Variational linear algebraic equations method
International Nuclear Information System (INIS)
Moiseiwitsch, B.L.
1982-01-01
A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)
A General Linear Method for Equating with Small Samples
Albano, Anthony D.
2015-01-01
Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…
Approximate Method for Solving the Linear Fuzzy Delay Differential Equations
Directory of Open Access Journals (Sweden)
S. Narayanamoorthy
2015-01-01
Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.
A Proposed Method for Solving Fuzzy System of Linear Equations
Directory of Open Access Journals (Sweden)
Reza Kargar
2014-01-01
Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.
Exact solution of some linear matrix equations using algebraic methods
Djaferis, T. E.; Mitter, S. K.
1977-01-01
A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.
Solution methods for large systems of linear equations in BACCHUS
International Nuclear Information System (INIS)
Homann, C.; Dorr, B.
1993-05-01
The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de
Runge-Kutta Methods for Linear Ordinary Differential Equations
Zingg, David W.; Chisholm, Todd T.
1997-01-01
Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.
Optimal overlapping of waveform relaxation method for linear differential equations
International Nuclear Information System (INIS)
Yamada, Susumu; Ozawa, Kazufumi
2000-01-01
Waveform relaxation (WR) method is extremely suitable for solving large systems of ordinary differential equations (ODEs) on parallel computers, but the convergence of the method is generally slow. In order to accelerate the convergence, the methods which decouple the system into many subsystems with overlaps some of the components between the adjacent subsystems have been proposed. The methods, in general, converge much faster than the ones without overlapping, but the computational cost per iteration becomes larger due to the increase of the dimension of each subsystem. In this research, the convergence of the WR method for solving constant coefficients linear ODEs is investigated and the strategy to determine the number of overlapped components which minimizes the cost of the parallel computations is proposed. Numerical experiments on an SR2201 parallel computer show that the estimated number of the overlapped components by the proposed strategy is reasonable. (author)
International Nuclear Information System (INIS)
Ravi Kanth, A.S.V.; Aruna, K.
2009-01-01
In this paper, we propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schroedinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.
A general method for enclosing solutions of interval linear equations
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří
2012-01-01
Roč. 6, č. 4 (2012), s. 709-717 ISSN 1862-4472 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval linear equations * solution set * enclosure * absolute value inequality Subject RIV: BA - General Mathematics Impact factor: 1.654, year: 2012
The Embedding Method for Linear Partial Differential Equations
Indian Academy of Sciences (India)
The recently suggested embedding method to solve linear boundary value problems is here extended to cover situations where the domain of interest is unbounded or multiply connected. The extensions involve the use of complete sets of exterior and interior eigenfunctions on canonical domains. Applications to typical ...
Numerical method for solving linear Fredholm fuzzy integral equations of the second kind
Energy Technology Data Exchange (ETDEWEB)
Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)
2007-01-15
In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.
Solution of systems of linear algebraic equations by the method of summation of divergent series
International Nuclear Information System (INIS)
Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.
2015-01-01
A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru
Chen, Haiwen; Holland, Paul
2010-01-01
In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…
An Evaluation of Five Linear Equating Methods for the NEAT Design
Mroch, Andrew A.; Suh, Youngsuk; Kane, Michael T.; Ripkey, Douglas R.
2009-01-01
This study uses the results of two previous papers (Kane, Mroch, Suh, & Ripkey, this issue; Suh, Mroch, Kane, & Ripkey, this issue) and the literature on linear equating to evaluate five linear equating methods along several dimensions, including the plausibility of their assumptions and their levels of bias and root mean squared difference…
International Nuclear Information System (INIS)
Love, J.C.; Demas, J.N.
1983-01-01
The Foerster equation describes excited-state decay curves involving resonance intermolecular energy transfer. A linearized solution based on the phase-plane method has been developed. The new method is quick, insensitive to the fitting region, accurate, and precise
Directory of Open Access Journals (Sweden)
Mohammad Almousa
2013-01-01
Full Text Available The aim of this study is to present the use of a semi analytical method called the optimal homotopy asymptotic method (OHAM for solving the linear Fredholm integral equations of the first kind. Three examples are discussed to show the ability of the method to solve the linear Fredholm integral equations of the first kind. The results indicated that the method is very effective and simple.
DEFF Research Database (Denmark)
Mejlbro, Leif
1997-01-01
An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians.......An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians....
Leapfrog variants of iterative methods for linear algebra equations
Saylor, Paul E.
1988-01-01
Two iterative methods are considered, Richardson's method and a general second order method. For both methods, a variant of the method is derived for which only even numbered iterates are computed. The variant is called a leapfrog method. Comparisons between the conventional form of the methods and the leapfrog form are made under the assumption that the number of unknowns is large. In the case of Richardson's method, it is possible to express the final iterate in terms of only the initial approximation, a variant of the iteration called the grand-leap method. In the case of the grand-leap variant, a set of parameters is required. An algorithm is presented to compute these parameters that is related to algorithms to compute the weights and abscissas for Gaussian quadrature. General algorithms to implement the leapfrog and grand-leap methods are presented. Algorithms for the important special case of the Chebyshev method are also given.
Quantum linear Boltzmann equation
International Nuclear Information System (INIS)
Vacchini, Bassano; Hornberger, Klaus
2009-01-01
We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.
A study on linear and nonlinear Schrodinger equations by the variational iteration method
International Nuclear Information System (INIS)
Wazwaz, Abdul-Majid
2008-01-01
In this work, we introduce a framework to obtain exact solutions to linear and nonlinear Schrodinger equations. The He's variational iteration method (VIM) is used for analytic treatment of these equations. Numerical examples are tested to show the pertinent features of this method
Directory of Open Access Journals (Sweden)
Şuayip Yüzbaşı
2017-03-01
Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.
The H-N method for solving linear transport equation: theory and application
International Nuclear Information System (INIS)
Kaskas, A.; Gulecyuz, M.C.; Tezcan, C.
2002-01-01
The system of singular integral equation which is obtained from the integro-differential form of the linear transport equation as a result of Placzec lemma is solved. Application are given using the exit distributions and the infinite medium Green's function. The same theoretical results are also obtained with the use of the singular eigenfunction of the method of elementary solutions
Solution of second order linear fuzzy difference equation by Lagrange's multiplier method
Directory of Open Access Journals (Sweden)
Sankar Prasad Mondal
2016-06-01
Full Text Available In this paper we execute the solution procedure for second order linear fuzzy difference equation by Lagrange's multiplier method. In crisp sense the difference equation are easy to solve, but when we take in fuzzy sense it forms a system of difference equation which is not so easy to solve. By the help of Lagrange's multiplier we can solved it easily. The results are illustrated by two different numerical examples and followed by two applications.
Camporesi, Roberto
2011-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2014-01-01
Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.
A block Krylov subspace time-exact solution method for linear ordinary differential equation systems
Bochev, Mikhail A.
2013-01-01
We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of
International Nuclear Information System (INIS)
Jimenez, J.C.
2009-06-01
Local Linearization (LL) methods conform a class of one-step explicit integrators for ODEs derived from the following primary and common strategy: the vector field of the differential equation is locally (piecewise) approximated through a first-order Taylor expansion at each time step, thus obtaining successive linear equations that are explicitly integrated. Hereafter, the LL approach may include some additional strategies to improve that basic affine approximation. Theoretical and practical results have shown that the LL integrators have a number of convenient properties. These include arbitrary order of convergence, A-stability, linearization preserving, regularity under quite general conditions, preservation of the dynamics of the exact solution around hyperbolic equilibrium points and periodic orbits, integration of stiff and high-dimensional equations, low computational cost, and others. In this paper, a review of the LL methods and their properties is presented. (author)
Stability of numerical method for semi-linear stochastic pantograph differential equations
Directory of Open Access Journals (Sweden)
Yu Zhang
2016-01-01
Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.
Camporesi, Roberto
2016-01-01
This book presents a method for solving linear ordinary differential equations based on the factorization of the differential operator. The approach for the case of constant coefficients is elementary, and only requires a basic knowledge of calculus and linear algebra. In particular, the book avoids the use of distribution theory, as well as the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The case of variable coefficients is addressed using Mammana’s result for the factorization of a real linear ordinary differential operator into a product of first-order (complex) factors, as well as a recent generalization of this result to the case of complex-valued coefficients.
On the economical solution method for a system of linear algebraic equations
Directory of Open Access Journals (Sweden)
Jan Awrejcewicz
2004-01-01
Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.
An Empirical Comparison of Five Linear Equating Methods for the NEAT Design
Suh, Youngsuk; Mroch, Andrew A.; Kane, Michael T.; Ripkey, Douglas R.
2009-01-01
In this study, a data base containing the responses of 40,000 candidates to 90 multiple-choice questions was used to mimic data sets for 50-item tests under the "nonequivalent groups with anchor test" (NEAT) design. Using these smaller data sets, we evaluated the performance of five linear equating methods for the NEAT design with five levels of…
A Globally Convergent Matrix-Free Method for Constrained Equations and Its Linear Convergence Rate
Directory of Open Access Journals (Sweden)
Min Sun
2014-01-01
Full Text Available A matrix-free method for constrained equations is proposed, which is a combination of the well-known PRP (Polak-Ribière-Polyak conjugate gradient method and the famous hyperplane projection method. The new method is not only derivative-free, but also completely matrix-free, and consequently, it can be applied to solve large-scale constrained equations. We obtain global convergence of the new method without any differentiability requirement on the constrained equations. Compared with the existing gradient methods for solving such problem, the new method possesses linear convergence rate under standard conditions, and a relax factor γ is attached in the update step to accelerate convergence. Preliminary numerical results show that it is promising in practice.
A discrete homotopy perturbation method for non-linear Schrodinger equation
Directory of Open Access Journals (Sweden)
H. A. Wahab
2015-12-01
Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.
Directory of Open Access Journals (Sweden)
Salih Yalcinbas
2016-01-01
Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.
Directory of Open Access Journals (Sweden)
Heinz Toparkus
2014-04-01
Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.
Comparison of different methods for the solution of sets of linear equations
International Nuclear Information System (INIS)
Bilfinger, T.; Schmidt, F.
1978-06-01
The application of the conjugate-gradient methods as novel general iterative methods for the solution of sets of linear equations with symmetrical systems matrices led to this paper, where a comparison of these methods with the conventional differently accelerated Gauss-Seidel iteration was carried out. In additon, the direct Cholesky method was also included in the comparison. The studies referred mainly to memory requirement, computing time, speed of convergence, and accuracy of different conditions of the systems matrices, by which also the sensibility of the methods with respect to the influence of truncation errors may be recognized. (orig.) 891 RW [de
Solutions of First-Order Volterra Type Linear Integrodifferential Equations by Collocation Method
Directory of Open Access Journals (Sweden)
Olumuyiwa A. Agbolade
2017-01-01
Full Text Available The numerical solutions of linear integrodifferential equations of Volterra type have been considered. Power series is used as the basis polynomial to approximate the solution of the problem. Furthermore, standard and Chebyshev-Gauss-Lobatto collocation points were, respectively, chosen to collocate the approximate solution. Numerical experiments are performed on some sample problems already solved by homotopy analysis method and finite difference methods. Comparison of the absolute error is obtained from the present method and those from aforementioned methods. It is also observed that the absolute errors obtained are very low establishing convergence and computational efficiency.
A linear multiple balance method for discrete ordinates neutron transport equations
International Nuclear Information System (INIS)
Park, Chang Je; Cho, Nam Zin
2000-01-01
A linear multiple balance method (LMB) is developed to provide more accurate and positive solutions for the discrete ordinates neutron transport equations. In this multiple balance approach, one mesh cell is divided into two subcells with quadratic approximation of angular flux distribution. Four multiple balance equations are used to relate center angular flux with average angular flux by Simpson's rule. From the analysis of spatial truncation error, the accuracy of the linear multiple balance scheme is ο(Δ 4 ) whereas that of diamond differencing is ο(Δ 2 ). To accelerate the linear multiple balance method, we also describe a simplified additive angular dependent rebalance factor scheme which combines a modified boundary projection acceleration scheme and the angular dependent rebalance factor acceleration schme. It is demonstrated, via fourier analysis of a simple model problem as well as numerical calculations, that the additive angular dependent rebalance factor acceleration scheme is unconditionally stable with spectral radius < 0.2069c (c being the scattering ration). The numerical results tested so far on slab-geometry discrete ordinates transport problems show that the solution method of linear multiple balance is effective and sufficiently efficient
Reproducing kernel method with Taylor expansion for linear Volterra integro-differential equations
Directory of Open Access Journals (Sweden)
Azizallah Alvandi
2017-06-01
Full Text Available This research aims of the present a new and single algorithm for linear integro-differential equations (LIDE. To apply the reproducing Hilbert kernel method, there is made an equivalent transformation by using Taylor series for solving LIDEs. Shown in series form is the analytical solution in the reproducing kernel space and the approximate solution $ u_{N} $ is constructed by truncating the series to $ N $ terms. It is easy to prove the convergence of $ u_{N} $ to the analytical solution. The numerical solutions from the proposed method indicate that this approach can be implemented easily which shows attractive features.
Zia, Haider
2017-06-01
This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.
Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables
Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.
2018-02-01
In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.
International Nuclear Information System (INIS)
Larsen, E.W.; Alcouffe, R.E.
1981-01-01
In this article a new linear characteristic (LC) spatial differencing scheme for the discrete ordinates equations in (x,y)-geometry is described and numerical comparisons are given with the diamond difference (DD) method. The LC method is more stable with mesh size and is generally much more accurate than the DD method on both fine and coarse meshes, for eigenvalue and deep penetration problems. The LC method is based on computations involving the exact solution of a cell problem which has spatially linear boundary conditions and interior source. The LC method is coupled to the diffusion synthetic acceleration (DSA) algorithm in that the linear variations of the source are determined in part by the results of the DSA calculation from the previous inner iteration. An inexpensive negative-flux fixup is used which has very little effect on the accuracy of the solution. The storage requirements for LC are essentially the same as that for DD, while the computational times for LC are generally less than twice the DD computational times for the same mesh. This increase in computational cost is offset if one computes LC solutions on somewhat coarser meshes than DD; the resulting LC solutions are still generally much more accurate than the DD solutions. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Clemens, M.; Weiland, T. [Technische Hochschule Darmstadt (Germany)
1996-12-31
In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.
Zhang, Ling
2017-01-01
The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.
Directory of Open Access Journals (Sweden)
Ling Zhang
2017-10-01
Full Text Available Abstract The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs. It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order 1 2 $\\frac{1}{2}$ to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.
International Nuclear Information System (INIS)
Ferri, A.A.
1986-01-01
Nodal methods applied in order to calculate the power distribution in a nuclear reactor core are presented. These methods have received special attention, because they yield accurate results in short computing times. Present nodal schemes contain several unknowns per node and per group. In the methods presented here, non linear feedback of the coupling coefficients has been applied to reduce this number to only one unknown per node and per group. The resulting algorithm is a 7- points formula, and the iterative process has proved stable in the response matrix scheme. The intranodal flux shape is determined by partial integration of the diffusion equations over two of the coordinates, leading to a set of three coupled one-dimensional equations. These can be solved by using a polynomial approximation or by integration (analytic solution). The tranverse net leakage is responsible for the coupling between the spatial directions, and two alternative methods are presented to evaluate its shape: direct parabolic approximation and local model expansion. Numerical results, which include the IAEA two-dimensional benchmark problem illustrate the efficiency of the developed methods. (M.E.L.) [es
Basic linear partial differential equations
Treves, Francois
1975-01-01
Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories.The four-part treatment covers the basic examples of linear partial differential equations and their
Systems of Inhomogeneous Linear Equations
Scherer, Philipp O. J.
Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.
Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating
He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei
2013-01-01
Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…
Linear and nonlinear properties of numerical methods for the rotating shallow water equations
Eldred, Chris
The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar conservation laws, many of the same types of waves and a similar (quasi-) balanced state. It is desirable that numerical models posses similar properties, and the prototypical example of such a scheme is the 1981 Arakawa and Lamb (AL81) staggered (C-grid) total energy and potential enstrophy conserving scheme, based on the vector invariant form of the continuous equations. However, this scheme is restricted to a subset of logically square, orthogonal grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). It is also possible to obtain these properties (along with arguably superior wave dispersion properties) through the use of a collocated (Z-grid) scheme based on the vorticity-divergence form of the continuous equations. Unfortunately, existing examples of these schemes in the literature for general, spherical grids either contain computational modes; or do not conserve total energy and potential enstrophy. This dissertation extends an existing scheme for planar grids to spherical grids, through the use of Nambu brackets (as pioneered by Rick Salmon). To compare these two schemes, the linear modes (balanced states, stationary modes and propagating modes; with and without dissipation) are examined on both uniform planar grids (square, hexagonal) and quasi-uniform spherical grids (geodesic, cubed-sphere). In addition to evaluating the linear modes, the results of the two schemes applied to a set of standard shallow water test cases and a recently developed forced-dissipative turbulence test case from John Thuburn (intended to evaluate the ability the suitability of schemes as the basis for a climate model) on both hexagonal
Provencher, Stephen W.
1982-09-01
CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…
Bonito, Andrea; Guermond, Jean-Luc; Popov, Bojan
2013-01-01
We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method
Pipkins, Daniel Scott
Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.
Directory of Open Access Journals (Sweden)
Wanfang Shen
2012-01-01
Full Text Available The mathematical formulation for a quadratic optimal control problem governed by a linear quasiparabolic integrodifferential equation is studied. The control constrains are given in an integral sense: Uad={u∈X;∫ΩUu⩾0, t∈[0,T]}. Then the a posteriori error estimates in L∞(0,T;H1(Ω-norm and L2(0,T;L2(Ω-norm for both the state and the control approximation are given.
International Nuclear Information System (INIS)
Anastassi, Z. A.; Simos, T. E.
2010-01-01
We develop a new family of explicit symmetric linear multistep methods for the efficient numerical solution of the Schroedinger equation and related problems with oscillatory solution. The new methods are trigonometrically fitted and have improved intervals of periodicity as compared to the corresponding classical method with constant coefficients and other methods from the literature. We also apply the methods along with other known methods to real periodic problems, in order to measure their efficiency.
International Nuclear Information System (INIS)
Wang Wansheng; Li Shoufu; Wang Wenqiang
2009-01-01
In this paper, we show that under identical conditions which guarantee the contractivity of the theoretical solutions of general nonlinear NDDEs, the numerical solutions obtained by a class of linear multistep methods are also contractive.
DEFF Research Database (Denmark)
Larsen, Jon Steffen; Santos, Ilmar
2015-01-01
An efficient finite element scheme for solving the non-linear Reynolds equation for compressible fluid coupled to compliant structures is presented. The method is general and fast and can be used in the analysis of airfoil bearings with simplified or complex foil structure models. To illustrate...
Bonito, Andrea
2013-10-03
We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method is shown to be stable independently of the polynomial degree of the space approximation under the standard CFL condition. © 2013 American Mathematical Society.
Correct Linearization of Einstein's Equations
Directory of Open Access Journals (Sweden)
Rabounski D.
2006-06-01
Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.
Lie algebras and linear differential equations.
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
Operational method of solution of linear non-integer ordinary and partial differential equations.
Zhukovsky, K V
2016-01-01
We propose operational method with recourse to generalized forms of orthogonal polynomials for solution of a variety of differential equations of mathematical physics. Operational definitions of generalized families of orthogonal polynomials are used in this context. Integral transforms and the operational exponent together with some special functions are also employed in the solutions. The examples of solution of physical problems, related to such problems as the heat propagation in various models, evolutional processes, Black-Scholes-like equations etc. are demonstrated by the operational technique.
Directory of Open Access Journals (Sweden)
Reza Ezzati
2014-08-01
Full Text Available In this paper, we propose the least square method for computing the positive solution of a non-square fully fuzzy linear system. To this end, we use Kaffman' arithmetic operations on fuzzy numbers \\cite{17}. Here, considered existence of exact solution using pseudoinverse, if they are not satisfy in positive solution condition, we will compute fuzzy vector core and then we will obtain right and left spreads of positive fuzzy vector by introducing constrained least squares problem. Using our proposed method, non-square fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.
International Nuclear Information System (INIS)
Pontedeiro, E.M.B.D.; Maiorino, J.R.
1982-01-01
The linear equation transport, monoenergetic, with anysotropic scattering, in multiregions, by F sub(N) method, is resolved. The mathematical analysis used for this method consists in to use parcially the expansion method in singular autofunctions, or Case's method, aiming to derive a set of integral equations coupled to the angular distribution in the boundaries and interfaces, and then to approximate these distributions by polynomics of N order, aiming to derive, with the use of these boundary and continuity conditions in the interfaces, a set of algebric equations for the coef. of polynomical approximation. With the goal to obtain numerical results, a computer code (FNAM-1) with options for the number of regions, boundary conditions, F sub(N) approx order, were developed. Numerical results were then obtained for various sample problems and compared with the results published in the literature with the objective to demonstrate the precision and applicability of the F sub(N) method. (E.G.) [pt
Saturation and linear transport equation
International Nuclear Information System (INIS)
Kutak, K.
2009-03-01
We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)
Ladiges, Daniel R.; Sader, John E.
2018-05-01
Nanomechanical resonators and sensors, operated in ambient conditions, often generate low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1, 297 (1969), 10.1007/BF01007482] proposed a variational principle for the linearized Boltzmann equation, which can be used to derive approximate analytical solutions of steady (time-independent) flows. Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus accommodate resonating nanomechanical devices. This includes a mathematical approach that facilitates its general use and allows for systematic improvements in accuracy. This formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and Stokes' second problem. Approximate analytical formulas giving the bulk velocity and shear stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes' second problem, a simple system of ordinary differential equations is derived which may be solved to obtain the desired flow fields. Using this framework, a simple and accurate formula is provided for the shear stress at the oscillating boundary, again for arbitrary frequency, which may prove useful in application. These solutions are easily implemented on any symbolic or numerical package, such as Mathematica or matlab, facilitating the characterization of flows produced by nanomechanical devices and providing insight into the underlying flow physics.
Hosseini, K.; Ayati, Z.; Ansari, R.
2018-04-01
One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
Directory of Open Access Journals (Sweden)
Hamidreza Rezazadeh
2014-05-01
Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.
Directory of Open Access Journals (Sweden)
Ali Konuralp
2014-01-01
Full Text Available Application process of variational iteration method is presented in order to solve the Volterra functional integrodifferential equations which have multi terms and vanishing delays where the delay function θ(t vanishes inside the integral limits such that θ(t=qt for 0
Topczewski, Anna; Cui, Zhongmin; Woodruff, David; Chen, Hanwei; Fang, Yu
2013-01-01
This paper investigates four methods of linear equating under the common item nonequivalent groups design. Three of the methods are well known: Tucker, Angoff-Levine, and Congeneric-Levine. A fourth method is presented as a variant of the Congeneric-Levine method. Using simulation data generated from the three-parameter logistic IRT model we…
Computing with linear equations and matrices
International Nuclear Information System (INIS)
Churchhouse, R.F.
1983-01-01
Systems of linear equations and matrices arise in many disciplines. The equations may accurately represent conditions satisfied by a system or, more likely, provide an approximation to a more complex system of non-linear or differential equations. The system may involve a few or many thousand unknowns and each individual equation may involve few or many of them. Over the past 50 years a vast literature on methods for solving systems of linear equations and the associated problems of finding the inverse or eigenvalues of a matrix has been produced. These lectures cover those methods which have been found to be most useful for dealing with such types of problem. References are given where appropriate and attention is drawn to the possibility of improved methods for use on vector and parallel processors. (orig.)
Diffusion phenomenon for linear dissipative wave equations
Said-Houari, Belkacem
2012-01-01
In this paper we prove the diffusion phenomenon for the linear wave equation. To derive the diffusion phenomenon, a new method is used. In fact, for initial data in some weighted spaces, we prove that for {equation presented} decays with the rate {equation presented} [0,1] faster than that of either u or v, where u is the solution of the linear wave equation with initial data {equation presented} [0,1], and v is the solution of the related heat equation with initial data v 0 = u 0 + u 1. This result improves the result in H. Yang and A. Milani [Bull. Sci. Math. 124 (2000), 415-433] in the sense that, under the above restriction on the initial data, the decay rate given in that paper can be improved by t -γ/2. © European Mathematical Society.
Hypocoercivity for linear kinetic equations conserving mass
Dolbeault, Jean; Mouhot, Clé ment; Schmeiser, Christian
2015-01-01
We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf
Hypocoercivity for linear kinetic equations conserving mass
Dolbeault, Jean
2015-02-03
We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf
Students’ difficulties in solving linear equation problems
Wati, S.; Fitriana, L.; Mardiyana
2018-03-01
A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.
Directory of Open Access Journals (Sweden)
Nurbaiti
2017-03-01
Full Text Available Science and technology have been rapidly evolved in some fields of knowledge, including mathematics. Such development can contribute to improvements on the learning process that encourage students and teachers to enhance their abilities and performances. In delivering the material on the linear equation system with two variables (SPLDV, the conventional teaching method where teachers become the center of the learning process is still well-practiced. This method would cause the students get bored and have difficulties to understand the concepts they are learning. Therefore, in order to the learning of SPLDV easy, an interesting, interactive media that the students and teachers can apply is necessary. This media is designed using GUI MATLAB and named as students’ electronic worksheets (e-LKS. This program is intended to help students in finding and understanding the SPLDV concepts more easily. This program is also expected to improve students’ motivation and creativity in learning the material. Based on the test using the System Usability Scale (SUS, the design of interactive mathematics learning media of the linear equation system with Two Variables (SPLDV gets grade B (excellent, meaning that this learning media is proper to be used for Junior High School students of grade VIII.
International Nuclear Information System (INIS)
Rahmouni, Adib N.
2004-01-01
In 1994, Berenger [Journal of Computational Physics 114 (1994) 185] proposed a new layer method: perfectly matched layer, PML, for electromagnetism. This new method is based on the truncation of the computational domain by a layer which absorbs waves regardless of their frequency and angle of incidence. Unfortunately, the technique proposed by Berenger (loc. cit.) leads to a system which has lost the most important properties of the original one: strong hyperbolicity and symmetry. We present in this paper an algebraic technique leading to well-known PML model [IEEE Transactions on Antennas and Propagation 44 (1996) 1630] for the linearized Euler equations, strongly well-posed, preserving the advantages of the initial method, and retaining symmetry. The technique proposed in this paper can be extended to various hyperbolic problems
Energy Technology Data Exchange (ETDEWEB)
Nygaard, K
1968-09-15
From the point of view that no mathematical method can ever minimise or alter errors already made in a physical measurement, the classical least squares method has severe limitations which makes it unsuitable for the statistical analysis of many physical measurements. Based on the assumptions that the experimental errors are characteristic for each single experiment and that the errors must be properly estimated rather than minimised, a new method for solving large systems of linear equations is developed. The new method exposes the entire range of possible solutions before the decision is taken which of the possible solutions should be chosen as a representative one. The choice is based on physical considerations which (in two examples, curve fitting and unfolding of a spectrum) are presented in such a form that a computer is able to make the decision, A description of the computation is given. The method described is a tool for removing uncertainties due to conventional mathematical formulations (zero determinant, linear dependence) and which are not inherent in the physical problem as such. The method is therefore especially well fitted for unfolding of spectra.
International Nuclear Information System (INIS)
Nygaard, K.
1968-09-01
From the point of view that no mathematical method can ever minimise or alter errors already made in a physical measurement, the classical least squares method has severe limitations which makes it unsuitable for the statistical analysis of many physical measurements. Based on the assumptions that the experimental errors are characteristic for each single experiment and that the errors must be properly estimated rather than minimised, a new method for solving large systems of linear equations is developed. The new method exposes the entire range of possible solutions before the decision is taken which of the possible solutions should be chosen as a representative one. The choice is based on physical considerations which (in two examples, curve fitting and unfolding of a spectrum) are presented in such a form that a computer is able to make the decision, A description of the computation is given. The method described is a tool for removing uncertainties due to conventional mathematical formulations (zero determinant, linear dependence) and which are not inherent in the physical problem as such. The method is therefore especially well fitted for unfolding of spectra
Linearized gyro-kinetic equation
International Nuclear Information System (INIS)
Catto, P.J.; Tsang, K.T.
1976-01-01
An ordering of the linearized Fokker-Planck equation is performed in which gyroradius corrections are retained to lowest order and the radial dependence appropriate for sheared magnetic fields is treated without resorting to a WKB technique. This description is shown to be necessary to obtain the proper radial dependence when the product of the poloidal wavenumber and the gyroradius is large (k rho much greater than 1). A like particle collision operator valid for arbitrary k rho also has been derived. In addition, neoclassical, drift, finite β (plasma pressure/magnetic pressure), and unperturbed toroidal electric field modifications are treated
Linear determining equations for differential constraints
International Nuclear Information System (INIS)
Kaptsov, O V
1998-01-01
A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed
Directory of Open Access Journals (Sweden)
Rosenbaum Peter L
2006-10-01
Full Text Available Abstract Background In this paper we compare the results in an analysis of determinants of caregivers' health derived from two approaches, a structural equation model and a log-linear model, using the same data set. Methods The data were collected from a cross-sectional population-based sample of 468 families in Ontario, Canada who had a child with cerebral palsy (CP. The self-completed questionnaires and the home-based interviews used in this study included scales reflecting socio-economic status, child and caregiver characteristics, and the physical and psychological well-being of the caregivers. Both analytic models were used to evaluate the relationships between child behaviour, caregiving demands, coping factors, and the well-being of primary caregivers of children with CP. Results The results were compared, together with an assessment of the positive and negative aspects of each approach, including their practical and conceptual implications. Conclusion No important differences were found in the substantive conclusions of the two analyses. The broad confirmation of the Structural Equation Modeling (SEM results by the Log-linear Modeling (LLM provided some reassurance that the SEM had been adequately specified, and that it broadly fitted the data.
Li, Meng; Gu, Xian-Ming; Huang, Chengming; Fei, Mingfa; Zhang, Guoyu
2018-04-01
In this paper, a fast linearized conservative finite element method is studied for solving the strongly coupled nonlinear fractional Schrödinger equations. We prove that the scheme preserves both the mass and energy, which are defined by virtue of some recursion relationships. Using the Sobolev inequalities and then employing the mathematical induction, the discrete scheme is proved to be unconditionally convergent in the sense of L2-norm and H α / 2-norm, which means that there are no any constraints on the grid ratios. Then, the prior bound of the discrete solution in L2-norm and L∞-norm are also obtained. Moreover, we propose an iterative algorithm, by which the coefficient matrix is independent of the time level, and thus it leads to Toeplitz-like linear systems that can be efficiently solved by Krylov subspace solvers with circulant preconditioners. This method can reduce the memory requirement of the proposed linearized finite element scheme from O (M2) to O (M) and the computational complexity from O (M3) to O (Mlog M) in each iterative step, where M is the number of grid nodes. Finally, numerical results are carried out to verify the correction of the theoretical analysis, simulate the collision of two solitary waves, and show the utility of the fast numerical solution techniques.
Transport equation solving methods
International Nuclear Information System (INIS)
Granjean, P.M.
1984-06-01
This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr
International Nuclear Information System (INIS)
Merton, S. R.; Smedley-Stevenson, R. P.; Pain, C. C.; Buchan, A. G.; Eaton, M. D.
2009-01-01
This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The amount of dissipation added acts internal to each element. This is done using a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is designed to be independent of angular expansion framework. This is demonstrated for the both discrete ordinates (S N ) and spherical harmonics (P N ) descriptions of the angular variable. Results show the scheme performs consistently well in demanding time dependent and multi-dimensional radiation transport problems. (authors)
Linear integral equations and soliton systems
International Nuclear Information System (INIS)
Quispel, G.R.W.
1983-01-01
A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)
International Nuclear Information System (INIS)
Das, R.N.
1980-01-01
The key equation which commonly appears for radiative transfer in a finite stellar atmosphere having ground reflection according to Lambert's law is considered in this paper. The exact solution of this equation is obtained for surface quantities in terms of the X-Y equations of Chandrasekhar by the method of Laplace transform and linear singular operators. This exact method is widely applicable for obtaining the solution for surface quantities in a finite atmosphere. (orig.)
Linear superposition solutions to nonlinear wave equations
International Nuclear Information System (INIS)
Liu Yu
2012-01-01
The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed
Linearization Method and Linear Complexity
Tanaka, Hidema
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
International Nuclear Information System (INIS)
Greenough, J.A.; Rider, W.J.
2004-01-01
A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the 'peak' shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are
Greenough, J. A.; Rider, W. J.
2004-05-01
A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the "peak" shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are
Schwarz maps of algebraic linear ordinary differential equations
Sanabria Malagón, Camilo
2017-12-01
A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.
Invariant imbedding equations for linear scattering problems
International Nuclear Information System (INIS)
Apresyan, L.
1988-01-01
A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation
Isomorphism of Intransitive Linear Lie Equations
Directory of Open Access Journals (Sweden)
Jose Miguel Martins Veloso
2009-11-01
Full Text Available We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan.
International Nuclear Information System (INIS)
Fronteau, J.; Combis, P.
1984-08-01
A Lagrangian method is introduced for the integration of non-linear Fokker-Planck equations. Examples of exact solutions obtained in this way are given, and also the explicit scheme used for the computation of numerical solutions. The method is, in addition, shown to be of a Lie-admissible type
Linear q-nonuniform difference equations
International Nuclear Information System (INIS)
Bangerezako, Gaspard
2010-01-01
We introduce basic concepts of q-nonuniform differentiation and integration and study linear q-nonuniform difference equations and systems, as well as their application in q-nonuniform difference linear control systems. (author)
Linear differential equations to solve nonlinear mechanical problems: A novel approach
Nair, C. Radhakrishnan
2004-01-01
Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...
Linear and quasi-linear equations of parabolic type
Ladyženskaja, O A; Ural′ceva, N N; Uralceva, N N
1968-01-01
Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.
Directory of Open Access Journals (Sweden)
Orlando Soriano-Vargas
2016-12-01
Full Text Available Spinodal decomposition was studied during aging of Fe-Cr alloys by means of the numerical solution of the linear and nonlinear Cahn-Hilliard differential partial equations using the explicit finite difference method. Results of the numerical simulation permitted to describe appropriately the mechanism, morphology and kinetics of phase decomposition during the isothermal aging of these alloys. The growth kinetics of phase decomposition was observed to occur very slowly during the early stages of aging and it increased considerably as the aging progressed. The nonlinear equation was observed to be more suitable for describing the early stages of spinodal decomposition than the linear one.
Iterative solution of linear equations in ODE codes. [Krylov subspaces
Energy Technology Data Exchange (ETDEWEB)
Gear, C. W.; Saad, Y.
1981-01-01
Each integration step of a stiff equation involves the solution of a nonlinear equation, usually by a quasi-Newton method that leads to a set of linear problems. Iterative methods for these linear equations are studied. Of particular interest are methods that do not require an explicit Jacobian, but can work directly with differences of function values using J congruent to f(x + delta) - f(x). Some numerical experiments using a modification of LSODE are reported. 1 figure, 2 tables.
On some perturbation techniques for quasi-linear parabolic equations
Directory of Open Access Journals (Sweden)
Igor Malyshev
1990-01-01
Full Text Available We study a nonhomogeneous quasi-linear parabolic equation and introduce a method that allows us to find the solution of a nonlinear boundary value problem in explicit form. This task is accomplished by perturbing the original equation with a source function, which is then found as a solution of some nonlinear operator equation.
Linear causal modeling with structural equations
Mulaik, Stanley A
2009-01-01
Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal
Dual exponential polynomials and linear differential equations
Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne
2018-01-01
We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.
Differential equations methods and applications
Said-Houari, Belkacem
2015-01-01
This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory. To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included. The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations. .
Simplified Linear Equation Solvers users manual
Energy Technology Data Exchange (ETDEWEB)
Gropp, W. [Argonne National Lab., IL (United States); Smith, B. [California Univ., Los Angeles, CA (United States)
1993-02-01
The solution of large sparse systems of linear equations is at the heart of many algorithms in scientific computing. The SLES package is a set of easy-to-use yet powerful and extensible routines for solving large sparse linear systems. The design of the package allows new techniques to be used in existing applications without any source code changes in the applications.
Diffusive limits for linear transport equations
International Nuclear Information System (INIS)
Pomraning, G.C.
1992-01-01
The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion
Visual construction of characteristic equations of linear electric circuits
Directory of Open Access Journals (Sweden)
V.V. Kostyukov
2013-12-01
Full Text Available A visual identification method with application of partial circuits is developed for characteristic equation coefficients of transients in linear electric circuits. The method is based on interrelationship between the roots of algebraic polynomial and its coefficients. The method is illustrated with an example of a third-order linear electric circuit.
Spectral theories for linear differential equations
International Nuclear Information System (INIS)
Sell, G.R.
1976-01-01
The use of spectral analysis in the study of linear differential equations with constant coefficients is not only a fundamental technique but also leads to far-reaching consequences in describing the qualitative behaviour of the solutions. The spectral analysis, via the Jordan canonical form, will not only lead to a representation theorem for a basis of solutions, but will also give a rather precise statement of the (exponential) growth rates of various solutions. Various attempts have been made to extend this analysis to linear differential equations with time-varying coefficients. The most complete such extensions is the Floquet theory for equations with periodic coefficients. For time-varying linear differential equations with aperiodic coefficients several authors have attempted to ''extend'' the Foquet theory. The precise meaning of such an extension is itself a problem, and we present here several attempts in this direction that are related to the general problem of extending the spectral analysis of equations with constant coefficients. The main purpose of this paper is to introduce some problems of current research. The primary problem we shall examine occurs in the context of linear differential equations with almost periodic coefficients. We call it ''the Floquet problem''. (author)
Solvable linear potentials in the Dirac equation
International Nuclear Information System (INIS)
Dominguez-Adame, F.; Gonzalez, M.A.
1990-01-01
The Dirac equation for some linear potentials leading to Schroedinger-like oscillator equations for the upper and lower components of the Dirac spinor have been solved. Energy levels for the bound states appear in pairs, so that both particles and antiparticles may be bound with the same energy. For weak coupling, the spacing between levels is proportional to the coupling constant while in the strong limit those levels are depressed compared to the nonrelativistic ones
Emmy Noether and Linear Evolution Equations
Directory of Open Access Journals (Sweden)
P. G. L. Leach
2013-01-01
Full Text Available Noether’s Theorem relates the Action Integral of a Lagrangian with symmetries which leave it invariant and the first integrals consequent upon the variational principle and the existence of the symmetries. These each have an equivalent in the Schrödinger Equation corresponding to the Lagrangian and by extension to linear evolution equations in general. The implications of these connections are investigated.
On index-2 linear implicit difference equations
Nguyen Huu Du, [No Value; Le Cong Loi, [No Value; Trinh Khanh Duy, [No Value; Vu Tien Viet, [No Value
2011-01-01
This paper deals with an index-2 notion for linear implicit difference equations (LIDEs) and with the solvability of initial value problems (IVPs) for index-2 LIDEs. Besides, the cocycle property as well as the multiplicative ergodic theorem of Oseledets type are also proved. (C) 2010 Elsevier Inc.
Singular Linear Differential Equations in Two Variables
Braaksma, B.L.J.; Put, M. van der
2008-01-01
The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no
Lorin, E.; Yang, X.; Antoine, X.
2016-06-01
The paper is devoted to develop efficient domain decomposition methods for the linear Schrödinger equation beyond the semiclassical regime, which does not carry a small enough rescaled Planck constant for asymptotic methods (e.g. geometric optics) to produce a good accuracy, but which is too computationally expensive if direct methods (e.g. finite difference) are applied. This belongs to the category of computing middle-frequency wave propagation, where neither asymptotic nor direct methods can be directly used with both efficiency and accuracy. Motivated by recent works of the authors on absorbing boundary conditions (Antoine et al. (2014) [13] and Yang and Zhang (2014) [43]), we introduce Semiclassical Schwarz Waveform Relaxation methods (SSWR), which are seamless integrations of semiclassical approximation to Schwarz Waveform Relaxation methods. Two versions are proposed respectively based on Herman-Kluk propagation and geometric optics, and we prove the convergence and provide numerical evidence of efficiency and accuracy of these methods.
Linear matrix differential equations of higher-order and applications
Directory of Open Access Journals (Sweden)
Mustapha Rachidi
2008-07-01
Full Text Available In this article, we study linear differential equations of higher-order whose coefficients are square matrices. The combinatorial method for computing the matrix powers and exponential is adopted. New formulas representing auxiliary results are obtained. This allows us to prove properties of a large class of linear matrix differential equations of higher-order, in particular results of Apostol and Kolodner are recovered. Also illustrative examples and applications are presented.
The numerical solution of linear multi-term fractional differential equations: systems of equations
Edwards, John T.; Ford, Neville J.; Simpson, A. Charles
2002-11-01
In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Introduction to linear systems of differential equations
Adrianova, L Ya
1995-01-01
The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...
Rational approximations to solutions of linear differential equations.
Chudnovsky, D V; Chudnovsky, G V
1983-08-01
Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.
Nonoscillation of half-linear dynamic equations
Czech Academy of Sciences Publication Activity Database
Matucci, S.; Řehák, Pavel
2010-01-01
Roč. 60, č. 5 (2010), s. 1421-1429 ISSN 0898-1221 R&D Projects: GA AV ČR KJB100190701 Grant - others:GA ČR(CZ) GA201/07/0145 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear dynamic equation * time scale * (non)oscillation * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 1.472, year: 2010 http://www.sciencedirect.com/science/article/pii/S0898122110004384
On a representation of linear differential equations
Czech Academy of Sciences Publication Activity Database
Neuman, František
2010-01-01
Roč. 52, 1-2 (2010), s. 355-360 ISSN 0895-7177 Grant - others:GA ČR(CZ) GA201/08/0469 Institutional research plan: CEZ:AV0Z10190503 Keywords : Brandt and Ehresmann groupoinds * transformations * canonical forms * linear differential equations Subject RIV: BA - General Mathematics Impact factor: 1.066, year: 2010 http://www.sciencedirect.com/science/article/pii/S0895717710001184
Analytical exact solution of the non-linear Schroedinger equation
International Nuclear Information System (INIS)
Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da
2011-01-01
Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)
International Nuclear Information System (INIS)
Alvarez-Estrada, R.F.
1979-01-01
A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly
Periodic feedback stabilization for linear periodic evolution equations
Wang, Gengsheng
2016-01-01
This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.
Sloss, J. M.; Kranzler, S. K.
1972-01-01
The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.
Minimal solution of linear formed fuzzy matrix equations
Directory of Open Access Journals (Sweden)
Maryam Mosleh
2012-10-01
Full Text Available In this paper according to the structured element method, the $mimes n$ inconsistent fuzzy matrix equation $Ailde{X}=ilde{B},$ which are linear formed by fuzzy structured element, is investigated. The necessary and sufficient condition for the existence of a fuzzy solution is also discussed. some examples are presented to illustrate the proposed method.
Solving Fully Fuzzy Linear System of Equations in General Form
Directory of Open Access Journals (Sweden)
A. Yousefzadeh
2012-06-01
Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.
High-order quantum algorithm for solving linear differential equations
International Nuclear Information System (INIS)
Berry, Dominic W
2014-01-01
Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt 2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution. (paper)
Asymptotic solutions and spectral theory of linear wave equations
International Nuclear Information System (INIS)
Adam, J.A.
1982-01-01
This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)
Quantum osp-invariant non-linear Schroedinger equation
International Nuclear Information System (INIS)
Kulish, P.P.
1985-04-01
The generalizations of the non-linear Schroedinger equation (NS) associated with the orthosymplectic superalgebras are formulated. The simplest osp(1/2)-NS model is solved by the quantum inverse scattering method on a finite interval under periodic boundary conditions as well as on the wholeline in the case of a finite number of excitations. (author)
Insights into the School Mathematics Tradition from Solving Linear Equations
Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth
2015-01-01
In this article, we explore how the solving of linear equations is represented in English-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…
International Nuclear Information System (INIS)
Mazumdar, Tanay; Degweker, S.B.
2017-01-01
Highlights: • In Method of Characteristics, the neutron source within a mesh is expanded up to linear term. • This expansion reduces the number of meshes as compared to flat source assumption. • Poor representation of circular geometry with coarser meshes is corrected. • Few benchmark problems are solved to show the advantages of linear expansion of source. • The advantage of the present formalism is quite visible in problems with large flux gradient. - Abstract: A common assumption in the solution of the neutron transport equation by the Method of Characteristics (MOC) is that the source (or flux) is constant within a mesh. This assumption is adequate provided the meshes are small enough so that the spatial variation of flux within a mesh may be ignored. Whether a mesh is small enough or not depends upon the flux gradient across a mesh, which in turn depends on factors like the presence of strong absorbers, localized sources or vacuum boundaries. The flat flux assumption often requires a very large number of meshes for solving the neutron transport equation with acceptable accuracy as was observed in our earlier work on the subject. A significant reduction in the required number of meshes is attainable by using a higher order representation of the flux within a mesh. In this paper, we expand the source within a mesh up to first order (linear) terms, which permits the use of larger sized (and therefore fewer) meshes and thereby reduces the computation time without compromising the accuracy of calculation. Since the division of the geometry into meshes is through an automatic triangulation procedure using the Bowyer-Watson algorithm, representation of circular objects (cylindrical fuel rods) with coarse meshes is poorer and causes geometry related errors. A numerical recipe is presented to make a correction to the automatic triangulation process and thereby eliminate this source of error. A number of benchmark problems are analyzed to emphasize the
Numerical methods for differential equations and applications
International Nuclear Information System (INIS)
Ixaru, L.G.
1984-01-01
This book is addressed to persons who, without being professionals in applied mathematics, are often faced with the problem of numerically solving differential equations. In each of the first three chapters a definite class of methods is discussed for the solution of the initial value problem for ordinary differential equations: multistep methods; one-step methods; and piecewise perturbation methods. The fourth chapter is mainly focussed on the boundary value problems for linear second-order equations, with a section devoted to the Schroedinger equation. In the fifth chapter the eigenvalue problem for the radial Schroedinger equation is solved in several ways, with computer programs included. (Auth.)
Non-linear effects in the Boltzmann equation
International Nuclear Information System (INIS)
Barrachina, R.O.
1985-01-01
The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es
Novel algorithm of large-scale simultaneous linear equations
International Nuclear Information System (INIS)
Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L
2010-01-01
We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented.
Linear measure functional differential equations with infinite delay
Monteiro, G. (Giselle Antunes); Slavík, A.
2014-01-01
We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependence of solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.
Methods for Equating Mental Tests.
1984-11-01
1983) compared conventional and IRT methods for equating the Test of English as a Foreign Language ( TOEFL ) after chaining. Three conventional and...three IRT equating methods were examined in this study; two sections of TOEFL were each (separately) equated. The IRT methods included the following: (a...group. A separate base form was established for each of the six equating methods. Instead of equating the base-form TOEFL to itself, the last (eighth
International Nuclear Information System (INIS)
Man, Yiu-Kwong
2010-01-01
In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided. (fast track communication)
Non-linear wave equations:Mathematical techniques
International Nuclear Information System (INIS)
1978-01-01
An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es
Construction of a Roe linearization for the ideal MHD equations
International Nuclear Information System (INIS)
Cargo, P.; Gallice, G.; Raviart, P.A.
1996-01-01
In [3], Munz has constructed a Roe linearization for the equations of gas dynamics in Lagrangian coordinates. We extend this construction to the case of the ideal magnetohydrodynamics equations again in Lagrangian coordinates. As a consequence we obtain a Roe linearization for the MHD equations in Eulerian coordinates. (author)
Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.
1976-01-01
A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.
Chen, Haiwen
2012-01-01
In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…
Parallel computation for solving the tridiagonal linear system of equations
International Nuclear Information System (INIS)
Ishiguro, Misako; Harada, Hiroo; Fujii, Minoru; Fujimura, Toichiro; Nakamura, Yasuhiro; Nanba, Katsumi.
1981-09-01
Recently, applications of parallel computation for scientific calculations have increased from the need of the high speed calculation of large scale programs. At the JAERI computing center, an array processor FACOM 230-75 APU has installed to study the applicability of parallel computation for nuclear codes. We made some numerical experiments by using the APU on the methods of solution of tridiagonal linear equation which is an important problem in scientific calculations. Referring to the recent papers with parallel methods, we investigate eight ones. These are Gauss elimination method, Parallel Gauss method, Accelerated parallel Gauss method, Jacobi method, Recursive doubling method, Cyclic reduction method, Chebyshev iteration method, and Conjugate gradient method. The computing time and accuracy were compared among the methods on the basis of the numerical experiments. As the result, it is found that the Cyclic reduction method is best both in computing time and accuracy and the Gauss elimination method is the second one. (author)
A new linearized equation for servo valve in hydraulic control systems
International Nuclear Information System (INIS)
Kim, Tae Hyung; Lee, Ill Yeong
2002-01-01
In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system
Test equating methods and practices
Kolen, Michael J
1995-01-01
In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...
Hamiltonian structures of some non-linear evolution equations
International Nuclear Information System (INIS)
Tu, G.Z.
1983-06-01
The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)
Stability of Linear Equations--Algebraic Approach
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.
2012-01-01
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
Approximate solution to neutron transport equation with linear anisotropic scattering
International Nuclear Information System (INIS)
Coppa, G.; Ravetto, P.; Sumini, M.
1983-01-01
A method to obtain an approximate solution to the transport equation, when both sources and collisions show a linearly anisotropic behavior, is outlined and the possible implications for numerical calculations in applied neutronics as well as shielding evaluations are investigated. The form of the differential system of equations taken by the method is quite handy and looks simpler and more manageable than any other today available technique. To go deeper into the efficiency of the method, some typical calculations concerning critical dimension of multiplying systems are then performed and the results are compared with the ones coming from the classical Ssub(N) approximations. The outcome of such calculations leads us to think of interesting developments of the method which could be quite useful in alternative to other today widespread approximate procedures, for any geometry, but especially for curved ones. (author)
Oscillation theory of linear differential equations
Czech Academy of Sciences Publication Activity Database
Došlý, Ondřej
2000-01-01
Roč. 36, č. 5 (2000), s. 329-343 ISSN 0044-8753 R&D Projects: GA ČR GA201/98/0677 Keywords : discrete oscillation theory %Sturm-Liouville equation%Riccati equation Subject RIV: BA - General Mathematics
Geometric Insight into Scalar Combination of Linear Equations
Indian Academy of Sciences (India)
... Journals; Resonance – Journal of Science Education; Volume 14; Issue 11. Geometric Insight into Scalar Combination of Linear Equations. Ranjit Konkar. Classroom Volume 14 Issue 11 November 2009 pp 1092-1097 ... Keywords. Linear algebra; linear dependence; linear combination; family of lines; family of planes.
Integration of differential equations by the pseudo-linear (PL) approximation
International Nuclear Information System (INIS)
Bonalumi, Riccardo A.
1998-01-01
A new method of integrating differential equations was originated with the technique of approximately calculating the integrals called the pseudo-linear (PL) procedure: this method is A-stable. This article contains the following examples: 1st order ordinary differential equations (ODEs), 2nd order linear ODEs, stiff system of ODEs (neutron kinetics), one-dimensional parabolic (diffusion) partial differential equations. In this latter case, this PL method coincides with the Crank-Nicholson method
Students' errors in solving linear equation word problems: Case ...
African Journals Online (AJOL)
The study examined errors students make in solving linear equation word problems with a view to expose the nature of these errors and to make suggestions for classroom teaching. A diagnostic test comprising 10 linear equation word problems, was administered to a sample (n=130) of senior high school first year Home ...
Linear stochastic differential equations with anticipating initial conditions
DEFF Research Database (Denmark)
Khalifa, Narjess; Kuo, Hui-Hsiung; Ouerdiane, Habib
In this paper we use the new stochastic integral introduced by Ayed and Kuo (2008) and the results obtained by Kuo et al. (2012b) to find a solution to a drift-free linear stochastic differential equation with anticipating initial condition. Our solution is based on well-known results from...... classical Itô theory and anticipative Itô formula results from Kue et al. (2012b). We also show that the solution obtained by our method is consistent with the solution obtained by the methods of Malliavin calculus, e.g. Buckdahn and Nualart (1994)....
Linear orbit parameters for the exact equations of motion
International Nuclear Information System (INIS)
Parzen, G.
1995-01-01
This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived
GLOBAL LINEARIZATION OF DIFFERENTIAL EQUATIONS WITH SPECIAL STRUCTURES
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper introduces the global linearization of the differential equations with special structures.The function in the differential equation is unbounded.We prove that the differential equation with unbounded function can be topologically linearlized if it has a special structure.
Linear algebra a first course with applications to differential equations
Apostol, Tom M
2014-01-01
Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.
ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations
Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil
2018-04-01
In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.
Nahay, John Michael
2008-01-01
We present a new approach to solving polynomial ordinary differential equations by transforming them to linear functional equations and then solving the linear functional equations. We will focus most of our attention upon the first-order Abel differential equation with two nonlinear terms in order to demonstrate in as much detail as possible the computations necessary for a complete solution. We mention in our section on further developments that the basic transformation idea can be generali...
A Photon Free Method to Solve Radiation Transport Equations
International Nuclear Information System (INIS)
Chang, B
2006-01-01
The multi-group discrete-ordinate equations of radiation transfer is solved for the first time by Newton's method. It is a photon free method because the photon variables are eliminated from the radiation equations to yield a N group XN direction smaller but equivalent system of equations. The smaller set of equations can be solved more efficiently than the original set of equations. Newton's method is more stable than the Semi-implicit Linear method currently used by conventional radiation codes
Resonance tongues in the linear Sitnikov equation
Misquero, Mauricio
2018-04-01
In this paper, we deal with a Hill's equation, depending on two parameters e\\in [0,1) and Λ >0, that has applications to some problems in Celestial Mechanics of the Sitnikov type. Due to the nonlinearity of the eccentricity parameter e and the coexistence problem, the stability diagram in the (e,Λ )-plane presents unusual resonance tongues emerging from points (0,(n/2)^2), n=1,2,\\ldots The tongues bounded by curves of eigenvalues corresponding to 2π -periodic solutions collapse into a single curve of coexistence (for which there exist two independent 2π -periodic eigenfunctions), whereas the remaining tongues have no pockets and are very thin. Unlike most of the literature related to resonance tongues and Sitnikov-type problems, the study of the tongues is made from a global point of view in the whole range of e\\in [0,1). Indeed, an interesting behavior of the tongues is found: almost all of them concentrate in a small Λ -interval [1, 9 / 8] as e→ 1^-. We apply the stability diagram of our equation to determine the regions for which the equilibrium of a Sitnikov (N+1)-body problem is stable in the sense of Lyapunov and the regions having symmetric periodic solutions with a given number of zeros. We also study the Lyapunov stability of the equilibrium in the center of mass of a curved Sitnikov problem.
Chaotic dynamics and diffusion in a piecewise linear equation
International Nuclear Information System (INIS)
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-01-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems
Chaotic dynamics and diffusion in a piecewise linear equation
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-03-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.
New approach to solve fully fuzzy system of linear equations using ...
Indian Academy of Sciences (India)
This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...
Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles
Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim
2016-01-01
This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…
The linearization method in hydrodynamical stability theory
Yudovich, V I
1989-01-01
This book presents the theory of the linearization method as applied to the problem of steady-state and periodic motions of continuous media. The author proves infinite-dimensional analogues of Lyapunov's theorems on stability, instability, and conditional stability for a large class of continuous media. In addition, semigroup properties for the linearized Navier-Stokes equations in the case of an incompressible fluid are studied, and coercivity inequalities and completeness of a system of small oscillations are proved.
New nonlinear methods for linear transport calculations
International Nuclear Information System (INIS)
Adams, M.L.
1993-01-01
We present a new family of methods for the numerical solution of the linear transport equation. With these methods an iteration consists of an 'S N sweep' followed by an 'S 2 -like' calculation. We show, by analysis as well as numerical results, that iterative convergence is always rapid. We show that this rapid convergence does not depend on a consistent discretization of the S 2 -like equations - they can be discretized independently from the S N equations. We show further that independent discretizations can offer significant advantages over consistent ones. In particular, we find that in a wide range of problems, an accurate discretization of the S 2 -like equation can be combined with a crude discretization of the S N equations to produce an accurate S N answer. We demonstrate this by analysis as well as numerical results. (orig.)
Wati, S.; Fitriana, L.; Mardiyana
2018-04-01
Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.
International Nuclear Information System (INIS)
Kotikov, A.V.
1993-01-01
A new method of massive Feynman diagrams calculation is presented. It provides a fairly simple procedure to obtain the result without the D-space integral calculation (for the dimensional regularization). Some diagrams are calculated as an illustration of this method capacities. (author). 7 refs
Convergence of hybrid methods for solving non-linear partial ...
African Journals Online (AJOL)
This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...
Subroutine for series solutions of linear differential equations
International Nuclear Information System (INIS)
Tasso, H.; Steuerwald, J.
1976-02-01
A subroutine for Taylor series solutions of systems of ordinary linear differential equations is descriebed. It uses the old idea of Lie series but allows simple implementation and is time-saving for symbolic manipulations. (orig.) [de
On a class of fourth order linear recurrence equations
Directory of Open Access Journals (Sweden)
Sui-Sun Cheng
1984-01-01
Full Text Available This paper is concerned with sequences that satisfy a class of fourth order linear recurrence equations. Basic properties of such sequences are derived. In addition, we discuss the oscillatory and nonoscillatory behavior of such sequences.
Explorative methods in linear models
DEFF Research Database (Denmark)
Høskuldsson, Agnar
2004-01-01
The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different feat...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....
Integral equation methods for electromagnetics
Volakis, John
2012-01-01
This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo
Local energy decay for linear wave equations with variable coefficients
Ikehata, Ryo
2005-06-01
A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].
Jamali, R. M. Jalal Uddin; Hashem, M. M. A.; Hasan, M. Mahfuz; Rahman, Md. Bazlar
2013-01-01
Solving a set of simultaneous linear equations is probably the most important topic in numerical methods. For solving linear equations, iterative methods are preferred over the direct methods especially when the coefficient matrix is sparse. The rate of convergence of iteration method is increased by using Successive Relaxation (SR) technique. But SR technique is very much sensitive to relaxation factor, {\\omega}. Recently, hybridization of classical Gauss-Seidel based successive relaxation t...
Focal decompositions for linear differential equations of the second order
Directory of Open Access Journals (Sweden)
L. Birbrair
2003-01-01
two-points problems to itself such that the image of the focal decomposition associated to the first equation is a focal decomposition associated to the second one. In this paper, we present a complete classification for linear second-order equations with respect to this equivalence relation.
Asymptotic properties for half-linear difference equations
Czech Academy of Sciences Publication Activity Database
Cecchi, M.; Došlá, Z.; Marini, M.; Vrkoč, Ivo
2006-01-01
Roč. 131, č. 4 (2006), s. 347-363 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GA201/04/0580 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear second order difference equation * nonoscillatory solutions * Riccati difference equation Subject RIV: BA - General Mathematics
A Hamiltonian structure for the linearized Einstein vacuum field equations
International Nuclear Information System (INIS)
Torres del Castillo, G.F.
1991-01-01
By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained (Author)
An implicit spectral formula for generalized linear Schroedinger equations
International Nuclear Information System (INIS)
Schulze-Halberg, A.; Garcia-Ravelo, J.; Pena Gil, Jose Juan
2009-01-01
We generalize the semiclassical Bohr–Sommerfeld quantization rule to an exact, implicit spectral formula for linear, generalized Schroedinger equations admitting a discrete spectrum. Special cases include the position-dependent mass Schroedinger equation or the Schroedinger equation for weighted energy. Requiring knowledge of the potential and the solution associated with the lowest spectral value, our formula predicts the complete spectrum in its exact form. (author)
International Nuclear Information System (INIS)
Grigoriu, Mircea; Samorodnitsky, Gennady
2004-01-01
Two methods are considered for assessing the asymptotic stability of the trivial solution of linear stochastic differential equations driven by Poisson white noise, interpreted as the formal derivative of a compound Poisson process. The first method attempts to extend a result for diffusion processes satisfying linear stochastic differential equations to the case of linear equations with Poisson white noise. The developments for the method are based on Ito's formula for semimartingales and Lyapunov exponents. The second method is based on a geometric ergodic theorem for Markov chains providing a criterion for the asymptotic stability of the solution of linear stochastic differential equations with Poisson white noise. Two examples are presented to illustrate the use and evaluate the potential of the two methods. The examples demonstrate limitations of the first method and the generality of the second method
A Line-Tau Collocation Method for Partial Differential Equations ...
African Journals Online (AJOL)
This paper deals with the numerical solution of second order linear partial differential equations with the use of the method of lines coupled with the tau collocation method. The method of lines is used to convert the partial differential equation (PDE) to a sequence of ordinary differential equations (ODEs) which is then ...
A local-global problem for linear differential equations
Put, Marius van der; Reversat, Marc
2008-01-01
An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is
A local-global problem for linear differential equations
Put, Marius van der; Reversat, Marc
An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is
Non-local quasi-linear parabolic equations
International Nuclear Information System (INIS)
Amann, H
2005-01-01
This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing
Construction of local and non-local conservation laws for non-linear field equations
International Nuclear Information System (INIS)
Vladimirov, V.S.; Volovich, I.V.
1984-08-01
A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan
2010-07-05
We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.
Darboux transformations and linear parabolic partial differential equations
International Nuclear Information System (INIS)
Arrigo, Daniel J.; Hickling, Fred
2002-01-01
Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
Partial differential equations with numerical methods
Larsson, Stig
2003-01-01
The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering. The main theme is the integration of the theory of linear PDEs and the numerical solution of such equations. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. As preparation, the two-point boundary value problem and the initial-value problem for ODEs are discussed in separate chapters. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. Some background on linear functional analysis and Sobolev spaces, and also on numerical linear algebra, is reviewed in two appendices.
Comparison of Kernel Equating and Item Response Theory Equating Methods
Meng, Yu
2012-01-01
The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…
Infinite sets of conservation laws for linear and nonlinear field equations
International Nuclear Information System (INIS)
Mickelsson, J.
1984-01-01
The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of the space-time symmetry group is established. It is shown that each symmetric element of the enveloping algebra of the space-time symmetry group of a linear field equation generates a one-parameter group of symmetries of the field equation. The cases of the Maxwell and Dirac equations are studied in detail. Then it is shown that (at least in the sense of a power series in the 'coupling constant') the conservation laws of the linear case can be deformed to conservation laws of a nonlinear field equation which is obtained from the linear one by adding a nonlinear term invariant under the group of space-time symmetries. As an example, our method is applied to the Korteweg-de Vries equation and to the massless Thirring model. (orig.)
Dynamical symmetries of semi-linear Schrodinger and diffusion equations
International Nuclear Information System (INIS)
Stoimenov, Stoimen; Henkel, Malte
2005-01-01
Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed
Sensitivity theory for general non-linear algebraic equations with constraints
International Nuclear Information System (INIS)
Oblow, E.M.
1977-04-01
Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems
Zhou, L.-Q.; Meleshko, S. V.
2017-07-01
The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.
DEFF Research Database (Denmark)
Andersen, O. Krogh
1975-01-01
of Korringa-Kohn-Rostoker, linear-combination-of-atomic-orbitals, and cellular methods; the secular matrix is linear in energy, the overlap integrals factorize as potential parameters and structure constants, the latter are canonical in the sense that they neither depend on the energy nor the cell volume...
HESS Opinions: Linking Darcy's equation to the linear reservoir
Savenije, Hubert H. G.
2018-03-01
In groundwater hydrology, two simple linear equations exist describing the relation between groundwater flow and the gradient driving it: Darcy's equation and the linear reservoir. Both equations are empirical and straightforward, but work at different scales: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they appear similar, it is not trivial to upscale Darcy's equation to the watershed scale without detailed knowledge of the structure or shape of the underlying aquifers. This paper shows that these two equations, combined by the water balance, are indeed identical provided there is equal resistance in space for water entering the subsurface network. This implies that groundwater systems make use of an efficient drainage network, a mostly invisible pattern that has evolved over geological timescales. This drainage network provides equally distributed resistance for water to access the system, connecting the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance. As a result, the timescale of the linear reservoir appears to be inversely proportional to Darcy's conductance, the proportionality being the product of the porosity and the resistance to entering the drainage network. The main question remaining is which physical law lies behind pattern formation in groundwater systems, evolving in a way that resistance to drainage is constant in space. But that is a fundamental question that is equally relevant for understanding the hydraulic properties of leaf veins in plants or of blood veins in animals.
Linear Methods for Image Interpolation
Pascal Getreuer
2011-01-01
We discuss linear methods for interpolation, including nearest neighbor, bilinear, bicubic, splines, and sinc interpolation. We focus on separable interpolation, so most of what is said applies to one-dimensional interpolation as well as N-dimensional separable interpolation.
An implicit iterative scheme for solving large systems of linear equations
International Nuclear Information System (INIS)
Barry, J.M.; Pollard, J.P.
1986-12-01
An implicit iterative scheme for the solution of large systems of linear equations arising from neutron diffusion studies is presented. The method is applied to three-dimensional reactor studies and its performance is compared with alternative iterative approaches
International Nuclear Information System (INIS)
Sanchez, Richard.
1975-04-01
For the one-dimensional geometries, the transport equation with linearly anisotropic scattering can be reduced to a single integral equation; this is a singular-kernel FREDHOLM equation of the second kind. When applying a conventional projective method that of GALERKIN, to the solution of this equation the well-known collision probability algorithm is obtained. Piecewise polynomial expansions are used to represent the flux. In the ANILINE code, the flux is supposed to be linear in plane geometry and parabolic in both cylindrical and spherical geometries. An integral relationship was found between the one-dimensional isotropic and anisotropic kernels; this allows to reduce the new matrix elements (issuing from the anisotropic kernel) to classic collision probabilities of the isotropic scattering equation. For cylindrical and spherical geometries used an approximate representation of the current was used to avoid an additional numerical integration. Reflective boundary conditions were considered; in plane geometry the reflection is supposed specular, for the other geometries the isotropic reflection hypothesis has been adopted. Further, the ANILINE code enables to deal with an incoming isotropic current. Numerous checks were performed in monokinetic theory. Critical radii and albedos were calculated for homogeneous slabs, cylinders and spheres. For heterogeneous media, the thermal utilization factor obtained by this method was compared with the theoretical result based upon a formula by BENOIST. Finally, ANILINE was incorporated into the multigroup APOLLO code, which enabled to analyse the MINERVA experimental reactor in transport theory with 99 groups. The ANILINE method is particularly suited to the treatment of strongly anisotropic media with considerable flux gradients. It is also well adapted to the calculation of reflectors, and in general, to the exact analysis of anisotropic effects in large-sized media [fr
Linear homotopy solution of nonlinear systems of equations in geodesy
Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.
2010-01-01
A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.
Linear Einstein equations and Kerr-Schild maps
International Nuclear Information System (INIS)
Gergely, Laszlo A
2002-01-01
We prove that given a solution of the Einstein equations g ab for the matter field T ab , an autoparallel null vector field l a and a solution (l a l c , T ac ) of the linearized Einstein equation on the given background, the Kerr-Schild metric g ac + λl a l c (λ arbitrary constant) is an exact solution of the Einstein equation for the energy-momentum tensor T ac + λT ac + λ 2 l (a T c)b l b . The mixed form of the Einstein equation for Kerr-Schild metrics with autoparallel null congruence is also linear. Some more technical conditions hold when the null congruence is not autoparallel. These results generalize previous theorems for vacuum due to Xanthopoulos and for flat seed spacetime due to Guerses and Guersey
A Hamiltonian functional for the linearized Einstein vacuum field equations
International Nuclear Information System (INIS)
Rosas-RodrIguez, R
2005-01-01
By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained
Linearized pseudo-Einstein equations on the Heisenberg group
Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard
2017-02-01
We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.
Oscillation and non-oscillation criterion for Riemann–Weber type half-linear differential equations
Directory of Open Access Journals (Sweden)
Petr Hasil
2016-08-01
Full Text Available By the combination of the modified half-linear Prüfer method and the Riccati technique, we study oscillatory properties of half-linear differential equations. Taking into account the transformation theory of half-linear equations and using some known results, we show that the analysed equations in the Riemann–Weber form with perturbations in both terms are conditionally oscillatory. Within the process, we identify the critical oscillation values of their coefficients and, consequently, we decide when the considered equations are oscillatory and when they are non-oscillatory. As a direct corollary of our main result, we solve the so-called critical case for a certain type of half-linear non-perturbed equations.
New non-linear modified massless Klein-Gordon equation
Energy Technology Data Exchange (ETDEWEB)
Asenjo, Felipe A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago (Chile); Hojman, Sergio A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Santiago (Chile); Universidad de Chile, Departamento de Fisica, Facultad de Ciencias, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)
2017-11-15
The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop ''tails'' inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential. (orig.)
Exact non-linear equations for cosmological perturbations
Energy Technology Data Exchange (ETDEWEB)
Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 41566 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Wu, David Chan Lon; Yoo, Jaiyul, E-mail: jinn-ouk.gong@apctp.org, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: clwu@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, Universität Zürich, CH-8057 Zürich (Switzerland)
2017-10-01
We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations—scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.
Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.
2009-01-01
This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…
SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES
Directory of Open Access Journals (Sweden)
Sari Saraswati
2016-01-01
Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
Mallet, D. G.; McCue, S. W.
2009-01-01
The solution of linear ordinary differential equations (ODEs) is commonly taught in first-year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognizing what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to…
Diffusion phenomenon for linear dissipative wave equations in an exterior domain
Ikehata, Ryo
Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.
Nonoscillation criteria for half-linear second order difference equations
Czech Academy of Sciences Publication Activity Database
Došlý, Ondřej; Řehák, Pavel
2001-01-01
Roč. 42, - (2001), s. 453-464 ISSN 0898-1221 R&D Projects: GA ČR GA201/98/0677; GA ČR GA201/99/0295 Keywords : half-linear difference equation%nonoscillation criteria%variational principle Subject RIV: BA - General Mathematics Impact factor: 0.383, year: 2001
Lie symmetries and differential galois groups of linear equations
Oudshoorn, W.R.; Put, M. van der
2002-01-01
For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In
Asymptotic formulae for solutions of half-linear differential equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2017-01-01
Roč. 292, January (2017), s. 165-177 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : half-linear differential equation * nonoscillatory solution * regular variation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300316304581
On oscillation of second-order linear ordinary differential equations
Czech Academy of Sciences Publication Activity Database
Lomtatidze, A.; Šremr, Jiří
2011-01-01
Roč. 54, - (2011), s. 69-81 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear second-order ordinary differential equation * Kamenev theorem * oscillation Subject RIV: BA - General Mathematics http://www.rmi.ge/jeomj/memoirs/vol54/abs54-4.htm
Exponential estimates for solutions of half-linear differential equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2015-01-01
Roč. 147, č. 1 (2015), s. 158-171 ISSN 0236-5294 Institutional support: RVO:67985840 Keywords : half-linear differential equation * decreasing solution * increasing solution * asymptotic behavior Subject RIV: BA - General Mathematics Impact factor: 0.469, year: 2015 http://link.springer.com/article/10.1007%2Fs10474-015-0522-9
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...
On nonnegative solutions of second order linear functional differential equations
Czech Academy of Sciences Publication Activity Database
Lomtatidze, Alexander; Vodstrčil, Petr
2004-01-01
Roč. 32, č. 1 (2004), s. 59-88 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z1019905 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics
Radial solutions to semilinear elliptic equations via linearized operators
Directory of Open Access Journals (Sweden)
Phuong Le
2017-04-01
Full Text Available Let $u$ be a classical solution of semilinear elliptic equations in a ball or an annulus in $\\mathbb{R}^N$ with zero Dirichlet boundary condition where the nonlinearity has a convex first derivative. In this note, we prove that if the $N$-th eigenvalue of the linearized operator at $u$ is positive, then $u$ must be radially symmetric.
Students' errors in solving linear equation word problems: Case ...
African Journals Online (AJOL)
kofi.mereku
Development in most areas of life is based on effective knowledge of science and ... Problem solving, as used in mathematics education literature, refers ... word problems, on the other hand, are those linear equation tasks or ... taught LEWPs in the junior high school, many of them reach the senior high school without a.
Dark energy cosmology with generalized linear equation of state
International Nuclear Information System (INIS)
Babichev, E; Dokuchaev, V; Eroshenko, Yu
2005-01-01
Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip
Iterative Splitting Methods for Differential Equations
Geiser, Juergen
2011-01-01
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential
Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions
International Nuclear Information System (INIS)
Goreac, D.
2009-01-01
The objective of the paper is to investigate the approximate controllability property of a linear stochastic control system with values in a separable real Hilbert space. In a first step we prove the existence and uniqueness for the solution of the dual linear backward stochastic differential equation. This equation has the particularity that in addition to an unbounded operator acting on the Y-component of the solution there is still another one acting on the Z-component. With the help of this dual equation we then deduce the duality between approximate controllability and observability. Finally, under the assumption that the unbounded operator acting on the state process of the forward equation is an infinitesimal generator of an exponentially stable semigroup, we show that the generalized Hautus test provides a necessary condition for the approximate controllability. The paper generalizes former results by Buckdahn, Quincampoix and Tessitore (Stochastic Partial Differential Equations and Applications, Series of Lecture Notes in Pure and Appl. Math., vol. 245, pp. 253-260, Chapman and Hall, London, 2006) and Goreac (Applied Analysis and Differential Equations, pp. 153-164, World Scientific, Singapore, 2007) from the finite dimensional to the infinite dimensional case
Experimental quantum computing to solve systems of linear equations.
Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2013-06-07
Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.
Stochastic modeling of mode interactions via linear parabolized stability equations
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
Bayes linear statistics, theory & methods
Goldstein, Michael
2007-01-01
Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodology, and practicalities of this important field. The text provides a thorough coverage of Bayes linear analysis, from the development of the basic language to the collection of algebraic results needed for efficient implementation, with detailed practical examples. The book covers:The importance of partial prior specifications for complex problems where it is difficult to supply a meaningful full prior probability specification...
Auxiliary equation method for solving nonlinear partial differential equations
International Nuclear Information System (INIS)
Sirendaoreji,; Jiong, Sun
2003-01-01
By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation
Linear fractional diffusion-wave equation for scientists and engineers
Povstenko, Yuriy
2015-01-01
This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and ...
Prolongation structure and linear eigenvalue equations for Einstein-Maxwell fields
International Nuclear Information System (INIS)
Kramer, D.; Neugebauer, G.
1981-01-01
The Einstein-Maxwell equations for stationary axisymmetric exterior fields are shown to be the integrability conditions of a set of linear eigenvalue equations for pseudopotentials. Using the method of Wahlquist and Estabrook (J. Math Phys.; 16:1 (1975)) it is shown that the prolongation structure of the Einstein-Maxwell equations contains the SU(2,1) Lie algebra. A new mapping of known solutions to other solutions has been found. (author)
GDTM-Padé technique for the non-linear differential-difference equation
Directory of Open Access Journals (Sweden)
Lu Jun-Feng
2013-01-01
Full Text Available This paper focuses on applying the GDTM-Padé technique to solve the non-linear differential-difference equation. The bell-shaped solitary wave solution of Belov-Chaltikian lattice equation is considered. Comparison between the approximate solutions and the exact ones shows that this technique is an efficient and attractive method for solving the differential-difference equations.
Linear Methods for Image Interpolation
Directory of Open Access Journals (Sweden)
Pascal Getreuer
2011-09-01
Full Text Available We discuss linear methods for interpolation, including nearest neighbor, bilinear, bicubic, splines, and sinc interpolation. We focus on separable interpolation, so most of what is said applies to one-dimensional interpolation as well as N-dimensional separable interpolation.
Energy Technology Data Exchange (ETDEWEB)
Bailey, T S; Adams, M L [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B; Zika, M R [Lawrence Livermore National Lab., Livermore, CA (United States)
2005-07-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)
A fast iterative scheme for the linearized Boltzmann equation
Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.
2017-06-01
Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference
Differential and difference equations a comparison of methods of solution
Maximon, Leonard C
2016-01-01
This book, intended for researchers and graduate students in physics, applied mathematics and engineering, presents a detailed comparison of the important methods of solution for linear differential and difference equations - variation of constants, reduction of order, Laplace transforms and generating functions - bringing out the similarities as well as the significant differences in the respective analyses. Equations of arbitrary order are studied, followed by a detailed analysis for equations of first and second order. Equations with polynomial coefficients are considered and explicit solutions for equations with linear coefficients are given, showing significant differences in the functional form of solutions of differential equations from those of difference equations. An alternative method of solution involving transformation of both the dependent and independent variables is given for both differential and difference equations. A comprehensive, detailed treatment of Green’s functions and the associat...
International Nuclear Information System (INIS)
Kovalyov, Mikhail
2010-01-01
In this article the sets of solutions of the sine-Gordon equation and its linearization the Klein-Gordon equation are discussed and compared. It is shown that the set of solutions of the sine-Gordon equation possesses a richer structure which partly disappears during linearization. Just like the solutions of the Klein-Gordon equation satisfy the linear superposition principle, the solutions of the sine-Gordon equation satisfy a nonlinear superposition principle.
Oscillatory solutions of the Cauchy problem for linear differential equations
Directory of Open Access Journals (Sweden)
Gro Hovhannisyan
2015-06-01
Full Text Available We consider the Cauchy problem for second and third order linear differential equations with constant complex coefficients. We describe necessary and sufficient conditions on the data for the existence of oscillatory solutions. It is known that in the case of real coefficients the oscillatory behavior of solutions does not depend on initial values, but we show that this is no longer true in the complex case: hence in practice it is possible to control oscillatory behavior by varying the initial conditions. Our Proofs are based on asymptotic analysis of the zeros of solutions, represented as linear combinations of exponential functions.
Green's function method for perturbed Korteweg-de Vries equation
International Nuclear Information System (INIS)
Cai Hao; Huang Nianning
2003-01-01
The x-derivatives of squared Jost solution are the eigenfunctions with the zero eigenvalue of the linearized equation derived from the perturbed Korteweg-de Vries equation. A method similar to Green's function formalism is introduced to show the completeness of the squared Jost solutions in multi-soliton cases. It is not related to Lax equations directly, and thus it is beneficial to deal with the nonlinear equations with complicated Lax pair
Infinite sets of conservation laws for linear and non-linear field equations
International Nuclear Information System (INIS)
Niederle, J.
1984-01-01
The work was motivated by a desire to understand group theoretically the existence of an infinite set of conservation laws for non-interacting fields and to carry over these conservation laws to the case of interacting fields. The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of its space-time symmetry group was established. It is shown that in the case of the Korteweg-de Vries (KdV) equation to each symmetry of the corresponding linear equation delta sub(o)uxxx=u sub() determined by an element of the enveloping algebra of the space translation algebra, there corresponds a symmetry of the full KdV equation
Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations
International Nuclear Information System (INIS)
Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A
2009-01-01
The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.
Refined Fuchs inequalities for systems of linear differential equations
International Nuclear Information System (INIS)
Gontsov, R R
2004-01-01
We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point
Inhomogeneous linear equation in Rota-Baxter algebra
Pietrzkowski, Gabriel
2014-01-01
We consider a complete filtered Rota-Baxter algebra of weight $\\lambda$ over a commutative ring. Finding the unique solution of a non-homogeneous linear algebraic equation in this algebra, we generalize Spitzer's identity in both commutative and non-commutative cases. As an application, considering the Rota-Baxter algebra of power series in one variable with q-integral as the Rota-Baxter operator, we show certain Eulerian identities.
Disformal invariance of continuous media with linear equation of state
Energy Technology Data Exchange (ETDEWEB)
Celoria, Marco [Gran Sasso Science Institute (INFN), Viale Francesco Crispi 7, L' Aquila, I-67100 Italy (Italy); Matarrese, Sabino [Dipartimento di Fisica e Astronomia ' G. Galilei' , Università degli Studi di Padova, via Marzolo 8, Padova, I-35131 Italy (Italy); Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: sabino.matarrese@pd.infn.it, E-mail: luigi.pilo@aquila.infn.it [Dipartimento di Fisica, Università di L' Aquila, L' Aquila, I-67010 Italy (Italy)
2017-02-01
We show that the effective theory describing single component continuous media with a linear and constant equation of state of the form p = w ρ is invariant under a 1-parameter family of continuous disformal transformations. In the special case of w =1/3 (ultrarelativistic gas), such a family reduces to conformal transformations. As examples, perfect fluids, irrotational dust (mimetic matter) and homogeneous and isotropic solids are discussed.
Dorren, H.J.S.
1998-01-01
It is shown that the Korteweg–de Vries (KdV) equation can be transformed into an ordinary linear partial differential equation in the wave number domain. Explicit solutions of the KdV equation can be obtained by subsequently solving this linear differential equation and by applying a cascade of
Abstract methods in partial differential equations
Carroll, Robert W
2012-01-01
Detailed, self-contained treatment examines modern abstract methods in partial differential equations, especially abstract evolution equations. Suitable for graduate students with some previous exposure to classical partial differential equations. 1969 edition.
Leibov Roman
2017-01-01
This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...
Improved harmonic balance approach to periodic solutions of non-linear jerk equations
International Nuclear Information System (INIS)
Wu, B.S.; Lim, C.W.; Sun, W.P.
2006-01-01
An analytical approximate approach for determining periodic solutions of non-linear jerk equations involving third-order time-derivative is presented. This approach incorporates salient features of both Newton's method and the method of harmonic balance. By appropriately imposing the method of harmonic balance to the linearized equation, the approach requires only one or two iterations to predict very accurate analytical approximate solutions for a large range of initial velocity amplitude. One typical example is used to verify and illustrate the usefulness and effectiveness of the proposed approach
Applicability of refined Born approximation to non-linear equations
International Nuclear Information System (INIS)
Rayski, J.
1990-01-01
A computational method called ''Refined Born Approximation'', formerly applied exclusively to linear problems, is shown to be successfully applicable also to non-linear problems enabling me to compute bifurcations and other irregular solutions which cannot be obtained by the standard perturbation procedures. (author)
Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas
International Nuclear Information System (INIS)
Lewis, H.R.
1979-01-01
The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates
Multigrid methods for partial differential equations - a short introduction
International Nuclear Information System (INIS)
Linden, J.; Stueben, K.
1993-01-01
These notes summarize the multigrid methods and emphasis is laid on the algorithmic concepts of multigrid for solving linear and non-linear partial differential equations. In this paper there is brief description of the basic structure of multigrid methods. Detailed introduction is also contained with applications to VLSI process simulation. (A.B.)
SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES
Directory of Open Access Journals (Sweden)
Sari Saraswati
2016-01-01
Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.Keywords: linear equation with one variable, algebra tiles, design research, balancing method, HLT DOI: http://dx.doi.org/10.22342/jme.7.1.2814.19-30
A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials
Li, Chen; Liao, Yufei
2018-03-01
Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.
Solutions of the linearized Bach-Einstein equation in the static spherically symmetric case
International Nuclear Information System (INIS)
Schmidt, H.J.
1985-01-01
The Bach-Einstein equation linearized around Minkowski space-time is completely solved. The set of solutions depends on three parameters; a two-parameter subset of it becomes asymptotically flat. In that region the gravitational potential is of the type phi = -m/r + epsilon exp (-r/l). Because of the different asymptotic behaviour of both terms, it became necessary to linearize also around the Schwarzschild solution phi = -m/r. The linearized equation resulting in this case is discussed using qualitative methods. The result is that for m = 2l phi = -m/r + epsilon r -2 exp (-r/l) u, where u is some bounded function; m is arbitrary and epsilon again small. Further, the relation between the solution of the linearized and the full equation is discussed. (author)
Variational iteration method for solving coupled-KdV equations
International Nuclear Information System (INIS)
Assas, Laila M.B.
2008-01-01
In this paper, the He's variational iteration method is applied to solve the non-linear coupled-KdV equations. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converge to the exact solution of the coupled-KdV equations. This procedure is a powerful tool for solving coupled-KdV equations
Mathematical methods linear algebra normed spaces distributions integration
Korevaar, Jacob
1968-01-01
Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector
Systems of evolution equations and the singular perturbation method
International Nuclear Information System (INIS)
Mika, J.
Several fundamental theorems are presented important for the solution of linear evolution equations in the Banach space. The algorithm is deduced extending the solution of the system of singularly perturbed evolution equations into an asymptotic series with respect to a small positive parameter. The asymptotic convergence is shown of an approximate solution to the accurate solution. Singularly perturbed evolution equations of the resonance type were analysed. The special role is considered of the asymptotic equivalence of P1 equations obtained as the first order approximation if the spherical harmonics method is applied to the linear Boltzmann equation, and the diffusion equations of the linear transport theory where the small parameter approaches zero. (J.B.)
Spline methods for conversation equations
International Nuclear Information System (INIS)
Bottcher, C.; Strayer, M.R.
1991-01-01
The consider the numerical solution of physical theories, in particular hydrodynamics, which can be formulated as systems of conservation laws. To this end we briefly describe the Basis Spline and collocation methods, paying particular attention to representation theory, which provides discrete analogues of the continuum conservation and dispersion relations, and hence a rigorous understanding of errors and instabilities. On this foundation we propose an algorithm for hydrodynamic problems in which most linear and nonlinear instabilities are brought under control. Numerical examples are presented from one-dimensional relativistic hydrodynamics. 9 refs., 10 figs
KAM for the non-linear Schroedinger equation
Eliasson, L H
2006-01-01
We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep|u|^2u;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it If $|\\ep|$ is sufficiently small, then there is a large subset $U'$ of $U$ such that for all $...
Linear Algebraic Method for Non-Linear Map Analysis
International Nuclear Information System (INIS)
Yu, L.; Nash, B.
2009-01-01
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
General solutions of second-order linear difference equations of Euler type
Directory of Open Access Journals (Sweden)
Akane Hongyo
2017-01-01
Full Text Available The purpose of this paper is to give general solutions of linear difference equations which are related to the Euler-Cauchy differential equation \\(y^{\\prime\\prime}+(\\lambda/t^2y=0\\ or more general linear differential equations. We also show that the asymptotic behavior of solutions of the linear difference equations are similar to solutions of the linear differential equations.
Analytical approach to linear fractional partial differential equations arising in fluid mechanics
International Nuclear Information System (INIS)
Momani, Shaher; Odibat, Zaid
2006-01-01
In this Letter, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving linear fractional partial differential equations arising in fluid mechanics. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these methods, the solution takes the form of a convergent series with easily computable components. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. Some numerical examples are presented to illustrate the efficiency and reliability of the two methods
First order linear ordinary differential equations in associative algebras
Directory of Open Access Journals (Sweden)
Gordon Erlebacher
2004-01-01
Full Text Available In this paper, we study the linear differential equation $$ frac{dx}{dt}=sum_{i=1}^n a_i(t x b_i(t + f(t $$ in an associative but non-commutative algebra $mathcal{A}$, where the $b_i(t$ form a set of commuting $mathcal{A}$-valued functions expressed in a time-independent spectral basis consisting of mutually annihilating idempotents and nilpotents. Explicit new closed solutions are derived, and examples are presented to illustrate the theory.
A Solution to the Fundamental Linear Fractional Order Differential Equation
Hartley, Tom T.; Lorenzo, Carl F.
1998-01-01
This paper provides a solution to the fundamental linear fractional order differential equation, namely, (sub c)d(sup q, sub t) + ax(t) = bu(t). The impulse response solution is shown to be a series, named the F-function, which generalizes the normal exponential function. The F-function provides the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple example, the inductor terminated semi- infinite lossy line, is used to demonstrate the theory.
Oscillation of solutions of some higher order linear differential equations
Directory of Open Access Journals (Sweden)
Hong-Yan Xu
2009-11-01
Full Text Available In this paper, we deal with the order of growth and the hyper order of solutions of higher order linear differential equations $$f^{(k}+B_{k-1}f^{(k-1}+\\cdots+B_1f'+B_0f=F$$ where $B_j(z (j=0,1,\\ldots,k-1$ and $F$ are entire functions or polynomials. Some results are obtained which improve and extend previous results given by Z.-X. Chen, J. Wang, T.-B. Cao and C.-H. Li.
Solutions of hyperbolic equations with the CIP-BS method
International Nuclear Information System (INIS)
Utsumi, Takayuki; Koga, James; Yamagiwa, Mitsuru; Yabe, Takashi; Aoki, Takayuki
2004-01-01
In this paper, we show that a new numerical method, the Constrained Interpolation Profile - Basis Set (CIP-BS) method, can solve general hyperbolic equations efficiently. This method uses a simple polynomial basis set that is easily extendable to any desired higher-order accuracy. The interpolating profile is chosen so that the subgrid scale solution approaches the local real solution owing to the constraints from the spatial derivatives of the master equations. Then, introducing scalar products, the linear and nonlinear partial differential equations are uniquely reduced to the ordinary differential equations for values and spatial derivatives at the grid points. The method gives stable, less diffusive, and accurate results. It is successfully applied to the continuity equation, the Burgers equation, the Korteweg-de Vries equation, and one-dimensional shock tube problems. (author)
Quadratic algebras in the noncommutative integration method of wave equation
International Nuclear Information System (INIS)
Varaksin, O.L.
1995-01-01
The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras
Computer programs for the solution of systems of linear algebraic equations
Sequi, W. T.
1973-01-01
FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.
New finite volume methods for approximating partial differential equations on arbitrary meshes
International Nuclear Information System (INIS)
Hermeline, F.
2008-12-01
This dissertation presents some new methods of finite volume type for approximating partial differential equations on arbitrary meshes. The main idea lies in solving twice the problem to be dealt with. One addresses the elliptic equations with variable (anisotropic, antisymmetric, discontinuous) coefficients, the parabolic linear or non linear equations (heat equation, radiative diffusion, magnetic diffusion with Hall effect), the wave type equations (Maxwell, acoustics), the elasticity and Stokes'equations. Numerous numerical experiments show the good behaviour of this type of method. (author)
The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions
Energy Technology Data Exchange (ETDEWEB)
Linander, Hampus; Nilsson, Bengt E.W. [Department of Physics, Theoretical PhysicsChalmers University of Technology, S-412 96 Göteborg (Sweden)
2016-07-05
In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F=0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 “translation”, “Lorentz” and “dilatation”) properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.
A linear iterative unfolding method
International Nuclear Information System (INIS)
László, András
2012-01-01
A frequently faced task in experimental physics is to measure the probability distribution of some quantity. Often this quantity to be measured is smeared by a non-ideal detector response or by some physical process. The procedure of removing this smearing effect from the measured distribution is called unfolding, and is a delicate problem in signal processing, due to the well-known numerical ill behavior of this task. Various methods were invented which, given some assumptions on the initial probability distribution, try to regularize the unfolding problem. Most of these methods definitely introduce bias into the estimate of the initial probability distribution. We propose a linear iterative method (motivated by the Neumann series / Landweber iteration known in functional analysis), which has the advantage that no assumptions on the initial probability distribution is needed, and the only regularization parameter is the stopping order of the iteration, which can be used to choose the best compromise between the introduced bias and the propagated statistical and systematic errors. The method is consistent: 'binwise' convergence to the initial probability distribution is proved in absence of measurement errors under a quite general condition on the response function. This condition holds for practical applications such as convolutions, calorimeter response functions, momentum reconstruction response functions based on tracking in magnetic field etc. In presence of measurement errors, explicit formulae for the propagation of the three important error terms is provided: bias error (distance from the unknown to-be-reconstructed initial distribution at a finite iteration order), statistical error, and systematic error. A trade-off between these three error terms can be used to define an optimal iteration stopping criterion, and the errors can be estimated there. We provide a numerical C library for the implementation of the method, which incorporates automatic
Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations
Sitompul, R. S. I.; Budayasa, I. K.; Masriyah
2018-01-01
This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.
International Nuclear Information System (INIS)
Misguich, J.H.
2004-04-01
As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation
Energy Technology Data Exchange (ETDEWEB)
Misguich, J.H
2004-04-01
As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.
Energy Technology Data Exchange (ETDEWEB)
Bailey, Teresa S. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: baileyte@tamu.edu; Adams, Marvin L. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: mladams@tamu.edu; Yang, Brian [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Zika, Michael R. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)], E-mail: zika@llnl.gov
2008-04-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.
International Nuclear Information System (INIS)
Bailey, Teresa S.; Adams, Marvin L.; Yang, Brian; Zika, Michael R.
2008-01-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids
Solving equations by topological methods
Directory of Open Access Journals (Sweden)
Lech Górniewicz
2005-01-01
Full Text Available In this paper we survey most important results from topological fixed point theory which can be directly applied to differential equations. Some new formulations are presented. We believe that our article will be useful for analysts applying topological fixed point theory in nonlinear analysis and in differential equations.
Jamison, J. W.
1994-01-01
CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.
Dijkstra, T.K.; Henseler, J.
2011-01-01
The recent advent of nonlinear structural equation models with indices poses a new challenge to the measurement of scientific constructs. We discuss, exemplify and add to a family of statistical methods aimed at creating linear indices, and compare their suitability in a complex path model with
Gasyna, Zbigniew L.
2008-01-01
Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)
On the solution of a class of fuzzy system of linear equations
Indian Academy of Sciences (India)
J. Mathematics and Comput. Sci. 1: 1–5. Salkuyeh D K 2011 On the solution of the fuzzy Sylvester matrix equation. Soft Computing 15: 953–961. Senthilkumar P and Rajendran G 2011 New approach to solve symmetric fully fuzzy linear systems. S¯adhan¯a 36: 933–940. Wang K and Zheng B 2007 Block iterative methods ...
Role of statistical linearization in the solution of nonlinear stochastic equations
International Nuclear Information System (INIS)
Budgor, A.B.
1977-01-01
The solution of a generalized Langevin equation is referred to as a stochastic process. If the external forcing function is Gaussian white noise, the forward Kolmogarov equation yields the transition probability density function. Nonlinear problems must be handled by approximation procedures e.g., perturbation theories, eigenfunction expansions, and nonlinear optimization procedures. After some comments on the first two of these, attention is directed to the third, and the method of statistical linearization is used to demonstrate a relation to the former two. Nonlinear stochastic systems exhibiting sustained or forced oscillations and the centered nonlinear Schroedinger equation in the presence of Gaussian white noise excitation are considered as examples. 5 figures, 2 tables
Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations
Nakamura, Gen; Vashisth, Manmohan
2017-01-01
In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...
International Nuclear Information System (INIS)
Mueller, E.
2007-01-01
The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Mueller, E.
2007-12-15
The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)
Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation
International Nuclear Information System (INIS)
Bonnet, M.; Meurant, G.
1978-01-01
Different methods of solution of linear and nonlinear algebraic systems are applied to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems, methods in general use of alternating directions type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method on nonlinear conjugate gradient is studied as also Newton's method and some of its variants. It should be noted, however that Newton's method is found to be more efficient when coupled with a good method for solution of the linear system. To conclude, such methods are used to solve a nonlinear diffusion problem and the numerical results obtained are to be compared [fr
Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation
International Nuclear Information System (INIS)
Bonnet, M.; Meurant, G.
1978-01-01
The object of this study is to compare different methods of solving linear and nonlinear algebraic systems and to apply them to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems the conventional methods of alternating direction type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method of nonlinear conjugate gradient is studied together with Newton's method and some of its variants. It should be noted, however, that Newton's method is found to be more efficient when coupled with a good method for solving the linear system. As a conclusion, these methods are used to solve a nonlinear diffusion problem and the numerical results obtained are compared [fr
Half-trek criterion for generic identifiability of linear structural equation models
Foygel, R.; Draisma, J.; Drton, M.
2012-01-01
A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations
Half-trek criterion for generic identifiability of linear structural equation models
Foygel, R.; Draisma, J.; Drton, M.
2011-01-01
A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations
Convergence of a random walk method for the Burgers equation
International Nuclear Information System (INIS)
Roberts, S.
1985-10-01
In this paper we consider a random walk algorithm for the solution of Burgers' equation. The algorithm uses the method of fractional steps. The non-linear advection term of the equation is solved by advecting ''fluid'' particles in a velocity field induced by the particles. The diffusion term of the equation is approximated by adding an appropriate random perturbation to the positions of the particles. Though the algorithm is inefficient as a method for solving Burgers' equation, it does model a similar method, the random vortex method, which has been used extensively to solve the incompressible Navier-Stokes equations. The purpose of this paper is to demonstrate the strong convergence of our random walk method and so provide a model for the proof of convergence for more complex random walk algorithms; for instance, the random vortex method without boundaries
Numerical Methods for Partial Differential Equations
Guo, Ben-yu
1987-01-01
These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.
International Nuclear Information System (INIS)
Gene Golub; Kwok Ko
2009-01-01
The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.
Energy Technology Data Exchange (ETDEWEB)
Bailey, T.S.; Adams, M.L. [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B.; Zika, M.R. [Lawrence Livermore National Lab., Livermore, CA (United States)
2005-07-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)
Development and adjustment of programs for solving systems of linear equations
International Nuclear Information System (INIS)
Fujimura, Toichiro
1978-03-01
Programs for solving the systems of linear equations have been adjusted and developed in expanding the scientific subroutine library SSL. The principal programs adjusted are based on the congruent method, method of product form of the inverse, orthogonal method, Crout's method for sparse system, and acceleration of iterative methods. The programs developed are based on the escalator method, direct parallel residue method and block tridiagonal method for band system. Described are usage of the programs developed and their future improvement. FORTRAN lists with simple examples in tests of the programs are also given. (auth.)
Generalization of the linear algebraic method to three dimensions
International Nuclear Information System (INIS)
Lynch, D.L.; Schneider, B.I.
1991-01-01
We present a numerical method for the solution of the Lippmann-Schwinger equation for electron-molecule collisions. By performing a three-dimensional numerical quadrature, this approach avoids both a basis-set representation of the wave function and a partial-wave expansion of the scattering potential. The resulting linear equations, analogous in form to the one-dimensional linear algebraic method, are solved with the direct iteration-variation method. Several numerical examples are presented. The prospect for using this numerical quadrature scheme for electron-polyatomic molecules is discussed
DEFF Research Database (Denmark)
Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.
1994-01-01
perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...
Computation of Optimal Monotonicity Preserving General Linear Methods
Ketcheson, David I.
2009-07-01
Monotonicity preserving numerical methods for ordinary differential equations prevent the growth of propagated errors and preserve convex boundedness properties of the solution. We formulate the problem of finding optimal monotonicity preserving general linear methods for linear autonomous equations, and propose an efficient algorithm for its solution. This algorithm reliably finds optimal methods even among classes involving very high order accuracy and that use many steps and/or stages. The optimality of some recently proposed methods is verified, and many more efficient methods are found. We use similar algorithms to find optimal strong stability preserving linear multistep methods of both explicit and implicit type, including methods for hyperbolic PDEs that use downwind-biased operators.
Nonlinear and linear wave equations for propagation in media with frequency power law losses
Szabo, Thomas L.
2003-10-01
The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.
An implicit meshless scheme for the solution of transient non-linear Poisson-type equations
Bourantas, Georgios
2013-07-01
A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.
An implicit meshless scheme for the solution of transient non-linear Poisson-type equations
Bourantas, Georgios; Burganos, Vasilis N.
2013-01-01
A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.
New Implicit General Linear Method | Ibrahim | Journal of the ...
African Journals Online (AJOL)
A New implicit general linear method is designed for the numerical olution of stiff differential Equations. The coefficients matrix is derived from the stability function. The method combines the single-implicitness or diagonal implicitness with property that the first two rows are implicit and third and fourth row are explicit.
Scilab software as an alternative low-cost computing in solving the linear equations problem
Agus, Fahrul; Haviluddin
2017-02-01
Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.
Methods in half-linear asymptotic theory
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2016-01-01
Roč. 2016, Č. 267 (2016), s. 1-27 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : half-linear differential equation * nonoscillatory solution * regular variation Subject RIV: BA - General Mathematics Impact factor: 0.954, year: 2016 http://ejde.math.txstate.edu/Volumes/2016/267/abstr.html
Non self-similar collapses described by the non-linear Schroedinger equation
International Nuclear Information System (INIS)
Berge, L.; Pesme, D.
1992-01-01
We develop a rapid method in order to find the contraction rates of the radially symmetric collapsing solutions of the nonlinear Schroedinger equation defined for space dimensions exceeding a threshold value. We explicitly determine the asymptotic behaviour of these latter solutions by solving the non stationary linear problem relative to the nonlinear Schroedinger equation. We show that the self-similar states associated with the collapsing solutions are characterized by a spatial extent which is bounded from the top by a cut-off radius
A method for solving neutron transport equation
International Nuclear Information System (INIS)
Dimitrijevic, Z.
1993-01-01
The procedure for solving the transport equation by directly integrating for case one-dimensional uniform multigroup medium is shown. The solution is expressed in terms of linear combination of function H n (x,μ), and the coefficient is determined from given conditions. The solution is applied for homogeneous slab of critical thickness. (author)
Statistical Methods for Stochastic Differential Equations
Kessler, Mathieu; Sorensen, Michael
2012-01-01
The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a sp
Method of controlling chaos in laser equations
International Nuclear Information System (INIS)
Duong-van, M.
1993-01-01
A method of controlling chaotic to laminar flows in the Lorenz equations using fixed points dictated by minimizing the Lyapunov functional was proposed by Singer, Wang, and Bau [Phys. Rev. Lett. 66, 1123 (1991)]. Using different fixed points, we find that the solutions in a chaotic regime can also be periodic. Since the laser equations are isomorphic to the Lorenz equations we use this method to control chaos when the laser is operated over the pump threshold. Furthermore, by solving the laser equations with an occasional proportional feedback mechanism, we recover the essential laser controlling features experimentally discovered by Roy, Murphy, Jr., Maier, Gills, and Hunt [Phys. Rev. Lett. 68, 1259 (1992)
Method of controlling chaos in laser equations
Duong-van, Minh
1993-01-01
A method of controlling chaotic to laminar flows in the Lorenz equations using fixed points dictated by minimizing the Lyapunov functional was proposed by Singer, Wang, and Bau [Phys. Rev. Lett. 66, 1123 (1991)]. Using different fixed points, we find that the solutions in a chaotic regime can also be periodic. Since the laser equations are isomorphic to the Lorenz equations we use this method to control chaos when the laser is operated over the pump threshold. Furthermore, by solving the laser equations with an occasional proportional feedback mechanism, we recover the essential laser controlling features experimentally discovered by Roy, Murphy, Jr., Maier, Gills, and Hunt [Phys. Rev. Lett. 68, 1259 (1992)].
A novel algebraic procedure for solving non-linear evolution equations of higher order
International Nuclear Information System (INIS)
Huber, Alfred
2007-01-01
We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest
Semigroup methods for evolution equations on networks
Mugnolo, Delio
2014-01-01
This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations. This book is specifically devoted to the study of evolution equations – i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) – bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has been devoted to ellip...
Numerical methods for stochastic partial differential equations with white noise
Zhang, Zhongqiang
2017-01-01
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical compa...
Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.
2008-01-01
Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…
Ho, Yuh-Shan
2006-01-01
A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.
A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation
Directory of Open Access Journals (Sweden)
Jinsong Hu
2013-01-01
Full Text Available We study the initial-boundary value problem for Rosenau-RLW equation. We propose a three-level linear finite difference scheme, which has the theoretical accuracy of Oτ2+h4. The scheme simulates two conservative properties of original problem well. The existence, uniqueness of difference solution, and a priori estimates in infinite norm are obtained. Furthermore, we analyze the convergence and stability of the scheme by energy method. At last, numerical experiments demonstrate the theoretical results.
The structure of solutions of the matrix linear unilateral polynomial equation with two variables
Directory of Open Access Journals (Sweden)
N. S. Dzhaliuk
2017-07-01
Full Text Available We investigate the structure of solutions of the matrix linear polynomial equation $A(\\lambdaX(\\lambda+B(\\lambdaY(\\lambda=C(\\lambda,$ in particular, possible degrees of the solutions. The solving of this equation is reduced to the solving of the equivalent matrix polynomial equation with matrix coefficients in triangular forms with invariant factors on the main diagonals, to which the matrices $A (\\lambda, B(\\lambda$ \\ and \\ $C(\\lambda$ are reduced by means of semiscalar equivalent transformations. On the basis of it, we have pointed out the bounds of the degrees of the matrix polynomial equation solutions. Necessary and sufficient conditions for the uniqueness of a solution with a minimal degree are established. An effective method for constructing minimal degree solutions of the equations is suggested. In this article, unlike well-known results about the estimations of the degrees of the solutions of the matrix polynomial equations in which both matrix coefficients are regular or at least one of them is regular, we have considered the case when the matrix polynomial equation has arbitrary matrix coefficients $A(\\lambda$ and $B(\\lambda.$
Equations of motion for a (non-linear) scalar field model as derived from the field equations
International Nuclear Information System (INIS)
Kaniel, S.; Itin, Y.
2006-01-01
The problem of derivation of the equations of motion from the field equations is considered. Einstein's field equations have a specific analytical form: They are linear in the second order derivatives and quadratic in the first order derivatives of the field variables. We utilize this particular form and propose a novel algorithm for the derivation of the equations of motion from the field equations. It is based on the condition of the balance between the singular terms of the field equation. We apply the algorithm to a non-linear Lorentz invariant scalar field model. We show that it results in the Newton law of attraction between the singularities of the field moved on approximately geodesic curves. The algorithm is applicable to the N-body problem of the Lorentz invariant field equations. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Comparison of neutronic transport equation resolution nodal methods
International Nuclear Information System (INIS)
Zamonsky, O.M.; Gho, C.J.
1990-01-01
In this work, some transport equation resolution nodal methods are comparatively studied: the constant-constant (CC), linear-nodal (LN) and the constant-quadratic (CQ). A nodal scheme equivalent to finite differences has been used for its programming, permitting its inclusion in existing codes. Some bidimensional problems have been solved, showing that linear-nodal (LN) are, in general, obtained with accuracy in CPU shorter times. (Author) [es
International Nuclear Information System (INIS)
Dubrovsky, V. G.; Topovsky, A. V.
2013-01-01
New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n) , n= 1, …, N are constructed via Zakharov and Manakov ∂-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by ∂-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n) . It is shown that the sums u=u (k 1 ) +...+u (k m ) , 1 ⩽k 1 2 m ⩽N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.
Energy Technology Data Exchange (ETDEWEB)
Dubrovsky, V. G.; Topovsky, A. V. [Novosibirsk State Technical University, Karl Marx prosp. 20, Novosibirsk 630092 (Russian Federation)
2013-03-15
New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.
Grant, Mary C.; Zhang, Lilly; Damiano, Michele
2009-01-01
This study investigated kernel equating methods by comparing these methods to operational equatings for two tests in the SAT Subject Tests[TM] program. GENASYS (ETS, 2007) was used for all equating methods and scaled score kernel equating results were compared to Tucker, Levine observed score, chained linear, and chained equipercentile equating…
Entropy viscosity method applied to Euler equations
International Nuclear Information System (INIS)
Delchini, M. O.; Ragusa, J. C.; Berry, R. A.
2013-01-01
The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)
Variations in the Solution of Linear First-Order Differential Equations. Classroom Notes
Seaman, Brian; Osler, Thomas J.
2004-01-01
A special project which can be given to students of ordinary differential equations is described in detail. Students create new differential equations by changing the dependent variable in the familiar linear first-order equation (dv/dx)+p(x)v=q(x) by means of a substitution v=f(y). The student then creates a table of the new equations and…
International Nuclear Information System (INIS)
Dehghan, Mehdi; Shakourifar, Mohammad; Hamidi, Asgar
2009-01-01
The purpose of this study is to implement Adomian-Pade (Modified Adomian-Pade) technique, which is a combination of Adomian decomposition method (Modified Adomian decomposition method) and Pade approximation, for solving linear and nonlinear systems of Volterra functional equations. The results obtained by using Adomian-Pade (Modified Adomian-Pade) technique, are compared to those obtained by using Adomian decomposition method (Modified Adomian decomposition method) alone. The numerical results, demonstrate that ADM-PADE (MADM-PADE) technique, gives the approximate solution with faster convergence rate and higher accuracy than using the standard ADM (MADM).
A parallel algorithm for solving linear equations arising from one-dimensional network problems
International Nuclear Information System (INIS)
Mesina, G.L.
1991-01-01
One-dimensional (1-D) network problems, such as those arising from 1- D fluid simulations and electrical circuitry, produce systems of sparse linear equations which are nearly tridiagonal and contain a few non-zero entries outside the tridiagonal. Most direct solution techniques for such problems either do not take advantage of the special structure of the matrix or do not fully utilize parallel computer architectures. We describe a new parallel direct linear equation solution algorithm, called TRBR, which is especially designed to take advantage of this structure on MIMD shared memory machines. The new method belongs to a family of methods which split the coefficient matrix into the sum of a tridiagonal matrix T and a matrix comprised of the remaining coefficients R. Efficient tridiagonal methods are used to algebraically simplify the linear system. A smaller auxiliary subsystem is created and solved and its solution is used to calculate the solution of the original system. The newly devised BR method solves the subsystem. The serial and parallel operation counts are given for the new method and related earlier methods. TRBR is shown to have the smallest operation count in this class of direct methods. Numerical results are given. Although the algorithm is designed for one-dimensional networks, it has been applied successfully to three-dimensional problems as well. 20 refs., 2 figs., 4 tabs
International Nuclear Information System (INIS)
Hernandez-Walls, R; Martín-Atienza, B; Salinas-Matus, M; Castillo, J
2017-01-01
When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations. (paper)
Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.
2017-11-01
When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.
On a Linear Equation Arising in Isometric Embedding of Torus-like Surface
Institute of Scientific and Technical Information of China (English)
Chunhe LI
2009-01-01
The solvability of a linear equation and the regularity of the solution are discussed.The equation is arising in a geometric problem which is concerned with the realization of Alexandroff's positive annul in R3.
Martini, Ruud; Kersten, P.H.M.
1983-01-01
Using 1-1 mappings, the complete symmetry groups of contact transformations of general linear second-order ordinary differential equations are determined from two independent solutions of those equations, and applied to the harmonic oscillator with and without damping.
Some Additional Remarks on the Cumulant Expansion for Linear Stochastic Differential Equations
Roerdink, J.B.T.M.
1984-01-01
We summarize our previous results on cumulant expansions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,
Some additional remarks on the cumulant expansion for linear stochastic differential equations
Roerdink, J.B.T.M.
1984-01-01
We summarize our previous results on cumular expasions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,
Tisdell, Christopher C.
2017-11-01
For over 50 years, the learning of teaching of a priori bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to a priori bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving second-order, linear problems with constant co-efficients, we believe it is not pedagogically optimal. Moreover, the Euclidean method becomes pedagogically unwieldy in the proofs involving higher-order cases. The purpose of this work is to propose a simpler pedagogical approach to establish a priori bounds on solutions by considering a different way of measuring the size of a solution to linear problems, which we refer to as the Uber size. The Uber form enables a simplification of pedagogy from the literature and the ideas are accessible to learners who have an understanding of the Fundamental Theorem of Calculus and the exponential function, both usually seen in a first course in calculus. We believe that this work will be of mathematical and pedagogical interest to those who are learning and teaching in the area of differential equations or in any of the numerous disciplines where linear differential equations are used.
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Pérez-Jordá, José M
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
A functional-analytic method for the study of difference equations
Directory of Open Access Journals (Sweden)
Siafarikas Panayiotis D
2004-01-01
Full Text Available We will give the generalization of a recently developed functional-analytic method for studying linear and nonlinear, ordinary and partial, difference equations in the and spaces, p∈ℕ, . The method will be illustrated by use of two examples concerning a nonlinear ordinary difference equation known as the Putnam equation, and a linear partial difference equation of three variables describing the discrete Newton law of cooling in three dimensions.
Advances in iterative methods for nonlinear equations
Busquier, Sonia
2016-01-01
This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...
Ding, Lei; Xiao, Lin; Liao, Bolin; Lu, Rongbo; Peng, Hua
2017-01-01
To obtain the online solution of complex-valued systems of linear equation in complex domain with higher precision and higher convergence rate, a new neural network based on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network for complex-valued systems of linear equation in complex domain is proposed and theoretically proved to be convergent within finite time. Then, the illustrative results show that the new neural network model has the higher precision and the higher convergence rate, as compared with the gradient neural network (GNN) model and the ZNN model. Finally, the application for controlling the robot using the proposed method for the complex-valued systems of linear equation is realized, and the simulation results verify the effectiveness and superiorness of the new neural network for the complex-valued systems of linear equation.
Appearance of eigen modes for the linearized Vlasov-Poisson equation
International Nuclear Information System (INIS)
Degond, P.
1983-01-01
In order to determine the asymptotic behaviour, when the time goes to infinity, of the solution of the linearized Vlasov-Poisson equation, we use eigen modes, associated to continuous linear functionals on a Banach space of analytic functions [fr
Linear measure functional differential equations with infinite delay
Czech Academy of Sciences Publication Activity Database
Monteiro, Giselle Antunes; Slavík, A.
2014-01-01
Roč. 287, 11-12 (2014), s. 1363-1382 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : measure functional differential equations * generalized ordinary differential equations * Kurzweil-Stieltjes integral Subject RIV: BA - General Mathematics Impact factor: 0.683, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mana.201300048/abstract
Backward stochastic differential equations from linear to fully nonlinear theory
Zhang, Jianfeng
2017-01-01
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
GHM method for obtaining rationalsolutions of nonlinear differential equations.
Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo
2015-01-01
In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.
Ozdemir, Burhanettin
2017-01-01
The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…
Partial differential equations methods, applications and theories
Hattori, Harumi
2013-01-01
This volume is an introductory level textbook for partial differential equations (PDE's) and suitable for a one-semester undergraduate level or two-semester graduate level course in PDE's or applied mathematics. Chapters One to Five are organized according to the equations and the basic PDE's are introduced in an easy to understand manner. They include the first-order equations and the three fundamental second-order equations, i.e. the heat, wave and Laplace equations. Through these equations we learn the types of problems, how we pose the problems, and the methods of solutions such as the separation of variables and the method of characteristics. The modeling aspects are explained as well. The methods introduced in earlier chapters are developed further in Chapters Six to Twelve. They include the Fourier series, the Fourier and the Laplace transforms, and the Green's functions. The equations in higher dimensions are also discussed in detail. This volume is application-oriented and rich in examples. Going thr...
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan; Genton, Marc G.
2010-01-01
which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n
Localized solutions of non-linear Klein--Gordon equations
International Nuclear Information System (INIS)
Werle, J.
1977-05-01
Nondissipative, stationary solutions for a class of nonlinear Klein-Gordon equations for a scalar field were found explicitly. Since the field is different from zero only inside a sphere of definite radius, the solutions are called quantum droplets
Optimal analytic method for the nonlinear Hasegawa-Mima equation
Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle
2014-05-01
The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.
A Lagrangian meshfree method applied to linear and nonlinear elasticity.
Walker, Wade A
2017-01-01
The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.
Instability of the filtering method for Vlasov's equation
International Nuclear Information System (INIS)
Figua, H.; Bouchut, F.; Fijalkow, E.
1999-01-01
Klimas has introduced a smoothed Fourier-Fourier method. This method consists in convolving the original distribution function with a Gaussian distribution function, and, next, in solving the new system with a transformed splitting algorithm. Unfortunately, a second-order term appears in the new equation. In this work, it is studied how this term affects the numerical equation. In particular it is proven that instability occurs in the linear version of the Vlasov equation obtained by considering only free non-interacting particles. It is proved that the use of Fourier-Fourier transform is a fundamental requirement to solve this new equation. An important property is pointed out concerning the filtered distribution function in the transformed space. (K.A.)
Directory of Open Access Journals (Sweden)
Xiaolin Zhu
2014-01-01
Full Text Available This paper studies the T-stability of the Heun method and balanced method for solving stochastic differential delay equations (SDDEs. Two T-stable conditions of the Heun method are obtained for two kinds of linear SDDEs. Moreover, two conditions under which the balanced method is T-stable are obtained for two kinds of linear SDDEs. Some numerical examples verify the theoretical results proposed.
POSITIVE SOLUTIONS TO SEMI-LINEAR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper,we study the existence of positive periodic solution to some second- order semi-linear differential equation in Banach space.By the fixed point index theory, we prove that the semi-linear differential equation has two positive periodic solutions.
On the Linearized Darboux Equation Arising in Isometric Embedding of the Alexandrov Positive Annulus
Institute of Scientific and Technical Information of China (English)
Chunhe LI
2013-01-01
In the present paper,the solvability condition of the linearized Gauss-Codazzi system and the solutions to the homogenous system are given.In the meantime,the Solvability of a relevant linearized Darboux equation is given.The equations are arising in a geometric problem which is concerned with the realization of the Alexandrov's positive annulus in R3.
Collective spin by linearization of the Schrodinger equation for nuclear collective motion
International Nuclear Information System (INIS)
Greiner, M.; Scheid, W.; Herrmann, R.
1988-01-01
The free Schrodinger equation for multipole degrees of freedom is linearized so that energy and momentum operators appear only in first order. As an example, the authors demonstrate the linearization procedure for quadrupole degrees of freedom. The wave function solving this equation carries a spin. The authors derive the operator of the collective spin and its eigen values depending on multipolarity
Kinetic equation solution by inverse kinetic method
International Nuclear Information System (INIS)
Salas, G.
1983-01-01
We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance
Directory of Open Access Journals (Sweden)
A. Aminataei
2014-05-01
Full Text Available In this paper, a new and ecient approach is applied for numerical approximation of the linear dierential equations with variable coecients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansioncoecients for the moments of derivatives of any dierentiable function in terms of the original expansion coecients of the function itself are given in the matrix form. The mainimportance of this scheme is that using this approach reduces solving the linear dierentialequations to solve a system of linear algebraic equations, thus greatly simplifying the problem. In addition, two experiments are given to demonstrate the validity and applicability of the method
A canonical form of the equation of motion of linear dynamical systems
Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias
2018-03-01
The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.
DEFF Research Database (Denmark)
Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.
Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....
DEFF Research Database (Denmark)
Miansari, Mo; Miansari, Me; Barari, Amin
2009-01-01
In this article, He’s variational iteration method (VIM), is implemented to solve the linear Helmholtz partial differential equation and some nonlinear fifth-order Korteweg-de Vries (FKdV) partial differential equations with specified initial conditions. The initial approximations can be freely c...
On the equivalence between particular types of Navier-Stokes and non-linear Schroedinger equations
International Nuclear Information System (INIS)
Dietrich, K.; Vautherin, D.
1985-01-01
We derive a Schroedinger equation equivalent to the Navier-Stokes equation in the special case of constant kinematic viscosities. This equation contains a non-linear term similar to that proposed by Kostin for a quantum description of friction [fr
International Nuclear Information System (INIS)
Sentis, R.
1984-07-01
The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms
Hyers-Ulam stability for second-order linear differential equations with boundary conditions
Directory of Open Access Journals (Sweden)
Pasc Gavruta
2011-06-01
Full Text Available We prove the Hyers-Ulam stability of linear differential equations of second-order with boundary conditions or with initial conditions. That is, if y is an approximate solution of the differential equation $y''+ eta (x y = 0$ with $y(a = y(b =0$, then there exists an exact solution of the differential equation, near y.
International Nuclear Information System (INIS)
Khrennikov, A.Yu.
2005-01-01
One derived the general evolutionary differential equation within the Hilbert space describing dynamics of the wave function. The derived contextual model is more comprehensive in contrast to a quantum one. The contextual equation may be a nonlinear one. Paper presents the conditions ensuring linearity of the evolution and derivation of the Schroedinger equation [ru
From the hypergeometric differential equation to a non-linear Schrödinger one
International Nuclear Information System (INIS)
Plastino, A.; Rocca, M.C.
2015-01-01
We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre–Rego-Monteiro–Tsallis one. - Highlights: • We show that the q-exponential is a hypergeometric function. • It thus obeys the hypergeometric differential equation (HDE). • We show that the HDE can be cast as a non-linear Schrödinger equation. • This is different from the Nobre, Rego-Monteiro, Tsallis one.
Solving the Linear 1D Thermoelasticity Equations with Pure Delay
Directory of Open Access Journals (Sweden)
Denys Ya. Khusainov
2015-01-01
Full Text Available We propose a system of partial differential equations with a single constant delay τ>0 describing the behavior of a one-dimensional thermoelastic solid occupying a bounded interval of R1. For an initial-boundary value problem associated with this system, we prove a well-posedness result in a certain topology under appropriate regularity conditions on the data. Further, we show the solution of our delayed model to converge to the solution of the classical equations of thermoelasticity as τ→0. Finally, we deduce an explicit solution representation for the delay problem.
Finite element and discontinuous Galerkin methods for transient wave equations
Cohen, Gary
2017-01-01
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
DEFF Research Database (Denmark)
Hattel, Jesper; Hansen, Preben
1995-01-01
This paper presents a novel control volume based FD method for solving the equilibrium equations in terms of displacements, i.e. the generalized Navier equations. The method is based on the widely used cv-FDM solution of heat conduction and fluid flow problems involving a staggered grid formulati....... The resulting linear algebraic equations are solved by line-Gauss-Seidel....
Two linearization methods for atmospheric remote sensing
International Nuclear Information System (INIS)
Doicu, A.; Trautmann, T.
2009-01-01
We present two linearization methods for a pseudo-spherical atmosphere and general viewing geometries. The first approach is based on an analytical linearization of the discrete ordinate method with matrix exponential and incorporates two models for matrix exponential calculation: the matrix eigenvalue method and the Pade approximation. The second method referred to as the forward-adjoint approach is based on the adjoint radiative transfer for a pseudo-spherical atmosphere. We provide a compact description of the proposed methods as well as a numerical analysis of their accuracy and efficiency.
Unbounded solutions of quasi-linear difference equations
Czech Academy of Sciences Publication Activity Database
Cecchi, M.; Došlá, Zuzana; Marini, M.
2003-01-01
Roč. 45, 10-11 (2003), s. 1113-1123 ISSN 0898-1221 Institutional research plan: CEZ:AV0Z1019905 Keywords : nonlinear difference equation * possitive increasing solution * strongly increasing solution Subject RIV: BA - General Mathematics Impact factor: 0.498, year: 2003
Ten-Year-Old Students Solving Linear Equations
Brizuela, Barbara; Schliemann, Analucia
2004-01-01
In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…
Linear finite element method for one-dimensional diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica
2011-07-01
We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)
Waveform relaxation methods for implicit differential equations
P.J. van der Houwen; W.A. van der Veen
1996-01-01
textabstractWe apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems
International Nuclear Information System (INIS)
Murfi, Hendri; Basaruddin, T.
2001-01-01
The interior point method for linear programming has gained extraordinary interest as an alternative to simplex method since Karmarkar presented a polynomial-time algorithm for linear programming based on interior point method. In implementation of the algorithm of this method, there are two important things that have impact heavily to performance of the algorithm; they are data structure and used method to solve linear equation system in the algorithm. This paper describes about solving linear equation system in variants of the algorithm called dual-affine scaling algorithm. Next, we evaluate experimentally results of some used methods, either direct method or iterative method. The experimental evaluation used Matlab
Local Ray-Based Traveltime Computation Using the Linearized Eikonal Equation
Almubarak, Mohammed S.
2013-05-01
The computation of traveltimes plays a critical role in the conventional implementations of Kirchhoff migration. Finite-difference-based methods are considered one of the most effective approaches for traveltime calculations and are therefore widely used. However, these eikonal solvers are mainly used to obtain early-arrival traveltime. Ray tracing can be used to pick later traveltime branches, besides the early arrivals, which may lead to an improvement in velocity estimation or in seismic imaging. In this thesis, I improved the accuracy of the solution of the linearized eikonal equation by constructing a linear system of equations (LSE) based on finite-difference approximation, which is of second-order accuracy. The ill-conditioned LSE is initially regularized and subsequently solved to calculate the traveltime update. Numerical tests proved that this method is as accurate as the second-order eikonal solver. Later arrivals are picked using ray tracing. These traveltimes are binned to the nearest node on a regular grid and empty nodes are estimated by interpolating the known values. The resulting traveltime field is used as an input to the linearized eikonal algorithm, which improves the accuracy of the interpolated nodes and yields a local ray-based traveltime. This is a preliminary study and further investigation is required to test the efficiency and the convergence of the solutions.
International Nuclear Information System (INIS)
Bailey, Teresa S.; Warsa, James S.; Chang, Jae H.; Adams, Marvin L.
2011-01-01
We present a new spatial discretization of the discrete-ordinates transport equation in two dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretization that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems. (author)
International Nuclear Information System (INIS)
Bailey, T.S.; Chang, J.H.; Warsa, J.S.; Adams, M.L.
2010-01-01
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
Energy Technology Data Exchange (ETDEWEB)
Bailey, T S; Chang, J H; Warsa, J S; Adams, M L
2010-12-22
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
Hasegawa, Chihiro; Duffull, Stephen B
2018-02-01
Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.
Linear analysis of the momentum cooling Fokker-Planck equation
International Nuclear Information System (INIS)
Rosenzweig, J.B.
1989-01-01
In order to optimize the extraction scheme used to take antiprotons out of the accumulator, it is necessary to understand the basic processes involved. At present, six antiproton bunches per Tevatron store are removed sequentially by RF unstacking from the accumulator. The phase space dynamics of this process, with its accompanying phase displacement deceleration and phase space dilution of portions of the stack, can be modelled by numerical solution of the longitudinal equations of motion for a large number of particles. We have employed the tracking code ESME for this purpose. In between RF extractions, however, the stochastic cooling system is turned on for a short time, and we must take into account the effect of momentum stochastic cooling on the antiproton energy spectrum. This process is described by the Fokker-Planck equation, which models the evolution of the antiproton stack energy distribution by accounting for the cooling through an applied coherent drag force and the competing heating of the stack due to diffusion, which can arise from intra-beam scattering, amplifier noise and coherent (Schottky) effects. In this note we examine the aspects of the Fokker-Planck in the regime where the nonlinear terms due to Schottky effects are small. This discussion ultimately leads to solution of the equation in terms of an orthonormal set of functions which are closely related to the quantum simple-harmonic oscillator wave-functions. 5 refs
Canonical structure of evolution equations with non-linear ...
Indian Academy of Sciences (India)
The dispersion produced is compensated by non-linear effects resulting in the formation of exponentially localized .... determining the values of Lagrange's multipliers αis. We postulate that a slightly .... c3 «w2x -v. (36). To include the effect of the secondary constraint c3 in the total Hamiltonian H we modify. (33) as. 104.
Performance prediction of gas turbines by solving a system of non-linear equations
Energy Technology Data Exchange (ETDEWEB)
Kaikko, J
1998-09-01
This study presents a novel method for implementing the performance prediction of gas turbines from the component models. It is based on solving the non-linear set of equations that corresponds to the process equations, and the mass and energy balances for the engine. General models have been presented for determining the steady state operation of single components. Single and multiple shad arrangements have been examined with consideration also being given to heat regeneration and intercooling. Emphasis has been placed upon axial gas turbines of an industrial scale. Applying the models requires no information of the structural dimensions of the gas turbines. On comparison with the commonly applied component matching procedures, this method incorporates several advantages. The application of the models for providing results is facilitated as less attention needs to be paid to calculation sequences and routines. Solving the set of equations is based on zeroing co-ordinate functions that are directly derived from the modelling equations. Therefore, controlling the accuracy of the results is easy. This method gives more freedom for the selection of the modelling parameters since, unlike for the matching procedures, exchanging these criteria does not itself affect the algorithms. Implicit relationships between the variables are of no significance, thus increasing the freedom for the modelling equations as well. The mathematical models developed in this thesis will provide facilities to optimise the operation of any major gas turbine configuration with respect to the desired process parameters. The computational methods used in this study may also be adapted to any other modelling problems arising in industry. (orig.) 36 refs.
Methods in half-linear asymptotic theory
Directory of Open Access Journals (Sweden)
Pavel Rehak
2016-10-01
Full Text Available We study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation $$ (r(t|y'|^{\\alpha-1}\\hbox{sgn} y''=p(t|y|^{\\alpha-1}\\hbox{sgn} y, $$ where r(t and p(t are positive continuous functions on $[a,\\infty$, $\\alpha\\in(1,\\infty$. The aim of this article is twofold. On the one hand, we show applications of a wide variety of tools, like the Karamata theory of regular variation, the de Haan theory, the Riccati technique, comparison theorems, the reciprocity principle, a certain transformation of dependent variable, and principal solutions. On the other hand, we solve open problems posed in the literature and generalize existing results. Most of our observations are new also in the linear case.
Sparsity Prevention Pivoting Method for Linear Programming
DEFF Research Database (Denmark)
Li, Peiqiang; Li, Qiyuan; Li, Canbing
2018-01-01
When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper....... The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...
Sparsity Prevention Pivoting Method for Linear Programming
DEFF Research Database (Denmark)
Li, Peiqiang; Li, Qiyuan; Li, Canbing
2018-01-01
. The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following......When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...
Dhage Iteration Method for Generalized Quadratic Functional Integral Equations
Directory of Open Access Journals (Sweden)
Bapurao C. Dhage
2015-01-01
Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.
Method of mechanical quadratures for solving singular integral equations of various types
Sahakyan, A. V.; Amirjanyan, H. A.
2018-04-01
The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.
The Cauchy problem for non-linear Klein-Gordon equations
International Nuclear Information System (INIS)
Simon, J.C.H.; Taflin, E.
1993-01-01
We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)
Savoye, Philippe
2009-01-01
In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.
Support Operators Method for the Diffusion Equation in Multiple Materials
Energy Technology Data Exchange (ETDEWEB)
Winters, Andrew R. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory
2012-08-14
A second-order finite difference scheme for the solution of the diffusion equation on non-uniform meshes is implemented. The method allows the heat conductivity to be discontinuous. The algorithm is formulated on a one dimensional mesh and is derived using the support operators method. A key component of the derivation is that the discrete analog of the flux operator is constructed to be the negative adjoint of the discrete divergence, in an inner product that is a discrete analog of the continuum inner product. The resultant discrete operators in the fully discretized diffusion equation are symmetric and positive definite. The algorithm is generalized to operate on meshes with cells which have mixed material properties. A mechanism to recover intermediate temperature values in mixed cells using a limited linear reconstruction is introduced. The implementation of the algorithm is verified and the linear reconstruction mechanism is compared to previous results for obtaining new material temperatures.
Linear relativistic gyrokinetic equation in general magnetically confined plasmas
International Nuclear Information System (INIS)
Tsai, S.T.; Van Dam, J.W.; Chen, L.
1983-08-01
The gyrokinetic formalism for linear electromagnetic waves of arbitrary frequency in general magnetic-field configurations is extended to include full relativistic effects. The derivation employs the small adiabaticity parameter rho/L 0 where rho is the Larmor radius and L 0 the equilibrium scale length. The effects of the plasma and magnetic field inhomogeneities and finite Larmor-radii effects are also contained
Non-linear M -sequences Generation Method
Directory of Open Access Journals (Sweden)
Z. R. Garifullina
2011-06-01
Full Text Available The article deals with a new method for modeling a pseudorandom number generator based on R-blocks. The gist of the method is the replacement of a multi digit XOR element by a stochastic adder in a parallel binary linear feedback shift register scheme.
Uzawa method for fuzzy linear system
Ke Wang
2013-01-01
An Uzawa method is presented for solving fuzzy linear systems whose coefficient matrix is crisp and the right-hand side column is arbitrary fuzzy number vector. The explicit iterative scheme is given. The convergence is analyzed with convergence theorems and the optimal parameter is obtained. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.
Directory of Open Access Journals (Sweden)
Hossein Jafari
2016-04-01
Full Text Available The non-differentiable solution of the linear and non-linear partial differential equations on Cantor sets is implemented in this article. The reduced differential transform method is considered in the local fractional operator sense. The four illustrative examples are given to show the efficiency and accuracy features of the presented technique to solve local fractional partial differential equations.
International Nuclear Information System (INIS)
Edery, D.
1983-11-01
The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper
Adaptive discontinuous Galerkin methods for non-linear reactive flows
Uzunca, Murat
2016-01-01
The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence. As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.
Linear algebraic methods applied to intensity modulated radiation therapy.
Crooks, S M; Xing, L
2001-10-01
Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.
Nonlinear ordinary differential equations analytical approximation and numerical methods
Hermann, Martin
2016-01-01
The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...
Unconditionally stable difference methods for delay partial differential equations
Huang, Chengming; Vandewalle, Stefan
2012-01-01
This paper is concerned with the numerical solution of parabolic partial differential equations with time-delay. We focus in particular on the delay dependent stability analysis of difference methods that use a non-constrained mesh, i.e., the time step-size is not required to be a submultiple of the delay. We prove that the fully discrete system unconditionally preserves the delay dependent asymptotic stability of the linear test problem under consideration, when the following discretizati...
Directory of Open Access Journals (Sweden)
Gao Lin
2017-01-01
Full Text Available Recently, a new integral transform similar to Sumudu transform has been proposed by Yang [1]. Some of the properties of the integral transform are expanded in the present article. Meanwhile, new applications to the linear wave and diffusion equations in semi-infinite domains are discussed in detail. The proposed method provides an alternative approach to solve the partial differential equations in mathematical physics.
HAM-Based Adaptive Multiscale Meshless Method for Burgers Equation
Directory of Open Access Journals (Sweden)
Shu-Li Mei
2013-01-01
Full Text Available Based on the multilevel interpolation theory, we constructed a meshless adaptive multiscale interpolation operator (MAMIO with the radial basis function. Using this operator, any nonlinear partial differential equations such as Burgers equation can be discretized adaptively in physical spaces as a nonlinear matrix ordinary differential equation. In order to obtain the analytical solution of the system of ODEs, the homotopy analysis method (HAM proposed by Shijun Liao was developed to solve the system of ODEs by combining the precise integration method (PIM which can be employed to get the analytical solution of linear system of ODEs. The numerical experiences show that HAM is not sensitive to the time step, and so the arithmetic error is mainly derived from the discrete in physical space.
Lattice Boltzmann methods for global linear instability analysis
Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis
2017-12-01
Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
Structural equation modeling methods and applications
Wang, Jichuan
2012-01-01
A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a
Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation
Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua
2018-06-01
Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.
An Etude in non-linear Dyson-Schwinger Equations
International Nuclear Information System (INIS)
Kreimer, Dirk; Yeats, Karen
2006-01-01
We show how to use the Hopf algebra structure of quantum field theory to derive nonperturbative results for the short-distance singular sector of a renormalizable quantum field theory in a simple but generic example. We discuss renormalized Green functions G R (α,L) in such circumstances which depend on a single scale L=lnq 2 /μ 2 and start from an expansion in the scale G R (α,L)=1+-bar k γ k (α)L k . We derive recursion relations between the γ k which make full use of the renormalization group. We then show how to determine the Green function by the use of a Mellin transform on suitable integral kernels. We exhibit our approach in an example for which we find a functional equation relating weak and strong coupling expansions
Comparison and oscillation theory of linear differential equations
Swanson, Charles Andrew
1968-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Simple equation method for nonlinear partial differential equations and its applications
Directory of Open Access Journals (Sweden)
Taher A. Nofal
2016-04-01
Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.
Asiri, Sharefa M.; Laleg-Kirati, Taous-Meriem
2016-01-01
In this paper, modulating functions-based method is proposed for estimating space–time-dependent unknowns in one-dimensional partial differential equations. The proposed method simplifies the problem into a system of algebraic equations linear
An extended GS method for dense linear systems
Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi
2009-09-01
Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.
Perturbations of linear delay differential equations at the verge of instability.
Lingala, N; Namachchivaya, N Sri
2016-06-01
The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.
Solution of linear transport equation using Chebyshev polynomials and Laplace transform
International Nuclear Information System (INIS)
Cardona, A.V.; Vilhena, M.T.M.B. de
1994-01-01
The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)
On a class of strongly degenerate and singular linear elliptic equation
International Nuclear Information System (INIS)
Duong Minh Duc, D.M.; Le Dung.
1992-11-01
We consider a class of strongly degenerate linear elliptic equation. The boundedness and the Holder regularity of the weak solutions in the weighted Sobolev-Hardy spaces will be studied. (author). 9 refs
Some applications of linear difference equations in finance with wolfram|alpha and maple
Directory of Open Access Journals (Sweden)
Dana Rıhová
2014-12-01
Full Text Available The principle objective of this paper is to show how linear difference equations can be applied to solve some issues of financial mathematics. We focus on the area of compound interest and annuities. In both cases we determine appropriate recursive rules, which constitute the first order linear difference equations with constant coefficients, and derive formulas required for calculating examples. Finally, we present possibilities of application of two selected computer algebra systems Wolfram|Alpha and Maple in this mathematical area.
Growth of meromorphic solutions of higher-order linear differential equations
Directory of Open Access Journals (Sweden)
Wenjuan Chen
2009-01-01
Full Text Available In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider the nonhomogeneous linear differential equations.
Method of ATMS operators in the formalism of Faddeev equations
International Nuclear Information System (INIS)
Zubarev, D.A.
1991-01-01
The method of ATMS operators is generalized for the case of Faddeev equations. The method to construct effective equations for both elastic scattering and scattering with rearrangement is presented. Properties to obtained equations are considered
A linear functional differential equation with distributions in the input
Directory of Open Access Journals (Sweden)
Vadim Z. Tsalyuk
2003-10-01
Full Text Available This paper studies the functional differential equation $$ dot x(t = int_a^t {d_s R(t,s, x(s} + F'(t, quad t in [a,b], $$ where $F'$ is a generalized derivative, and $R(t,cdot$ and $F$ are functions of bounded variation. A solution is defined by the difference $x - F$ being absolutely continuous and satisfying the inclusion $$ frac{d}{dt} (x(t - F(t in int_a^t {d_s R(t,s,x(s}. $$ Here, the integral in the right is the multivalued Stieltjes integral presented in cite{VTs1} (in this article we review and extend the results in cite{VTs1}. We show that the solution set for the initial-value problem is nonempty, compact, and convex. A solution $x$ is said to have memory if there exists the function $x$ such that $x(a = x(a$, $x(b = x(b$, $ x(t in [x(t-0,x(t+0]$ for $t in (a,b$, and $frac{d}{dt} (x(t - F(t = int_a^t {d_s R(t,s,{x}(s}$, where Lebesgue-Stieltjes integral is used. We show that such solutions form a nonempty, compact, and convex set. It is shown that solutions with memory obey the Cauchy-type formula $$ x(t in C(t,ax(a + int_a^t C(t,s, dF(s. $$
Factorization of a class of almost linear second-order differential equations
International Nuclear Information System (INIS)
Estevez, P G; Kuru, S; Negro, J; Nieto, L M
2007-01-01
A general type of almost linear second-order differential equations, which are directly related to several interesting physical problems, is characterized. The solutions of these equations are obtained using the factorization technique, and their non-autonomous invariants are also found by means of scale transformations
Bounded solutions of self-adjoint second order linear difference equations with periodic coeffients
Directory of Open Access Journals (Sweden)
Encinas A.M.
2018-02-01
Full Text Available In this work we obtain easy characterizations for the boundedness of the solutions of the discrete, self–adjoint, second order and linear unidimensional equations with periodic coefficients, including the analysis of the so-called discrete Mathieu equations as particular cases.
Could solitons be adiabatic invariants attached to certain non linear equations
International Nuclear Information System (INIS)
Lochak, P.
1984-01-01
Arguments are given to support the claim that solitons should be the adiabatic invariants associated to certain non linear partial differential equations; a precise mathematical form of this conjecture is then stated. As a particular case of the conjecture, the Korteweg-de Vries equation is studied. (Auth.)
Finite element method for time-space-fractional Schrodinger equation
Directory of Open Access Journals (Sweden)
Xiaogang Zhu
2017-07-01
Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.
Non-linear partial differential equations an algebraic view of generalized solutions
Rosinger, Elemer E
1990-01-01
A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen
International Nuclear Information System (INIS)
Granita; Bahar, A.
2015-01-01
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found
Energy Technology Data Exchange (ETDEWEB)
Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)
2015-03-09
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces
Directory of Open Access Journals (Sweden)
Yongjin Li
2013-08-01
Full Text Available We prove the Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces. That is, if y is an approximate solution of the differential equation $y''+ alpha y'(t +eta y = 0$ or $y''+ alpha y'(t +eta y = f(t$, then there exists an exact solution of the differential equation near to y.
Asymptotic behavior of solutions of linear multi-order fractional differential equation systems
Diethelm, Kai; Siegmund, Stefan; Tuan, H. T.
2017-01-01
In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation systems. Next, a representation of solutions of homogeneous linear multi-order fractional differential equation systems in series form is provided. Finally, we give characteristics regarding the asymptotic behavior of solutions to some classes of line...
A mixed finite element method for nonlinear diffusion equations
Burger, Martin; Carrillo, José
2010-01-01
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.
The simplex method of linear programming
Ficken, Frederick A
1961-01-01
This concise but detailed and thorough treatment discusses the rudiments of the well-known simplex method for solving optimization problems in linear programming. Geared toward undergraduate students, the approach offers sufficient material for readers without a strong background in linear algebra. Many different kinds of problems further enrich the presentation. The text begins with examinations of the allocation problem, matrix notation for dual problems, feasibility, and theorems on duality and existence. Subsequent chapters address convex sets and boundedness, the prepared problem and boun
International Nuclear Information System (INIS)
Tao Ganqiang; Yu Qing; Xiao Xiao
2011-01-01
Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)
A new RBF-Trefftz meshless method for partial differential equations
International Nuclear Information System (INIS)
Cao Leilei; Zhao Ning; Qin Qinghua
2010-01-01
Based on the radial basis functions (RBF) and T-Trefftz solution, this paper presents a new meshless method for numerically solving various partial differential equation systems. First, the analog equation method (AEM) is used to convert the original patial differential equation to an equivalent Poisson's equation. Then, the radial basis functions (RBF) are employed to approxiamate the inhomogeneous term, while the homogeneous solution is obtained by linear combination of a set of T-Trefftz solutions. The present scheme, named RBF-Trefftz has the advantage over the fundamental solution (MFS) method due to the use of nonsingular T-Trefftz solution rather than singular fundamental solutions, so it does not require the artificial boundary. The application and efficiency of the proposed method are validated through several examples which include different type of differential equations, such as Laplace equation, Hellmholtz equation, convectin-diffusion equation and time-dependent equation.
Directory of Open Access Journals (Sweden)
Mervan Pašić
2016-10-01
Full Text Available We study non-monotone positive solutions of the second-order linear differential equations: $(p(tx'' + q(t x = e(t$, with positive $p(t$ and $q(t$. For the first time, some criteria as well as the existence and nonexistence of non-monotone positive solutions are proved in the framework of some properties of solutions $\\theta (t$ of the corresponding integrable linear equation: $(p(t\\theta''=e(t$. The main results are illustrated by many examples dealing with equations which allow exact non-monotone positive solutions not necessarily periodic. Finally, we pose some open questions.
Preface: Introductory Remarks: Linear Scaling Methods
Bowler, D. R.; Fattebert, J.-L.; Gillan, M. J.; Haynes, P. D.; Skylaris, C.-K.
2008-07-01
It has been just over twenty years since the publication of the seminal paper on molecular dynamics with ab initio methods by Car and Parrinello [1], and the contribution of density functional theory (DFT) and the related techniques to physics, chemistry, materials science, earth science and biochemistry has been huge. Nevertheless, significant improvements are still being made to the performance of these standard techniques; recent work suggests that speed improvements of one or even two orders of magnitude are possible [2]. One of the areas where major progress has long been expected is in O(N), or linear scaling, DFT, in which the computer effort is proportional to the number of atoms. Linear scaling DFT methods have been in development for over ten years [3] but we are now in an exciting period where more and more research groups are working on these methods. Naturally there is a strong and continuing effort to improve the efficiency of the methods and to make them more robust. But there is also a growing ambition to apply them to challenging real-life problems. This special issue contains papers submitted following the CECAM Workshop 'Linear-scaling ab initio calculations: applications and future directions', held in Lyon from 3-6 September 2007. A noteworthy feature of the workshop is that it included a significant number of presentations involving real applications of O(N) methods, as well as work to extend O(N) methods into areas of greater accuracy (correlated wavefunction methods, quantum Monte Carlo, TDDFT) and large scale computer architectures. As well as explicitly linear scaling methods, the conference included presentations on techniques designed to accelerate and improve the efficiency of standard (that is non-linear-scaling) methods; this highlights the important question of crossover—that is, at what size of system does it become more efficient to use a linear-scaling method? As well as fundamental algorithmic questions, this brings up
Moduli spaces for linear differential equations and the Painlev'e equations
Put, Marius van der; Saito, Masa-Hiko
2009-01-01
In this paper, we give a systematic construction of ten isomonodromic families of connections of rank two on P1 inducing Painlev´e equations. The classification of ten families is given by considering the Riemann-Hilbert morphism from a moduli space of connections with certain type of regular and
Generalized multiscale finite element methods. nonlinear elliptic equations
Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael
2013-01-01
In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.
Iterative methods for compressible Navier-Stokes and Euler equations
Energy Technology Data Exchange (ETDEWEB)
Tang, W.P.; Forsyth, P.A.
1996-12-31
This workshop will focus on methods for solution of compressible Navier-Stokes and Euler equations. In particular, attention will be focused on the interaction between the methods used to solve the non-linear algebraic equations (e.g. full Newton or first order Jacobian) and the resulting large sparse systems. Various types of block and incomplete LU factorization will be discussed, as well as stability issues, and the use of Newton-Krylov methods. These techniques will be demonstrated on a variety of model transonic and supersonic airfoil problems. Applications to industrial CFD problems will also be presented. Experience with the use of C++ for solution of large scale problems will also be discussed. The format for this workshop will be four fifteen minute talks, followed by a roundtable discussion.
Interpolation problem for the solutions of linear elasticity equations based on monogenic functions
Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii
2017-11-01
Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.
An arbitrary-order staggered time integrator for the linear acoustic wave equation
Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo
2018-02-01
We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.
Liu, Da-Yan; Tian, Yang; Boutat, Driss; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
Liu, Da-Yan
2015-04-30
This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
Ji, Songsong; Yang, Yibo; Pang, Gang; Antoine, Xavier
2018-01-01
The aim of this paper is to design some accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations in rectangular domains. The Laplace transform in time and discrete Fourier transform in space are applied to get Green's functions of the semi-discretized equations in unbounded domains with single-source. An algorithm is given to compute these Green's functions accurately through some recurrence relations. Furthermore, the finite-difference method is used to discretize the reduced problem with accurate boundary conditions. Numerical simulations are presented to illustrate the accuracy of our method in the case of the linear Schrödinger and heat equations. It is shown that the reflection at the corners is correctly eliminated.
International Nuclear Information System (INIS)
Biazar, J.; Eslami, M.; Aminikhah, H.
2009-01-01
In this article, an application of He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the first kind. Some non-linear examples are prepared to illustrate the efficiency and simplicity of the method. Applying the method for linear systems is so easily that it does not worth to have any example.
International Nuclear Information System (INIS)
Biazar, J.; Ghazvini, H.
2009-01-01
In this paper, the He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the second kind. Some examples are presented to illustrate the ability of the method for linear and non-linear such systems. The results reveal that the method is very effective and simple.
Efimova, Olga Yu.
2010-01-01
The modification of simplest equation method to look for exact solutions of nonlinear partial differential equations is presented. Using this method we obtain exact solutions of generalized Korteweg-de Vries equation with cubic source and exact solutions of third-order Kudryashov-Sinelshchikov equation describing nonlinear waves in liquids with gas bubbles.
Solution to the Diffusion equation for multi groups in X Y geometry using Linear Perturbation theory
International Nuclear Information System (INIS)
Mugica R, C.A.
2004-01-01
Diverse methods exist to solve numerically the neutron diffusion equation for several energy groups in stationary state among those that highlight those of finite elements. In this work the numerical solution of this equation is presented using Raviart-Thomas nodal methods type finite element, the RT0 and RT1, in combination with iterative techniques that allow to obtain the approached solution in a quick form. Nevertheless the above mentioned, the precision of a method is intimately bound to the dimension of the approach space by cell, 5 for the case RT0 and 12 for the RT1, and/or to the mesh refinement, that makes the order of the problem of own value to solve to grow considerably. By this way if it wants to know an acceptable approach to the value of the effective multiplication factor of the system when this it has experimented a small perturbation it was appeal to the Linear perturbation theory with which is possible to determine it starting from the neutron flow and of the effective multiplication factor of the not perturbed case. Results are presented for a reference problem in which a perturbation is introduced in an assemble that simulates changes in the control bar. (Author)
On a computer implementation of the block Gauss–Seidel method for normal systems of equations
Alexander I. Zhdanov; Ekaterina Yu. Bogdanova
2016-01-01
This article focuses on the modification of the block option Gauss-Seidel method for normal systems of equations, which is a sufficiently effective method of solving generally overdetermined, systems of linear algebraic equations of high dimensionality. The main disadvantage of methods based on normal equations systems is the fact that the condition number of the normal system is equal to the square of the condition number of the original problem. This fact has a negative impact on the rate o...
A functional-analytic method for the study of difference equations
Directory of Open Access Journals (Sweden)
Panayiotis D. Siafarikas
2004-07-01
Full Text Available We will give the generalization of a recently developed functional-analytic method for studying linear and nonlinear, ordinary and partial, difference equations in the Ã¢Â„Â“p1 and Ã¢Â„Â“p2 spaces, pÃ¢ÂˆÂˆÃ¢Â„Â•, pÃ¢Â‰Â¥1. The method will be illustrated by use of two examples concerning a nonlinear ordinary difference equation known as the Putnam equation, and a linear partial difference equation of three variables describing the discrete Newton law of cooling in three dimensions.
Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation
International Nuclear Information System (INIS)
Kolesov, Andrei Yu; Rozov, Nikolai Kh
2002-01-01
For the non-linear telegraph equation with homogeneous Dirichlet or Neumann conditions at the end-points of a finite interval the question of the existence and the stability of time-periodic solutions bifurcating from the zero equilibrium state is considered. The dynamics of these solutions under a change of the diffusion coefficient (that is, the coefficient of the second derivative with respect to the space variable) is investigated. For the Dirichlet boundary conditions it is shown that this dynamics substantially depends on the presence - or the absence - of quadratic terms in the non-linearity. More precisely, it is shown that a quadratic non-linearity results in the occurrence, under an unbounded decrease of diffusion, of an infinite sequence of bifurcations of each periodic solution. En route, the related issue of the limits of applicability of Yu.S. Kolesov's method of quasinormal forms to the construction of self-oscillations in singularly perturbed hyperbolic boundary value problems is studied
Solution of two group neutron diffusion equation by using homotopy analysis method
International Nuclear Information System (INIS)
Cavdar, S.
2010-01-01
The Homotopy Analysis Method (HAM), proposed in 1992 by Shi Jun Liao and has been developed since then, is based on differential geometry as well as homotopy which is a fundamental concept in topology. It has proved to be useful for obtaining series solutions of many such problems involving algebraic, linear/non-linear, ordinary/partial differential equations, differential-integral equations, differential-difference equations, and coupled equations of them. Briefly, through HAM, it is possible to construct a continuous mapping of an initial guess approximation to the exact solution of the equation of concern. An auxiliary linear operator is chosen to construct such kind of a continuous mapping and an auxiliary parameter is used to ensure the convergence of series solution. We present the solutions of two-group neutron diffusion equation through HAM in this work. We also compare the results with that obtained by other well-known solution analytical and numeric methods.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
A method for computing the stationary points of a function subject to linear equality constraints
International Nuclear Information System (INIS)
Uko, U.L.
1989-09-01
We give a new method for the numerical calculation of stationary points of a function when it is subject to equality constraints. An application to the solution of linear equations is given, together with a numerical example. (author). 5 refs
Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method
Directory of Open Access Journals (Sweden)
De-Gang Wang
2012-01-01
Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.
Dissipative behavior of some fully non-linear KdV-type equations
Brenier, Yann; Levy, Doron
2000-03-01
The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.
Numerov iteration method for second order integral-differential equation
International Nuclear Information System (INIS)
Zeng Fanan; Zhang Jiaju; Zhao Xuan
1987-01-01
In this paper, Numerov iterative method for second order integral-differential equation and system of equations are constructed. Numerical examples show that this method is better than direct method (Gauss elimination method) in CPU time and memoy requireing. Therefore, this method is an efficient method for solving integral-differential equation in nuclear physics
International Nuclear Information System (INIS)
Yurov, A.V.; Yurova, A.A.
2006-01-01
The simple algebraic method for construction of exact solutions of two-dimensional hydrodynamic equations of incompressible flow is proposed. This method can be applied both to nonviscous flow (Euler equations) and to viscous flow (Navier-Stokes equations). In the case of nonviscous flow, the problem is reduced to sequential solving of three linear partial differential equations. In the case of viscous flow, the Navier-Stokes equations are reduced to three linear partial differential equations and one differential equation of the first order [ru
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
Telescopic projective methods for parabolic differential equations
Gear, C W
2003-01-01
Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components.
Telescopic projective methods for parabolic differential equations
International Nuclear Information System (INIS)
Gear, C.W.; Kevrekidis, Ioannis G.
2003-01-01
Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components
Marzban, Hamid Reza
2018-05-01
In this paper, we are concerned with the parameter identification of linear time-invariant systems containing multiple delays. The approach is based upon a hybrid of block-pulse functions and Legendre's polynomials. The convergence of the proposed procedure is established and an upper error bound with respect to the L2-norm associated with the hybrid functions is derived. The problem under consideration is first transformed into a system of algebraic equations. The least squares technique is then employed for identification of the desired parameters. Several multi-delay systems of varying complexity are investigated to evaluate the performance and capability of the proposed approximation method. It is shown that the proposed approach is also applicable to a class of nonlinear multi-delay systems. It is demonstrated that the suggested procedure provides accurate results for the desired parameters.
Energy Technology Data Exchange (ETDEWEB)
Starke, G. [Universitaet Karlsruhe (Germany)
1994-12-31
For nonselfadjoint elliptic boundary value problems which are preconditioned by a substructuring method, i.e., nonoverlapping domain decomposition, the author introduces and studies the concept of subspace orthogonalization. In subspace orthogonalization variants of Krylov methods the computation of inner products and vector updates, and the storage of basis elements is restricted to a (presumably small) subspace, in this case the edge and vertex unknowns with respect to the partitioning into subdomains. The author investigates subspace orthogonalization for two specific iterative algorithms, GMRES and the full orthogonalization method (FOM). This is intended to eliminate certain drawbacks of the Arnoldi-based Krylov subspace methods mentioned above. Above all, the length of the Arnoldi recurrences grows linearly with the iteration index which is therefore restricted to the number of basis elements that can be held in memory. Restarts become necessary and this often results in much slower convergence. The subspace orthogonalization methods, in contrast, require the storage of only the edge and vertex unknowns of each basis element which means that one can iterate much longer before restarts become necessary. Moreover, the computation of inner products is also restricted to the edge and vertex points which avoids the disturbance of the computational flow associated with the solution of subdomain problems. The author views subspace orthogonalization as an alternative to restarting or truncating Krylov subspace methods for nonsymmetric linear systems of equations. Instead of shortening the recurrences, one restricts them to a subset of the unknowns which has to be carefully chosen in order to be able to extend this partial solution to the entire space. The author discusses the convergence properties of these iteration schemes and its advantages compared to restarted or truncated versions of Krylov methods applied to the full preconditioned system.
DEFF Research Database (Denmark)
Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik
2004-01-01
The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...
Polarized atomic orbitals for linear scaling methods
Berghold, Gerd; Parrinello, Michele; Hutter, Jürg
2002-02-01
We present a modified version of the polarized atomic orbital (PAO) method [M. S. Lee and M. Head-Gordon, J. Chem. Phys. 107, 9085 (1997)] to construct minimal basis sets optimized in the molecular environment. The minimal basis set derives its flexibility from the fact that it is formed as a linear combination of a larger set of atomic orbitals. This approach significantly reduces the number of independent variables to be determined during a calculation, while retaining most of the essential chemistry resulting from the admixture of higher angular momentum functions. Furthermore, we combine the PAO method with linear scaling algorithms. We use the Chebyshev polynomial expansion method, the conjugate gradient density matrix search, and the canonical purification of the density matrix. The combined scheme overcomes one of the major drawbacks of standard approaches for large nonorthogonal basis sets, namely numerical instabilities resulting from ill-conditioned overlap matrices. We find that the condition number of the PAO overlap matrix is independent from the condition number of the underlying extended basis set, and consequently no numerical instabilities are encountered. Various applications are shown to confirm this conclusion and to compare the performance of the PAO method with extended basis-set calculations.
Directory of Open Access Journals (Sweden)
Shahid Hasnain
2017-07-01
Full Text Available This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
An irrational trial equation method and its applications
Indian Academy of Sciences (India)
equation method which is different from those direct methods. Liu's key idea is that exact solution to a differential equation can be given by solving an integration. For example, consider a differential equation of u. We always assume that its exact solution satisfies a solvable equation u = F(u). Therefore, our task is just to find.
Deriving average soliton equations with a perturbative method
International Nuclear Information System (INIS)
Ballantyne, G.J.; Gough, P.T.; Taylor, D.P.
1995-01-01
The method of multiple scales is applied to periodically amplified, lossy media described by either the nonlinear Schroedinger (NLS) equation or the Korteweg--de Vries (KdV) equation. An existing result for the NLS equation, derived in the context of nonlinear optical communications, is confirmed. The method is then applied to the KdV equation and the result is confirmed numerically
Sinc-collocation method for solving the Blasius equation
International Nuclear Information System (INIS)
Parand, K.; Dehghan, Mehdi; Pirkhedri, A.
2009-01-01
Sinc-collocation method is applied for solving Blasius equation which comes from boundary layer equations. It is well known that sinc procedure converges to the solution at an exponential rate. Comparison with Howarth and Asaithambi's numerical solutions reveals that the proposed method is of high accuracy and reduces the solution of Blasius' equation to the solution of a system of algebraic equations.
International Nuclear Information System (INIS)
Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.
2015-01-01
It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta–Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5–3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners. - Highlights: • We solve the multiple-right-hand-side problem in DOT with a block BiCGStab method. • We examine the CPU times of the block solver and the traditional sequential solver. • The block solver is faster than the sequential solver by a factor of 1.5–3.0. • Multi-threading block solvers give additional speedup under limited threads situation.
Entropy methods for diffusive partial differential equations
Jüngel, Ansgar
2016-01-01
This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
Method of lines solution of Richards` equation
Energy Technology Data Exchange (ETDEWEB)
Kelley, C.T.; Miller, C.T.; Tocci, M.D.
1996-12-31
We consider the method of lines solution of Richard`s equation, which models flow through porous media, as an example of a situation in which the method can give incorrect results because of premature termination of the nonlinear corrector iteration. This premature termination arises when the solution has a sharp moving front and the Jacobian is ill-conditioned. While this problem can be solved by tightening the tolerances provided to the ODE or DAE solver used for the temporal integration, it is more efficient to modify the termination criteria of the nonlinear solver and/or recompute the Jacobian more frequently. In this paper we continue previous work on this topic by analyzing the modifications in more detail and giving a strategy on how the modifications can be turned on and off in response to changes in the character of the solution.
Hadronic equation of state in the statistical bootstrap model and linear graph theory
International Nuclear Information System (INIS)
Fre, P.; Page, R.
1976-01-01
Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed
Directory of Open Access Journals (Sweden)
Musa Danjuma SHEHU
2008-06-01
Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.
International Nuclear Information System (INIS)
Kalmykov, Mikhail Yu.; Kniehl, Bernd A.
2012-05-01
We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.
On the Cauchy problem for a Sobolev-type equation with quadratic non-linearity
International Nuclear Information System (INIS)
Aristov, Anatoly I
2011-01-01
We investigate the asymptotic behaviour as t→∞ of the solution of the Cauchy problem for a Sobolev-type equation with quadratic non-linearity and develop ideas used by I. A. Shishmarev and other authors in the study of classical and Sobolev-type equations. Conditions are found under which it is possible to consider the case of an arbitrary dimension of the spatial variable.
International Nuclear Information System (INIS)
Frank, T.D.
2002-01-01
We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions
Spectrum of the linearized operator for the Ginzburg-Landau equation
Directory of Open Access Journals (Sweden)
Tai-Chia Lin
2000-06-01
Full Text Available We study the spectrum of the linearized operator for the Ginzburg-Landau equation about a symmetric vortex solution with degree one. We show that the smallest eigenvalue of the linearized operator has multiplicity two, and then we describe its behavior as a small parameter approaches zero. We also find a positive lower bound for all the other eigenvalues, and find estimates of the first eigenfunction. Then using these results, we give partial results on the dynamics of vortices in the nonlinear heat and Schrodinger equations.
An efficient parallel algorithm for the solution of a tridiagonal linear system of equations
Stone, H. S.
1971-01-01
Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.
A Meshfree Quasi-Interpolation Method for Solving Burgers’ Equation
Directory of Open Access Journals (Sweden)
Mingzhu Li
2014-01-01
Full Text Available The main aim of this work is to consider a meshfree algorithm for solving Burgers’ equation with the quartic B-spline quasi-interpolation. Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions directly without the need to solve any linear system of equations and overcome the ill-conditioning problem resulting from using the B-spline as a global interpolant. The numerical scheme is presented, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the time derivative of the dependent variable. Compared to other numerical methods, the main advantages of our scheme are higher accuracy and lower computational complexity. Meanwhile, the algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.
Asymptotic integration of a linear fourth order differential equation of Poincaré type
Directory of Open Access Journals (Sweden)
Anibal Coronel
2015-11-01
Full Text Available This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of constants. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of the perturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.
A new modified conjugate gradient coefficient for solving system of linear equations
Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.
2017-09-01
Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations
Diffusion-accelerated solution of the 2-D x-y Sn equations with linear-bilinear nodal differencing
International Nuclear Information System (INIS)
Wareing, T.A.; Walters, W.F.; Morel, J.E.
1994-01-01
Recently a new diffusion-synthetic acceleration scheme was developed for solving the 2-D S n Equations in x-y geometry with bilinear-discontinuous finite element spatial discretization using a bilinear-discontinuous diffusion differencing scheme for the diffusion acceleration equations. This method differs from previous methods in that it is conditional efficient for problems with isotropic or nearly isotropic scattering. We have used the same bilinear-discontinuous diffusion scheme, and associated solution technique, to accelerate the x-y geometry S n equations with linear-bilinear nodal spatial differencing. We find that this leads to an unconditionally efficient solution method for problems with isotropic or nearly isotropic scattering. computational results are given which demonstrate this property
PARALLEL SOLUTION METHODS OF PARTIAL DIFFERENTIAL EQUATIONS
Directory of Open Access Journals (Sweden)
Korhan KARABULUT
1998-03-01
Full Text Available Partial differential equations arise in almost all fields of science and engineering. Computer time spent in solving partial differential equations is much more than that of in any other problem class. For this reason, partial differential equations are suitable to be solved on parallel computers that offer great computation power. In this study, parallel solution to partial differential equations with Jacobi, Gauss-Siedel, SOR (Succesive OverRelaxation and SSOR (Symmetric SOR algorithms is studied.
Equations for the non linear evolution of the resistive tearing modes in toroidal plasmas
International Nuclear Information System (INIS)
Edery, D.; Pellat, R.; Soule, J.L.
1979-09-01
Following the tokamak ordering, we simplify the resistive MHD equations in toroidal geometry. We obtain a closed system of non linear equations for two scalar potentials of the magnetic and velocity fields and for plasma density and temperature. If we expand these equations in the inverse of aspect ratio they are exact to the two first orders. Our formalism should correctly describe the mode coupling by curvature effects /1/ and the toroidal displacement of magnetic surfaces /2/. It provides a natural extension of the well known cylindrical model /3/ and is now being solved on computer
International Nuclear Information System (INIS)
LaChapelle, J.
2004-01-01
A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette
q-analogue of summability of formal solutions of some linear q-difference-differential equations
Directory of Open Access Journals (Sweden)
Hidetoshi Tahara
2015-01-01
Full Text Available Let \\(q\\gt 1\\. The paper considers a linear \\(q\\-difference-differential equation: it is a \\(q\\-difference equation in the time variable \\(t\\, and a partial differential equation in the space variable \\(z\\. Under suitable conditions and by using \\(q\\-Borel and \\(q\\-Laplace transforms (introduced by J.-P. Ramis and C. Zhang, the authors show that if it has a formal power series solution \\(\\hat{X}(t,z\\ one can construct an actual holomorphic solution which admits \\(\\hat{X}(t,z\\ as a \\(q\\-Gevrey asymptotic expansion of order \\(1\\.
Quasi-linear equation for magnetoplasma oscillations in the weakly relativistic approximation
International Nuclear Information System (INIS)
Rizzato, F.B.
1985-01-01
Some limitations which are present in the dynamical equations for collisionless plasmas are discussed. Some elementary corrections to the linear theories are obtained in a heuristic form, which directly lead to the so-called quasi-linear theories in its non-relativistic and relativistic forms. The effect of the relativistic variation of the gyrofrequency on the diffusion coefficient is examined in a typically perturbative approximation. (author)
On the prolongation structure and Backlund transformation for new non-linear Klein-Gordon equations
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Mukherjee, J.
1986-07-01
We have considered the complete integrability of two nonlinear equations which are some kind of extensions of usual Sine-Gordon and Sinh-Gordon equations. The first one is of non-autonomous version of Sinh-Gordon system and the second is closely related to the usual Sine-Gordon theory. The first problem indicates how (x,t) dependent non-linear equations can be treated in the prolongation theory and how a Backlund map can be constructed. The second one is a variation of the usual Sine-Gordon equation and suggests that there may be other equations (similar to Sine-Gordon) which are completely integrable. In both cases we have been able to construct the Lax pair. We then construct an auto-Backlund map by following the idea of Konno and Wadati, for the generation of multisolution states. (author)
Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation
Directory of Open Access Journals (Sweden)
Vitanov Nikolay K.
2018-03-01
Full Text Available We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.
Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation
Vitanov, Nikolay K.; Dimitrova, Zlatinka I.
2018-03-01
We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.
International Nuclear Information System (INIS)
Feng Qing-Hua
2014-01-01
In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann—Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method, we apply this method to solve the space-time fractional Whitham—Broer—Kaup (WBK) equations and the nonlinear fractional Sharma—Tasso—Olever (STO) equation, and as a result, some new exact solutions for them are obtained. (general)
Linear augmented plane wave method for self-consistent calculations
International Nuclear Information System (INIS)
Takeda, T.; Kuebler, J.
1979-01-01
O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)
International Nuclear Information System (INIS)
Zhao, Zhonglong; Zhang, Yufeng; Han, Zhong; Rui, Wenjuan
2014-01-01
In this paper, the simplest equation method is used to construct exact traveling solutions of the (3+1)-dimensional KP equation and generalized Fisher equation. We summarize the main steps of the simplest equation method. The Bernoulli and Riccati equation are used as simplest equations. This method is straightforward and concise, and it can be applied to other nonlinear partial differential equations
Equation-Method for correcting clipping errors in OFDM signals.
Bibi, Nargis; Kleerekoper, Anthony; Muhammad, Nazeer; Cheetham, Barry
2016-01-01
Orthogonal frequency division multiplexing (OFDM) is the digital modulation technique used by 4G and many other wireless communication systems. OFDM signals have significant amplitude fluctuations resulting in high peak to average power ratios which can make an OFDM transmitter susceptible to non-linear distortion produced by its high power amplifiers (HPA). A simple and popular solution to this problem is to clip the peaks before an OFDM signal is applied to the HPA but this causes in-band distortion and introduces bit-errors at the receiver. In this paper we discuss a novel technique, which we call the Equation-Method, for correcting these errors. The Equation-Method uses the Fast Fourier Transform to create a set of simultaneous equations which, when solved, return the amplitudes of the peaks before they were clipped. We show analytically and through simulations that this method can, correct all clipping errors over a wide range of clipping thresholds. We show that numerical instability can be avoided and new techniques are needed to enable the receiver to differentiate between correctly and incorrectly received frequency-domain constellation symbols.
Energy Technology Data Exchange (ETDEWEB)
Fusco, D [Messina Univ. (Italy). Instituto de Matematica
1979-01-01
The paper is concerned with a three-dimensional theory of non-linear magnetosonic waves in a turbulent plasma. A perturbation method is used that allows a transport equation, like Burgers equation but with a variable coefficient to be obtained.
International Nuclear Information System (INIS)
Chaichian, M.; Kulish, P. P.
1978-04-01
Supersymmetric Liouville and sine-Gordon equations are studied. We write down for these models the system of linear equations for which the method of inverse scattering problem should be applicable. Expressions for an infinite set of conserved currents are explicitly given. Supersymmetric Baecklund transformations and generalized conservation laws are constructed. (author)
Relaxation methods for gauge field equilibrium equations
International Nuclear Information System (INIS)
Adler, S.L.; Piran, T.
1984-01-01
This article gives a pedagogical introduction to relaxation methods for the numerical solution of elliptic partial differential equations, with particular emphasis on treating nonlinear problems with delta-function source terms and axial symmetry, which arise in the context of effective Lagrangian approximations to the dynamics of quantized gauge fields. The authors present a detailed theoretical analysis of three models which are used as numerical examples: the classical Abelian Higgs model (illustrating charge screening), the semiclassical leading logarithm model (illustrating flux confinement within a free boundary or ''bag''), and the axially symmetric Bogomol'nyi-Prasad-Sommerfield monopoles (illustrating the occurrence of p topological quantum numbers in non-Abelian gauge fields). They then proceed to a self-contained introduction to the theory of relaxation methods and allied iterative numerical methods and to the practical aspects of their implementation, with attention to general issues which arise in the three examples. The authors conclude with a brief discussion of details of the numerical solution of the models, presenting sample numerical results
Rosenbaum, J. S.
1976-01-01
If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.
Hardy inequality on time scales and its application to half-linear dynamic equations
Directory of Open Access Journals (Sweden)
Řehák Pavel
2005-01-01
Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.
An Explicit Enclosure of the Solution Set of Overdetermined Interval Linear Equations
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří
2017-01-01
Roč. 24, February (2017), s. 1-10 ISSN 1573-1340 Institutional support: RVO:67985807 Keywords : interval linear equations * interval hull * unit midpoint * enclosure Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://interval.louisiana.edu/ reliable -computing-journal/volume-24/ reliable -computing-24-pp-001-010.pdf
Solutions of half-linear differential equations in the classes Gamma and Pi
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel; Taddei, V.
2016-01-01
Roč. 29, 7-8 (2016), s. 683-714 ISSN 0893-4983 Institutional support: RVO:67985840 Keywords : half-linear differential equation * positive solution * asymptotic formula Subject RIV: BA - General Mathematics Impact factor: 0.565, year: 2016 http://projecteuclid.org/euclid.die/1462298681
Exact solutions of linearized Schwinger endash Dyson equation of fermion self-energy
International Nuclear Information System (INIS)
Zhou, B.
1997-01-01
The Schwinger endash Dyson equation of fermion self-energy in the linearization approximation is solved exactly in a theory with gauge and effective four-fermion interactions. Different expressions for the independent solutions, which, respectively, submit to irregular and regular ultraviolet boundary condition are derived and expounded. copyright 1997 American Institute of Physics
Comparison of nonlinearities in oscillation theory of half-linear differential equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2008-01-01
Roč. 121, č. 2 (2008), s. 93-105 ISSN 0236-5294 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential equation * comparison theorem * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 0.317, year: 2008
The Use of Graphs in Specific Situations of the Initial Conditions of Linear Differential Equations
Buendía, Gabriela; Cordero, Francisco
2013-01-01
In this article, we present a discussion on the role of graphs and its significance in the relation between the number of initial conditions and the order of a linear differential equation, which is known as the initial value problem. We propose to make a functional framework for the use of graphs that intends to broaden the explanations of the…
Tisdell, Christopher C.
2017-01-01
For over 50 years, the learning of teaching of "a priori" bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to "a priori" bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving…
A generalized variational algebra and conserved densities for linear evolution equations
International Nuclear Information System (INIS)
Abellanas, L.; Galindo, A.
1978-01-01
The symbolic algebra of Gel'fand and Dikii is generalized to the case of n variables. Using this algebraic approach a rigorous characterization of the polynomial kernel of the variational derivative is given. This is applied to classify all the conservation laws for linear polynomial evolution equations of arbitrary order. (Auth.)
Roerdink, J.B.T.M.
1981-01-01
The cumulant expansion for linear stochastic differential equations is extended to the general case in which the coefficient matrix, the inhomogeneous part and the initial condition are all random and, moreover, statistically interdependent. The expansion now involves not only the autocorrelation