient method for extracting gait parameters is introduced, which copes with the high variability of noisy Kinect skeleton tracking data experienced across the population of young children. This is achieved by temporally segmenting the data with an approach based on coupling a probabilistic matching of stride template models, learned offline, with the estimation of their global and local temporal scaling. A preliminary study conducted on healthy children between 2 and 4 years of age is performed to analyze the accuracy, precision, repeatability, and concurrent validity of the proposed method against the GAITRite when measuring several spatial and temporal children's gait parameters. The method has excellent accuracy and good precision, with segmenting temporal sequences of body joint locations into stride and step cycles. Also, the spatial and temporal gait parameters, estimated automatically, exhibit good concurrent validity with those provided by the GAITRite, as well as very good repeatability. In particular, on a range of nine gait parameters, the relative and absolute agreements were found to be good and excellent, and the overall agreements were found to be good and moderate. This work enables and validates the automated use of the Kinect for children's gait analysis in healthy subjects. In particular, the approach makes a step forward towards developing a low-cost, portable, parent-operated in-home tool for clinicians assisting young children.

  2. Does a single gait training session performed either overground or on a treadmill induce specific short-term effects on gait parameters in patients with hemiparesis? A randomized controlled study.

    Science.gov (United States)

    Bonnyaud, Céline; Pradon, Didier; Zory, Raphael; Bensmail, Djamel; Vuillerme, Nicolas; Roche, Nicolas

    2013-01-01

    Gait training for patients with hemiparesis is carried out independently overground or on a treadmill. Several studies have shown differences in hemiparetic gait parameters during overground versus treadmill walking. However, few studies have compared the effects of these 2 gait training conditions on gait parameters, and no study has compared the short-term effects of these techniques on all biomechanical gait parameters. To determine whether a gait training session performed overground or on a treadmill induces specific short-term effects on biomechanical gait parameters in patients with hemiparesis. Twenty-six subjects with hemiparesis were randomly assigned to a single session of either overground or treadmill gait training. The short-term effects on spatiotemporal, kinematic, and kinetic gait parameters were assessed using gait analysis before and immediately after the training and after a 20-minute rest. Speed, cadence, percentage of single support phase, peak knee extension, peak propulsion, and braking on the paretic side were significantly increased after the gait training session. However, there were no specific changes dependent on the type of gait training performed (overground or on a treadmill). A gait training session performed by subjects with hemiparesis overground or on a treadmill did not induce specific short-term effects on biomechanical gait parameters. The increase in gait velocity that followed a gait training session seemed to reflect specific modifications of the paretic lower limb and adaptation of the nonparetic lower limb.

  3. Validity and repeatability of inertial measurement units for measuring gait parameters.

    Science.gov (United States)

    Washabaugh, Edward P; Kalyanaraman, Tarun; Adamczyk, Peter G; Claflin, Edward S; Krishnan, Chandramouli

    2017-06-01

    Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Gait and Cognition in Parkinson’s Disease: Cognitive Impairment Is Inadequately Reflected by Gait Performance during Dual Task

    Directory of Open Access Journals (Sweden)

    Heiko Gaßner

    2017-10-01

    Full Text Available IntroductionCognitive and gait deficits are common symptoms in Parkinson’s disease (PD. Motor-cognitive dual tasks (DTs are used to explore the interplay between gait and cognition. However, it is unclear if DT gait performance is indicative for cognitive impairment. Therefore, the aim of this study was to investigate if cognitive deficits are reflected by DT costs of spatiotemporal gait parameters.MethodsCognitive function, single task (ST and DT gait performance were investigated in 67 PD patients. Cognition was assessed by the Montreal Cognitive Assessment (MoCA followed by a standardized, sensor-based gait test and the identical gait test while subtracting serial 3’s. Cognitive impairment was defined by a MoCA score <26. DT costs in gait parameters [(DT − ST/ST × 100] were calculated as a measure of DT effect on gait. Correlation analysis was used to evaluate the association between MoCA performance and gait parameters. In a linear regression model, DT gait costs and clinical confounders (age, gender, disease duration, motor impairment, medication, and depression were correlated to cognitive performance. In a subgroup analysis, we compared matched groups of cognitively impaired and unimpaired PD patients regarding differences in ST, DT, and DT gait costs.ResultsCorrelation analysis revealed weak correlations between MoCA score and DT costs of gait parameters (r/rSp ≤ 0.3. DT costs of stride length, swing time variability, and maximum toe clearance (|r/rSp| > 0.2 were included in a regression analysis. The parameters only explain 8% of the cognitive variance. In combination with clinical confounders, regression analysis showed that these gait parameters explained 30% of MoCA performance. Group comparison revealed strong DT effects within both groups (large effect sizes, but significant between-group effects in DT gait costs were not observed.ConclusionThese findings suggest that DT gait performance is not indicative

  5. Relation of Stump Length with Various Gait Parameters in Trans-tibial Amputee

    Directory of Open Access Journals (Sweden)

    Koyel Majumdar

    2008-07-01

    Full Text Available The purpose of this paper is evaluating the impact of stump length of unilateral below knee amputees (BKA on different gait parameters. Nine unilateral BKA were chosen and divided into three groups comprising patients with short, medium, and long stump length. Each of them underwent gait analysis test by Computer Dynography (CDG system to measure the gait parameters. It was found that the ground reaction force is higher in the patients with medium stump length whereas the velocity, step length both for the prosthetic and sound limb and cadence were high in longer stump length. Statistical analysis shows a significant difference (p<0.05 between the gait parameters of BKA with medium and longer stump length. The patients with longer stump length were more efficient than medium and short stump patients as they consumed comparatively lesser energy while walking with self-selected velocity and conventional (Solid ankle cushioned heel SACH foot.

  6. Biped Robot Gait Planning Based on 3D Linear Inverted Pendulum Model

    Science.gov (United States)

    Yu, Guochen; Zhang, Jiapeng; Bo, Wu

    2018-01-01

    In order to optimize the biped robot’s gait, the biped robot’s walking motion is simplify to the 3D linear inverted pendulum motion mode. The Center of Mass (CoM) locus is determined from the relationship between CoM and the Zero Moment Point (ZMP) locus. The ZMP locus is planned in advance. Then, the forward gait and lateral gait are simplified as connecting rod structure. Swing leg trajectory using B-spline interpolation. And the stability of the walking process is discussed in conjunction with the ZMP equation. Finally the system simulation is carried out under the given conditions to verify the validity of the proposed planning method.

  7. Fear of falling and gait parameters in older adults with and without fall history.

    Science.gov (United States)

    Makino, Keitaro; Makizako, Hyuma; Doi, Takehiko; Tsutsumimoto, Kota; Hotta, Ryo; Nakakubo, Sho; Suzuki, Takao; Shimada, Hiroyuki

    2017-12-01

    Fear of falling (FOF) is associated with spatial and temporal gait parameters in older adults. FOF is prevalent among older adults, both those with and without fall history. It is still unclear whether the relationships between FOF and gait parameters are affected by fall history. The aim of the present study was to compare gait parameters by the presence of FOF and fall history. A total of 3575 older adults (mean age 71.7 years, 49.7% female) met the inclusion criteria for the present study. We assessed the presence of fall history and FOF by face-to-face interview, and gait parameters (gait speed, stride length, step rate, double support time and variation of stride length) at a comfortable speed using a computerized electronic walkway. Prevalences of fall history and FOF were as follows: non-fallers without FOF 52.6% (n = 1881); fallers without FOF 6.3% (n = 227); non-fallers with FOF 34.4% (n = 1229); and fallers with FOF 6.7% (n = 238). Analysis of covariance showed significant differences among the four groups in all gait variables even after adjusting for age, sex and number of medications used. It should be noted that non-fallers with FOF showed significantly slower gait speed, shorter stride length and longer double support time than did non-fallers without FOF (P fall history. The assessment of FOF might be helpful for better understanding of age-related changes in gait control. Geriatr Gerontol Int 2017; 17: 2455-2459. © 2017 Japan Geriatrics Society.

  8. Intra-rater repeatability of gait parameters in healthy adults during self-paced treadmill-based virtual reality walking.

    Science.gov (United States)

    Al-Amri, Mohammad; Al Balushi, Hilal; Mashabi, Abdulrhman

    2017-12-01

    Self-paced treadmill walking is becoming increasingly popular for the gait assessment and re-education, in both research and clinical settings. Its day-to-day repeatability is yet to be established. This study scrutinised the test-retest repeatability of key gait parameters, obtained from the Gait Real-time Analysis Interactive Lab (GRAIL) system. Twenty-three male able-bodied adults (age: 34.56 ± 5.12 years) completed two separate gait assessments on the GRAIL system, separated by 5 ± 3 days. Key gait kinematic, kinetic, and spatial-temporal parameters were analysed. The Intraclass-Correlation Coefficients (ICC), Standard Error Measurement (SEM), Minimum Detectable Change (MDC), and the 95% limits of agreements were calculated to evaluate the repeatability of these gait parameters. Day-to-day agreements were excellent (ICCs > 0.87) for spatial-temporal parameters with low MDC and SEM values, gait performance over time.

  9. Changes in spatiotemporal gait parameters following intravenous immunoglobulin treatment for chronic inflammatory demyelinating polyneuropathy.

    Science.gov (United States)

    Vo, Mary L; Chin, Russell L; Miranda, Caroline; Latov, Norman

    2017-10-01

    Gait impairment is a common presenting symptom in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). However, gait parameters have not previously been evaluated in detail as potential independent outcome measures. We prospectively measured changes in spatiotemporal gait parameters of 20 patients with CIDP at baseline and following treatment with intravenous immunoglobulin (IVIG), using GAITRite® a computerized walkway system with embedded sensors. Overall, study patients showed significant improvements in gait velocity, cadence, stride length, double support time, stance phase, and swing phase following IVIG treatment. Mean changes in velocity, stance phase, and swing phase, exhibited the greatest statistical significance among the subgroup that exhibited clinically meaningful improvement in Inflammatory Neuropathy Cause and Treatment disability score, Medical Research Council sum score, and grip strength. Assessment of gait parameters, in particular velocity, step phase and swing phase, is a potentially sensitive outcome measure for evaluating treatment response in CIDP. Muscle Nerve 56: 732-736, 2017. © 2017 Wiley Periodicals, Inc.

  10. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Gema Chamorro-Moriana

    2018-01-01

    Full Text Available This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%, orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Conclusion: Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback.

  11. Analysis of spastic gait in cervical myelopathy: Linking compression ratio to spatiotemporal and pedobarographic parameters.

    Science.gov (United States)

    Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo

    2018-01-01

    Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45test revealed that CR was significantly correlated with speed, cadence, stride length, and toe-out angle. Gait speed, stride length, and toe-out angle can serve as useful indexes for evaluating progressive gait abnormality in cervical myelopathy. Our findings suggest that CR≤0.25 is associated with significantly poorer gait performance. Nevertheless, future prospective studies are needed to determine a potential benefit from decompressive surgery in such severe compression patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dynamic optimization of a biped model: Energetic walking gaits with different mechanical and gait parameters

    Directory of Open Access Journals (Sweden)

    Kang An

    2015-05-01

    Full Text Available Energy consumption is one of the problems for bipedal robots walking. For the purpose of studying the parameter effects on the design of energetic walking bipeds with strong adaptability, we use a dynamic optimization method on our new walking model to first investigate the effects of the mechanical parameters, including mass and length distribution, on the walking efficiency. Then, we study the energetic walking gait features with the combinations of walking speed and step length. Our walking model is designed upon Srinivasan’s model. Dynamic optimization is used for a free search with minimal constraints. The results show that the cost of transport of a certain gait increases with the increase in the mass and length distribution parameters, except for that the cost of transport decreases with big length distribution parameter and long step length. We can also find a corresponding range of walking speed and step length, in which the variation in one of the two parameters has no obvious effect on the cost of transport. With fixed mechanical parameters, the cost of transport increases with the increase in the walking speed. There is a speed–step length relationship for walking with minimal cost of transport. The hip torque output strategy is adjusted in two situations to meet the walking requirements.

  13. Accelerometry based assessment of gait parameters in children

    NARCIS (Netherlands)

    Faber, Herre; Hoeven, H. vd; Ipenburg, S. van; Lummel, Robert C. van R.C. van Rob C. Van R.C. van; Blockhuis, Nancy; Nienhuis, B.; Heikens, Sander S.C.; Brandes, Mirko; Zijlstra, Wiebren; Rosenbaum, Dieter; Terwee, C.B. Caroline B.; Slikke, R.M.A. van der Rienk M.A. vam der; Benink, Rob J. R.J.; Meijers, Wil G.H W.G.H.; de Vet, H.C.W. Henrica C W; Pitta, Fabio; Troosters, Thierry; Spruit, Martijn A.; Decramer, Marc; Gosselink, Rik; Thoumie, P.; Forward, M.J.; Plasschaert, F.S.; Burdorf, Lex; Windhorst, Judith; Beek, Allard J. van der; Molen, Henk F. van der; Swuste, Paul H.J.J.; Janssen, Maurice M.J.A.; Pas, Rianne; Aarts, Jos; Janssen-Potten, Yvonne; Vles, Johan; Pinxteren, S.A.T.v. Sjors van; Stokroos, R.J. Robert; Kingma, Herman; Pas, A.J.; Aarts, A.F.J.; Nabuurs, C.I.H.C.; Janssen, Y.; Mokkink, Lidwine B.; van der Slikke, Rienk M.A.; van Lummel, Rob C R.C.; Bouter, L.M. Lex M; de Vet, H.C.W. Henrica C W; de Witte, S.J.; Wetzels, L.; Probst, Vanessa S.; Peijl, I.D. van der; Vliet Vlieland, T.P.M.; Versteegh, M.I.M.; Lok, J.J.; Munneke, M.; Dion, R.A.E.; Bulthuis, Y.; Vollenbroek-Hutten, M.; Hermens, H.J.; Vendrig, L.; Roozenburg, B.; Wal, M. van der; Lisowski, A.E.; Murray, D.W.; Lisowski, L.A.; Creusen, H.; Witvrouw, E.; Victor, J.; Bellemans, J.; Rock, B.; Verdonk, R.; Spenkelink, C.D.; Hutten, M.M.R.; Greitemann, B.O.L.; Schillemans, P.F.; Meijer, O.G.; Dikkenberg, N. van den; Dieën, Jaap H van J.H. van; Pijls, B.; Wuisman, P.I.J.M.; Uiterwaal, M.; Dam, M.S. van; Kok, G.J.; Vogelaar, F.J.; Taminiau, A.H.M.; Derycke, P.; Vilella, P.; Loonbeek, S.; Schuffelers, K.; Jong, Z. de; Zwinderman, A.H.; Tijhuis, G.J.; Hazes, J.M.W.; Glerum, E.B.C.; Busser, H.J. J.; Ott, J.; Blank, R.; de Korte, W.G.; Veltink, Peter H. P.H.; Bussmann, Hans B.J.; de Vries, W.; Martens, W.I.J. Wim L.J.; Kerkhof, G. A.; Koelma, Frank; Franken, Henry M.; Kim, Tea-Woo; Kim, Yong-Wook; Abrahin, O.; Rodrigues, R. P.; Nascimento, V.C.; Silva-Grigoletto, M.E. Da; Sousa, E.C.; Marçal, A.C.; Van Remoortel, Hans; Raste, Yogini; Louvaris, Zafeiris; Giavedoni, Santiago; Burtin, Chris; Langer, Daniel; Wilson, Frederick; Rabinovich, Roberto; Vogiatzis, Ioannis; Hopkinson, Nicholas S; Schooten, Kimberley S.; Rispens, Sietse M; Elders, Petra J M; Lips, Paul; Pijnappels, Mirjam; Andersson, M.; Janson, C.; Emtner, M.; Sena, R.; Holt, Nicole E.; Percac-Lima, Sanja; Kurlinski, Laura A.; Thomas Julia, C.; Landry, Paige M.; Campbell, Braidie; Latham, Nancy; Ni, Pengsheng; Jette, Alan; Leveille, Suzanne G.; Bean, Johnathan F.; Bisi, Maria Cristina; Riva, Federico; Stagni, Rita; Altuğ, Filiz; Acar, Feridun; Acar, Göksemin; Cavlak, Uğur; Choi, Ho-Chun; Son, Ki Young; Cho, Belong; Park, Sang Min; Cho, Sung-Il

    2006-01-01

    The objective of this study was to examine if spatio-temporal gait parameters in healthy children can be determined from accelerations measured at the lower trunk as has been demonstrated in adults, previously. Twenty children aged 3-16 years, participated in a protocol that involved repeated walks

  14. Associations between results of post-stroke NDT-Bobath rehabilitation in gait parameters, ADL and hand functions.

    Science.gov (United States)

    Mikołajewska, Emilia

    2013-01-01

    In patients after a stroke there are variable disorders. These patients often need rehabilitation in more than one area beceause of multiple limitations of the ability to perform everyday activities. The aim of the study was to assess correlations - statistical relationships between observed gait parameters, ADL and hand functions - results of rehabilitation of patients after ischaemic stroke according to the NDTBobath method for adults. The investigated group consisted of 60 patients after ischaemic stroke, who participated in the rehabilitation programme. 10 sessions of the NDT-Bobath therapy were provided in 2 weeks (10 days of the therapy). The calculation of correlations was made based on changes of parameters: Bobath Scale (to assess hand functions), Barthel Index (to assess ADL), gait velocity, cadence and stride lenght. Measurements were performed in every patient twice: on admission (before the therapy) and after last session of the therapy to assess rehabilitation effects. The main statistically relevant corellations observed in the study were as follows: in the whole group of patients: poor and moderate (negative) correlation between changes of gait parameters and Bobath Scale and Barthel Index, moderate and severe (negative) correlation between changes of gait parameters and Bobath Scale and Barthel Index in the group of women, correlation between changes in Bobath Scale and Barthel Index in the group of patients with left side of paresis, (negative) correlation between changes of gait parameters and Bobath Scale in group of patients younger than 68 years, moderate, high and very high correlations between changes in gait parameters in groups of women, men, younger than 68 years and older than 68 years. There have been observed statistically significant and favourable changes in the health status of patients, described by gait parameters, changes in hand functions and ADL. Based on the presented correlations there is an assumption that it is hard to

  15. Effect of Duration of Disease on Gait Parameters in Parkinson’s Patients

    Directory of Open Access Journals (Sweden)

    Aygün Özşahin

    2007-04-01

    Full Text Available OBJECTIVE: Posture and gait disturbances are major components which cause functional disability in Parkinson’s disease (PD. Three dimensional gait and motion analysis systems provide quantitative data of gait. OBJECTIVES: The aim of this study is to correlate between duration of disease and gait parameters of Parkinson patients during the on-phase. METHODS: We investigated temporospatial and kinematics variables of gait in 23 subjects with PD as measured in the on-phase of their medication cycle using motion analysis. We evaluated the correlation between all gait parameters and Gait and Balance Scale (GABS, unified Parkinson’s disease rating scale (UPDRS total-motor scores, Hoehn&Yahr (H&Y stages and duration of the disease. RESULTS: We found positive correlation between cadance and duration of disease. Patients had negative correlation between stride time and duration of disease. And also there was positive correlation between UPDRS total score and duration of disease. CONCLUSION: Increasing of cadance and decreasing of stride time exhibited by PD subjects is a compensatory mechanism for the difficulty in regulating stride lenght. It was reported that stride lenght control mediate by basal ganglia. Scaling of lower limb amplitude during locomotion can be controlled by higher levels of the Central Nervous System. Patients tend to increase pelvic rotation to keep their center of mass stabilised because of shortness of stride lenght. We thought that reduction pelvic and hip ROMs in coronal plane are impaired muscles of leg in the swing phase. These findings possibly indicate that shortness of stride lenght with the progression of disease is related to cortical centers. Three dimentional analysis systems provide detailed gait examination in PD patients to assess of progression and efficacy for therapies. Also, this method will guide us to explain physiopathologic mechanisms of PD

  16. Assessment of changes in gait parameters and vertical ground reaction forces after total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Bhargava P

    2007-01-01

    Full Text Available The principal objectives of arthroplasty are relief of pain and enhancement of range of motion. Currently, postoperative pain and functional capacity are assessed largely on the basis of subjective evaluation scores. Because of the lack of control inherent in this method it is often difficult to interpret data presented by different observers in the critical evaluation of surgical method, new components and modes of rehabilitation. Gait analysis is a rapid, simple and reliable method to assess functional outcome. This study was undertaken in an effort to evaluate the gait characteristics of patients who underwent arthroplasty, using an Ultraflex gait analyzer. Materials and Methods: The study was based on the assessment of gait and weight-bearing pattern of both hips in patients who underwent total hip replacement and its comparison with an age and sex-matched control group. Twenty subjects of total arthroplasty group having unilateral involvement, operated by posterior approach at our institution with a minimum six-month postoperative period were selected. Control group was age and sex-matched, randomly selected from the general population. Gait analysis was done using Ultraflex gait analyzer. Gait parameters and vertical ground reaction forces assessment was done by measuring the gait cycle properties, step time parameters and VGRF variables. Data of affected limb was compared with unaffected limb as well as control group to assess the weight-bearing pattern. Statistical analysis was done by′t′ test. Results: Frequency is reduced and gait cycle duration increased in total arthroplasty group as compared with control. Step time parameters including Step time, Stance time and Single support time are significantly reduced ( P value < .05 while Double support time and Single swing time are significantly increased ( P value < .05 in the THR group. Forces over each sensor are increased more on the unaffected limb of the THR group as compared to

  17. Postural Sway Parameters and Gait Symmetry in Preschool Children: Cross-sectional study

    Directory of Open Access Journals (Sweden)

    Fabiane E de Sá

    Full Text Available Abstract The most important function of posture is to ensure the maintenance of control during the start and the continuation of human movement, moreover, posture serves as a reference for the production of precise movements. The aim of this study was to relate the postural sway parameters and gait symmetry in preschool children.This study is a cross-sectional study, conducted in 49 children with a mean age of 4.65 ± 0.44 years. Initially, height and body mass of children were measured using anthropometric scales. Next, an electronic baropodometer was used to evaluate the distribution of dynamic plantar pressure (gait and stabilometry (balance.A Student t test or Mann-Whitney test for comparing two groups was used. To correlate variables, a Pearson's correlation or Spearman's correlation coefficient was used. The stabilometric parameters showed no significant difference between an eyes open test and eyes closed test in preschool child. We found a moderate relationship between axis inclination and cadence symmetry (R=0.40;p=0.007. Postural sway parameters have relationship cadence symmetry of the gait in preschool children.

  18. Multiple gait parameters derived from iPod accelerometry predict age-related gait changes

    NARCIS (Netherlands)

    Kosse, Nienke; Vuillerme, Nicolas; Hortobagyi, Tibor; Lamoth, Claude

    Introduction Normative data of how natural aging affects gait can serve as a frame of reference for changes in gait dynamics due to pathologies. Therefore, the present study aims (1) to identify gait variables sensitive to age-related changes in gait over the adult life span using the iPod and (2)

  19. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis.

    Science.gov (United States)

    Shahraki, M; Sohrabi, M; Taheri Torbati, H R; Nikkhah, K; NaeimiKia, M

    2017-01-01

    Purpose: This study aimed to examine the effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. Subjects and Methods: In this study, 18 subjects, comprising 4 males and 14 females with Multiple Sclerosis with expanded disability status scale of 3 to 6 were chosen. Subjects were selected by available and targeted sampling and were randomly divided into two experimental (n = 9) and control (n = 9) groups. Exercises were gait with rhythmic auditory stimulation by a metronome device, in addition to gait without stimulation for the experimental and control groups, respectively. Training was carried out for 3 weeks, with 30 min duration for each session 3 times a week. Stride length, stride time, double support time, cadence and gait speed were measured by motion analysis device. Results: There was a significant difference between stride length, stride time, double support time, cadence and gait speed in the experimental group, before and after the training. Furthermore, there was a significant difference between the experimental and control groups in the enhancement of stride length, stride time, cadence and gait speed in favor of the experimental group. While this difference was not significant for double support time. Conclusion: The results of this study showed that rhythmic auditory stimulation is an effective rehabilitation method to improve gait kinematic parameters in patients with multiple sclerosis.

  20. Effects of 12-week supervised treadmill training on spatio-temporal gait parameters in patients with claudication.

    Science.gov (United States)

    Konik, Anita; Kuklewicz, Stanisław; Rosłoniec, Ewelina; Zając, Marcin; Spannbauer, Anna; Nowobilski, Roman; Mika, Piotr

    2016-01-01

    The purpose of the study was to evaluate selected temporal and spatial gait parameters in patients with intermittent claudication after completion of 12-week supervised treadmill walking training. The study included 36 patients (26 males and 10 females) aged: mean 64 (SD 7.7) with intermittent claudication. All patients were tested on treadmill (Gait Trainer, Biodex). Before the programme and after its completion, the following gait biomechanical parameters were tested: step length (cm), step cycle (cycle/s), leg support time (%), coefficient of step variation (%) as well as pain-free walking time (PFWT) and maximal walking time (MWT) were measured. Training was conducted in accordance with the current TASC II guidelines. After 12 weeks of training, patients showed significant change in gait biomechanics consisting in decreased frequency of step cycle (p gait was more regular, which was expressed via statistically significant decrease of coefficient of variation (p 0.05). Twelve-week treadmill walking training programme may lead to significant improvement of temporal and spatial gait parameters in patients with intermittent claudication. Twelve-week treadmill walking training programme may lead to significant improvement of pain-free walking time and maximum walking time in patients with intermittent claudication.

  1. Gait parameters are differently affected by concurrent smartphone-based activities with scaled levels of cognitive effort.

    Directory of Open Access Journals (Sweden)

    Carlotta Caramia

    Full Text Available The widespread and pervasive use of smartphones for sending messages, calling, and entertainment purposes, mainly among young adults, is often accompanied by the concurrent execution of other tasks. Recent studies have analyzed how texting, reading or calling while walking-in some specific conditions-might significantly influence gait parameters. The aim of this study is to examine the effect of different smartphone activities on walking, evaluating the variations of several gait parameters. 10 young healthy students (all smartphone proficient users were instructed to text chat (with two different levels of cognitive load, call, surf on a social network or play with a math game while walking in a real-life outdoor setting. Each of these activities is characterized by a different cognitive load. Using an inertial measurement unit on the lower trunk, spatio-temporal gait parameters, together with regularity, symmetry and smoothness parameters, were extracted and grouped for comparison among normal walking and different dual task demands. An overall significant effect of task type on the aforementioned parameters group was observed. The alterations in gait parameters vary as a function of cognitive effort. In particular, stride frequency, step length and gait speed show a decrement, while step time increases as a function of cognitive effort. Smoothness, regularity and symmetry parameters are significantly altered for specific dual task conditions, mainly along the mediolateral direction. These results may lead to a better understanding of the possible risks related to walking and concurrent smartphone use.

  2. Ultrasonic motion analysis system - measurement of temporal and spatial gait parameters

    NARCIS (Netherlands)

    Huitema, RB; Hof, AL; Postema, K

    The duration of stance and swing phase and step and stride length are important parameters in human gait. In this technical note a low-cost ultrasonic motion analysis system is described that is capable of measuring these temporal and spatial parameters while subjects walk on the floor. By using the

  3. Gender may have an influence on the relationship between Functional Movement Screen scores and gait parameters in elite junior athletes - A pilot study.

    Science.gov (United States)

    Magyari, N; Szakács, V; Bartha, C; Szilágyi, B; Galamb, K; Magyar, M O; Hortobágyi, T; Kiss, R M; Tihanyi, J; Négyesi, J

    2017-09-01

    Aims The aim of this study was to examine the effects of gender on the relationship between Functional Movement Screen (FMS) and treadmill-based gait parameters. Methods Twenty elite junior athletes (10 women and 10 men) performed the FMS tests and gait analysis at a fixed speed. Between-gender differences were calculated for the relationship between FMS test scores and gait parameters, such as foot rotation, step length, and length of gait line. Results Gender did not affect the relationship between FMS and treadmill-based gait parameters. The nature of correlations between FMS test scores and gait parameters was different in women and men. Furthermore, different FMS test scores predicted different gait parameters in female and male athletes. FMS asymmetry and movement asymmetries measured by treadmill-based gait parameters did not correlate in either gender. Conclusion There were no interactions between FMS, gait parameters, and gender; however, correlation analyses support the idea that strength and conditioning coaches need to pay attention not only to how to score but also how to correctly use FMS.

  4. The effect of three different types of walking aids on spatio-temporal gait parameters in community-dwelling older adults.

    Science.gov (United States)

    Härdi, Irene; Bridenbaugh, Stephanie A; Gschwind, Yves J; Kressig, Reto W

    2014-04-01

    Gait and balance impairments lead to falls and injuries in older people. Walking aids are meant to increase gait safety and prevent falls, yet little is known about how their use alters gait parameters. This study aimed to quantify gait in older adults during walking without and with different walking aids and to compare gait parameters to matched controls. This retrospective study included 65 older (≥60 years) community dwellers who used a cane, crutch or walker and 195 independently mobile-matched controls. Spatio-temporal gait parameters were measured with an electronic walkway system during normal walking. When walking unaided or aided, walking aid users had significantly worse gait than matched controls. Significant differences between the walking aid groups were found for stride time variability (cane vs. walker) in walking unaided only. Gait performances significantly improved when assessed with vs. without the walking aid for the cane (increased stride time and length, decreased cadence and stride length variability), crutch (increased stride time and length, decreased cadence, stride length variability and double support) and walker (increased gait speed and stride length, decreased base of support and double support) users. Gait in older adults who use a walking aid is more irregular and unstable than gait in independently mobile older adults. Walking aid users have better gait when using their walking aid than when walking without it. The changes in gait were different for the different types of walking aids used. These study results may help better understand gait in older adults and differentiate between pathological gait changes and compensatory gait changes due to the use of a walking aid.

  5. Positive outcomes following gait therapy intervention for hip osteoarthritis: A longitudinal study.

    Science.gov (United States)

    Solomonow-Avnon, Deborah; Herman, Amir; Levin, Daniel; Rozen, Nimrod; Peled, Eli; Wolf, Alon

    2017-10-01

    Footwear-generated biomechanical manipulation of lower-limb joints was shown to beneficially impact gait and quality of life in knee osteoarthritis patients, but has not been tested in hip osteoarthritis patients. We examined a customized gait treatment program using a biomechanical device shown in previous investigations to be capable of manipulating hip biomechanics via foot center of pressure (COP) modulation. The objective of this study was to assess the treatment program for hip osteoarthritis patients, enrolled in a 1-year prospective investigation, by means of objective gait and spatiotemporal parameters, and subjective quality of life measures. Gait analysis and completion of questionnaires were performed at the start of the treatment (baseline), and after 3, 6, and 12 months. Outcome parameters were evaluated over time using linear mixed effects models, and association between improvement in quality of life measures and change in objective outcomes was tested using mixed effect linear regression models. Quality of life measures improved compared to baseline, accompanied by increased gait speed and cadence. Sagittal-plane hip joint kinetics, kinematics, and spatiotemporal parameters changed throughout the study compared to baseline, in a manner suggesting improvement of gait. The most substantial improvement occurred within 3 months after treatment initiation, after which improvement approximately plateaued, but was sustained at 12 months. Speed and cadence, as well as several sagittal-plane gait parameters, were significant predictors of improvement in quality of life. Evidence suggests that a biomechanical gait therapy program improves subjective and objective outcomes measures and is a valid treatment option for hip osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2222-2232, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Gait Implications of Visual Field Damage from Glaucoma.

    Science.gov (United States)

    Mihailovic, Aleksandra; Swenor, Bonnielin K; Friedman, David S; West, Sheila K; Gitlin, Laura N; Ramulu, Pradeep Y

    2017-06-01

    To evaluate fall-relevant gait features in older glaucoma patients. The GAITRite Electronic Walkway was used to define fall-related gait parameters in 239 patients with suspected or manifest glaucoma under normal usual-pace walking conditions and while carrying a cup or tray. Multiple linear regression models assessed the association between gait parameters and integrated visual field (IVF) sensitivity after controlling for age, race, sex, medications, and comorbid illness. Under normal walking conditions, worse IVF sensitivity was associated with a wider base of support (β = 0.60 cm/5 dB IVF sensitivity decrement, 95% confidence interval [CI] = 0.12-1.09, P = 0.016). Worse IVF sensitivity was not associated with slower gait speed, shorter step or stride length, or greater left-right drift under normal walking conditions ( P > 0.05 for all), but was during cup and/or tray carrying conditions ( P < 0.05 for all). Worse IVF sensitivity was positively associated with greater stride-to-stride variability in step length, stride length, and stride velocity ( P < 0.005 for all). Inferior and superior IVF sensitivity demonstrated associations with each of the above gait parameters as well, though these associations were consistently similar to, or weaker than, the associations noted for overall IVF sensitivity. Glaucoma severity was associated with several gait parameters predictive of higher fall risk in prior studies, particularly measures of stride-to-stride variability. Gait may be useful in identifying glaucoma patients at higher risk of falls, and in designing and testing interventions to prevent falls in this high-risk group. These findings could serve to inform the development of the interventions for falls prevention in glaucoma patients.

  7. The Effect of Two Different Cognitive Tests on Gait Parameters during Dual Tasks in Healthy Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Magdalena Hagner-Derengowska

    2016-01-01

    Full Text Available Introduction. The paper aims to evaluate the influence of two different demanding cognitive tasks on gait parameters using BTS SMART system analysis. Patients and Methods. The study comprised 53 postmenopausal women aged 64.5 ± 6.7 years (range: 47–79. For every subject, gait analysis using a BTS SMART system was performed in a dual-task study design under three conditions: (I while walking only (single task, (II walking while performing a simultaneous simple cognitive task (SCT (dual task, and (III walking while performing a simultaneous complex cognitive task (CCT (dual task. Time-space parameters of gait pertaining to the length of a single support phase, double support phase, gait speed, step length, step width, and leg swing speed were analyzed. Results. Performance of cognitive tests during gait resulted in a statistically significant prolongation of the left (by 7% and right (by 7% foot gait cycle, shortening of the length of steps made with the right extremity (by 4%, reduction of speed of swings made with the left (by 11% and right (by 8% extremity, and reduction in gait speed (by 6%. Conclusions. Performance of cognitive tests during gait changes its individual pattern in relation to the level of the difficulty of the task.

  8. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review.

    Science.gov (United States)

    Herssens, Nolan; Verbecque, Evi; Hallemans, Ann; Vereeck, Luc; Van Rompaey, Vincent; Saeys, Wim

    2018-06-12

    Aging is often associated with changes in the musculoskeletal system, peripheral and central nervous system. These age-related changes often result in mobility problems influencing gait performance. Compensatory strategies are used as a way to adapt to these physiological changes. The aim of this review is to investigate the differences in spatiotemporal and gait variability measures throughout the healthy adult life. This systematic review was conducted according to the PRISMA guidelines and registered in the PROSPERO database (no. CRD42017057720). Databases MEDLINE (Pubmed), Web of Science (Web of Knowledge), Cochrane Library and ScienceDirect were systematically searched until March 2018. Eighteen of the 3195 original studies met the eligibility criteria and were included in this review. The majority of studies reported spatiotemporal and gait variability measures in adults above the age of 65, followed by the young adult population, information of middle-aged adults is lacking. Spatiotemporal parameters and gait variability measures were extracted from 2112 healthy adults between 18 and 98 years old and, in general, tend to deteriorate with increasing age. Variability measures were only reported in an elderly population and show great variety between studies. The findings of this review suggest that most spatiotemporal parameters significantly differ across different age groups. Elderly populations show a reduction of preferred walking speed, cadence, step and stride length, all related to a more cautious gait, while gait variability measures remain stable over time. A preliminary framework of normative reference data is provided, enabling insights into the influence of aging on spatiotemporal parameters, however spatiotemporal parameters of middle-aged adults should be investigated more thoroughly. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Gait parameter risk factors for falls under simple and dual task conditions in cognitively impaired older people.

    Science.gov (United States)

    Taylor, Morag E; Delbaere, Kim; Mikolaizak, A Stefanie; Lord, Stephen R; Close, Jacqueline C T

    2013-01-01

    Impaired gait may contribute to the increased rate of falls in cognitively impaired older people. We investigated whether gait under simple and dual task conditions could predict falls in this group. The study sample consisted of 64 community dwelling older people with mild to moderate cognitive impairment. Participants walked at their preferred speed under three conditions: (a) simple walking, (b) walking while carrying a glass of water and (c) walking while counting backwards from 30. Spatiotemporal gait parameters were measured using the GAITRite(®) mat. Falls were recorded prospectively for 12months with the assistance of carers. Twenty-two (35%) people fell two or more times in the 12month follow-up period. There was a significant main effect of gait condition and a significant main effect of faller status for mean value measures (velocity, stride length, double support time and stride width) and for variability measures (swing time variability and stride length variability). Examination of individual gait parameters indicated that the multiple fallers walked more slowly, had shorter stride length, spent longer time in double support, had a wider support width and showed more variability in stride length and swing time (p<0.05). There was no significant interaction between gait condition and faller status for any of the gait variables. In conclusion, dual task activities adversely affect gait in cognitively impaired older people. Multiple fallers performed worse in each gait condition but the addition of a functional or cognitive secondary task provided no added benefit in discriminating fallers from non-fallers with cognitive impairment. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. [Subjective Gait Stability in the Elderly].

    Science.gov (United States)

    Hirsch, Theresa; Lampe, Jasmin; Michalk, Katrin; Röder, Lotte; Munsch, Karoline; Marquardt, Jonas

    2017-07-10

    It can be assumed that the feeling of gait stability or gait instability in the elderly may be independent of a possible fear of falling or a history of falling when walking. Up to now, there has been a lack of spatiotemporal gait parameters for older people who subjectively feel secure when walking. The aim of the study is to analyse the distribution of various gait parameters for older people who subjectively feel secure when walking. In a cross-sectional study, the gait parameters stride time, step time, stride length, step length, double support, single support, and walking speed were measured using a Vicon three-dimensional motion capture system (Plug-In Gait Lower-Body Marker Set) in 31 healthy people aged 65 years and older (mean age 72 ± 3.54 years) who subjectively feel secure when walking. There was a homogeneous distribution in the gait parameters examined, with no abnormalities. The mean values have a low variance with narrow confidence intervals. This study provides evidence that people who subjectively feel secure when walking demonstrate similarly objective gait parameters..

  11. A Wearable Gait Phase Detection System Based on Force Myography Techniques

    Directory of Open Access Journals (Sweden)

    Xianta Jiang

    2018-04-01

    Full Text Available (1 Background: Quantitative evaluation of gait parameters can provide useful information for constructing individuals’ gait profile, diagnosing gait abnormalities, and better planning of rehabilitation schemes to restore normal gait pattern. Objective determination of gait phases in a gait cycle is a key requirement in gait analysis applications; (2 Methods: In this study, the feasibility of using a force myography-based technique for a wearable gait phase detection system is explored. In this regard, a force myography band is developed and tested with nine participants walking on a treadmill. The collected force myography data are first examined sample-by-sample and classified into four phases using Linear Discriminant Analysis. The gait phase events are then detected from these classified samples using a set of supervisory rules; (3 Results: The results show that the force myography band can correctly detect more than 99.9% of gait phases with zero insertions and only four deletions over 12,965 gait phase segments. The average temporal error of gait phase detection is 55.2 ms, which translates into 2.1% error with respect to the corresponding labelled stride duration; (4 Conclusions: This proof-of-concept study demonstrates the feasibility of force myography techniques as viable solutions in developing wearable gait phase detection systems.

  12. First signs of elderly gait for women.

    Science.gov (United States)

    Kaczmarczyk, Katarzyna; Wiszomirska, Ida; Błażkiewicz, Michalina; Wychowański, Michał; Wit, Andrzej

    2017-06-27

    The aims of this study have been twofold: to attempt to reduce the number of spatiotemporal parameters used for describing gait through the factor analysis and component analysis; and to explore the critical age of decline for other gait parameters for healthy women. A total of 106 women (aged ≥ 40 years old (N = 76) and ≤ 31 years old (N = 30)) were evaluated using a pressure-sensitive mat (Zebris Medical System, Tübingen, Germany) for collecting spatiotemporal gait parameters. The factor analysis identified 2 factors - labelled Time and Rhythm - that accounted for 72% of the variation in significant free-gait parameters; the principal component analysis identified 4 of these parameters that permit full clinical evaluation of gait quality. No difference was found between the groups in terms of the values of parameters reflecting the temporal nature of gait (Rhythm), namely step time, stride time and cadence, whereas significant differences were found for total double support phase (p gait, we selected 3 parameters: total double support, stride time and velocity. We concluded that the women taking part in the experiment manifested significant signs of senile gait after the age of 60 years old, with the first symptoms thereof already manifesting themselves after 50 years of age. We show that among 26 spatiotemporal parameters that may be used for characterizing gait, at least a half of them may be omitted in the assessment of gait correctness; a finding that may be useful in clinical practice. The finding that the onset of senile gait occurs in the case of women after the age of 60 years old, in turn, may be useful in evaluating the ability for performing types of physical work that mainly require ambulation. Med Pr 2017;68(4):441-448. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  13. Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study.

    Science.gov (United States)

    Mulroy, Sara J; Klassen, Tara; Gronley, JoAnne K; Eberly, Valerie J; Brown, David A; Sullivan, Katherine J

    2010-02-01

    Task-specific training programs after stroke improve walking function, but it is not clear which biomechanical parameters of gait are most associated with improved walking speed. The purpose of this study was to identify gait parameters associated with improved walking speed after a locomotor training program that included body-weight-supported treadmill training (BWSTT). A prospective, between-subjects design was used. Fifteen people, ranging from approximately 9 months to 5 years after stroke, completed 1 of 3 different 6-week training regimens. These regimens consisted of 12 sessions of BWSTT alternated with 12 sessions of: lower-extremity resistive cycling; lower-extremity progressive, resistive strengthening; or a sham condition of arm ergometry. Gait analysis was conducted before and after the 6-week intervention program. Kinematics, kinetics, and electromyographic (EMG) activity were recorded from the hemiparetic lower extremity while participants walked at a self-selected pace. Changes in gait parameters were compared in participants who showed an increase in self-selected walking speed of greater than 0.08 m/s (high-response group) and in those with less improvement (low-response group). Compared with participants in the low-response group, those in the high-response group displayed greater increases in terminal stance hip extension angle and hip flexion power (product of net joint moment and angular velocity) after the intervention. The intensity of soleus muscle EMG activity during walking also was significantly higher in participants in the high-response group after the intervention. Only sagittal-plane parameters were assessed, and the sample size was small. Task-specific locomotor training alternated with strength training resulted in kinematic, kinetic, and muscle activation adaptations that were strongly associated with improved walking speed. Changes in both hip and ankle biomechanics during late stance were associated with greater increases in

  14. Development and validity of methods for the estimation of temporal gait parameters from heel-attached inertial sensors in younger and older adults.

    Science.gov (United States)

    Misu, Shogo; Asai, Tsuyoshi; Ono, Rei; Sawa, Ryuichi; Tsutsumimoto, Kota; Ando, Hiroshi; Doi, Takehiko

    2017-09-01

    The heel is likely a suitable location to which inertial sensors are attached for the detection of gait events. However, there are few studies to detect gait events and determine temporal gait parameters using sensors attached to the heels. We developed two methods to determine temporal gait parameters: detecting heel-contact using acceleration and detecting toe-off using angular velocity data (acceleration-angular velocity method; A-V method), and detecting both heel-contact and toe-off using angular velocity data (angular velocity-angular velocity method; V-V method). The aim of this study was to examine the concurrent validity of the A-V and V-V methods against the standard method, and to compare their accuracy. Temporal gait parameters were measured in 10 younger and 10 older adults. The intra-class correlation coefficients were excellent in both methods compared with the standard method (0.80 to 1.00). The root mean square errors of stance and swing time in the A-V method were smaller than the V-V method in older adults, although there were no significant discrepancies in the other comparisons. Our study suggests that inertial sensors attached to the heels, using the A-V method in particular, provide a valid measurement of temporal gait parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force.

    Science.gov (United States)

    Park, Seung Kyu; Yang, Dae Jung; Kang, Yang Hun; Kim, Je Ho; Uhm, Yo Han; Lee, Yong Seon

    2015-09-01

    [Purpose] The purpose of this study was to investigate the effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force. [Subjects] The subjects of this study were 30 young adult males, who were divided into a Nordic walking group of 15 subjects and a walking group of 15 subjects. [Methods] To analyze the spatiotemporal parameters and ground reaction force during walking in the two groups, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for them between Nordic walking and walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. To determine the pole for Nordic walking, each subject's height was multiplied by 0.68. We then measured the spatiotemporal gait parameters and ground reaction force. [Results] Compared with the walking group, the Nordic walking group showed an increase in cadence, stride length, and step length, and a decrease in stride time, step time, and vertical ground reaction force. [Conclusion] The results of this study indicate that Nordic walking increases the stride and can be considered as helping patients with diseases affecting their gait. This demonstrates that Nordic walking is more effective in improving functional capabilities by promoting effective energy use and reducing the lower limb load, because the weight of the upper and lower limbs is dispersed during Nordic walking.

  16. Effects of hippotherapy on gait parameters in children with bilateral spastic cerebral palsy.

    Science.gov (United States)

    Kwon, Jeong-Yi; Chang, Hyun Jung; Lee, Ji Young; Ha, Yumi; Lee, Peter K; Kim, Yun-Hee

    2011-05-01

    To evaluate the effects of hippotherapy on temporospatial parameters and pelvic and hip kinematics of gait in children with bilateral spastic cerebral palsy. Nonrandomized prospective controlled trial. Outpatient therapy center. Children (N=32) with bilateral spastic cerebral palsy, Gross Motor Function Classification System level 1 or 2. Hippotherapy (30 min twice weekly for 8 consecutive weeks). Temporospatial parameters and pelvic and hip kinematic parameters in 3-dimensional motion analysis, Gross Motor Function Measure (GMFM)-88, and score for dimensions D (standing) and E (walking, running, jumping) of the GMFM, GMFM-66, and Pediatric Balance Scale (PBS). Hippotherapy significantly improved walking speed, stride length, and pelvic kinematics (average pelvic anterior tilt, pelvic anterior tilt at initial contact, pelvic anterior tilt at terminal stance). Scores for dimension E of the GMFM, GMFM-66 and PBS also increased. Hippotherapy provided by licensed health professionals using the multidimensional movement of the horse may be used in conjunction with standard physical therapy for improvement of gait and balance in children with bilateral spastic cerebral palsy. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Test-retest reliability of spatial and temporal gait parameters in children with cerebral palsy as measured by an electronic walkway.

    Science.gov (United States)

    Sorsdahl, Anne Brit; Moe-Nilssen, Rolf; Strand, Liv Inger

    2008-01-01

    The purpose of this study was to examine test-retest reliability of seven selected temporal and spatial gait parameters and asymmetry measures in children with cerebral palsy. Seventeen children with CP between 3 and 13 years of age walked at three different speeds across an electronic walkway of 5.2m. The tests were repeated after approximately 25 min. The scores were normalized to a walking speed of 1.1m/s to avoid the confounding effect of gait speed on speed dependent gait parameters. Intraclass correlation coefficients (ICC(1,1) and ICC(3,1)) with 95% confidence intervals, within-subject standard deviation (S(w)) and smallest detectable difference (SDD) were calculated. The relative reliability of cadence, step length, stride length and single stance time was high to excellent (ICC(1,1) between 0.73 and 0.95), while it was poor for step width (ICC(1,1)=0.27 and 0.35). The relative reliability for two calculated asymmetry measures were high for the step length index (ICC(1,1)=0.82) and moderate for the single stance time index (ICC(1,1)=0.49). The absolute reliability values for all gait parameters are reported. Five of seven gait parameters measured by an electronic walkway and normalized to a common walking speed, appear to be highly repeatable in a short-term time span in children with CP who were able to walk without assistive walking devices, provided sufficient cognitive function.

  18. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    OpenAIRE

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the ot...

  19. ABDOMINAL DRAWING IN MANEUVER: EFFECT ON GAIT PARAMETERS AND PAIN REDUCTION IN PATIENTS WITH CHRONIC LOW BACK PAIN

    Directory of Open Access Journals (Sweden)

    Paramasivan Mani

    2016-08-01

    Full Text Available Background: Back pain is the common musculoskeletal condition with a high prevalence of up to 80% among the general and work force population at some times in their lives.Muscular injury, fatigue, or facet or disc degeneration can compromise the stabilizing effects resulting in shearing forces that cause pain.Abdominal drawing in maneuver is used to facilitate the re-education of neuromuscular control mechanisms provided by local stabilizing muscles. Objective of the study is to measure the gait parameters and pain control before and after abdominal drawing in maneuver in patient with chronic mechanical low back pain. Methods: Total number of 30 consecutive patients and they were divided into two groups by purposive sampling. Group A is subjects with low back pain and Group B is subjects without low back pain. Outcome measures were average step cycle, average step length, coefficient of variation, time on each foot, Ambulation index measured with Biodex gait trainer. Pain is measured with Revised-Oswestry low back pain questionnaire. Results: Significant difference between gait parameters were observed in both low back pain group and the group without low back pain group with abdominal drawing in maneuver and the changes without abdominal drawing in maneuver was minimal. There was no significant difference found between both groups with or without abdominal drawing in maneuver. Conclusion: Gait parameters and Pain control can be improved by training with abdominal drawing in maneuver thereby it reduces pain and improves gait symmetry in subjects with low back pain.

  20. [Gait characteristics of women with fibromyalgia: a premature aging pattern].

    Science.gov (United States)

    Góes, Suelen M; Leite, Neiva; de Souza, Ricardo M; Homann, Diogo; Osiecki, Ana C V; Stefanello, Joice M F; Rodacki, André L F

    2014-01-01

    Fibromyalgia is a condition which involves chronic pain. Middle-aged individuals with fibromyalgia seem to exhibit changes in gait pattern, which may prematurely expose them to a gait pattern which resembles that found in the elderly population. To determine the 3D spatial (linear and angular) gait parameters of middle-aged women with fibromyalgia and compare to elderly women without this condition. 25 women (10 in the fibromyalgia group and 15 in the elderly group) volunteered to participate in the study. Kinematics was performed using an optoelectronic system, and linear and angular kinematic variables were determined. There was no difference in walking speed, stride length, cadence, hip, knee and ankle joints range of motion between groups, except the pelvic rotation, in which the fibromyalgia group showed greater rotation (P<0.05) compared to the elderly group. Also, there was a negative correlation with pelvic rotation and gluteus pain (r = -0.69; P<0.05), and between pelvic obliquity and greater trochanter pain (r = -0.69; P<0.05) in the fibromyalgia group. Middle-aged women with fibromyalgia showed gait pattern resemblances to elderly, women, which is characterized by reduced lower limb ROM, stride length and walking speed. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  1. The effect of a hippotherapy session on spatiotemporal parameters of gait in children with cerebral palsy - pilot study.

    Science.gov (United States)

    Manikowska, Faustyna; Jóźwiak, Marek; Idzior, Maciej; Chen, Po-Jung Brian; Tarnowski, Dariusz

    2013-06-28

    Hippotherapy has been shown to produce beneficial effects by improving the most difficult motor functions, such as sitting, running, jumping, coordination, as well as balance and muscle strength in children with motor developmental delays. The aim of this study was to analyze the effect of hippotherapy on spatiotemporal parameters of gait in cerebrally palsied children. 16 ambulatory cerebrally palsied children (GMFCS Level I-III; Female: 10, Male: 6; Age: 5.7-17.5 years old) qualified for hippotherapy were investigated. Basic spatiotemporal parameters of gait, including walking speed, cadence, step length, stride length and the left-right symmetry, were collected using a three-dimensional accelerometer device (DynaPort MiniMod) before and immediately after a hippotherapy session. The Wilcoxon test was used to verify the differences between pre- and post-session results. Changes of walking speed were statistically significant. With the exception of step length, all spatiotemporal parameters improved, i.e. were closer to the respective reference ranges after the session. However, these changes were not statistically significant. One session of hippotherapy may have a significant effect on the spatiotemporal parameters of gait in cerebrally palsied children.

  2. [Are gait parameters related to knee pain, urinary incontinence and a history of falls in community-dwelling elderly women?].

    Science.gov (United States)

    Kim, Hunkyung; Suzuki, Takao; Yoshida, Hideyo; Shimada, Hiroyuki; Yamashiro, Yukari; Sudo, Motoki; Niki, Yoshifumi

    2013-01-01

    To examine the association between gait parameters and knee pain, urinary incontinence, and a history of falls. Comprehensive health examinations were conducted in 2009 among 971 elderly women over 70 years of age, in which the questionnaire and gait parameter results of 870 participants were analyzed. Knee pain, urinary incontinence and a history of falls were assessed through face-to-face interview surveys. Gait parameters were measured using a walk-way to assess walking speed, cadence, stride, stride length, step width, walking angle, toe angle and the differences in each parameter between the right and left foot. Multiple logistic regression analyses were performed to examine the associations between the gait parameters and knee pain, urinary incontinence and a history of falls. The elderly women with knee pain, urinary incontinence and a history of falls had slower walking speeds, smaller strides and strides length, and wider step width and walking angles. The multiple logistic regression analysis showed the walking speed to be significantly associated with mild knee pain and urinary incontinence and single a history of fall; moderate/severe knee pain was significantly associated with step width (OR=0.58, 95%CI=0.40-0.84) and walking angle (OR=1.62, 95%CI=1.30-2.01); moderate/severe urinary incontinence was significantly associated with walking speed (OR=0.97, 95%CI=0.96-0.99), walking angle (OR=1.14, 95%CI=1.02-1.26), and difference in walking angle between the right and left foot (OR=1.43, 95%CI=1.09-1.86); multiple a history of falls was significantly associated with stride length (OR=0.85, 95%CI=0.79-0.93) and the difference in walking angle between the right and left foot (OR=1.36, 95%CI=1.01-1.85). The data suggest that combining assessments of walking speed and other gait parameters may be an effective screening method for the early detection of geriatric syndromes.

  3. Comparison of the Classifier Oriented Gait Score and the Gait Profile Score based on imitated gait impairments.

    Science.gov (United States)

    Christian, Josef; Kröll, Josef; Schwameder, Hermann

    2017-06-01

    Common summary measures of gait quality such as the Gait Profile Score (GPS) are based on the principle of measuring a distance from the mean pattern of a healthy reference group in a gait pattern vector space. The recently introduced Classifier Oriented Gait Score (COGS) is a pathology specific score that measures this distance in a unique direction, which is indicated by a linear classifier. This approach has potentially improved the discriminatory power to detect subtle changes in gait patterns but does not incorporate a profile of interpretable sub-scores like the GPS. The main aims of this study were to extend the COGS by decomposing it into interpretable sub-scores as realized in the GPS and to compare the discriminative power of the GPS and COGS. Two types of gait impairments were imitated to enable a high level of control of the gait patterns. Imitated impairments were realized by restricting knee extension and inducing leg length discrepancy. The results showed increased discriminatory power of the COGS for differentiating diverse levels of impairment. Comparison of the GPS and COGS sub-scores and their ability to indicate changes in specific variables supports the validity of both scores. The COGS is an overall measure of gait quality with increased power to detect subtle changes in gait patterns and might be well suited for tracing the effect of a therapeutic treatment over time. The newly introduced sub-scores improved the interpretability of the COGS, which is helpful for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparison of standing postural control and gait parameters in people with and without chronic low back pain: a cross-sectional case-control study.

    Science.gov (United States)

    MacRae, Catharine Siân; Critchley, Duncan; Lewis, Jeremy S; Shortland, Adam

    2018-01-01

    Differences in postural control and gait have been identified between people with and without chronic low back pain (CLBP); however, many previous studies present data from small samples, or have used methodologies with questionable reliability. This study, employing robust methodology, hypothesised that there would be a difference in postural control, and spatiotemporal parameters of gait in people with CLBP compared with asymptomatic individuals. This cross-sectional case-control study age-matched and gender-matched 16 CLBP and 16 asymptomatic participants. Participants were assessed barefoot (1) standing, over three 40 s trials, under four posture challenging conditions (2) during gait. Primary outcome was postural stability (assessed by root mean squared error of centre of pressure (CoP) displacement (CoP RMSEAP ) and mean CoP velocity (CoP VELAP ), both in the anteroposterior direction); gait outcomes were hip range of movement and peak moments, walking speed, cadence and stride length, assessed using force plates and a motion analysis system. There were no differences between groups in CoP RMSEAP (P=0.26), or CoP VELAP (P=0.60) for any standing condition. During gait, no differences were observed between groups for spatiotemporal parameters, maximum, minimum and total ranges of hip movement, or peak hip flexor or extensor moments in the sagittal plane. In contrast to previous research, this study suggests that people with mild to moderate CLBP present with similar standing postural control, and parameters of gait to asymptomatic individuals. Treatments directed at influencing postural stability (eg, standing on a wobble board) or specific parameters of gait may be an unnecessary addition to a treatment programme.

  5. Further Evidence of Complex Motor Dysfunction in Drug Naive Children with Autism Using Automatic Motion Analysis of Gait

    Science.gov (United States)

    Nobile, Maria; Perego, Paolo; Piccinini, Luigi; Mani, Elisa; Rossi, Agnese; Bellina, Monica; Molteni, Massimo

    2011-01-01

    In order to increase the knowledge of locomotor disturbances in children with autism, and of the mechanism underlying them, the objective of this exploratory study was to reliably and quantitatively evaluate linear gait parameters (spatio-temporal and kinematic parameters), upper body kinematic parameters, walk orientation and smoothness using an…

  6. EFFECTIVENESS OF TRUNK TRAINING EXERCISES VERSUS SWISS BALL EXERCISES FOR IMPROVING SITTING BALANCE AND GAIT PARAMETERS IN ACUTE STROKE SUBJECTS

    Directory of Open Access Journals (Sweden)

    Kothalanka Viswaja

    2015-12-01

    Full Text Available Background: The aim of this study is to evaluate the effectiveness of trunk training and Swiss ball exercises in acute stroke subjects. Trunk is often neglected part in the stroke rehabilitation, trunk training exercises and Swiss ball exercises result in better recruitment of trunk muscles thus improving sitting balance and gait parameters in acute stroke subjects. However literature evidences for trunk training exercises and Swiss ball exercises in improving sitting balance and gait are scarce in acute stroke population. Methods: A total of 60 subjects who met the inclusion criteria were recruited from department of physiotherapy, G.S.L general hospital and were randomly allocated into 2 groups with 30 subjects in each group. Initially all of them were screened for balance and gait using trunk impairment scale and by assessing gait parameters, after that they were given a 30min of trunk training and Swiss ball exercises for 5 days a week for 4 weeks. Both the groups received conventional physiotherapy for 4 weeks. Results: Post intervention there was no significant difference between the two groups. There was improvement post treatment in trunk training group (P0.5. Conclusion: The results had shown that both groups noted significant difference. But when comparing between these two groups there is no statistical significance noted. So this study concluded that there is no significant difference between trunk training exercises and Swiss ball exercises on sitting balance and gait parameters in subjects with stroke.

  7. Gait parameters in patients with diabetes mellitus DOI:10.5007/1980-0037.2010v12n2p155

    Directory of Open Access Journals (Sweden)

    Cristina Elena Prado Teles Fregonesi

    2010-07-01

    Full Text Available Diabetes mellitus is a chronic disease that results in sensorimotor alterations. These changes affect balance and walking and predispose affected patients to falls. The aim of this review was to identify studies in the recent literature that assess gait parameters and aspects involved in walking. The MEDLINE, SciELO, LILACS and PEDro databases were searched using the following combination of keywords: diabetic neuropathies x gait; diabetes mellitus x gait, and diabetic foot x gait. After the application of selection criteria, 15 articles were retrieved, summarized, discussed, and are included in this review. Diabetic neuropathy was found to lead to deficits in step amplitude, gait velocity and gait cadence on flat surfaces, without sudden changes in direction or stops, and to balance and coordination deficits on inclined and uneven terrain. Diabetic neuropathies also increase plantar pressure rates and lead to difficulties in the terminal stance phase and pre-swing phase due to changes in triceps surae activation. Thus, the next initial contact occurs in an inadequate manner, with the forefoot and without absorption of shocks.

  8. Description of spatio-temporal gait parameters in elderly people and their association with history of falls: results of the population-based cross-sectional KORA-Age study.

    Science.gov (United States)

    Thaler-Kall, Kathrin; Peters, Annette; Thorand, Barbara; Grill, Eva; Autenrieth, Christine S; Horsch, Alexander; Meisinger, Christa

    2015-03-25

    In this epidemiological study we described the characteristics of spatio-temporal gait parameters among a representative, population-based sample of 890 community-dwelling people aged 65 to 90 years. In addition, we investigated the associations between certain gait parameters and a history of falls in study participants. In descriptive analyses spatio-temporal gait parameters were assessed according to history of falls, frailty, multimorbidity, gender, multiple medication use, disability status, and age group. Logistic regression models were calculated to examine the association between gait velocity and stride length with a history of falls (at least one fall in the last 12 month). Data on gait were collected on an electronic walkway on which participants walked at their usual pace. We found significant differences within gait parameters when stratifying by frailty, multimorbidity, disability and multiple medication use as well as age (cut point 75 years) and sex, with p history of falls, only stride length showed a significant difference (p falls in men aged older than 74 years (OR 1.34 (CI: 1.05-1.70 per 10 cm decrease)), while this was neither the case for women of similar age nor for men or women aged 65 to 74 years. A decreased walking speed was not associated with falls. Age, frailty, multimorbidity, disability, history of falls, sex, and multiple medication use show an association with different gait parameters measured during gait assessment on an electronic walkway in elderly people. Furthermore, stride length is a good indicator to differentiate fallers from non-fallers in older men from the general population.

  9. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy.

    Science.gov (United States)

    Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok

    2016-01-01

    This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.

  10. Age-related changes in spatiotemporal characteristics of gait accompany ongoing lower limb linear growth in late childhood and early adolescence.

    Science.gov (United States)

    Froehle, Andrew W; Nahhas, Ramzi W; Sherwood, Richard J; Duren, Dana L

    2013-05-01

    Walking gait is generally held to reach maturity, including walking at adult-like velocities, by 7-8 years of age. Lower limb length, however, is a major determinant of gait, and continues to increase until 13-15 years of age. This study used a sample from the Fels Longitudinal Study (ages 8-30 years) to test the hypothesis that walking with adult-like velocity on immature lower limbs results in the retention of immature gait characteristics during late childhood and early adolescence. There was no relationship between walking velocity and age in this sample, whereas the lower limb continued to grow, reaching maturity at 13.2 years in females and 15.6 years in males. Piecewise linear mixed models regression analysis revealed significant age-related trends in normalized cadence, initial double support time, single support time, base of support, and normalized step length in both sexes. Each trend reached its own, variable-specific age at maturity, after which the gait variables' relationships with age reached plateaus and did not differ significantly from zero. Offsets in ages at maturity occurred among the gait variables, and between the gait variables and lower limb length. The sexes also differed in their patterns of maturation. Generally, however, immature walkers of both sexes took more frequent and relatively longer steps than did mature walkers. These results support the hypothesis that maturational changes in gait accompany ongoing lower limb growth, with implications for diagnosing, preventing, and treating movement-related disorders and injuries during late childhood and early adolescence. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Temporo-spatial gait parameters during street crossing conditions: a comparison between younger and older adults.

    Science.gov (United States)

    Vieira, Edgar R; Lim, Hyun-Hwa; Brunt, Denis; Hallal, Camilla Z; Kinsey, Laura; Errington, Lisa; Gonçalves, Mauro

    2015-02-01

    Most traffic accidents involving pedestrians happen during street crossing. Safe street crossing by older adults requires complex planning and imposes high cognitive demands. Understanding how street crossing situations affect younger and older adults' gait is important to create evidence-based policies, education and training. The objective of this study was to develop and test a method to evaluate temporo-spatial gait parameters of younger and older adults during simulated street crossing situations. Twenty-two younger (25±2 years old) and 22 older adults (73±6 years old) who lived independently in the community completed 3 walking trials at preferred gait speed and during simulated street crossing with regular and with reduced time. There were significant differences between groups (pstreet crossing walking speed was higher than their preferred speed (pstreet crossing resulted in significant and progressive gait changes. The methods developed and tested can be used to (1) evaluate if people are at risk of falls and accidents during street crossing situations, (2) to compare among different groups, and (3) to help establish appropriate times for older pedestrians to cross streets safely. The current time to cross streets is too short even for healthy older adults. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial.

    Science.gov (United States)

    Straudi, S; Benedetti, M G; Venturini, E; Manca, M; Foti, C; Basaglia, N

    2013-01-01

    Gait disorders are common in multiple sclerosis (MS) and lead to a progressive reduction of function and quality of life. Test the effects of robot-assisted gait rehabilitation in MS subjects through a pilot randomized-controlled study. We enrolled MS subjects with Expanded Disability Status Scale scores within 4.5-6.5. The experimental group received 12 robot-assisted gait training sessions over 6 weeks. The control group received the same amount of conventional physiotherapy. Outcomes measures were both biomechanical assessment of gait, including kinematics and spatio-temporal parameters, and clinical test of walking endurance (six-minute walk test) and mobility (Up and Go Test). 16 subjects (n = 8 experimental group, n = 8 control group) were included in the final analysis. At baseline the two groups were similar in all variables, except for step length. Data showed walking endurance, as well as spatio-temporal gait parameters improvements after robot-assisted gait training. Pelvic antiversion and reduced hip extension during terminal stance ameliorated after aforementioned intervention. Robot-assisted gait training seems to be effective in increasing walking competency in MS subjects. Moreover, it could be helpful in restoring the kinematic of the hip and pelvis.

  13. Effects of augmented proprioceptive cues on the parameters of gait of individuals with Parkinson′s disease

    Directory of Open Access Journals (Sweden)

    Mohamed S El-Tamawy

    2012-01-01

    Full Text Available Context : Impairment of initiating sequential movements and processing of proprioception contribute to characteristic Parkinson′s disease (PD gait abnormalities. Many studies have used a single external cue or 2 different cues to correct PD gait. Aim: An aim of this study was to determine the influence of paired proprioceptive cues on gait parameters of individuals with PD. Setting and Design: Double-blind randomized controlled trial. Materials and Methods: Subjects were 30 PD patients who had mild to moderate impairment according to the United Parkinson′s Disease Rating Scale (UPDRS. They were randomly assigned to either a routine physiotherapy program or treadmill training with vibratory stimuli applied to the feet plantar surfaces and proprioceptive neuromuscular facilitation (PNF as well as the same physiotherapy program. All Participants received a 45-minutes session of low intensity physiotherapy program, 3 times a week, for 8 weeks. The duration of treadmill training was 5 minutes at baseline and 25 minutes at the end of treatment. Walking speed and distance were recorded from the treadmill control panel for both groups before and immediately after the end of treatment. The Qualysis ProReflex motion analysis system was used to measure cadence, stride length, hip, knee, and ankle joints′ angular excursion. Results: The cadence, stride length, and lower limb joints′ angular excursion showed a significant improvement in both groups (P ≤ 0.05. These improvements in spatio-temporal parameters and angular excursion were higher in the study group than in the control group (P ≤ 0.05. Conclusion: Potentiated proprioceptive feedback improves parkinsonian gait kinematics, the hip, knee, and ankle joints′ angular excursion.

  14. Gait, mobility, and falls in older people

    OpenAIRE

    Gschwind, Yves Josef

    2012-01-01

    My doctoral thesis contributes to the understanding of gait, mobility, and falls in older people. All presented projects investigated the most prominent and sensitive markers for fall-related gait changes, that is gait velocity and gait variability. Based on the measurement of these spatio-temporal gait parameters, particularly when using a change-sensitive dual task paradigm, it is possible to make conclusions regarding walking, balance, activities of daily living, and falls in o...

  15. Different horse's paces during hippotherapy on spatio-temporal parameters of gait in children with bilateral spastic cerebral palsy: A feasibility study.

    Science.gov (United States)

    Antunes, Fabiane Nunes; Pinho, Alexandre Severo do; Kleiner, Ana Francisca Rozin; Salazar, Ana Paula; Eltz, Giovana Duarte; de Oliveira Junior, Alcyr Alves; Cechetti, Fernanda; Galli, Manuela; Pagnussat, Aline Souza

    2016-12-01

    Hippotherapy is often carried out for the rehabilitation of children with Cerebral Palsy (CP), with the horse riding at a walking pace. This study aimed to explore the immediate effects of a hippotherapy protocol using a walk-trot pace on spatio-temporal gait parameters and muscle tone in children with Bilateral Spastic CP (BS-CP). Ten children diagnosed with BS-CP and 10 healthy aged-matched children (reference group) took part in this study. The children with BS-CP underwent two sessions of hippotherapy for one week of washout between them. Two protocols (lasting 30min) were applied on separate days: Protocol 1: the horse's pace was a walking pace; and Protocol 2: the horse's pace was a walk-trot pace. Children from the reference group were not subjected to treatment. A wireless inertial measurement unit measured gait spatio-temporal parameters before and after each session. The Modified Ashworth Scale was applied for muscle tone measurement of hip adductors. The participants underwent the gait assessment on a path with surface irregularities (ecological context). The comparisons between BS-CP and the reference group found differences in all spatio-temporal parameters, except for gait velocity. Within-group analysis of children with BS-CP showed that the swing phase did not change after the walk pace and after the walk-trot pace. The percentage of rolling phase and double support improved after the walk-trot. The spasticity of the hip adductors was significantly reduced as an immediate result of both protocols, but this decrease was more evident after the walk-trot. The walk-trot protocol is feasible and is able to induce an immediate effect that improves the gait spatio-temporal parameters and the hip adductors spasticity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Acute effects of anesthetic lumbar spine injections on temporal spatial parameters of gait in individuals with chronic low back pain: A pilot study.

    Science.gov (United States)

    Herndon, Carl L; Horodyski, MaryBeth; Vincent, Heather K

    2017-10-01

    This study examined whether epidural injection-induced anesthesia acutely and positively affected temporal spatial parameters of gait in patients with chronic low back pain (LBP) due to lumbar spinal stenosis. Twenty-five patients (61.7±13.6years) who were obtaining lumbar epidural injections for stenosis-related LBP participated. Oswestry Disability Index (ODI) scores, Medical Outcomes Short Form (SF-36) scores, 11-point Numerical pain rating (NRS pain ) scores, and temporal spatial parameters of walking gait were obtained prior to, and 11-point Numerical pain rating (NRS pain ) scores, and temporal spatial parameters of walking gait were obtained after the injection. Gait parameters were measured using an instrumented gait mat. Patients received transforaminal epidural injections in the L1-S1 vertebral range (1% lidocaine, corticosteroid) under fluoroscopic guidance. Patients with post-injection NRS pain ratings of "0" or values greater than "0" were stratified into two groups: 1) full pain relief, or 2) partial pain relief, respectively. Post-injection, 48% (N=12) of patients reported full pain relief. ODI scores were higher in patients with full pain relief (55.3±21.4 versus 33.7 12.8; p=0.008). Post-injection, stride length and step length variability were significantly improved in the patients with full pain relief compared to those with partial pain relief. Effect sizes between full and partial pain relief for walking velocity, step length, swing time, stride and step length variability were medium to large (Cohen's d>0.50). Patients with LBP can gain immediate gait improvements from complete pain relief from transforaminal epidural anesthetic injections for LBP, which could translate to better stability and lower fall risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. EFFECTS OF PHYSICAL REHABILITATION INTEGRATED WITH RHYTHMIC AUDITORY STIMULATION ON SPATIO-TEMPORAL AND KINEMATIC PARAMETERS OF GAIT IN PARKINSON’S DISEASE

    Directory of Open Access Journals (Sweden)

    Massimiliano Pau

    2016-08-01

    Full Text Available Movement rehabilitation by means of physical therapy represents an essential tool in the management of gait disturbances induced by Parkinson’s disease (PD. In this context, the use of Rhythmic Auditory Stimulation (RAS has been proven useful in improving several spatio-temporal parameters, but concerning its effect on gait patterns scarce information is available from a kinematic viewpoint. In this study we used three-dimensional gait analysis based on optoelectronic stereophotogrammetry to investigate the effects of 5 weeks of intensive rehabilitation, which included gait training integrated with RAS on 26 individuals affected by PD (age 70.4±11.1, Hoehn & Yahr 1-3. Gait kinematics was assessed before and at the end of the rehabilitation period and after a three-month follow-up, using concise measures (Gait Profile Score and Gait Variable Score, GPS and GVS, respectively, which are able to describe the deviation from a physiologic gait pattern. The results confirm the effectiveness of gait training assisted by RAS in increasing speed and stride length, in regularizing cadence and correctly reweighting swing/stance phase duration. Moreover, an overall improvement of gait quality was observed, as demonstrated by the significant reduction of the GPS value, which was created mainly through significant decreases in the GVS score associated with the hip flexion-extension movement. Future research should focus on investigating kinematic details to better understand the mechanisms underlying gait disturbances in people with PD and the effects of RAS, with the aim of finding new or improving current rehabilitative treatments.

  18. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait.

    Science.gov (United States)

    Carbone, V; van der Krogt, M M; Koopman, H F J M; Verdonschot, N

    2016-06-14

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle-tendon (MT) model parameters for each of the 56 MT parts contained in a state-of-the-art MS model. We used two metrics, namely a Local Sensitivity Index (LSI) and an Overall Sensitivity Index (OSI), to distinguish the effect of the perturbation on the predicted force produced by the perturbed MT parts and by all the remaining MT parts, respectively, during a simulated gait cycle. Results indicated that sensitivity of the model depended on the specific role of each MT part during gait, and not merely on its size and length. Tendon slack length was the most sensitive parameter, followed by maximal isometric muscle force and optimal muscle fiber length, while nominal pennation angle showed very low sensitivity. The highest sensitivity values were found for the MT parts that act as prime movers of gait (Soleus: average OSI=5.27%, Rectus Femoris: average OSI=4.47%, Gastrocnemius: average OSI=3.77%, Vastus Lateralis: average OSI=1.36%, Biceps Femoris Caput Longum: average OSI=1.06%) and hip stabilizers (Gluteus Medius: average OSI=3.10%, Obturator Internus: average OSI=1.96%, Gluteus Minimus: average OSI=1.40%, Piriformis: average OSI=0.98%), followed by the Peroneal muscles (average OSI=2.20%) and Tibialis Anterior (average OSI=1.78%) some of which were not included in previous sensitivity studies. Finally, the proposed priority list provides quantitative information to indicate which MT parts and which MT parameters should be estimated most accurately to create detailed and reliable subject-specific MS models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of wide step walking on swing phase hip muscle forces and spatio-temporal gait parameters.

    Science.gov (United States)

    Bajelan, Soheil; Nagano, Hanatsu; Sparrow, Tony; Begg, Rezaul K

    2017-07-01

    Human walking can be viewed essentially as a continuum of anterior balance loss followed by a step that re-stabilizes balance. To secure balance an extended base of support can be assistive but healthy young adults tend to walk with relatively narrower steps compared to vulnerable populations (e.g. older adults and patients). It was, therefore, hypothesized that wide step walking may enhance dynamic balance at the cost of disturbed optimum coupling of muscle functions, leading to additional muscle work and associated reduction of gait economy. Young healthy adults may select relatively narrow steps for a more efficient gait. The current study focused on the effects of wide step walking on hip abductor and adductor muscles and spatio-temporal gait parameters. To this end, lower body kinematic data and ground reaction forces were obtained using an Optotrak motion capture system and AMTI force plates, respectively, while AnyBody software was employed for muscle force simulation. A single step of four healthy young male adults was captured during preferred walking and wide step walking. Based on preferred walking data, two parallel lines were drawn on the walkway to indicate 50% larger step width and participants targeted the lines with their heels as they walked. In addition to step width that defined walking conditions, other spatio-temporal gait parameters including step length, double support time and single support time were obtained. Average hip muscle forces during swing were modeled. Results showed that in wide step walking step length increased, Gluteus Minimus muscles were more active while Gracilis and Adductor Longus revealed considerably reduced forces. In conclusion, greater use of abductors and loss of adductor forces were found in wide step walking. Further validation is needed in future studies involving older adults and other pathological populations.

  20. The Parkinsonian Gait Spatiotemporal Parameters Quantified by a Single Inertial Sensor before and after Automated Mechanical Peripheral Stimulation Treatment

    Directory of Open Access Journals (Sweden)

    Ana Kleiner

    2015-01-01

    Full Text Available This study aims to evaluate the change in gait spatiotemporal parameters in subjects with Parkinson’s disease (PD before and after Automated Mechanical Peripheral Stimulation (AMPS treatment. Thirty-five subjects with PD and 35 healthy age-matched subjects took part in this study. A dedicated medical device (Gondola was used to administer the AMPS. All patients with PD were treated in off levodopa phase and their gait performances were evaluated by an inertial measurement system before and after the intervention. The one-way ANOVA for repeated measures was performed to assess the differences between pre- and post-AMPS and the one-way ANOVA to assess the differences between PD patients and the control group. Spearman’s correlations assessed the associations between patients with PD clinical status (H&Y and the percentage of improvement of the gait variables after AMPS (α<0.05 for all tests. The PD group had an improvement of 14.85% in the stride length; 14.77% in the gait velocity; and 29.91% in the gait propulsion. The correlation results showed that the higher the H&Y classification, the higher the stride length percentage of improvement. The treatment based on AMPS intervention seems to induce a better performance in the gait pattern of PD patients, mainly in intermediate and advanced stages of the condition.

  1. Altered vision destabilizes gait in older persons.

    Science.gov (United States)

    Helbostad, Jorunn L; Vereijken, Beatrix; Hesseberg, Karin; Sletvold, Olav

    2009-08-01

    This study assessed the effects of dim light and four experimentally induced changes in vision on gait speed and footfall and trunk parameters in older persons walking on level ground. Using a quasi-experimental design, gait characteristics were assessed in full light, dim light, and in dim light combined with manipulations resulting in reduced depth vision, double vision, blurred vision, and tunnel vision, respectively. A convenience sample of 24 home-dwelling older women and men (mean age 78.5 years, SD 3.4) with normal vision for their age and able to walk at least 10 m without assistance participated. Outcome measures were gait speed and spatial and temporal parameters of footfall and trunk acceleration, derived from an electronic gait mat and accelerometers. Dim light alone had no effect. Vision manipulations combined with dim light had effect on most footfall parameters but few trunk parameters. The largest effects were found regarding double and tunnel vision. Men increased and women decreased gait speed following manipulations (p=0.017), with gender differences also in stride velocity variability (p=0.017) and inter-stride medio-lateral trunk acceleration variability (p=0.014). Gender effects were related to differences in body height and physical functioning. Results indicate that visual problems lead to a more cautious and unstable gait pattern even under relatively simple conditions. This points to the importance of assessing vision in older persons and correcting visual impairments where possible.

  2. Biomechanics of the immediate impact of wearing a rigid thoracolumbar corset on gait kinematics and spatiotemporal parameters

    Directory of Open Access Journals (Sweden)

    Taiar Redha

    2018-01-01

    Full Text Available The corset support is a device classified as orthosis. It compensates a functional deficiency with means of protection, recovery, correction, maintenance, and support or contention. There are two types of orthosis 1 rest orthosis and 2 corrective orthosis. Rest orthosis maintains joints in a defined position to avoid deformities or to relieve a pain at joints. Corrective orthosis adjusts joint deformity either passively or actively. Corset is used in various pathological use, thoracic-lumbar fracture, scoliosis, Scheuermann’s disease or spinal dystrophy. The purpose of this study was 1 to determine the immediate impact of wearing a semi-rigid thoracolumbar corset, the Lombax® Dorso on gait kinematics and 2 spatiotemporal parameters in 6 adults. These parameters were recorded using the optoelectronic system Vicon® on treadmill gait subjects with and without corset for the comparison. The results showed that wearing a corset significantly decrease the rotation amplitudes of the scapular and pelvic girdles (p<0.05 in the frontal plane. The movement of the pelvis and hip in this same plane was decreased also when comparing with and without a corset effects (p<0.05. The corset significantly increased the range of flexion-extension of the hip during the gait cycle. At the conclusion of this study the discriminate parameters of wearing a corset was quantified. The results and in association with manufacturer will help to improve materials for better optimization support. Comparable perspectives and after improvement of materials will aim to experiment with patients on real daily life situation.

  3. Changes of gait parameters following constrained-weight shift training in patients with stroke

    OpenAIRE

    Nam, Seok Hyun; Son, Sung Min; Kim, Kyoung

    2017-01-01

    [Purpose] This study aimed to investigate the effects of training involving compelled weight shift on the paretic lower limb on gait parameters and plantar pressure distribution in patients with stroke. [Subjects and Methods] Forty-five stroke patients participated in the study and were randomly divided into: group with a 5-mm lift on the non-paretic side for constrained weight shift training (5: constrained weight shift training) (n=15); group with a 10-mm lift on the non-paretic side for co...

  4. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults.

    Science.gov (United States)

    Lee, Su-Hyun; Lee, Hwang-Jae; Chang, Won Hyuk; Choi, Byung-Ok; Lee, Jusuk; Kim, Jeonghun; Ryu, Gyu-Ha; Kim, Yun-Hee

    2017-11-28

    A robotic exoskeleton device is an intelligent system designed to improve gait performance and quality of life for the wearer. Robotic technology has developed rapidly in recent years, and several robot-assisted gait devices were developed to enhance gait function and activities of daily living in elderly adults and patients with gait disorders. In this study, we investigated the effects of the Gait-enhancing Mechatronic System (GEMS), a new wearable robotic hip-assist device developed by Samsung Electronics Co, Ltd., Korea, on gait performance and foot pressure distribution in elderly adults. Thirty elderly adults who had no neurological or musculoskeletal abnormalities affecting gait participated in this study. A three-dimensional (3D) motion capture system, surface electromyography and the F-Scan system were used to collect data on spatiotemporal gait parameters, muscle activity and foot pressure distribution under three conditions: free gait without robot assistance (FG), robot-assisted gait with zero torque (RAG-Z) and robot-assisted gait (RAG). We found increased gait speed, cadence, stride length and single support time in the RAG condition. Reduced rectus femoris and medial gastrocnemius muscle activity throughout the terminal stance phase and reduced effort of the medial gastrocnemius muscle throughout the pre-swing phase were also observed in the RAG condition. In addition, walking with the assistance of GEMS resulted in a significant increase in foot pressure distribution, specifically in maximum force and peak pressure of the total foot, medial masks, anterior masks and posterior masks. The results of the present study reveal that GEMS may present an alternative way of restoring age-related changes in gait such as gait instability with muscle weakness, reduced step force and lower foot pressure in elderly adults. In addition, GEMS improved gait performance by improving push-off power and walking speed and reducing muscle activity in the lower

  5. Predictors of Gait Speeds and the Relationship of Gait Speeds to Falls in Men and Women with Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Samuel T. Nemanich

    2013-01-01

    Full Text Available Gait difficulties and falls are commonly reported in people with Parkinson disease (PD. Reduction in gait speed is a major characteristic of Parkinsonian gait, yet little is known about its underlying determinants, its ability to reflect an internal reservation about walking, or its relationship to falls. To study these issues, we selected age, disease severity, and nonmotor factors (i.e., depression, quality of life, balance confidence, and exercise beliefs and attitudes to predict self-selected (SELF, fast-as-possible (FAST, and the difference (DIFF between these walking speeds in 78 individuals with PD. We also examined gender differences in gait speeds and evaluated how gait speeds were related to a retrospective fall report. Age, disease severity, and balance confidence were strong predictors of SELF, FAST, and, to a lesser extent, DIFF. All three parameters were strongly associated with falling. DIFF was significantly greater in men compared to women and was significantly associated with male but not female fallers. The results supported the clinical utility of using a suite of gait speed parameters to provide insight into the gait difficulties and differentiating between fallers in people with PD.

  6. Intra-individual gait pattern variability in specific situations: Implications for forensic gait analysis.

    Science.gov (United States)

    Ludwig, Oliver; Dillinger, Steffen; Marschall, Franz

    2016-07-01

    In this study, inter- and intra-individual gait pattern differences are examined in various gait situations by means of phase diagrams of the extremity angles (cyclograms). 8 test subjects walked along a walking distance of 6m under different conditions three times each: barefoot, wearing sneakers, wearing combat boots, after muscular fatigue, and wearing a full-face motorcycle helmet restricting vision. The joint angles of foot, knee, and hip were recorded in the sagittal plane. The coupling of movements was represented by time-adjusted cyclograms, and the inter- and intra-individual differences were captured by calculating the similarity between different gait patterns. Gait pattern variability was often greater between the defined test situations than between the individual test subjects. The results have been interpreted considering neurophysiological regulation mechanisms. Footwear, masking, and fatigue were interpreted as disturbance parameters, each being a cause for gait pattern variability and complicating the inference of identity of persons in video recordings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Gait Disorders In Patients After Polytrauma

    Directory of Open Access Journals (Sweden)

    Jakušonoka Ruta

    2015-04-01

    Full Text Available Evaluation of the gait of patients after polytrauma is important, as it indicates the ability of patients to the previous activities and work. The aim of our study was to evaluate the gait of patients with lower limb injuries in the medium-term after polytrauma. Three-dimensional instrumental gait analysis was performed in 26 polytrauma patients (16 women and 10 men; mean age 38.6 years, 14 to 41 months after the trauma. Spatio-temporal parameters, motions in pelvis and lower extremities joints in sagittal plane and vertical load ground reaction force were analysed. Gait parameters in polytrauma patients were compared with a healthy control group. Polytrauma patients in the injured side had decreased step length, cadence, hip extension, maximum knee flexion, vertical load ground reaction force, and increased stance time and pelvic anterior tilt; in the uninjured side they had decreased step length, cadence, maximum knee flexion, vertical load ground reaction force and increased stance time (p < 0.05. The use of the three-dimensional instrumental gait analysis in the evaluation of polytrauma patients with lower limb injuries consequences makes it possible to identify the gait disorders not only in the injured, but also in the uninjured side.

  8. Gait pattern recognition in cerebral palsy patients using neural network modelling

    International Nuclear Information System (INIS)

    Muhammad, J.; Gibbs, S.; Abboud, R.; Anand, S.

    2015-01-01

    Interpretation of gait data obtained from modern 3D gait analysis is a challenging and time consuming task. The aim of this study was to create neural network models which can recognise the gait patterns from pre- and post-treatment and the normal ones. Neural network is a method which works on the principle of learning from experience and then uses the obtained knowledge to predict the unknown. Methods: Twenty-eight patients with cerebral palsy were recruited as subjects whose gait was analysed in pre- and post-treatment. A group of twenty-six normal subjects also participated in this study as control group. All subjects gait was analysed using Vicon Nexus to obtain the gait parameters and kinetic and kinematic parameters of hip, knee and ankle joints in three planes of both limbs. The gait data was used as input to create neural network models. A total of approximately 300 trials were split into 70% and 30% to train and test the models, respectively. Different models were built using different parameters. The gait was categorised as three patterns, i.e., normal, pre- and post-treatments. Result: The results showed that the models using all parameters or using the joint angles and moments could predict the gait patterns with approximately 95% accuracy. Some of the models e.g., the models using joint power and moments, had lower rate in recognition of gait patterns with approximately 70-90% successful ratio. Conclusion: Neural network model can be used in clinical practice to recognise the gait pattern for cerebral palsy patients. (author)

  9. Plantar Pressure During Gait in Pregnant Women.

    Science.gov (United States)

    Bertuit, Jeanne; Leyh, Clara; Rooze, Marcel; Feipel, Véronique

    2016-11-01

    During pregnancy, physical and hormonal modifications occur. Morphologic alterations of the feet are found. These observations can induce alterations in plantar pressure. This study sought to investigate plantar pressures during gait in the last 4 months of pregnancy and in the postpartum period. A comparison with nulliparous women was conducted to investigate plantar pressure modifications during pregnancy. Fifty-eight women in the last 4 months of pregnancy, nine postpartum women, and 23 healthy nonpregnant women (control group) performed gait trials on an electronic walkway at preferred speeds. The results for the three groups were compared using analysis of variance. During pregnancy, peak pressure and contact area decreased for the forefoot and rearfoot. These parameters increased significantly for the midfoot. The gait strategy seemed to be lateralization of gait with an increased contact area of the lateral midfoot and both reduced pressure and a later peak time on the medial forefoot. In the postpartum group, footprint parameters were modified compared with the pregnant group, indicating a trend toward partial return to control values, although differences persisted between the postpartum and control groups. Pregnant women had altered plantar pressures during gait. These findings could define a specific pattern of gait footprints in late pregnancy because plantar pressures had characteristics that could maintain a stable and safe gait.

  10. An analysis of trunk kinematics and gait parameters in people with stroke

    Directory of Open Access Journals (Sweden)

    Adnil W. Titus

    2018-03-01

    Conclusion: This pilot study found significant asymmetry in trunk motion between the affected and unaffected sides that varied across the gait cycle. This suggests the trunk may need to be targeted in clinical gait retraining post-stroke.

  11. The value of the NDT-Bobath method in post-stroke gait training.

    Science.gov (United States)

    Mikołajewska, Emilia

    2013-01-01

    Stroke is perceived a major cause of disability, including gait disorders. Looking for more effective methods of gait reeducation in post-stroke survivors is one of the most important issues in contemporary neurorehabilitation. Following a stroke, patients suffer from gait disorders. The aim of this paper is to present the outcomes of a study of post-stroke gait reeducation using the NeuroDevelopmental Treatment-Bobath (NDT-Bobath) method. The research was conducted among 60 adult patients who had undergone ischemic stroke. These patients were treated using the NDT-Bobath method. These patients' gait reeducation was assessed using spatio-temporal gait parameters (gait velocity, cadence and stride length). Measurements of these parameters were conducted by the same therapist twice: on admission, and after the tenth session of gait reeducation. Among the 60 patients involved in the study, the results were as follows: in terms of gait velocity, recovery was observed in 39 cases (65%), in terms of cadence, recovery was observed in 39 cases (65%), in terms of stride length, recovery was observed in 50 cases (83.33%). Benefits were observed after short-term therapy, reflected by measurable statistically significant changes in the patients' gait parameters.

  12. Crowd-Sourced Amputee Gait Data: A Feasibility Study Using YouTube Videos of Unilateral Trans-Femoral Gait.

    Directory of Open Access Journals (Sweden)

    James Gardiner

    Full Text Available Collecting large datasets of amputee gait data is notoriously difficult. Additionally, collecting data on less prevalent amputations or on gait activities other than level walking and running on hard surfaces is rarely attempted. However, with the wealth of user-generated content on the Internet, the scope for collecting amputee gait data from alternative sources other than traditional gait labs is intriguing. Here we investigate the potential of YouTube videos to provide gait data on amputee walking. We use an example dataset of trans-femoral amputees level walking at self-selected speeds to collect temporal gait parameters and calculate gait asymmetry. We compare our YouTube data with typical literature values, and show that our methodology produces results that are highly comparable to data collected in a traditional manner. The similarity between the results of our novel methodology and literature values lends confidence to our technique. Nevertheless, clear challenges with the collection and interpretation of crowd-sourced gait data remain, including long term access to datasets, and a lack of validity and reliability studies in this area.

  13. Crowd-Sourced Amputee Gait Data: A Feasibility Study Using YouTube Videos of Unilateral Trans-Femoral Gait.

    Science.gov (United States)

    Gardiner, James; Gunarathne, Nuwan; Howard, David; Kenney, Laurence

    2016-01-01

    Collecting large datasets of amputee gait data is notoriously difficult. Additionally, collecting data on less prevalent amputations or on gait activities other than level walking and running on hard surfaces is rarely attempted. However, with the wealth of user-generated content on the Internet, the scope for collecting amputee gait data from alternative sources other than traditional gait labs is intriguing. Here we investigate the potential of YouTube videos to provide gait data on amputee walking. We use an example dataset of trans-femoral amputees level walking at self-selected speeds to collect temporal gait parameters and calculate gait asymmetry. We compare our YouTube data with typical literature values, and show that our methodology produces results that are highly comparable to data collected in a traditional manner. The similarity between the results of our novel methodology and literature values lends confidence to our technique. Nevertheless, clear challenges with the collection and interpretation of crowd-sourced gait data remain, including long term access to datasets, and a lack of validity and reliability studies in this area.

  14. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: Body, bag, belt, hand, and pocket.

    Science.gov (United States)

    Silsupadol, Patima; Teja, Kunlanan; Lugade, Vipul

    2017-10-01

    The assessment of spatiotemporal gait parameters is a useful clinical indicator of health status. Unfortunately, most assessment tools require controlled laboratory environments which can be expensive and time consuming. As smartphones with embedded sensors are becoming ubiquitous, this technology can provide a cost-effective, easily deployable method for assessing gait. Therefore, the purpose of this study was to assess the reliability and validity of a smartphone-based accelerometer in quantifying spatiotemporal gait parameters when attached to the body or in a bag, belt, hand, and pocket. Thirty-four healthy adults were asked to walk at self-selected comfortable, slow, and fast speeds over a 10-m walkway while carrying a smartphone. Step length, step time, gait velocity, and cadence were computed from smartphone-based accelerometers and validated with GAITRite. Across all walking speeds, smartphone data had excellent reliability (ICC 2,1 ≥0.90) for the body and belt locations, with bag, hand, and pocket locations having good to excellent reliability (ICC 2,1 ≥0.69). Correlations between the smartphone-based and GAITRite-based systems were very high for the body (r=0.89, 0.98, 0.96, and 0.87 for step length, step time, gait velocity, and cadence, respectively). Similarly, Bland-Altman analysis demonstrated that the bias approached zero, particularly in the body, bag, and belt conditions under comfortable and fast speeds. Thus, smartphone-based assessments of gait are most valid when placed on the body, in a bag, or on a belt. The use of a smartphone to assess gait can provide relevant data to clinicians without encumbering the user and allow for data collection in the free-living environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reliability of surface electromyography timing parameters in gait in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    Malone, Ailish

    2012-02-01

    The aims of this study were to validate a computerised method to detect muscle activity from surface electromyography (SEMG) signals in gait in patients with cervical spondylotic myelopathy (CSM), and to evaluate the test-retest reliability of the activation times designated by this method. SEMG signals were recorded from rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (MG), during gait in 12 participants with CSM on two separate test days. Four computerised activity detection methods, based on the Teager-Kaiser Energy Operator (TKEO), were applied to a subset of signals and compared to visual interpretation of muscle activation. The most accurate method was then applied to all signals for evaluation of test-retest reliability. A detection method based on a combined slope and amplitude threshold showed the highest agreement (87.5%) with visual interpretation. With respect to reliability, the standard error of measurement (SEM) of the timing of RF, TA and MG between test days was 5.5% stride duration or less, while the SEM of BF was 9.4%. The timing parameters of RF, TA and MG designated by this method were considered sufficiently reliable for use in clinical practice, however the reliability of BF was questionable.

  16. Transfer effects of fall training on balance performance and spatiotemporal gait parameters in healthy community-dwelling older adults: a pilot study.

    Science.gov (United States)

    Donath, Lars; Faude, Oliver; Bridenbaugh, Stephanie A; Roth, Ralf; Soltermann, Martin; Kressig, Reto W; Zahner, Lukas

    2014-07-01

    This study examined transfer effects of fall training on fear of falling (Falls Efficacy Scale-International [FES-I]), balance performance, and spatiotemporal gait characteristics in older adults. Eighteen community-dwelling older adults (ages 65-85) were randomly assigned to an intervention or control group. The intervention group completed 12 training sessions (60 min, 6 weeks). During pre- and posttesting, we measured FES-I, balance performance (double limb, closed eyes; single limb, open eyes; double limb, open eyes with motor-interfered task), and gait parameters (e.g., velocity; cadence; stride time, stride width, and stride length; variability of stride time and stride length) under single- and motor-interfered tasks. Dual tasks were applied to appraise improvements of cognitive processing during balance and gait. FES-I (p = .33) and postural sway did not significantly change (0.36 Fall training did not sufficiently improve fear of falling, balance, or gait performance under single- or dual-task conditions in healthy older adults.

  17. Effects of Subthalamic and Nigral Stimulation on Gait Kinematics in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Marlieke Scholten

    2017-10-01

    Full Text Available Conventional subthalamic deep brain stimulation for Parkinson’s disease (PD presumably modulates the spatial component of gait. However, temporal dysregulation of gait is one of the factors that is tightly associated with freezing of gait (FOG. Temporal locomotor integration may be modulated differentially at distinct levels of the basal ganglia. Owing to its specific descending brainstem projections, stimulation of the substantia nigra pars reticulata (SNr area might modulate spatial and temporal parameters of gait differentially compared to standard subthalamic nucleus (STN stimulation. Here, we aimed to characterize the differential effect of STN or SNr stimulation on kinematic gait parameters. We analyzed biomechanical parameters during unconstrained over ground walking in 12 PD patients with subthalamic deep brain stimulation and FOG. Patients performed walking in three therapeutic conditions: (i Off stimulation, (ii STN stimulation (alone, and (iii SNr stimulation (alone. SNr stimulation was achieved by stimulating the most caudal contact of the electrode. We recorded gait using three sensors (each containing a tri-axial accelerometer, gyroscope, and magnetometer attached on both left and right ankle, and to the lumbar spine. STN stimulation improved both the spatial features (stride length, stride length variability and the temporal parameters of gait. SNr stimulation improved temporal parameters of gait (swing time asymmetry. Correlation analysis suggested that patients with more medial localization of the SNr contact associated with a stronger regularization of gait. These results suggest that SNr stimulation might support temporal regularization of gait integration.

  18. The Golden Ratio of Gait Harmony: Repetitive Proportions of Repetitive Gait Phases

    Directory of Open Access Journals (Sweden)

    Marco Iosa

    2013-01-01

    Full Text Available In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with , the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (, , repeated measure analysis of variance or from (, resp., t-tests. The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  19. Analysis of EMG temporal parameters from the tibialis anterior during hemiparetic gait

    International Nuclear Information System (INIS)

    Bonell, Claudia E; Cherniz, AnalIa S; Tabernig, Carolina B

    2007-01-01

    Functional electrical stimulation is a rehabilitation technique used to restore the motor muscular function by means of electrical stimulus commanded by a trigger signal under volitional control. In order to enhance the motor rehabilitation, a more convenient control signal may be provided by the same muscle that is being stimulated. For example, the tibialis anterior (TA) in the applications of foot drop correction could be used. This work presents the statistical analysis of the root mean square (RMS) and the absolute mean value (VMA) of the TA electromyogram (EMG) signal computed from different phases of the gait cycle related with increases/decreases stages of muscle activity. The EMG records of 40 strides of 2 subjects with hemiparesia were processed. The RMS and VMA parameters allow distinguishing the oscillation phase from the other analyzed intervals, but they present significant spreading of mean values. This led to conclude that it is possible to use these parameters to identify the start of TA muscle activity, but altogether with other parameter or sensor that would reduce the number of false positives

  20. Analysis of EMG temporal parameters from the tibialis anterior during hemiparetic gait

    Energy Technology Data Exchange (ETDEWEB)

    Bonell, Claudia E; Cherniz, AnalIa S; Tabernig, Carolina B [Laboratorio de Ingenieria de Rehabilitacion e Investigaciones Neuromusculares y Sensoriales, Facultad de Ingenieria, UNER, Oro Verde (Argentina)

    2007-11-15

    Functional electrical stimulation is a rehabilitation technique used to restore the motor muscular function by means of electrical stimulus commanded by a trigger signal under volitional control. In order to enhance the motor rehabilitation, a more convenient control signal may be provided by the same muscle that is being stimulated. For example, the tibialis anterior (TA) in the applications of foot drop correction could be used. This work presents the statistical analysis of the root mean square (RMS) and the absolute mean value (VMA) of the TA electromyogram (EMG) signal computed from different phases of the gait cycle related with increases/decreases stages of muscle activity. The EMG records of 40 strides of 2 subjects with hemiparesia were processed. The RMS and VMA parameters allow distinguishing the oscillation phase from the other analyzed intervals, but they present significant spreading of mean values. This led to conclude that it is possible to use these parameters to identify the start of TA muscle activity, but altogether with other parameter or sensor that would reduce the number of false positives.

  1. Cognitive and motor dual task gait training improve dual task gait performance after stroke - A randomized controlled pilot trial.

    Science.gov (United States)

    Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau

    2017-06-22

    This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.

  2. An automated procedure for identification of a person using gait analysis

    Directory of Open Access Journals (Sweden)

    Alena Galajdová

    2016-10-01

    Full Text Available Different biometric methods are available for identification purpose of a person. The most commonly used are fingerprints, but there are also other biometric methods such as voice, morphology of ears, structure of iris and so on. In some cases, it is required to identify a person according to his/her biomechanical parameters or even his/her gait pattern. Gait is an outstanding biometric behavioural characteristic that is not widely used yet for identification purposes because efficient and proven automated processes are not yet available. Several systems and gait pattern databases have been developed for rapid evaluation and processing of gait. This article describes an original automated evaluation procedure of gait pattern and identification of unique gait parameters for automatic identification purposes.

  3. Spatiotemporal Gait Characteristics Associated with Cognitive Impairment: A Multicenter Cross-Sectional Study, the Intercontinental "Gait, cOgnitiOn & Decline" Initiative.

    Science.gov (United States)

    Beauchet, Olivier; Blumen, Helena M; Callisaya, Michele L; De Cock, Anne-Marie; Kressig, Reto W; Srikanth, Velandai; Steinmetz, Jean-Paul; Verghese, Joe; Allali, Gilles

    2018-01-23

    The study aims to determine the spatiotemporal gait parameters and/or their combination(s) that best differentiate between cognitively healthy individuals (CHI), patients with mild cognitive impairment (MCI) and those with mild and moderate dementia, regardless of the etiology of cognitive impairment. A total of 2099 participants (1015 CHI, 478 patients with MCI, 331 patients with mild dementia and 275 with moderate dementia) were selected from the intercontinental "Gait, cOgnitiOn & Decline" (GOOD) initiative, which merged different databases from seven cross-sectional studies. Mean values and coefficients of variation (CoV) of spatiotemporal gait parameters were recorded during usual walking with the GAITRite® system. The severity of cognitive impairment was associated with worse performance on all gait parameters. Stride velocity had the strongest association with cognitive impairment, regardless of cognitive status. High mean value and CoV of stride length characterized moderate dementia, whereas increased CoV of stride time was specific to MCI status. The findings support the existence of specific cognitive impairment-related gait disturbances with differences related to stages of cognitive impairment, which may be used to screen individuals with cognitive impairment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait: Validation on Normal Weight and Overweight/Obese Young Healthy Adults

    Directory of Open Access Journals (Sweden)

    Valentina Agostini

    2017-10-01

    Full Text Available Background: Wearable magneto-inertial sensors are being increasingly used to obtain human motion measurements out of the lab, although their performance in applications requiring high accuracy, such as gait analysis, are still a subject of debate. The aim of this work was to validate a gait analysis system (H-Gait based on magneto-inertial sensors, both in normal weight (NW and overweight/obese (OW subjects. The validation is performed against a reference multichannel recording system (STEP32, providing direct measurements of gait timings (through foot-switches and joint angles in the sagittal plane (through electrogoniometers. Methods: Twenty-two young male subjects were recruited for the study (12 NW, 10 OW. After positioning body-fixed sensors of both systems, each subject was asked to walk, at a self-selected speed, over a 14-m straight path for 12 trials. Gait signals were recorded, at the same time, with the two systems. Spatio-temporal parameters, ankle, knee, and hip joint kinematics were extracted analyzing an average of 89 ± 13 gait cycles from each lower limb. Intraclass correlation coefficient and Bland-Altmann plots were used to compare H-Gait and STEP32 measurements. Changes in gait parameters and joint kinematics of OW with respect NW were also evaluated. Results: The two systems were highly consistent for cadence, while a lower agreement was found for the other spatio-temporal parameters. Ankle and knee joint kinematics is overall comparable. Joint ROMs values were slightly lower for H-Gait with respect to STEP32 for the ankle (by 1.9° for NW, and 1.6° for OW and for the knee (by 4.1° for NW, and 1.8° for OW. More evident differences were found for hip joint, with ROMs values higher for H-Gait (by 6.8° for NW, and 9.5° for OW. NW and OW showed significant differences considering STEP32 (p = 0.0004, but not H-Gait (p = 0.06. In particular, overweight/obese subjects showed a higher cadence (55.0 vs. 52.3 strides/min and a

  5. Neuromorphic walking gait control.

    Science.gov (United States)

    Still, Susanne; Hepp, Klaus; Douglas, Rodney J

    2006-03-01

    We present a neuromorphic pattern generator for controlling the walking gaits of four-legged robots which is inspired by central pattern generators found in the nervous system and which is implemented as a very large scale integrated (VLSI) chip. The chip contains oscillator circuits that mimic the output of motor neurons in a strongly simplified way. We show that four coupled oscillators can produce rhythmic patterns with phase relationships that are appropriate to generate all four-legged animal walking gaits. These phase relationships together with frequency and duty cycle of the oscillators determine the walking behavior of a robot driven by the chip, and they depend on a small set of stationary bias voltages. We give analytic expressions for these dependencies. This chip reduces the complex, dynamic inter-leg control problem associated with walking gait generation to the problem of setting a few stationary parameters. It provides a compact and low power solution for walking gait control in robots.

  6. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    Science.gov (United States)

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  7. Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling.

    Science.gov (United States)

    Senden, R; Savelberg, H H C M; Grimm, B; Heyligers, I C; Meijer, K

    2012-06-01

    This study investigated whether the Tinetti scale, as a subjective measure for fall risk, is associated with objectively measured gait characteristics. It is studied whether gait parameters are different for groups that are stratified for fall risk using the Tinetti scale. Moreover, the discriminative power of gait parameters to classify elderly according to the Tinetti scale is investigated. Gait of 50 elderly with a Tinneti>24 and 50 elderly with a Tinetti≤24 was analyzed using acceleration-based gait analysis. Validated algorithms were used to derive spatio-temporal gait parameters, harmonic ratio, inter-stride amplitude variability and root mean square (RMS) from the accelerometer data. Clear differences in gait were found between the groups. All gait parameters correlated with the Tinetti scale (r-range: 0.20-0.73). Only walking speed, step length and RMS showed moderate to strong correlations and high discriminative power to classify elderly according to the Tinetti scale. It is concluded that subtle gait changes that have previously been related to fall risk are not captured by the subjective assessment. It is therefore worthwhile to include objective gait assessment in fall risk screening. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. [Real-time Gait Training System with Embedded Functional Electrical Stimulation].

    Science.gov (United States)

    Gu, Linyan; Ruan, Zhaomin; Jia, Guifeng; Xla, Jing; Qiu, Lijian; Wu, Changwang; Jin, Xiaoqing; Ning, Gangmin

    2015-07-01

    To solve the problem that mostly gait analysis is independent from the treatment, this work proposes a system that integrates the functions of gait training and assessment for foot drop treatment. The system uses a set of sensors to collect gait parameters and designes multi-mode functional electrical stimulators as actuator. Body area network technology is introduced to coordinate the data communication and execution of the sensors and stimulators, synchronize the gait analysis and foot drop treatment. Bluetooth 4.0 is applied to low the power consumption of the system. The system realizes the synchronization of treatment and gait analysis. It is able to acquire and analyze the dynamic parameters of ankle, knee and hip in real-time, and treat patients by guiding functional electrical stimulation delivery to the specific body locations of patients.

  9. Gait impairment in cervical spondylotic myelopathy: comparison with age- and gender-matched healthy controls.

    LENUS (Irish Health Repository)

    Malone, Ailish

    2012-12-01

    Gait impairment is a primary symptom of cervical spondylotic myelopathy (CSM); however, little is known about specific kinetic and kinematic gait parameters. The objectives of the study were: (1) to compare gait patterns of people with untreated CSM to those of age- and gender-matched healthy controls; (2) to examine the effect of gait speed on kinematic and kinetic parameters.

  10. Gait Is Associated with Cognitive Flexibility: A Dual-Tasking Study in Healthy Older People

    Directory of Open Access Journals (Sweden)

    Markus A. Hobert

    2017-05-01

    Full Text Available Objectives: To analyze which gait parameters are primarily influenced by cognitive flexibility, and whether such an effect depends on the walking condition used.Design: Cross-sectional analysis.Setting: Tübingen evaluation of Risk factors for Early detection of Neurodegenerative Disorders.Participants: A total of 661 non-demented individuals (49–80 years.Measurements: A gait assessment with four conditions was performed: a 20 m walk at convenient speed (C, at fast speed (F, at fast speed while checking boxes (FB, and while subtracting serial 7s (FS. Seven gait parameters from a wearable sensor-unit (McRoberts, Netherlands were compared with delta Trail-Making-Test (dTMT values, which is a measure of cognitive flexibility. Walking strategies of good and poor dTMT performers were compared by evaluating the patterns of gait parameters across conditions.Results: Five parameters correlated significantly with the dTMT in the FS condition, two parameters in the F and FB condition, and none in the C condition. Overall correlations were relatively weak. Gait speed was the gait parameter that most strongly correlated with the dTMT (r2 = 7.4%. In good, but not poor, dTMT performers differences between FB and FS were significantly different in variability-associated gait parameters.Conclusion: Older individuals need cognitive flexibility to perform difficult walking conditions. This association is best seen in gait speed. New and particularly relevant for recognition and training of deficits is that older individuals with poor cognitive flexibility have obviously fewer resources to adapt to challenging walking conditions. Our findings partially explain gait deficits in older adults with poor cognitive flexibility.

  11. A Full-Body Layered Deformable Model for Automatic Model-Based Gait Recognition

    Science.gov (United States)

    Lu, Haiping; Plataniotis, Konstantinos N.; Venetsanopoulos, Anastasios N.

    2007-12-01

    This paper proposes a full-body layered deformable model (LDM) inspired by manually labeled silhouettes for automatic model-based gait recognition from part-level gait dynamics in monocular video sequences. The LDM is defined for the fronto-parallel gait with 22 parameters describing the human body part shapes (widths and lengths) and dynamics (positions and orientations). There are four layers in the LDM and the limbs are deformable. Algorithms for LDM-based human body pose recovery are then developed to estimate the LDM parameters from both manually labeled and automatically extracted silhouettes, where the automatic silhouette extraction is through a coarse-to-fine localization and extraction procedure. The estimated LDM parameters are used for model-based gait recognition by employing the dynamic time warping for matching and adopting the combination scheme in AdaBoost.M2. While the existing model-based gait recognition approaches focus primarily on the lower limbs, the estimated LDM parameters enable us to study full-body model-based gait recognition by utilizing the dynamics of the upper limbs, the shoulders and the head as well. In the experiments, the LDM-based gait recognition is tested on gait sequences with differences in shoe-type, surface, carrying condition and time. The results demonstrate that the recognition performance benefits from not only the lower limb dynamics, but also the dynamics of the upper limbs, the shoulders and the head. In addition, the LDM can serve as an analysis tool for studying factors affecting the gait under various conditions.

  12. Energy Cost and Gait Efficiency of Below-Knee Amputee and Normal Subject with Similar Physical Parameters & Quality of Life: A Comparative Case Study

    Directory of Open Access Journals (Sweden)

    Durbadal Biswas

    2010-10-01

    Full Text Available The study focused on the comparative analysis of energy cost and gait efficiency between a below knee (BK amputee and a reference subject (without amputation. It also attempted to indicate the specific feature responsible for a controlled gait with optimum energy cost for BK amputees. Selection criteria of the subjects were similar physical parameters and quality of life studied with WHOQOL-100 quality of life assessment. A Cosmed® k4 b2 Respiratory Analyzer system was used for the measurement of Oxygen Uptake (VO2, Energy Expenditure per minute (EE and Heart Rate (HR. Gait efficiency (p < 0.0002 was found higher for BK amputee than normal subject. The therapeutic activities and mainly walking rhythm contributed to improve the mobility & balance. This ensures the optimum time & co-ordination of movements and hence improves the gait efficiency for the BK amputee. Comparison with control group was performed to validate the data.

  13. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75 and an abnormal gait group (n = 25. Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV in stride length, two with base of support (BOS deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was

  14. The contribution of quasi-joint stiffness of the ankle joint to gait in patients with hemiparesis.

    Science.gov (United States)

    Sekiguchi, Yusuke; Muraki, Takayuki; Kuramatsu, Yuko; Furusawa, Yoshihito; Izumi, Shin-Ichi

    2012-06-01

    The role of ankle joint stiffness during gait in patients with hemiparesis has not been clarified. The purpose of this study was to determine the contribution of quasi-joint stiffness of the ankle joint to spatiotemporal and kinetic parameters regarding gait in patients with hemiparesis due to brain tumor or stroke and healthy individuals. Spatiotemporal and kinetic parameters regarding gait in twelve patients with hemiparesis due to brain tumor or stroke and nine healthy individuals were measured with a 3-dimensional motion analysis system. Quasi-joint stiffness was calculated from the slope of the linear regression of the moment-angle curve of the ankle joint during the second rocker. There was no significant difference in quasi-joint stiffness among both sides of patients and the right side of controls. Quasi-joint stiffness on the paretic side of patients with hemiparesis positively correlated with maximal ankle power (r=0.73, Phemiparesis. In contrast, healthy individuals might decrease quasi-joint stiffness to avoid deceleration of forward tilt of the tibia. Our findings might be useful for selecting treatment for increased ankle stiffness due to contracture and spasticity in patients with hemiparesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Local dynamic stability and variability of gait are associated with fall history in elderly subjects

    OpenAIRE

    Toebes, M.J.P.; Hoozemans, M.J.M.; Furrer, R.; Dekker, J.; van Dieen, J.H.

    2012-01-01

    Gait parameters that can be measured with simple instrumentation may hold promise for identifying individuals at risk of falling. Increased variability of gait is associated with increased risk of falling, but research on additional parameters indicates that local dynamic stability (LDS) of gait may also be a predictor of fall risk. The objective of the present study was to assess the association between gait variability, LDS of gait and fall history in a large sample of elderly subjects.Subj...

  16. Plasticity of spinal centers in spinal cord injury patients: new concepts for gait evaluation and training.

    Science.gov (United States)

    Scivoletto, Giorgio; Ivanenko, Yuri; Morganti, Barbara; Grasso, Renato; Zago, Mirka; Lacquaniti, Francesco; Ditunno, John; Molinari, Marco

    2007-01-01

    Recent data on spinal cord plasticity after spinal cord injury (SCI) were reviewed to analyze the influence of training on the neurophysiological organization of locomotor spinal circuits in SCI patients. In particular, the authors studied the relationship between central pattern generators (CPGs) and motor neuron pool activation during gait. An analysis of the relations between locomotor recovery and compensatory mechanisms focuses on the hierarchical organization of gait parameters and allows characterizing kinematic parameters that are highly stable during different gait conditions and in recovered gait after SCI. The importance of training characteristics and the use of robotic/automated devices in gait recovery is analyzed and discussed. The role of CPG in defining kinematic gait parameters is summarized, and spatio-temporal maps of EMG activity during gait are used to clarify the role of CPG plasticity in sustaining gait recovery.

  17. Serpentine Robot Model and Gait Design Using Autodesk Inventor and Simulink SimMechanics

    Science.gov (United States)

    Daniel; Iman Alamsyah, Mohammad; Erwin; Tan, Sofyan

    2014-03-01

    The authors introduce gaits of a serpentine robot with linear expansion mechanism where the robot varies its length using joints with three degrees of freedom. The 3D model of the serpentine robot is drawed in Autocad Inventor® and exported to SimMechanics® for straighforward modeling of the kinematics. The gaits are important for robots designed to explore ruins of disasters where the working spaces are very tight. For maximum flexibility of the serpentine robot, we adopted a joint design with three parallel actuators, where the joint is capable of linear movement in the forward axis, and rotational movements around two other axes. The designed linear expansion gaits is calculated for forward movement when the robot is posing straight or turning laterally.

  18. Serpentine Robot Model and Gait Design Using Autodesk Inventor and Simulink SimMechanics

    Directory of Open Access Journals (Sweden)

    Daniel

    2014-03-01

    Full Text Available The authors introduce gaits of a serpentine robot with linear expansion mechanism where the robot varies its length using joints with three degrees of freedom. The 3D model of the serpentine robot is drawed in Autocad Inventor® and exported to SimMechanics® for straighforward modeling of the kinematics. The gaits are important for robots designed to explore ruins of disasters where the working spaces are very tight. For maximum flexibility of the serpentine robot, we adopted a joint design with three parallel actuators, where the joint is capable of linear movement in the forward axis, and rotational movements around two other axes. The designed linear expansion gaits is calculated for forward movement when the robot is posing straight or turning laterally.

  19. Analysis and Classification of Stride Patterns Associated with Children Development Using Gait Signal Dynamics Parameters and Ensemble Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Meihong Wu

    2016-01-01

    Full Text Available Measuring stride variability and dynamics in children is useful for the quantitative study of gait maturation and neuromotor development in childhood and adolescence. In this paper, we computed the sample entropy (SampEn and average stride interval (ASI parameters to quantify the stride series of 50 gender-matched children participants in three age groups. We also normalized the SampEn and ASI values by leg length and body mass for each participant, respectively. Results show that the original and normalized SampEn values consistently decrease over the significance level of the Mann-Whitney U test (p<0.01 in children of 3–14 years old, which indicates the stride irregularity has been significantly ameliorated with the body growth. The original and normalized ASI values are also significantly changing when comparing between any two groups of young (aged 3–5 years, middle (aged 6–8 years, and elder (aged 10–14 years children. Such results suggest that healthy children may better modulate their gait cadence rhythm with the development of their musculoskeletal and neurological systems. In addition, the AdaBoost.M2 and Bagging algorithms were used to effectively distinguish the children’s gait patterns. These ensemble learning algorithms both provided excellent gait classification results in terms of overall accuracy (≥90%, recall (≥0.8, and precision (≥0.8077.

  20. Bicycle ergometer versus treadmill on balance and gait parameters ...

    African Journals Online (AJOL)

    Background and purpose: Children with hemophilia often bleed inside the joints and muscles, which may impair postural adjustments. These postural adjustments are necessary to control gait and postural balance during daily activities. The inability to quickly recover postural balance could elevate the risk of bleeding.

  1. Boosting Discriminant Learners for Gait Recognition Using MPCA Features

    Directory of Open Access Journals (Sweden)

    Haiping Lu

    2009-01-01

    Full Text Available This paper proposes a boosted linear discriminant analysis (LDA solution on features extracted by the multilinear principal component analysis (MPCA to enhance gait recognition performance. Three-dimensional gait objects are projected in the MPCA space first to obtain low-dimensional tensorial features. Then, lower-dimensional vectorial features are obtained through discriminative feature selection. These feature vectors are then fed into an LDA-style booster, where several regularized and weakened LDA learners work together to produce a strong learner through a novel feature weighting and sampling process. The LDA learner employs a simple nearest-neighbor classifier with a weighted angle distance measure for classification. The experimental results on the NIST/USF “Gait Challenge” data-sets show that the proposed solution has successfully improved the gait recognition performance and outperformed several state-of-the-art gait recognition algorithms.

  2. Asymmetry in gait pattern following tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Læssøe, Uffe; Rasmussen, Sten

    2017-01-01

    INTRODUCTION: Despite the high number of studies evaluating the outcomes following tibial shaft fractures, the literature lacks studies including objective assessment of patients' recovery regarding gait pattern. The purpose of the present study was to evaluate whether gait patterns at 6 and 12...... months post-operatively following intramedullary nailing of a tibial shaft fracture are different compared with a healthy reference population. PATIENTS AND METHODS: The study design was a prospective cohort study. The primary outcome measurement was the gait patterns at 6 and 12 months post......-operatively measured with a 6-metre-long pressure-sensitive mat. The mat registers footprints and present gait speed, cadence as well as temporal and spatial parameters of the gait cycle. Gait patterns were compared to a healthy reference population. RESULTS: 49 patients were included with a mean age of 43.1 years (18...

  3. Gait in normal pressure hydrocephalus: characteristics and effects of the CSF tap test

    Directory of Open Access Journals (Sweden)

    Ricardo Krause Martinez de Souza

    Full Text Available ABSTRACT Normal pressure hydrocephalus (NPH, described by Hakim and Adams in 1965, is characterized by gait apraxia, urinary incontinence, and dementia. It is associated with normal cerebrospinal fluid (CSF pressure and ventricular dilation that cannot be attributed to cerebral atrophy. Objectives: To evaluate gait characteristics in patients with idiopathic NPH and investigate the effect of the CSF tap test (CSF-TT on gait. Methods: Twenty-five patients diagnosed with probable idiopathic NPH were submitted to the CSF-TT. The procedure aimed to achieve changes in gait parameters. Results: Fifteen gait parameters were assessed before and after the CSF-TT. Five showed a statistically significant improvement (p < 0.05: walking speed (p < 0.001, cadence (p < 0.001, step length (p < 0.001, en bloc turning (p = 0.001, and step height (p = 0.004. Conclusion: This study demonstrated that gait speed was the most responsive parameter to the CSF-TT, followed by cadence, step length, en bloc turning, and step height.

  4. Observer-based linear parameter varying H∞ tracking control for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Yiqing Huang

    2016-11-01

    Full Text Available This article aims to develop observer-based linear parameter varying output feedback H∞ tracking controller for hypersonic vehicles. Due to the complexity of an original nonlinear model of the hypersonic vehicle dynamics, a slow–fast loop linear parameter varying polytopic model is introduced for system stability analysis and controller design. Then, a state observer is developed by linear parameter varying technique in order to estimate the unmeasured attitude angular for slow loop system. Also, based on the designed linear parameter varying state observer, a kind of attitude tracking controller is presented to reduce tracking errors for all bounded reference attitude angular inputs. The closed-loop linear parameter varying system is proved to be quadratically stable by Lypapunov function technique. Finally, simulation results show that the developed linear parameter varying H∞ controller has good tracking capability for reference commands.

  5. Local dynamic stability and variability of gait are associated with fall history in elderly subjects

    NARCIS (Netherlands)

    Toebes, M.J.P.; Hoozemans, M.J.M.; Furrer, R.; Dekker, J.; van Dieen, J.H.

    2012-01-01

    Gait parameters that can be measured with simple instrumentation may hold promise for identifying individuals at risk of falling. Increased variability of gait is associated with increased risk of falling, but research on additional parameters indicates that local dynamic stability (LDS) of gait may

  6. Kinematic analysis quantifies gait abnormalities associated with lameness in broiler chickens and identifies evolutionary gait differences.

    Directory of Open Access Journals (Sweden)

    Gina Caplen

    Full Text Available This is the first time that gait characteristics of broiler (meat chickens have been compared with their progenitor, jungle fowl, and the first kinematic study to report a link between broiler gait parameters and defined lameness scores. A commercial motion-capturing system recorded three-dimensional temporospatial information during walking. The hypothesis was that the gait characteristics of non-lame broilers (n = 10 would be intermediate to those of lame broilers (n = 12 and jungle fowl (n = 10, tested at two ages: immature and adult. Data analysed using multi-level models, to define an extensive range of baseline gait parameters, revealed inter-group similarities and differences. Natural selection is likely to have made jungle fowl walking gait highly efficient. Modern broiler chickens possess an unbalanced body conformation due to intense genetic selection for additional breast muscle (pectoral hypertrophy and whole body mass. Together with rapid growth, this promotes compensatory gait adaptations to minimise energy expenditure and triggers high lameness prevalence within commercial flocks; lameness creating further disruption to the gait cycle and being an important welfare issue. Clear differences were observed between the two lines (short stance phase, little double-support, low leg lift, and little back displacement in adult jungle fowl; much double-support, high leg lift, and substantial vertical back movement in sound broilers presumably related to mass and body conformation. Similarities included stride length and duration. Additional modifications were also identified in lame broilers (short stride length and duration, substantial lateral back movement, reduced velocity presumably linked to musculo-skeletal abnormalities. Reduced walking velocity suggests an attempt to minimise skeletal stress and/or discomfort, while a shorter stride length and time, together with longer stance and double-support phases, are associated

  7. Gait Parameters and Functional Outcomes After Total Knee Arthroplasty Using Persona Knee System With Cruciate Retaining and Ultracongruent Knee Inserts.

    Science.gov (United States)

    Rajgopal, Ashok; Aggarwal, Kalpana; Khurana, Anshika; Rao, Arun; Vasdev, Attique; Pandit, Hemant

    2017-01-01

    Total knee arthroplasty is a well-established treatment for managing end-stage symptomatic knee osteoarthritis. Currently, different designs of prostheses are available with majority ensuring similar clinical outcomes. Altered surface geometry is introduced to strive toward gaining superior outcomes. We aimed to investigate any differences in functional outcomes between 2 different polyethylene designs namely the Persona CR (cruciate retaining) and Persona UC (ultracongruent) tibial inserts (Zimmer-Biomet, Warsaw, IN). This prospective single blind, single-surgeon randomized controlled trial reports on 105 patients, (66 female and 39 male), who underwent simultaneous bilateral total knee arthroplasty using the Persona knee system (Zimmer-Biomet) UC inserts in one side and CR inserts in the contralateral side. By a blind assessor, at regular time intervals patients were assessed in terms of function and gait. The functional knee scoring scales used were the Western Ontario and McMaster Universities Osteoarthritis Index and Modified Knee Society Score. The gait parameters evaluated were foot pressure and step length. During the study period, no patient was lost to follow-up or underwent revision surgery for any cause. Western Ontario and McMaster Universities Osteoarthritis Index scores, Modified Knee Society Score, and knee range of motion of all 105 patients assessed preoperatively and postoperatively at 6 months, 1 year, and 2 years showed statistically better results (P < .05) for UC inserts. Gait analysis measuring foot pressures and step length, however, did not show any statistically significant differences at 2-year follow-up. Ultracongruent tibial inserts show significantly better functional outcomes as compared to CR inserts during a 2-year follow-up period. However, in this study these findings were not shown to be attributed to differences in gait parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Smooth and Energy Saving Gait Planning for Humanoid Robot Using Geodesics

    Directory of Open Access Journals (Sweden)

    Liandong Zhang

    2012-01-01

    Full Text Available A novel gait planning method using geodesics for humanoid robot is given in this paper. Both the linear inverted pendulum model and the exact Single Support Phase (SSP are studied in our energy optimal gait planning based on geodesics. The kinetic energy of a 2-dimension linear inverted pendulum is obtained at first. We regard the kinetic energy as the Riemannian metric and the geodesic on this metric is studied and this is the shortest line between two points on the Riemannian surface. This geodesic is the optimal kinetic energy gait for the COG because the kinetic energy along geodesic is invariant according to the geometric property of geodesics and the walking is smooth and energy saving. Then the walking in Single Support Phase is studied and the energy optimal gait for the swing leg is obtained using our geodesics method. Finally, experiments using state-of-the-art method and using our geodesics optimization method are carried out respectively and the corresponding currents of the joint motors are recorded. With the currents comparing results, the feasibility of this new gait planning method is verified.

  9. Spatio-temporal gait disorder and gait fatigue index in a six-minute walk test in women with fibromyalgia.

    Science.gov (United States)

    Heredia-Jimenez, Jose; Latorre-Roman, Pedro; Santos-Campos, Maria; Orantes-Gonzalez, Eva; Soto-Hermoso, Victor M

    2016-03-01

    Gait disorders in fibromyalgia patients affect several gait parameters and different muscle recruitment patterns. The aim of this study was to assess the gait differences observed during a six-minute walk test between fibromyalgia patients and healthy controls. Forty-eight women with fibromyalgia and 15 healthy women were evaluated. Fibromyalgia patients met the American College of Rheumatology criteria for fibromyalgia selected of an ambulatory care. Both patients and controls had a negative history of musculoskeletal disease, neurological disorders, and gait abnormalities. The 15 controls were healthy women matched to the patients in age, height and body weight. Spatio-temporal gait variables and the rate of perceived exertion during the six-minute walk test (all subjects) and Fibromyalgia Impact Questionnaire (fibromyalgia subjects) were evaluated. All walking sets on the GaitRITE were collected and the gait variables were selected at three stages during the six-minute walk test: two sets at the beginning, two sets at 3 min and two sets at the end of the test. In addition, the Fibromyalgia Impact Questionnaire was used for the fibromyalgia patients. Fibromyalgia patients showed a significant decrease in all spatio-temporal gait variables at each of the three stages and had a lower walk distance covered in the six-minute walk test and higher rate of perceived exertion. No correlations were found between the Fibromyalgia Impact Questionnaire and gait variables. The fibromyalgia and control subjects showed lower gait fatigue indices between the middle and last stages. Gait analysis during a six-minute walk test is a good tool to assess the fatigue and physical symptoms of patients with fibromyalgia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study.

    Science.gov (United States)

    Lucareli, P R; Lima, M O; Lima, F P S; de Almeida, J G; Brech, G C; D'Andréa Greve, J M

    2011-09-01

    Single-blind randomized, controlled clinical study. To evaluate, using kinematic gait analysis, the results obtained from gait training on a treadmill with body weight support versus those obtained with conventional gait training and physiotherapy. Thirty patients with sequelae from traumatic incomplete spinal cord injuries at least 12 months earlier; patients were able to walk and were classified according to motor function as ASIA (American Spinal Injury Association) impairment scale C or D. Patients were divided randomly into two groups of 15 patients by the drawing of opaque envelopes: group A (weight support) and group B (conventional). After an initial assessment, both groups underwent 30 sessions of gait training. Sessions occurred twice a week, lasted for 30 min each and continued for four months. All of the patients were evaluated by a single blinded examiner using movement analysis to measure angular and linear kinematic gait parameters. Six patients (three from group A and three from group B) were excluded because they attended fewer than 85% of the training sessions. There were no statistically significant differences in intra-group comparisons among the spatial-temporal variables in group B. In group A, the following significant differences in the studied spatial-temporal variables were observed: increases in velocity, distance, cadence, step length, swing phase and gait cycle duration, in addition to a reduction in stance phase. There were also no significant differences in intra-group comparisons among the angular variables in group B. However, group A achieved significant improvements in maximum hip extension and plantar flexion during stance. Gait training with body weight support was more effective than conventional physiotherapy for improving the spatial-temporal and kinematic gait parameters among patients with incomplete spinal cord injuries.

  11. Capability of 2 gait measures for detecting response to gait training in stroke survivors: Gait Assessment and Intervention Tool and the Tinetti Gait Scale.

    Science.gov (United States)

    Zimbelman, Janice; Daly, Janis J; Roenigk, Kristen L; Butler, Kristi; Burdsall, Richard; Holcomb, John P

    2012-01-01

    To characterize the performance of 2 observational gait measures, the Tinetti Gait Scale (TGS) and the Gait Assessment and Intervention Tool (G.A.I.T.), in identifying improvement in gait in response to gait training. In secondary analysis from a larger study of multimodal gait training for stroke survivors, we measured gait at pre-, mid-, and posttreatment according to G.A.I.T. and TGS, assessing their capability to capture recovery of coordinated gait components. Large medical center. Cohort of stroke survivors (N=44) greater than 6 months after stroke. All subjects received 48 sessions of a multimodal gait-training protocol. Treatment consisted of 1.5 hours per session, 4 sessions per week for 12 weeks, receiving these 3 treatment aspects: (1) coordination exercise, (2) body weight-supported treadmill training, and (3) overground gait training, with 46% of subjects receiving functional electrical stimulation. All subjects were evaluated with the G.A.I.T. and TGS before and after completing the 48-session intervention. An additional evaluation was performed at midtreatment (after session 24). For the total subject sample, there were significant pre-/post-, pre-/mid-, and mid-/posttreatment gains for both the G.A.I.T. and the TGS. According to the G.A.I.T., 40 subjects (91%) showed improved scores, 2 (4%) no change, and 2 (4%) a worsening score. According to the TGS, only 26 subjects (59%) showed improved scores, 16 (36%) no change, and 1 (2%) a worsening score. For 1 treatment group of chronic stroke survivors, the TGS failed to identify a significant treatment response to gait training, whereas the G.A.I.T. measure was successful. The G.A.I.T. is more sensitive than the TGS for individual patients and group treatment response in identifying recovery of volitional control of gait components in response to gait training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. A METHOD FOR SOLVING LINEAR PROGRAMMING PROBLEMS WITH FUZZY PARAMETERS BASED ON MULTIOBJECTIVE LINEAR PROGRAMMING TECHNIQUE

    OpenAIRE

    M. ZANGIABADI; H. R. MALEKI

    2007-01-01

    In the real-world optimization problems, coefficients of the objective function are not known precisely and can be interpreted as fuzzy numbers. In this paper we define the concepts of optimality for linear programming problems with fuzzy parameters based on those for multiobjective linear programming problems. Then by using the concept of comparison of fuzzy numbers, we transform a linear programming problem with fuzzy parameters to a multiobjective linear programming problem. To this end, w...

  13. New lower-limb gait asymmetry indices based on a depth camera.

    Science.gov (United States)

    Auvinet, Edouard; Multon, Franck; Meunier, Jean

    2015-02-24

    Various asymmetry indices have been proposed to compare the spatiotemporal, kinematic and kinetic parameters of lower limbs during the gait cycle. However, these indices rely on gait measurement systems that are costly and generally require manual examination, calibration procedures and the precise placement of sensors/markers on the body of the patient. To overcome these issues, this paper proposes a new asymmetry index, which uses an inexpensive, easy-to-use and markerless depth camera (Microsoft Kinect™) output. This asymmetry index directly uses depth images provided by the Kinect™ without requiring joint localization. It is based on the longitudinal spatial difference between lower-limb movements during the gait cycle. To evaluate the relevance of this index, fifteen healthy subjects were tested on a treadmill walking normally and then via an artificially-induced gait asymmetry with a thick sole placed under one shoe. The gait movement was simultaneously recorded using a Kinect™ placed in front of the subject and a motion capture system. The proposed longitudinal index distinguished asymmetrical gait (p indices based on spatiotemporal gait parameters failed using such Kinect™ skeleton measurements. Moreover, the correlation coefficient between this index measured by Kinect™ and the ground truth of this index measured by motion capture is 0.968. This gait asymmetry index measured with a Kinect™ is low cost, easy to use and is a promising development for clinical gait analysis.

  14. Spatio-Temporal Parameters\\' Changes in Gait of Male Elderly Subjects

    Directory of Open Access Journals (Sweden)

    Heydar Sadeghi

    2010-03-01

    Full Text Available Objectives: The purpose of this study was to compare spatio-temporal gait parameters between elderly and young male subjects. Methods & Materials: 57 able-bodied elderly (72±5.5 years and 57 healthy young (25±8.5 years subjects participated in this study. A four segment model consist of trunk, hip, shank, and foot with 10 reflective markers were used to define lower limbs. Kinematic data collected using four high speed video based cameras at a sampling frequency of 90 Hz.The t-testfor independent samples (α≤0.05 applied for statistical analysis. Results: Significant differences showed longer stance phase (2%, longer push-of time (4%, slower cadence (13%, slower speed (28% and shorter step length (15% for elderly in comparison with young subjects, though no significant differences were seen in double supporttime between two groups. Conclusion: Due to results, spatio-temporal changes are mainly attributed to the age-related decreases in muscular flexibility, joints>ranges of motion and neuromuscular control in elderly people.

  15. Are the Timed Up and Go Test and Functional Reach Test Useful Predictors of Temporal and Spatial Gait Parameters in Elderly People?

    Directory of Open Access Journals (Sweden)

    Sadowska Dorota

    2016-09-01

    Full Text Available Purpose. The study aim was to analyse the relationships between the results of the Timed Up and Go (TUG test and the Functional Reach Test (FRT, and the temporal and spatial gait parameters determined with the GAITRite system.

  16. Analysis of gait symmetry during over-ground walking in children with autism spectrum disorder.

    Science.gov (United States)

    Eggleston, Jeffrey D; Harry, John R; Hickman, Robbin A; Dufek, Janet S

    2017-06-01

    Gait symmetry is utilized as an indicator of neurologic function. Healthy gait often exhibits minimal asymmetries, while pathological gait exhibits exaggerated asymmetries. The purpose of this study was to examine symmetry of mechanical gait parameters during over-ground walking in children with Autism Spectrum Disorder (ASD). Kinematic and kinetic data were obtained from 10 children (aged 5-12 years) with ASD. The Model Statistic procedure (α=0.05) was used to compare gait related parameters between limbs. Analysis revealed children with ASD exhibit significant lower extremity joint position and ground reaction force asymmetries throughout the gait cycle. The observed asymmetries were unique for each subject. These data do not support previous research relative to gait symmetry in children with ASD. Many individuals with ASD do not receive physical therapy interventions, however, precision medicine based interventions emphasizing lower extremity asymmetries may improve gait function and improve performance during activities of daily living. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Normal form of linear systems depending on parameters

    International Nuclear Information System (INIS)

    Nguyen Huynh Phan.

    1995-12-01

    In this paper we resolve completely the problem to find normal forms of linear systems depending on parameters for the feedback action that we have studied for the special case of controllable linear systems. (author). 24 refs

  18. Day-to-day reliability of gait characteristics in rats

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Nielsen, Louise R; Madsen, Stefan

    2018-01-01

    day-to-day reliability of the gait pattern parameters observed in rats during treadmill walking. The results of the present study may serve as a reference material that can help future intervention studies on rat gait characteristics both with respect to the selection of outcome measures...

  19. Automated health alerts from Kinect-based in-home gait measurements.

    Science.gov (United States)

    Stone, Erik E; Skubic, Marjorie; Back, Jessica

    2014-01-01

    A method for automatically generating alerts to clinicians in response to changes in in-home gait parameters is investigated. Kinect-based gait measurement systems were installed in apartments in a senior living facility. The systems continuously monitored the walking speed, stride time, and stride length of apartment residents. A framework for modeling uncertainty in the residents' gait parameter estimates, which is critical for robust change detection, is developed; along with an algorithm for detecting changes that may be clinically relevant. Three retrospective case studies, of individuals who had their gait monitored for periods ranging from 12 to 29 months, are presented to illustrate use of the alert method. Evidence suggests that clinicians could be alerted to health changes at an early stage, while they are still small and interventions may be most successful. Additional potential uses are also discussed.

  20. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease.

    Science.gov (United States)

    Pilleri, Manuela; Weis, Luca; Zabeo, Letizia; Koutsikos, Konstantinos; Biundo, Roberta; Facchini, Silvia; Rossi, Simonetta; Masiero, Stefano; Antonini, Angelo

    2015-08-15

    Freezing of Gait (FOG) is a frequent and disabling feature of Parkinson disease (PD). Gait rehabilitation assisted by electromechanical devices, such as training on treadmill associated with sensory cues or assisted by gait orthosis have been shown to improve FOG. Overground robot assisted gait training (RGT) has been recently tested in patients with PD with improvement of several gait parameters. We here evaluated the effectiveness of RGT on FOG severity and gait abnormalities in PD patients. Eighteen patients with FOG resistant to dopaminergic medications were treated with 15 sessions of RGT and underwent an extensive clinical evaluation before and after treatment. The main outcome measures were FOG questionnaire (FOGQ) global score and specific tasks for gait assessment, namely 10 meter walking test (10 MWT), Timed Up and Go test (TUG) and 360° narrow turns (360 NT). Balance was also evaluated through Fear of Falling Efficacy Scale (FFES), assessing self perceived stability and Berg Balance Scale (BBS), for objective examination. After treatment, FOGQ score was significantly reduced (P=0.023). We also found a significant reduction of time needed to complete TUG, 10 MWT, and 360 NT (P=0.009, 0.004 and 0.04, respectively). By contrast the number of steps and the number of freezing episodes recorded at each gait task did not change. FFES and BBS scores also improved, with positive repercussions on performance on daily activity and quality of life. Our results indicate that RGT is a useful strategy for the treatment of drug refractory FOG. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. New Lower-Limb Gait Asymmetry Indices Based on a Depth Camera

    Directory of Open Access Journals (Sweden)

    Edouard Auvinet

    2015-02-01

    Full Text Available Background: Various asymmetry indices have been proposed to compare the spatiotemporal, kinematic and kinetic parameters of lower limbs during the gait cycle. However, these indices rely on gait measurement systems that are costly and generally require manual examination, calibration procedures and the precise placement of sensors/markers on the body of the patient. Methods: To overcome these issues, this paper proposes a new asymmetry index, which uses an inexpensive, easy-to-use and markerless depth camera (Microsoft Kinect™ output. This asymmetry index directly uses depth images provided by the Kinect™ without requiring joint localization. It is based on the longitudinal spatial difference between lower-limb movements during the gait cycle. To evaluate the relevance of this index, fifteen healthy subjects were tested on a treadmill walking normally and then via an artificially-induced gait asymmetry with a thick sole placed under one shoe. The gait movement was simultaneously recorded using a Kinect™ placed in front of the subject and a motion capture system. Results: The proposed longitudinal index distinguished asymmetrical gait (p < 0.001, while other symmetry indices based on spatiotemporal gait parameters failed using such Kinect™ skeleton measurements. Moreover, the correlation coefficient between this index measured by Kinect™ and the ground truth of this index measured by motion capture is 0.968. Conclusion: This gait asymmetry index measured with a Kinect™ is low cost, easy to use and is a promising development for clinical gait analysis.

  2. A mechanized gait trainer for restoration of gait.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D

    2000-01-01

    The newly developed gait trainer allows wheel-chair-bound subjects the repetitive practice of a gait-like movement without overstressing therapists. The device simulates the phases of gait, supports the subjects according to their abilities, and controls the center of mass (CoM) in the vertical and horizontal directions. The patterns of sagittal lower limb joint kinematics and of muscle activation for a normal subject were similar when using the mechanized trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists were required to support treadmill walking. Gait movements on the trainer were highly symmetrical, impact free, and less spastic. The vertical displacement of the CoM was bi-phasic instead of mono-phasic during each gait cycle on the new device. Two cases of non-ambulatory patients, who regained their walking ability after 4 weeks of daily training on the gait trainer, are reported.

  3. Gait variability: methods, modeling and meaning

    Directory of Open Access Journals (Sweden)

    Hausdorff Jeffrey M

    2005-07-01

    Full Text Available Abstract The study of gait variability, the stride-to-stride fluctuations in walking, offers a complementary way of quantifying locomotion and its changes with aging and disease as well as a means of monitoring the effects of therapeutic interventions and rehabilitation. Previous work has suggested that measures of gait variability may be more closely related to falls, a serious consequence of many gait disorders, than are measures based on the mean values of other walking parameters. The Current JNER series presents nine reports on the results of recent investigations into gait variability. One novel method for collecting unconstrained, ambulatory data is reviewed, and a primer on analysis methods is presented along with a heuristic approach to summarizing variability measures. In addition, the first studies of gait variability in animal models of neurodegenerative disease are described, as is a mathematical model of human walking that characterizes certain complex (multifractal features of the motor control's pattern generator. Another investigation demonstrates that, whereas both healthy older controls and patients with a higher-level gait disorder walk more slowly in reduced lighting, only the latter's stride variability increases. Studies of the effects of dual tasks suggest that the regulation of the stride-to-stride fluctuations in stride width and stride time may be influenced by attention loading and may require cognitive input. Finally, a report of gait variability in over 500 subjects, probably the largest study of this kind, suggests how step width variability may relate to fall risk. Together, these studies provide new insights into the factors that regulate the stride-to-stride fluctuations in walking and pave the way for expanded research into the control of gait and the practical application of measures of gait variability in the clinical setting.

  4. Improved gait after repetitive locomotor training in children with cerebral palsy.

    Science.gov (United States)

    Smania, Nicola; Bonetti, Paola; Gandolfi, Marialuisa; Cosentino, Alessandro; Waldner, Andreas; Hesse, Stefan; Werner, Cordula; Bisoffi, Giulia; Geroin, Christian; Munari, Daniele

    2011-02-01

    The aim of this study was to evaluate the effectiveness of repetitive locomotor training with an electromechanical gait trainer in children with cerebral palsy. In this randomized controlled trial, 18 ambulatory children with diplegic or tetraplegic cerebral palsy were randomly assigned to an experimental group or a control group. The experimental group received 30 mins of repetitive locomotor training with an applied technology (Gait Trainer GT I) plus 10 mins of passive joint mobilization and stretching exercises. The control group received 40 mins of conventional physiotherapy. Each subject underwent a total of 10 treatment sessions over a 2-wk period. Performance on the 10-m walk test, 6-min walk test, WeeFIM scale, and gait analysis was evaluated by a blinded rater before and after treatment and at 1-mo follow-up. The experimental group showed significant posttreatment improvement on the 10-m walk test, 6-min walk test, hip kinematics, gait speed, and step length, all of which were maintained at the 1-mo follow-up assessment. No significant changes in performance parameters were observed in the control group. Repetitive locomotor training with an electromechanical gait trainer may improve gait velocity, endurance, spatiotemporal, and kinematic gait parameters in patients with cerebral palsy.

  5. Characterization of gait in female patients with moderate to severe hallux valgus deformity.

    Science.gov (United States)

    Chopra, S; Moerenhout, K; Crevoisier, X

    2015-07-01

    Hallux valgus is one of the most common forefoot problems in females. Studies have looked at gait alterations due to hallux valgus deformity, assessing temporal, kinematic or plantar pressure parameters individually. The present study, however, aims to assess all listed parameters at once and to isolate the most clinically relevant gait parameters for moderate to severe hallux valgus deformity with the intent of improving post-operative patient prognosis and rehabilitation. The study included 26 feet with moderate to severe hallux valgus deformity and 30 feet with no sign of hallux valgus in female participants. Initially, weight bearing radiographs and foot and ankle clinical scores were assessed. Gait assessment was then performed utilizing pressure insoles (PEDAR) and inertial sensors (Physilog) and the two groups were compared using a non-parametric statistical hypothesis test (Wilcoxon rank sum, Phallux valgus group compared to controls and 9 gait parameters (effect size between 1.03 and 1.76) were successfully isolated to best describe the altered gait in hallux valgus deformity (r(2)=0.71) as well as showed good correlation with clinical scores. Our results, and nine listed parameters, could serve as benchmark for characterization of hallux valgus and objective evaluation of treatment efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors

    Directory of Open Access Journals (Sweden)

    Du-Xin Liu

    2016-09-01

    Full Text Available Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher’s linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS and an 87.22% average correct rate of phase (CRP on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton.

  7. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors

    Science.gov (United States)

    Liu, Du-Xin; Wu, Xinyu; Du, Wenbin; Wang, Can; Xu, Tiantian

    2016-01-01

    Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher’s linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS) and an 87.22% average correct rate of phase (CRP) on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton. PMID:27690023

  8. Gait Patterns in Hemiplegic Children with Cerebral Palsy: Comparison of Right and Left Hemiplegia

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Tenore, Nunzio; Albertini, Giorgio

    2010-01-01

    The aims of this study are to compare quantitatively the gait strategy of the right and left hemiplegic children with Cerebral Palsy (CP) using gait analysis. The gait strategy of 28 right hemiparetic CP (RHG) and 23 left hemiparetic CP (LHG) was compared using gait analysis (spatio-temporal and kinematic parameters) and considering the hemiplegic…

  9. Testing for one Generalized Linear Single Order Parameter

    DEFF Research Database (Denmark)

    Ellegaard, Niels Langager; Christensen, Tage Emil; Dyre, Jeppe

    We examine a linear single order parameter model for thermoviscoelastic relaxation in viscous liquids, allowing for a distribution of relaxation times. In this model the relaxation of volume and entalpy is completely described by the relaxation of one internal order parameter. In contrast to prior...... work the order parameter may be chosen to have a non-exponential relaxation. The model predictions contradict the general consensus of the properties of viscous liquids in two ways: (i) The model predicts that following a linear isobaric temperature step, the normalized volume and entalpy relaxation...... responses or extrapolate from measurements of a glassy state away from equilibrium. Starting from a master equation description of inherent dynamics, we calculate the complex thermodynamic response functions. We device a way of testing for the generalized single order parameter model by measuring 3 complex...

  10. Does acupuncture ameliorate motor impairment after stroke? An assessment using the CatWalk gait system.

    Science.gov (United States)

    Cao, Yan; Sun, Ning; Yang, Jing-Wen; Zheng, Yang; Zhu, Wen; Zhang, Zhen-Hua; Wang, Xue-Rui; Shi, Guang-Xia; Liu, Cun-Zhi

    2017-07-01

    The effect of acupuncture on gait deficits after stroke is uncertain. This animal study was designed to determine whether acupuncture improves gait impairment following experimentally induced ischemic stroke. Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO) in rats. After 7 days' of acupuncture treatment, assessment of gait changes using the CatWalk automated gait analysis system was performed. Comparison of the CatWalk gait parameters among the groups showed that gait function was impaired after ischemic stroke and acupuncture treatment was effective in improving a variety of gait parameters including intensity, stance and swing time, swing speed and stride length at postoperative day 8. This study demonstrates a beneficial effect of acupuncture on gait impairment in rats following ischemic stroke. Further studies aimed to investigate the effects of acupuncture at different stages during stroke using the CatWalk system are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Perception of Gait Patterns that Deviate from Normal and Symmetric Biped Locomotion

    Directory of Open Access Journals (Sweden)

    Ismet eHandzic

    2015-02-01

    Full Text Available This study examines the range of gait patterns that are perceived as healthy and human-like with the goal of understanding how much asymmetry is allowable in a gait pattern before other people start to notice a gait impairment. Specifically, this study explores if certain abnormal walking patterns can be dismissed as unimpaired or not uncanny. Altering gait biomechanics is generally done in the fields of prosthetics and rehabilitation, however the perception of gait is often neglected. Although a certain gait can be functional, it may not be considered as normal by observers. On the other hand, an abnormally perceived gait may be more practical or necessary in some situations, such as limping after an injury or stroke and when wearing a prosthesis. This research will help to find the balance between the form and function of gait. Gait patterns are synthetically created using a passive dynamic walker (PDW model that allows gait patterns to be systematically changed without the confounding influence from human sensorimotor feedback during walking. This standardized method allows the perception of specific changes in gait to be studied. The PDW model was used to produce walking patterns that showed a degree of abnormality in gait cadence, knee height, step length, and swing time created by changing the foot roll-over-shape, knee damping, knee location, and leg masses. The gait patterns were shown to participants who rated them according to separate scales of impairment and uncanniness. The results indicate that some pathological and asymmetric gait patterns are perceived as unimpaired and normal. Step time and step length asymmetries less than 5%, small knee location differences, and gait cadence changes of 25% do not result in a change in perception. The results also show that the parameters of a pathologically or uncanny perceived gait can be beneficially altered by increasing other independent parameters, in some sense masking the initial

  12. Design of a gait training device for control of pelvic obliquity.

    Science.gov (United States)

    Pietrusinski, Maciej; Severini, Giacomo; Cajigas, Iahn; Mavroidis, Constantinos; Bonato, Paolo

    2012-01-01

    This paper presents the design and testing of a novel device for the control of pelvic obliquity during gait. The device, called the Robotic Gait Rehabilitation (RGR) Trainer, consists of a single actuator system designed to target secondary gait deviations, such as hip-hiking, affecting the movement of the pelvis. Secondary gait deviations affecting the pelvis are generated in response to primary gait deviations (e.g. limited knee flexion during the swing phase) in stroke survivors and contribute to the overall asymmetrical gait pattern often observed in these patients. The proposed device generates a force field able to affect the obliquity of the pelvis (i.e. the rotation of the pelvis around the anteroposterior axis) by using an impedance controlled single linear actuator acting on a hip orthosis. Tests showed that the RGR Trainer is able to induce changes in pelvic obliquity trajectories (hip-hiking) in healthy subjects. These results suggest that the RGR Trainer is suitable to test the hypothesis that has motivated our efforts toward developing the system, namely that addressing both primary and secondary gait deviations during robotic-assisted gait training may help promote a physiologically-sound gait behavior more effectively than when only primary deviations are addressed.

  13. Validity of gait parameters for hip flexor contracture in patients with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Lee Sang Hyeong

    2011-01-01

    Full Text Available Abstract Background Psoas contracture is known to cause abnormal hip motion in patients with cerebral palsy. The authors investigated the clinical relevance of hip kinematic and kinetic parameters, and 3D modeled psoas length in terms of discriminant validty, convergent validity, and responsiveness. Methods Twenty-four patients with cerebral palsy (mean age 6.9 years and 28 normal children (mean age 7.6 years were included. Kinematic and kinetic data were obtained by three dimensional gait analysis, and psoas lengths were determined using a musculoskeletal modeling technique. Validity of the hip parameters were evaluated. Results In discriminant validity, maximum psoas length (effect size r = 0.740, maximum pelvic tilt (0.710, maximum hip flexion in late swing (0.728, maximum hip extension in stance (0.743, and hip flexor index (0.792 showed favorable discriminant ability between the normal controls and the patients. In convergent validity, maximum psoas length was not significantly correlated with maximum hip extension in stance in control group whereas it was correlated with maximum hip extension in stance (r = -0.933, p Conclusions Maximum pelvic tilt, maximum psoas length, hip flexor index, and maximum hip extension in stance were found to be clinically relevant parameters in evaluating hip flexor contracture.

  14. Validity of linear encoder measurement of sit-to-stand performance power in older people.

    Science.gov (United States)

    Lindemann, U; Farahmand, P; Klenk, J; Blatzonis, K; Becker, C

    2015-09-01

    To investigate construct validity of linear encoder measurement of sit-to-stand performance power in older people by showing associations with relevant functional performance and physiological parameters. Cross-sectional study. Movement laboratory of a geriatric rehabilitation clinic. Eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). Sit-to-stand performance power and leg power were assessed using a linear encoder and the Nottingham Power Rig, respectively. Gait speed was measured on an instrumented walkway. Maximum quadriceps and hand grip strength were assessed using dynamometers. Mid-thigh muscle cross-sectional area of both legs was measured using magnetic resonance imaging. Associations of sit-to-stand performance power with power assessed by the Nottingham Power Rig, maximum gait speed and muscle cross-sectional area were r=0.646, r=0.536 and r=0.514, respectively. A linear regression model explained 50% of the variance in sit-to-stand performance power including muscle cross-sectional area (p=0.001), maximum gait speed (p=0.002), and power assessed by the Nottingham Power Rig (p=0.006). Construct validity of linear encoder measurement of sit-to-stand power was shown at functional level and morphological level for older women. This measure could be used in routine clinical practice as well as in large-scale studies. DRKS00003622. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  15. Normal human gait patterns in Peruvian individuals: an exploratory assessment using VICON motion capture system

    Science.gov (United States)

    Dongo, R.; Moscoso, M.; Callupe, R.; Pajaya, J.; Elías, D.

    2017-11-01

    Gait analysis is of clinical relevance for clinicians. However, normal gait patterns used in foreign literature could be different from local individuals. The aim of this study was to determine the normal gait patterns and parameters of Peruvian individuals in order to have a local referent for clinical assessments and making diagnosis and treatment Peruvian people with lower motor neuron injuries. A descriptive study with 34 subjects was conducted to assess their gait cycle. VICON® cameras were used to capture body movements. For the analyses, we calculated spatiotemporal gait parameters and average angles of displacement of the hip, knee, and ankle joints with their respective 95% confidence intervals. The results showed gait speed was 0.58m/s, cadence was 102.1steps/min, and the angular displacement of the hip, knee and ankle joints were all lower than those described in the literature. In the graphs, gait cycles were close to those reported in previous studies, but the parameters of speed, cadence and angles of displacements are lower than the ones shown in the literature. These results could be used as a better reference pattern in the clinical setting.

  16. Local dynamic stability and variability of gait are associated with fall history in elderly subjects.

    Science.gov (United States)

    Toebes, Marcel J P; Hoozemans, Marco J M; Furrer, Regula; Dekker, Joost; van Dieën, Jaap H

    2012-07-01

    Gait parameters that can be measured with simple instrumentation may hold promise for identifying individuals at risk of falling. Increased variability of gait is associated with increased risk of falling, but research on additional parameters indicates that local dynamic stability (LDS) of gait may also be a predictor of fall risk. The objective of the present study was to assess the association between gait variability, LDS of gait and fall history in a large sample of elderly subjects. Subjects were recruited and tested at a large national fair. One hundred and thirty four elderly, aged 50-75, who were able to walk without aids on a treadmill, agreed to participate. After subjects walked on a treadmill, LDS (higher values indicate more instability) and variability parameters were calculated from accelerometer signals (trunk worn). Fall history was obtained by self-report of falls in the past 12 months. Gait variability and short-term LDS were, individually and combined, positively associated with fall history. In conclusion, both increased gait variability and increased short-term LDS are possible risk factors for falling in the elderly. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Towards a Passive Low-Cost In-Home Gait Assessment System for Older Adults

    OpenAIRE

    Wang, Fang; Stone, Erik; Skubic, Marjorie; Keller, James M.; Abbott, Carmen; Rantz, Marilyn

    2013-01-01

    In this paper, we propose a webcam-based system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed, step time and step length from a three-dimensional voxel reconstruction, which is built from two calibrated webcam views. The gait parameters are validated with a GAITRite mat and a Vicon motion capture system in the lab with 13 participants and 44 tests, and again with GAITRite for 8 older adults in senior housing. A...

  18. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator

    Directory of Open Access Journals (Sweden)

    Joaquin Ballesteros

    2016-11-01

    Full Text Available Gait analysis can provide valuable information on a person’s condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars—related to the user condition—and the estimation error; and (ii this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  19. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator.

    Science.gov (United States)

    Ballesteros, Joaquin; Urdiales, Cristina; Martinez, Antonio B; van Dieën, Jaap H

    2016-11-10

    Gait analysis can provide valuable information on a person's condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i) there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars-related to the user condition-and the estimation error; and (ii) this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  20. Age-related decline of gait variability in children with attention-deficit/hyperactivity disorder: Support for the maturational delay hypothesis in gait.

    Science.gov (United States)

    Manicolo, Olivia; Grob, Alexander; Lemola, Sakari; Hagmann-von Arx, Priska

    2016-02-01

    Previous findings showed a tendency toward higher gait variability in children with attention-deficit/hyperactivity disorder (ADHD) compared to controls. This study examined whether gait variability in children with ADHD eventually approaches normality with increasing age (delay hypothesis) or whether these gait alterations represent a persistent deviation from typical development (deviation hypothesis). This cross-sectional study compared 30 children with ADHD (25 boys; Mage=10 years 11 months, range 8-13 years; n=21 off medication, n=9 without medication) to 28 controls (25 boys; Mage=10 years 10 months, range 8-13 years). Gait parameters (i.e. velocity and variability in stride length and stride time) were assessed using an electronic walkway system (GAITRite) while children walked at their own pace. Children with ADHD walked with significantly higher variability in stride time compared to controls. Age was negatively associated with gait variability in children with ADHD such that children with higher age walked with lower variability, whereas in controls there was no such association. Children with ADHD displayed a less regular gait pattern than controls, indicated by their higher variability in stride time. The age-dependent decrease of gait variability in children with ADHD showed that gait performance became more regular with age and converged toward that of typically developing children. These results may reflect a maturational delay rather than a persistent deviation of gait regularity among children with ADHD compared to typically developing children. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Early rehabilitation treatment combined with equinovarus foot deformity surgical correction in stroke patients: safety and changes in gait parameters.

    Science.gov (United States)

    Giannotti, Erika; Merlo, Andrea; Zerbinati, Paolo; Longhi, Maria; Prati, Paolo; Masiero, Stefano; Mazzoli, Davide

    2016-06-01

    Equinovarus foot deformity (EVFD) compromises several prerequisites of walking and increases the risk of falling. Guidelines on rehabilitation following EVFD surgery are missing in current literature. The aim of this study was to analyze safety and adherence to an early rehabilitation treatment characterized by immediate weight bearing with an ankle-foot orthosis (AFO) in hemiplegic patients after EVFD surgery and to describe gait changes after EVFD surgical correction combined with early rehabilitation treatment. Retrospective observational cohort study. Inpatient rehabilitation clinic. Forty-seven adult patients with hemiplegia consequent to ischemic or haemorrhagic stroke (L/R 20/27, age 56±15 years, time from lesion 6±5 years). A specific rehabilitation protocol with a non-articulated AFO, used to allow for immediate gait training, started one day after EVFD surgery. Gait analysis (GA) data before and one month after surgery were analyzed. The presence of differences in GA space-time parameters, in ankle dorsiflexion (DF) values and peaks at initial contact (DF at IC), during stance (DF at St) and swing (DF at Sw) were assessed by the Wilcoxon Test while the presence of correlations between pre- and post-operative values by Spearman's correlation coefficient. All patients completed the rehabilitation protocol and no clinical complications occurred in the sample. Ankle DF increased one month after surgery at all investigated gait phases (Wilcoxon Test, Prehabilitation associated with surgical procedure is safe and may be suitable to correct EVFD by restoring both the neutral heel foot-ground contact and the ankle DF peaks during stance and swing at one month from surgery. The proposed protocol is a safe and potentially useful rehabilitative approach after EVFD surgical correction in stroke patients.

  2. Abnormalities of the First Three Steps of Gait Initiation in Patients with Parkinson's Disease with Freezing of Gait

    Directory of Open Access Journals (Sweden)

    Yohei Okada

    2011-01-01

    Full Text Available The purpose of this study was to investigate abnormalities of the first three steps of gait initiation in patients with Parkinson's disease (PD with freezing of gait (FOG. Ten PD patients with FOG and 10 age-matched healthy controls performed self-generated gait initiation. The center of pressure (COP, heel contact positions, and spatiotemporal parameters were estimated from the vertical pressures on the surface of the force platform. The initial swing side of gait initiation was consistent among the trials in healthy controls but not among the trials in PD patients. The COP and the heel contact position deviated to the initial swing side during the first step, and the COP passed medial to each heel contact position during the first two steps in PD patients. Medial deviation of the COP from the first heel contact position had significant correlation with FOG questionnaire item 5. These findings indicate that weight shifting between the legs is abnormal and that medial deviation of the COP from the first heel contact position sensitively reflects the severity of FOG during the first three steps of gait initiation in PD patients with FOG.

  3. A method to standardize gait and balance variables for gait velocity.

    NARCIS (Netherlands)

    Iersel, M.B. van; Olde Rikkert, M.G.M.; Borm, G.F.

    2007-01-01

    Many gait and balance variables depend on gait velocity, which seriously hinders the interpretation of gait and balance data derived from walks at different velocities. However, as far as we know there is no widely accepted method to correct for effects of gait velocity on other gait and balance

  4. Direct Radiofrequency Application Improves Pain and Gait in Collagenase-Induced Acute Achilles Tendon Injury

    Directory of Open Access Journals (Sweden)

    Yun-Pu Tsai

    2013-01-01

    Full Text Available Radiofrequency (RF is often used as a supplementary and alternative method to alleviate pain for chronic tendinopathy. Whether or how it would work for acute tendon injury is not addressed in the literatures. Through detailed pain and gait monitoring, we hypothesized that collagenase-induce acute tendinopathy model may be able to answer these questions. Gait parameters, including time, distance, and range of motion, were recorded and analyzed using a walking track equipped with a video-based system. Expression of substance P (SP, calcitonin gene related peptide (CGRP, and galanin were used as pain markers. Beta-III tubulin and Masson trichrome staining were used as to evaluate nerve sprouting, matrix tension, and degeneration in the tendon. Of fourteen analyzed parameters, RF significantly improved stance phase, step length, preswing, and intermediary toe-spread of gait. Improved gait related to the expression of substance P, CGRP, and reduced nerve fiber sprouting and matrix tension, but not galanin. The study indicates that direct RF application may be a valuable approach to improve gait and pain in acute tendon injury. Altered gait parameters may be used as references to evaluate therapeutic outcomes of RF or other treatment plan for tendinopathy.

  5. The effect of virtual reality on gait variability.

    Science.gov (United States)

    Katsavelis, Dimitrios; Mukherjee, Mukul; Decker, Leslie; Stergiou, Nicholas

    2010-07-01

    Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows--same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability--coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures--approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn greater than OFf greater than OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues.

  6. A test for the parameters of multiple linear regression models ...

    African Journals Online (AJOL)

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  7. Clinical gait evaluation of patients with knee osteoarthritis.

    Science.gov (United States)

    Sun, Jun; Liu, Yancheng; Yan, Songhua; Cao, Guanglei; Wang, Shasha; Lester, D Kevin; Zhang, Kuan

    2017-10-01

    Knee osteoarthritis (KOA) is the most common osteoarthritis in lower limbs, and gait measurement is important to evaluate walking function of KOA patients before and after treatment. The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3) is a portable gait analysis system to evaluate gaits. This study is to evaluate the accuracy and reliability of IDEEA3 for gait measurement of KOA patients. Meanwhile, gait differences between KOA patients and healthy subjects are examined. Twelve healthy volunteers were recruited for measurement comparison of gait cycle (GC), cadence, step length, velocity and step counts between a motion analysis system and a high-speed camera (GoPro Hero3). Twenty-three KOA patients were recruited for measurement comparison of former five parameters between GoPro Hero3 and IDEEA3. Paired t-test, Concordance Correlation Coefficient (CCC) and Intraclass Correlation Coefficient (ICC) were used for data analysis. All p-values of paired t-tests for GC, cadence, step length and velocity were greater than 0.05 while all CCC and ICC results were above 0.95. The measurements of GC, cadence, step length, velocity and step counts by motion analysis system are highly consistent with the measurements by GoPro Hero3. The measurements of former parameters by GoPro Hero3 are not statistically different from the measurements by IDEEA3. IDEEA3 can be effectively used for the measurement of GC, cadence, step length, velocity and step counts in KOA patients. The KOA patients walk with longer GC, lower cadence, shorter step length and slower speed compared with healthy subjects in natural speed with flat shoes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Pregnancy-related changes in center of pressure during gait.

    Science.gov (United States)

    Bertuit, Jeanne; Leyh, Clara; Rooze, Marcel; Feipe, Véronique

    2017-01-01

    Physical and hormonal modifications occuring during the pregnancy, can lead to an increase in postural instability and to a higher risk of falls during gait. The first objective was to describe the center of pressure (COP) during late pregnancy at different gait velocity. Comparison of nulliparous women with postpartum women were conducted in order to investigate the effects of pregnancy. The second objective was to analyse COP variability between pregnant and non-pregnant women in order to investigate the effects of pregnancy on gait variability. Fifty-eight pregnant women in the last four months of pregnancy, nine postpartum women and twenty-three healthy non-pregnant women performed gait trials at three different speeds: preferred, slow and fast. In the last four months of pregnancy gait velocity decreased. During the pregnancy, gait velocity decreased by 22%, stopover time increased by 6-12%, COP excursion XY decreased by 5% and COP velocity decreased by 16% and 20% along the anteroposterior and transverse axes, respectively. After delivery, gait velocity increased by 3% but remained a lower compared to non-pregnant women (-12%). Intra-individual variability was greater for non-pregnant than pregnant women. COP parameters were influenced by pregnancy. This suggests that pregnant women establish very specific and individual strategies with the aim of maintaining stability during gait.

  9. Quantitative analysis of gait in the visually impaired.

    Science.gov (United States)

    Nakamura, T

    1997-05-01

    In this comparative study concerning characteristics of independent walking by visually impaired persons, we used a motion analyser system to perform gait analysis of 15 late blind (age 36-54, mean 44.3 years), 15 congenitally blind (age 39-48, mean 43.8 years) and 15 sighted persons (age 40-50, mean 44.4 years) while walking a 10-m walkway. All subjects were male. Compared to the sighted, late blind and congenitally blind persons had a significantly slower walking speed, shorter stride length and longer time in the stance phase of gait. However, the relationships between gait parameters in the late and congenitally blind groups were maintained, as in the sighted group. In addition, the gait of the late blind showed a tendency to approximate the gait patterns of the congenitally blind as the duration of visual loss progressed. Based on these results we concluded that the gait of visually impaired persons, through its active use of non-visual sensory input, represents an attempt to adapt to various environmental conditions in order to maintain a more stable posture and to effect safe walking.

  10. Evaluation of Body Weight and Other Linear Parameters of Marshall ...

    African Journals Online (AJOL)

    This study was designed to evaluate the body weight and other linear parameters of Marshall Broiler for repeatability estimates. A total of one hundred (100) broiler chickens (Marshall) was used in estimating the repeatability of body weight and linear parameters of day old from 2 to 8 weeks of age. Body weight (BW) and ...

  11. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    Science.gov (United States)

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Motor switching and motor adaptation deficits contribute to freezing of gait in Parkinson's disease

    NARCIS (Netherlands)

    Mohammadi, F.; Bruijn, S.M.; Vervoort, G.; van Wegen, E.E.H.; Kwakkel, G.; Verschueren, S.; Nieuwboer, A.

    2015-01-01

    Background. Patients with freezing of gait (FOG) have more difficulty with switching tasks as well as controlling the spatiotemporal parameters of gait than patients without FOG. Objective. To compare the ability of patients with and without FOG to adjust their gait to sudden speed switching and to

  13. Quantifying Gait Impairment Using an Instrumented Treadmill in People with Multiple Sclerosis

    Science.gov (United States)

    Kalron, Alon; Dvir, Zeevi; Frid, Lior; Achiron, Anat

    2013-01-01

    Background and Objective. Treadmill gait analysis has been proposed as an attractive alternative for overground walking measuring systems. The purpose of this study was twofold: first to determine spatiotemporal parameters of treadmill gait in patients with multiple sclerosis (MS) and second to examine whether these parameters are associated with specific functional impairments in this cohort. Method. Eighty-seven relapsing-remitting patients diagnosed with MS, 50 women and 37 men, aged 40.9 ± 11.9 with an expanded disability status scale (EDSS) score of 2.7 ± 1.6, participated in this study. Twenty-five apparently healthy subjects, 14 women and 11 men, aged 38.5 ± 9.4, served as controls. Spatiotemporal gait parameters were obtained using the Zebris FDM-T Treadmill (Zebris Medical GmbH, Germany). People with MS demonstrated significantly shorter steps, extended stride time, wider base of support, longer step time, reduced single support phase, and a prolonged double support phase compared to the healthy controls. The EDSS score was significantly correlated with all spatiotemporal gait parameters. Conclusion. The instrumented treadmill may be an effective tool in assessing ambulation capabilities of people with MS. PMID:23878746

  14. Kinematics gait disorder in men with fibromyalgia.

    Science.gov (United States)

    Heredia-Jimenez, Jose M; Soto-Hermoso, Victor M

    2014-01-01

    The aim of this study was to assess the kinematics disorder of gait in men with fibromyalgia. We studied 12 male with fibromyalgia and 14 healthy men. Each participant of the study walked five trials along a 18.6-m walkway. Fibromyalgia patients completed a Spanish version of Fibromyalgia Impact Questionnaire. Significant differences between fibromyalgia and control groups were found in velocity, stride length, and cadence. Gait parameters of men affected by fibromyalgia were impaired when compared to those of healthy group due to bradykinesia. According to previous studies to assess gait variables in female patients, the male with fibromyalgia also showed lower values of velocity, cadence, and stride length than healthy group but not reported significant differences in swing, stance, single, or double support phase.

  15. Parameter identifiability of linear dynamical systems

    Science.gov (United States)

    Glover, K.; Willems, J. C.

    1974-01-01

    It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.

  16. Linear parameter varying representations for nonlinear control design

    Science.gov (United States)

    Carter, Lance Huntington

    Linear parameter varying (LPV) systems are investigated as a framework for gain-scheduled control design and optimal hybrid control. An LPV system is defined as a linear system whose dynamics depend upon an a priori unknown but measurable exogenous parameter. A gain-scheduled autopilot design is presented for a bank-to-turn (BTT) missile. The method is novel in that the gain-scheduled design does not involve linearizations about operating points. Instead, the missile dynamics are brought to LPV form via a state transformation. This idea is applied to the design of a coupled longitudinal/lateral BTT missile autopilot. The pitch and yaw/roll dynamics are separately transformed to LPV form, where the cross axis states are treated as "exogenous" parameters. These are actually endogenous variables, so such a plant is called "quasi-LPV." Once in quasi-LPV form, a family of robust controllers using mu synthesis is designed for both the pitch and yaw/roll channels, using angle-of-attack and roll rate as the scheduling variables. The closed-loop time response is simulated using the original nonlinear model and also using perturbed aerodynamic coefficients. Modeling and control of engine idle speed is investigated using LPV methods. It is shown how generalized discrete nonlinear systems may be transformed into quasi-LPV form. A discrete nonlinear engine model is developed and expressed in quasi-LPV form with engine speed as the scheduling variable. An example control design is presented using linear quadratic methods. Simulations are shown comparing the LPV based controller performance to that using PID control. LPV representations are also shown to provide a setting for hybrid systems. A hybrid system is characterized by control inputs consisting of both analog signals and discrete actions. A solution is derived for the optimal control of hybrid systems with generalized cost functions. This is shown to be computationally intensive, so a suboptimal strategy is proposed that

  17. Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation

    NARCIS (Netherlands)

    Vrieling, Aline H.; van Keeken, Helco G.; Schoppen, Tanneke; Hof, At L.; Otten, Bert; Halbertsma, Jan P. K.; Postema, Klaas

    Objective: To describe the adjustments in gait characteristics of obstacle crossing, gait initiation and gait termination that occur in subjects with a recent lower limb amputation during the rehabilitation process. Design: Prospective and descriptive study. Subjects: Fourteen subjects with a recent

  18. Effects of yoga on balance and gait properties in women with musculoskeletal problems: a pilot study.

    Science.gov (United States)

    Ulger, Ozlem; Yağlı, Naciye Vardar

    2011-02-01

    The purpose of the present study is to investigate the effects of yoga on balance and gait properties in women with musculoskeletal problems. Twenty-seven women (30-45 years old) with musculoskeletal problems, such as osteoarthritis and low-back pain, were included in the present study. The patients participated in 8 sessions (twice weekly for 4 weeks) of a yoga program which included asanas, stretching exercises, and breathing techniques. Patients' static balance measurements and gait parameters were determined before and after the study using a stabilometer and a gait trainer, respectively. Post-study values of patients' gait parameters were found to be statistically higher than their pre-study values (p gait parameters of women with gait and balance disturbances that are caused by musculoskeletal problems. It is feasible to conclude that asanas and stretching exercises included in the yoga program brought about such a positive effect, and therefore it is possible to use yoga programs to solve problems caused by musculoskeletal disorders. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Brain mapping for long-term recovery of gait after supratentorial stroke: A retrospective cross-sectional study.

    Science.gov (United States)

    Kim, Dae Hyun; Kyeong, Sunghyon; Do, Kyung Hee; Lim, Seong Kyu; Cho, Hyong Keun; Jung, Suk; Kim, Hye Won

    2018-04-01

    The recovery of independent gait after stroke is a main goal of patients and understanding the relationship between brain lesions and the recovery of gait can help physicians set viable rehabilitation plans. Our study investigated the association between variables of gait parameters and brain lesions.Fifty poststroke patients with a mean age of 67.5 ± 1.3 years and an average duration after onset of 62.2 ± 7.9 months were included. Three-dimensional gait analysis and magnetic resonance imaging were conducted for all patients. Twelve quantified gait parameters of temporal-spatial, kinematic, and kinetic data were used. To correlate gait parameters with specific brain lesions, we used a voxel-based lesion symptom mapping analysis. Statistical significance was set to an uncorrected P value 10 voxels.Based on the location of a brain lesion, the following results were obtained: The posterior limb of the internal capsule was significantly associated with gait speed and increased knee extension in the stance phase. The hippocampus and frontal lobe were significantly associated with cadence. The proximal corona radiata was significantly associated with stride length and affected the hip maximal extension angle in the stance phase. The paracentral lobule was significantly associated with the affected knee maximal flexion angle in the swing phase and with the affected ankle maximal dorsiflexion angle in the stance phase. The frontal lobe, thalamus, and the lentiform nucleus were associated with kinetic gait parameters.Cortical, proximal white matter, and learning-related and motor-related areas are mainly associated with one's walking ability after stroke.

  20. Model Predictive Control-based gait pattern generation for wearable exoskeletons.

    Science.gov (United States)

    Wang, Letian; van Asseldonk, Edwin H F; van der Kooij, Herman

    2011-01-01

    This paper introduces a new method for controlling wearable exoskeletons that do not need predefined joint trajectories. Instead, it only needs basic gait descriptors such as step length, swing duration, and walking speed. End point Model Predictive Control (MPC) is used to generate the online joint trajectories based on these gait parameters. Real-time ability and control performance of the method during the swing phase of gait cycle is studied in this paper. Experiments are performed by helping a human subject swing his leg with different patterns in the LOPES gait trainer. Results show that the method is able to assist subjects to make steps with different step length and step duration without predefined joint trajectories and is fast enough for real-time implementation. Future study of the method will focus on controlling the exoskeletons in the entire gait cycle. © 2011 IEEE

  1. Effects of the bilateral isokinetic strengthening training on functional parameters, gait, and the quality of life in patients with stroke

    OpenAIRE

    Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe

    2015-01-01

    Objective: To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Methods: Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening traini...

  2. Peak thrust operation of linear induction machines from parameter identification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Eastham, T.R.; Dawson, G.E. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Electrical and Computer Engineering

    1995-12-31

    Various control strategies are being used to achieve high performance operation of linear drives. To maintain minimum volume and weight of the power supply unit on board the transportation vehicle, peak thrust per unit current operation is a desirable objective. True peak thrust per unit current through slip control is difficult to achieve because the parameters of linear induction machines vary during normal operation. This paper first develops a peak thrust per unit current control law based on the per-phase equivalent circuit for linear induction machines. The algorithm for identification of the variable parameters in induction machines is then presented. Application to an operational linear induction machine (LIM) demonstrates the utility of this algorithm. The control strategy is then simulated, based on an operational transit LIM, to show the capability of achieving true peak thrust operation for linear induction machines.

  3. Portable kit for the assessment of gait parameters in daily telerehabilitation.

    Science.gov (United States)

    Giansanti, Daniele; Morelli, Sandra; Maccioni, Giovanni; Grigioni, Mauro

    2013-03-01

    When designing a complete process of daily telerehabilitation, it should be borne in mind that patients should be furnished with properly designed methodologies for executing specific motion tasks and the assessment of the relevant parameters. In general, such a process should comprehend three basic elements in both the hospital and the home: (a) instrumented walkways, (b) walking aids or supports, and (c) equipment for the assessment of parameters. The objective, with gait being the focus, of this study was thus to design a simple, portable kit-as an alternative to the complex and expensive instruments currently used-to be easily interfaced or integrated with the instrumented walkways and aids/supports both for self-monitoring while patients are exercising with their own aids and for clinical reporting. The proposed system is a portable kit that furnishes useful parameters with feedback to both the patient and the trainer/therapist. Capable of being integrated with the most common mechanical tools used in motion rehabilitation (handrail, scales, walkways, etc.), it constantly monitors and quantitatively assesses progress in rehabilitation care. It is composed of one step counter, photo-emitter detectors, one central unit for collecting and processing the telemetrically transmitted data, and a software interface. The system has been successfully validated on 16 subjects at the second level of the Tinetti test in a clinical application for both home and the hospital. The portable kit can be used with different rehabilitation tools and on varying ground rugosity. Advantages include (a) very low cost, when compared with optoelectronic solutions or other portable devices, (b) very high accuracy, also for subjects with imbalance problems, compared with other commercial solutions, and (c) integration (compatibility) with any rehabilitative tool.

  4. GaitKeeper: A System for Measuring Canine Gait

    Directory of Open Access Journals (Sweden)

    Cassim Ladha

    2017-02-01

    Full Text Available It is understood gait has the potential to be used as a window into neurodegenerative disorders, identify markers of subclinical pathology, inform diagnostic algorithms of disease progression and measure the efficacy of interventions. Dogs’ gaits are frequently assessed in a veterinary setting to detect signs of lameness. Despite this, a reliable, affordable and objective method to assess lameness in dogs is lacking. Most described canine lameness assessments are subjective, unvalidated and at high risk of bias. This means reliable, early detection of canine gait abnormalities is challenging, which may have detrimental implications for dogs’ welfare. In this paper, we draw from approaches and technologies used in human movement science and describe a system for objectively measuring temporal gait characteristics in dogs (step-time, swing-time, stance-time. Asymmetries and variabilities in these characteristics are of known clinical significance when assessing lameness but presently may only be assessed on coarse scales or under highly instrumented environments. The system consists an inertial measurement unit, containing a 3-axis accelerometer and gyroscope coupled with a standardized walking course. The measurement unit is attached to each leg of the dog under assessment before it is walked around the course. The data by the measurement unit is then processed to identify steps and subsequently, micro-gait characteristics. This method has been tested on a cohort of 19 healthy dogs of various breeds ranging in height from 34.2 cm to 84.9 cm. We report the system as capable of making precise step delineations with detections of initial and final contact times of foot-to-floor to a mean precision of 0.011 s and 0.048 s, respectively. Results are based on analysis of 12,678 foot falls and we report a sensitivity, positive predictive value and F-score of 0.81, 0.83 and 0.82 respectively. To investigate the effect of gait on system performance

  5. Improved walking ability and reduced therapeutic stress with an electromechanical gait device.

    Science.gov (United States)

    Freivogel, Susanna; Schmalohr, Dieter; Mehrholz, Jan

    2009-09-01

    To evaluate the effectiveness of repetitive locomotor training using a newly developed electromechanical gait device compared with treadmill training/gait training with respect to patient's ambulatory motor outcome, necessary personnel resources, and discomfort experienced by therapists and patients. Randomized, controlled, cross-over trial. Sixteen non-ambulatory patients after stroke, severe brain or spinal cord injury sequentially received 2 kinds of gait training. Study intervention A: 20 treatments of locomotor training with an electromechanical gait device; control intervention B: 20 treatments of locomotor training with treadmill or task-oriented gait training. The primary variable was walking ability (Functional Ambulation Category). Secondary variables included gait velocity, Motricity-Index, Rivermead-Mobility-Index, number of therapists needed, and discomfort and effort of patients and therapists during training. Gait ability and the other motor outcome related parameters improved for all patients, but without significant difference between intervention types. However, during intervention A, significantly fewer therapists were needed, and they reported less discomfort and a lower level of effort during training sessions. Locomotor training with or without an electromechanical gait trainer leads to improved gait ability; however, using the electromechanical gait trainer requires less therapeutic assistance, and therapist discomfort is reduced.

  6. Effects of the bilateral isokinetic strengthening training on functional parameters, gait, and the quality of life in patients with stroke.

    Science.gov (United States)

    Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe

    2015-01-01

    To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening training was applied to the knee-ankle muscles bilaterally to the isokinetic group 5 days a week for 3 weeks. Biodex System 3 Pro Multijoint System isokinetic dynamometer was used for isokinetic evaluation. The groups were assessed by Functional Independence Measure, Stroke Specific Quality of Life Scale, Timed 10-Meter Walk Test, Six-Minute Walk Test, Stair-Climbing Test, Timed up&go Test, Berg Balance Scale, and Rivermead Mobility Index. Compared with baseline, the isokinetic PT values of the knee and ankle on both sides significantly increased in all cases. PT change values were significantly higher in the isokinetic group than the control group (Pisokinetic group (Pisokinetic strengthening training in addition to conventional rehabilitation program after stroke seems to be effective on strengthening muscles on both sides, improving functional parameters, gait, balance and life quality.

  7. Gait patterns in Prader-Willi and Down syndrome patients

    Directory of Open Access Journals (Sweden)

    Albertini Giorgio

    2010-06-01

    Full Text Available Abstract Background Prader-Willi (PWS and Down Syndrome (DS are two genetic disorders characterised by some common clinical and functional features. A quantitative description and comparison of their patterns would contribute to a deeper understanding of the determinants of motor disability in these two syndromes. The aim of this study was to measure gait pattern in PWS and DS in order to provide data for developing evidence-based deficit-specific or common rehabilitation strategies. Methods 19 PWS patients (17.7-40 yr and 21 DS patients (18-39 yr were evaluated with an optoelectronic system and force platforms for measuring kinematic and kinetic parameters during walking. The results were compared with those obtained in a group of normal-weight controls (Control Group: CG; 33.4 + 9.6 yr. Results and Discussion The results show that PWS and DS are characterised by different gait strategies. Spatio-temporal parameters indicated a cautious, abnormal gait in both groups, but DS walked with a less stable strategy than PWS. As for kinematics, DS showed a significantly reduced hip and knee flexion, especially at initial contact and ankle range of motion than PWS. DS were characterised by lower ranges of motion (p Conclusions Our data show that DS walk with a less physiological gait pattern than PWS. Based on our results, PWS and DS patients need targeted rehabilitation and exercise prescription. Common to both groups is the aim to improve hypotonia, muscle strength and motor control during gait. In DS, improving pelvis and hip range of motion should represent a major specific goal to optimize gait pattern.

  8. Gait Characteristics in Adolescents With Multiple Sclerosis.

    Science.gov (United States)

    Kalron, Alon; Frid, Lior; Menascu, Shay

    2017-03-01

    Multiple sclerosis is a progressive autoimmune disease of the central nervous system. A presentation of multiple sclerosis before age18 years has traditionally been thought to be rare. However, during the past decade, more cases have been reported. We examined gait characteristics in 24 adolescents with multiple sclerosis (12 girls, 12 boys). Mean disease duration was 20.4 (S.D. = 24.9) months and mean age was 15.5 (S.D. = 1.1) years. The mean expanded disability status scale score was 1.7 (S.D. = 0.7) indicating minimal disability. Outcomes were compared with gait and the gait variability index value of healthy age-matched adolescents. Adolescents with multiple sclerosis walked slower with a wider base of support compared with age-matched healthy control subjects. Moreover, the gait variability index was lower in the multiple sclerosis group compared with the values in the healthy adolescents: 85.4 (S.D. = 8.1) versus 96.5 (S.D. = 7.4). We present gait parameters of adolescents with multiple sclerosis. From a clinical standpoint, our data could improve management of walking dysfunction in this relatively young population. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Stimulation of the mesencephalic locomotor region for gait recovery after stroke.

    Science.gov (United States)

    Fluri, Felix; Malzahn, Uwe; Homola, György A; Schuhmann, Michael K; Kleinschnitz, Christoph; Volkmann, Jens

    2017-11-01

    One-third of all stroke survivors are unable to walk, even after intensive physiotherapy. Thus, other concepts to restore walking are needed. Because electrical stimulation of the mesencephalic locomotor region (MLR) is known to elicit gait movements, this area might be a promising target for restorative neurostimulation in stroke patients with gait disability. The present study aims to delineate the effect of high-frequency stimulation of the MLR (MLR-HFS) on gait impairment in a rodent stroke model. Male Wistar rats underwent photothrombotic stroke of the right sensorimotor cortex and chronic implantation of a stimulating electrode into the right MLR. Gait was assessed using clinical scoring of the beam-walking test and video-kinematic analysis (CatWalk) at baseline and on days 3 and 4 after experimental stroke with and without MLR-HFS. Kinematic analysis revealed significant changes in several dynamic and static gait parameters resulting in overall reduced gait velocity. All rats exhibited major coordination deficits during the beam-walking challenge and were unable to cross the beam. Simultaneous to the onset of MLR-HFS, a significantly higher walking speed and improvements in several dynamic gait parameters were detected by the CatWalk system. Rats regained the ability to cross the beam unassisted, showing a reduced number of paw slips and misses. MLR-HFS can improve disordered locomotor function in a rodent stroke model. It may act by shielding brainstem and spinal locomotor centers from abnormal cortical input after stroke, thus allowing for compensatory and independent action of these circuits. Ann Neurol 2017;82:828-840. © 2017 American Neurological Association.

  10. Quantitative Gait Analysis in Patients with Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Seon Jong Pyo

    2017-09-01

    Full Text Available Objective Gait disturbance is the main factor contributing to a negative impact on quality of life in patients with Huntington’s disease (HD. Understanding gait features in patients with HD is essential for planning a successful gait strategy. The aim of this study was to investigate temporospatial gait parameters in patients with HD compared with healthy controls. Methods We investigated 7 patients with HD. Diagnosis was confirmed by genetic analysis, and patients were evaluated with the Unified Huntington’s Disease Rating Scale (UHDRS. Gait features were assessed with a gait analyzer. We compared the results of patients with HD to those of 7 age- and sex-matched normal controls. Results Step length and stride length were decreased and base of support was increased in the HD group compared to the control group. In addition, coefficients of variability for step and stride length were increased in the HD group. The HD group showed slower walking velocity, an increased stance/swing phase in the gait cycle and a decreased proportion of single support time compared to the control group. Cadence did not differ significantly between groups. Among the UHDRS subscores, total motor score and total behavior score were positively correlated with step length, and total behavior score was positively correlated with walking velocity in patients with HD. Conclusion Increased variability in step and stride length, slower walking velocity, increased stance phase, and decreased swing phase and single support time with preserved cadence suggest that HD gait patterns are slow, ataxic and ineffective. This study suggests that quantitative gait analysis is needed to assess gait problems in HD.

  11. Real-time feedback of dynamic foot pressure index for gait training of toe-walking children with spastic diplegia.

    Science.gov (United States)

    Pu, Fang; Ren, Weiyan; Fan, Xiaoya; Chen, Wei; Li, Shuyu; Li, Deyu; Wang, Yu; Fan, Yubo

    2017-09-01

    The aim of this study was to determine whether and how real-time feedback of dynamic foot pressure index (DFPI) could be used to correct toe-walking gait in spastic diplegic children with dynamic equinus. Thirteen spastic diplegic children with dynamic equinus were asked to wear a monitoring device to record their ambulation during daily gait, conventional training gait, and feedback training gait. Parameters based on their DFPI and stride duration were compared among the three test conditions. The results with feedback training were significantly better for all DFPI parameters in comparison to patients' daily gait and showed significant improvements in DFPI for toe-walking gait and percentage of normal gait in comparison to conventional training methods. Moreover, stride duration under two training gaits was longer than patient's daily gait, but there was no significant difference between the two training gaits. Although the stride duration for the two training gaits was similar, gait training with real-time feedback of DFPI did produce noticeably superior results by increasing heel-loading impulse of toe-walking gait and percentage of normal gait in comparison to convention training methods. However, its effectiveness was still impacted by the motion limitations of diplegic children. Implications for Rehabilitation The DFPI-based gait training feedback system introduced in this study was shown to be more effective at toe-walking gait rehabilitation training over conventional training methods. The feedback system accomplished superior improvement in correcting toe-walking gait, but its effectiveness in an increasing heel-loading impulse in normal gait was still limited by the motion limitations of diplegic children. Stride duration of normal gait and toe-walking gait was similar under conventional and feedback gait training.

  12. Reliability of three-dimensional gait analysis in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    McDermott, Ailish

    2010-10-01

    Gait impairment is one of the primary symptoms of cervical spondylotic myelopathy (CSM). Detailed assessment is possible using three-dimensional gait analysis (3DGA), however the reliability of 3DGA for this population has not been established. The aim of this study was to evaluate the test-retest reliability of temporal-spatial, kinematic and kinetic parameters in a CSM population.

  13. Adaptive Strategy for Online Gait Learning Evaluated on the Polymorphic Robotic LocoKit

    DEFF Research Database (Denmark)

    Christensen, David Johan; Larsen, Jørgen Christian; Stoy, Kasper

    2012-01-01

    This paper presents experiments with a morphologyindependent, life-long strategy for online learning of locomotion gaits, performed on a quadruped robot constructed from the LocoKit modular robot. The learning strategy applies a stochastic optimization algorithm to optimize eight open parameters...... of a central pattern generator based gait implementation. We observe that the strategy converges in roughly ten minutes to gaits of similar or higher velocity than a manually designed gait and that the strategy readapts in the event of failed actuators. In future work we plan to study co-learning...

  14. The effect of rehabilitation exercises on the gait in people with Down syndrome

    Directory of Open Access Journals (Sweden)

    M Marchewka

    2008-12-01

    Full Text Available Objective: The following question was set: Do special exercises decrease disturbances of gait in people with Down syndrome and allow for spacio-temporal parameters closer in values to the variables achieved by healthy people? The research involved 10 persons with Down syndrome, including 9 male pupils and 1 female pupil of the Complex of Special Schools in Cracow, Poland, aged 16-22, with the average age of 17.8±2.69. All the subjects had documented moderate and considerable mental handicap, with the average IQ equalling 37.6±4.29, measured in the Terman-Merrill scale. Background: People with Down syndrome have problems with keeping their balance, both while standing and walking. The dysfunction of lower extremities, manifesting itself in a gait different from the norm of healthy people, releases compensation mechanisms levelling disturbances and leading to unavoidable overloads, and in consequence to the damage of different segments of the locomotor system. Methods: Vicon 250, a computerized system of a three-dimensional analysis of motion, connected with five video cameras working in infrared was implemented to assess the parameters of gait. Results: All the spacio-temporal parameters of gait in people with Down syndrome were significantly improved after the period of rehabilitation, and in the case of step frequency equalled the norm of healthy people. Interpretation. The implementation of additional exercises affects the improvement of the gait parameters of mentally handicapped people, suffering from Down syndrome.

  15. Blindfolded Balance Training in Patients with Parkinson’s Disease: A Sensory-Motor Strategy to Improve the Gait

    Directory of Open Access Journals (Sweden)

    M. Tramontano

    2016-01-01

    Full Text Available Aim. Recent evidence suggested that the use of treadmill training may improve gait parameters. Visual deprivation could engage alternative sensory strategies to control dynamic equilibrium and stabilize gait based on vestibulospinal reflexes (VSR. We aimed to investigate the efficacy of a blindfolded balance training (BBT in the improvement of stride phase percentage reliable gait parameters in patients with Parkinson’s Disease (PD compared to patients treated with standard physical therapy (PT. Methods. Thirty PD patients were randomized in two groups of 15 patients, one group treated with BBT during two weeks and another group treated with standard PT during eight weeks. We evaluated gait parameters before and after BBT and PT interventions, in terms of double stance, swing, and stance phase percentage. Results. BBT induced an improvement of double stance phase as revealed (decreased percentage of double stance phase during the gait cycle in comparison to PT. The other gait parameters swing and stance phase did not differ between the two groups. Discussion. These results support the introduction of complementary rehabilitative strategies based on sensory-motor stimulation in the traditional PD patient’s rehabilitation. Further studies are needed to investigate the neurophysiological circuits and mechanism underlying clinical and motor modifications.

  16. Kinematic measures for assessing gait stability in elderly individuals: a systematic review.

    Science.gov (United States)

    Hamacher, D; Singh, N B; Van Dieën, J H; Heller, M O; Taylor, W R

    2011-12-07

    Falls not only present a considerable health threat, but the resulting treatment and loss of working days also place a heavy economic burden on society. Gait instability is a major fall risk factor, particularly in geriatric patients, and walking is one of the most frequent dynamic activities of daily living. To allow preventive strategies to become effective, it is therefore imperative to identify individuals with an unstable gait. Assessment of dynamic stability and gait variability via biomechanical measures of foot kinematics provides a viable option for quantitative evaluation of gait stability, but the ability of these methods to predict falls has generally not been assessed. Although various methods for assessing gait stability exist, their sensitivity and applicability in a clinical setting, as well as their cost-effectiveness, need verification. The objective of this systematic review was therefore to evaluate the sensitivity of biomechanical measures that quantify gait stability among elderly individuals and to evaluate the cost of measurement instrumentation required for application in a clinical setting. To assess gait stability, a comparative effect size (Cohen's d) analysis of variability and dynamic stability of foot trajectories during level walking was performed on 29 of an initial yield of 9889 articles from four electronic databases. The results of this survey demonstrate that linear variability of temporal measures of swing and stance was most capable of distinguishing between fallers and non-fallers, whereas step width and stride velocity prove more capable of discriminating between old versus young (OY) adults. In addition, while orbital stability measures (Floquet multipliers) applied to gait have been shown to distinguish between both elderly fallers and non-fallers as well as between young and old adults, local stability measures (λs) have been able to distinguish between young and old adults. Both linear and nonlinear measures of foot

  17. Influence of Body Mass Index on Sagittal Knee Range of Motion and Gait Speed Recovery 1-Year After Total Knee Arthroplasty.

    Science.gov (United States)

    Bonnefoy-Mazure, Alice; Martz, Pierre; Armand, Stéphane; Sagawa, Yoshimasa; Suva, Domizio; Turcot, Katia; Miozzari, Hermes H; Lübbeke, Anne

    2017-08-01

    The purpose of this prospective study was to investigate the influence of body mass index (BMI) on gait parameters preoperatively and 1 year after total knee arthroplasty (TKA). Seventy-nine patients were evaluated before and 1 year after TKA using clinical gait analysis. The gait velocity, the knee range of motion (ROM) during gait, their gains (difference between baseline and 1 year after TKA), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), quality of life, and patient satisfaction were assessed. Nonobese (BMI gait speed and ROM gains. Adjustment was performed for gender, age, and WOMAC pain improvement. At baseline, gait velocity and knee ROM were significantly lower in obese compared with those in the nonobese patients (0.99 ± 0.27 m/s vs 1.11 ± 0.18 m/s; effect size, 0.53; P = .021; and ROM, 41.33° ± 9.6° vs 46.05° ± 8.39°; effect size, 0.52; P = .022). Univariate and multivariate linear regressions did not show any significant relation between gait speed gain or knee ROM gain and BMI. At baseline, obese patients were more symptomatic than nonobese (WOMAC pain: 36.1 ± 14.0 vs 50.4 ± 16.9; effect size, 0.9; P < .001), and their improvement was significantly higher (WOMAC pain gain, 44.5 vs 32.3; effect size, 0.59; P = .011). These findings show that all patients improved biomechanically and clinically, regardless of their BMI. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Towards a Passive Low-Cost In-Home Gait Assessment System for Older Adults

    Science.gov (United States)

    Wang, Fang; Stone, Erik; Skubic, Marjorie; Keller, James M.; Abbott, Carmen; Rantz, Marilyn

    2013-01-01

    In this paper, we propose a webcam-based system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed, step time and step length from a three-dimensional voxel reconstruction, which is built from two calibrated webcam views. The gait parameters are validated with a GAITRite mat and a Vicon motion capture system in the lab with 13 participants and 44 tests, and again with GAITRite for 8 older adults in senior housing. An excellent agreement with intra-class correlation coefficients of 0.99 and repeatability coefficients between 0.7% and 6.6% was found for walking speed, step time and step length given the limitation of frame rate and voxel resolution. The system was further tested with 10 seniors in a scripted scenario representing everyday activities in an unstructured environment. The system results demonstrate the capability of being used as a daily gait assessment tool for fall risk assessment and other medical applications. Furthermore, we found that residents displayed different gait patterns during their clinical GAITRite tests compared to the realistic scenario, namely a mean increase of 21% in walking speed, a mean decrease of 12% in step time, and a mean increase of 6% in step length. These findings provide support for continuous gait assessment in the home for capturing habitual gait. PMID:24235111

  19. Driving electromechanically assisted Gait Trainer for people with stroke.

    Science.gov (United States)

    Iosa, Marco; Morone, Giovanni; Bragoni, Maura; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Pratesi, Luca; Paolucci, Stefano

    2011-01-01

    Electromechanically assisted gait training is a promising task-oriented approach for gait restoration, especially for people with subacute stroke. However, few guidelines are available for selecting the parameter values of the electromechanical Gait Trainer (GT) (Reha-Stim; Berlin, Germany) and none is tailored to a patient's motor capacity. We assessed 342 GT sessions performed by 20 people with stroke who were stratified by Functional Ambulatory Category. In the first GT session of all patients, the body-weight support (BWS) required was higher than that reported in the literature. In further sessions, we noted a slow reduction of BWS and a fast increment of walking speed for the most-affected patients. Inverse trends were observed for the less-affected patients. In all the patients, the heart rate increment was about 20 beats per minute, even for sessions in which the number of strides performed was up to 500. In addition, the effective BWS measured during GT sessions was different from that initially selected by the physiotherapist. This difference depended mainly on the position of the GT platforms during selection. Finally, harness acceleration in the anteroposterior direction proved to be higher in patients with stroke than in nondisabled subjects. Our findings are an initial step toward scientifically selecting parameters in electromechanically assisted gait training.

  20. Metronome cueing of walking reduces gait variability after a cerebellar stroke

    Directory of Open Access Journals (Sweden)

    Rachel Lindsey Wright

    2016-06-01

    Full Text Available Cerebellar stroke typically results in increased variability during walking. Previous research has suggested that auditory-cueing reduces excessive variability in conditions such as Parkinson’s disease and post-stroke hemiparesis. The aim of this case report was to investigate whether the use of a metronome cue during walking could reduce excessive variability in gait parameters after a cerebellar stroke. An elderly female with a history of cerebellar stroke and recurrent falling undertook 3 standard gait trials and 3 gait trials with an auditory metronome. A Vicon system was used to collect 3-D marker trajectory data. The coefficient of variation was calculated for temporal and spatial gait parameters. Standard deviations of the joint angles were calculated and used to give a measure of joint kinematic variability. Step time, stance time and double support time variability were reduced with metronome cueing. Variability in the sagittal hip, knee and ankle angles were reduced to normal values when walking to the metronome. In summary, metronome cueing resulted in a decrease in variability for step, stance and double support times and joint kinematics. Further research is needed to establish whether a metronome may be useful in gait rehabilitation after cerebellar stroke, and whether this leads to a decreased risk of falling.

  1. Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke.

    Science.gov (United States)

    Wright, Rachel L; Bevins, Joseph W; Pratt, David; Sackley, Catherine M; Wing, Alan M

    2016-01-01

    Cerebellar stroke typically results in increased variability during walking. Previous research has suggested that auditory cueing reduces excessive variability in conditions such as Parkinson's disease and post-stroke hemiparesis. The aim of this case report was to investigate whether the use of a metronome cue during walking could reduce excessive variability in gait parameters after a cerebellar stroke. An elderly female with a history of cerebellar stroke and recurrent falling undertook three standard gait trials and three gait trials with an auditory metronome. A Vicon system was used to collect 3-D marker trajectory data. The coefficient of variation was calculated for temporal and spatial gait parameters. SDs of the joint angles were calculated and used to give a measure of joint kinematic variability. Step time, stance time, and double support time variability were reduced with metronome cueing. Variability in the sagittal hip, knee, and ankle angles were reduced to normal values when walking to the metronome. In summary, metronome cueing resulted in a decrease in variability for step, stance, and double support times and joint kinematics. Further research is needed to establish whether a metronome may be useful in gait rehabilitation after cerebellar stroke and whether this leads to a decreased risk of falling.

  2. Preliminary Results for a Monocular Marker-Free Gait Measurement System

    Directory of Open Access Journals (Sweden)

    Jane Courtney

    2006-01-01

    Full Text Available This paper presents results from a novel monocular marker-free gait measurement system. The system was designed for physical and occupational therapists to monitor the progress of patients through therapy. It is based on a novel human motion capturemethod derived from model-based tracking. Testing is performed on two monocular, sagittal-view, sample gait videos – one with both the environment and the subject’s appearance and movement restricted and one in a natural environment with unrestrictedclothing and motion. Results of the modelling, tracking and analysis stages are presented along with standard gait graphs and parameters.

  3. The effect of isokinetic and proprioception training on strength, movement and gait parameters after acute supination injury of the ankle ligaments

    Directory of Open Access Journals (Sweden)

    C. Mucha

    2009-01-01

    Full Text Available The effects of a three-week isokinetic training compared to typical proprio -ceptive training on parameters of strength, movement and gait function after acute ankle ligament sprain were investigated. Thirty-nine patients were randomly allocated to two comparison groups. In group 1 (n=20a proprioceptive training and in group 2 (n=19 an isokinetic strength training (Cybex 6000® were administered. Thepatients of both groups underwent training five times a week for three weeks. Before and at the end of the treatmentcourse, in both groups isokinetic strength was tested, the range of motion in the ankle joint was recorded and gait wasanalyzed (multicomponent strength measurement platform, Henschel-System®. The maximum isokinetic torque(60°/s [Nm] and the contact time (monopedal support time of the injured leg during gait cycle were the basis for evaluation.The data obtained show that in group 2 a significantly greater increase of the maximum isokinetic torque wasattained in almost all range of motion of the ankle joint in the course of treatment. A t the same time, in group 2 theshortening of the contact time in the stance phase of the injured leg could be compensated. The active range of motionin the ankle joint was less at the end of treatment in group 2 than in group 1. The isokinetic training obviously did notonly lead to better strength regeneration, but also to a functionally more stable ankle joint with a rhythmically moreevenly balanced stance phase of the gait cycle.  These results suggest that the used isokinetic training had positive effects on functional stability after acute ankle sprain.

  4. A non linear analysis of human gait time series based on multifractal analysis and cross correlations

    International Nuclear Information System (INIS)

    Munoz-Diosdado, A

    2005-01-01

    We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems

  5. A non linear analysis of human gait time series based on multifractal analysis and cross correlations

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Diosdado, A [Department of Mathematics, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Av. Acueducto s/n, 07340, Mexico City (Mexico)

    2005-01-01

    We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems.

  6. Gait Recognition and Walking Exercise Intensity Estimation

    Directory of Open Access Journals (Sweden)

    Bor-Shing Lin

    2014-04-01

    Full Text Available Cardiovascular patients consult doctors for advice regarding regular exercise, whereas obese patients must self-manage their weight. Because a system for permanently monitoring and tracking patients’ exercise intensities and workouts is necessary, a system for recognizing gait and estimating walking exercise intensity was proposed. For gait recognition analysis, αβ filters were used to improve the recognition of athletic attitude. Furthermore, empirical mode decomposition (EMD was used to filter the noise of patients’ attitude to acquire the Fourier transform energy spectrum. Linear discriminant analysis was then applied to this energy spectrum for training and recognition. When the gait or motion was recognized, the walking exercise intensity was estimated. In addition, this study addressed the correlation between inertia and exercise intensity by using the residual function of the EMD and quadratic approximation to filter the effect of the baseline drift integral of the acceleration sensor. The increase in the determination coefficient of the regression equation from 0.55 to 0.81 proved that the accuracy of the method for estimating walking exercise intensity proposed by Kurihara was improved in this study.

  7. An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results.

    Science.gov (United States)

    Hesse, S; Werner, C; Uhlenbrock, D; von Frankenberg, S; Bardeleben, A; Brandl-Hesse, B

    2001-01-01

    Modern concepts of gait rehabilitation after stroke favor a task-specific repetitive approach. In practice, the required physical effort of the therapists limits the realization of this approach. Therefore, a mechanized gait trainer enabling nonambulatory patients to have the repetitive practice of a gait-like movement without overstraining therapists was constructed. This preliminary study investigated whether an additional 4-week daily therapy on the gait trainer could improve gait ability in 14 chronic wheelchair-bound hemiparetic subjects. The 4 weeks of physiotherapy and gait-trainer therapy resulted in a relevant improvement of gait ability in all subjects. Velocity, cadence, and stride length improved significantly (p gait trainer seems feasible as an adjunctive tool in gait rehabilitation after stroke; further studies are needed.

  8. The "butterfly diagram": A gait marker for neurological and cerebellar impairment in people with multiple sclerosis.

    Science.gov (United States)

    Kalron, Alon; Frid, Lior

    2015-11-15

    People with multiple sclerosis (PwMS) frequently experience walking and balance impairments. In our previous report, we demonstrated that spatio-temporal gait parameters, collected by the Zebris FDM-T instrumented treadmill (Zebris Medical GmbH, Germany), serve as valid markers of neurological impairment in the MS population. In the current study, we focused on a unique outcome statistic of the instrumented treadmill, the "butterfly" diagram which reflects the variability of the center of pressure trajectory during walking. Therefore, the aim of the study was to examine the relationship between parameters related to the gait butterfly diagram and the level of neurological impairment in PwMS. Specifically we examined whether the gait butterfly parameters can differentiate between MS patients with normal cerebellar function and those suffering from ataxia. Demographic, neurological and gait parameters were collected from 341 PwMS, 213 women, aged 42.3 (S.D.=13.8). MS participants with ataxia demonstrated higher scores relating to the butterfly gait variability parameters compared to PwMS with normal or slightly abnormal cerebellar function. According to the results of the binary regression analysis, gait variability in the ant-post direction was found to explain 18.1% of the variance related to cerebellar function; R(2)=0.181, χ(2)(1)=67.852, P<0.001. Measurements derived from the butterfly diagram are proper estimators for important neurological functions in PwMS and should be considered in order to improve diagnosis and assessment of the MS population. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Determination of beam characteristic parameters for a linear accelerator

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1978-01-01

    A mechanism to determine electron beam characteristic parameters of a linear accelerator was constructed. The mechanism consists in an electro-calorimeter and an accurate optical densitometer. The following parameters: mean power, mean current, mean energy/particle, pulse Width, pulse amplitude dispersion, and pulse frequency, operating the 2 MeV linear accelerator of CBPF (Brazilian Center pf Physics Researches). The optical isodensity curves of irradiated glass lamellae were obtained, providing information about focus degradation penetration direction in material and the reach of particle. The point to point dose distribution in the material from optical density curves were obtained, using a semi empirical and approached model. (M.C.K.) [pt

  10. Effect of arm swing strategy on local dynamic stability of human gait.

    Science.gov (United States)

    Punt, Michiel; Bruijn, Sjoerd M; Wittink, Harriet; van Dieën, Jaap H

    2015-02-01

    Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. To examine how different modes of arm swing affect gait stability. Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior-posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Excessive arm swing significantly increases local dynamic stability of human gait. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. [Experimental research of gaits based on young plantar pressure test].

    Science.gov (United States)

    Meng, Qingyun; Tan, Shili; Yu, Hongliu; Shen, Lixing; Zhuang, Jianhai; Wang, Jinwu

    2014-10-01

    The present paper is to study the center line of the plantar pressure of normal young people, and to find the relation between center line of the plantar pressure and gait stability and balance. The paper gives the testing principle and calculating methods for geometric center of plantar pressure distribution and the center of pressure due to the techniques of footprint frame. The calculating formulas in both x direction and y direction are also deduced in the paper. In the experiments carried out in our laboratory, the gait parameters of 131 young subjects walking as usual speed were acquired, and 14 young subjects of the total were specially analyzed. We then provided reference data for the walking gait database of young people, including time parameters, space parameters and plantar pressure parameters. We also obtained the line of geometry center and pressure center under the foot. We found that the differences existed in normal people's geometric center line and the pressure center line. The center of pressure trajectory revealed foot movement stability. The length and lateral changes of the center line of the plantar pressure could be applied to analysis of the plantar pressure of all kinds of people. The results in this paper are useful in clinical foot disease diagnosis and evaluation of surgical effect.

  12. Some Properties of Multiple Parameters Linear Programming

    Directory of Open Access Journals (Sweden)

    Maoqin Li

    2010-01-01

    Full Text Available We consider a linear programming problem in which the right-hand side vector depends on multiple parameters. We study the characters of the optimal value function and the critical regions based on the concept of the optimal partition. We show that the domain of the optimal value function f can be decomposed into finitely many subsets with disjoint relative interiors, which is different from the result based on the concept of the optimal basis. And any directional derivative of f at any point can be computed by solving a linear programming problem when only an optimal solution is available at the point.

  13. Some Properties of Multiple Parameters Linear Programming

    Directory of Open Access Journals (Sweden)

    Yan Hong

    2010-01-01

    Full Text Available Abstract We consider a linear programming problem in which the right-hand side vector depends on multiple parameters. We study the characters of the optimal value function and the critical regions based on the concept of the optimal partition. We show that the domain of the optimal value function can be decomposed into finitely many subsets with disjoint relative interiors, which is different from the result based on the concept of the optimal basis. And any directional derivative of at any point can be computed by solving a linear programming problem when only an optimal solution is available at the point.

  14. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  15. Effect of 6-month community-based exercise interventions on gait and functional fitness of an older population: a quasi-experimental study.

    Science.gov (United States)

    Ramalho, Fátima; Santos-Rocha, Rita; Branco, Marco; Moniz-Pereira, Vera; André, Helô-Isa; Veloso, António P; Carnide, Filomena

    2018-01-01

    Gait ability in older adults has been associated with independent living, increased survival rates, fall prevention, and quality of life. There are inconsistent findings regarding the effects of exercise interventions in the maintenance of gait parameters. The aim of the study was to analyze the effects of a community-based periodized exercise intervention on the improvement of gait parameters and functional fitness in an older adult group compared with a non-periodized program. A quasi-experimental study with follow-up was performed in a periodized exercise group (N=15) and in a non-periodized exercise group (N=13). The primary outcomes were plantar pressure gait parameters, and the secondary outcomes were physical activity, aerobic endurance, lower limb strength, agility, and balance. These variables were recorded at baseline and after 6 months of intervention. Both programs were tailored to older adults' functional fitness level and proved to be effective in reducing the age-related decline regarding functional fitness and gait parameters. Gait parameters were sensitive to both the exercise interventions. These exercise protocols can be used by exercise professionals in prescribing community exercise programs, as well as by health professionals in promoting active aging.

  16. The gait standard deviation, a single measure of kinematic variability.

    Science.gov (United States)

    Sangeux, Morgan; Passmore, Elyse; Graham, H Kerr; Tirosh, Oren

    2016-05-01

    Measurement of gait kinematic variability provides relevant clinical information in certain conditions affecting the neuromotor control of movement. In this article, we present a measure of overall gait kinematic variability, GaitSD, based on combination of waveforms' standard deviation. The waveform standard deviation is the common numerator in established indices of variability such as Kadaba's coefficient of multiple correlation or Winter's waveform coefficient of variation. Gait data were collected on typically developing children aged 6-17 years. Large number of strides was captured for each child, average 45 (SD: 11) for kinematics and 19 (SD: 5) for kinetics. We used a bootstrap procedure to determine the precision of GaitSD as a function of the number of strides processed. We compared the within-subject, stride-to-stride, variability with the, between-subject, variability of the normative pattern. Finally, we investigated the correlation between age and gait kinematic, kinetic and spatio-temporal variability. In typically developing children, the relative precision of GaitSD was 10% as soon as 6 strides were captured. As a comparison, spatio-temporal parameters required 30 strides to reach the same relative precision. The ratio stride-to-stride divided by normative pattern variability was smaller in kinematic variables (the smallest for pelvic tilt, 28%) than in kinetic and spatio-temporal variables (the largest for normalised stride length, 95%). GaitSD had a strong, negative correlation with age. We show that gait consistency may stabilise only at, or after, skeletal maturity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Virtual sensory feedback for gait improvement in neurological patients

    Directory of Open Access Journals (Sweden)

    Yoram eBaram

    2013-10-01

    Full Text Available We review a treatment modality for movement disorders by sensory feedback. The natural closed-loop sensory-motor feedback system is imitated by a wearable virtual reality apparatus, employing body-mounted inertial sensors and responding dynamically to the patient’s own motion. Clinical trials have shown a significant gait improvement in patients with Parkinson's disease using the apparatus. In contrast to open-loop devices, which impose constant-velocity visual cues in a treadmill fashion, or rhythmic auditory cues in a metronome fashion, requiring constant vigilance and attention strategies, and in some cases, instigating freezing in Parkinson’s patients, the closed-loop device improved gait parameters and eliminated freezing in most patients, without side effects. Patients with multiple sclerosis, previous stroke, senile gait and cerebral palsy using the device also improved their balance and gait substantially. Training with the device has produced a residual improvement, suggesting virtual sensory feedback for the treatment of neurological movement disorders.

  18. Assessment of a Smart Sensing Shoe for Gait Phase Detection in Level Walking

    Directory of Open Access Journals (Sweden)

    Nicola Carbonaro

    2016-11-01

    Full Text Available Gait analysis and more specifically ambulatory monitoring of temporal and spatial gait parameters may open relevant fields of applications in activity tracking, sports and also in the assessment and treatment of specific diseases. Wearable technology can boost this scenario by spreading the adoption of monitoring systems to a wide set of healthy users or patients. In this context, we assessed a recently developed commercial smart shoe—the FootMoov—for automatic gait phase detection in level walking. FootMoov has built-in force sensors and a triaxial accelerometer and is able to transmit the sensor data to the smartphone through a wireless connection. We developed a dedicated gait phase detection algorithm relying both on force and inertial information. We tested the smart shoe on ten healthy subjects in free level walking conditions and in a laboratory setting in comparison with an optical motion capture system. Results confirmed a reliable detection of the gait phases. The maximum error committed, on the order of 44.7 ms, is comparable with previous studies. Our results confirmed the possibility to exploit consumer wearable devices to extract relevant parameters to improve the subject health or to better manage his/her progressions.

  19. Computation of the Lyapunov exponents in the compass-gait model under OGY control via a hybrid Poincaré map

    International Nuclear Information System (INIS)

    Gritli, Hassène; Belghith, Safya

    2015-01-01

    Highlights: • A numerical calculation method of the Lyapunov exponents in the compass-gait model under OGY control is proposed. • A new linearization method of the impulsive hybrid dynamics around a one-periodic hybrid limit cycle is achieved. • We develop a simple analytical expression of a controlled hybrid Poincaré map. • A dimension reduction of the hybrid Poincaré map is realized. • We describe the numerical computation procedure of the Lyapunov exponents via the designed hybrid Poincaré map. - Abstract: This paper aims at providing a numerical calculation method of the spectrum of Lyapunov exponents in a four-dimensional impulsive hybrid nonlinear dynamics of a passive compass-gait model under the OGY control approach by means of a controlled hybrid Poincaré map. We present a four-dimensional simplified analytical expression of such hybrid map obtained by linearizing the uncontrolled impulsive hybrid nonlinear dynamics around a desired one-periodic passive hybrid limit cycle. In order to compute the spectrum of Lyapunov exponents, a dimension reduction of the controlled hybrid Poincaré map is realized. The numerical calculation of the spectrum of Lyapunov exponents using the reduced-dimension controlled hybrid Poincaré map is given in detail. In order to show the effectiveness of the developed method, the spectrum of Lyapunov exponents is calculated as the slope (bifurcation) parameter varies and hence used to predict the walking dynamics behavior of the compass-gait model under the OGY control.

  20. A study of operating parameters on the linear spark ignition engine

    International Nuclear Information System (INIS)

    Lim, Ocktaeck; Hung, Nguyen Ba; Oh, Seokyoung; Kim, Gangchul; Song, Hanho; Iida, Norimasa

    2015-01-01

    Highlights: • An experimental and simulation study of a linear engine is conducted. • The effects of operating parameters on the generating power are investigated. • The air gap length has a significant influence on the generating power. • The generating power of the linear engine is optimized with the value of 111.3 W. • There are no problems for the linear engine after 100 h of durable test. - Abstract: In this paper, we present our experiment and simulation study of a free piston linear engine based on operating conditions and structure of the linear engine for generating electric power. The free piston linear engine includes a two-stroke free piston engine, linear generators, and compressors. In the experimental study, the effects of key parameters such as input caloric value, equivalence ratio, spark timing delay, electrical resistance, and air gap length on the piston dynamics and electric power output are investigated. Propane is used as a fuel in the free piston linear engine, and it is premixed with the air to make a homogeneous charge before go into the cylinder. The air and fuel mass flow rate are varied by a mass flow controller. The experimental results show that the maximum generating power is found with the value of 111 W at the input caloric value of 5.88 kJ/s, spark timing delay of 1.5 ms, equivalence ratio of 1.0, electric resistance of 30 Ω, and air gap length of 1.0 mm. In order to check the durability of the linear engine, a durable test is conducted during 100 h. The experimental results show that there are no problems for the linear engine after about one hundred hours of the durable test. Beside experimental study, a simulation study is conducted to predict operating behavior of the linear engine. In the simulation study, the two-stroke free piston linear engine is modeled and simulated through a combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These

  1. Gait analysis in hip viscosupplementation for osteoarthritis: a case report

    Directory of Open Access Journals (Sweden)

    L. Di Lorenzo

    2013-10-01

    Full Text Available Hip is a site very commonly affected by osteoarthritis and the intra-articular administration of hyaluronic acid in the management of osteoarthritic pain is increasingly used. However, the debate about its usefulness is still ongoing, as not all results of clinical trials confirm its effectiveness. In order to achieve the best outcome, clinical assessment and treatment choices should be based on subjective outcome, pathological and mechanical findings that should be integrated with qualitative analysis of human movement. After viscosupplementation, clinical trials often evaluate as endpoint subjective outcomes (i.e. pain visual analogic scale and static imaging such as radiographs and magnetic resonance imaging. In our clinical practice we use gait analysis as part of rehabilitation protocol to measure performance, enhancement and changes of several biomechanical factors. Taking advantage of available resources (BTS Bioengineering gait analysis Elite System we studied a patient’s gait after ultrasound guided hip injections for viscosupplementation. He showed an early clinical and biomechanical improvement during walking after a single intra articular injection of hyaluronic acid. Gait analysis parameters obtained suggest that the pre-treatment slower speed may be caused by antalgic walking patterns, the need for pain control and muscle weakness. After hip viscosupplementation, the joint displayed different temporal, kinetic and kinematic parameters associated with improved pain patterns.

  2. Influence of focus of attention, reinvestment and fall history on elderly gait stability.

    Science.gov (United States)

    de Melker Worms, Jonathan L A; Stins, John F; van Wegen, Erwin E H; Loram, Ian D; Beek, Peter J

    2017-01-01

    Falls represent a substantial risk in the elderly. Previous studies have found that a focus on the outcome or effect of the movement (external focus of attention) leads to improved balance performance, whereas a focus on the movement execution itself (internal focus of attention) impairs balance performance in elderly. A shift toward more conscious, explicit forms of motor control occurs when existing declarative knowledge is recruited in motor control, a phenomenon called reinvestment. We investigated the effects of attentional focus and reinvestment on gait stability in elderly fallers and nonfallers. Full body kinematics was collected from twenty-eight healthy older adults walking on a treadmill, while focus of attention was manipulated through instruction. Participants also filled out the Movement Specific Reinvestment Scale (MSRS) and the Falls Efficacy Scale International (FES-I), and provided details about their fall history. Coefficients of Variation (CV) of spatiotemporal gait parameters and Local Divergence Exponents (LDE) were calculated as measures of gait variability and gait stability, respectively. Larger stance time CV and LDE (decreased gait stability) were found for fallers compared to nonfallers. No significant effect of attentional focus was found for the gait parameters, and no significant relation between MSRS score (reinvestment) and fall history was found. We conclude that external attention to the walking surface does not lead to improved gait stability in elderly. Potential benefits of an external focus of attention might not apply to gait, because walking movements are not geared toward achieving a distinct environmental effect. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. The Combined Effects of Body Weight Support and Gait Speed on Gait Related Muscle Activity: A Comparison between Walking in the Lokomat Exoskeleton and Regular Treadmill Walking

    Science.gov (United States)

    Van Kammen, Klaske; Boonstra, Annemarijke; Reinders-Messelink, Heleen; den Otter, Rob

    2014-01-01

    Background For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study assessed the combined effects of gait speed and body weight support (BWS) on muscle activity, and compared these between treadmill walking and walking in the Lokomat exoskeleton. Methods Ten healthy participants walked on a treadmill and in the Lokomat, with varying levels of BWS (0% and 50% of the participants’ body weight) and gait speed (0.8, 1.8, and 2.8 km/h), while temporal step characteristics and muscle activity from Erector Spinae, Gluteus Medius, Vastus Lateralis, Biceps Femoris, Gastrocnemius Medialis, and Tibialis Anterior muscles were recorded. Results The temporal structure of the stepping pattern was altered when participants walked in the Lokomat or when BWS was provided (i.e. the relative duration of the double support phase was reduced, and the single support phase prolonged), but these differences normalized as gait speed increased. Alternations in muscle activity were characterized by complex interactions between walking conditions and training parameters: Differences between treadmill walking and walking in the exoskeleton were most prominent at low gait speeds, and speed effects were attenuated when BWS was provided. Conclusion Walking in the Lokomat exoskeleton without movement guidance alters the temporal step regulation and the neuromuscular control of walking, although the nature and magnitude of these effects depend on complex interactions with gait speed and BWS. If normative neuromuscular control of gait is targeted during training, it is recommended that very low speeds and high levels of BWS should be avoided when possible. PMID:25226302

  4. Quantitative gait analysis under dual-task in older people with mild cognitive impairment: a reliability study

    Directory of Open Access Journals (Sweden)

    Gutmanis Iris

    2009-09-01

    Full Text Available Abstract Background Reliability of quantitative gait assessment while dual-tasking (walking while doing a secondary task such as talking in people with cognitive impairment is unknown. Dual-tasking gait assessment is becoming highly important for mobility research with older adults since better reflects their performance in the basic activities of daily living. Our purpose was to establish the test-retest reliability of assessing quantitative gait variables using an electronic walkway in older adults with mild cognitive impairment (MCI under single and dual-task conditions. Methods The gait performance of 11 elderly individuals with MCI was evaluated using an electronic walkway (GAITRite® System in two sessions, one week apart. Six gait parameters (gait velocity, step length, stride length, step time, stride time, and double support time were assessed under two conditions: single-task (sG: usual walking and dual-task (dG: counting backwards from 100 while walking. Test-retest reliability was determined using intra-class correlation coefficient (ICC. Gait variability was measured using coefficient of variation (CoV. Results Eleven participants (average age = 76.6 years, SD = 7.3 were assessed. They were high functioning (Clinical Dementia Rating Score = 0.5 with a mean Mini-Mental Status Exam (MMSE score of 28 (SD = 1.56, and a mean Montreal Cognitive Assessment (MoCA score of 22.8 (SD = 1.23. Under dual-task conditions, mean gait velocity (GV decreased significantly (sGV = 119.11 ± 20.20 cm/s; dGV = 110.88 ± 19.76 cm/s; p = 0.005. Additionally, under dual-task conditions, higher gait variability was found on stride time, step time, and double support time. Test-retest reliability was high (ICC>0.85 for the six parameters evaluated under both conditions. Conclusion In older people with MCI, variability of time-related gait parameters increased with dual-tasking suggesting cognitive control of gait performance. Assessment of quantitative gait

  5. Parameters of the SLAC Next Linear Collider

    International Nuclear Information System (INIS)

    Raubenheimer, T.; Adolphsen, C.; Burke, D.

    1995-05-01

    In this paper, the authors present the parameters and layout of the Next Linear Collider (NLC). The NLC is the SLAC design of a future linear collider using X-band RF technology in the main linacs. The collider would have an initial center-of-mass energy of 0.5 TeV which would be upgraded to 1 TeV and then 1.5 TeV in two stages. The design luminosity is > 5 x 10 33 cm -2 sec -1 at 0.5 TeV and > 10 34 cm -2 sec -1 at 1.0 and 1.5 TeV. They briefly describe the components of the collider and the proposed energy upgrade scenario

  6. Skeleton-Based Abnormal Gait Detection

    Directory of Open Access Journals (Sweden)

    Trong-Nguyen Nguyen

    2016-10-01

    Full Text Available Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%.

  7. A study of the passive gait of a compass-like biped robot: Symmetry and chaos

    International Nuclear Information System (INIS)

    Goswami, A.; Espiau, B.; Thuilot, B.

    1998-01-01

    The focus of this work is a systematic study of the passive gait of a compass-like planar, biped robot on inclined slopes. The robot is kinematically equivalent to a double pendulum, possessing two kneeless legs with point masses and a third point mass at the hip joint. Three parameters, namely, the ground-slope angle and the normalized mass and length of the robot describe its gait. The authors show that in response to a continuous change in any one of its parameters, the symmetric and steady stable gait of the unpowered robot gradually evolves through a regime of bifurcations characterized by progressively complicated asymmetric gaits, eventually arriving at an apparently chaotic gait where not two steps are identical. The robot can maintain this gait indefinitely. A necessary (but not sufficient) condition for the stability of such gaits is the contraction of the phase-fluid volume. For this frictionless robot, the volume contraction, which the authors compute, is caused by the dissipative effects of the ground-impact model. In the chaotic regime, the fractal dimension of the robot's strange attractor (2.07) compared to its state-space dimension (4) also reveals strong contraction. The authors present a novel graphical technique based on the first return map that compactly captures the entire evolution of the gait, from symmetry to chaos. Additional passive dissipative elements in the robot joint results in a significant improvement in the stability and the versatility of the gait, and provide a rich repertoire for simple controls laws

  8. Stability margin of linear systems with parameters described by fuzzy numbers.

    Science.gov (United States)

    Husek, Petr

    2011-10-01

    This paper deals with the linear systems with uncertain parameters described by fuzzy numbers. The problem of determining the stability margin of those systems with linear affine dependence of the coefficients of a characteristic polynomial on system parameters is studied. Fuzzy numbers describing the system parameters are allowed to be characterized by arbitrary nonsymmetric membership functions. An elegant solution, graphical in nature, based on generalization of the Tsypkin-Polyak plot is presented. The advantage of the presented approach over the classical robust concept is demonstrated on a control of the Fiat Dedra engine model and a control of the quarter car suspension model.

  9. Measuring Gait Quality in Parkinson’s Disease through Real-Time Gait Phase Recognition

    Directory of Open Access Journals (Sweden)

    Ilaria Mileti

    2018-03-01

    Full Text Available Monitoring gait quality in daily activities through wearable sensors has the potential to improve medical assessment in Parkinson’s Disease (PD. In this study, four gait partitioning methods, two based on thresholds and two based on a machine learning approach, considering the four-phase model, were compared. The methods were tested on 26 PD patients, both in OFF and ON levodopa conditions, and 11 healthy subjects, during walking tasks. All subjects were equipped with inertial sensors placed on feet. Force resistive sensors were used to assess reference time sequence of gait phases. Goodness Index (G was evaluated to assess accuracy in gait phases estimation. A novel synthetic index called Gait Phase Quality Index (GPQI was proposed for gait quality assessment. Results revealed optimum performance (G < 0.25 for three tested methods and good performance (0.25 < G < 0.70 for one threshold method. The GPQI resulted significantly higher in PD patients than in healthy subjects, showing a moderate correlation with clinical scales score. Furthermore, in patients with severe gait impairment, GPQI was found higher in OFF than in ON state. Our results unveil the possibility of monitoring gait quality in PD through real-time gait partitioning based on wearable sensors.

  10. Estimating kinetic mechanisms with prior knowledge I: Linear parameter constraints.

    Science.gov (United States)

    Salari, Autoosa; Navarro, Marco A; Milescu, Mirela; Milescu, Lorin S

    2018-02-05

    To understand how ion channels and other proteins function at the molecular and cellular levels, one must decrypt their kinetic mechanisms. Sophisticated algorithms have been developed that can be used to extract kinetic parameters from a variety of experimental data types. However, formulating models that not only explain new data, but are also consistent with existing knowledge, remains a challenge. Here, we present a two-part study describing a mathematical and computational formalism that can be used to enforce prior knowledge into the model using constraints. In this first part, we focus on constraints that enforce explicit linear relationships involving rate constants or other model parameters. We develop a simple, linear algebra-based transformation that can be applied to enforce many types of model properties and assumptions, such as microscopic reversibility, allosteric gating, and equality and inequality parameter relationships. This transformation converts the set of linearly interdependent model parameters into a reduced set of independent parameters, which can be passed to an automated search engine for model optimization. In the companion article, we introduce a complementary method that can be used to enforce arbitrary parameter relationships and any constraints that quantify the behavior of the model under certain conditions. The procedures described in this study can, in principle, be coupled to any of the existing methods for solving molecular kinetics for ion channels or other proteins. These concepts can be used not only to enforce existing knowledge but also to formulate and test new hypotheses. © 2018 Salari et al.

  11. Gait Analysis Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Hutian Feng

    2012-02-01

    Full Text Available Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  12. Gait Analysis Using Wearable Sensors

    Science.gov (United States)

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763

  13. Linear Parameter Varying Versus Linear Time Invariant Reduced Order Controller Design of Turboprop Aircraft Dynamics

    Directory of Open Access Journals (Sweden)

    Widowati

    2012-07-01

    Full Text Available The applicability of parameter varying reduced order controllers to aircraft model is proposed. The generalization of the balanced singular perturbation method of linear time invariant (LTI system is used to reduce the order of linear parameter varying (LPV system. Based on the reduced order model the low-order LPV controller is designed by using synthesis technique. The performance of the reduced order controller is examined by applying it to lateral-directional control of aircraft model having 20th order. Furthermore, the time responses of the closed loop system with reduced order LPV controllers and reduced order LTI controller is compared. From the simulation results, the 8th order LPV controller can maintain stability and to provide the same level of closed-loop systems performance as the full-order LPV controller. It is different with the reduced-order LTI controller that cannot maintain stability and performance for all allowable parameter trajectories.

  14. Effects of deep brain stimulation on balance and gait in patients with Parkinson's disease: A systematic neurophysiological review.

    Science.gov (United States)

    Collomb-Clerc, A; Welter, M-L

    2015-11-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and internal globus pallidus (GPi) deep brain stimulation (DBS) provides an efficient treatment for the alleviation of motor signs in patients with Parkinson's disease. The effects of DBS on gait and balance disorders are less successful and may even lead to an aggravation of freezing of gait and imbalance. The identification of a substantia nigra pars reticulata (SNr)-mesencephalic locomotor region (MLR) network in the control of locomotion and postural control and of its dysfunction/lesion in PD patients with gait and balance disorders led to suggestion that DBS should be targeting the SNr and the pedunculopontine nucleus (part of the MLR) for PD patients with these disabling axial motor signs. However, the clinical results to date have been disappointing. In this review, we discuss the effects of DBS of these basal ganglia and brainstem structures on the neurophysiological parameters of gait and balance control in PD patients. Overall, the data suggest that both STN and GPi-DBS improve gait parameters and quiet standing postural control in PD patients, but have no effect or may even aggravate dynamic postural control, in particular with STN-DBS. Conversely, DBS of the SNr and PPN has no effect on gait parameters but improves anticipatory postural adjustments and gait postural control. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Implementing gait pattern control and transition for legged locomotion

    International Nuclear Information System (INIS)

    Yang, Zhijun; Karamanoglu, Mehmet; Rocha, Marlon V; França, Felipe M G; Lima, Priscila M V

    2014-01-01

    In this work, a generalised central pattern generator (CPG) model is formulated to generate a full range of gait patterns for a hexapod insect. To this end, a recurrent neuronal network module, as the building block for rhythmic patterns, is proposed to extend the concept of oscillatory building blocks (OBB) for constructing a CPG model. The model is able to make transitions between different gait patterns by simply adjusting one model parameter. Simulation results are further presented to show the effectiveness and performance of the CPG network

  16. Interdependence of parameters for TeV linear colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1987-01-01

    Approximate formulae for many of the relations governing the design of linear colliders are gathered together in this review. Expressions are discussed under the following headings: damping ring, acceleration, emittance preservation, final focus, interaction point and beamstrahlung. Using these formulae a consistent parameter set is derived

  17. Stability Analysis for Multi-Parameter Linear Periodic Systems

    DEFF Research Database (Denmark)

    Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli

    1999-01-01

    This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...

  18. Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits.

    Science.gov (United States)

    Luu, Trieu Phat; Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang

    2014-01-01

    Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved.

  19. Biofeedback for robotic gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Colombo Gery

    2007-01-01

    Full Text Available Abstract Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback

  20. Artificial Walking Technologies to Improve Gait in Cerebral Palsy: Multichannel Neuromuscular Stimulation.

    Science.gov (United States)

    Rose, Jessica; Cahill-Rowley, Katelyn; Butler, Erin E

    2017-11-01

    Cerebral palsy (CP) is the most common childhood motor disability and often results in debilitating walking abnormalities, such as flexed-knee and stiff-knee gait. Current medical and surgical treatments are only partially effective in improving gait abnormalities and may cause significant muscle weakness. However, emerging artificial walking technologies, such as step-initiated, multichannel neuromuscular electrical stimulation (NMES), can substantially improve gait patterns and promote muscle strength in children with spastic CP. NMES may also be applied to specific lumbar-sacral sensory roots to reduce spasticity. Development of tablet computer-based multichannel NMES can leverage lightweight, wearable wireless stimulators, advanced control design, and surface electrodes to activate lower-limb muscles. Musculoskeletal models have been used to characterize muscle contributions to unimpaired gait and identify high muscle demands, which can help guide multichannel NMES-assisted gait protocols. In addition, patient-specific NMES-assisted gait protocols based on 3D gait analysis can facilitate the appropriate activation of lower-limb muscles to achieve a more functional gait: stance-phase hip and knee extension and swing-phase sequence of hip and knee flexion followed by rapid knee extension. NMES-assisted gait treatment can be conducted as either clinic-based or home-based programs. Rigorous testing of multichannel NMES-assisted gait training protocols will determine optimal treatment dosage for future clinical trials. Evidence-based outcome evaluation using 3D kinematics or temporal-spatial gait parameters will help determine immediate neuroprosthetic effects and longer term neurotherapeutic effects of step-initiated, multichannel NMES-assisted gait in children with spastic CP. Multichannel NMES is a promising assistive technology to help children with spastic CP achieve a more upright, functional gait. © 2017 International Center for Artificial Organs and

  1. Study on Gait Efficiency and Energy Cost of Below Knee Amputees After Therapeutic Practices

    Directory of Open Access Journals (Sweden)

    Durbadal Biswas

    2011-04-01

    Full Text Available An earlier research advocated that a below knee amputee (BK with conventional trans-tibial prosthesis attains higher gait efficiency at lower energy cost with therapeutic practices of proper time and co-ordination in compare to normal subjects of similar physical parameters and quality of life. The present study focused on comparative analysis of energy cost and gait efficiency between a group of below knee amputees and a control group (normal subjects without amputation to indicate the consistency of the earlier findings. The subjects were selected with similar physical parameters and quality of life. Oxygen Uptake (VO2 and Heart Rate (HR were measured by Cosmed® k4 b2 analyzer system. Gait efficiency (p < 0.0001 was found higher with lower energy cost for BK amputees after therapeutic practices than control group. The therapeutic activities contributed to efficient gait pattern for amputees ensuring proper time and co-ordination with balance in consistence to the earlier research.

  2. Gait as a biomarker? Accelerometers reveal that reduced movement quality while walking is associated with Parkinson's disease, ageing and fall risk.

    Science.gov (United States)

    Brodie, Matthew A; Lovell, Nigel H; Canning, Colleen G; Menz, Hylton B; Delbaere, Kim; Redmond, Stephen J; Latt, Mark; Sturnieks, Daina L; Menant, Jasmine; Smith, Stuart T; Lord, Stephen R

    2014-01-01

    Humans are living longer but morbidity has also increased; threatening to create a serious global burden. Our approach is to monitor gait for early warning signs of morbidity. Here we present highlights from a series of experiments into gait as a potential biomarker for Parkinson's disease (PD), ageing and fall risk. Using body-worn accelerometers, we developed several novel camera-less methods to analyze head and pelvis movements while walking. Signal processing algorithms were developed to extract gait parameters that represented the principal components of vigor, head jerk, lateral harmonic stability, and oscillation range. The new gait parameters were compared to accidental falls, mental state and co-morbidities. We observed: 1) People with PD had significantly larger and uncontrolled anterioposterior (AP) oscillations of the head; 2) Older people walked with more lateral head jerk; and, 3) the combination of vigorous and harmonically stable gait was demonstrated by non-fallers. Our findings agree with research from other groups; changes in human gait reflect changes to well-being. We observed; different aspects of gait reflected different functional outcomes. The new gait parameters therefore may be complementary to existing methods and may have potential as biomarkers for specific disorders. However, further research is required to validate our observations, and establish clinical utility.

  3. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters

    Science.gov (United States)

    Wu, Hui; Hu, Liming; Wen, Qingbo

    2017-06-01

    Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.

  4. DeepGait: A Learning Deep Convolutional Representation for View-Invariant Gait Recognition Using Joint Bayesian

    Directory of Open Access Journals (Sweden)

    Chao Li

    2017-02-01

    Full Text Available Human gait, as a soft biometric, helps to recognize people through their walking. To further improve the recognition performance, we propose a novel video sensor-based gait representation, DeepGait, using deep convolutional features and introduce Joint Bayesian to model view variance. DeepGait is generated by using a pre-trained “very deep” network “D-Net” (VGG-D without any fine-tuning. For non-view setting, DeepGait outperforms hand-crafted representations (e.g., Gait Energy Image, Frequency-Domain Feature and Gait Flow Image, etc.. Furthermore, for cross-view setting, 256-dimensional DeepGait after PCA significantly outperforms the state-of-the-art methods on the OU-ISR large population (OULP dataset. The OULP dataset, which includes 4007 subjects, makes our result reliable in a statistically reliable way.

  5. Effects of Quadriceps Muscle Fatigue on Stiff-Knee Gait in Patients with Hemiparesis

    Science.gov (United States)

    Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Delouf, Eric; Bensmail, Djamel; Zory, Raphael

    2014-01-01

    The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients. PMID:24718087

  6. Surface peroneal nerve stimulation in lower limb hemiparesis : Effect on quantitative gait parameters

    NARCIS (Netherlands)

    Sheffler, Lynne R.; Taylor, Paul N.; Bailey, Stephanie Nogan; Gunzler, Douglas; Buurke, Jaap H.; Ijzerman, Maarten J.; Chae, John

    2015-01-01

    Objective: The objective of this study was to evaluate possible mechanisms for functional improvement and compare ambulation training with surface peroneal nerve stimulation vs. usual care via quantitative gait analysis. Design: This study is a randomized controlled clinical trial. Setting: The

  7. A Comparative Evaluation of Gait between Children with Autism and Typically Developing Matched Controls

    Directory of Open Access Journals (Sweden)

    Janet S. Dufek

    2017-01-01

    Full Text Available Anecdotal reports suggest children with autism spectrum disorder (ASD ambulate differently than peers with typical development (TD. Little empirical evidence supports these reports. Children with ASD exhibit delayed motor skills, and it is important to determine whether or not motor movement deficits exist during walking. The purpose of the study was to perform a comprehensive lower-extremity gait analysis between children (aged 5–12 years with ASD and age- and gender-matched-samples with TD. Gait parameters were normalized to 101 data points and the gait cycle was divided into seven sub-phases. The Model Statistic procedure was used to test for statistical significance between matched-pairs throughout the entire gait cycle for each parameter. When collapsed across all participants, children with ASD exhibited large numbers of significant differences (p < 0.05 throughout the gait cycle in hip, knee, and ankle joint positions as well as vertical and anterior/posterior ground reaction forces. Children with ASD exhibited unique differences throughout the gait cycle, which supports current literature on the heterogeneity of the disorder. The present work supports recent findings that motor movement differences may be a core symptom of ASD. Thus, individuals may benefit from therapeutic movement interventions that follow precision medicine guidelines by accounting for individual characteristics, given the unique movement differences observed.

  8. Efficacy of an Electromechanical Gait Trainer Poststroke in Singapore: A Randomized Controlled Trial.

    Science.gov (United States)

    Chua, Joyce; Culpan, Jane; Menon, Edward

    2016-05-01

    To evaluate the longer-term effects of electromechanical gait trainers (GTs) combined with conventional physiotherapy on health status, function, and ambulation in people with subacute stroke in comparison with conventional physiotherapy given alone. Randomized controlled trial with intention-to-treat analysis. Community hospital in Singapore. Nonambulant individuals (N=106) recruited approximately 1 month poststroke. Both groups received 45 minutes of physiotherapy 6 times per week for 8 weeks as follows: the GT group received 20 minutes of GT training and 5 minutes of stance/gait training in contrast with 25 minutes of stance/gait training for the control group. Both groups completed 10 minutes of standing and 10 minutes of cycling. The primary outcome was the Functional Ambulation Category (FAC). Secondary outcomes were the Barthel Index (BI), gait speed and endurance, and Stroke Impact Scale (SIS). Measures were taken at baseline and 4, 8, 12, 24, and 48 weeks. Generalized linear model analysis showed significant improvement over time (independent of group) for the FAC, BI, and SIS physical and participation subscales. However, no significant group × time or group differences were observed for any of the outcome variables after generalized linear model analysis. The use of GTs combined with conventional physiotherapy can be as effective as conventional physiotherapy applied alone for people with subacute stroke. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Linear least squares compartmental-model-independent parameter identification in PET

    International Nuclear Information System (INIS)

    Thie, J.A.; Smith, G.T.; Hubner, K.F.

    1997-01-01

    A simplified approach involving linear-regression straight-line parameter fitting of dynamic scan data is developed for both specific and nonspecific models. Where compartmental-model topologies apply, the measured activity may be expressed in terms of: its integrals, plasma activity and plasma integrals -- all in a linear expression with macroparameters as coefficients. Multiple linear regression, as in spreadsheet software, determines parameters for best data fits. Positron emission tomography (PET)-acquired gray-matter images in a dynamic scan are analyzed: both by this method and by traditional iterative nonlinear least squares. Both patient and simulated data were used. Regression and traditional methods are in expected agreement. Monte-Carlo simulations evaluate parameter standard deviations, due to data noise, and much smaller noise-induced biases. Unique straight-line graphical displays permit visualizing data influences on various macroparameters as changes in slopes. Advantages of regression fitting are: simplicity, speed, ease of implementation in spreadsheet software, avoiding risks of convergence failures or false solutions in iterative least squares, and providing various visualizations of the uptake process by straight line graphical displays. Multiparameter model-independent analyses on lesser understood systems is also made possible

  10. Modulation of the Left Prefrontal Cortex with High Frequency Repetitive Transcranial Magnetic Stimulation Facilitates Gait in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic central nervous system (CNS demyelinating disease. Gait abnormalities are common and disabling in patients with MS with limited treatment options available. Emerging evidence suggests a role of prefrontal attention networks in modulating gait. High-frequency repetitive transcranial magnetic stimulation (rTMS is known to enhance cortical excitability in stimulated cortex and its correlates. We investigated the effect of high-frequency left prefrontal rTMS on gait parameters in a 51-year-old Caucasian male with chronic relapsing/remitting MS with residual disabling attention and gait symptoms. Patient received 6 Hz, rTMS at 90% motor threshold using figure of eight coil centered on F3 location (using 10-20 electroencephalography (EEG lead localization system. GAITRite gait analysis system was used to collect objective gait measures before and after one session and in another occasion three consecutive daily sessions of rTMS. Two-tailed within subject repeated measure t-test showed significant enhancement in ambulation time, gait velocity, and cadence after three consecutive daily sessions of rTMS. Modulating left prefrontal cortex excitability using rTMS resulted in significant change in gait parameters after three sessions. To our knowledge, this is the first report that demonstrates the effect of rTMS applied to the prefrontal cortex on gait in MS patients.

  11. Why is walker-assisted gait metabolically expensive?

    Science.gov (United States)

    Priebe, Jonathon R; Kram, Rodger

    2011-06-01

    Walker-assisted gait is reported to be ∼200% more metabolically expensive than normal bipedal walking. However, previous studies compared different walking speeds. Here, we compared the metabolic power consumption and basic stride temporal-spatial parameters for 10 young, healthy adults walking without assistance and using 2-wheeled (2W), 4-wheeled (4W) and 4-footed (4F) walker devices, all at the same speed, 0.30m/s. We also measured the metabolic power demand for walking without any assistive device using a step-to gait at 0.30m/s, walking normally at 1.25m/s, and for repeated lifting of the 4F walker mimicking the lifting pattern used during 4F walker-assisted gait. Similar to previous studies, we found that the cost per distance walked was 217% greater with a 4F walker at 0.30m/s compared to unassisted, bipedal walking at 1.25m/s. Compared at the same speed, 0.30m/s, using a 4F walker was still 82%, 74%, and 55% energetically more expensive than walking unassisted, with a 4W walker and a 2W walker respectively. The sum of the metabolic cost of step-to walking plus the cost of lifting itself was equivalent to the cost of walking with a 4F walker. Thus, we deduce that the high cost of 4F walker assisted gait is due to three factors: the slow walking speed, the step-to gait pattern and the repeated lifting of the walker. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Robert J Ellis

    Full Text Available A well-established connection exists between increased gait variability and greater fall likelihood in Parkinson's disease (PD; however, a portable, validated means of quantifying gait variability (and testing the efficacy of any intervention remains lacking. Furthermore, although rhythmic auditory cueing continues to receive attention as a promising gait therapy for PD, its widespread delivery remains bottlenecked. The present paper describes a smartphone-based mobile application ("SmartMOVE" to address both needs.The accuracy of smartphone-based gait analysis (utilizing the smartphone's built-in tri-axial accelerometer and gyroscope to calculate successive step times and step lengths was validated against two heel contact-based measurement devices: heel-mounted footswitch sensors (to capture step times and an instrumented pressure sensor mat (to capture step lengths. 12 PD patients and 12 age-matched healthy controls walked along a 26-m path during self-paced and metronome-cued conditions, with all three devices recording simultaneously.Four outcome measures of gait and gait variability were calculated. Mixed-factorial analysis of variance revealed several instances in which between-group differences (e.g., increased gait variability in PD patients relative to healthy controls yielded medium-to-large effect sizes (eta-squared values, and cueing-mediated changes (e.g., decreased gait variability when PD patients walked with auditory cues yielded small-to-medium effect sizes-while at the same time, device-related measurement error yielded small-to-negligible effect sizes.These findings highlight specific opportunities for smartphone-based gait analysis to serve as an alternative to conventional gait analysis methods (e.g., footswitch systems or sensor-embedded walkways, particularly when those methods are cost-prohibitive, cumbersome, or inconvenient.

  13. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion.

    Science.gov (United States)

    Hesse, S; Schattat, N; Mehrholz, J; Werner, C

    2013-01-01

    A task-specific repetitive approach in gait rehabilitation after CNS lesion is well accepted nowadays. To ease the therapists' and patients' physical effort, the past two decades have seen the introduction of gait machines to intensify the amount of gait practice. Two principles have emerged, an exoskeleton- and an endeffector-based approach. Both systems share the harness and the body weight support. With the end-effector-based devices, the patients' feet are positioned on two foot plates, whose movements simulate stance and swing phase. This article provides an overview on the end-effector based machine's effectiveness regarding the restoration of gait. For the electromechanical gait trainer GT I, a meta analysis identified nine controlled trials (RCT) in stroke subjects (n = 568) and were analyzed to detect differences between end-effector-based locomotion + physiotherapy and physiotherapy alone. Patients practising with the machine effected in a superior gait ability (210 out of 319 patients, 65.8% vs. 96 out of 249 patients, 38.6%, respectively, Z = 2.29, p = 0.020), due to a larger training intensity. Only single RCTs have been reported for other devices and etiologies. The introduction of end-effector based gait machines has opened a new succesful chapter in gait rehabilitation after CNS lesion.

  14. Changes in gait patterns induced by rhythmic auditory stimulation for adolescents with acquired brain injury.

    Science.gov (United States)

    Kim, Soo Ji; Shin, Yoon-Kyum; Yoo, Ga Eul; Chong, Hyun Ju; Cho, Sung-Rae

    2016-12-01

    The effects of rhythmic auditory stimulation (RAS) on gait in adolescents with acquired brain injury (ABI) were investigated. A total of 14 adolescents with ABI were initially recruited, and 12 were included in the final analysis (n = 6 each). They were randomly assigned to the experimental (RAS) or the control (conventional gait training) groups. The experimental group received gait training with RAS three times a week for 4 weeks. For both groups, spatiotemporal parameters and kinematic data, such as dynamic motions of joints on three-dimensional planes during a gait cycle and the range of motion in each joint, were collected. Significant group differences in pre-post changes were observed in cadence, walking velocity, and step time, indicating that there were greater improvements in those parameters in the RAS group compared with the control group. Significant increases in hip and knee motions in the sagittal plane were also observed in the RAS group. The changes in kinematic data significantly differed between groups, particularly from terminal stance to mid-swing phase. An increase of both spatiotemporal parameters and corresponding kinematic changes of hip and knee joints after RAS protocol indicates that the use of rhythmic cueing may change gait patterns in adolescents with ABI. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  15. Gait and its assessment in psychiatry

    OpenAIRE

    Sanders, Richard D.; Gillig, Paulette Marie

    2010-01-01

    Gait reflects all levels of nervous system function. In psychiatry, gait disturbances reflecting cortical and subcortical dysfunction are often seen. Observing spontaneous gait, sometimes augmented by a few brief tests, can be highly informative. The authors briefly review the neuroanatomy of gait, review gait abnormalities seen in psychiatric and neurologic disorders, and describe the assessment of gait.

  16. Gait Deviation Index, Gait Profile Score and Gait Variable Score in children with spastic cerebral palsy

    DEFF Research Database (Denmark)

    Rasmussen, Helle Mätzke; Nielsen, Dennis Brandborg; Pedersen, Niels Wisbech

    2015-01-01

    Abstract The Gait Deviation Index (GDI) and Gait Profile Score (GPS) are the most used summary measures of gait in children with cerebral palsy (CP). However, the reliability and agreement of these indices have not been investigated, limiting their clinimetric quality for research and clinical...... to good reliability with ICCs of 0.4–0.7. The agreement for the GDI and the logarithmically transformed GPS, in terms of the standard error of measurement as a percentage of the grand mean (SEM%) varied from 4.1 to 6.7%, whilst the smallest detectable change in percent (SDC%) ranged from 11.3 to 18...

  17. Post-stroke hemiparesis: Does chronicity, etiology, and lesion side are associated with gait pattern?

    Science.gov (United States)

    Gama, Gabriela Lopes; Larissa, Coutinho de Lucena; Brasileiro, Ana Carolina de Azevedo Lima; Silva, Emília Márcia Gomes de Souza; Galvão, Élida Rayanne Viana Pinheiro; Maciel, Álvaro Cavalcanti; Lindquist, Ana Raquel Rodrigues

    2017-07-01

    Studies that evaluate gait rehabilitation programs for individuals with stroke often consider time since stroke of more than six months. In addition, most of these studies do not use lesion etiology or affected cerebral hemisphere as study factors. However, it is unknown whether these factors are associated with post-stroke motor performance after the spontaneous recovery period. To investigate whether time since stroke onset, etiology, and lesion side is associated with spatiotemporal and angular gait parameters of individuals with chronic stroke. Fifty individuals with chronic hemiparesis (20 women) were evaluated. The sample was stratified according to time since stroke (between 6 and 12 months, between 13 and 36 months, and over 36 months), affected cerebral hemisphere (left or right) and lesion etiology (ischemic and hemorrhagic). The participants were evaluated during overground walking at self-selected gait speed, and spatiotemporal and angular gait parameters were calculated. Results Differences between gait speed, stride length, hip flexion, and knee flexion were observed in subgroups stratified based on lesion etiology. Survivors of a hemorrhagic stroke exhibited more severe gait impairment. Subgroups stratified based on time since stroke only showed intergroup differences for stride length, and subgroups stratified based on affected cerebral hemisphere displayed between-group differences for swing time symmetry ratio. In order to recruit a more homogeneous sample, more accurate results were obtained and an appropriate rehabilitation program was offered, researchers and clinicians should consider that gait pattern might be associated with time since stroke, affected cerebral hemisphere and lesion etiology.

  18. Gait characteristics under different walking conditions: Association with the presence of cognitive impairment in community-dwelling older people.

    Directory of Open Access Journals (Sweden)

    Anne-Marie De Cock

    Full Text Available Gait characteristics measured at usual pace may allow profiling in patients with cognitive problems. The influence of age, gender, leg length, modified speed or dual tasking is unclear.Cross-sectional analysis was performed on a data registry containing demographic, physical and spatial-temporal gait parameters recorded in five walking conditions with a GAITRite® electronic carpet in community-dwelling older persons with memory complaints. Four cognitive stages were studied: cognitively healthy individuals, mild cognitive impaired patients, mild dementia patients and advanced dementia patients.The association between spatial-temporal gait characteristics and cognitive stages was the most prominent: in the entire study population using gait speed, steps per meter (translation for mean step length, swing time variability, normalised gait speed (corrected for leg length and normalised steps per meter at all five walking conditions; in the 50-to-70 years old participants applying step width at fast pace and steps per meter at usual pace; in the 70-to-80 years old persons using gait speed and normalised gait speed at usual pace, fast pace, animal walk and counting walk or steps per meter and normalised steps per meter at all five walking conditions; in over-80 years old participants using gait speed, normalised gait speed, steps per meter and normalised steps per meter at fast pace and animal dual-task walking. Multivariable logistic regression analysis adjusted for gender predicted in two compiled models the presence of dementia or cognitive impairment with acceptable accuracy in persons with memory complaints.Gait parameters in multiple walking conditions adjusted for age, gender and leg length showed a significant association with cognitive impairment. This study suggested that multifactorial gait analysis could be more informative than using gait analysis with only one test or one variable. Using this type of gait analysis in clinical practice

  19. Analyzing Gait Using a Time-of-Flight Camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    An algorithm is created, which performs human gait analysis using spatial data and amplitude images from a Time-of-flight camera. For each frame in a sequence the camera supplies cartesian coordinates in space for every pixel. By using an articulated model the subject pose is estimated in the depth...... map in each frame. The pose estimation is based on likelihood, contrast in the amplitude image, smoothness and a shape prior used to solve a Markov random field. Based on the pose estimates, and the prior that movement is locally smooth, a sequential model is created, and a gait analysis is done...... on this model. The output data are: Speed, Cadence (steps per minute), Step length, Stride length (stride being two consecutive steps also known as a gait cycle), and Range of motion (angles of joints). The created system produces good output data of the described output parameters and requires no user...

  20. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait

    NARCIS (Netherlands)

    Snijders, A.H.; Leunissen, H.P.; Bakker, M.; Overeem, S.; Helmich, R.C.G.; Bloem, B.R.; Toni, I.

    2011-01-01

    Freezing of gait is a common, debilitating feature of Parkinson’s disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between

  1. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait

    NARCIS (Netherlands)

    Snijders, A.H.; Leunissen, I.; Bakker, M.; Overeem, S.; Helmich, R.C.G.; Bloem, B.R.; Toni, I.

    2011-01-01

    Freezing of gait is a common, debilitating feature of Parkinson's disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between

  2. A mechanized gait trainer for restoring gait in nonambulatory subjects.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D; Werner, C; Bardeleben, A

    2000-09-01

    To construct an advanced mechanized gait trainer to enable patients the repetitive practice of a gaitlike movement without overstraining therapists. DEVICE: Prototype gait trainer that simulates the phases of gait (by generating a ratio of 40% to 60% between swing and stance phases), supports the subjects according to their ability (lifts the foot during swing phase), and controls the center of mass in the vertical and horizontal directions. Two nonambulatory, hemiparetic patients who regained their walking ability after 4 weeks of daily training on the gait trainer, a 55-year-old woman and a 62-year-old man, both of whom had a first-time ischemic stroke. Four weeks of training, five times a week, each session 20 minutes long. Functional ambulation category (FAC, levels 0-5) to assess gait ability and ground level walking velocity. Rivermead motor assessment score (RMAS, 0-13) to assess gross motor function. Patient 1: At the end of treatment, she was able to walk independently on level ground with use of a walking stick. Her walking velocity had improved from .29m/sec to .59m/sec. Her RMAS score increased from 4 to 10, meaning she could walk at least 40 meters outside, pick up objects from floor, and climb stairs independently. Patient 2: At end of 4-week training, he could walk independently on even surfaces (FAC level 4), using an ankle-foot orthosis and a walking stick. His walking velocity improved from .14m/sec to .63m/sec. His RMAS increased from 3 to 10. The gait trainer enabled severely affected patients the repetitive practice of a gaitlike movement. Future studies may elucidate its value in gait rehabilitation of nonambulatory subjects.

  3. Synthesis of walking sounds for alleviating gait disturbances in Parkinson's disease.

    Science.gov (United States)

    Rodger, Matthew W M; Young, William R; Craig, Cathy M

    2014-05-01

    Managing gait disturbances in people with Parkinson's disease is a pressing challenge, as symptoms can contribute to injury and morbidity through an increased risk of falls. While drug-based interventions have limited efficacy in alleviating gait impairments, certain nonpharmacological methods, such as cueing, can also induce transient improvements to gait. The approach adopted here is to use computationally-generated sounds to help guide and improve walking actions. The first method described uses recordings of force data taken from the steps of a healthy adult which in turn were used to synthesize realistic gravel-footstep sounds that represented different spatio-temporal parameters of gait, such as step duration and step length. The second method described involves a novel method of sonifying, in real time, the swing phase of gait using real-time motion-capture data to control a sound synthesis engine. Both approaches explore how simple but rich auditory representations of action based events can be used by people with Parkinson's to guide and improve the quality of their walking, reducing the risk of falls and injury. Studies with Parkinson's disease patients are reported which show positive results for both techniques in reducing step length variability. Potential future directions for how these sound approaches can be used to manage gait disturbances in Parkinson's are also discussed.

  4. Electromyographic Pattern during Gait Initiation Differentiates Yoga Practitioners among Physically Active Older Subjects

    Directory of Open Access Journals (Sweden)

    Thierry Lelard

    2017-06-01

    Full Text Available During gait initiation, postural adjustments are needed to deal with balance and movement. With aging, gait initiation changes and reflects functional degradation of frailty individuals. However, physical activities have demonstrated beneficial effects of daily motor tasks. The aim of our study was to compare center of pressure (COP displacement and ankle muscle co-activation during gait initiation in two physically active groups: a group of walkers (n = 12; mean age ± SD 72.6 ± 3.2 years and a yoga group (n = 11; 71.5 ± 3.8 years. COP trajectory and electromyography of leg muscles were recorded simultaneously during five successive trials of gait initiation. Our main finding was that yoga practitioners had slower COP displacements (p < 0.01 and lower leg muscles % of coactivation (p < 0.01 in comparison with walkers. These parameters which characterized gait initiation control were correlated (r = 0.76; p < 0.01. Our results emphasize that lengthy ankle muscle co-activation and COP path in gait initiation differentiate yoga practitioners among physically active subjects.

  5. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis.

    Science.gov (United States)

    Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O

    2018-01-01

    Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults) met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge's g =0.9), gait velocity (1.1), cadence (0.3), and stride length (0.5). This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to enhance gait performance in people with cerebral palsy.

  6. Assessment of paclitaxel induced sensory polyneuropathy with "Catwalk" automated gait analysis in mice.

    Directory of Open Access Journals (Sweden)

    Petra Huehnchen

    Full Text Available Neuropathic pain as a symptom of sensory nerve damage is a frequent side effect of chemotherapy. The most common behavioral observation in animal models of chemotherapy induced polyneuropathy is the development of mechanical allodynia, which is quantified with von Frey filaments. The data from one study, however, cannot be easily compared with other studies owing to influences of environmental factors, inter-rater variability and differences in test paradigms. To overcome these limitations, automated quantitative gait analysis was proposed as an alternative, but its usefulness for assessing animals suffering from polyneuropathy has remained unclear. In the present study, we used a novel mouse model of paclitaxel induced polyneuropathy to compare results from electrophysiology and the von Frey method to gait alterations measured with the Catwalk test. To mimic recently improved clinical treatment strategies of gynecological malignancies, we established a mouse model of dose-dense paclitaxel therapy on the common C57Bl/6 background. In this model paclitaxel treated animals developed mechanical allodynia as well as reduced caudal sensory nerve action potential amplitudes indicative of a sensory polyneuropathy. Gait analysis with the Catwalk method detected distinct alterations of gait parameters in animals suffering from sensory neuropathy, revealing a minimized contact of the hind paws with the floor. Treatment of mechanical allodynia with gabapentin improved altered dynamic gait parameters. This study establishes a novel mouse model for investigating the side effects of dose-dense paclitaxel therapy and underlines the usefulness of automated gait analysis as an additional easy-to-use objective test for evaluating painful sensory polyneuropathy.

  7. Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.

    Science.gov (United States)

    Saner, Robert J; Washabaugh, Edward P; Krishnan, Chandramouli

    2017-07-01

    Three-dimensional (3-D) motion capture systems are commonly used for gait analysis because they provide reliable and accurate measurements. However, the downside of this approach is that it is expensive and requires technical expertise; thus making it less feasible in the clinic. To address this limitation, we recently developed and validated (using a high-precision walking robot) a low-cost, two-dimensional (2-D) real-time motion tracking approach using a simple webcam and LabVIEW Vision Assistant. The purpose of this study was to establish the repeatability and minimal detectable change values of hip and knee sagittal plane gait kinematics recorded using this system. Twenty-one healthy subjects underwent two kinematic assessments while walking on a treadmill at a range of gait velocities. Intraclass correlation coefficients (ICC) and minimal detectable change (MDC) values were calculated for commonly used hip and knee kinematic parameters to demonstrate the reliability of the system. Additionally, Bland-Altman plots were generated to examine the agreement between the measurements recorded on two different days. The system demonstrated good to excellent reliability (ICC>0.75) for all the gait parameters tested on this study. The MDC values were typically low (gait assessments using webcam technology can be reliably used for clinical and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    Science.gov (United States)

    Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton

    2017-06-01

    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms -1 versus 1.3ms -1 ) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.

  9. Gait adaptations to awareness and experience of a slip when walking on a cross-slope.

    Science.gov (United States)

    Lawrence, Daniel; Domone, Sarah; Heller, Ben; Hendra, Timothy; Mawson, Susan; Wheat, Jon

    2015-10-01

    Falls that occur as a result of a slip are one of the leading causes of injuries, particularly in the elderly population. Previous studies have focused on slips that occur on a flat surface. Slips on a laterally sloping surface are important and may be related to different mechanisms of balance recovery. This type of slip might result in different gait adaptations to those previously described on a flat surface, but these adaptations have not been investigated. The aim of this study was to assess whether, when walking on a cross-slope, young adults adapted their gait when made aware of a potential slip, and having experienced a slip. Gait parameters were compared for three conditions--(1) Normal walking; (2) Walking after being made aware of a potential slip (participants were told that a slip may occur); (3) Walking after experiencing a slip (Participants had already experienced at least one slip induced using a soapy contaminant). Gait parameters were only analysed for trials in which there was no slippery contaminant present on the walkway. Stride length and walking velocity were significantly reduced, and stance duration was significantly greater in the awareness and experience conditions compared to normal walking, with no significant differences in any gait parameters between the awareness and experience conditions. In addition, 46.7% of the slip trials resulted in a fall. This is higher than reported for slips induced on a flat surface, suggesting slips on a cross-slope are more hazardous. This would help explain the more cautious gait patterns observed in both the awareness and experience conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Designing an early selection morphological linear traits index for dressage in the Pura Raza Español horse.

    Science.gov (United States)

    Sánchez-Guerrero, M J; Cervantes, I; Molina, A; Gutiérrez, J P; Valera, M

    2017-06-01

    Making a morphological pre-selection of Pura Raza Español horses (PRE) for dressage is a challenging task within its current breeding program. The aim of our research was to design an early genetic selection morphological linear traits index to improve dressage performance, using 26 morphological linear traits and six dressage traits (walk, trot, canter, submission, general impression - partial scores - and total score) as selection criteria. The data set included morphological linear traits of 10 127 PRE (4159 males and 5968 females) collected between 2008 and 2013 (one record per horse) and 19 095 dressage traits of 1545 PRE (1476 males and 69 females; 12.4 records of average) collected between 2004 and 2014. A univariate animal model was applied to predict the breeding values (PBV). A partial least squares regression analysis was used to select the most predictive morphological linear traits PBV on the dressage traits PBV. According to the Wold Criterion, the 13 morphological linear traits (width of head, head-neck junction, upper neck line, neck-body junction, width of chest, angle of shoulder, lateral angle of knee, frontal angle of knee, cannon bone perimeter, length of croup, angle of croup, ischium-stifle distance and lateral hock angle) most closely related to total score PBV, partial scores PBV and gait scores PBV (walk, trot and canter) were selected. A multivariate genetic analysis was performed among the 13 morphological linear traits selected and the six dressage traits to estimate the genetic parameters. After it, the selection index theory was used to compute the expected genetic response using different strategies. The expected genetic response of total score PBV (0.76), partial scores PBV (0.04) and gait scores PBV (0.03) as selection objectives using morphological linear traits PBV as criteria selection were positive, but lower than that obtained using dressage traits PBV (1.80, 0.16 and 0.14 for total score PBV, partial scores PBV and gait

  11. Robust and Fault-Tolerant Linear Parameter-Varying Control of Wind Turbines

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob

    2011-01-01

    High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this paper we design and compare multiple linear parameter-varying (LPV) controllers,...

  12. Clinical Gait Evaluation of Patients with Lumbar Spine Stenosis.

    Science.gov (United States)

    Sun, Jun; Liu, Yan-Cheng; Yan, Song-Hua; Wang, Sha-Sha; Lester, D Kevin; Zeng, Ji-Zhou; Miao, Jun; Zhang, Kuan

    2018-02-01

    The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3, MiniSun, CA) has been developed for clinical gait evaluation, and this study was designed to evaluate the accuracy and reliability of IDEEA3 for the gait measurement of lumbar spinal stenosis (LSS) patients. Twelve healthy volunteers were recruited to compare gait cycle, cadence, step length, velocity, and number of steps between a motion analysis system and a high-speed video camera. Twenty hospitalized LSS patients were recruited for the comparison of the five parameters between the IDEEA3 and GoPro camera. Paired t-test, intraclass correlation coefficient, concordance correlation coefficient, and Bland-Altman plots were used for the data analysis. The ratios of GoPro camera results to motion analysis system results, and the ratios of IDEEA3 results to GoPro camera results were all around 1.00. All P-values of paired t-tests for gait cycle, cadence, step length, and velocity were greater than 0.05, while all the ICC and CCC results were above 0.950 with P GoPro camera are highly consistent with the measurements with the motion analysis system. The measurements for IDEEA3 are consistent with those for the GoPro camera. IDEEA3 can be effectively used in the gait measurement of LSS patients. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  13. Gait analysis in anorexia and bulimia nervosa.

    Science.gov (United States)

    Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Vimercati, Sara Laura; Precilios, Helmer; Cattani, Laila; Fabris De Souza, Shirley; Petroni, Maria Letizia; Capodaglio, Paolo

    2013-09-13

    Anorexia (AN) and Bulimia Nervosa (BN) are two common eating disorders, which appear to share some reduced motor capacities, such as a reduced balance. The presence and the extent of other motor disorders have not been investigated in a comprehensive way. The aim of this study was to quantify gait pattern in AN and BN individuals in order to ascertain possible differences from the normality range and provide novel data for developing some evidence-based rehabilitation strategies. Nineteen AN patients (age 30.16+9.73) and 20 BN patients (age 26.8+8.41) were assessed with quantitative 3D computerized Gait Analysis. Results were compared with a group of healthy controls (CG; 30.7+5.6). AN and BN patients were characterized by different gait strategies compared to CG. Spatio-temporal parameters indicated shorter step length, with AN showing the shortest values. AN walked slower than BN and CG. As for kinematics, AN and BN showed a nonphysiologic pattern at pelvis and hip level on the sagittal and frontal plane, with BN yielding the most abnormal values. Both AN and BN patients were characterized by high ankle plantar flexion capacity at toe-off when compared to CG. As for ankle kinetics, both AN and BN showed physiologic patterns. Stiffness at hip level was close to CG in both pathologic groups; at the ankle level, stiffness was significantly decreased in both groups, with AN displaying lower values. Both AN and BN were characterized by an altered gait pattern compared to CG. Biomechanical differences were evident mainly at pelvis and hip level. Loss of lean mass may lead to musculoskeletal adaptation, ultimately causing alterations in the gait pattern.

  14. Gait variability measurements in lumbar spinal stenosis patients: part B. Preoperative versus postoperative gait variability

    International Nuclear Information System (INIS)

    Papadakis, N C; Christakis, D G; Tzagarakis, G N; Chlouverakis, G I; Kampanis, N A; Stergiopoulos, K N; Katonis, P G

    2009-01-01

    The objective of this study was to assess the gait variability of lumbar spinal stenosis (LSS) patients and to evaluate its postoperative progression. The hypothesis was that LSS patients' preoperative gait variability in the frequency domain was higher than the corresponding postoperative. A tri-axial accelerometer sensor was used for the gait measurement and a spectral differential entropy algorithm was used to measure the gait variability. Twelve subjects with LSS were measured before and after surgery. Preoperative measurements were performed 2 days before surgery. Postoperative measurements were performed 6 and 12 months after surgery. Preoperative gait variability was higher than the corresponding postoperative. Also, in most cases, gait variability appeared to decrease throughout the year

  15. Knee Kinematic Improvement After Total Knee Replacement Using a Simplified Quantitative Gait Analysis Method

    Directory of Open Access Journals (Sweden)

    Hassan Sarailoo

    2013-10-01

    Full Text Available Objectives: The aim of this study was to extract suitable spatiotemporal and kinematic parameters to determine how Total Knee Replacement (TKR alters patients’ knee kinematics during gait, using a rapid and simplified quantitative two-dimensional gait analysis procedure. Methods: Two-dimensional kinematic gait pattern of 10 participants were collected before and after the TKR surgery, using a 60 Hz camcorder in sagittal plane. Then, the kinematic parameters were extracted using the gait data. A student t-test was used to compare the group-average of spatiotemporal and peak kinematic characteristics in the sagittal plane. The knee condition was also evaluated using the Oxford Knee Score (OKS Questionnaire to ensure thateach subject was placed in the right group. Results: The results showed a significant improvement in knee flexion during stance and swing phases after TKR surgery. The walking speed was increased as a result of stride length and cadence improvement, but this increment was not statistically significant. Both post-TKR and control groups showed an increment in spatiotemporal and peak kinematic characteristics between comfortable and fast walking speeds. Discussion: The objective kinematic parameters extracted from 2D gait data were able to show significant improvements of the knee joint after TKR surgery. The patients with TKR surgery were also able to improve their knee kinematics during fast walking speed equal to the control group. These results provide a good insight into the capabilities of the presented method to evaluate knee functionality before and after TKR surgery and to define a more effective rehabilitation program.

  16. Correlations among measures of knee stiffness, gait performance and complaints in individuals with knee osteoarthritis.

    Science.gov (United States)

    Oatis, Carol A; Wolff, Edward F; Lockard, Margery A; Michener, Lori A; Robbins, Steven J

    2013-03-01

    Stiffness is a common complaint in individuals with knee osteoarthritis and is a component of the osteoarthritis diagnosis. Yet the relationship between stiffness and function is poorly understood and methods to quantify stiffness are limited. Using a cross-sectional observational design with 66 subjects with knee osteoarthritis, stiffness and damping coefficients were calculated from a relaxed knee oscillation procedure. Gait parameters were measured using an electronic walkway. Self-reported pain, stiffness, and function were measured with the Western Ontario and McMaster Osteoarthritis Index. Correlation and Alexander's normalized-t approximation analyses were used to assess associations among the variables. Subset analysis was performed on subjects with and without tibiofemoral joint crepitus. Slight to moderate correlations existed between stiffness and damping coefficients and most gait parameters ((| r |=0.30-0.56; PMcMaster Osteoarthritis Index scores and all gait parameters (| r |=0.35-0.62; Pcoefficient was only slightly associated with patient-rated Western Ontario and McMaster Osteoarthritis Index stiffness subscale scores. Subset analysis revealed significant correlations that differed between those with and without crepitus. These findings suggest that laboratory measured stiffness and damping coefficients, Western Ontario and McMaster Osteoarthritis Index scores and gait-related measurements assess different aspects related to movement in individuals with knee osteoarthritis. Stiffness and damping coefficients may offer the ability to explain gait changes in the knee that are independent of a person's perceptions particularly in the early stages of the disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Altered spatiotemporal characteristics of gait in older adults with chronic low back pain.

    Science.gov (United States)

    Hicks, Gregory E; Sions, J Megan; Coyle, Peter C; Pohlig, Ryan T

    2017-06-01

    Previous studies in older adults have identified that chronic low back pain (CLBP) is associated with slower gait speed. Given that slower gait speed is a predictor of greater morbidity and mortality among older adults, it is important to understand the underlying spatiotemporal characteristics of gait among older adults with CLBP. The purposes of this study were to determine (1) if there are differences in spatiotemporal parameters of gait between older adults with and without CLBP during self-selected and fast walking and (2) whether any of these gait characteristics are correlated with performance of a challenging walking task, e.g. stair negotiation. Spatiotemporal characteristics of gait were evaluated using a computerized walkway in 54 community-dwelling older adults with CLBP and 54 age- and sex-matched healthy controls. Older adults with CLBP walked slower than their pain-free peers during self-selected and fast walking. After controlling for body mass index and gait speed, step width was significantly greater in the CLBP group during the fast walking condition. Within the CLBP group, step width and double limb support time are significantly correlated with stair ascent/descent times. From a clinical perspective, these gait characteristics, which may be indicative of balance performance, may need to be addressed to improve overall gait speed, as well as stair-climbing performance. Future longitudinal studies confirming our findings are needed, as well as investigations focused on developing interventions to improve gait speed and decrease subsequent risk of mobility decline. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The impact of Nordic walking training on the gait of the elderly.

    Science.gov (United States)

    Ben Mansour, Khaireddine; Gorce, Philippe; Rezzoug, Nasser

    2018-03-27

    The purpose of the current study was to define the impact of regular practice of Nordic walking on the gait of the elderly. Thereby, we aimed to determine whether the gait characteristics of active elderly persons practicing Nordic walking are more similar to healthy adults than that of the sedentary elderly. Comparison was made based on parameters computed from three inertial sensors during walking at a freely chosen velocity. Results showed differences in gait pattern in terms of the amplitude computed from acceleration and angular velocity at the lumbar region (root mean square), the distribution (Skewness) quantified from the vertical and Euclidean norm of the lumbar acceleration, the complexity (Sample Entropy) of the mediolateral component of lumbar angular velocity and the Euclidean norm of the shank acceleration and angular velocity, the regularity of the lower limbs, the spatiotemporal parameters and the variability (standard deviation) of stance and stride durations. These findings reveal that the pattern of active elderly differs significantly from sedentary elderly of the same age while similarity was observed between the active elderly and healthy adults. These results advance that regular physical activity such as Nordic walking may counteract the deterioration of gait quality that occurs with aging.

  19. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept.

    Science.gov (United States)

    Shaikh, Muhammad Faraz; Salcic, Zoran; Wang, Kevin I-Kai; Hu, Aiguo Patrick

    2018-03-10

    Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators. Graphical abstract Bipedal information-based gait recognition and stimulation triggering.

  20. Intraindividual variability in executive functions but not speed of processing or conflict resolution predicts performance differences in gait speed in older adults.

    Science.gov (United States)

    Holtzer, Roee; Mahoney, Jeannette; Verghese, Joe

    2014-08-01

    The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19-38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = -.606; 95% CI = -1.11 to -.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = -.901; 95% CI = -1.557 to -.245). Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Quantifying stimulus-response rehabilitation protocols by auditory feedback in Parkinson's disease gait pattern

    Science.gov (United States)

    Pineda, Gustavo; Atehortúa, Angélica; Iregui, Marcela; García-Arteaga, Juan D.; Romero, Eduardo

    2017-11-01

    External auditory cues stimulate motor related areas of the brain, activating motor ways parallel to the basal ganglia circuits and providing a temporary pattern for gait. In effect, patients may re-learn motor skills mediated by compensatory neuroplasticity mechanisms. However, long term functional gains are dependent on the nature of the pathology, follow-up is usually limited and reinforcement by healthcare professionals is crucial. Aiming to cope with these challenges, several researches and device implementations provide auditory or visual stimulation to improve Parkinsonian gait pattern, inside and outside clinical scenarios. The current work presents a semiautomated strategy for spatio-temporal feature extraction to study the relations between auditory temporal stimulation and spatiotemporal gait response. A protocol for auditory stimulation was built to evaluate the integrability of the strategy in the clinic practice. The method was evaluated in transversal measurement with an exploratory group of people with Parkinson's (n = 12 in stage 1, 2 and 3) and control subjects (n =6). The result showed a strong linear relation between auditory stimulation and cadence response in control subjects (R=0.98 +/-0.008) and PD subject in stage 2 (R=0.95 +/-0.03) and stage 3 (R=0.89 +/-0.05). Normalized step length showed a variable response between low and high gait velocity (0.2> R >0.97). The correlation between normalized mean velocity and stimulus was strong in all PD stage 2 (R>0.96) PD stage 3 (R>0.84) and controls (R>0.91) for all experimental conditions. Among participants, the largest variation from baseline was found in PD subject in stage 3 (53.61 +/-39.2 step/min, 0.12 +/- 0.06 in step length and 0.33 +/- 0.16 in mean velocity). In this group these values were higher than the own baseline. These variations are related with direct effect of metronome frequency on cadence and velocity. The variation of step length involves different regulation strategies and

  2. Carrying shopping bags does not alter static postural stability and gait parameters in healthy older females.

    Science.gov (United States)

    Bampouras, Theodoros M; Dewhurst, Susan

    2016-05-01

    Food shopping is an important aspect of maintaining independence and social interaction in older age. Carriage of shopping bags alters the body's weight distribution which, depending on load distribution, could potentially increase instability during standing and walking. The study examined the effect of carrying UK style shopping bags on static postural stability and gait in healthy older and young females. Nine older (71.0±6.0 years) and 10 young (26.7±5.2 years) females were assessed in five conditions carrying no bags, one 1.5kg bag in each hand, one 3kg bag in each hand, one 1.5kg bag in preferred hand, one 3kg bag in preferred hand. Antero-posterior and medio-lateral displacement, and 95% ellipse area from a 30s quiet standing were used for postural stability assessment. Stride length and its coefficient of variation, total double support time, step asymmetry and gait stability ratio were calculated from 1min treadmill walking at self-selected speed for gait assessment. Carrying shopping bags did not negatively affect postural stability or gait variables, in either group. Further, in older individuals, a decrease in sway velocity was found when holding bags during the postural stability assessment (pbags, irrespective of the load distribution, may have a stabilising effect during quiet standing. These results should help to alleviate concerns regarding safety of carrying shopping bags and help encourage shopping, both as a social and as a physical activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Required Coefficient of Friction for evaluating gait alterations in people with Multiple Sclerosis during gait.

    Science.gov (United States)

    Pacifici, Ilaria; Galli, Manuela; Kleiner, Ana Francisca Rozin; Corona, Federica; Coghe, Giancarlo; Marongiu, Elisabetta; Loi, Andrea; Crisafulli, Antonio; Cocco, Eleonora; Marrosu, Maria Giovanna; Pau, Massimiliano

    2016-11-01

    Required Coefficient of Friction (RCOF) is one of the most critical gait parameters associated to the occurrence of slipping in individuals affected by neurological disorders characterized by balance impairments. This study aims to calculate RCOF in people with Multiple Sclerosis (MS) on the basis of three-dimensional Gait Analysis (GA) data. This study enrolls 22 people with MS (pwMS) who were characterized by an Expanded Disability Status Score in the range 1.5-6 and 10 healthy controls (HC). All participants underwent to three-dimensional GA from which we extracted kinematic and kinetic data (i.e. the Ground Reaction Forces, GRF, and joint moments and powers in the sagittal plane). RCOF was calculated as the ratio of the shear to normal GRF components during the stance phase of gait cycle, and normalized by the walking velocity. Thus, the following variables were extracted: first peak (named P1COF), valley (named V1COF), and second peak (named P2COF) in RCOF curve; also computating the maximum ankle dorsi-plantarflexion moment (MOMmax) and the maximum ankle joint power (PWRmax). Our data revealed that P2COF results are significantly lower in pwMS when compared to HC (p=0.043; Z=-2.025). In pwMS, the study found a moderate, positive correlation between V1COF and MOMmax (r=0.558; pFriction during mid stance and push off phases is critically important to determine whether the frictional capabilities of foot/floor interface are sufficient to prevent slips in pwMS. The impaired ankle moment in MS group causes increased P2COF in comparison to HC, increasing the risk of slipping in the critical phase of transmission of the developed forces to kinematic chain. Also, the correlation analysis among RCOF values and kinetic variables describe the interplay between V1COF and MOMmax: the higher V1COF is, the higher is MOMmax; and the different correlation the study found between COF and kinetic parameters in MS and HC group highlightes the different gait patterns of the two

  4. Genetic algorithm–based varying parameter linear quadratic regulator control for four-wheel independent steering vehicle

    Directory of Open Access Journals (Sweden)

    Linlin Gao

    2015-11-01

    Full Text Available From the perspective of vehicle dynamics, the four-wheel independent steering vehicle dynamics stability control method is studied, and a four-wheel independent steering varying parameter linear quadratic regulator control system is proposed with the help of expert control method. In the article, a four-wheel independent steering linear quadratic regulator controller for model following purpose is designed first. Then, by analyzing the four-wheel independent steering vehicle dynamic characteristics and the influence of linear quadratic regulator control parameters on control performance, a linear quadratic regulator control parameter adjustment strategy based on vehicle steering state is proposed to achieve the adaptive adjustment of linear quadratic regulator control parameters. In addition, to further improve the control performance, the proposed varying parameter linear quadratic regulator control system is optimized by genetic algorithm. Finally, simulation studies have been conducted by applying the proposed control system to the 8-degree-of-freedom four-wheel independent steering vehicle dynamics model. The simulation results indicate that the proposed control system has better performance and robustness and can effectively improve the stability and steering safety of the four-wheel independent steering vehicle.

  5. Evaluation of the effectiveness of a novel gait trainer in increasing the functionality of individuals with motor impairment: A case series.

    Science.gov (United States)

    Raveh, Eitan; Schwartz, Isabella; Karniel, Naama; Portnoy, Sigal

    2017-10-16

    Regaining the ability to independently ambulate following a physical disability can increase functional ability and participation of patients in daily life. Gait trainers are assistive devices that enable body support and provide safety during gait. However, most conventional gait trainers are pre-configured to a constant position, therefore not suitable for practicing sit-to-stand function, and require assistance from a caregiver in order to mount the device from a sitting position. We therefore evaluated the effectiveness of a dynamically-adjusting gait trainer, designed to provide independence and safety during gait and various activities, in both lab setting and at home in four subjects (one female, three males, ages 32-79 years) with limited ambulation. Spatiotemporal parameters and gait symmetry were recorded, as well as activity levels, actual use of device, and satisfaction. Although gait parameters and physical activity levels were not notably improved, and in one case were worsened, three subjects reported positive experience with the gait trainer. The new gait trainer may have advantages in supporting users with limited mobility during walking and various functions and decrease the risk for falls. A longer practice time and individual fitting process are recommended for better accommodation to the new possibilities.

  6. Spinal cord stimulation therapy for gait dysfunction in advanced Parkinson's disease patients.

    Science.gov (United States)

    Samotus, Olivia; Parrent, Andrew; Jog, Mandar

    2018-02-14

    Benefits of dopaminergic therapy and deep brain stimulation are limited and unpredictable for axial symptoms in Parkinson's disease. Dorsal spinal cord stimulation may be a new therapeutic approach. The objective of this study was to investigate the therapeutic effect of spinal cord stimulation on gait including freezing of gait in advanced PD patients. Five male PD participants with significant gait disturbances and freezing of gait underwent midthoracic spinal cord stimulation. Spinal cord stimulation combinations (200-500 μs/30-130 Hz) at suprathreshold intensity were tested over a 1- to 4-month period, and the effects of spinal cord stimulation were studied 6 months after spinal cord stimulation surgery. Protokinetics Walkway measured gait parameters. Z scores per gait variable established each participant's best spinal cord stimulation setting. Timed sit-to-stand and automated freezing-of-gait detection using foot pressures were analyzed. Freezing of Gait Questionnaire (FOG-Q), UPDRS motor items, and activities-specific balance confidence scale were completed at each study visit. Spinal cord stimulation setting combinations of 300-400 μs/30-130 Hz provided gait improvements. Although on-medication/on-stimulation at 6 months, mean step length, stride velocity, and sit-to-stand improved by 38.8%, 42.3%, and 50.3%, respectively, mean UPDRS, Freezing of Gait Questionnaire, and activities-specific balance confidence scale scores improved by 33.5%, 26.8%, and 71.4%, respectively. The mean number of freezing-of-gait episodes reduced significantly from 16 presurgery to 0 at 6 months while patients were on levodopa and off stimulation. By using objective measures to detect dynamic gait characteristics, the therapeutic potential of spinal cord stimulation was optimized to each participant's characteristics. This pilot study demonstrated the safety and significant therapeutic outcome of spinal cord stimulation in advanced PD patients, and thus a larger and longer

  7. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.

    1990-07-01

    The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of Neural Network known as the multi-layer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author) 15 refs., 7 figs

  8. Identification of Affine Linear Parameter Varying Models for Adaptive Interventions in Fibromyalgia Treatment.

    Science.gov (United States)

    Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred

    2013-12-31

    There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.

  9. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Ghai S

    2017-12-01

    Full Text Available Shashank Ghai,1 Ishan Ghai,2 Alfred O. Effenberg1 1Institute for Sports Science, Leibniz University Hannover, Hannover, Germany; 2School of Life Sciences, Jacobs University, Bremen, Germany Abstract: Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge’s g=0.9, gait velocity (1.1, cadence (0.3, and stride length (0.5. This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to

  10. Gait analysis in a pre- and post-ischemic stroke biomedical pig model.

    Science.gov (United States)

    Duberstein, Kylee Jo; Platt, Simon R; Holmes, Shannon P; Dove, C Robert; Howerth, Elizabeth W; Kent, Marc; Stice, Steven L; Hill, William D; Hess, David C; West, Franklin D

    2014-02-10

    Severity of neural injury including stroke in human patients, as well as recovery from injury, can be assessed through changes in gait patterns of affected individuals. Similar quantification of motor function deficits has been measured in rodent animal models of such injuries. However, due to differences in fundamental structure of human and rodent brains, there is a need to develop a large animal model to facilitate treatment development for neurological conditions. Porcine brain structure is similar to that of humans, and therefore the pig may make a more clinically relevant animal model. The current study was undertaken to determine key gait characteristics in normal biomedical miniature pigs and dynamic changes that occur post-neural injury in a porcine middle cerebral artery (MCA) occlusion ischemic stroke model. Yucatan miniature pigs were trained to walk through a semi-circular track and were recorded with high speed cameras to detect changes in key gait parameters. Analysis of normal pigs showed overall symmetry in hindlimb swing and stance times, forelimb stance time, along with step length, step velocity, and maximum hoof height on both fore and hindlimbs. A subset of pigs were again recorded at 7, 5 and 3 days prior to MCA occlusion and then at 1, 3, 5, 7, 14 and 30 days following surgery. MRI analysis showed that MCA occlusion resulted in significant infarction. Gait analysis indicated that stroke resulted in notable asymmetries in both temporal and spatial variables. Pigs exhibited lower maximum front hoof height on the paretic side, as well as shorter swing time and longer stance time on the paretic hindlimb. These results support that gait analysis of stroke injury is a highly sensitive detection method for changes in gait parameters in pig. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Effects of sex and obesity on gait biomechanics before and six months after total knee arthroplasty: A longitudinal cohort study.

    Science.gov (United States)

    Paterson, K L; Sosdian, L; Hinman, R S; Wrigley, T V; Kasza, J; Dowsey, M; Choong, P; Bennell, K L

    2018-03-01

    Gait biomechanics, sex, and obesity can contribute to suboptimal outcomes from primary total knee arthroplasty. The aims of this study were to i) determine if sex and/or obesity influence the amount of change in gait biomechanics from pre-surgery to six months post-surgery and; ii) assess if gait returns to normal in men and women. Three-dimensional gait analysis was performed on 43 patients undergoing primary total knee arthroplasty for knee osteoarthritis (pre- and six months post-operative) and 40 asymptomatic controls. Mixed linear regression models were fit to assess which factors influenced change in gait biomechanics within the arthroplasty cohort, and interaction terms were included to assess if biomechanics returned to normal following surgery. Male peak knee adduction moment (p biomechanics after arthroplasty. Men retained abnormal gait patterns after surgery, whilst women did not. Further research should determine the long-term implications of gait abnormalities seen in men after arthroplasty. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Non-linearity parameter of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    . Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid ...

  13. Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis.

    Science.gov (United States)

    Rinaldi, Martina; Ranavolo, Alberto; Conforto, Silvia; Martino, Giovanni; Draicchio, Francesco; Conte, Carmela; Varrecchia, Tiwana; Bini, Fabiano; Casali, Carlo; Pierelli, Francesco; Serrao, Mariano

    2017-10-01

    The aim of this study was to investigate the lower limb muscle coactivation and its relationship with muscles spasticity, gait performance, and metabolic cost in patients with hereditary spastic paraparesis. Kinematic, kinetic, electromyographic and energetic parameters of 23 patients and 23 controls were evaluated by computerized gait analysis system. We computed ankle and knee antagonist muscle coactivation indexes throughout the gait cycle and during the subphases of gait. Energy consumption and energy recovery were measured as well. In addition to the correlation analysis between coactivation indexes and clinical variables, correlations between coactivation indexes and time-distance, kinematic, kinetic, and energetic parameters were estimated. Increased coactivity indexes of both knee and ankle muscles throughout the gait cycle and during the subphases of gait were observed in patients compared with controls. Energetic parameters were significantly higher in patients than in controls. Both knee and ankle muscle coactivation indexes were positively correlated with knee and ankle spasticity (Ashworth score), respectively. Knee and ankle muscle coactivation indexes were both positively correlated with energy consumption and both negatively correlated with energy recovery. Positive correlations between the Ashworth score and lower limb muscle coactivation suggest that abnormal lower limb muscle coactivation in patients with hereditary spastic paraparesis reflects a primary deficit linked to lower limb spasticity. Furthermore, these abnormalities influence the energetic mechanisms during walking. Identifying excessive muscle coactivation may be helpful in individuating the rehabilitative treatments and designing specific orthosis to restrain spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Balzac and human gait analysis.

    Science.gov (United States)

    Collado-Vázquez, S; Carrillo, J M

    2015-05-01

    People have been interested in movement analysis in general, and gait analysis in particular, since ancient times. Aristotle, Hippocrates, Galen, Leonardo da Vinci and Honoré de Balzac all used observation to analyse the gait of human beings. The purpose of this study is to compare Honoré de Balzac's writings with a scientific analysis of human gait. Honoré de Balzac's Theory of walking and other works by that author referring to gait. Honoré de Balzac had an interest in gait analysis, as demonstrated by his descriptions of characters which often include references to their way of walking. He also wrote a treatise entitled Theory of walking (Théorie de la demarche) in which he employed his keen observation skills to define gait using a literary style. He stated that the walking process is divided into phases and listed the factors that influence gait, such as personality, mood, height, weight, profession and social class, and also provided a description of the correct way of walking. Balzac considered gait analysis to be very important and this is reflected in both his character descriptions and Theory of walking, his analytical observation of gait. In our own technology-dominated times, this serves as a reminder of the importance of observation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  15. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    Science.gov (United States)

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a

  16. Effect of 6-month community-based exercise interventions on gait and functional fitness of an older population: a quasi-experimental study

    Directory of Open Access Journals (Sweden)

    Ramalho F

    2018-04-01

    Full Text Available Fátima Ramalho,1,2 Rita Santos-Rocha,1,2 Marco Branco,1,2 Vera Moniz-Pereira,2 Helô-Isa André,2 António P Veloso,2 Filomena Carnide2 1Sport Sciences School of Rio Maior (ESDRM, Polytechnic Institute of Santarém, Rio Maior, Portugal; 2Laboratory of Biomechanics and Functional Morphology, Interdisciplinary Centre for the Study of Human Performance (CIPER, Faculty of Human Kinetics (FMH, University of Lisbon, Cruz Quebrada, Portugal Background: Gait ability in older adults has been associated with independent living, increased survival rates, fall prevention, and quality of life. There are inconsistent findings regarding the effects of exercise interventions in the maintenance of gait parameters.Objectives: The aim of the study was to analyze the effects of a community-based periodized exercise intervention on the improvement of gait parameters and functional fitness in an older adult group compared with a non-periodized program.Methods: A quasi-experimental study with follow-up was performed in a periodized exercise group (N=15 and in a non-periodized exercise group (N=13. The primary outcomes were plantar pressure gait parameters, and the secondary outcomes were physical activity, aerobic endurance, lower limb strength, agility, and balance. These variables were recorded at baseline and after 6 months of intervention.Results: Both programs were tailored to older adults’ functional fitness level and proved to be effective in reducing the age-related decline regarding functional fitness and gait parameters. Gait parameters were sensitive to both the exercise interventions. Conclusion: These exercise protocols can be used by exercise professionals in prescribing community exercise programs, as well as by health professionals in promoting active aging. Keywords: mobility, community exercise programs, active aging, plantar pressure analysis, ground reaction forces, gait properties

  17. Locomotion in degus on terrestrial substrates varying in orientation - implications for biomechanical constraints and gait selection.

    Science.gov (United States)

    Schmidt, André

    2014-04-01

    To gain new insights into running gaits on sloped terrestrial substrates, metric and selected kinematic parameters of the common degu (Octodon degus) were examined. Individuals were filmed at their maximum voluntary running speed using a high-speed camera placed laterally to the terrestrial substrate varying in orientations from -30° to +30°, at 10° increments. Degus used trotting, lateral-sequence (LS) and diagonal-sequence (DS) running gaits at all substrate orientations. Trotting was observed across the whole speed range whereas DS running gaits occurred at significantly higher speeds than LS running gaits. Metric and kinematic changes on sloped substrates in degus paralleled those noted for most other mammals. However, the timing of metric and kinematic locomotor adjustments differed significantly between individual degus. In addition, most of these adjustments took place at 10° rather than 30° inclines and declines, indicating significant biomechanical demands even on slightly sloped terrestrial substrates. The results of this study suggest that DS and LS running gaits may represent an advantage in small to medium-sized mammals for counteracting some level of locomotor instability. Finally, changes in locomotor parameters of the forelimbs rather than the hindlimbs seem to play an important role in gait selection in small to medium-sized mammals. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Effect of therapeutic horseback riding on balance and gait of people with multiple sclerosis.

    Science.gov (United States)

    Muñoz-Lasa, Susana; Ferriero, Giorgio; Valero, Raquel; Gomez-Muñiz, Fernando; Rabini, Alessia; Varela, Enrique

    2011-01-01

    Exercise therapy is an important part of symptomatic and supportive treatment in patients with multiple sclerosis (PwMS). According to the literature, equine-assisted therapies--such as therapeutic horseback riding (THR) and hippotherapy (HT)--are exercise therapies that can have positive physical effects on coordination, muscle tone, postural alignment, stiffness/flexibility, endurance and strength, correcting abnormal movement patterns and improving gait and balance. While HT is known to have a positive effect on balance in PwMS, data about THR are limited. The aim of the present work was to determine the effect of THR on the balance and gait of ambulatory PwMS. Twenty-seven PwMS were included in the study. Patients were divided into two groups: 12 underwent THR and 15 traditional physiotherapy (for both groups, two series of 10 weekly sessions were performed). Before and after the study period, the following outcome measures were applied: Extended Disability Status Scale (EDSS), Barthel Index, Tinetti Performance-Oriented Mobility Assessment (POMA). In addition, patients of the THR group underwent a gait analysis to assess spatiotemporal gait parameters and ground reaction forces. The THR group showed a significant improvement in POMA scores (p<0.005) and two gait parameters: stride time (p<0.04) and ground reaction forces (p<0.01). No statistically significant change was found in the control group. The results of the study show that THR can improve balance and gait of ambulatory PwMS. Findings are preliminary, but promising and in line with the recent literature.

  19. Imaging gait analysis: An fMRI dual task study.

    Science.gov (United States)

    Bürki, Céline N; Bridenbaugh, Stephanie A; Reinhardt, Julia; Stippich, Christoph; Kressig, Reto W; Blatow, Maria

    2017-08-01

    In geriatric clinical diagnostics, gait analysis with cognitive-motor dual tasking is used to predict fall risk and cognitive decline. To date, the neural correlates of cognitive-motor dual tasking processes are not fully understood. To investigate these underlying neural mechanisms, we designed an fMRI paradigm to reproduce the gait analysis. We tested the fMRI paradigm's feasibility in a substudy with fifteen young adults and assessed 31 healthy older adults in the main study. First, gait speed and variability were quantified using the GAITRite © electronic walkway. Then, participants lying in the MRI-scanner were stepping on pedals of an MRI-compatible stepping device used to imitate gait during functional imaging. In each session, participants performed cognitive and motor single tasks as well as cognitive-motor dual tasks. Behavioral results showed that the parameters of both gait analyses, GAITRite © and fMRI, were significantly positively correlated. FMRI results revealed significantly reduced brain activation during dual task compared to single task conditions. Functional ROI analysis showed that activation in the superior parietal lobe (SPL) decreased less from single to dual task condition than activation in primary motor cortex and in supplementary motor areas. Moreover, SPL activation was increased during dual tasks in subjects exhibiting lower stepping speed and lower executive control. We were able to simulate walking during functional imaging with valid results that reproduce those from the GAITRite © gait analysis. On the neural level, SPL seems to play a crucial role in cognitive-motor dual tasking and to be linked to divided attention processes, particularly when motor activity is involved.

  20. General tensor discriminant analysis and gabor features for gait recognition.

    Science.gov (United States)

    Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J

    2007-10-01

    The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine

  1. Gait analysis in patients with chronic obstructive pulmonary disease: a systematic review.

    Science.gov (United States)

    Zago, Matteo; Sforza, Chiarella; Bonardi, Daniela Rita; Guffanti, Enrico Eugenio; Galli, Manuela

    2018-03-01

    Gait instability is a major fall-risk factor in patients with chronic obstructive pulmonary disease (COPD). Clinical gait analysis is a reliable tool to predict fall onsets. However, controversy still exists on gait impairments associated with COPD. Thus, the aims of this review were to evaluate the current understanding of spatiotemporal, kinematic and kinetic gait features in patients with COPD. In line with PRISMA guidelines, a systematic literature search was performed throughout Web of Science, PubMed Medline, Scopus, PEDro and Scielo databases. We considered observational cross-sectional studies evaluating gait features in patients with COPD as their primary outcome. Risk of bias and applicability of these papers were assessed according to the QUADAS-2 tool. Seven articles, cross-sectional studies published from 2011 to 2017, met the inclusion criteria. Sample size of patients with COPD ranged 14-196 (mean age range: 64-75 years). The main reported gait abnormalities were reduced step length and cadence, and altered variability of spatiotemporal parameters. Only subtle biomechanical changes were reported at the ankle level. A convincing mechanistic link between such gait impairments and falls in patients with COPD is still lacking. The paucity of studies, small sample sizes, gender and disease status pooling were the main risk of biases affecting the results uncertainty. Two research directions emerged: stricter cohorts characterization in terms of COPD phenotype and longitudinal studies. Quantitative assessment of gait would identify abnormalities and sensorimotor postural deficiencies that in turn may lead to better falling prevention strategies in COPD. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Aging effect on step adjustments and stability control in visually perturbed gait initiation.

    Science.gov (United States)

    Sun, Ruopeng; Cui, Chuyi; Shea, John B

    2017-10-01

    Gait adaptability is essential for fall avoidance during locomotion. It requires the ability to rapidly inhibit original motor planning, select and execute alternative motor commands, while also maintaining the stability of locomotion. This study investigated the aging effect on gait adaptability and dynamic stability control during a visually perturbed gait initiation task. A novel approach was used such that the anticipatory postural adjustment (APA) during gait initiation were used to trigger the unpredictable relocation of a foot-size stepping target. Participants (10 young adults and 10 older adults) completed visually perturbed gait initiation in three adjustment timing conditions (early, intermediate, late; all extracted from the stereotypical APA pattern) and two adjustment direction conditions (medial, lateral). Stepping accuracy, foot rotation at landing, and Margin of Dynamic Stability (MDS) were analyzed and compared across test conditions and groups using a linear mixed model. Stepping accuracy decreased as a function of adjustment timing as well as stepping direction, with older subjects exhibited a significantly greater undershoot in foot placement to late lateral stepping. Late adjustment also elicited a reaching-like movement (i.e. foot rotation prior to landing in order to step on the target), regardless of stepping direction. MDS measures in the medial-lateral and anterior-posterior direction revealed both young and older adults exhibited reduced stability in the adjustment step and subsequent steps. However, young adults returned to stable gait faster than older adults. These findings could be useful for future study of screening deficits in gait adaptability and preventing falls. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Gait characteristics after gait-oriented rehabilitation in chronic stroke.

    Science.gov (United States)

    Peurala, Sinikka H; Titianova, Ekaterina B; Mateev, Plamen; Pitkänen, Kauko; Sivenius, Juhani; Tarkka, Ina M

    2005-01-01

    To assess the effects of rehabilitation in thirty-seven ambulatory patients with chronic stroke during three weeks in-patient rehabilitation period. In the intervention group, each patient received 75 min physiotherapy daily every workday including 20 minutes in the electromechanical gait trainer with body-weight support (BWS). In the control group, each patient participated in 45 min conventional physiotherapy daily. Motor ability was assessed with the first five items of the Modified Motor Assessment Scale (MMAS1-5) and ten meters walking speed. Spatio-temporal gait characteristics were recorded with an electrical walkway. The MMAS1-5 (pgait characteristics improved only in the intervention group, as seen in increased Functional Ambulation Profile score (p=0.023), velocity (p=0.023), the step lengths (affected side, p=0.011, non-affected side p=0.040), the stride lengths (p=0.018, p=0.006) and decreased step-time differential (p=0.043). Furthermore, all gait characteristics and other motor abilities remained in the discharge level at the six months in the intervention group. It appears that BWS training gives a long-lasting benefit in gait qualities even in chronic stroke patients.

  4. Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: A simulation study

    Directory of Open Access Journals (Sweden)

    Nalin eHarischandra

    2011-11-01

    Full Text Available Here, we use a three-dimensional, neuro-musculo-mechanical model of a salamander with realistic physical parameters in order to investigate the role of sensory feedback in gait generation and transition. Activation of limb and axial muscles were driven by neural output patterns obtained from a central pattern generator (CPG which is composed of simulated spiking neurons with adaptation. The CPG consists of a body CPG and four limb CPGs that are interconnected via synapses both ipsilateraly and contralaterally. We use the model both with and without sensory modulation and for different combinations of ipsilateral and contralateral coupling between the limb CPGs. We found that the proprioceptive sensory inputs are essential in obtaining a coordinated walking gait. The sensory feedback includes the signals coming from the stretch receptor like intraspinal neurons located in the girdle regions and the limb stretch receptors residing in the hip and scapula regions of the salamander. On the other hand, coordinated motor output patterns for the trotting gait were obtainable without the sensory inputs. We found that the gait transition from walking to trotting can be induced by increased activity of the descending drive coming from the mesencephalic locomotor region (MLR and is helped by the sensory inputs at the hip and scapula regions detecting the late stance phase. More neurophysiological experiments are required to identify the precise type of mechanoreceptors in the salamander and the neural mechanisms mediating the sensory modulation.

  5. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.

    1991-01-01

    The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of neural network known as the multilayer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author). 17 refs, 8 figs, 2 tab

  6. Gait Complexity and Regularity Are Differently Modulated by Treadmill Walking in Parkinson's Disease and Healthy Population

    Directory of Open Access Journals (Sweden)

    Thibault Warlop

    2018-02-01

    Full Text Available Variability raises considerable interest as a promising and sensitive marker of dysfunction in physiology, in particular in neurosciences. Both internally (e.g., pathology and/or externally (e.g., environment generated perturbations and the neuro-mechanical responses to them contribute to the fluctuating dynamics of locomotion. Defective internal gait control in Parkinson's disease (PD, resulting in typical timing gait disorders, is characterized by the breakdown of the temporal organization of stride duration variability. Influence of external cue on gait pattern could be detrimental or advantageous depending on situations (healthy or pathological gait pattern, respectively. As well as being an interesting rehabilitative approach in PD, treadmills are usually implemented in laboratory settings to perform instrumented gait analysis including gait variability assessment. However, possibly acting as an external pacemaker, treadmill could modulate the temporal organization of gait variability of PD patients which could invalidate any gait variability assessment. This study aimed to investigate the immediate influence of treadmill walking (TW on the temporal organization of stride duration variability in PD and healthy population. Here, we analyzed the gait pattern of 20 PD patients and 15 healthy age-matched subjects walking on overground and on a motorized-treadmill (randomized order at a self-selected speed. The temporal organization and regularity of time series of walking were assessed on 512 consecutive strides and assessed by the application of non-linear mathematical methods (i.e., the detrended fluctuation analysis and power spectral density; and sample entropy, for the temporal organization and regularity of gait variability, respectively. A more temporally organized and regular gait pattern seems to emerge from TW in PD while no influence was observed on healthy gait pattern. Treadmill could afford the necessary framework to regulate gait

  7. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Omid Dehzangi

    2017-11-01

    Full Text Available The wide spread usage of wearable sensors such as in smart watches has provided continuous access to valuable user generated data such as human motion that could be used to identify an individual based on his/her motion patterns such as, gait. Several methods have been suggested to extract various heuristic and high-level features from gait motion data to identify discriminative gait signatures and distinguish the target individual from others. However, the manual and hand crafted feature extraction is error prone and subjective. Furthermore, the motion data collected from inertial sensors have complex structure and the detachment between manual feature extraction module and the predictive learning models might limit the generalization capabilities. In this paper, we propose a novel approach for human gait identification using time-frequency (TF expansion of human gait cycles in order to capture joint 2 dimensional (2D spectral and temporal patterns of gait cycles. Then, we design a deep convolutional neural network (DCNN learning to extract discriminative features from the 2D expanded gait cycles and jointly optimize the identification model and the spectro-temporal features in a discriminative fashion. We collect raw motion data from five inertial sensors placed at the chest, lower-back, right hand wrist, right knee, and right ankle of each human subject synchronously in order to investigate the impact of sensor location on the gait identification performance. We then present two methods for early (input level and late (decision score level multi-sensor fusion to improve the gait identification generalization performance. We specifically propose the minimum error score fusion (MESF method that discriminatively learns the linear fusion weights of individual DCNN scores at the decision level by minimizing the error rate on the training data in an iterative manner. 10 subjects participated in this study and hence, the problem is a 10-class

  8. Linear Parameter Varying Control of Induction Motors

    DEFF Research Database (Denmark)

    Trangbæk, Klaus

    The subject of this thesis is the development of linear parameter varying (LPV) controllers and observers for control of induction motors. The induction motor is one of the most common machines in industrial applications. Being a highly nonlinear system, it poses challenging control problems...... for high performance applications. This thesis demonstrates how LPV control theory provides a systematic way to achieve good performance for these problems. The main contributions of this thesis are the application of the LPV control theory to induction motor control as well as various contributions...

  9. Gait as evidence

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Larsen, Peter Kastmand

    2014-01-01

    This study examines what in Denmark may constitute evidence based on forensic anthropological gait analyses, in the sense of pointing to a match (or not) between a perpetrator and a suspect, based on video and photographic imagery. Gait and anthropometric measures can be used when direct facial...

  10. Feasibility study of a wearable exoskeleton for children: is the gait altered by adding masses on lower limbs?

    Directory of Open Access Journals (Sweden)

    Stefano Rossi

    Full Text Available We are designing a pediatric exoskeletal ankle robot (pediatric Anklebot to promote gait habilitation in children with Cerebral Palsy (CP. Few studies have evaluated how much or whether the unilateral loading of a wearable exoskeleton may have the unwanted effect of altering significantly the gait. The purpose of this study was to evaluate whether adding masses up to 2.5 kg, the estimated overall added mass of the mentioned device, at the knee level alters the gait kinematics. Ten healthy children and eight children with CP, with light or mild gait impairment, walked wearing a knee brace with several masses. Gait parameters and lower-limb joint kinematics were analyzed with an optoelectronic system under six conditions: without brace (natural gait and with masses placed at the knee level (0.5, 1.0, 1.5, 2.0, 2.5 kg. T-tests and repeated measures ANOVA tests were conducted in order to find noteworthy differences among the trial conditions and between loaded and unloaded legs. No statistically significant differences in gait parameters for both healthy children and children with CP were observed in the five "with added mass" conditions. We found significant differences among "natural gait" and "with added masses" conditions in knee flexion and hip extension angles for healthy children and in knee flexion angle for children with CP. This result can be interpreted as an effect of the mechanical constraint induced by the knee brace rather than the effect associated with load increase. The study demonstrates that the mechanical constraint induced by the brace has a measurable effect on the gait of healthy children and children with CP and that the added mass up to 2.5 kg does not alter the lower limb kinematics. This suggests that wearable devices weighing 25 N or less will not noticeably modify the gait patterns of the population examined here.

  11. Pathways linking regional hyperintensities in the brain and slower gait.

    Science.gov (United States)

    Bolandzadeh, Niousha; Liu-Ambrose, Teresa; Aizenstein, Howard; Harris, Tamara; Launer, Lenore; Yaffe, Kristine; Kritchevsky, Stephen B; Newman, Anne; Rosano, Caterina

    2014-10-01

    Cerebral white matter hyperintensities (WMHs) are involved in the evolution of impaired mobility and executive functions. Executive functions and mobility are also associated. Thus, WMHs may impair mobility directly, by disrupting mobility-related circuits, or indirectly, by disrupting circuits responsible for executive functions. Understanding the mechanisms underlying impaired mobility in late life will increase our capacity to develop effective interventions. To identify regional WMHs most related to slower gait and to examine whether these regional WMHs directly impact mobility, or indirectly by executive functions. Cross-sectional study. Twenty-one WMH variables (i.e., total WMH volume and WMHs in 20 tracts), gait speed, global cognition (Modified Mini-Mental State Examination; 3MS), and executive functions and processing speed (Digit-Symbol Substitution Test; DSST) were assessed. An L1-L2 regularized regression (i.e., Elastic Net model) identified the WMH variables most related to slower gait. Multivariable linear regression models quantified the association between these WMH variables and gait speed. Formal tests of mediation were also conducted. Community-based sample. Two hundred fifty-three adults (mean age: 83years, 58% women, 41% black). Gait speed. In older adults with an average gait speed of 0.91m/sec, total WMH volume, WMHs located in the right anterior thalamic radiation (ATRR) and frontal corpuscallosum (CCF) were most associated with slower gait. There was a >10% slower gait for each standard deviation of WMH in CCF, ATRR or total brain (standardized beta in m/sec [p value]: -0.11 [p=0.046], -0.15 [p=0.007] and -0.14 [p=0.010], respectively). These associations were substantially and significantly attenuated after adjustment for DSST. This effect was stronger for WMH in CCF than for ATRR or total WMH (standardized beta in m/sec [p value]: -0.07 [p=0.190], -0.12 [p=0.024] and -0.10 [p=0.049], respectively). Adjustment for 3MS did not change these

  12. Strength Training and Kinematics Parameters of Gait in Healthy Female Elderly

    Directory of Open Access Journals (Sweden)

    Heydar Sadeghi

    2008-10-01

    Full Text Available Objectives: This study was under taken to consider the effect of strength training on some kinematics parameters of gait (step length, cadence and speed walking. Methods & Materials: Twenty-four healthy elderly women (with average and standard deviation age of 61.53±2.84 years, height of 157.1±5.5 cm, weight of 69.13±7.6 kg and BMI 28.1±3.6 kg/m participated in this study. The strength of lower limb assessed using leg press test. The subjects were randomly divided in to control and experimental group. Video camera, 3DMax, Premier and Photoshop soft ware’s were used to measure speed walking, cadence and step length before and after training program. The control group continued their daily activity, while experimental group were in eight weeks for strength training for lower limb and body stabilizer muscles. Within group differences using T-test for independent groups and between group differences were analyzed using by T-test for dependent group before and after training at significant level of 0.05. Results: The changes of speed walking and lower limb strength weren't significant in control group. While significant differences observed in step length and speed walking and lower limb strength in experimental group. In comparison between groups, except of cadence, step length, speed walking and lower limb strength showed significant increase in experimental group. Conclusion: The results confirmed the effectiveness of strength training and increasing lower limb and stabilizer muscles strength on step length and speed walking in healthy elder women.

  13. Pilot study of atomoxetine in patients with Parkinson's disease and dopa-unresponsive Freezing of Gait.

    Science.gov (United States)

    Revuelta, Gonzalo J; Embry, Aaron; Elm, Jordan J; Gregory, Chris; Delambo, Amy; Kautz, Steve; Hinson, Vanessa K

    2015-01-01

    Freezing of gait (FoG) is a common and debilitating condition in Parkinson's disease (PD) associated with executive dysfunction. A subtype of FoG does not respond to dopaminergic therapy and may be related to noradrenergic deficiency. This pilot study explores the effects of atomoxetine on gait in PD patients with dopa-unresponsive FoG using a novel paradigm for objective gait assessment. Ten patients with PD and dopa-unresponsive FoG were enrolled in this eight-week open label pilot study. Assessments included an exploratory gait analysis protocol that quantified spatiotemporal parameters during straight-away walking and turning, while performing a dual task. Clinical, and subjective assessments of gait, quality of life, and safety were also administered. The primary outcome was a validated subjective assessment for FoG (FOG-Q). Atomoxetine was well tolerated, however, no significant change was observed in the primary outcome. The gait analysis protocol correlated well with clinical scales, but not with subjective assessments. DBS patients were more likely to increase gait velocity (p = 0.033), and improved in other clinical assessments. Objective gait analysis protocols assessing gait while dual tasking are feasible and useful for this patient population, and may be superior correlates of FoG severity than subjective measures. These findings can inform future trials in this population.

  14. A Pilot Clinical Trial to Objectively Assess the Efficacy of Electroacupuncture on Gait in Patients with Parkinson's Disease Using Body Worn Sensors.

    Directory of Open Access Journals (Sweden)

    Hong Lei

    Full Text Available Gait disorder, a key contributor to fall and poor quality of life, represents a major therapeutic challenge in Parkinson's disease (PD. The efficacy of acupuncture for PD remains unclear, largely due to methodological flaws and lack of studies using objective outcome measures.To objectively assess the efficacy of electroacupuncture (EA for gait disorders using body-worn sensor technology in patients with PD.In this randomized pilot study, both the patients and assessors were masked. Fifteen PD patients were randomly assigned to an experimental group (n = 10 or to a control group (n = 5. Outcomes were assessed at baseline and after completion of three weekly EA treatments. Measurements included gait analysis during single-task habitual walking (STHW, dual-task habitual walking (DTHW, single-task fast walking (STFW, dual-task fast walking (DTFW. In addition, Unified Parkinson's Disease Rating Scale (UPDRS, SF-12 health survey, short Falls Efficacy Scale-International (FES-I, and visual analog scale (VAS for pain were utilized.All gait parameters were improved in the experimental group in response to EA treatment. After adjustment by age and BMI, the improvement achieved statistical significant level for gait speed under STHW, STFW, and DTFW (9%-19%, p0.110. The highest correlation between gait parameters and UPRDS scores at baseline was observed between gait speed during STFW and UPDRS II (r = -0.888, p = 0.004. The change in this gait parameter in response to active intervention was positively correlated with baseline UPDRS (r = 0.595, p = 0.057. Finally, comparison of responses to treatment between groups showed significant improvement, prominently in gait speed (effect size 0.32-1.16, p = 0.001.This study provides the objective proof of concept for potential benefits of non-pharmaceutical based EA therapy on enhancing gait in patients with PD.ClinicalTrials.gov NCT02556164.

  15. Effects of physiotherapy treatment on knee osteoarthritis gait data using principal component analysis.

    Science.gov (United States)

    Gaudreault, Nathaly; Mezghani, Neila; Turcot, Katia; Hagemeister, Nicola; Boivin, Karine; de Guise, Jacques A

    2011-03-01

    Interpreting gait data is challenging due to intersubject variability observed in the gait pattern of both normal and pathological populations. The objective of this study was to investigate the impact of using principal component analysis for grouping knee osteoarthritis (OA) patients' gait data in more homogeneous groups when studying the effect of a physiotherapy treatment. Three-dimensional (3D) knee kinematic and kinetic data were recorded during the gait of 29 participants diagnosed with knee OA before and after they received 12 weeks of physiotherapy treatment. Principal component analysis was applied to extract groups of knee flexion/extension, adduction/abduction and internal/external rotation angle and moment data. The treatment's effect on parameters of interest was assessed using paired t-tests performed before and after grouping the knee kinematic data. Increased quadriceps and hamstring strength was observed following treatment (Pphysiotherapy on gait mechanics of knee osteoarthritis patients may be masked or underestimated if kinematic data are not separated into more homogeneous groups when performing pre- and post-treatment comparisons. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Intention detection of gait initiation using EMG and kinematic data.

    Science.gov (United States)

    Wentink, E C; Beijen, S I; Hermens, H J; Rietman, J S; Veltink, P H

    2013-02-01

    Gait initiation in transfemoral amputees (TFA) is different from non-amputees. This is mainly caused by the lack of stability and push-off from the prosthetic leg. Adding control and artificial push-off to the prosthesis may therefore be beneficial to TFA. In this study the feasibility of real-time intention detection of gait initiation was determined by mimicking the TFA situation in non-amputees. EMG and inertial sensor data was measured in 10 non-amputees. Only data available in TFA was used to determine if gait initiation can be predicted in time to control a transfemoral prosthesis to generate push-off and stability. Toe-off and heel-strike of the leading limb are important parameters to be detected, to control a prosthesis and to time push-off. The results show that toe-off and heel-strike of the leading limb can be detected using EMG and kinematic data in non-amputees 130-260 ms in advance. This leaves enough time to control a prosthesis. Based on these results we hypothesize that similar results can be found in TFA, allowing for adequate control of a prosthesis during gait initiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks

    DEFF Research Database (Denmark)

    Bellardita, Carmelo; Kiehn, Ole

    2015-01-01

    behavioral outcomes expressed at different speeds of locomotion. Here, we use detailed kinematic analyses to search for signatures of a modular organization of locomotor circuits in intact and genetically modified mice moving at different speeds of locomotion. We show that wild-type mice display three...... distinct gaits: two alternating, walk and trot, and one synchronous, bound. Each gait is expressed in distinct ranges of speed with phenotypic inter-limb and intra-limb coordination. A fourth gait, gallop, closely resembled bound in most of the locomotor parameters but expressed diverse inter......-limb coordination. Genetic ablation of commissural V0V neurons completely removed the expression of one alternating gait, trot, but left intact walk, gallop, and bound. Ablation of commissural V0V and V0D neurons led to a loss of walk, trot, and gallop, leaving bound as the default gait. Our study provides...

  18. Equine Assisted Therapy and Changes in Gait for a Young Adult Female with Down Syndrome

    Directory of Open Access Journals (Sweden)

    Katherine J. Coffey

    2015-10-01

    Full Text Available The purpose of this study was to examine the effects of equine assisted therapy on selected gait parameters in a person with Down syndrome. One female participant with Down syndrome completed two therapeutic horseback riding programs, each consisting of six riding sessions. Specific gait characteristics were analyzed with a trend analysis of the data by examining the means of the different variables. The trend analysis revealed a difference in stride length as well as hip and knee angle. These results indicate that over the course of the two therapeutic horseback riding programs, changes in gait occurred. Therefore, therapeutic horseback riding may have the potential to benefit gait characteristics and stability in young adult females with Down syndrome; however, further research is warranted.

  19. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  20. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    International Nuclear Information System (INIS)

    Ezzati, Ali; Katz, Mindy J.; Lipton, Michael L.; Lipton, Richard B.; Verghese, Joe

    2015-01-01

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  1. Cognition and gait show a selective pattern of association dominated by phenotype in incident Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Sue eLord

    2014-10-01

    Full Text Available Reports outlining the association between gait and cognition in Parkinson’s disease (PD are limited because of methodological issues and a bias towards studying advanced disease. This study examines the association between gait and cognition in 121 early PD who were characterized according to motor phenotype, and 184 healthy older adults. Quantitative gait was captured using a 7m GAITrite walkway whilst walking for two minutes under single task conditions and described by five domains (pace, rhythm, variability, asymmetry and postural control. Cognitive outcomes were summarized by six domains (attention, working memory, visual memory, executive function, visuospatial function and global cognition. Partial correlations and multivariate linear regression were used to determine independent associations for all participants and for PD tremor-dominant (TD and postural instability and gait disorder (PIGD phenotypes, controlling for age, sex, and premorbid intelligence using the National Adult Reading Test (NART. Cognitive and gait outcomes were significantly worse for PD. Gait, but not cognitive outcomes, were selectively worse for the PIGD phenotype. Significant associations emerged for two gait domains for controls (pace and postural control and four gait domains for PD (pace, rhythm, variability, and postural control.The strongest correlation was for pace and attention for PD and controls. Associations were not significant for participants with the TD phenotype. In early PD the cognitive correlates of gait are predominantly with fronto-executive functions, and are determined by the PIGD PD phenotype. These associations provide a basis for understanding the complex role of cognition in Parkinsonian gait.

  2. Genetic parameters for racing records in trotters using linear and generalized linear models.

    Science.gov (United States)

    Suontama, M; van der Werf, J H J; Juga, J; Ojala, M

    2012-09-01

    Heritability and repeatability and genetic and phenotypic correlations were estimated for trotting race records with linear and generalized linear models using 510,519 records on 17,792 Finnhorses and 513,161 records on 25,536 Standardbred trotters. Heritability and repeatability were estimated for single racing time and earnings traits with linear models, and logarithmic scale was used for racing time and fourth-root scale for earnings to correct for nonnormality. Generalized linear models with a gamma distribution were applied for single racing time and with a multinomial distribution for single earnings traits. In addition, genetic parameters for annual earnings were estimated with linear models on the observed and fourth-root scales. Racing success traits of single placings, winnings, breaking stride, and disqualifications were analyzed using generalized linear models with a binomial distribution. Estimates of heritability were greatest for racing time, which ranged from 0.32 to 0.34. Estimates of heritability were low for single earnings with all distributions, ranging from 0.01 to 0.09. Annual earnings were closer to normal distribution than single earnings. Heritability estimates were moderate for annual earnings on the fourth-root scale, 0.19 for Finnhorses and 0.27 for Standardbred trotters. Heritability estimates for binomial racing success variables ranged from 0.04 to 0.12, being greatest for winnings and least for breaking stride. Genetic correlations among racing traits were high, whereas phenotypic correlations were mainly low to moderate, except correlations between racing time and earnings were high. On the basis of a moderate heritability and moderate to high repeatability for racing time and annual earnings, selection of horses for these traits is effective when based on a few repeated records. Because of high genetic correlations, direct selection for racing time and annual earnings would also result in good genetic response in racing success.

  3. Impact of serial gait analyses on long-term outcome of hippotherapy in children and adolescents with cerebral palsy.

    Science.gov (United States)

    Mutoh, Tomoko; Mutoh, Tatsushi; Tsubone, Hirokazu; Takada, Makoto; Doumura, Misato; Ihara, Masayo; Shimomura, Hideo; Taki, Yasuyuki; Ihara, Masahiro

    2018-02-01

    The aim of this study was to obtain data of gait parameters on predicting long-term outcome of hippotherapy. In 20 participants (4-19 years; GMFCS levels I to III) with cerebral palsy (CP), gait and balance abilities were examined after 10-m walking test using a portable motion recorder. Hippotherapy was associated with increased Gross Motor Function Measure (GMFM)-66 at 1 year from the baseline (P Hippotherapy increased stride length, walking speed, and mean acceleration and decreased horizontal/vertical displacement ratio over time (P hippotherapy on motor and balance functions can be assessed from the early phase by serial monitoring of the gait parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. History of cannabis use is associated with altered gait.

    Science.gov (United States)

    Pearson-Dennett, Verity; Todd, Gabrielle; Wilcox, Robert A; Vogel, Adam P; White, Jason M; Thewlis, Dominic

    2017-09-01

    Despite evidence that cannabinoid receptors are located in movement-related brain regions (e.g., basal ganglia, cerebral cortex, and cerebellum), and that chronic cannabis use is associated with structural and functional brain changes, little is known about the long-term effect of cannabis use on human movement. The aim of the current study was to investigate balance and walking gait in adults with a history of cannabis use. We hypothesised that cannabis use is associated with subtle changes in gait and balance that are insufficient in magnitude for detection in a clinical setting. Cannabis users (n=22, 24±6years) and non-drug using controls (n=22, 25±8years) completed screening tests, a gait and balance test (with a motion capture system and in-built force platforms), and a clinical neurological examination of movement. Compared to controls, cannabis users exhibited significantly greater peak angular velocity of the knee (396±30 versus 426±50°/second, P=0.039), greater peak elbow flexion (53±12 versus 57±7°, P=0.038) and elbow range of motion (33±13 versus 36±10°, P=0.044), and reduced shoulder flexion (41±19 versus 26±16°, P=0.007) during walking gait. However, balance and neurological parameters did not significantly differ between the groups. The results suggest that history of cannabis use is associated with long-lasting changes in open-chain elements of walking gait, but the magnitude of change is not clinically detectable. Further research is required to investigate if the subtle gait changes observed in this population become more apparent with aging and increased cannabis use. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Global and regional associations of smaller cerebral gray and white matter volumes with gait in older people.

    Directory of Open Access Journals (Sweden)

    Michele L Callisaya

    Full Text Available BACKGROUND: Gait impairments increase with advancing age and can lead to falls and loss of independence. Brain atrophy also occurs in older age and may contribute to gait decline. We aimed to investigate global and regional relationships of cerebral gray and white matter volumes with gait speed, and its determinants step length and cadence, in older people. METHODS: In a population-based study, participants aged >60 years without Parkinson's disease or brain infarcts underwent magnetic resonance imaging and gait measurements using a computerized walkway. Linear regression was used to study associations of total gray and white matter volumes with gait, adjusting for each other, age, sex, height and white matter hyperintensity volume. Other covariates considered in analyses included weight and vascular disease history. Voxel-based morphometry was used to study regional relationships of gray and white matter with gait. RESULTS: There were 305 participants, mean age 71.4 (6.9 years, 54% male, mean gait speed 1.16 (0.22 m/s. Smaller total gray matter volume was independently associated with poorer gait speed (p = 0.001 and step length (p<0.001, but not cadence. Smaller volumes of cortical and subcortical gray matter in bilateral regions important for motor control, vision, perception and memory were independently associated with slower gait speed and shorter steps. No global or regional associations were observed between white matter volume and gait independent of gray matter volume, white matter hyperintensity volume and other covariates. CONCLUSION: Smaller gray matter volume in bilaterally distributed brain networks serving motor control was associated with slower gait speed and step length, but not cadence.

  6. Single-Task and Dual-Task Gait Among Collegiate Athletes of Different Sport Classifications: Implications for Concussion Management.

    Science.gov (United States)

    Howell, David R; Oldham, Jessie R; DiFabio, Melissa; Vallabhajosula, Srikant; Hall, Eric E; Ketcham, Caroline J; Meehan, William P; Buckley, Thomas A

    2017-02-01

    Gait impairments have been documented following sport-related concussion. Whether preexisting gait pattern differences exist among athletes who participate in different sport classifications, however, remains unclear. Dual-task gait examinations probe the simultaneous performance of everyday tasks (ie, walking and thinking), and can quantify gait performance using inertial sensors. The purpose of this study was to compare the single-task and dual-task gait performance of collision/contact and noncontact athletes. A group of collegiate athletes (n = 265) were tested before their season at 3 institutions (mean age= 19.1 ± 1.1 years). All participants stood still (single-task standing) and walked while simultaneously completing a cognitive test (dual-task gait), and completed walking trials without the cognitive test (single-task gait). Spatial-temporal gait parameters were compared between collision/contact and noncontact athletes using MANCOVAs; cognitive task performance was compared using ANCOVAs. No significant single-task or dual-task gait differences were found between collision/contact and noncontact athletes. Noncontact athletes demonstrated higher cognitive task accuracy during single-task standing (P = .001) and dual-task gait conditions (P = .02) than collision/contact athletes. These data demonstrate the utility of a dual-task gait assessment outside of a laboratory and suggest that preinjury cognitive task performance during dual-tasks may differ between athletes of different sport classifications.

  7. Computational intelligence in gait research: a perspective on current applications and future challenges.

    Science.gov (United States)

    Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2009-09-01

    Our mobility is an important daily requirement so much so that any disruption to it severely degrades our perceived quality of life. Studies in gait and human movement sciences, therefore, play a significant role in maintaining the well-being of our mobility. Current gait analysis involves numerous interdependent gait parameters that are difficult to adequately interpret due to the large volume of recorded data and lengthy assessment times in gait laboratories. A proposed solution to these problems is computational intelligence (CI), which is an emerging paradigm in biomedical engineering most notably in pathology detection and prosthesis design. The integration of CI technology in gait systems facilitates studies in disorders caused by lower limb defects, cerebral disorders, and aging effects by learning data relationships through a combination of signal processing and machine learning techniques. Learning paradigms, such as supervised learning, unsupervised learning, and fuzzy and evolutionary algorithms, provide advanced modeling capabilities for biomechanical systems that in the past have relied heavily on statistical analysis. CI offers the ability to investigate nonlinear data relationships, enhance data interpretation, design more efficient diagnostic methods, and extrapolate model functionality. These are envisioned to result in more cost-effective, efficient, and easy-to-use systems, which would address global shortages in medical personnel and rising medical costs. This paper surveys current signal processing and CI methodologies followed by gait applications ranging from normal gait studies and disorder detection to artificial gait simulation. We review recent systems focusing on the existing challenges and issues involved in making them successful. We also examine new research in sensor technologies for gait that could be combined with these intelligent systems to develop more effective healthcare solutions.

  8. Kinematic Gait Changes Following Serial Casting and Bracing to Treat Toe Walking in a Child With Autism.

    Science.gov (United States)

    Barkocy, Marybeth; Dexter, James; Petranovich, Colleen

    2017-07-01

    To evaluate the effectiveness of serial casting in a child with autism spectrum disorder (ASD) exhibiting a toe-walking gait pattern with equinus contractures. Although many children with ASD toe walk, little research on physical therapy interventions exists for this population. Serial casting has been validated for use in idiopathic toe walking to increase passive dorsiflexion and improve gait, but not for toe walking in children with ASD. Serial casting followed by ankle-foot orthosis use was implemented to treat a child with ASD who had an obligatory equinus gait pattern. Gait analysis supported improvements in kinematic, spatial, and temporal parameters of gait, and the child maintained a consistent heel-toe gait at 2-year follow-up. STATEMENT OF CONCLUSION AND RECOMMENDATIONS FOR CLINICAL PRACTICE:: Serial casting followed by ankle-foot orthosis use is a viable treatment option for toe walking in children with ASD.

  9. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults

    NARCIS (Netherlands)

    Weijer, R H A; Hoozemans, M J M; van Dieën, J H; Pijnappels, M

    2018-01-01

    BACKGROUND: Quality of gait during daily life activities and perceived gait stability are both independent risk factors for future falls in older adults. RESEARCH QUESTION: We investigated whether perceived gait stability modulates the association between gait quality and falling in older adults.

  10. Combining gait optimization with passive system to increase the energy efficiency of a humanoid robot walking movement

    International Nuclear Information System (INIS)

    Pereira, Ana I.; Lima, José; Costa, Paulo

    2015-01-01

    There are several approaches to create the Humanoid robot gait planning. This problem presents a large number of unknown parameters that should be found to make the humanoid robot to walk. Optimization in simulation models can be used to find the gait based on several criteria such as energy minimization, acceleration, step length among the others. The energy consumption can also be reduced with elastic elements coupled to each joint. The presented paper addresses an optimization method, the Stretched Simulated Annealing, that runs in an accurate and stable simulation model to find the optimal gait combined with elastic elements. Final results demonstrate that optimization is a valid gait planning technique

  11. Combining gait optimization with passive system to increase the energy efficiency of a humanoid robot walking movement

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ana I. [Polytechnic Institute of Bragança (Portugal); ALGORITMI,University of Minho (Portugal); Lima, José [Polytechnic Institute of Bragança (Portugal); INESC TEC (formerly INESC Porto) Porto (Portugal); Costa, Paulo [Faculty of Engineering, University of Porto (Portugal); INESC TEC (formerly INESC Porto) Porto (Portugal)

    2015-03-10

    There are several approaches to create the Humanoid robot gait planning. This problem presents a large number of unknown parameters that should be found to make the humanoid robot to walk. Optimization in simulation models can be used to find the gait based on several criteria such as energy minimization, acceleration, step length among the others. The energy consumption can also be reduced with elastic elements coupled to each joint. The presented paper addresses an optimization method, the Stretched Simulated Annealing, that runs in an accurate and stable simulation model to find the optimal gait combined with elastic elements. Final results demonstrate that optimization is a valid gait planning technique.

  12. Association of Dual-Task Gait With Incident Dementia in Mild Cognitive Impairment: Results From the Gait and Brain Study.

    Science.gov (United States)

    Montero-Odasso, Manuel M; Sarquis-Adamson, Yanina; Speechley, Mark; Borrie, Michael J; Hachinski, Vladimir C; Wells, Jennie; Riccio, Patricia M; Schapira, Marcelo; Sejdic, Ervin; Camicioli, Richard M; Bartha, Robert; McIlroy, William E; Muir-Hunter, Susan

    2017-07-01

    Gait performance is affected by neurodegeneration in aging and has the potential to be used as a clinical marker for progression from mild cognitive impairment (MCI) to dementia. A dual-task gait test evaluating the cognitive-motor interface may predict dementia progression in older adults with MCI. To determine whether a dual-task gait test is associated with incident dementia in MCI. The Gait and Brain Study is an ongoing prospective cohort study of community-dwelling older adults that enrolled 112 older adults with MCI. Participants were followed up for 6 years, with biannual visits including neurologic, cognitive, and gait assessments. Data were collected from July 2007 to March 2016. Incident all-cause dementia was the main outcome measure, and single- and dual-task gait velocity and dual-task gait costs were the independent variables. A neuropsychological test battery was used to assess cognition. Gait velocity was recorded under single-task and 3 separate dual-task conditions using an electronic walkway. Dual-task gait cost was defined as the percentage change between single- and dual-task gait velocities: ([single-task gait velocity - dual-task gait velocity]/ single-task gait velocity) × 100. Cox proportional hazard models were used to estimate the association between risk of progression to dementia and the independent variables, adjusted for age, sex, education, comorbidities, and cognition. Among 112 study participants with MCI, mean (SD) age was 76.6 (6.9) years, 55 were women (49.1%), and 27 progressed to dementia (24.1%), with an incidence rate of 121 per 1000 person-years. Slow single-task gait velocity (gait cost while counting backward (HR, 3.79; 95% CI, 1.57-9.15; P = .003) and naming animals (HR, 2.41; 95% CI, 1.04-5.59; P = .04) were associated with dementia progression (incidence rate, 155 per 1000 person-years). The models remained robust after adjusting by baseline cognition except for dual-task gait cost when dichotomized. Dual

  13. The relationship between anterior pelvic tilt and gait, balance in patient with chronic stroke.

    Science.gov (United States)

    Kim, Myoung-Kwon; Kim, Seong-Gil; Shin, Young-Jun; Choi, Eun-Hong; Choe, Yu-Won

    2018-01-01

    [Purpose] The aim of this study is to find out the association between anterior pelvic tilt and gait and balance in chronic stroke. [Subjects and Methods] Fourteen chronic stroke patients were included in this study. A palpation meter was employed to measure the anterior inclination of the pelvis. A GAITRite system automates measuring temporal and spatial gait parameters. A 10-Meter Walk test was used to measure gait speed. The Timed Up and Go test was used to measure the dynamic balance ability and gait ability of the participants. A BioRescue was used to assess balance by measuring the moving distance and area of the center of pressure. [Results] There were significant negative correlations between pelvic anterior tilt and velocity, step length, and stride. There were significant positive correlations between velocity and cadence, step length, and stride length. There were significant negative correlations between velocity and cycle time, H-H base, TUG, and 10MWT. There was significant negative correlation between cadence and cycle time and H-H base. [Conclusion] This study showed a negative correlation between pelvic anterior tilt and gait function including gait speed and step length.

  14. Is Freezing of Gait in Parkinson's Disease a Result of Multiple Gait Impairments? Implications for Treatment

    Science.gov (United States)

    Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M.

    2012-01-01

    Several gait impairments have been associated with freezing of gait (FOG) in patients with Parkinson's disease (PD). These include deteriorations in rhythm control, gait symmetry, bilateral coordination of gait, dynamic postural control and step scaling. We suggest that these seemingly independent gait features may have mutual interactions which, during certain circumstances, jointly drive the predisposed locomotion system into a FOG episode. This new theoretical framework is illustrated by the evaluation of the potential relationships between the so-called “sequence effect”, that is, impairments in step scaling, and gait asymmetry just prior to FOG. We further discuss what factors influence gait control to maintain functional gait. “Triggers”, for example, such as attention shifts or trajectory transitions, may precede FOG. We propose distinct categories of interventions and describe examples of existing work that support this idea: (a) interventions which aim to maintain a good level of locomotion control especially with respect to aspects related to FOG; (b) those that aim at avoiding FOG “triggers”; and (c) those that merely aim to escape from FOG once it occurs. The proposed theoretical framework sets the stage for testable hypotheses regarding the mechanisms that lead to FOG and may also lead to new treatment ideas. PMID:22288021

  15. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-02-28

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  16. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-01-01

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns. PMID:28264503

  17. Examination of the gait pattern based on adjusting and resulting components of the stride-to-stride variability

    DEFF Research Database (Denmark)

    Laessoe, Uffe; Jensen, Niels Martin Brix; Madeleine, Pascal

    2017-01-01

    Stride-to-stride variability may be used as an indicator in the assessment of gait performance, but the evaluation of this parameter is not trivial. In the gait pattern, a deviation in one stride must be corrected within the next strides (elemental variables) to ensure a steady gait (performance .......5 to 2 strides with 0.5 stride increments. The time lag values corresponded to the following contralateral stride, the following ipsilateral stride, the second following contralateral stride and the second following ipsilateral stride....

  18. Gait disorders in the elderly and dual task gait analysis: a new approach for identifying motor phenotypes.

    Science.gov (United States)

    Auvinet, Bernard; Touzard, Claude; Montestruc, François; Delafond, Arnaud; Goeb, Vincent

    2017-01-31

    Gait disorders and gait analysis under single and dual-task conditions are topics of great interest, but very few studies have looked for the relevance of gait analysis under dual-task conditions in elderly people on the basis of a clinical approach. An observational study including 103 patients (mean age 76.3 ± 7.2, women 56%) suffering from gait disorders or memory impairment was conducted. Gait analysis under dual-task conditions was carried out for all patients. Brain MRI was performed in the absence of contra-indications. Three main gait variables were measured: walking speed, stride frequency, and stride regularity. For each gait variable, the dual task cost was computed and a quartile analysis was obtained. Nonparametric tests were used for all the comparisons (Wilcoxon, Kruskal-Wallis, Fisher or Chi 2 tests). Four clinical subgroups were identified: gait instability (45%), recurrent falls (29%), memory impairment (18%), and cautious gait (8%). The biomechanical severity of these subgroups was ordered according to walking speed and stride regularity under both conditions, from least to most serious as follows: memory impairment, gait instability, recurrent falls, cautious gait (p < 0.01 for walking speed, p = 0.05 for stride regularity). According to the established diagnoses of gait disorders, 5 main pathological subgroups were identified (musculoskeletal diseases (n = 11), vestibular diseases (n = 6), mild cognitive impairment (n = 24), central nervous system pathologies, (n = 51), and without diagnosis (n = 8)). The dual task cost for walking speed, stride frequency and stride regularity were different among these subgroups (p < 0.01). The subgroups mild cognitive impairment and central nervous system pathologies both showed together a higher dual task cost for each variable compared to the other subgroups combined (p = 0.01). The quartile analysis of dual task cost for stride frequency and stride regularity

  19. A novel approach to linearization of the electromagnetic parameters of tokamaks with an iron core

    Energy Technology Data Exchange (ETDEWEB)

    Fu, P. E-mail: fupeng@mail.ipp.ac.cn; Liu, Z.Z.; Zou, J.H

    2002-05-01

    The equivalent model of an iron core tokamak is developed, in which the electromagnetic parameters of several pairs of coils in opposite series (PCOS) are not dependent on the saturation of the iron core during tokamak operation. With this the electromagnetic parameters of all the coils in an iron core tokamak can be linearized, As an example, the electromagnetic parameters of Hefei Super-conductive Tokamak with iron core (HT-7) are linearized, and it is in good agreement with the experimental results. The linearization approach can be applied in real time plasma control and electromagnetic analysis.

  20. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    Science.gov (United States)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  1. Dual-tasking and gait in people with Mild Cognitive Impairment. The effect of working memory

    Directory of Open Access Journals (Sweden)

    Phillips Natalie A

    2009-09-01

    Full Text Available Abstract Background Cognition and mobility in older adults are closely associated and they decline together with aging. Studies evaluating associations between cognitive factors and gait performance in people with Mild Cognitive Impairment (MCI are scarce. In this study, our aim was to determine whether specific cognitive factors have a more identifiable effect on gait velocity during dual-tasking in people with MCI. Methods Fifty-five participants, mean age 77.7 (SD = 5.9, 45% women, with MCI were evaluated for global cognition, working memory, executive function, and attention. Gait Velocity (GV was measured under a single-task condition (single GV and under two dual-task conditions: 1 while counting backwards (counting GV, 2 while naming animals (verbal GV. Multivariable linear regression analysis was used to examine associations with an alpha-level of 0.05. Results Participants experienced a reduction in GV while engaging in dual-task challenges (p Conclusion In older adults with MCI, low working memory performance was associated with slow GV. Dual-task conditions showed the strongest associations with gait slowing. Our findings suggest that cortical control of gait is associated with decline in working memory in people with MCI.

  2. Controlling propulsive forces in gait initiation in transfemoral amputees

    NARCIS (Netherlands)

    van Keeken, Helco G.; Vrieling, Aline H.; Hof, At L.; Halbertsma, Jan P. K.; Schoppen, Tanneke; Postema, Klaas; Otten, Bert

    During prosthetic gait initiation, transfemoral (TF) amputees control the spatial and temporal parameters that modulate the propulsive forces, the positions of the center of pressure (CoP), and the center of mass (CoM). Whether their sound leg or the prosthetic leg is leading, the TF amputees reach

  3. Three-Dimensional Trunk and Lower Limbs Characteristics during Gait in Patients with Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Elzbieta Mirek

    2017-10-01

    Full Text Available Objective: A number of studies on gait disturbances have been conducted, however, no clear pattern of gait disorders was described. The aim of the study was to characterize the gait pattern in HD patients by conducting analysis of mean angular movement changes the lower limb joints and trunk (kinematics parameters.Methods: The study group consisted of 30 patients with HD (17 women and 13 men. The reference data include the results of 30 healthy subjects (17 women and 13 men. Registration of gait with the Vicon 250 system was performed using passive markers attached to specific anthropometric points directly on the skin, based on the Golem biomechanical model (Oxford Metrics Ltd.. The research group and the control group were tested once.Results: Statistically significant (p < 0.05 angular changes in gait cycle for HD patients were observed in: insufficient plantar flexion during Loading Response and Pre-swing phases; insufficient flexion of the knee joint during Initial Swing and Mid Swing phases; excessive flexion of the hip in Terminal Stance and Pre-swing phases and over-normative forward inclination of the trunk in all gait phases. It should be noted that the group of patients with HD obtained, for all the mean angular movement changes higher standard deviation.Conclusion: A characteristic gait disorder common to all patients with HD occurring throughout the whole duration of the gait cycle is a pathological anterior tilt of the trunk. The results will significantly contribute to programming physiotherapy for people with HD, aimed at stabilizing the trunk in a position of extension during gait.

  4. Automated Gait Analysis Through Hues and Areas (AGATHA): a method to characterize the spatiotemporal pattern of rat gait

    Science.gov (United States)

    Kloefkorn, Heidi E.; Pettengill, Travis R.; Turner, Sara M. F.; Streeter, Kristi A.; Gonzalez-Rothi, Elisa J.; Fuller, David D.; Allen, Kyle D.

    2016-01-01

    While rodent gait analysis can quantify the behavioral consequences of disease, significant methodological differences exist between analysis platforms and little validation has been performed to understand or mitigate these sources of variance. By providing the algorithms used to quantify gait, open-source gait analysis software can be validated and used to explore methodological differences. Our group is introducing, for the first time, a fully-automated, open-source method for the characterization of rodent spatiotemporal gait patterns, termed Automated Gait Analysis Through Hues and Areas (AGATHA). This study describes how AGATHA identifies gait events, validates AGATHA relative to manual digitization methods, and utilizes AGATHA to detect gait compensations in orthopaedic and spinal cord injury models. To validate AGATHA against manual digitization, results from videos of rodent gait, recorded at 1000 frames per second (fps), were compared. To assess one common source of variance (the effects of video frame rate), these 1000 fps videos were re-sampled to mimic several lower fps and compared again. While spatial variables were indistinguishable between AGATHA and manual digitization, low video frame rates resulted in temporal errors for both methods. At frame rates over 125 fps, AGATHA achieved a comparable accuracy and precision to manual digitization for all gait variables. Moreover, AGATHA detected unique gait changes in each injury model. These data demonstrate AGATHA is an accurate and precise platform for the analysis of rodent spatiotemporal gait patterns. PMID:27554674

  5. A mechanical energy analysis of gait initiation

    Science.gov (United States)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  6. A 3D musculo-mechanical model of the salamander for the study of different gaits and modes of locomotion

    Directory of Open Access Journals (Sweden)

    Nalin eHarischandra

    2010-12-01

    Full Text Available Computer simulation has been used to investigate several aspectsof locomotion in salamanders. Here we introduce a three-dimensionalforward dynamics mechanical model of a salamander, with physicallyrealistic weight and size parameters. Movements of the four limbs and ofthe trunk and tail are generated by sets of linearly modeled skeletalmuscles. In this study, activation of these muscles were driven byprescribed neural output patterns. The model was successfully used tomimic locomotion on level ground and in water. We compare thewalking gait where a wave of activity in the axial muscles travelsbetween the girdles, with the trotting gait in simulations usingthe musculo-mechanical model. In a separate experiment, the model is usedto compare different strategies for turning while stepping; either bybending the trunk or by using side-stepping in the front legs. We foundthat for turning, the use of side-stepping alone or in combination withtrunk bending, was more effective than the use of trunk bending alone. Weconclude that the musculo-mechanical model described here together with aproper neural controller is useful for neuro-physiological experiments insilico.

  7. Evaluating alternative gait strategies using evolutionary robotics.

    Science.gov (United States)

    Sellers, William I; Dennis, Louise A; W -J, Wang; Crompton, Robin H

    2004-05-01

    Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids.

  8. Gait alterations in the UAE population with and without diabetic complications using both traditional and entropy measures.

    Science.gov (United States)

    Khalaf, Kinda; Al-Angari, Haitham M; Khandoker, Ahsan H; Lee, Sungmun; Almahmeed, Wael; Al Safar, Habiba S; Jelinek, Herbert F

    2017-10-01

    Diabetic foot, one of the most common and debilitating manifestations of type 2 diabetes mellitus (T2DM), is the leading cause of worldwide non-traumatic lower extremity amputations. Diabetics who are at risk of ulceration are currently mainly identified by a thorough clinical examination of the feet, which typically does not show clear symptoms during the early stages of disease progression. In this study, we used a non-linear dynamics tool, gait entropy (GaitEN), in addition to traditional linear gait analysis methods, to investigate gait alterations amongst diabetic patients with combinations of three types of T2DM related complications: retinopathy, diabetic peripheral neuropathy (DPN) and nephropathy. Peak plantar pressure (PPP) was not significantly different in the group with DPN as compared to the control group (diabetics with no complications, CONT) in the forefoot region (DPN: mean±SD: 396±69.4kPa, CONT: 409±68.9kPa), although it was significantly lower in the heel region (DPN: mean±SD: 285±43.1.4kPa, CONT: 295±61.8kPa). On the other hand, gait entropy was significantly lower for the DPN compared to CONT group (DPN: 0.95±0.34, CONT: 1.03±0.28, pentropy was maintained when neuropathy was combined with either retinopathy or nephropathy. For the group with all three complications (ALL-C), the entropy was higher than CONT (ALL-C: 1.07±0.26). This may indicate an intrinsic sensorimotor feedback mechanism for the DPN patients to regulate their gait. However, this feedback gets weaker as patients develop multiple complications. Further analysis with longer walking time and different speeds is needed to verify the entropy results. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait.

    Science.gov (United States)

    Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina

    2014-03-01

    Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. DMRT3 is associated with gait type in Mangalarga Marchador horses, but does not control gait ability.

    Science.gov (United States)

    Patterson, L; Staiger, E A; Brooks, S A

    2015-04-01

    The Mangalarga Marchador (MM) is a Brazilian horse breed known for a uniquely smooth gait. A recent publication described a mutation in the DMRT3 gene that the authors claim controls the ability to perform lateral patterned gaits (Andersson et al. 2012). We tested 81 MM samples for the DMRT3 mutation using extracted DNA from hair bulbs using a novel RFLP. Horses were phenotypically categorized by their gait type (batida or picada), as recorded by the Brazilian Mangalarga Marchador Breeders Association (ABCCMM). Statistical analysis using the plink toolset (Purcell, 2007) revealed significant association between gait type and the DMRT3 mutation (P = 2.3e-22). Deviation from Hardy-Weinberg equilibrium suggests that selective pressure for gait type is altering allele frequencies in this breed (P = 1.00e-5). These results indicate that this polymorphism may be useful for genotype-assisted selection for gait type within this breed. As both batida and picada MM horses can perform lateral gaits, the DMRT3 mutation is not the only locus responsible for the lateral gait pattern. © 2015 Stichting International Foundation for Animal Genetics.

  11. Effects of the addition of functional electrical stimulation to ground level gait training with body weight support after chronic stroke.

    Science.gov (United States)

    Prado-Medeiros, Christiane L; Sousa, Catarina O; Souza, Andréa S; Soares, Márcio R; Barela, Ana M F; Salvini, Tania F

    2011-01-01

    The addition of functional electrical stimulation (FES) to treadmill gait training with partial body weight support (BWS) has been proposed as a strategy to facilitate gait training in people with hemiparesis. However, there is a lack of studies that evaluate the effectiveness of FES addition on ground level gait training with BWS, which is the most common locomotion surface. To investigate the additional effects of commum peroneal nerve FES combined with gait training and BWS on ground level, on spatial-temporal gait parameters, segmental angles, and motor function. Twelve people with chronic hemiparesis participated in the study. An A1-B-A2 design was applied. A1 and A2 corresponded to ground level gait training using BWS, and B corresponded to the same training with the addition of FES. The assessments were performed using the Modified Ashworth Scale (MAS), Functional Ambulation Category (FAC), Rivermead Motor Assessment (RMA), and filming. The kinematics analyzed variables were mean walking speed of locomotion; step length; stride length, speed and duration; initial and final double support duration; single-limb support duration; swing period; range of motion (ROM), maximum and minimum angles of foot, leg, thigh, and trunk segments. There were not changes between phases for the functional assessment of RMA, for the spatial-temporal gait variables and segmental angles, no changes were observed after the addition of FES. The use of FES on ground level gait training with BWS did not provide additional benefits for all assessed parameters.

  12. The linear parameters and the decoupling matrix for linearly coupled motion in 6 dimensional phase space

    International Nuclear Information System (INIS)

    Parzen, G.

    1997-01-01

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 x 6 matrix, R. It will be shown that of the 36 elements of the 6 x 6 decoupling matrix R, only 12 elements are independent. A set of equations is given from which the 12 elements of R can be computed form the one period transfer matrix. This set of equations also allows the linear parameters, the β i , α i , i = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix

  13. Linear orbit parameters for the exact equations of motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived

  14. Changes in executive functions and self-efficacy are independently associated with improved usual gait speed in older women

    Directory of Open Access Journals (Sweden)

    Hsu Chun

    2010-05-01

    Full Text Available Abstract Background Improved usual gait speed predicts substantial reduction in mortality. A better understanding of the modifiable factors that are independently associated with improved gait speed would ensure that intervention strategies are developed based on a valid theoretical framework. Thus, we examined the independent association of change in executive functions and change in falls-related self-efficacy with improved gait speed among community-dwelling senior women. Methods A secondary analysis of the 135 senior women aged 65 to 75 years old who completed a 12-month randomized controlled trial of resistance training. Usual gait speed was assessed using a 4-meter walk. Three executive processes were assessed by standard neuropsychological tests: 1 set shifting; 2 working memory; and 3 selective attention and response inhibition. A linear regression model was constructed to determine the independent association of change in executive functions and falls-related self-efficacy with change in gait speed. Results Improved selective attention and conflict resolution, and falls-related self-efficacy, were independently associated with improved gait speed after accounting for age, global cognition, baseline gait speed, and change in quadriceps strength. The total variance explained was 24%. Conclusions Interventions that target executive functions and falls-related self-efficacy, in addition to physical functions, to improve gait speed may be more efficacious than those that do not. Trial Registration ClinicalTrials.gov Identifier: NCT00426881

  15. Novel Thermal Analysis Model of the Foot-Shoe Sole Interface during Gait Motion

    Directory of Open Access Journals (Sweden)

    Yasuhiro Shimazaki

    2018-02-01

    Full Text Available Excessive heat at the foot-shoe sole interface negatively affects a human’s thermal comfort. An understanding of the thermal behavior at this interface is important for alleviating this discomfort. During gait motion, a human’s body weight cyclically compresses a shoe sole (commonly constructed of viscoelastic materials, generating heat during loading. To evaluate the thermal effects of this internal heat generation on foot comfort, we developed and empirically validated a thermal analysis model during gait motion. A simple, one-dimensional prediction model for heat conduction with heat generation during compressive loading was used. Heat generation was estimated as a function of the shoe sole’s material properties (e.g., elastic modulus and various gait parameters. When compared with experimental results, the proposed model proved effective in predicting thermal behavior at the foot-shoe sole interface under various conditions and shows potential for improving a human’s thermal comfort during gait motion through informed footwear design.

  16. Reflex control of robotic gait using human walking data.

    Directory of Open Access Journals (Sweden)

    Catherine A Macleod

    Full Text Available Control of human walking is not thoroughly understood, which has implications in developing suitable strategies for the retraining of a functional gait following neurological injuries such as spinal cord injury (SCI. Bipedal robots allow us to investigate simple elements of the complex nervous system to quantify their contribution to motor control. RunBot is a bipedal robot which operates through reflexes without using central pattern generators or trajectory planning algorithms. Ground contact information from the feet is used to activate motors in the legs, generating a gait cycle visually similar to that of humans. Rather than developing a more complicated biologically realistic neural system to control the robot's stepping, we have instead further simplified our model by measuring the correlation between heel contact and leg muscle activity (EMG in human subjects during walking and from this data created filter functions transferring the sensory data into motor actions. Adaptive filtering was used to identify the unknown transfer functions which translate the contact information into muscle activation signals. Our results show a causal relationship between ground contact information from the heel and EMG, which allows us to create a minimal, linear, analogue control system for controlling walking. The derived transfer functions were applied to RunBot II as a proof of concept. The gait cycle produced was stable and controlled, which is a positive indication that the transfer functions have potential for use in the control of assistive devices for the retraining of an efficient and effective gait with potential applications in SCI rehabilitation.

  17. Musical motor feedback (MMF) in walking hemiparetic stroke patients: randomized trials of gait improvement.

    Science.gov (United States)

    Schauer, Michael; Mauritz, Karl-Heinz

    2003-11-01

    To demonstrate the effect of rhythmical auditory stimulation in a musical context for gait therapy in hemiparetic stroke patients, when the stimulation is played back measure by measure initiated by the patient's heel-strikes (musical motor feedback). Does this type of musical feedback improve walking more than a less specific gait therapy? The randomized controlled trial considered 23 registered stroke patients. Two groups were created by randomization: the control group received 15 sessions of conventional gait therapy and the test group received 15 therapy sessions with musical motor feedback. Inpatient rehabilitation hospital. Median post-stroke interval was 44 days and the patients were able to walk without technical aids with a speed of approximately 0.71 m/s. Gait velocity, step duration, gait symmetry, stride length and foot rollover path length (heel-on-toe-off distance). The test group showed more mean improvement than the control group: stride length increased by 18% versus 0%, symmetry deviation decreased by 58% versus 20%, walking speed increased by 27% versus 4% and rollover path length increased by 28% versus 11%. Musical motor feedback improves the stroke patient's walk in selected parameters more than conventional gait therapy. A fixed memory in the patient's mind about the song and its timing may stimulate the improvement of gait even without the presence of an external pacemaker.

  18. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults.

    Science.gov (United States)

    Weijer, R H A; Hoozemans, M J M; van Dieën, J H; Pijnappels, M

    2018-05-01

    Quality of gait during daily life activities and perceived gait stability are both independent risk factors for future falls in older adults. We investigated whether perceived gait stability modulates the association between gait quality and falling in older adults. In this prospective cohort study, we used one-week daily-life trunk acceleration data of 272 adults over 65 years of age. Sample entropy (SE) of the 3D acceleration signals was calculated to quantify daily life gait quality. To quantify perceived gait stability, the level of concern about falling was assessed using the Falls Efficacy Scale international (FES-I) questionnaire and step length, estimated from the accelerometer data. A fall calendar was used to record fall incidence during a six-month follow up period. Logistic regression analyses were performed to study the association between falling and SE, step length or FES-I score, and their interactions. High (i.e., poor) SE in vertical direction was significantly associated with falling. FES-I scores significantly modulated this association, whereas step length did not. Subgroup analyses based on FES-I scores showed that high SE in the vertical direction was a risk factor for falls only in older adults who had a high (i.e. poor) FES-I score. In conclusion, perceived gait stability modulates the association between gait quality and falls in older adults such that an association between gait quality and falling is only present when perceived gait stability is poor. The results of the present study indicate that the effectiveness of interventions for fall prevention, aimed at improving gait quality, may be affected by a modulating effect of perceived gait stability. Results indicate that interventions to reduce falls in older adults might sort most effectiveness in populations with both a poor physiological and psychological status. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The response of a linear monostable system and its application in parameters estimation for PSK signals

    International Nuclear Information System (INIS)

    Duan, Chaowei; Zhan, Yafeng

    2016-01-01

    The output characteristics of a linear monostable system driven with a periodic signal and an additive white Gaussian noise are studied in this paper. Theoretical analysis shows that the output signal-to-noise ratio (SNR) decreases monotonously with the increasing noise intensity but the output SNR-gain is stable. Inspired by this high SNR-gain phenomenon, this paper applies the linear monostable system in the parameters estimation algorithm for phase shift keying (PSK) signals and improves the estimation performance. - Highlights: • The response of a linear monostable system driven with a periodic signal and an additive white Gaussian noise is analyzed. • The optimal parameter of this linear monostable system to maximum the output SNR-gain is obtained. • Application of this linear monostable system in parameters estimation algorithm for PSK signals obtains performance improvement.

  20. Immediate effects of using ankle-foot orthoses in the kinematics of gait and in the balance reactions in Charcot-Marie-Tooth disease

    OpenAIRE

    Pereira, Rouse Barbosa; Felício, Lílian Ramiro; Ferreira, Arthur de Sá; Menezes, Sara Lúcia de; Freitas, Marcos Raimundo Gomes de; Orsini, Marco

    2014-01-01

    The Charcot-Marie-Tooth (CMT) disease is a peripheral hereditary neuropathy with progressive distal muscle atrophy and weakness, mainly in lower limbs, that evolves limiting the gait and balance. The objective of the study was to analyse the immediate effects of using Ankle-Foot Orthosis (AFO) in the gait's kinematics and balance in patients with CMT. Nine individuals were evaluated by Tinetti scales and Dynamic Gait Index (DGI) and gait's kinematics parameters through the motion capturing sy...

  1. A Wearable System for Gait Training in Subjects with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Filippo Casamassima

    2014-03-01

    Full Text Available In this paper, a system for gait training and rehabilitation for Parkinson’s disease (PD patients in a daily life setting is presented. It is based on a wearable architecture aimed at the provision of real-time auditory feedback. Recent studies have, in fact, shown that PD patients can receive benefit from a motor therapy based on auditory cueing and feedback, as happens in traditional rehabilitation contexts with verbal instructions given by clinical operators. To this extent, a system based on a wireless body sensor network and a smartphone has been developed. The system enables real-time extraction of gait spatio-temporal features and their comparison with a patient’s reference walking parameters captured in the lab under clinical operator supervision. Feedback is returned to the user in form of vocal messages, encouraging the user to keep her/his walking behavior or to correct it. This paper describes the overall concept, the proposed usage scenario and the parameters estimated for the gait analysis. It also presents, in detail, the hardware-software architecture of the system and the evaluation of system reliability by testing it on a few subjects.

  2. Effects of noxious stimulation to the back or calf muscles on gait stability.

    Science.gov (United States)

    van den Hoorn, Wolbert; Hug, François; Hodges, Paul W; Bruijn, Sjoerd M; van Dieën, Jaap H

    2015-11-26

    Gait stability is the ability to deal with small perturbations that naturally occur during walking. Changes in motor control caused by pain could affect this ability. This study investigated whether nociceptive stimulation (hypertonic saline injection) in a low back (LBP) or calf (CalfP) muscle affects gait stability. Sixteen participants walked on a treadmill at 0.94ms(-1) and 1.67ms(-1), while thorax kinematics were recorded using 3D-motion capture. From 110 strides, stability (local divergence exponent, LDE), stride-to-stride variability and root mean squares (RMS) of thorax linear velocities were calculated along the three movement axes. At 0.94ms(-1), independent of movement axes, gait stability was lower (higher LDE) and stride-to-stride variability was higher, during LBP and CalfP than no pain. This was more pronounced during CalfP, likely explained by the biomechanical function of calf muscles in gait, as supported by greater mediolateral RMS and stance time asymmetry than in LBP and no pain. At 1.67ms(-1), independent of movement axes, gait stability was greater and stride-to-stride variability was smaller with LBP than no pain and CalfP, whereas CalfP was not different from no pain. Opposite effects of LBP on gait stability between speeds suggests a more protective strategy at the faster speed. Although mediolateral RMS was greater and participants had more asymmetric stance times with CalfP than LBP and no pain, limited effect of CalfP at the faster speed could relate to greater kinematic constraints and smaller effects of calf muscle activity on propulsion at this speed. In conclusion, pain effects on gait stability depend on pain location and walking speed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The relationship between gait parameters and static and dynamic balance in the elderly

    Directory of Open Access Journals (Sweden)

    Razieh Tabe

    2015-02-01

    Full Text Available Background: The physiological changes and muscle problems can lead to balance disorder and increased risk of falling among the elderly. Therefore, it is necessary to evaluate the factors associated with balance in the elderly, to increase their awareness of the falling risks and to provide them with appropriate assistive devices.. Hence, this study was carried out to investigate the relationship between some gait parameters and static and dynamic balance in the elderly. Methods: In this quasi-experimental study, 44 men and women in two groups (22 per group participated as the study sample. The measured values included step length, stride length, step width, rotating angle of toes, and static and dynamic balance. The static balance was measured with Romberg test and dynamic balance with TUGTU test. Data were analysed by SPSS-15 software using t-test and Pearson correlation coefficient. Results: There was a significant relationship between step length and stride length with static and dynamic balance and between step width and dynamic balance (p0/05. But no significant relationship was reported between step width and static balance and between rotating angle of toes with static and dynamic balance among the elderly. Conclusions: the elderly balance can be improved by decreasing the step length and increasing the stride length, thereby reducing the possibility of their falling.

  4. Advanced Prosthetic Gait Training Tool

    Science.gov (United States)

    2015-12-01

    modules to train individuals to distinguish gait deviations (trunk motion and lower-limb motion). Each of these modules help trainers improve their...AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool PRINCIPAL INVESTIGATOR: Dr. Karim Abdel-Malek CONTRACTING...study is to produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities

  5. Gait characteristics, balance performance and falls in ambulant adults with cerebral palsy: An observational study.

    Science.gov (United States)

    Morgan, P; Murphy, A; Opheim, A; McGinley, J

    2016-07-01

    The relationship between spatiotemporal gait parameters, balance performance and falls history was investigated in ambulant adults with cerebral palsy (CP). Participants completed a single assessment of gait using an instrumented walkway at preferred and fast speeds, balance testing (Balance Evaluation Systems Test; BESTest), and reported falls history. Seventeen ambulatory adults with CP, mean age 37 years, participated. Gait speed was typically slow at both preferred and fast speeds (mean 0.97 and 1.21m/s, respectively), with short stride length and high cadence relative to speed. There was a significant, large positive relationship between preferred gait speed and BESTest total score (ρ=0.573; pfalls taking shorter strides. Faster gait speed was associated with better performance on tests of anticipatory and postural response components of the BESTest, suggesting potential therapeutic training targets to address either gait speed or balance performance. Future exploration of the implications of slow walking speed and reduced stride length on falls and community engagement, and the potential prognostic value of stride length on identifying falls risk is recommended. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  6. Tai Chi and vestibular rehabilitation improve vestibulopathic gait via different neuromuscular mechanisms: Preliminary report

    Directory of Open Access Journals (Sweden)

    Parker Stephen W

    2005-02-01

    Full Text Available Abstract Background Vestibular rehabilitation (VR is a well-accepted exercise program intended to remedy balance impairment caused by damage to the peripheral vestibular system. Alternative therapies, such as Tai Chi (TC, have recently gained popularity as a treatment for balance impairment. Although VR and TC can benefit people with vestibulopathy, the degree to which gait improvements may be related to neuromuscular adaptations of the lower extremities for the two different therapies are unknown. Methods We examined the relationship between lower extremity neuromuscular function and trunk control in 36 older adults with vestibulopathy, randomized to 10 weeks of either VR or TC exercise. Time-distance measures (gait speed, step length, stance duration and step width, lower extremity sagittal plane mechanical energy expenditures (MEE, and trunk sagittal and frontal plane kinematics (peak and range of linear and angular velocity, were measured. Results Although gait time-distance measures were improved in both groups following treatment, no significant between-groups differences were observed for the MEE and trunk kinematic measures. Significant within groups changes, however, were observed. The TC group significantly increased ankle MEE contribution and decreased hip MEE contribution to total leg MEE, while no significant changes were found within the VR group. The TC group exhibited a positive relationship between change in leg MEE and change in trunk velocity peak and range, while the VR group exhibited a negative relationship. Conclusion Gait function improved in both groups consistent with expectations of the interventions. Differences in each group's response to therapy appear to suggest that improved gait function may be due to different neuromuscular adaptations resulting from the different interventions. The TC group's improvements were associated with reorganized lower extremity neuromuscular patterns, which appear to promote a faster

  7. Three-Dimensional Trunk and Lower Limbs Characteristics during Gait in Patients with Huntington's Disease.

    Science.gov (United States)

    Mirek, Elzbieta; Filip, Magdalena; Chwała, Wiesław; Banaszkiewicz, Krzysztof; Rudzinska-Bar, Monika; Szymura, Jadwiga; Pasiut, Szymon; Szczudlik, Andrzej

    2017-01-01

    Objective: A number of studies on gait disturbances have been conducted, however, no clear pattern of gait disorders was described. The aim of the study was to characterize the gait pattern in HD patients by conducting analysis of mean angular movement changes the lower limb joints and trunk (kinematics parameters). Methods: The study group consisted of 30 patients with HD (17 women and 13 men). The reference data include the results of 30 healthy subjects (17 women and 13 men). Registration of gait with the Vicon 250 system was performed using passive markers attached to specific anthropometric points directly on the skin, based on the Golem biomechanical model (Oxford Metrics Ltd.). The research group and the control group were tested once. Results: Statistically significant ( p patients were observed in: insufficient plantar flexion during Loading Response and Pre-swing phases; insufficient flexion of the knee joint during Initial Swing and Mid Swing phases; excessive flexion of the hip in Terminal Stance and Pre-swing phases and over-normative forward inclination of the trunk in all gait phases. It should be noted that the group of patients with HD obtained, for all the mean angular movement changes higher standard deviation. Conclusion: A characteristic gait disorder common to all patients with HD occurring throughout the whole duration of the gait cycle is a pathological anterior tilt of the trunk. The results will significantly contribute to programming physiotherapy for people with HD, aimed at stabilizing the trunk in a position of extension during gait.

  8. Development of a novel virtual reality gait intervention.

    Science.gov (United States)

    Boone, Anna E; Foreman, Matthew H; Engsberg, Jack R

    2017-02-01

    Improving gait speed and kinematics can be a time consuming and tiresome process. We hypothesize that incorporating virtual reality videogame play into variable improvement goals will improve levels of enjoyment and motivation and lead to improved gait performance. To develop a feasible, engaging, VR gait intervention for improving gait variables. Completing this investigation involved four steps: 1) identify gait variables that could be manipulated to improve gait speed and kinematics using the Microsoft Kinect and free software, 2) identify free internet videogames that could successfully manipulate the chosen gait variables, 3) experimentally evaluate the ability of the videogames and software to manipulate the gait variables, and 4) evaluate the enjoyment and motivation from a small sample of persons without disability. The Kinect sensor was able to detect stride length, cadence, and joint angles. FAAST software was able to identify predetermined gait variable thresholds and use the thresholds to play free online videogames. Videogames that involved continuous pressing of a keyboard key were found to be most appropriate for manipulating the gait variables. Five participants without disability evaluated the effectiveness for modifying the gait variables and enjoyment and motivation during play. Participants were able to modify gait variables to permit successful videogame play. Motivation and enjoyment were high. A clinically feasible and engaging virtual intervention for improving gait speed and kinematics has been developed and initially tested. It may provide an engaging avenue for achieving thousands of repetitions necessary for neural plastic changes and improved gait. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The effects of aquatic trunk exercise on gait and muscle activity in stroke patients: a randomized controlled pilot study.

    Science.gov (United States)

    Park, Byoung-Sun; Noh, Ji-Woong; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan

    2015-11-01

    [Purpose] The purpose of this study was to investigate the relationship between muscle activity and gait function following aquatic trunk exercise in hemiplegic stroke patients. [Subjects and Methods] This study's participants included thirteen hemiplegic patients (ten males and three females). The aquatic therapy consisted of administering concentrative aquatic therapy for four weeks in a therapeutic pool. Gait parameters were measured using a gait analysis system adjusted to each subject's comfortable walking speed. Electromyographic signals were measured for the rectus abdominis, external abdominal oblique, transversus abdominis/internal-abdominal oblique, and erector spine of each patients. [Results] The pre- and post-training performances of the transversus abdominis/internal-abdominal oblique were compared statistically. There was no statistical difference between the patients' pre- and post-training values of maximal voluntary isometric contraction of the rectus abdominis, but the external abdominal oblique values tended to improve. Furthermore, gait factors improved significantly in terms of walking speeds, walking cycles, affected-side stance phases, affected-stride lengths, and stance-phase symmetry indices, respectively. [Conclusion] These results suggest that the trunk exercise during aquatic therapy may in part contribute to clinically relevant improvements in muscle activities and gait parameters.

  10. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  11. Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten

    variance and confidence ellipsoid is demonstrated. The relation is based on a new theorem on maxima of an ellipsoid. The procedure for input signal design and physical parameter estimation is tested on a number of examples, linear as well as nonlinear and simulated as well as real processes, and it appears...

  12. Modeling and simulation of normal and hemiparetic gait

    Science.gov (United States)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  13. Gait Partitioning Methods: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Juri Taborri

    2016-01-01

    Full Text Available In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.

  14. Gait Partitioning Methods: A Systematic Review

    Science.gov (United States)

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  15. Unstable gait due to spasticity of the rectus femoris: gait analysis and motor nerve block.

    Science.gov (United States)

    Gross, R; Leboeuf, F; Rémy-Néris, O; Perrouin-Verbe, B

    2012-12-01

    We present the case of a 54 year-old man presenting with a right Brown-Séquard plus syndrome (BSPS) after a traumatic cervical spinal cord injury. After being operated on with selective tibial neurotomy and triceps surae lengthening because of a right spastic equinus foot, he developed a gait disorder at high speed. The patient complained about an instability of the right knee. Observational gait analysis exhibited an oscillating, flexion/extension motion of the right knee during stance, which was confirmed by gait analysis. Dynamic electromyographic recordings exhibited a clonus of the right rectus femoris (RF) during stance. The spastic activity of the RF and the abnormal knee motion totally reversed after a motor nerve block of the RF, as well as after botulinum toxin type A injection into the RF. We emphasize that complex, spastic gait disorders can benefit from a comprehensive assessment including gait analysis and nerve blocks. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. Asymmetry of Anticipatory Postural Adjustment During Gait Initiation

    Directory of Open Access Journals (Sweden)

    Hiraoka Koichi

    2014-10-01

    Full Text Available The purpose of this study was to investigate the asymmetry of anticipatory postural adjustment (APA during gait initiation and to determine whether the process of choosing the initial swing leg affects APA during gait initiation. The participants initiated gait with the leg indicated by a start tone or initiated gait with the leg spontaneously chosen. The dependent variables of APA were not significantly different among the condition of initiating gait with the preferred leg indicated by the start tone, the condition of initiating gait with the non-preferred leg indicated by the start tone, and the condition of initiating gait with the leg spontaneously chosen. These findings fail to support the view that the process of choosing the initial swing leg affects APA during gait initiation. The lateral displacement of the center of pressure in the period in which shifting the center of pressure to the initial swing phase before initiating gait with the left leg indicated by the external cue was significantly larger than that when initiating gait with the right leg indicated by the external cue, and significantly larger than that when initiating gait with the leg spontaneously chosen. Weight shift to the initial swing side during APA during gait initiation was found to be asymmetrical when choosing the leg in response to an external cue

  17. Tic-induced gait dysfunction.

    NARCIS (Netherlands)

    Fasano, A.; Ruzicka, E.; Bloem, B.R.

    2012-01-01

    BACKGROUND: Many neurological disorders impair gait, but only a few of them are episodic or paroxysmal, the most important ones being freezing of gait and paroxysmal dyskinesias. METHODS: We describe 4 patients with tic disorders (3 with Tourette syndrome, and 1 with a tic disorder secondary to

  18. A numerical study of non-linear crack tip parameters

    Directory of Open Access Journals (Sweden)

    F.V. Antunes

    2015-07-01

    Full Text Available Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, different authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle, were investigated. It was demonstrated that: i LEFM concepts are applicable to the problem under study; ii the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; iii the Keff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; iv the analysis of remote compliance is the best numerical parameter to quantify the crack opening level; v without contact there is no effect of stress ratio on crack tip parameters. Therefore it is proved that the crack closure concept is valid.

  19. LOPES: Selective control of gait functions during the gait rehabilitation of CVA patients

    NARCIS (Netherlands)

    Ekkelenkamp, R.; Veneman, J.F.; van der Kooij, Herman

    2005-01-01

    LOPES aims for an active role of the patient by selective and partial support of gait functions during robotic treadmill training sessions. Virtual model control (VMC) was applied to the robot as an intuitive method for translating current treadmill gait rehabilitation therapy programs into robotic

  20. On the Disambiguation of Passively Measured In-home Gait Velocities from Multi-person Smart Homes.

    Science.gov (United States)

    Austin, Daniel; Hayes, Tamara L; Kaye, Jeffrey; Mattek, Nora; Pavel, Misha

    2011-01-01

    In-home monitoring of gait velocity with passive PIR sensors in a smart home has been shown to be an effective method of continuously and unobtrusively measuring this important predictor of cognitive function and mobility. However, passive measurements of velocity are nonspecific with regard to who generated each measurement or walking event. As a result, this method is not suitable for multi-person homes without additional information to aid in the disambiguation of gait velocities. In this paper we propose a method based on Gaussian mixture models (GMMs) combined with infrequent clinical assessments of gait velocity to model in-home walking speeds of two or more residents. Modeling the gait parameters directly allows us to avoid the more difficult problem of assigning each measured velocity individually to the correct resident. We show that if the clinically measured gait velocities of residents are separated by at least 15 cm/s a GMM can be accurately fit to the in-home gait velocity data. We demonstrate the accuracy of this method by showing that the correlation between the means of the GMMs and the clinically measured gait velocities is 0.877 (p value < 0.0001) with bootstrapped 95% confidence intervals of (0.79, 0.94) for 54 measurements of 20 subjects living in multi-person homes. Example applications of using this method to track in-home mean velocities over time are also given.

  1. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors

    NARCIS (Netherlands)

    Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K.

    2010-01-01

    This study describes the validation of a new wearable system for assessment of 3D spatial parameters of gait. The new method is based on the detection of temporal parameters, coupled to optimized fusion and de-drifted integration of inertial signals. Composed of two wirelesses inertial modules

  2. The influence of the Re-Link Trainer on gait symmetry in healthy adults.

    Science.gov (United States)

    Ward, Sarah; Wiedemann, Lukas; Stinear, Cathy; Stinear, James; McDaid, Andrew

    2017-07-01

    Walking function post-stroke is characterized by asymmetries in gait cycle parameters and joint kinematics. The Re-Link Trainer is designed to provide kinematic constraint to the paretic lower limb, to guide a physiologically normal and symmetrical gait pattern. The purpose of this pilot study was to assess the immediate influence of the Re-Link Trainer on measures of gait symmetry in healthy adults. Participants demonstrated a significantly lower cadence and a 62% reduction in walking speed in the Re-Link Trainer compared to normal walking. The step length ratio had a significant increase from 1.0 during normal walking to 2.5 when walking in the Re-Link Trainer. The results from this pilot study suggest in its current iteration the Re-Link Trainer imposes an asymmetrical constraint on lower limb kinematics.

  3. Pre- and post-operative gait analysis for evaluation of neck pain in chronic whiplash

    Directory of Open Access Journals (Sweden)

    Ginsburg Glen M

    2009-07-01

    Full Text Available Abstract Introduction Chronic neck pain after whiplash is notoriously refractory to conservative treatment, and positive radiological findings to explain the symptoms are scarce. The apparent disproportionality between subjective complaints and objective findings is significant for the planning of treatment, impairment ratings, and judicial questions on causation. However, failure to identify a symptom's focal origin with routine imaging studies does not invalidate the symptom per se. It is therefore of a general interest both to develop effective therapeutic strategies in chronic whiplash, and to establish techniques for objectively evaluation of treatment outcomes. Methods Twelve patients with chronic neck pain after whiplash underwent pre- and postoperative computerized 3D gait analysis. Results Significant improvement was found in all gait parameters, cervical range-of-motion, and self reported pain (VAS. Conclusion Chronic neck pain is associated with abnormal cervical spine motion and gait patterns. 3D gait analysis is a useful instrument to assess the outcome of treatment for neck pain.

  4. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.

    Science.gov (United States)

    El Habachi, Aimad; Moissenet, Florent; Duprey, Sonia; Cheze, Laurence; Dumas, Raphaël

    2015-07-01

    Sensitivity analysis is a typical part of biomechanical models evaluation. For lower limb multi-body models, sensitivity analyses have been mainly performed on musculoskeletal parameters, more rarely on the parameters of the joint models. This study deals with a global sensitivity analysis achieved on a lower limb multi-body model that introduces anatomical constraints at the ankle, tibiofemoral, and patellofemoral joints. The aim of the study was to take into account the uncertainty of parameters (e.g. 2.5 cm on the positions of the skin markers embedded in the segments, 5° on the orientation of hinge axis, 2.5 mm on the origin and insertion of ligaments) using statistical distributions and propagate it through a multi-body optimisation method used for the computation of joint kinematics from skin markers during gait. This will allow us to identify the most influential parameters on the minimum of the objective function of the multi-body optimisation (i.e. the sum of the squared distances between measured and model-determined skin marker positions) and on the joint angles and displacements. To quantify this influence, a Fourier-based algorithm of global sensitivity analysis coupled with a Latin hypercube sampling is used. This sensitivity analysis shows that some parameters of the motor constraints, that is to say the distances between measured and model-determined skin marker positions, and the kinematic constraints are highly influencing the joint kinematics obtained from the lower limb multi-body model, for example, positions of the skin markers embedded in the shank and pelvis, parameters of the patellofemoral hinge axis, and parameters of the ankle and tibiofemoral ligaments. The resulting standard deviations on the joint angles and displacements reach 36° and 12 mm. Therefore, personalisation, customisation or identification of these most sensitive parameters of the lower limb multi-body models may be considered as essential.

  5. Changes in gait performance over several years are associated with recurrent falls status in community-dwelling older women at high risk of fracture.

    Science.gov (United States)

    Scott, David; McLaughlin, Patrick; Nicholson, Geoff C; Ebeling, Peter R; Stuart, Amanda L; Kay, Deborah; Sanders, Kerrie M

    2015-03-01

    Gait analysis is a recommended geriatric assessment for falls risk and sarcopenia; however, previous research utilises measurements at a single time point only. It is presently unclear how changes in gait over several years influence risk of recurrent falls in older adults. We investigated 135 female volunteers (mean age±SD: 76.7±5.0 years; range: 70-92 years) at high risk of fracture. Gait parameters (speed, cadence, step length, step width, swing time and double support phase) were assessed using the GAITRite Electronic Walkway System at four annual clinics over ∼3.7±0.5 years. Participants reported incident falls monthly for 3.7±1.2 years. Increasing gait speed (odds ratio: 0.96; 95% confidence interval 0.93, 0.99) and step length (0.87; 0.77, 0.98) from baseline to final follow-up was associated with reduced likelihood of being a recurrent faller over the study period. No significant associations were observed for baseline gait parameters (all P≥0.05). At the second follow-up (2.8±0.6 years), an increase in swing time (0.65; 0.43, 0.98) was associated with reduced likelihood, while an increase in double support phase (1.31; 1.04, 1.66) was associated with increased likelihood, for being a recurrent faller in the subsequent 1.3 years following this time point. Changes in gait parameters over several years are significantly associated with the likelihood of being a recurrent faller among community-dwelling older women at high risk of fracture. Further research is required to develop gait monitoring guidelines and gait parameter decline cut points that may be utilised by clinicians to identify older adults at risk of incident falls and sarcopenia. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Gait recognition based on integral outline

    Science.gov (United States)

    Ming, Guan; Fang, Lv

    2017-02-01

    Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.

  7. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    Science.gov (United States)

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  8. Spinal fusion limits upper body range of motion during gait without inducing compensatory mechanisms in adolescent idiopathic scoliosis patients.

    Science.gov (United States)

    Holewijn, R M; Kingma, I; de Kleuver, M; Schimmel, J J P; Keijsers, N L W

    2017-09-01

    Previous studies show a limited alteration of gait at normal walking speed after spinal fusion surgery for adolescent idiopathic scoliosis (AIS), despite the presumed essential role of spinal mobility during gait. This study analyses how spinal fusion affects gait at more challenging walking speeds. More specifically, we investigated whether thoracic-pelvic rotations are reduced to a larger extent at higher gait speeds and whether compensatory mechanisms above and below the stiffened spine are present. 18 AIS patients underwent gait analysis at increasing walking speeds (0.45 to 2.22m/s) before and after spinal fusion. The range of motion (ROM) of the upper (thorax, thoracic-pelvic and pelvis) and lower body (hip, knee and ankle) was determined in all three planes. Spatiotemporal parameters of interest were stride length and cadence. Spinal fusion diminished transverse plane thoracic-pelvic ROM and this difference was more explicit at higher walking speeds. Transversal pelvis ROM was also decreased but this effect was not affected by speed. Lower body ROM, step length and cadence remained unaffected. Despite the reduction of upper body ROM after spine surgery during high speed gait, no altered spatiotemporal parameters or increased compensatory ROM above or below the fusion (i.e. in the shoulder girdle or lower extremities) was identified. Thus, it remains unclear how patients can cope so well with such major surgery. Future studies should focus on analyzing the kinematics of individual spinal levels above and below the fusion during gait to investigate possible compensatory mechanisms within the spine. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.

    Science.gov (United States)

    Eltoukhy, Moataz; Oh, Jeonghoon; Kuenze, Christopher; Signorile, Joseph

    2017-01-01

    A cost-effective, clinician friendly gait assessment tool that can automatically track patients' anatomical landmarks can provide practitioners with important information that is useful in prescribing rehabilitative and preventive therapies. This study investigated the validity and reliability of the Microsoft Kinect v2 as a potential inexpensive gait analysis tool. Ten healthy subjects walked on a treadmill at 1.3 and 1.6m·s -1 , as spatiotemporal parameters and kinematics were extracted concurrently using the Kinect and three-dimensional motion analysis. Spatiotemporal measures included step length and width, step and stride times, vertical and mediolateral pelvis motion, and foot swing velocity. Kinematic outcomes included hip, knee, and ankle joint angles in the sagittal plane. The absolute agreement and relative consistency between the two systems were assessed using interclass correlations coefficients (ICC2,1), while reproducibility between systems was established using Lin's Concordance Correlation Coefficient (rc). Comparison of ensemble curves and associated 90% confidence intervals (CI90) of the hip, knee, and ankle joint angles were performed to investigate if the Kinect sensor could consistently and accurately assess lower extremity joint motion throughout the gait cycle. Results showed that the Kinect v2 sensor has the potential to be an effective clinical assessment tool for sagittal plane knee and hip joint kinematics, as well as some spatiotemporal temporal variables including pelvis displacement and step characteristics during the gait cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ambulatory gait analysis in stroke patients using ultrasound and inertial sensors

    NARCIS (Netherlands)

    Weenk, D.; van Meulen, Fokke; van Beijnum, Bernhard J.F.; Veltink, Petrus H.

    2014-01-01

    Objective ambulatory assessment of movements of patients is important for an optimal recovery. In this study an ambulatory system is used for assessing gait parameters in stroke patients. Ultrasound range estimates are fused with inertial sensors using an extended Kalman filter to estimate 3D

  11. Robot-Crawler: Statically Balanced Gaits

    Directory of Open Access Journals (Sweden)

    S. Parasuraman

    2012-12-01

    Full Text Available This paper presents a new statically balanced walking technique for a robot-crawler. The gait design and the control of the robot crawler aim to achieve stability while walking. This statically balanced gait has to be designed in a different fashion to a wheeled robot, as there are discrete changes in the support of the robot when its legs are lifted or placed on the ground. The stability of the robot depends on how the legs are positioned relative to the body and also on the sequence and timing with which the legs are lifted and placed. In order to reduce the risk of stability loss while walking, a measure for the robot stability (so-called stability margin is typically used in the gait and motion planning. In this paper different biological behaviours of four-legged animals are studied and mapped on a quad-legrobot-crawler. Experiments were carried out on the forward walking gaits of lizards and horses. Based on these results, the stability margins of different gaits are discussed and compared.

  12. Examination of factors affecting gait properties in healthy older adults: focusing on knee extension strength, visual acuity, and knee joint pain.

    Science.gov (United States)

    Demura, Tomohiro; Demura, Shin-ichi; Uchiyama, Masanobu; Sugiura, Hiroki

    2014-01-01

    Gait properties change with age because of a decrease in lower limb strength and visual acuity or knee joint disorders. Gait changes commonly result from these combined factors. This study aimed to examine the effects of knee extension strength, visual acuity, and knee joint pain on gait properties of for 181 healthy female older adults (age: 76.1 (5.7) years). Walking speed, cadence, stance time, swing time, double support time, step length, step width, walking angle, and toe angle were selected as gait parameters. Knee extension strength was measured by isometric dynamometry; and decreased visual acuity and knee joint pain were evaluated by subjective judgment whether or not such factors created a hindrance during walking. Among older adults without vision problems and knee joint pain that affected walking, those with superior knee extension strength had significantly greater walking speed and step length than those with inferior knee extension strength (P pain in both knees showed slower walking speed and longer stance time and double support time. A decrease of knee extension strength and visual acuity and knee joint pain are factors affecting gait in the female older adults. Decreased knee extension strength and knee joint pain mainly affect respective distance and time parameters of the gait.

  13. Accuracy and reliability of observational gait analysis data: judgments of push-off in gait after stroke.

    Science.gov (United States)

    McGinley, Jennifer L; Goldie, Patricia A; Greenwood, Kenneth M; Olney, Sandra J

    2003-02-01

    Physical therapists routinely observe gait in clinical practice. The purpose of this study was to determine the accuracy and reliability of observational assessments of push-off in gait after stroke. Eighteen physical therapists and 11 subjects with hemiplegia following a stroke participated in the study. Measurements of ankle power generation were obtained from subjects following stroke using a gait analysis system. Concurrent videotaped gait performances were observed by the physical therapists on 2 occasions. Ankle power generation at push-off was scored as either normal or abnormal using two 11-point rating scales. These observational ratings were correlated with the measurements of peak ankle power generation. A high correlation was obtained between the observational ratings and the measurements of ankle power generation (mean Pearson r=.84). Interobserver reliability was moderately high (mean intraclass correlation coefficient [ICC (2,1)]=.76). Intraobserver reliability also was high, with a mean ICC (2,1) of.89 obtained. Physical therapists were able to make accurate and reliable judgments of push-off in videotaped gait of subjects following stroke using observational assessment. Further research is indicated to explore the accuracy and reliability of data obtained with observational gait analysis as it occurs in clinical practice.

  14. Effect of rhythmic auditory cueing on gait in people with Alzheimer disease.

    Science.gov (United States)

    Wittwer, Joanne E; Webster, Kate E; Hill, Keith

    2013-04-01

    To determine whether rhythmic music and metronome cues alter spatiotemporal gait measures and gait variability in people with Alzheimer disease (AD). A repeated-measures study requiring participants to walk under different cueing conditions. University movement laboratory. Of the people (N=46) who met study criteria (a diagnosis of probable AD and ability to walk 100m) at routine medical review, 30 (16 men; mean age ± SD, 80±6y; revised Addenbrooke's Cognitive Examination range, 26-79) volunteered to participate. Participants walked 4 times over an electronic walkway synchronizing to (1) rhythmic music and (2) a metronome set at individual mean baseline comfortable speed cadence. Gait spatiotemporal measures and gait variability (coefficient of variation [CV]). Data from individual walks under each condition were combined. A 1-way repeated-measures analysis of variance was used to compare uncued baseline, cued, and retest measures. Gait velocity decreased with both music and metronome cues compared with baseline (baseline, 110.5cm/s; music, 103.4cm/s; metronome, 105.4cm/s), primarily because of significant decreases in stride length (baseline, 120.9cm; music, 112.5cm; metronome, 114.8cm) with both cue types. This was coupled with increased stride length variability compared with baseline (baseline CV, 3.4%; music CV, 4.3%; metronome CV, 4.5%) with both cue types. These changes did not persist at (uncued) retest. Temporal variability was unchanged. Rhythmic auditory cueing at comfortable speed tempo produced deleterious effects on gait in a single session in this group with AD. The deterioration in spatial gait parameters may result from impaired executive function associated with AD. Further research should investigate whether these instantaneous cue effects are altered with more practice or with learning methods tailored to people with cognitive impairment. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights

  15. Assistive devices alter gait patterns in Parkinson disease: advantages of the four-wheeled walker.

    Science.gov (United States)

    Kegelmeyer, Deb A; Parthasarathy, Sowmya; Kostyk, Sandra K; White, Susan E; Kloos, Anne D

    2013-05-01

    Gait abnormalities are a hallmark of Parkinson's disease (PD) and contribute to fall risk. Therapy and exercise are often encouraged to increase mobility and decrease falls. As disease symptoms progress, assistive devices are often prescribed. There are no guidelines for choosing appropriate ambulatory devices. This unique study systematically examined the impact of a broad range of assistive devices on gait measures during walking in both a straight path and around obstacles in individuals with PD. Quantitative gait measures, including velocity, stride length, percent swing and double support time, and coefficients of variation were assessed in 27 individuals with PD with or without one of six different devices including canes, standard and wheeled walkers (two, four or U-Step). Data were collected using the GAITRite and on a figure-of-eight course. All devices, with the exception of four-wheeled and U-Step walkers significantly decreased gait velocity. The four-wheeled walker resulted in less variability in gait measures and had less impact on spontaneous unassisted gait patterns. The U-Step walker exhibited the highest variability across all parameters followed by the two-wheeled and standard walkers. Higher variability has been correlated with increased falls. Though subjects performed better on a figure-of-eight course using either the four-wheeled or the U-Step walker, the four-wheeled walker resulted in the most consistent improvement in overall gait variables. Laser light use on a U-Step walker did not improve gait measures or safety in figure-of-eight compared to other devices. Of the devices tested, the four-wheeled-walker offered the most consistent advantages for improving mobility and safety. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Differences in center of pressure trajectory between normal and steppage gait

    Science.gov (United States)

    Jamshidi, Nima; Rostami, Mostafa; Najarian, Siamak; Menhaj, Mohammad Bagher; Saadatnia, Mohammad; Salami, Firooz

    2010-01-01

    BACKGROUND: This pilot study aimed to assess the differences in center of pressure trajectory in neuropathic patients with steppage gait. Steppage gait has previously been evaluated by several biomechanical methods, but plantar pressure distribution has been much less studied. The purpose of this study was to analyze the changes in center of pressure trajectory using a force plate. METHODS: The steppage gait group was selected from the patients using drop foot brace (25 male) and the control group was selected from Isfahan university students (20 male). They walked at self- selected speed at a mean of ten trials (+2) to collect the center of pressure using a force plate. Center of pressure patterns were categorized into four patterns based on the center of pressure displacement magnitude (spatial features) through time (temporal features) when the longitudinal axis of the insole was plotted as the Y- axis and the transverse axis of the insole as X- axis during stance phase. RESULTS: The horizontal angle measured from center of pressure linear regression was positive in the control group (4.6 ± 2.4) (p < 0.005), but negative in the patient group (- 2.3 ± 1.6) (p < 0.005). CONCLUSIONS: The finding of this research measured center of pressure trajectory in steppage gait over time, which is useful for designing better shoe sole and also orthopaedic device and better understanding of stability in patients with drop foot. PMID:21526056

  17. Differences in center of pressure trajectory between normal and steppage gait

    Directory of Open Access Journals (Sweden)

    Nima Jamshidi

    2010-01-01

    Full Text Available Background: This pilot study aimed to assess the differences in center of pressure trajectory in neuropathic patients with steppage gait. Steppage gait has previously been evaluated by several biomechanical methods, but plantar pressure distribution has been much less studied. The purpose of this study was to analyze the changes in center of pressure tra-jectory using a force plate. Methods: The steppage gait group was selected from the patients using drop foot brace (25 male and the control group was selected from Isfahan university students (20 male. They walked at self- selected speed at a mean of ten tri-als (+2 to collect the center of pressure using a force plate. Center of pressure patterns were categorized into four pat-terns based on the center of pressure displacement magnitude (spatial features through time (temporal features when the longitudinal axis of the insole was plotted as the Y- axis and the transverse axis of the insole as X- axis during stance phase. Results: The horizontal angle measured from center of pressure linear regression was positive in the control group (4.6 ± 2.4 (p < 0.005, but negative in the patient group (- 2.3 ± 1.6 (p < 0.005. Conclusions: The finding of this research measured center of pressure trajectory in steppage gait over time, which is useful for designing better shoe sole and also orthopaedic device and better understanding of stability in patients with drop foot.

  18. The Combined Effects of Body Weight Support and Gait Speed on Gait Related Muscle Activity : A Comparison between Walking in the Lokomat Exoskeleton and Regular Treadmill Walking

    NARCIS (Netherlands)

    Van Kammen, Klaske; Boonstra, Annemarijke; Reinders-Messelink, Heleen; Otter, den Rob

    2014-01-01

    Background: For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study

  19. Risk adjusted receding horizon control of constrained linear parameter varying systems

    NARCIS (Netherlands)

    Sznaier, M.; Lagoa, C.; Stoorvogel, Antonie Arij; Li, X.

    2005-01-01

    In the past few years, control of Linear Parameter Varying Systems (LPV) has been the object of considerable attention, as a way of formalizing the intuitively appealing idea of gain scheduling control for nonlinear systems. However, currently available LPV techniques are both computationally

  20. Genetic parameters and correlations among linear type traits in the ...

    African Journals Online (AJOL)

    The main objective of this study was to estimate the genetic parameters and relationships of 10 linear type traits in the first lactation of Holstein dairy cows. 3274 records for type traits was used (Ag, angularity; Sta, stature; Bdp, body depth; Rw, rump width; Rs, rear leg side view; Fa, foot angle; Fu, fore udder attachment; Ruh, ...

  1. Impaired heel to toe progression during gait is related to reduced ankle range of motion in people with Multiple Sclerosis.

    Science.gov (United States)

    Psarakis, Michael; Greene, David; Moresi, Mark; Baker, Michael; Stubbs, Peter; Brodie, Matthew; Lord, Stephen; Hoang, Phu

    2017-11-01

    Gait impairment in people with Multiple Sclerosis results from neurological impairment, muscle weakness and reduced range of motion. Restrictions in passive ankle range of motion can result in abnormal heel-to-toe progression (weight transfer) and inefficient gait patterns in people with Multiple Sclerosis. The purpose of this study was to determine the associations between gait impairment, heel-to-toe progression and ankle range of motion in people with Multiple Sclerosis. Twelve participants with Multiple Sclerosis and twelve healthy age-matched participants were assessed. Spatiotemporal parameters of gait and individual footprint data were used to investigate group differences. A pressure sensitive walkway was used to divide each footprint into three phases (contact, mid-stance, propulsive) and calculate the heel-to-toe progression during the stance phase of gait. Compared to healthy controls, people with Multiple Sclerosis spent relatively less time in contact phase (7.8% vs 25.1%) and more time in the mid stance phase of gait (57.3% vs 33.7%). Inter-limb differences were observed in people with Multiple Sclerosis between the affected and non-affected sides for contact (7.8% vs 15.3%) and mid stance (57.3% and 47.1%) phases. Differences in heel-to-toe progression remained significant after adjusting for walking speed and were correlated with walking distance and ankle range of motion. Impaired heel-to-toe progression was related to poor ankle range of motion in people with Multiple Sclerosis. Heel-to-toe progression provided a sensitive measure for assessing gait impairments that were not detectable using standard spatiotemporal gait parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study.

    Science.gov (United States)

    Chang, Shuo-Hsiu; Afzal, Taimoor; Berliner, Jeffrey; Francisco, Gerard E

    2018-01-01

    Robotic wearable exoskeletons have been utilized as a gait training device in persons with spinal cord injury. This pilot study investigated the feasibility of offering exoskeleton-assisted gait training (EGT) on gait in individuals with incomplete spinal cord injury (iSCI) in preparation for a phase III RCT. The objective was to assess treatment reliability and potential efficacy of EGT and conventional physical therapy (CPT). Forty-four individuals were screened, and 13 were eligible to participate in the study. Nine participants consented and were randomly assigned to receive either EGT or CPT with focus on gait. Subjects received EGT or CPT, five sessions a week (1 h/session daily) for 3 weeks. American Spinal Injury Association (ASIA) Lower Extremity Motor Score (LEMS), 10-Meter Walk Test (10MWT), 6-Minute Walk Test (6MWT), Timed Up and Go (TUG) test, and gait characteristics including stride and step length, cadence and stance, and swing phase durations were assessed at the pre- and immediate post- training. Mean difference estimates with 95% confidence intervals were used to analyze the differences. After training, improvement was observed in the 6MWT for the EGT group. The CPT group showed significant improvement in the TUG test. Both the EGT and the CPT groups showed significant increase in the right step length. EGT group also showed improvement in the stride length. EGT could be applied to individuals with iSCI to facilitate gait recovery. The subjects were able to tolerate the treatment; however, exoskeleton size range may be a limiting factor in recruiting larger cohort of patients. Future studies with larger sample size are needed to investigate the effectiveness and efficacy of exoskeleton-assisted gait training as single gait training and combined with other gait training strategies. Clinicaltrials.org, NCT03011099, retrospectively registered on January 3, 2017.

  3. Effect of balance exercise on selected kinematic gait variables in ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the effect of balance exercise on some selected kinematic gait parameters in patients with knee joint osteoarthritis. Forty subjects (18 men and 22 women) participated in the study.They were divided into two groups: Group 1 (experimental) that was treated with balance exercises, ...

  4. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population

    Directory of Open Access Journals (Sweden)

    Marta Gandolla

    2018-03-01

    Full Text Available Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial—it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been

  5. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population.

    Science.gov (United States)

    Gandolla, Marta; Guanziroli, Eleonora; D'Angelo, Andrea; Cannaviello, Giovanni; Molteni, Franco; Pedrocchi, Alessandra

    2018-01-01

    Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial-it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be

  6. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population

    Science.gov (United States)

    Gandolla, Marta; Guanziroli, Eleonora; D'Angelo, Andrea; Cannaviello, Giovanni; Molteni, Franco; Pedrocchi, Alessandra

    2018-01-01

    Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial—it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be

  7. Inertial Sensor-Based Gait Recognition: A Review

    Science.gov (United States)

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  8. Prediction of human gait trajectories during the SSP using a neuromusculoskeletal modeling: A challenge for parametric optimization.

    Science.gov (United States)

    Seyed, Mohammadali Rahmati; Mostafa, Rostami; Borhan, Beigzadeh

    2018-04-27

    The parametric optimization techniques have been widely employed to predict human gait trajectories; however, their applications to reveal the other aspects of gait are questionable. The aim of this study is to investigate whether or not the gait prediction model is able to justify the movement trajectories for the higher average velocities. A planar, seven-segment model with sixteen muscle groups was used to represent human neuro-musculoskeletal dynamics. At first, the joint angles, ground reaction forces (GRFs) and muscle activations were predicted and validated for normal average velocity (1.55 m/s) in the single support phase (SSP) by minimizing energy expenditure, which is subject to the non-linear constraints of the gait. The unconstrained system dynamics of extended inverse dynamics (USDEID) approach was used to estimate muscle activations. Then by scaling time and applying the same procedure, the movement trajectories were predicted for higher average velocities (from 2.07 m/s to 4.07 m/s) and compared to the pattern of movement with fast walking speed. The comparison indicated a high level of compatibility between the experimental and predicted results, except for the vertical position of the center of gravity (COG). It was concluded that the gait prediction model can be effectively used to predict gait trajectories for higher average velocities.

  9. Exercises to Improve Gait Abnormalities

    Science.gov (United States)

    ... Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner of how a ...

  10. Non-Linear Metamodeling Extensions to the Robust Parameter Design of Computer Simulations

    Science.gov (United States)

    2016-09-15

    The combined-array RSM approach has been applied to a piston simulation [11] and an economic order quantity inventory model [12, 13]. A textbook ...are limited when applied to simulations. In the former case, the mean and variance models can be inadequate due to a high level of non-linearity...highly non-linear nature of typical simulations. In the multi-response RPD problem, the objective is to find the optimal control parameter levels

  11. LMI-based gain scheduled controller synthesis for a class of linear parameter varying systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Anderson, Brian; Lanzon, Alexander

    2006-01-01

    This paper presents a novel method for constructing controllers for a class of single-input multiple-output (SIMO) linear parameter varying (LPV) systems. This class of systems encompasses many physical systems, in particular systems where individual components vary with time, and is therefore...... of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when...... as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example....

  12. Asymmetry of Anticipatory Postural Adjustment During Gait Initiation

    OpenAIRE

    Hiraoka, Koichi; Hatanaka, Ryota; Nikaido, Yasutaka; Jono, Yasutomo; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta

    2014-01-01

    The purpose of this study was to investigate the asymmetry of anticipatory postural adjustment (APA) during gait initiation and to determine whether the process of choosing the initial swing leg affects APA during gait initiation. The participants initiated gait with the leg indicated by a start tone or initiated gait with the leg spontaneously chosen. The dependent variables of APA were not significantly different among the condition of initiating gait with the preferred leg indicated by the...

  13. Parameter estimation and hypothesis testing in linear models

    CERN Document Server

    Koch, Karl-Rudolf

    1999-01-01

    The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there­ fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In­ ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im­ prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...

  14. Standard Test Method for Determining the Linearity of a Photovoltaic Device Parameter with Respect To a Test Parameter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method determines the degree of linearity of a photovoltaic device parameter with respect to a test parameter, for example, short-circuit current with respect to irradiance. 1.2 The linearity determined by this test method applies only at the time of testing, and implies no past or future performance level. 1.3 This test method applies only to non-concentrator terrestrial photovoltaic devices. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Gait Change Is Associated with Cognitive Outcome after an Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Sharmila Sagnier

    2017-05-01

    Full Text Available Background: Cognition and gait have often been studied separately after stroke whereas it has been suggested that these two domains could interact through a cognitive-motor interference.Objective: To evaluate the influence of gait changes on cognitive outcome after an ischemic stroke (IS.Methods: We conducted a prospective and monocentric study including patients admitted for an acute supratentorial IS with a National Institute of Health Stroke Score ≤ 15. Cognition, gait and motor disability were evaluated at baseline, 3 months and 1 year post-stroke, using the Montreal Cognitive Assessment (MoCA, the 10-m walking test (10-MWT and the Fugl-Meyer motor assessment (FMMA. The effect of changes in 10-MWT over the year of follow-up on MoCA changes was estimated using a generalized linear mixed model with FMMA, age and gender as covariates.Results: Two hundred and Twelve patients were included (71% male, age 64 ± 13 years old. 10-MWT improved from baseline to 1 year (p < 0.001, as did MoCA (p < 0.001 and FMMA (p < 0.001 scores. Ninety-nine patients (47% had a MoCA <26 at 1 year. Changes in 10-MWT were independently associated with changes in MoCA (β = −0.2, 95% CI −0.24 to −0.07, Bonferroni-corrected p-value = 0.002. Analyses of MoCA sub-scores suggested that changes in gait performance was associated with changes in executive functions and recall.Conclusion: Gait performance is associated with cognitive outcome after a mild to moderate IS, suggesting that they should be managed together to improve post-stroke independence.

  16. Comparative gait analysis of ankle arthrodesis and arthroplasty: initial findings of a prospective study.

    Science.gov (United States)

    Hahn, Michael E; Wright, Elise S; Segal, Ava D; Orendurff, Michael S; Ledoux, William R; Sangeorzan, Bruce J

    2012-04-01

    Little is known about functional outcomes of ankle arthroplasty compared with arthrodesis. This study compared pre-surgical and post-surgical gait measures in both patient groups. Eighteen patients with end-stage ankle arthritis participated in an ongoing longitudinal study (pre-surgery, 12 months post-surgery) involving gait analysis, assessment of pain and physical function. Outcome measures included temporal-distance, kinematic and kinetic data, the Short Form 36 (SF-36) body pain score, and average daily step count. A mixed effects linear model was used to detect effects of surgical group (arthrodesis and arthroplasty, n = 9 each) with walking speed as a covariate (α = 0.05). Both groups were similar in demographics and anthropometrics. Followup time was the same for each group. There were no complications in either group. Pain decreased (p < 0.001) and gait function improved (gait velocity, p = 0.02; stride length, p = 0.035) in both groups. Neither group increased average daily step count. Joint range of motion (ROM) differences were observed between groups after surgery (increased hip ROM in arthrodesis, p = 0.001; increased ankle ROM in arthroplasty, p = 0.036). Peak plantar flexor moment increased in arthrodesis patients and decreased in arthroplasty patients (p = 0.042). Initial findings of this ongoing clinical study indicate pain reduction and improved gait function 12 months after surgery for both treatments. Arthroplasty appears to regain more natural ankle joint function, with increased ROM. Long-term follow up should may reveal more clinically meaningful differences.

  17. Gait of dairy cows on floors with different slipperiness.

    Science.gov (United States)

    Telezhenko, E; Magnusson, M; Bergsten, C

    2017-08-01

    This study assessed the slip resistance of different types of solid flooring in cattle housing using a range of technical tests and gait analysis. Dynamic and static coefficient of friction, skid resistance, and abrasiveness were tested on concrete flooring with a smooth finish, a grooved pattern, or a tamped pattern, acid-resistant mastic asphalt, soft rubber mats, and a worn slatted concrete floor. Coefficients of friction and skid resistance were tested under clean and slurry-soiled conditions. Linear kinematic variables were assessed in 40 cows with trackway measurements after the cows passed over the floors in a straight walk. All gait variables were assessed as deviations from those obtained on the slatted concrete floor, which was used as a baseline. The coefficient of friction tests divided the floors into 3 categories: concrete flooring, which had a low coefficient of friction (0.29-0.41); mastic asphalt flooring, which had medium values (0.38-0.45); and rubber mats, which had high values (0.49-0.57). The highest abrasion (g/10 m) was on the asphalt flooring (4.48), and the concrete flooring with a tamped pattern had significantly higher abrasiveness (2.77) than the other concrete floors (1.26-1.60). Lowest values on the skid-resistance tests (dry/wet) were for smooth concrete (79/35) and mastic asphalt (65/47), especially with a slurry layer on the surface. Gait analysis mainly differentiated floors with higher friction and abrasion by longer strides and better tracking. Step asymmetry was lower on floors with high skid-resistance values. The most secure cow gait, in almost every aspect, was observed on soft rubber mats. Relationships between gait variables and physical floor characteristics ranged from average to weak (partial correlations 0.54-0.16). Thus, none of the physical characteristics alone was informative enough to characterize slip resistance. With reference to gait analysis, the abrasiveness of the hard surfaces was more informative than the

  18. Linear Determination of a Camera's Intrinsic Parameters Using Two Intersecting Circles

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2014-03-01

    Full Text Available An approach using two intersecting circles is proposed as a linear approach for determining a camera's intrinsic parameters. The two intersecting coplanar circles have four intersection points in the projective plane: two real points and two circular points. In the image plane, the diagonal triangle - on which the image of the four intersection points composes a complete quadrangle - is a self-polar triangle for the projection curves of the circles. The vertex of the self-polar triangle is the null space of the degenerate conic formed by the image of the four intersection points. By solving the three vertices of the self-polar triangle using the image coordinates of the two real intersection points, the degenerate conic can be obtained. The image of the two circular points is then computed from the intersection points of the degenerate conic. Using the image of the circular points from the three images of the same planar pattern with different directions, the intrinsic parameters can be linearly determined.

  19. Effect of Cue Timing and Modality on Gait Initiation in Parkinson Disease With Freezing of Gait.

    Science.gov (United States)

    Lu, Chiahao; Amundsen Huffmaster, Sommer L; Tuite, Paul J; Vachon, Jacqueline M; MacKinnon, Colum D

    2017-07-01

    To examine the effects of cue timing, across 3 sensory modalities, on anticipatory postural adjustments (APAs) during gait initiation in people with Parkinson disease (PD). Observational study. Biomechanics research laboratory. Individuals with idiopathic PD (N=25; 11 with freezing of gait [FOG]) were studied in the off-medication state (12-h overnight withdrawal). Gait initiation was tested without cueing (self-initiated) and with 3 cue timing protocols: fixed delay (3s), random delay (4-12s), and countdown (3-2-1-go, 1-s intervals) across 3 sensory modalities (acoustic, visual, and vibrotactile). The incidence and spatiotemporal characteristics of APAs during gait initiation were analyzed, including vertical ground reaction forces and center of pressure. All cue timings and modalities increased the incidence and amplitude of APAs compared with self-initiated stepping. Acoustic and visual cues, but not vibrotactile stimulation, improved the timing of APAs. Fixed delay or countdown timing protocols were more effective at decreasing APA durations than random delay cues. Cue-evoked improvements in APA timing, but not amplitude, correlated with the level of impairment during self-initiated gait. Cues did not improve the late push-off phase in the FOG group. External cueing improves gait initiation in PD regardless of cue timing, modality, or clinical phenotype (with and without FOG). Acoustic or visual cueing with predictive timing provided the greatest improvements in gait initiation; therefore, these protocols may provide the best outcomes when applied by caregivers or devices. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Gait pattern of severely disabled hemiparetic subjects on a new controlled gait trainer as compared to assisted treadmill walking with partial body weight support.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D; Sarkodie-Gyan, T

    1999-10-01

    To investigate to what extent and with how much therapeutic effort nonambulatory stroke patients could train a gait-like movement on a newly developed, machine-supported gait trainer. Open study comparing the movement on the gait trainer with assisted walking on the treadmill. Motion analysis laboratory of a rehabilitation centre. Fourteen chronic, nonambulatory hemiparetic patients. Complex gait analysis while training on the gait trainer and while walking on the treadmill. Gait kinematics, kinesiological EMG of several lower limb muscles and the required assistance. Patients could train a gait-like movement on the gait trainer, characterized kinematically by a perfect symmetry, larger hip extension during stance, less knee flexion and less ankle plantar flexion during swing as compared to treadmill walking (p gait trainer (p gait trainer offered severely disabled hemiparetic subjects the possibility of training a gait-like, highly symmetrical movement with a favourable facilitation of relevant anti-gravity muscles. At the same time, the effort required of the therapists was reduced.

  1. Somatosensory inputs by application of KinesioTaping: Effects on spasticity, balance, and gait in chronic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Federica eTamburella

    2014-05-01

    Full Text Available Introduction: Leg paralysis, spasticity, reduced inter limb coordination and impaired balance are considered the chief limitations to overground ambulation in subjects with incomplete spinal cord injury (SCI. In the last years KinesioTaping (KT application has been proposed for enhancing sensory inputs, decreasing spasticity via proprioception feedback and relieving abnormal muscle tension. No studies addressed KT technique on SCI subjects: our goal was to analyze effects of ankle joint KT application on spasticity, balance and gait. Material and Methods: A randomized cross-over case control design was used to compare KT and conventional non-elastic silk tape (ST application’s effects in 11 chronic SCI subjects, AIS level D, with soleus/gastrocnemius (S/G muscles’ spasticity , balance and gait impairments. Treatment: 48 hours of either KT or ST treatment was followed after 1 week interval by a reverse protocol. Patient treated with KT were subjected to 48 hours of ST treatment and viceversa. Single Y-stripe of Cure©tape (KT and ST were applied to S and G with 0% stretch. Before and after 48 hours of KT and ST application, clinical data of range of motion (ROM, spasticity, clonus, pain, balance and gait were collected. Stabilometric platform assessment of Centre of Pressure (COP movements, bi-dimensional gait analysis and electromyograpich (EMG activity of S, G, Tibialis Anterior and Extensor Hallicus Lungus muscles were also collected. Results: Only After KT treatment significant effects on spasticity, clonus and COP movements, kinematic gait parameters and EMG activities were recorded. Comparison between KT and ST improvements pointed out significant differences for ROM, spasticity, clonus, pain, COP parameters and most of all kinematic gait data. Discussion: KT short term application reduces spasticity and pain and improves balance and gait performances in chronic incomplete SCI subjects.

  2. Therapeutic Effects of Mechanical Horseback Riding on Gait and Balance Ability in Stroke Patients

    Science.gov (United States)

    Han, Jun Young; Kim, Shin Kyoung; Chung, Jin Sang; Lee, Hyun-Cheol; Lim, Jae Kuk; Lee, Jiwon; Park, Kawn Yong

    2012-01-01

    Objective To investigate the therapeutic effects of mechanical horseback riding for gait and balance parameters in post-stroke patients. Method This study was a non randomized prospective positive-controlled trial over a 12 week period. From May 2011 to October 2011, 37 stroke patients were recruited from our outpatient clinic and divided into two groups. The control group received the conventional physiotherapy while the intervention group received the conventional physiotherapy along with mechanical horseback riding therapy for 12 weeks. Outcome measurements of gait included the Functional Ambulation Category (FAC) and gait part of the Performance Oriented Mobility Assessment (G-POMA) while those of balance included the Berg Balance Scale (BBS) and the balance part of the Performance Oriented Mobility Assessment (B-POMA). These measurements were taken before and after treatment. Results There were no significant differences in the baseline characteristics and initial values between the two groups. When comparing baseline and 12 weeks post treatment in each group, the intervention group showed significant improvement on BBS (39.9±5.7 → 45.7±4.8, p=0.001) and B-POMA (10.4±2.6 → 12.6±2.1, p=0.001), but significant improvement on gait parameters. When comparing the groups, the dynamic balance category of BBS in post treatment showed significant difference (p=0.02). Conclusion This study suggests that mechanical horseback riding therapy may be an effective treatment tool for enhancing balance in adults with stroke. PMID:23342307

  3. Relative association of processing speed, short-term memory and sustained attention with task on gait speed: a study of community-dwelling people 50 years and older.

    Science.gov (United States)

    Killane, Isabelle; Donoghue, Orna A; Savva, George M; Cronin, Hilary; Kenny, Rose Anne; Reilly, Richard B

    2014-11-01

    For single gait tasks, associations have been reported between gait speed and cognitive domains. However, few studies have evaluated if this association is altered in dual gait tasks given gait speed changes with complexity and nature of task. We evaluated relative contributions of specific elements of cognitive function (including sustained attention and processing speed) to dual task gait speed in a nationally representative population of community-dwelling adults over 50 years. Gait speed was obtained using the GaitRite walkway during three gait tasks: single, cognitive (alternate letters), and motor (carrying a filled glass). Linear regression models, adjusted for covariates, were constructed to predict the relative contributions of seven neuropsychological tests to gait speed differences and to investigate gait task effects. The mean age and gait speed of the population (n = 4,431, 55% women) was 62.4 years (SD = 8.2) and 135.85 cm/s (SD = 20.20, single task), respectively. Poorer processing speed, short-term memory, and sustained attention were major cognitive contributors to slower gait speed for all gait tasks. Both dual gait tasks were robust to covariate adjustment and had a significant additional executive function element not found for the single gait task. For community-dwelling older adults processing speed, short-term memory and sustained attention were independently associated with gait speed for all gait tasks. Dual gait tasks were found to highlight specific executive function elements. This result forms a baseline value for dual task gait speed. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects.

    Science.gov (United States)

    Hesse, S; Sarkodie-Gyan, T; Uhlenbrock, D

    1999-01-01

    The study aimed at further development of a mechanised gait trainer which would allow non-ambulant people to practice a gait-like motion repeatedly. To simulate normal gait, discrete stance and swing phases, lasting 60% and 40% of the gait cycle respectively, and the control of the movement of the centre of mass were required. A complex gear system provided the gait-like movement of two foot plates with a ratio of 60% to 40% between the stance and swing phases. A controlled propulsion system adjusted its output according to patient's efforts. Two eccenters on the central gear controlled phase-adjusted the vertical and horizontal position of the centre of mass. The patterns of sagittal lower limb joint kinematics and of muscle activation of a normal subject were similar when using the mechanised trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists supported treadmill walking. Gait movements on the trainer were highly symmetrical, impact-free, and less spastic. The weight-bearing muscles were activated in a similar fashion during both conditions. The vertical displacement of the centre of mass was bi-instead of mono-phasic during each gait cycle on the new device. In conclusion, the gait trainer allowed wheelchair-bound subjects the repetitive practice of a gait-like movement without overstraining therapists.

  5. Gait Disorders in Parkinson's Disease: Assessment and Management

    Directory of Open Access Journals (Sweden)

    Pei-Hao Chen

    2013-12-01

    Full Text Available Gait disorder, a major cause of morbidity in the elderly population, is one of the cardinal features of Parkinson's disease. Owing to the characteristics of these gaits varying widely from festination to freezing of gait, analysis can be hardly identified in the clinical setting. Instrumented gait analysis has been widely used in a traditional gait laboratory. Recently, wireless monitoring systems have become highly informative by allowing long-term data collection in a variety of environments outside the labs. The quantitative analysis of gait patterns is probably the first step to a successful management of an individual patient. The presence of abnormal gait usually indicates advanced stages of disease and is often associated with cognitive impairment, falls, and injuries. Besides pharmacological and surgical treatments, parkinsonian gait can benefit from a variety of interventions. Assistive devices prevent patients from falls, and cueing strategies help them decrease episodes of freezing. Therefore, a multidisciplinary team approach to the optimal management is essential for an elderly patient with Parkinson's disease.

  6. GPI-repetitive control for linear systems with parameter uncertainty / variation

    Directory of Open Access Journals (Sweden)

    John A. Cortés-Romero

    2015-01-01

    Full Text Available Robust repetitive control problems for uncertain linear systems have been considered by different approaches. This article proposes the use of Repetitive Control and Generalized Proportional Integral (GPI Control in a complementary fashion. The conditioning and coupling of these techniques has been done in a time discrete context. Repetitive control is a control technique, based on the internal model principle, which yields perfect asymptotic tracking and rejection of periodic signals. On the other hand, GPI control is established as a robust linear control system design technique that is able to reject structured time polynomial additive perturbation, in particular, parameter uncertainty that can be locally approximated by time polynomial signal. GPI control provides a suitable stability and robustness conditions for the proper Repetitive Control operation. A stability analysis is presented under the frequency response framework using plant samples for different parameter uncertainty conditions. We carry out some comparative stability analysis with other complementary control approaches that has been effective for this kind of task, enhancing a better robustness and an improved performance for the GPI case. Illustrative simulation examples are presented which validate the proposed approach.

  7. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.

    Science.gov (United States)

    Regnaux, Jean-Philippe; Saremi, Kaveh; Marehbian, Jon; Bussel, Bernard; Dobkin, Bruce H

    2008-01-01

    Two commercial robotic devices, the Gait Trainer (GT) and the Lokomat (LOKO), assist task-oriented practice of walking. The gait patterns induced by these motor-driven devices have not been characterized and compared. A healthy participant chose the most comfortable gait pattern on each device and for treadmill (TM) walking at 1, 2 (maximum for the GT), and 3 km/h and over ground at similar speeds. A system of accelerometers on the thighs and feet allowed the calculation of spatiotemporal features and accelerations during the gait cycle. At the 1 and 2 km/h speed settings, single-limb stance times were prolonged on the devices compared with overground walking. Differences on the LOKO were decreased by adjusting the hip and knee angles and step length. At the 3 km/h setting, the LOKO approximated the participant's overground parameters. Irregular accelerations and decelerations from toe-off to heel contact were induced by the devices, especially at slower speeds. The LOKO and GT impose mechanical constraints that may alter leg accelerations-decelerations during stance and swing phases, as well as stance duration, especially at their slower speed settings, that are not found during TM and overground walking. The potential impact of these perturbations on training to improve gait needs further study.

  8. Screw-Home Movement of the Tibiofemoral Joint during Normal Gait: Three-Dimensional Analysis.

    Science.gov (United States)

    Kim, Ha Yong; Kim, Kap Jung; Yang, Dae Suk; Jeung, Sang Wook; Choi, Han Gyeol; Choy, Won Sik

    2015-09-01

    The purpose of this study was to evaluate the screw-home movement at the tibiofemoral joint during normal gait by utilizing the 3-dimensional motion capture technique. Fifteen young males and fifteen young females (total 60 knee joints) who had no history of musculoskeletal disease or a particular gait problem were included in this study. Two more markers were attached to the subject in addition to the Helen-Hayes marker set. Thus, two virtual planes, femoral coronal plane (P f ) and tibial coronal plane (P t ), were created by Skeletal Builder software. This study measured the 3-dimensional knee joint movement in the sagittal, coronal, and transverse planes of these two virtual planes (P f and P t ) during normal gait. With respect to kinematics and kinetics, both males and females showed normal adult gait patterns, and the mean difference in the temporal gait parameters was not statistically significant (p > 0.05). In the transverse plane, the screw-home movement occurred as expected during the pre-swing phase and the late-swing phase at an angle of about 17°. However, the tibia rotated externally with respect to the femur, rather than internally, while the knee joint started to flex during the loading response (paradoxical screw-home movement), and the angle was 6°. Paradoxical screw-home movement may be an important mechanism that provides stability to the knee joint during the remaining stance phase. Obtaining the kinematic values of the knee joint during gait can be useful in diagnosing and treating the pathological knee joints.

  9. Continuous positive airway pressure improves gait control in severe obstructive sleep apnoea: A prospective study.

    Directory of Open Access Journals (Sweden)

    Sébastien Baillieul

    Full Text Available Severe obstructive sleep apnoea (OSA can lead to neurocognitive alterations, including gait impairments. The beneficial effects of continuous positive airway pressure (CPAP on improving excessive daytime sleepiness and daily functioning have been documented. However, a demonstration of CPAP treatment efficacy on gait control is still lacking. This study aims to test the hypothesis that CPAP improves gait control in severe OSA patients.In this prospective controlled study, twelve severe OSA patients (age = 57.2±8.9 years, body mass index = 27.4±3.1 kg·m-2, apnoea-hypopnoea index = 46.3±11.7 events·h-1 and 10 healthy matched subjects were included. Overground gait parameters were recorded at spontaneous speed and stride time variability, a clinical marker of gait control, was calculated. To assess the role of executive functions in gait and postural control, a dual-task paradigm was applied using a Stroop test as secondary cognitive task. All assessments were performed before and after 8 weeks of CPAP treatment.Before CPAP treatment, OSA patients had significantly larger stride time variability (3.1±1.1% vs 2.1±0.5% and lower cognitive performances under dual task compared to controls. After CPAP treatment, stride time variability was significantly improved and no longer different compared to controls. Cognitive performance under dual task also improved after CPAP treatment.Eight weeks of CPAP treatment improves gait control of severe OSA patients, suggesting morphological and functional cerebral improvements. Our data provide a rationale for further mechanistic studies and the use of gait as a biomarker of OSA brain consequences.

  10. Gait Recognition Using Image Self-Similarity

    Directory of Open Access Journals (Sweden)

    Chiraz BenAbdelkader

    2004-04-01

    Full Text Available Gait is one of the few biometrics that can be measured at a distance, and is hence useful for passive surveillance as well as biometric applications. Gait recognition research is still at its infancy, however, and we have yet to solve the fundamental issue of finding gait features which at once have sufficient discrimination power and can be extracted robustly and accurately from low-resolution video. This paper describes a novel gait recognition technique based on the image self-similarity of a walking person. We contend that the similarity plot encodes a projection of gait dynamics. It is also correspondence-free, robust to segmentation noise, and works well with low-resolution video. The method is tested on multiple data sets of varying sizes and degrees of difficulty. Performance is best for fronto-parallel viewpoints, whereby a recognition rate of 98% is achieved for a data set of 6 people, and 70% for a data set of 54 people.

  11. Flexible Piezoelectric Sensor-Based Gait Recognition

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2018-02-01

    Full Text Available Most motion recognition research has required tight-fitting suits for precise sensing. However, tight-suit systems have difficulty adapting to real applications, because people normally wear loose clothes. In this paper, we propose a gait recognition system with flexible piezoelectric sensors in loose clothing. The gait recognition system does not directly sense lower-body angles. It does, however, detect the transition between standing and walking. Specifically, we use the signals from the flexible sensors attached to the knee and hip parts on loose pants. We detect the periodic motion component using the discrete time Fourier series from the signal during walking. We adapt the gait detection method to a real-time patient motion and posture monitoring system. In the monitoring system, the gait recognition operates well. Finally, we test the gait recognition system with 10 subjects, for which the proposed system successfully detects walking with a success rate over 93 %.

  12. Using linear time-invariant system theory to estimate kinetic parameters directly from projection measurements

    International Nuclear Information System (INIS)

    Zeng, G.L.; Gullberg, G.T.

    1995-01-01

    It is common practice to estimate kinetic parameters from dynamically acquired tomographic data by first reconstructing a dynamic sequence of three-dimensional reconstructions and then fitting the parameters to time activity curves generated from the time-varying reconstructed images. However, in SPECT, the pharmaceutical distribution can change during the acquisition of a complete tomographic data set, which can bias the estimated kinetic parameters. It is hypothesized that more accurate estimates of the kinetic parameters can be obtained by fitting to the projection measurements instead of the reconstructed time sequence. Estimation from projections requires the knowledge of their relationship between the tissue regions of interest or voxels with particular kinetic parameters and the project measurements, which results in a complicated nonlinear estimation problem with a series of exponential factors with multiplicative coefficients. A technique is presented in this paper where the exponential decay parameters are estimated separately using linear time-invariant system theory. Once the exponential factors are known, the coefficients of the exponentials can be estimated using linear estimation techniques. Computer simulations demonstrate that estimation of the kinetic parameters directly from the projections is more accurate than the estimation from the reconstructed images

  13. Detecting gait abnormalities after concussion or mild traumatic brain injury: A systematic review of single-task, dual-task, and complex gait.

    Science.gov (United States)

    Fino, Peter C; Parrington, Lucy; Pitt, Will; Martini, Douglas N; Chesnutt, James C; Chou, Li-Shan; King, Laurie A

    2018-05-01

    While a growing number of studies have investigated the effects of concussion or mild traumatic brain injury (mTBI) on gait, many studies use different experimental paradigms and outcome measures. The path for translating experimental studies for objective clinical assessments of gait is unclear. This review asked 2 questions: 1) is gait abnormal after concussion/mTBI, and 2) what gait paradigms (single-task, dual-task, complex gait) detect abnormalities after concussion. Data sources included MEDLINE/PubMed, Scopus, Web of Science, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) accessed on March 14, 2017. Original research articles reporting gait outcomes in people with concussion or mTBI were included. Studies of moderate, severe, or unspecified TBI, and studies without a comparator were excluded. After screening 233 articles, 38 studies were included and assigned to one or more sections based on the protocol and reported outcomes. Twenty-six articles reported single-task simple gait outcomes, 24 reported dual-task simple gait outcomes, 21 reported single-task complex gait outcomes, and 10 reported dual-task complex gait outcomes. Overall, this review provides evidence for two conclusions: 1) gait is abnormal acutely after concussion/mTBI but generally resolves over time; and 2) the inconsistency of findings, small sample sizes, and small number of studies examining homogenous measures at the same time-period post-concussion highlight the need for replication across independent populations and investigators. Future research should concentrate on dual-task and complex gait tasks, as they showed promise for detecting abnormal locomotor function outside of the acute timeframe. Additionally, studies should provide detailed demographic and clinical characteristics to enable more refined comparisons across studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Gait analysis in forensic medicine

    DEFF Research Database (Denmark)

    Larsen, Peter K; Simonsen, Erik B; Lynnerup, Niels

    2008-01-01

    Recordings from video surveillance systems are used as evidence from crime scenes. It would be useful to perform comparisons between disguised perpetrators and suspects based on their gait. We applied functional anatomical and biomechanical knowledge to analyze the gait of perpetrators, as record...

  15. Gait outcome following outpatient physiotherapy based on the Bobath concept in people post stroke.

    Science.gov (United States)

    Lennon, Sheila; Ashburn, Ann; Baxter, David

    The purpose of this study was to characterize the gait cycle of patients with hemiplegia before and after a period of outpatient physiotherapy based on the Bobath concept. Nine patients, at least 6 weeks post stroke and recently discharged from a stroke unit, were measured before and after a period of outpatient physiotherapy (mean duration = 17.4 weeks). Therapy was documented using a treatment checklist for each patient. The primary outcome measures were a number of gait variables related to the therapists' treatment hypothesis, recorded during the gait cycle using the CODA motion analysis system. Other secondary outcome measures were the Motor Assessment Scale, Modified Ashworth Scale, subtests of the Sodring Motor Evaluation Scale, the Step test, a 10-m walk test, the Barthel Index and the London Handicap Score. Recovery of more normal gait patterns in the gait cycle (using motion analysis) did not occur. Significant changes in temporal parameters (loading response, single support time) for both legs, in one kinematic (dorsiflexion during stance) and one kinetic variable on the unaffected side (hip flexor moment), and most of the clinical measures of impairment, activity and participation (with the exception of the Modified Ashworth Scale and the 10-m walk) were noted. Study findings did not support the hypothesis that the Bobath approach restored more normal movement patterns to the gait cycle. Further research is required to investigate the treatment techniques that are effective at improving walking ability in people after stroke.

  16. Effects of auditory cues on gait initiation and turning in patients with Parkinson's disease.

    Science.gov (United States)

    Gómez-González, J; Martín-Casas, P; Cano-de-la-Cuerda, R

    2016-12-08

    To review the available scientific evidence about the effectiveness of auditory cues during gait initiation and turning in patients with Parkinson's disease. We conducted a literature search in the following databases: Brain, PubMed, Medline, CINAHL, Scopus, Science Direct, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Library Plus, CENTRAL, Trip Database, PEDro, DARE, OTseeker, and Google Scholar. We included all studies published between 2007 and 2016 and evaluating the influence of auditory cues on independent gait initiation and turning in patients with Parkinson's disease. The methodological quality of the studies was assessed with the Jadad scale. We included 13 studies, all of which had a low methodological quality (Jadad scale score≤2). In these studies, high-intensity, high-frequency auditory cues had a positive impact on gait initiation and turning. More specifically, they 1) improved spatiotemporal and kinematic parameters; 2) decreased freezing, turning duration, and falls; and 3) increased gait initiation speed, muscle activation, and gait speed and cadence in patients with Parkinson's disease. We need studies of better methodological quality to establish the Parkinson's disease stage in which auditory cues are most beneficial, as well as to determine the most effective type and frequency of the auditory cue during gait initiation and turning in patients with Parkinson's disease. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. The link between weight shift asymmetry and gait disturbances in chronic hemiparetic stroke patients

    Directory of Open Access Journals (Sweden)

    Szopa A

    2017-12-01

    Full Text Available Andrzej Szopa,1 Małgorzata Domagalska-Szopa,2 Anetta Lasek-Bal,3 Amadeusz Żak3 1Department of Physiotherapy, 2Department of Medical Rehabilitation, School of Health Sciences in Katowice, 3Department of Neurology, Professor Leszek Giec Upper Silesian Medical Centre, Medical University of Silesia, Katowice, Poland Introduction: While the asymmetry of body posture and the asymmetrical nature of hemiparetic gait in poststroke (PS patients are well documented, the role of weight shift asymmetry in gait disorders after stroke remains unclear. Objective: We examined the association of weight-bearing asymmetry (WBA between paretic and nonparetic lower limbs during quiet standing with the degree of deviation of hemiplegic gait from normal gait evaluated by the Gillette Gait Index (GGI incorporating 16 distinct clinically important kinematic and temporal parameters in chronic PS patients.Participants and methods: Twenty-two ambulatory patients with chronic stroke aged between 50 and 75 years were included in this study. Fourteen patients had hemiparesis on the nondominant side and 8 on the dominant side. The mean time PS was 2 years and 6 months. The reference group consisted of 22 students from the University of the Third Age presenting no neurological disorders. The examination consisted of posturographic weight-bearing (WB distribution and 3-dimensional gait analyses.Results: A significant positive relationship between WBA and GGI was revealed. Moreover, we observed a significant negative association between WBA and paretic step length and walking speed. With regard to kinematic data, the range of motion of knee flexion and peak dorsiflexion in the swing phase of the paretic leg were significantly negatively associated with WBA.Conclusion: Although further research is needed to determine a causal link between postural control asymmetry and gait disturbance in hemiplegics, our findings support the inclusion of WB measurements between paretic and

  18. Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms.

    Science.gov (United States)

    Jasni, Farahiyah; Hamzaid, Nur Azah; Mohd Syah, Nor Elleeiana; Chung, Tze Y; Abu Osman, Noor Azuan

    2017-01-01

    The walking mechanism of a prosthetic leg user is a tightly coordinated movement of several joints and limb segments. The interaction among the voluntary and mechanical joints and segments requires particular biomechanical insight. This study aims to analyze the inter-relationship between amputees' voluntary and mechanical coupled leg joints variables using cyclograms. From this analysis, the critical gait parameters in each gait phase were determined and analyzed if they contribute to a better powered prosthetic knee control design. To develop the cyclogram model, 20 healthy able-bodied subjects and 25 prosthesis and orthosis users (10 transtibial amputees, 5 transfemoral amputees, and 10 different pathological profiles of orthosis users) walked at their comfortable speed in a 3D motion analysis lab setting. The gait parameters (i.e., angle, moment and power for the ankle, knee and hip joints) were coupled to form 36 cyclograms relationship. The model was validated by quantifying the gait disparities of all the pathological walking by analyzing each cyclograms pairs using feed-forward neural network with backpropagation. Subsequently, the cyclogram pairs that contributed to the highest gait disparity of each gait phase were manipulated by replacing it with normal values and re-analyzed. The manipulated cyclograms relationship that showed highest improvement in terms of gait disparity calculation suggested that they are the most dominant parameters in powered-knee control. In case of transfemoral amputee walking, it was identified using this approach that at each gait sub-phase, the knee variables most responsible for closest to normal walking were: knee power during loading response and mid-stance, knee moment and knee angle during terminal stance phase, knee angle and knee power during pre-swing, knee angle at initial swing, and knee power at terminal swing. No variable was dominant during mid-swing phase implying natural pendulum effect of the lower limb between

  19. Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms

    Directory of Open Access Journals (Sweden)

    Nur Azah Hamzaid

    2017-04-01

    Full Text Available The walking mechanism of a prosthetic leg user is a tightly coordinated movement of several joints and limb segments. The interaction among the voluntary and mechanical joints and segments requires particular biomechanical insight. This study aims to analyze the inter-relationship between amputees' voluntary and mechanical coupled leg joints variables using cyclograms. From this analysis, the critical gait parameters in each gait phase were determined and analyzed if they contribute to a better powered prosthetic knee control design. To develop the cyclogram model, 20 healthy able-bodied subjects and 25 prosthesis and orthosis users (10 transtibial amputees, 5 transfemoral amputees, and 10 different pathological profiles of orthosis users walked at their comfortable speed in a 3D motion analysis lab setting. The gait parameters (i.e., angle, moment and power for the ankle, knee and hip joints were coupled to form 36 cyclograms relationship. The model was validated by quantifying the gait disparities of all the pathological walking by analyzing each cyclograms pairs using feed-forward neural network with backpropagation. Subsequently, the cyclogram pairs that contributed to the highest gait disparity of each gait phase were manipulated by replacing it with normal values and re-analyzed. The manipulated cyclograms relationship that showed highest improvement in terms of gait disparity calculation suggested that they are the most dominant parameters in powered-knee control. In case of transfemoral amputee walking, it was identified using this approach that at each gait sub-phase, the knee variables most responsible for closest to normal walking were: knee power during loading response and mid-stance, knee moment and knee angle during terminal stance phase, knee angle and knee power during pre-swing, knee angle at initial swing, and knee power at terminal swing. No variable was dominant during mid-swing phase implying natural pendulum effect of the

  20. DIAGNOSTIC BLOCKS OF THE TIBIAL NERVE IN SPASTIC HEMIPARESIS - EFFECTS ON CLINICAL, ELECTROPHYSIOLOGICAL AND GAIT PARAMETERS

    NARCIS (Netherlands)

    ARENDZEN, JH; VANDUIJN, H; BECKMANN, MKF; HARLAAR, J; VOGELAAR, TW; PREVO, AJH

    The value of a diagnostic block (DB) of the tibial nerve in 17 hemiparetic patients with gait disturbances was investigated. The purpose of this study was to find instruments that help to select patients who will benefit from a long lasting peripheral nerve block. The manually elicited ankle clonus

  1. Gait, posture and cognition in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    Full Text Available ABSTRACT Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD. Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD.

  2. Admissible Estimators in the General Multivariate Linear Model with Respect to Inequality Restricted Parameter Set

    Directory of Open Access Journals (Sweden)

    Shangli Zhang

    2009-01-01

    Full Text Available By using the methods of linear algebra and matrix inequality theory, we obtain the characterization of admissible estimators in the general multivariate linear model with respect to inequality restricted parameter set. In the classes of homogeneous and general linear estimators, the necessary and suffcient conditions that the estimators of regression coeffcient function are admissible are established.

  3. Interaction of obstructive sleep apnoea and cognitive impairment with slow gait speed in middle-aged and older adults.

    Science.gov (United States)

    Lee, Sunghee; Shin, Chol

    2017-07-01

    to investigate whether slow gait speed is associated with cognitive impairment and further whether the association is modified by obstructive sleep apnoea (OSA). in total, 2,222 adults aged 49-80 years, free from dementia, stroke and head injury were asked to walk a 4-m course at fast and usual gait speeds. The time taken to walk was measured. All participants completed the Korean Mini-Mental State Examination, which was validated in the Korean language, to assess cognitive function. Additionally, the participants completed a polysomnography test to ascertain OSA (defined as an apnoea-hypopnoea index ≥15). Multivariable linear regression models were utilised to test the associations. time taken to walk 4 m showed significant inverse associations with cognitive scores (P value = 0.001 at fast gait speed and P = 0.002 at usual gait speed). Furthermore, a significant interaction according to OSA on the association between time to walk and cognitive impairment was found (P value for interaction = 0.003 at fast gait speed and P value for interaction = 0.007 at usual gait speed). we found that the inverse association between the time taken to walk 4 m and a cognitive score became significantly stronger, if an individual had OSA. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    Science.gov (United States)

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  5. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial.

    Science.gov (United States)

    Buesing, Carolyn; Fisch, Gabriela; O'Donnell, Megan; Shahidi, Ida; Thomas, Lauren; Mummidisetty, Chaithanya K; Williams, Kenton J; Takahashi, Hideaki; Rymer, William Zev; Jayaraman, Arun

    2015-08-20

    Robots offer an alternative, potentially advantageous method of providing repetitive, high-dosage, and high-intensity training to address the gait impairments caused by stroke. In this study, we compared the effects of the Stride Management Assist (SMA®) System, a new wearable robotic device developed by Honda R&D Corporation, Japan, with functional task specific training (FTST) on spatiotemporal gait parameters in stroke survivors. A single blinded randomized control trial was performed to assess the effect of FTST and task-specific walking training with the SMA® device on spatiotemporal gait parameters. Participants (n=50) were randomly assigned to FTST or SMA. Subjects in both groups received training 3 times per week for 6-8 weeks for a maximum of 18 training sessions. The GAITRite® system was used to collect data on subjects' spatiotemporal gait characteristics before training (baseline), at mid-training, post-training, and at a 3-month follow-up. After training, significant improvements in gait parameters were observed in both training groups compared to baseline, including an increase in velocity and cadence, a decrease in swing time on the impaired side, a decrease in double support time, an increase in stride length on impaired and non-impaired sides, and an increase in step length on impaired and non-impaired sides. No significant differences were observed between training groups; except for SMA group, step length on the impaired side increased significantly during self-selected walking speed trials and spatial asymmetry decreased significantly during fast-velocity walking trials. SMA and FTST interventions provided similar, significant improvements in spatiotemporal gait parameters; however, the SMA group showed additional improvements across more parameters at various time points. These results indicate that the SMA® device could be a useful therapeutic tool to improve spatiotemporal parameters and contribute to improved functional mobility in

  6. Association of Gait Characteristics and Depression in Patients with Parkinson's Disease Assessed in Goal-Directed Locomotion Task

    Science.gov (United States)

    Kincses, Péter; Karádi, Kázmér; Feldmann, Ádám; Dorn, Krisztina; Aschermann, Zsuzsanna; Szolcsányi, Tibor; Csathó, Árpád

    2017-01-01

    Introduction. In the genesis of Parkinson's disease (PD) clinical phenomenology the exact nature of the association between bradykinesia and affective variables is unclear. In the present study, we analyzed the gait characteristics and level of depression in PD and healthy volunteers. Methods. Patients with PD (n = 48) and healthy controls (n = 52) were recruited for the present study. Walking speed, stride length, and cadence were compared between groups while participants completed a goal-directed locomotion task under visually controlled (VC) and visually noncontrolled conditions (VnC). Results. Significantly higher depression scores were found in PD comparing to healthy control groups. In PD, depression was associated with gait components in the VC wherein the place of the target was visible. In contrast, in healthy subjects the depression was associated with gait components in VnC wherein the location and image of the target were memorized and recalled. In patients with PD and depression, the visually deprived multitask augments the rate of cadence and diminishes stride length, while velocity remains relatively unchanged. The depression associated with gait characteristics as a comorbid affective factor in PD, and that impairs the coherence of gait pattern. Conclusion. The relationship between depression and gait parameters appears to indicate that PD not only is a neurological disease but also incorporates affective disturbances that associate with the regulation of gait characteristics. PMID:28293444

  7. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch.

    Science.gov (United States)

    Kosse, Nienke M; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J C

    2015-08-01

    Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study was to establish the validity and reliability of the iPod Touch for gait and posture assessment. Sixty healthy participants (aged 18-75 years) were measured with an iPod Touch and stand-alone accelerometer while they walked under single- and dual-task conditions, and while standing in parallel and semi-tandem stance with eyes open, eyes closed and when performing a dual task. Cross-correlation values (CCV) showed high correspondence of anterior-posterior and medio-lateral signal patterns (CCV's ≥ 0.88). Validity of gait parameters (foot contacts, index of harmonicity, and amplitude variability) and standing posture parameters [root mean square of accelerations, median power frequency (MPF) and sway area] as indicated by intra-class correlation (ICC) was high (ICC = 0.85-0.99) and test-retest reliability was good (ICC = 0.81-0.97), except for MPF (ICC = 0.59-0.87). Overall, the iPod Touch obtained valid and reliable measures of gait and postural control in healthy adults of all ages under different conditions. Additionally, smart devices have the potential to be used for clinical gait and posture assessments.

  8. Surface parameter characterization of surface vibrations in linear chains

    International Nuclear Information System (INIS)

    Majlis, N.; Selzer, S.; Puszkarski, H.; Diep-The-Hung

    1982-12-01

    We consider the vibrations of a linear monatomic chain with a complex surface potential defined by the surface pinning parameter a=Aesup(-i psi). It is found that in the case of a semi-infinite chain a is connected with the surface vibration wave number k=s+it by the exact relations: s=psi, t=lnA. We also show that the solutions found can be regarded as approximate ones (in the limit L>>1) for surface vibrations of a finite chain consisting of L atoms. (author)

  9. Quantitative Balance and Gait Measurement in Patients with Frontotemporal Dementia and Alzheimer Diseases: A Pilot Study.

    Science.gov (United States)

    Velayutham, Selva Ganapathy; Chandra, Sadanandavalli Retnaswami; Bharath, Srikala; Shankar, Ravi Girikamatha

    2017-01-01

    Alzhiemers disease and Frontotemporal dementia are common neurodegenerative dementias with a wide prevalence. Falls are a common cause of morbidity in these patients. Identifying subclinical involvement of these parameters might serve as a tool in differential analysis of these distinct parameters involved in these conditions and also help in planning preventive strategies to prevent falls. Eight patients in age and gender matched patients in each group were compared with normal controls. Standardizes methods of gait and balance aseesment were done in all persons. Results revealed subclinical involvement of gait and balancesin all groups specially during divided attention. The parameters were significantly more affected in patients. Patients with AD and FTD had involement of over all ambulation index balance more affected in AD patients FTD patients showed step cycle, stride length abnormalities. There is balance and gait involvement in normal ageing as well as patients with AD and FTD. The pattern of involvement in AD correlates with WHERE pathway involvement and FTD with frontal subcortical circuits involvement. Identification the differential patterns of involvement in subclinical stage might help to differentiate normal ageing and the different types of cortical dementias. This could serve as an additional biomarker and also assist in initiating appropriate training methods to prevent future falls.

  10. Gait Stability in Children with Cerebral Palsy

    Science.gov (United States)

    Bruijn, Sjoerd M.; Millard, Matthew; van Gestel, Leen; Meyns, Pieter; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    Children with unilateral Cerebral Palsy (CP) have several gait impairments, amongst which impaired gait stability may be one. We tested whether a newly developed stability measure (the foot placement estimator, FPE) which does not require long data series, can be used to asses gait stability in typically developing (TD) children as well as…

  11. Assessment of gait in toddlers with normal motor development and in hemiplegic children with mild motor impairment: a validity study

    Directory of Open Access Journals (Sweden)

    Priscilla R. P. Figueiredo

    2013-08-01

    Full Text Available BACKGROUND: The optimization of gait performance is an important goal in the rehabilitation of children with cerebral palsy (CP who present a prognosis associated with locomotion. Gait analysis using videos captured by digital cameras requires validation. OBJECTIVE: To evaluate the validity of a method that involves the analysis of videos captured using a digital camera for quantifying the temporal parameters of gait in toddlers with normal motor development and children with CP. METHOD: Eleven toddlers with normal motor development and eight children with spastic hemiplegia who were able to walk without assistive devices were asked to walk through a space contained in the visual field of two instruments: a digital camera and a three-dimensional motion analysis system, Qualisys Pro-Reflex. The duration of the stance and swing phases of gait and of the entire gait cycle were calculated by analyzing videos captured by a digital camera and compared to those obtained by Qualisys Pro-Reflex, which is considered a highly accurate system. RESULTS: The Intraclass Correlation Coefficient (ICC demonstrated excellent agreement (ICC>0.90 between the two procedures for all measurements, except for the swing phase of the normal toddlers (ICC=0.35. The standard error of measurement was less than 0.02 seconds for all measures. CONCLUSIONS: The results reveal similarities between the two instruments, suggesting that digital cameras can be valid instruments for quantifying two temporal parameters of gait. This congruence is of clinical and scientific relevance and validates the use of digital cameras as a resource for helping the assessment and documentation of the therapeutic effects of interventions targeted at the gait of children with CP.

  12. Office management of gait disorders in the elderly.

    Science.gov (United States)

    Lam, Robert

    2011-07-01

    To provide family physicians with an approach to office management of gait disorders in the elderly. Ovid MEDLINE was searched from 1950 to July 2010 using subject headings for gait or neurologic gait disorders combined with physical examination. Articles specific to family practice or family physicians were selected. Relevant review articles and original research were used when appropriate and applicable to the elderly. Gait and balance disorders in the elderly are difficult to recognize and diagnose in the family practice setting because they initially present with subtle undifferentiated manifestations, and because causes are usually multifactorial, with multiple diseases developing simultaneously. To further complicate the issue, these manifestations can be camouflaged in elderly patients by the physiologic changes associated with normal aging. A classification of gait disorders based on sensorimotor levels can be useful in the approach to management of this problem. Gait disorders in patients presenting to family physicians in the primary care setting are often related to joint and skeletal problems (lowest-level disturbances), as opposed to patients referred to neurology specialty clinics with sensory ataxia, myelopathy, multiple strokes, and parkinsonism (lowest-, middle-, and highest-level disturbances). The difficulty in diagnosing gait disorders stems from the challenge of addressing early undifferentiated disease caused by multiple disease processes involving all sensorimotor levels. Patients might present with a nonspecific "cautious" gait that is simply an adaptation of the body to disease limitations. This cautious gait has a mildly flexed posture with reduced arm swing and a broadening of the base of support. This article reviews the focused history (including medication review), practical physical examination, investigations, and treatments that are key to office management of gait disorders. Family physicians will find it helpful to classify gait

  13. Human Gait Recognition Based on Multiview Gait Sequences

    Directory of Open Access Journals (Sweden)

    Xiaxi Huang

    2008-05-01

    Full Text Available Most of the existing gait recognition methods rely on a single view, usually the side view, of the walking person. This paper investigates the case in which several views are available for gait recognition. It is shown that each view has unequal discrimination power and, therefore, should have unequal contribution in the recognition process. In order to exploit the availability of multiple views, several methods for the combination of the results that are obtained from the individual views are tested and evaluated. A novel approach for the combination of the results from several views is also proposed based on the relative importance of each view. The proposed approach generates superior results, compared to those obtained by using individual views or by using multiple views that are combined using other combination methods.

  14. The characteristics of physical activity and gait in patients receiving radiotherapy in cancer induced bone pain

    International Nuclear Information System (INIS)

    Sande, Tonje A.; Scott, Angela C.; Laird, Barry J.A.; Wan, Hong I.; Fleetwood-Walker, Susan M.; Kaasa, Stein; Klepstad, Pål; Mitchell, Rory; Murray, Gordon D.; Colvin, Lesley A.; Fallon, Marie T.

    2014-01-01

    Background and purpose: An objective measure of pain relief may add important information to patients’ self assessment, particularly after a treatment. The study aims were to determine whether measures of physical activity and/or gait can be used in characterizing cancer-induced bone pain (CIBP) and whether these biomarkers are sensitive to treatment response, in patients receiving radiotherapy (XRT) for CIBP. Materials and methods: Patients were assessed before (baseline) and 6–8 weeks after XRT (follow up). The following assessments were done: Brief Pain Inventory (BPI), activPAL™ activity meter, and GAITRite® electronic walkway (measure of gait). Wilcoxon, Mann–Whitney and Pearson statistical analyses were done. Results: Sixty patients were assessed at baseline; median worst pain was 7 and walking interference was 5. At follow up 42 patients were assessed. BPI worst pain, average pain, walking interference and total functional interference all improved (p < 0.001). An improvement in functional interference correlated with aspects of physical activity (daily hours standing r = 0.469, p = 0.002) and gait (cadence r = 0.341, p = 0.03). The activPAL and GAITRite parameters did not change following XRT (p > 0.05). In responder analyses there were no differences in activPAL and GAITRite parameters (p > 0.05). Conclusion: Assessment of physical activity and gait allow a characterization of the functional aspects of CIBP, but not in the evaluation of XRT

  15. A sensitivity analysis method for the body segment inertial parameters based on ground reaction and joint moment regressor matrices.

    Science.gov (United States)

    Futamure, Sumire; Bonnet, Vincent; Dumas, Raphael; Venture, Gentiane

    2017-11-07

    This paper presents a method allowing a simple and efficient sensitivity analysis of dynamics parameters of complex whole-body human model. The proposed method is based on the ground reaction and joint moment regressor matrices, developed initially in robotics system identification theory, and involved in the equations of motion of the human body. The regressor matrices are linear relatively to the segment inertial parameters allowing us to use simple sensitivity analysis methods. The sensitivity analysis method was applied over gait dynamics and kinematics data of nine subjects and with a 15 segments 3D model of the locomotor apparatus. According to the proposed sensitivity indices, 76 segments inertial parameters out the 150 of the mechanical model were considered as not influent for gait. The main findings were that the segment masses were influent and that, at the exception of the trunk, moment of inertia were not influent for the computation of the ground reaction forces and moments and the joint moments. The same method also shows numerically that at least 90% of the lower-limb joint moments during the stance phase can be estimated only from a force-plate and kinematics data without knowing any of the segment inertial parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Balance control during gait initiation: State-of-the-art and research perspectives.

    Science.gov (United States)

    Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis

    2017-11-18

    It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.

  17. Diurnal variations in the outcomes of instrumented gait and quiet standing balance assessments and their association with falls history

    International Nuclear Information System (INIS)

    Doheny, Emer P; Greene, Barry R; Foran, Timothy; Cunningham, Clodagh; Fan, Chie Wei; Kenny, Rose Anne

    2012-01-01

    One in three adults aged over 65 falls every year, resulting in enormous costs to society. Incidents of falling vary with time of day, peaking in the early morning. The aim of this study was to determine if the ability of instrumented gait and balance assessments to discriminate between participants based on their falls history varies diurnally. Body-worn sensors were used during a 3 m gait assessment and a series of quiet standing balance tests. Each assessment was performed four times during a single day under supervised conditions in the participant's homes. 40 adults aged over 60 years (19 fallers) participated in this study. A range of parameters were derived for each assessment, and the ability of each parameter to discriminate between fallers and non-fallers at each recording time was examined. The effect of falls history on single support time varied significantly with recording time, with a significantly reduced single support time observed at the first and last recording session of the day. Differences were observed between fallers and non-fallers for a range of other gait parameters; however, these effects did not vary with assessment time. The quiet standing assessments examined in this study revealed significant variations with falls history; however, the sensitivity of the examined quiet standing assessments to falls risk does not appear to be time dependent. These results indicate that, with the exception of single support time, the association of gait and quiet standing balance parameters with falls risk does not vary diurnally. (paper)

  18. Extraction of human gait signatures: an inverse kinematic approach using Groebner basis theory applied to gait cycle analysis

    Science.gov (United States)

    Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.

    2013-05-01

    This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.

  19. Skeletal and Clinical Effects of Exoskeleton-Assisted Gait

    Science.gov (United States)

    2015-10-01

    robotic exoskeletons to enable gait in individuals with a complete spinal cord injury, the health benefits of exoskeleton -assisted gait have not been...for the use of robotic exoskeletons to enable gait in individuals with a complete spinal cord injury, clinical teams are not provided with...appropriate tools to estimate or predict potential health benefits (e.g. bone health) associated with exoskeleton -assisted gait. What was the impact on other

  20. Current Evidence of Gait Modification with Real-time Biofeedback to Alter Kinetic, Temporospatial, and Function-Related Outcomes: A Review

    Directory of Open Access Journals (Sweden)

    Oladipo Eddo

    2017-07-01

    Full Text Available Background: Gait retraining using real-time biofeedback (RTB may have positive outcomes in decreasing knee adduction moment (KAM in healthy individuals and has shown equal likelihood in patients with knee osteoarthritis (OA. Currently, there is no consensus regarding the most effective gait modification strategy, mode of biofeedback or treatment dosage. Objective: The purpose of this review was: i to assess if gait retraining interventions using RTB are valuable to reduce KAM, pain, and improve function in individuals with knee osteoarthritis, ii to evaluate the effectiveness of different gait modifications and modes of RTB in reducing KAM in healthy individuals, and iii to assess the impact of gait retraining interventions with RTB on other variables that may affect clinical outcomes. Methods: Seven electronic databases were searched using five search terms. Studies that utilized any form of gait retraining with RTB to improve one or a combination of the following measures were included: KAM, knee pain, and function. Twelve studies met the inclusion criteria, evaluating eleven distinctive gait modifications and three modes of RTB. Results: All but one study showed positive outcomes. Self-selected and multi-parameter gait modifications showed the greatest reductions in KAM with visual and haptic RTB being more effective than auditory. Conclusions: Current evidence suggests that gait modification using RTB can Positively alter KAM in asymptomatic and symptomatic participants. However, the existing literature is limited and of low quality, with the optimal combination strategies remaining unclear (gait and biofeedback mode. Future studies should employ randomized controlled study designs to compare the effects of different gait modification strategies and biofeedback modes on individuals with knee OA.

  1. Dual task interference on postural sway, postural transitions and gait in people with Parkinson's disease and freezing of gait.

    Science.gov (United States)

    de Souza Fortaleza, Ana Claudia; Mancini, Martina; Carlson-Kuhta, Patty; King, Laurie A; Nutt, John G; Chagas, Eliane Ferrari; Freitas, Ismael Forte; Horak, Fay B

    2017-07-01

    Freezing of gait (FoG) is associated with less automatic gait and more impaired cognition, balance and postural transitions compared to people with PD who do not have FoG. However, it is unknown whether dual-task cost during postural sway, postural transitions (such as gait initiation and turning), and gait are more in subjects with Parkinson's disease (PD) who have freezing of gait (FoG+) compared to those who do not have FoG (FoG-). Here, we hypothesized that the effects of a cognitive dual task on postural sway, postural transitions and gait would be larger in FoG+ than FoG-. Thirty FoG- and 24 FoG+ performed an Instrumented Stand and Walk test in OFF medication state, with and without a secondary cognitive task (serial subtraction by 3s). Measures of postural sway, gait initiation, turning, and walking were extracted using body-worn inertial sensors. FoG+ showed significantly larger dual task cost than FoG- for several gait metrics, but not during postural sway or postural transitions. During walking, FoG+ exhibited a larger dual task cost than FoG- resulting in shorter stride length and slower stride velocity. During standing, FoG+ showed a larger postural sway compared to FoG- and during gait initiation, FoG+, but not FoG-, showed a longer first step duration during the dual-task condition compared to single-task condition (interaction effect, p=0.04). During turning, both groups showed a slower turn peak speed in the dual-task condition compared to single task condition. These findings partly support our hypothesis that dual task cost on walking is greater in FoG+ than FoG-. Copyright © 2017. Published by Elsevier B.V.

  2. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    Science.gov (United States)

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  3. A program of physical activity improves gait impairment in people with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Diego Orcioli-Silva

    2018-03-01

    Full Text Available Abstract AIM This study aimed to identify the effects of aging and Alzheimer’s disease (AD on gait parameters after a four-month period and to investigate the effects of a four-month program of physical activity, with emphasis on the cognitive components of gait during single and dual task, in people with AD. METHODS Twenty-three people with AD, divided into the Training Group (TG; n=12; aged 79.17±7.62 years and the Control Group (CG; n=11; aged 77.00±5.57 years, and eleven healthy older adults (Healthy Group - HG; aged 75.82±4.83 years were included in this study. TG participated in a physical activity program for four months. The CG and HG were instructed not to participate in any kind of regular physical activity in this period. The physical activity program includes motor activities and cognitive tasks simultaneously. The participants attended a 1-h session three times a week. The kinematic parameters of gait were analyzed under two conditions, before and after a physical activity program: single and dual task. Deltas for all dependent variables between pre and post training were calculated. The deltas were compared using two-way ANOVAs with group (TG x CG and CG x HG and task (single x dual task as factors, with repeated measures for task. RESULTS After the training period, the TG improved stride length, duration, velocity and cadence compared to the CG. CONCLUSION Physical activity with emphasis on cognitive components promotes better reallocation of attention while walking in people with AD, improving attentional focus on the gait and thus resulting in a safer locomotive pattern.

  4. Balance and gait performance after maximal and submaximal endurance exercise in seniors: is there a higher fall-risk?

    Science.gov (United States)

    Donath, Lars; Zahner, Lukas; Roth, Ralf; Fricker, Livia; Cordes, Mareike; Hanssen, Henner; Schmidt-Trucksäss, Arno; Faude, Oliver

    2013-03-01

    Impaired balance and gait performance increase fall-risk in seniors. Acute effects of different exercise bouts on gait and balance were not yet addressed. Therefore, 19 healthy seniors (10 women, 9 men, age: 64.6 ± 3.2 years) were examined on 3 days. After exhaustive treadmill testing, participants randomly completed a 2-km treadmill walking test (76 ± 8 % VO(2max)) and a resting control condition. Standing balance performance (SBALP) was assessed by single limb-eyes opened (SLEO) and double limb-eyes closed (DLEC) stance. Gait parameters were collected at comfortable walking velocity. A condition × time interaction of center of pressure path length (COP(path)) was observed for both balance tasks (p fall-risk in seniors. Balance changes upon 2-km testing might be of minor relevance. Gait is not affected during single task walking at given velocities.

  5. Vision-based gait impairment analysis for aided diagnosis.

    Science.gov (United States)

    Ortells, Javier; Herrero-Ezquerro, María Trinidad; Mollineda, Ramón A

    2018-02-12

    Gait is a firsthand reflection of health condition. This belief has inspired recent research efforts to automate the analysis of pathological gait, in order to assist physicians in decision-making. However, most of these efforts rely on gait descriptions which are difficult to understand by humans, or on sensing technologies hardly available in ambulatory services. This paper proposes a number of semantic and normalized gait features computed from a single video acquired by a low-cost sensor. Far from being conventional spatio-temporal descriptors, features are aimed at quantifying gait impairment, such as gait asymmetry from several perspectives or falling risk. They were designed to be invariant to frame rate and image size, allowing cross-platform comparisons. Experiments were formulated in terms of two databases. A well-known general-purpose gait dataset is used to establish normal references for features, while a new database, introduced in this work, provides samples under eight different walking styles: one normal and seven impaired patterns. A number of statistical studies were carried out to prove the sensitivity of features at measuring the expected pathologies, providing enough evidence about their accuracy. Graphical Abstract Graphical abstract reflecting main contributions of the manuscript: at the top, a robust, semantic and easy-to-interpret feature set to describe impaired gait patterns; at the bottom, a new dataset consisting of video-recordings of a number of volunteers simulating different patterns of pathological gait, where features were statistically assessed.

  6. Can biomechanical variables predict improvement in crouch gait?

    Science.gov (United States)

    Hicks, Jennifer L.; Delp, Scott L.; Schwartz, Michael H.

    2011-01-01

    Many patients respond positively to treatments for crouch gait, yet surgical outcomes are inconsistent and unpredictable. In this study, we developed a multivariable regression model to determine if biomechanical variables and other subject characteristics measured during a physical exam and gait analysis can predict which subjects with crouch gait will demonstrate improved knee kinematics on a follow-up gait analysis. We formulated the model and tested its performance by retrospectively analyzing 353 limbs of subjects who walked with crouch gait. The regression model was able to predict which subjects would demonstrate ‘improved’ and ‘unimproved’ knee kinematics with over 70% accuracy, and was able to explain approximately 49% of the variance in subjects’ change in knee flexion between gait analyses. We found that improvement in stance phase knee flexion was positively associated with three variables that were drawn from knowledge about the biomechanical contributors to crouch gait: i) adequate hamstrings lengths and velocities, possibly achieved via hamstrings lengthening surgery, ii) normal tibial torsion, possibly achieved via tibial derotation osteotomy, and iii) sufficient muscle strength. PMID:21616666

  7. Gait training of patients after stroke using an electromechanical gait trainer combined with simultaneous functional electrical stimulation.

    Science.gov (United States)

    Tong, Raymond K Y; Ng, Maple F W; Li, Leonard S W; So, Elaine F M

    2006-09-01

    This case report describes the implementation of gait training intervention that used an electromechanical gait trainer with simultaneous functional electrical stimulation (FES) for 2 patients with acute ischemic stroke. Two individuals with post-stroke hemiplegia of less than 6 weeks' duration participated in a 4-week gait training program as an adjunct to physical therapy received at a hospital. After the 4-week intervention, both patients were discharged from the hospital, and they returned after 6 months for a follow-up evaluation. By the end of the 4-week intervention, both patients had shown improvements in scores on the Barthel Index, Berg Balance Scale, Functional Ambulation Categories Scale, 5-m timed walking test, and Motricity Index. In the 6-month follow-up evaluation, both patients continued to have improvements in all outcome measures. This case report shows that, following the use of an electromechanical gait trainer simultaneously with FES, patients after acute stroke had improvements in gait performance, functional activities, balance, and motor control in the long term.

  8. Locomotion Gait Planning of Climber Snake-Like Robot

    Directory of Open Access Journals (Sweden)

    Mohammad Nezaminia

    2013-04-01

    Full Text Available In this article a novel breed of snake-like climber robots has been introduced. Structure and operation of the first generation of snake-like climber robot "Marak I" has been discussed. The gait planning for two dimensional locomotion of a novel snake-like climber robot "Marak I" is presented. The types of locomotion investigated were rectilinear and wheeling gaits. The gaits of locomotion were experimented and their suitability for various applications has been mentioned. Some encountered practical problems plus solutions were addressed. Finally we found out that: the vertical motion was producing more fault than horizontal locomotion, and notably the fastest gait of locomotion was the wheeling gait

  9. Hip mechanics underlie lower extremity power training-induced increase in old adults' fast gait velocity : The Potsdam Gait Study (POGS)

    NARCIS (Netherlands)

    Beijersbergen, Chantal M. I.; Granacher, Urs; Gäbler, Martijn; DeVita, Paul; Hortobagyi, Tibor

    Background: Aging is associated with slowed gait and old compared with young adults generally walk with greater positive hip work (H1) and reduced positive ankle work (A2). The role of exercise interventions on old adults' gait mechanics that underlie training-induced improvements in gait velocity

  10. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson's disease.

    Science.gov (United States)

    Zhao, Yan; Nonnekes, Jorik; Storcken, Erik J M; Janssen, Sabine; van Wegen, Erwin E H; Bloem, Bastiaan R; Dorresteijn, Lucille D A; van Vugt, Jeroen P P; Heida, Tjitske; van Wezel, Richard J A

    2016-06-01

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson's disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory cueing in a laboratory setting with a custom-made application for the Google Glass. Twelve participants (mean age = 66.8; mean disease duration = 13.6 years) were tested at end of dose. We compared several key gait parameters (walking speed, cadence, stride length, and stride length variability) and freezing of gait for three types of external cues (metronome, flashing light, and optic flow) and a control condition (no-cue). For all cueing conditions, the subjects completed several walking tasks of varying complexity. Seven inertial sensors attached to the feet, legs and pelvis captured motion data for gait analysis. Two experienced raters scored the presence and severity of freezing of gait using video recordings. User experience was evaluated through a semi-open interview. During cueing, a more stable gait pattern emerged, particularly on complicated walking courses; however, freezing of gait did not significantly decrease. The metronome was more effective than rhythmic visual cues and most preferred by the participants. Participants were overall positive about the usability of the Google Glass and willing to use it at home. Thus, smartglasses like the Google Glass could be used to provide personalized mobile cueing to support gait; however, in its current form, auditory cues seemed more effective than rhythmic visual cues.

  11. Parameter-dependent PWQ Lyapunov function stability criteria for uncertain piecewise linear systems

    Directory of Open Access Journals (Sweden)

    Morten Hovd

    2018-01-01

    Full Text Available The calculation of piecewise quadratic (PWQ Lyapunov functions is addressed in view of stability analysis of uncertain piecewise linear dynamics. As main contribution, the linear matrix inequality (LMI approach proposed in (Johansson and Rantzer, 1998 for the stability analysis of PWL and PWA dynamics is extended to account for parametric uncertainty based on a improved relaxation technique. The results are applied for the analysis of a Phase Locked Loop (PLL benchmark and the ability to guarantee a stability region in the parameter space well beyond the state of the art is demonstrated.

  12. Evaluation of gait performance of knee osteoarthritis patients after total knee arthroplasty with different assistive devices

    Directory of Open Access Journals (Sweden)

    Ana Tereso

    Full Text Available IntroductionNowadays Knee Osteoarthritis (KOA affects a large percentage of the elderly, and one solution is to perform a Total Knee Arthroplasty (TKA. In this paper, one intends to study the gait and posture of these patients after the TKA, while walking with three assistive devices (ADs (crutches, standard walker (SW and rollator with forearm supports (RFS.MethodsEleven patients were evaluated in 2 phases: 5 days and 15 days after surgery. This evaluation was conducted with two inertial sensors, one attached to the operated leg ankle, to measure spatiotemporal parameters, and the other at the sacrum, to measure posture and fall risk-related parameters. Multivariate analysis of variance (MANOVA with repeated measures was performed to detect group differences.ResultsThe MANOVA results show that all spatiotemporal parameters are significantly different (p0.05. The interaction between time and ADs only affects significantly the velocity (p<0.05. In terms of fall risk parameters, time only significantly affects the antero-posterior direction (p<0.05 and ADs affects significantly root mean square in medio-lateral direction (p<0.05. In terms of interaction between time and ADs, there are no statistical significant differences.ConclusionThis study concludes that depending on the state of recovery of the patient, different ADs should be prescribed. On the overall, standard walker is good to give stability to the patient and RFS allows the patient to present a gait pattern closer to a natural gait.

  13. Individual Differences in Beat Perception Affect Gait Responses to Low- and High-Groove Music

    Science.gov (United States)

    Leow, Li-Ann; Parrott, Taylor; Grahn, Jessica A.

    2014-01-01

    Slowed gait in patients with Parkinson’s disease (PD) can be improved when patients synchronize footsteps to isochronous metronome cues, but limited retention of such improvements suggest that permanent cueing regimes are needed for long-term improvements. If so, music might make permanent cueing regimes more pleasant, improving adherence; however, music cueing requires patients to synchronize movements to the “beat,” which might be difficult for patients with PD who tend to show weak beat perception. One solution may be to use high-groove music, which has high beat salience that may facilitate synchronization, and affective properties, which may improve motivation to move. As a first step to understanding how beat perception affects gait in complex neurological disorders, we examined how beat perception ability affected gait in neurotypical adults. Synchronization performance and gait parameters were assessed as healthy young adults with strong or weak beat perception synchronized to low-groove music, high-groove music, and metronome cues. High-groove music was predicted to elicit better synchronization than low-groove music, due to its higher beat salience. Two musical tempi, or rates, were used: (1) preferred tempo: beat rate matched to preferred step rate and (2) faster tempo: beat rate adjusted to 22.5% faster than preferred step rate. For both strong and weak beat-perceivers, synchronization performance was best with metronome cues, followed by high-groove music, and worst with low-groove music. In addition, high-groove music elicited longer and faster steps than low-groove music, both at preferred tempo and at faster tempo. Low-groove music was particularly detrimental to gait in weak beat-perceivers, who showed slower and shorter steps compared to uncued walking. The findings show that individual differences in beat perception affect gait when synchronizing footsteps to music, and have implications for using music in gait rehabilitation. PMID:25374521

  14. Individual differences in beat perception affect gait responses to low- and high-groove music.

    Directory of Open Access Journals (Sweden)

    Li-Ann eLeow

    2014-10-01

    Full Text Available Slowed gait in Parkinson’s disease (PD patients can be improved when patients synchronize footsteps to isochronous metronome cues, but limited retention of such improvements suggest that permanent cueing regimes are needed for long-term improvements. If so, music might make permanent cueing regimes more pleasant, improving adherence; however, music cueing requires patients to synchronize movements to the beat, which might be difficult for PD patients who tend to show weak beat perception. One solution may be to use high groove music, which has high beat salience that may facilitate synchronization, and affective properties which may improve motivation to move. As a first step in understanding how beat perception affects gait in complex neurological disorders, we examined how beat perception ability affected gait in neurotypical adults. Synchronization performance and gait parameters were assessed as healthy young adults with strong or weak beat perception synchronized to low groove music, high groove music, and metronome cues. High groove music was predicted to elicit better synchronization than low groove music, due to its higher beat salience. Two musical tempi, or rates, were used: (1 preferred tempo: beat rate matched to preferred step rate and (2 faster tempo: beat rate adjusted to 22.5% faster than preferred step rate. For both strong and weak beat-perceivers, synchronization performance was best with metronome cues, followed by high groove music, and worst with low groove music. In addition, high groove music elicited longer and faster steps than low groove music, both at preferred tempo and at faster tempo. Low groove music was particularly detrimental to gait in weak beat-perceivers, who showed slower and shorter steps compared to uncued walking. The findings show that individual differences in beat perception affect gait when synchronizing footsteps to music, and have implications for using music in gait rehabilitation.

  15. The effect of gait training with shoe inserts on the improvement of pain and gait in sacroiliac joint patients.

    Science.gov (United States)

    Cho, Byung-Yun; Yoon, Jung-Gyu

    2015-08-01

    [Purpose] The purpose of the current research was to identify how gait training with shoe inserts affects the pain and gait of sacroiliac joint dysfunction patients. [Subjects and Methods] Thirty subjects were randomly selected and assigned to be either the experimental group (gait training with shoe insert group) or control group. Each group consisted of 15 patients. Pain was measured by Visual Analogue Scale, and foot pressure in a standing position and during gait was measured with a Gateview AFA-50 system (Alpus, Seoul, Republic of Korea). A paired sample t-test was used to compare the pain and gait of the sacroiliac joint before and after the intervention. Correlation between pain and walking after gait training with shoe inserts was examined by Pearson test. The level of significance was set at α=0.05. [Results] It was found that application of the intervention to the experimental group resulted in a significant decrease in sacroiliac joint pain. It was also found that there was a significant correlation between Visual Analogue Scale score and dynamic asymmetric index (r= 0.796) and that there was a negative correlation between Visual Analogue Scale score and forefoot/rear foot peak pressure ratio (r=-0.728). [Conclusion] The results of our analysis lead us to conclude that the intervention with shoe inserts had a significant influence on the pain and gait of sacroiliac joint patients.

  16. GAIT ANALYSIS IN GIANT ANTEATER (MYRMECOPHAGA TRIDACTYLA) WITH THE USE OF A PRESSURE-SENSITIVE WALKWAY.

    Science.gov (United States)

    de Faria, Luís Guilherme; Rahal, Sheila Canevese; dos Reis Mesquita, Luciane; Agostinho, Felipe Stefan; Kano, Washington Takashi; Teixeira, Carlos Roberto; Monteiro, Frederico Ozanan Barros

    2015-06-01

    The aim of this study was to evaluate the kinetic and temporospatial parameters of clinically healthy juvenile giant anteaters (Myrmecophaga tridactyla) by using a pressure-sensing walkway. Three free-ranging clinically healthy giant anteaters (M. tridactyla), two males and one female, aged 5-7 mo, were used. There was no statistically significant difference between the right and left sides for the kinetic and temporospatial parameters for both forelimbs and hind limbs. Although the gait velocity was similar for all giant anteaters, the stride frequency was higher in the smaller anteaters. The difference in stride frequency is associated with body size, which also influenced other temporospatial parameters. The percentage of body distribution was higher on the forelimbs than the hind limbs. The contact surface and trajectory of the force of the forepaws differed from the hind paws. In conclusion, the anteaters have gait peculiarities associated with the anatomical differences between forelimbs and hind limbs.

  17. Differential associations between dual-task walking abilities and usual gait patterns in healthy older adults-Results from the Baltimore Longitudinal Study of Aging.

    Science.gov (United States)

    Ko, Seung-Uk; Jerome, Gerald J; Simonsick, Eleanor M; Studenski, Stephanie; Hausdorff, Jeffrey M; Ferrucci, Luigi

    2018-04-27

    It is well established that facing a cognitive challenge while carrying out a motor task interferes with the motor task performance, and in general the ability of handling a dual-task declines progressively with aging. However, the reasons for this decline have not been fully elucidated. Understanding the association between usual-walking gait patterns and dual-task walking performance may provide new insights into the mechanisms that lead to gait deterioration in normal aging and its link to motor and cognitive function. Our aim was to assess usual gait parameters in kinematics and kinetics to understand how these parameters are related with a specific task in dual-task walking. We hypothesized that difficulty in dual-task walking would be associated with gait deteriorations as reflected in range of motion and mechanical work expenditure. We tested this hypothesis by quantifying the gait of 383 participants in the Baltimore Longitudinal Study of Aging (68% of whom successfully completed the dual-task walk, 21% failed the motor task, and 11% failed the cognitive task). Compared to successful performers, participants who failed the single motor task had slower gait speed, shorter stride length, higher cadence, and lower range of motion in the knee and ankle joints (p task while walking had longer double support time (p = 0.003), and greater knee absorptive mechanical work (p = 0. 001) and lower ankle generative mechanical work (p task walking may be useful for monitoring subtle and diverse gait deteriorations in aging and possibly for designing interventions for maintaining and regaining proper gait patterns in older adults. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Engineering method of calculation and choice of main parameters of the linear induction accelerator inductors

    Directory of Open Access Journals (Sweden)

    В.Т. Чемерис

    2006-04-01

    Full Text Available  There is a method of simplified calculation and design parameters choice elaborated in this article with corresponding basing for the induction system of electron-beam sterilizer on the base of linear induction accelerator taking into account the parameters of magnetic material for production of cores and parameters of pulsed voltage.

  19. Association of Gait Characteristics and Depression in Patients with Parkinson’s Disease Assessed in Goal-Directed Locomotion Task

    Directory of Open Access Journals (Sweden)

    Péter Kincses

    2017-01-01

    Full Text Available Introduction. In the genesis of Parkinson’s disease (PD clinical phenomenology the exact nature of the association between bradykinesia and affective variables is unclear. In the present study, we analyzed the gait characteristics and level of depression in PD and healthy volunteers. Methods. Patients with PD (n=48 and healthy controls (n=52 were recruited for the present study. Walking speed, stride length, and cadence were compared between groups while participants completed a goal-directed locomotion task under visually controlled (VC and visually noncontrolled conditions (VnC. Results. Significantly higher depression scores were found in PD comparing to healthy control groups. In PD, depression was associated with gait components in the VC wherein the place of the target was visible. In contrast, in healthy subjects the depression was associated with gait components in VnC wherein the location and image of the target were memorized and recalled. In patients with PD and depression, the visually deprived multitask augments the rate of cadence and diminishes stride length, while velocity remains relatively unchanged. The depression associated with gait characteristics as a comorbid affective factor in PD, and that impairs the coherence of gait pattern. Conclusion. The relationship between depression and gait parameters appears to indicate that PD not only is a neurological disease but also incorporates affective disturbances that associate with the regulation of gait characteristics.

  20. Rotational gait patterns in children and adolescents following tension band plating of idiopathic genua valga.

    Science.gov (United States)

    Farr, Sebastian; Kranzl, Andreas; Hahne, Julia; Ganger, Rudolf

    2017-08-01

    Literature suggests that children and adolescents with idiopathic genua valga present with considerable gait deviations in frontal and transverse planes, including altered frontal knee moments, reduced external knee rotation, and increased external hip rotation. This study aimed to evaluate gait parameters in these patients after surgical correction using tension band plating (TBP). We prospectively evaluated 24 consecutive, skeletally immature patients, who received full-length standing radiographs and three-dimensional gait analysis before and after correction, and compared the results observed to a group of 11 typically developing peers. Prior to TBP the cohort showed significantly decreased (worse) internal frontal knee moments compared to the control group. After axis correction the mean and maximum knee moments changed significantly into normalized knee moments (p gait. In addition, the effect of transverse plane changes on knee moments in patients with restored, straight limb axis was calculated. Hence, patients with restored alignment but persistence of decreased external knee rotation demonstrated significantly greater knee moments than those without rotational abnormalities (p = 0.001). This study found that frontal knee moments during gait normalized in children with idiopathic genua valga after surgery. However, decreased external knee rotation and increased external hip rotation during gait persisted in the study cohort. Despite radiological correction, decreased external rotation during gait was associated with increases in medial knee loading. Surgical correction for children with genua valga but normal knee moments may be detrimental, due to redistribution of dynamic knee loading into the opposite joint compartment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1617-1624, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Average Gait Differential Image Based Human Recognition

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available The difference between adjacent frames of human walking contains useful information for human gait identification. Based on the previous idea a silhouettes difference based human gait recognition method named as average gait differential image (AGDI is proposed in this paper. The AGDI is generated by the accumulation of the silhouettes difference between adjacent frames. The advantage of this method lies in that as a feature image it can preserve both the kinetic and static information of walking. Comparing to gait energy image (GEI, AGDI is more fit to representation the variation of silhouettes during walking. Two-dimensional principal component analysis (2DPCA is used to extract features from the AGDI. Experiments on CASIA dataset show that AGDI has better identification and verification performance than GEI. Comparing to PCA, 2DPCA is a more efficient and less memory storage consumption feature extraction method in gait based recognition.

  2. Stepping strategies for regulating gait adaptability and stability.

    Science.gov (United States)

    Hak, Laura; Houdijk, Han; Steenbrink, Frans; Mert, Agali; van der Wurff, Peter; Beek, Peter J; van Dieën, Jaap H

    2013-03-15

    Besides a stable gait pattern, gait in daily life requires the capability to adapt this pattern in response to environmental conditions. The purpose of this study was to elucidate the anticipatory strategies used by able-bodied people to attain an adaptive gait pattern, and how these strategies interact with strategies used to maintain gait stability. Ten healthy subjects walked in a Computer Assisted Rehabilitation ENvironment (CAREN). To provoke an adaptive gait pattern, subjects had to hit virtual targets, with markers guided by their knees, while walking on a self-paced treadmill. The effects of walking with and without this task on walking speed, step length, step frequency, step width and the margins of stability (MoS) were assessed. Furthermore, these trials were performed with and without additional continuous ML platform translations. When an adaptive gait pattern was required, subjects decreased step length (padaptations resulted in the preservation of equal MoS between trials, despite the disturbing influence of the gait adaptability task. When the gait adaptability task was combined with the balance perturbation subjects further decreased step length, as evidenced by a significant interaction between both manipulations (p=0.012). In conclusion, able-bodied people reduce step length and increase step width during walking conditions requiring a high level of both stability and adaptability. Although an increase in step frequency has previously been found to enhance stability, a faster movement, which would coincide with a higher step frequency, hampers accuracy and may consequently limit gait adaptability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Predicting ground contact events for a continuum of gait types: An application of targeted machine learning using principal component analysis.

    Science.gov (United States)

    Osis, Sean T; Hettinga, Blayne A; Ferber, Reed

    2016-05-01

    An ongoing challenge in the application of gait analysis to clinical settings is the standardized detection of temporal events, with unobtrusive and cost-effective equipment, for a wide range of gait types. The purpose of the current study was to investigate a targeted machine learning approach for the prediction of timing for foot strike (or initial contact) and toe-off, using only kinematics for walking, forefoot running, and heel-toe running. Data were categorized by gait type and split into a training set (∼30%) and a validation set (∼70%). A principal component analysis was performed, and separate linear models were trained and validated for foot strike and toe-off, using ground reaction force data as a gold-standard for event timing. Results indicate the model predicted both foot strike and toe-off timing to within 20ms of the gold-standard for more than 95% of cases in walking and running gaits. The machine learning approach continues to provide robust timing predictions for clinical use, and may offer a flexible methodology to handle new events and gait types. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Heide, J; Zhang, Qi; Fitzek, F H P

    2013-01-01

    This work studies how to select optimal code parameters of Random Linear Network Coding (RLNC) in Wireless Sensor Networks (WSNs). With Rateless Deluge [1] the authors proposed to apply Network Coding (NC) for Over-the-Air Programming (OAP) in WSNs, and demonstrated that with NC a significant...... reduction in the number of transmitted packets can be achieved. However, NC introduces additional computations and potentially a non-negligible transmission overhead, both of which depend on the chosen coding parameters. Therefore it is necessary to consider the trade-off that these coding parameters...... present in order to obtain the lowest energy consumption per transmitted bit. This problem is analyzed and suitable coding parameters are determined for the popular Tmote Sky platform. Compared to the use of traditional RLNC, these parameters enable a reduction in the energy spent per bit which grows...

  5. Combined gait disorder: a diagnostic challenge –a case report

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2017-02-01

    Full Text Available Gait disorders are a major cause of functional impairment and morbidity, especially in the elderly population. Prevalence of gait disorders is higher in persons over 60: is estimated to be around 15% at 60 years of age and more than 50% in people > 80 years. Most gait disorders are multifactorial and have both neurologic and non-neurologic components. Neurological gait abnormalities result from focal or diffuse lesions occurring in the neural pathways linking the cortical motor centers to the peripheral neuromuscular systems. Nonneurological gait abnormalities include gait limitations caused by musculoskeletal, cardiac, or respiratory diseases. Assessment of a gait abnormality should include history, clinical presentation and additional diagnostic tests. Finding the ethiology of a gait disorder could be a challenge for the practitioners in many cases, requiring interdisciplinary cooperation.

  6. Changes of gait pattern in children with Charcot-Marie-Tooth disease type 1A: a 18 months follow-up study.

    Science.gov (United States)

    Ferrarin, Maurizio; Lencioni, Tiziana; Rabuffetti, Marco; Moroni, Isabella; Pagliano, Emanuela; Pareyson, Davide

    2013-07-02

    In a previous study we identified 3 different gait patterns in a group of children with CMT1A disease: Normal-like (NL), Foot-drop (FD), Foot-drop and Push-off Deficit (FD&POD). Goal of the present study was to perform a follow-up evaluation of the same group of patients to analyze possible changes of gait features in relation to disease progression or specific therapy. Nineteen children with CMT1A were evaluated clinically (CMT-Examination Score and Overall Neuropathy Limitation Scale) and through gait analysis 18.2±1.5 months after a baseline evaluation. Meanwhile, 3 of them had foot surgery. Fifteen out of the 16 non-operated patients significantly changed at least one of the two parameters associated to primary signs (FD and/or POD). Eleven participants worsened at least one parameter and 9 improved one parameter. CMTES significantly worsened for the group of non-operated patients. However, there was no change in CMTES score in 4 patients and in ONLS score in 11. At subgroup level, participants originally belonging to NL group showed a trend towards a foot-drop deficit (-15%, ns); FD and FD&POD subgroups did not change their primary signs, although significant changes were identified individually. All 3 patients operated have improved push-off and proximal joint patterns during walking. Clinical scores did not change within any sub-group. Subtle changes occurring in 1.5 year in gait features of CMT1A children can be instrumentally identified. Such changes show a large inter-subject variability, with some patients even improving their walking pattern. There is anecdotal evidence that foot surgery may improve the push-off phase of gait.

  7. Somatosensory inputs by application of KinesioTaping: effects on spasticity, balance, and gait in chronic spinal cord injury.

    Science.gov (United States)

    Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco

    2014-01-01

    Leg paralysis, spasticity, reduced interlimb coordination, and impaired balance are the chief limitations to overground ambulation in subjects with incomplete spinal cord injury (SCI). In recent years, the application of KinesioTaping (KT) has been proposed to enhance sensory inputs, decreasing spasticity by proprioception feedback and relieving abnormal muscle tension. Because no studies have examined KT-based techniques in SCI subjects, our goal was to analyze the effects of ankle joint KT on spasticity, balance, and gait. A randomized crossover case control design was used to compare the effects of KT and conventional nonelastic silk tape (ST) in 11 chronic SCI subjects, AIS level D, with soleus/gastrocnemius (S/G) muscle spasticity and balance and gait impairments. 48 h of treatment with KT or ST was followed by 48 h with the other technique after 1 week. A single Y-strip of Cure(©) tape (KT) and ST was to the S and G muscles with 0% stretch. Before and 48 h after of application of KT and ST, clinical data on the range of motion (ROM), spasticity, clonus, pain, balance, and gait were collected. Stabilometric platform assessment of center of pressure (COP) movements; bidimensional gait analysis; and recording of electromyographic (EMG) activity of the S, G, and tibialis anterior and extensor hallucis lungus muscles were also performed. Only KT had significant effects on spasticity (p < 0.05), clonus (p < 0.001) and COP movements (p < 0.05), kinematic gait parameters (p < 0.001), and EMG activity (p < 0.001). Comparison between ST and KT improvements pointed out significant differences as concerns ROM (p < 0.001), spasticity (p < 0.001), clonus (p < 0.001), pain (p < 0.001), COP parameters (p < 0.05), and most kinematic gait data (p < 0.05). Short-term application of KT reduces spasticity and pain and improves balance and gait in chronic SCI subjects. Although these data are promising, they require confirmation in a larger cohort of patients.

  8. Gait rehabilitation machines based on programmable footplates.

    Science.gov (United States)

    Schmidt, Henning; Werner, Cordula; Bernhardt, Rolf; Hesse, Stefan; Krüger, Jörg

    2007-02-09

    Gait restoration is an integral part of rehabilitation of brain lesioned patients. Modern concepts favour a task-specific repetitive approach, i.e. who wants to regain walking has to walk, while tone-inhibiting and gait preparatory manoeuvres had dominated therapy before. Following the first mobilization out of the bed, the wheelchair-bound patient should have the possibility to practise complex gait cycles as soon as possible. Steps in this direction were treadmill training with partial body weight support and most recently gait machines enabling the repetitive training of even surface gait and even of stair climbing. With treadmill training harness-secured and partially relieved wheelchair-mobilised patients could practise up to 1000 steps per session for the first time. Controlled trials in stroke and SCI patients, however, failed to show a superior result when compared to walking exercise on the floor. Most likely explanation was the effort for the therapists, e.g. manually setting the paretic limbs during the swing phase resulting in a too little gait intensity. The next steps were gait machines, either consisting of a powered exoskeleton and a treadmill (Lokomat, AutoAmbulator) or an electromechanical solution with the harness secured patient placed on movable foot plates (Gait Trainer GT I). For the latter, a large multi-centre trial with 155 non-ambulatory stroke patients (DEGAS) revealed a superior gait ability and competence in basic activities of living in the experimental group. The HapticWalker continued the end effector concept of movable foot plates, now fully programmable and equipped with 6 DOF force sensors. This device for the first time enables training of arbitrary walking situations, hence not only the simulation of floor walking but also for example of stair climbing and perturbations. Locomotor therapy is a fascinating new tool in rehabilitation, which is in line with modern principles of motor relearning promoting a task-specific repetitive

  9. Gait rehabilitation machines based on programmable footplates

    Directory of Open Access Journals (Sweden)

    Bernhardt Rolf

    2007-02-01

    Full Text Available Abstract Background Gait restoration is an integral part of rehabilitation of brain lesioned patients. Modern concepts favour a task-specific repetitive approach, i.e. who wants to regain walking has to walk, while tone-inhibiting and gait preparatory manoeuvres had dominated therapy before. Following the first mobilization out of the bed, the wheelchair-bound patient should have the possibility to practise complex gait cycles as soon as possible. Steps in this direction were treadmill training with partial body weight support and most recently gait machines enabling the repetitive training of even surface gait and even of stair climbing. Results With treadmill training harness-secured and partially relieved wheelchair-mobilised patients could practise up to 1000 steps per session for the first time. Controlled trials in stroke and SCI patients, however, failed to show a superior result when compared to walking exercise on the floor. Most likely explanation was the effort for the therapists, e.g. manually setting the paretic limbs during the swing phase resulting in a too little gait intensity. The next steps were gait machines, either consisting of a powered exoskeleton and a treadmill (Lokomat, AutoAmbulator or an electromechanical solution with the harness secured patient placed on movable foot plates (Gait Trainer GT I. For the latter, a large multi-centre trial with 155 non-ambulatory stroke patients (DEGAS revealed a superior gait ability and competence in basic activities of living in the experimental group. The HapticWalker continued the end effector concept of movable foot plates, now fully programmable and equipped with 6 DOF force sensors. This device for the first time enables training of arbitrary walking situations, hence not only the simulation of floor walking but also for example of stair climbing and perturbations. Conclusion Locomotor therapy is a fascinating new tool in rehabilitation, which is in line with modern principles

  10. Gait biometrics under spoofing attacks: an experimental investigation

    Science.gov (United States)

    Hadid, Abdenour; Ghahramani, Mohammad; Kellokumpu, Vili; Feng, Xiaoyi; Bustard, John; Nixon, Mark

    2015-11-01

    Gait is a relatively biometric modality which has a precious advantage over other modalities, such as iris and voice, in that it can be easily captured from a distance. Although it has recently become a topic of great interest in biometric research, there has been little investigation into gait spoofing attacks where a person tries to imitate the clothing or walking style of someone else. We recently analyzed for the first time the effects of spoofing attacks on silhouette-based gait biometric systems and showed that it was indeed possible to spoof gait biometric systems by clothing impersonation and the deliberate selection of a target that has a similar build to the attacker. To gain deeper insight into the performance of current gait biometric systems under spoofing attacks, we provide a thorough investigation on how clothing can be used to spoof a target and evaluate the performance of two state-of-the-art recognition methods on a gait spoofing database recorded at the University of Southampton. Furthermore, we describe and evaluate an initial solution coping with gait spoofing attacks. The obtained results are very promising and point out interesting findings which can be used for future investigations.

  11. Validity of the Nintendo Wii Balance Board for Kinetic Gait Analysis

    Directory of Open Access Journals (Sweden)

    Ryo Eguchi

    2018-02-01

    Full Text Available The Nintendo Wii Balance Board (WBB has been suggested as an inexpensive, portable and accessible alternative to costly laboratory-grade force plates for measuring the vertical ground reaction force (vGRF and center of pressure (COP. Kinetic gait analysis provides important information for the rehabilitation of patients with gait disorders; however, the validity of the WBB for measuring kinetic gait parameters has not been evaluated. Therefore, the purpose of this study is to determine the accuracy of walking force measurements—which change dynamically in a short period of stance time—collected with the WBB. Three healthy adults were asked to walk 10 steps along both straight and curved paths in clockwise (CW and counterclockwise (CCW directions while measurements were taken using the WBB and the force plate. The accuracy of the vGRF, COP trajectory, and stance duration were evaluated using the root-mean-square error (RMSE, Pearson’s correlation coefficient and Bland–Altman plots (BAPs to compare the WBB and the force plate. The results of the vGRF showed high accuracy (r > 0.96 and %RMSE < 6.1% in the mean values, and the stance duration as defined by the vGRF and COP trajectory was equivalent to that of commercial instrumented insoles, which are used as an alternative to the force plates. From these results, we determined that the WBB may be used for kinetic gait analysis in clinical settings where lower accuracy is acceptable.

  12. Balance, gait, functionality and strength: comparison between elderly fallers and non-fallers

    Directory of Open Access Journals (Sweden)

    Elaine C. Cebolla

    2015-04-01

    Full Text Available BACKGROUND: Accidental falls are a major health problem related to aging and affect one in every three elderly individuals over the age of sixty. OBJECTIVE: To evaluate and compare the muscle strength, gait kinematics parameters, and performance in functional tests between elderly subjects with and without a prior history of falls. In addition, the association between the history of falls and the variables that demonstrated differences between groups were tested. METHOD: 62 elderly subjects participated in the study and were allocated to the group with falls history (FG; n=20; 68.0±6.9 years old or the group without falls history (CG; n=42; 65.5±4.1 years old. Maximal strength, gait kinematics parameters, and functional tests were tested. RESULTS: The FG showed lower muscle strength in the knee flexors (51.45±8.6 vs. 62.09±19 Kg, lower average toe clearance during the swing phase (0.04±0.006 vs. 0.043 ± 0.005 m, and lower performance in the "8-foot up-and-go" test (5.3±0.7 vs. 5.8±0.7 s (p<0.05. There were no associations between any variables and falls, but the increased time in the "8-foot up-and-go" test may double the likelihood of a fall occurring. CONCLUSION: Fallers have reduced lower limb strength, gait alterations, the worst performance in the dynamic balance test, and an increased risk of falls.

  13. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations

    NARCIS (Netherlands)

    Hak, L.; Houdijk, J.H.P.; Steenbrink, F.; van der Wurff, P.; Beek, P.J.; van Dieen, J.H.

    2012-01-01

    It has frequently been proposed that lowering walking speed is a strategy to enhance gait stability and to decrease the probability of falling. However, previous studies have not been able to establish a clear relation between walking speed and gait stability. We investigated whether people do

  14. Beyer's non-linearity parameter (B/A) in benzylidene aniline Schiff base liquid crystalline systems

    International Nuclear Information System (INIS)

    Nagi Reddy, M.V.V.; Pisipati, V.G.K.M.; Madhavi Latha, D.; Datta Prasad, P.V.

    2011-01-01

    The non-linearity parameter B/A is estimated for a number of liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-n-alkyl anilines, popularly known as nO.m, where n and m are the aliphatic chains on either side of the rigid core, which can be varied from 1 to 18 to realize a number of LC materials with a variety LC phase variants. The B/A values are computed from both density and sound velocity data following standard relations reported in literature. This systematic study in a homologous series provides an opportunity to study how this parameter behaves with (1) either the alkoxy and/or alkyl chain number, (2) with the total chain number (n+m), (3) with increase in molecular weight and (4) whether the linear relations reported in literature either with αT [thermal expansion coefficient (α) and temperature (T)] and sound velocity (u) will hold good or not and if so to what extent. The results are discussed with the body of data available in literature on liquids, liquid mixtures and other LC materials. -- Research highlights: → The Bayer's non-linearity parameter (B/A) is estimated for the first time for a number liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-nalkyl anilines. → The magnitude of B/A estimated from sound velocity data is higher compared to that estimated thermal expansion data. → The B/A value decreases with increase in molecular weight with an even odd fashion and reaches a minimum value and saturates. → These studies reveal that both the thermal expansion coefficient and sound velocity are the tools to estimate the non-linear parameter B/A in the case of liquid crystals.

  15. Using the Nintendo Wii Fit and body weight support to improve aerobic capacity, balance, gait ability, and fear of falling: two case reports.

    Science.gov (United States)

    Miller, Carol A; Hayes, Dawn M; Dye, Kelli; Johnson, Courtney; Meyers, Jennifer

    2012-01-01

    Lower limb amputation in older adults has a significant impact on balance, gait, and cardiovascular fitness, resulting in diminished community participation. The purpose of this case study was to describe the effects of a balance training program utilizing the Nintendo Wii™ Fit (Nintendo of America, Inc, Redmond, Washington) balance board and body-weight supported gait training on aerobic capacity, balance, gait, and fear of falling in two persons with transfemoral amputation. Participant A, a 62 year-old male 32 months post traumatic transfemoral amputation, reported fear of falling and restrictions in community activity. Participant B, a 58 year-old male 9 years post transfemoral amputation, reported limited energy and balance deficits during advanced gait activities. 6-weeks, 2 supervised sessions per week included 20 minutes of Nintendo™ Wii Fit Balance gaming and 20 minutes of gait training using Body Weight Support. Measures included oxygen uptake efficiency slope (OUES), economy of movement, dynamic balance (Biodex platform system), Activities-Specific Balance Confidence (ABC) Scale, and spatial-temporal parameters of gait (GAITRite). Both participants demonstrated improvement in dynamic balance, balance confidence, economy of movement, and spatial-temporal parameters of gait. Participant A reduced the need for an assistive device during community ambulation. Participant B improved his aerobic capacity, indicated by an increase in OUES. This case study illustrated that the use of Nintendo Wii™ Fit training and Body Weight Support were effective interventions to achieve functional goals for improving balance confidence, reducing use of assistive devices, and increasing energy efficiency when ambulating with a transfemoral prosthesis.

  16. Gait and Function in Class III Obesity

    Directory of Open Access Journals (Sweden)

    Catherine Ling

    2012-01-01

    Full Text Available Walking, more specifically gait, is an essential component of daily living. Walking is a very different activity for individuals with a Body Mass Index (BMI of 40 or more (Class III obesity compared with those who are overweight or obese with a BMI between 26–35. Yet all obesity weight classes receive the same physical activity guidelines and recommendations. This observational study examined the components of function and disability in a group with Class III obesity and a group that is overweight or has Class I obesity. Significant differences were found between the groups in the areas of gait, body size, health condition, and activity capacity and participation. The Timed Up and Go test, gait velocity, hip circumference, and stance width appear to be most predictive of activity capacity as observed during gait assessment. The findings indicate that Class III-related gait is pathologic and not a normal adaptation.

  17. Estimate the contribution of incubation parameters influence egg hatchability using multiple linear regression analysis.

    Science.gov (United States)

    Khalil, Mohamed H; Shebl, Mostafa K; Kosba, Mohamed A; El-Sabrout, Karim; Zaki, Nesma

    2016-08-01

    This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens' eggs. Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens.

  18. Quantitative Effects of Repeated Muscle Vibrations on Gait Pattern in a 5-Year-Old Child with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Filippo Camerota

    2011-01-01

    Full Text Available Objective. To investigate quantitatively and objectively the effects of repeated muscle vibration (rMV of triceps surae on the gait pattern in a 5-year-old patient with Cerebral Palsy with equinus foot deformity due to calf spasticity. Methods. The patient was assessed before and one month after the rMV treatment using Gait Analysis. Results. rMV had positive effects on the patient's gait pattern, as for spatio-temporal parameters (the stance duration and the step length increased their values after the treatment and kinematics. The pelvic tilt reduced its anteversion and the hip reduced the high flexion evidenced at baseline; the knee and the ankle gained a more physiological pattern bilaterally. The Gillette Gait Index showed a significant reduction of its value bilaterally, representing a global improvement of the child's gait pattern. Conclusions. The rMV technique seems to be an effective option for the gait pattern improvement in CP, which can be used also in very young patient. Significant improvements were displayed in terms of kinematics at all lower limb joints, not only at the joint directly involved by the treatment (i.e., ankle and knee joints but also at proximal joints (i.e., pelvis and hip joint.

  19. Limbic and Basal Ganglia Neuroanatomical Correlates of Gait and Executive Function: Older Adults With Mild Cognitive Impairment and Intact Cognition.

    Science.gov (United States)

    McGough, Ellen L; Kelly, Valerie E; Weaver, Kurt E; Logsdon, Rebecca G; McCurry, Susan M; Pike, Kenneth C; Grabowski, Thomas J; Teri, Linda

    2018-04-01

    This study aimed to examine differences in spatiotemporal gait parameters between older adults with amnestic mild cognitive impairment and normal cognition and to examine limbic and basal ganglia neural correlates of gait and executive function in older adults without dementia. This was a cross-sectional study of 46 community-dwelling older adults, ages 70-95 yrs, with amnestic mild cognitive impairment (n = 23) and normal cognition (n = 23). Structural magnetic resonance imaging was used to attain volumetric measures of limbic and basal ganglia structures. Quantitative motion analysis was used to measure spatiotemporal parameters of gait. The Trail Making Test was used to assess executive function. During fast-paced walking, older adults with amnestic mild cognitive impairment demonstrated significantly slower gait speed and shorter stride length compared with older adults with normal cognition. Stride length was positively correlated with hippocampal, anterior cingulate, and nucleus accumbens volumes (P function was positively correlated with hippocampal, anterior cingulate, and posterior cingulate volumes (P older adults with normal cognition, those with amnestic mild cognitive impairment demonstrated slower gait speed and shorter stride length, during fast-paced walking, and lower executive function. Hippocampal and anterior cingulate volumes demonstrated moderate positive correlation with both gait and executive function, after adjusting for age. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss gait performance and cognitive function in older adults with amnestic mild cognitive impairment versus normal cognition, (2) discuss neurocorrelates of gait and executive function in older adults without dementia, and (3) recognize the importance of assessing gait speed and cognitive function in the clinical management of older

  20. Can we improve gait skills in chronic hemiplegics? A randomised control trial with gait trainer.

    Science.gov (United States)

    Dias, D; Laíns, J; Pereira, A; Nunes, R; Caldas, J; Amaral, C; Pires, S; Costa, A; Alves, P; Moreira, M; Garrido, N; Loureiro, L

    2007-12-01

    Partial body weight support (PBWS) is an accepted treatment for hemiplegic patients. The aim of this study is to compare the efficiency of gait trainer with conventional treatment on the gait management after stroke. Forty chronic post-stroke hemiplegics were part of a prospective research. Inclusion criteria were: first ever stroke in a chronic stage with stabilised motor deficits; age >18 and gait trainer, for the same period of time and frequency. Assessment tools: Motricity Index (MI); Toulouse Motor Scale (TMS); modified Ashworth Spasticity Scale (mASS); Berg Balance Scale (BBS); Rivermead Mobility Index (RMI); Fugl-Meyer Stroke Scale (F-MSS); Functional Ambulation Category (FAC); Barthel Index (BI); 10 meters, time up and go (TUG), 6 minutes, and step tests. EG and CG did the assessments before treatment (T(0)), right after treatment (T(1)), and on follow-up, 3 months later (T(2)). CG and EG were homogenous in all the variables at T(0). CG and EG showed improvement in almost all the assessment scales after treatment, although only some with relevant differences. EG showed statistically relevant improvement on T(1) and on T(2) in several of the assessment tools, whereas CG only showed statistically significant improvement after T(1) and only in some of the assessment tools. Both groups of chronic hemiplegic patients improved after either PBWS with gait trainer or Bobath treatment. Only subjects undergoing PBWS with gait trainer maintained functional gain after 3 months.