WorldWideScience

Sample records for lineage-specific luciferase transgenic

  1. Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model1

    Directory of Open Access Journals (Sweden)

    Zinn Kurt R

    2009-08-01

    Full Text Available Abstract Background Rapid clonal expansion of T cells occurs in response to antigenic challenges. The kinetics of the T cell response has previously been described using tissue-based studies performed at defined time points. Luciferase bioluminescence has recently been utilized for non-invasive analysis of in vivo biologic processes in real-time. Results We have created a novel transgenic mouse model (T-Lux using a human CD2 mini-gene to direct luciferase expression specifically to the T cell compartment. T-Lux T cells demonstrated normal homing patterns within the intact mouse and following adoptive transfer. Bioluminescent signal correlated with T cell numbers in the whole body images as well as within specific organ regions of interest. Following transfer into lymphopenic (RAG2-/- recipients, homeostatic proliferation of T-Lux T cells was visualized using bioluminescent imaging. Real-time bioluminescent analysis of CD4+ T cell antigen-specific responses enabled real-time comparison of the kinetics and magnitude of clonal expansion and contraction in the inductive lymph node and tissue site of antigen injection. T cell expansion was dose-dependent despite the presence of supraphysiologic numbers of OVA-specific OT-II transgenic TCR T-Lux T cells. CD4+ T cells subsequently underwent a rapid (3–4 day contraction phase in the draining lymph node, with a delayed contraction in the antigen delivery site, with bioluminescent signal diminished below initial levels, representing TCR clonal frequency control. Conclusion The T-Lux mouse provides a novel, efficient model for tracking in vivo aspects of the CD4+ T cell response to antigen, providing an attractive approach for studies directed at immunotherapy or vaccine design.

  2. A transgenic rat with ubiquitous expression of firefly luciferase gene

    Science.gov (United States)

    Hakamata, Yoji; Murakami, Takashi; Kobayashi, Eiji

    2006-02-01

    In vivo imaging strategies provide cellular and molecular events in real time that helps us to understand biological processes in living animals. The development of molecular tags such as green fluorescent proteins and luciferase from the firefly Photinus pyralis has lead to a revolution in the visualization of complex biochemical processes. We developed a novel inbred transgenic rat strain containing firefly luciferase based on the transgenic (Tg) technique in rats. This Tg rat expressed the luciferase gene ubiquitously under control of the ROSA26 promoter. Cellular immune responsiveness against the luciferase protein was evaluated using conventional skin grafting and resulted in the long-term acceptance of Tg rat skin on wild-type rats. Strikingly, organ transplant with heart and small bowel demonstrated organ viability and graft survival, suggesting that cells from luciferase-Tg are transplantable to track their fate. Taking advantage of the less immunogenic luciferase, we also tested the role of hepatocyte-infusion in a liver injury model, and bone marrow-derived cells in a skin defect model. Employed in conjunction with modern advances in optical imaging, this luciferase-Tg rat system provides an innovative animal tool and a new means of facilitating biomedical research such as in the case of regeneration medicine.

  3. Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei

    OpenAIRE

    Matsuoka, Hiroyuki; TOMITA, HIROYUKI; Hattori, Ryuta; Arai,Meiji; Hirai, Makoto

    2014-01-01

    We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1α. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previ...

  4. Transgene expression in plants : Position-induced spatial and temporal variations of luciferase expression

    NARCIS (Netherlands)

    Leeuwen, van W.

    2001-01-01

    In this thesis we have examined the spatial and temporal aspects of gene expression and the position induced differences in transgene expression between individual transformants. For this purpose we imaged luciferase ( luc ) gene expression driven by three different promoters that are active through

  5. Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei.

    Science.gov (United States)

    Matsuoka, Hiroyuki; Tomita, Hiroyuki; Hattori, Ryuta; Arai, Meiji; Hirai, Makoto

    2015-03-01

    We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1α. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previous TG parasites. The estimated number of injected sporozoites by mosquitoes was between 34 and 775 (median 80). Since luciferase activity diminished immediately after the death of the parasites, luciferase activity could be an indicator of the existence of live parasites. Our results indicated that sporozoites survived at the probed site for more than 42 hours. We also detected sporozoites in the liver within 15 min of the intravenous injection. Bioluminescence was not observed in the lung, kidney or spleen. We confirmed the observation that the liver was the first organ in which malaria parasites entered and increased in number.

  6. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle.

    Science.gov (United States)

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I

    2012-12-01

    Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages.

  7. Detection of allergenic compounds using an IL-4/luciferase/CNS-1 transgenic mice model.

    Science.gov (United States)

    Bae, Chang Joon; Lee, Jae Won; Bae, Hee Sook; Shim, Sun Bo; Jee, Seung Wan; Lee, Su Hae; Lee, Chang Kyu; Hong, Jin Tae; Hwang, Dae Youn

    2011-04-01

    The interleukin-4 (IL-4) signaling cascade has been identified as a potentially important pathway in the development of allergies. The principal objective of this study was to produce novel transgenic (Tg) mice harboring the luciferase gene under the control of the human IL-4 promoter and the enhancer of IL-4 (CNS-1), in an effort to evaluate three types of allergens including a respiratory sensitizer, vaccine additives, and crude extracts of natural allergens in vivo. A new lineage of Tg mice was generated by the microinjection of pIL-4/Luc/CNS-1 constructs into a fertilized mice egg. The luciferase activity was successfully regulated by the IL-4 promoter in splenocytes cultured from IL-4/Luc/CNS-1 Tg mice. From the first five founder lines, one (#57) evidencing a profound response to ovalbumin was selected for use in evaluating the allergens. Additionally, the lungs, thymus, and lymph nodes of IL-4/Luc/CNS-1 Tg mice evidenced high luciferase activity in response to allergens such as phthalic anhydride (PA), trimellitic anhydride, ovalbumin, gelatin, Dermatophagoides pteronyssinus extracts, and Japanese cedar pollen, whereas key allergy-related indicators including ear thickness, Immunoglobulin E concentration, and the infiltration of inflammatory leukocytes in response to PA were unaltered in the Tg mice relative to the non-Tg mice. Furthermore, the expression levels of endogenous type 2 helper T cells cytokines and proinflammatory cytokines were similarly increased in these organs of IL-4/Luc/CNS-1 Tg mice in response to allergens. These results indicate that IL-4/Luc/CNS-1 Tg mice may be used as an animal model for the evaluation and prediction of the human body response to a variety of allergens originating from the environment and from certain industrial products.

  8. In Vivo Determination of Vitamin D Function Using Transgenic Mice Carrying a Human Osteocalcin Luciferase Reporter Gene

    Directory of Open Access Journals (Sweden)

    Tomoko Nakanishi

    2013-01-01

    Full Text Available Vitamin D is an essential factor for ossification, and its deficiency causes rickets. Osteocalcin, which is a noncollagenous protein found in bone matrix and involved in mineralization and calcium ion homeostasis, is one of the major bone morphogenetic markers and is used in the evaluation of osteoblast maturation and osteogenic activation. We established transgenic mouse line expressing luciferase under the control of a 10-kb osteocalcin enhancer/promoter sequence. Using these transgenic mice, we evaluated the active forms of vitamins D2 and D3 for their bone morphogenetic function by in vivo bioluminescence. As the result, strong activity for ossification was observed with 1α,25-hydroxyvitamin D3. Our mouse system can offer a feasible detection method for assessment of osteogenic activity in the development of functional foods and medicines by noninvasive screening.

  9. In Vivo Imaging of Particle-Induced Inflammation and Osteolysis in the Calvariae of NFκB/Luciferase Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Kunihiko Takahashi

    2011-01-01

    Full Text Available Wear debris causes biological response which can result in periprosthetic osteolysis after total joint replacement surgery. Nuclear factor-kappa B (NFκB, a representative transcription factor involved in inflammation, is believed to play an important role in this event by regulating the production of proinflammatory mediators and osteoclastogenesis. In this study, we sought to determine whether activation of NFκB in response to stimulation by particles could be visualized by in vivo imaging. We loaded polyethylene (PE particles onto the calvaria of NFκB/luciferase transgenic mouse, and detected luminescence generated by activation of NFκB. On day 7 after loading, the level of luminescence was maximal. Levels of luminescence were significantly correlated with the levels of luciferase activity, proinflammatory mediator mRNAs, and bone resorption parameters. This system, which enabled us to evaluate particle-induced inflammation and osteolysis without sacrificing mice, constitutes a useful tool for evaluating the efficacy of prophylaxis or treatments for particle-induced osteolysis.

  10. Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice

    Directory of Open Access Journals (Sweden)

    López-Rodríguez Cristina

    2008-01-01

    Full Text Available Abstract Background The transcription factor NFAT5/TonEBP regulates the response of mammalian cells to hypertonicity. However, little is known about the physiopathologic tonicity thresholds that trigger its transcriptional activity in primary cells. Wilkins et al. recently developed a transgenic mouse carrying a luciferase reporter (9xNFAT-Luc driven by a cluster of NFAT sites, that was activated by calcineurin-dependent NFATc proteins. Since the NFAT site of this reporter was very similar to an optimal NFAT5 site, we tested whether this reporter could detect the activation of NFAT5 in transgenic cells. Results The 9xNFAT-Luc reporter was activated by hypertonicity in an NFAT5-dependent manner in different types of non-transformed transgenic cells: lymphocytes, macrophages and fibroblasts. Activation of this reporter by the phorbol ester PMA plus ionomycin was independent of NFAT5 and mediated by NFATc proteins. Transcriptional activation of NFAT5 in T lymphocytes was detected at hypertonic conditions of 360–380 mOsm/kg (isotonic conditions being 300 mOsm/kg and strongly induced at 400 mOsm/kg. Such levels have been recorded in plasma in patients with osmoregulatory disorders and in mice deficient in aquaporins and vasopressin receptor. The hypertonicity threshold required to activate NFAT5 was higher in bone marrow-derived macrophages (430 mOsm/kg and embryonic fibroblasts (480 mOsm/kg. Activation of the 9xNFAT-Luc reporter by hypertonicity in lymphocytes was insensitive to the ERK inhibitor PD98059, partially inhibited by the PI3-kinase inhibitor wortmannin (0.5 μM and the PKA inhibitor H89, and substantially downregulated by p38 inhibitors (SB203580 and SB202190 and by inhibition of PI3-kinase-related kinases with 25 μM LY294002. Sensitivity of the reporter to FK506 varied among cell types and was greater in primary T cells than in fibroblasts and macrophages. Conclusion Our results indicate that NFAT5 is a sensitive responder to

  11. Visualization and live imaging analysis of a mosquito saliva protein in host animal skin using a transgenic mosquito with a secreted luciferase reporter system.

    Science.gov (United States)

    Yamamoto, D S; Yokomine, T; Sumitani, M; Yagi, K; Matsuoka, H; Yoshida, S

    2013-12-01

    Mosquitoes inject saliva into a vertebrate host during blood feeding. The analysis of mosquito saliva in host skin is important for the elucidation of the inflammatory responses to mosquito bites, the development of antithrombotic drugs, and the transmission-blocking of vector-borne diseases. We produced transgenic Anopheles stephensi mosquitoes expressing the secretory luciferase protein (MetLuc) fused to a saliva protein (AAPP) in the salivary glands. The transgene product (AAPP-MetLuc) of transgenic mosquitoes exhibited both luciferase activity as a MetLuc and binding activity to collagen as an AAPP. The detection of luminescence in the skin of mice bitten by transgenic mosquitoes showed that AAPP-MetLuc was injected into the skin as a component of saliva via blood feeding. AAPP-MetLuc remained at the mosquito bite site in host skin with luciferase activity for at least 4 h after blood feeding. AAPP was also suspected of remaining at the site of injury caused by the mosquito bite and blocking platelet aggregation by binding to collagen. These results demonstrated the establishment of visualization and time-lapse analysis of mosquito saliva in living vertebrate host skin. This technique may facilitate the analysis of mosquito saliva after its injection into host skin, and the development of new drugs and disease control strategies.

  12. [Advances in lineage-specific genes].

    Science.gov (United States)

    Huanping, Zhang; Tongming, Yin

    2015-06-01

    Lineage-specific genes (LSGs) are defined as genes found in one particular taxonomic group but have no significant sequence similarity with genes from other lineages, which compose about 10%?20% of the total genes in the genome of a focal organism. LSGs were first uncovered in the yeast genome in 1996. The development of the whole genome sequencing leads to the emergence of studies on LSGs as a hot topic in comparative genomics. LSGs have been extensively studied on microbial species, lower marine organisms, plant (such as Arabidopsis thaliana, Oryza sativa, Populus), insects, primate, etc; the biological functions of LSGs are important to clarify the evolution and adaptability of a species. In this review, we summarize the progress of LSGs studies, including LSGs identification, gene characterization, origin and evolution of LSGs, biological function, and expression analysis of LSGs. In addition, we discuss the existing problems and future directions for studies in this area. Our purpose is to provide some unique insights into the researches of LSGs.

  13. Role of RNA splicing in mediating lineage-specific expression of the von Willebrand factor gene in the endothelium.

    Science.gov (United States)

    Yuan, Lei; Janes, Lauren; Beeler, David; Spokes, Katherine C; Smith, Joshua; Li, Dan; Jaminet, Shou-Ching; Oettgen, Peter; Aird, William C

    2013-05-23

    We previously demonstrated that the first intron of the human von Willebrand factor (vWF) is required for gene expression in the endothelium of transgenic mice. Based on this finding, we hypothesized that RNA splicing plays a role in mediating vWF expression in the vasculature. To address this question, we used transient transfection assays in human endothelial cells and megakaryocytes with intron-containing and intronless human vWF promoter-luciferase constructs. Next, we generated knockin mice in which LacZ was targeted to the endogenous mouse vWF locus in the absence or presence of the native first intron or heterologous introns from the human β-globin, mouse Down syndrome critical region 1, or hagfish coagulation factor X genes. In both the in vitro assays and the knockin mice, the loss of the first intron of vWF resulted in a significant reduction of reporter gene expression in endothelial cells but not megakaryocytes. This effect was rescued to varying degrees by the introduction of a heterologous intron. Intron-mediated enhancement of expression was mediated at a posttranscriptional level. Together, these findings implicate a role for intronic splicing in mediating lineage-specific expression of vWF in the endothelium.

  14. Estrogenic endpoints in fish early life-stage tests: luciferase and vitellogenin induction in estrogen-responsive transgenic zebrafish

    NARCIS (Netherlands)

    Bogers, R.; Mutsaerds, E.; Druke, J.; Roode, de D.F.; Murk, A.J.; Burg, van der B.; Legler, J.

    2006-01-01

    This study incorporated specific endpoints for estrogenic activity in the early life-stage (ELS) test, as described in Guideline 210 of the Organization for Economic Cooperation and Development and traditionally used for toxicity screening of chemicals. A transgenic zebrafish model expressing an est

  15. LineageSpecificSeqgen: generating sequence data with lineage-specific variation in the proportion of variable sites

    Directory of Open Access Journals (Sweden)

    Hendy Mike D

    2009-08-01

    Full Text Available Abstract Correction to Shavit Grievink L, Penny D, Hendy MD, Holland BR: LineageSpecificSeqgen: generating sequence data with lineage-specific variation in the proportion of variable sites. BMC Evol Biol 2008, 8(1:317.

  16. Food-associated estrogenic compounds induce estrogen receptor-mediated luciferase gene expression in transgenic male mice.

    Science.gov (United States)

    Ter Veld, Marcel G R; Zawadzka, E; van den Berg, J H J; van der Saag, Paul T; Rietjens, Ivonne M C M; Murk, Albertinka J

    2008-07-30

    The present paper aims at clarifying to what extent seven food-associated compounds, shown before to be estrogenic in vitro, can induce estrogenic effects in male mice with an estrogen receptor (ER)-mediated luciferase (luc) reporter gene system. The luc induction was determined in different tissues 8h after dosing the ER-luc male mice intraperitoneally (IP) or 14h after oral dosing. Estradiol-propionate (EP) was used as a positive control at 0.3 and 1mg/kg bodyweight (bw), DMSO as solvent control. The food-associated estrogenic compounds tested at non-toxic doses were bisphenol A (BPA) and nonylphenol (NP) (both at 10 and 50mg/kgbw), dichlorodiphenyldichloroethylene (p,p'-DDE; at 5 and 25mg/kgbw), quercetin (at 1.66 and 16.6mg/kgbw), di-isoheptyl phthalate (DIHP), di-(2-ethylhexyl) phthalate (DEHP) and di-(2-ethylhexyl) adipate (DEHA) all at 30 and 100mg/kgbw. In general IP dosing resulted in higher luc inductions than oral dosing. EP induced luc activity in the liver in a statistically significant dose-related way with the highest induction of all compounds tested which was 20,000 times higher than the induction by the DMSO-control. NP, DDE, DEHA and DIHP did not induce luc activity in any of the tissues tested. BPA induced luc in the liver up to 420 times via both exposure routes. BPA, DEHP and quercetin induced luc activity in the liver after oral exposure. BPA (50mg/kgbw IP) also induced luc activity in the testis, kidneys and tibia. The current study reveals that biomarker-responses in ER-luc male mice occur after a single oral exposure to food-associated estrogenic model compounds at exposure levels 10 to 10(4) times higher than the established TDI's for some of these compounds. Given the facts that (i) the present study did not include chronic exposure and that (ii) simultaneous exposure to multiple estrogenic compounds may be a realistic exposure scenario, it remains to be seen whether this margin is sufficiently high.

  17. An experimental test for lineage-specific position effects on alcohol dehydrogenase (Adh) genes in Drosophila

    Science.gov (United States)

    Siegal, Mark L.; Hartl, Daniel L.

    1998-01-01

    Independent transgene insertions differ in expression based on their location in the genome; these position effects are of interest because they reflect the influence of genome organization on gene regulation. Position effects also represent potentially insurmountable obstacles to the rigorous functional comparison of homologous genes from different species because (i) quantitative variation in expression of each gene across genomic positions (generalized position effects, or GPEs) may overwhelm differences between the genes of interest, or (ii) divergent genes may be differentially sensitive to position effects, reflecting unique interactions between each gene and its genomic milieu (lineage-specific position effects, or LSPEs). We have investigated both types of position-effect variation by applying our method of transgene coplacement, which allows comparisons of transgenes in the same position in the genome of Drosophila melanogaster. Here we report an experimental test for LSPE in Drosophila. The alcohol dehydrogenase (Adh) genes of D. melanogaster and Drosophila affinidisjuncta differ in both tissue distribution and amounts of ADH activity. Despite this striking regulatory divergence, we found a very high correlation in overall ADH activity between the genes of the two species when placed in the same genomic position as assayed in otherwise Adh-null adults and larvae. These results argue against the influence of LSPE for these sequences, although the effects of GPE are significant. Our new findings validate the coplacement approach and show that it greatly magnifies the power to detect differences in expression between transgenes. Transgene coplacement thus dramatically extends the range of functional and evolutionary questions that can be addressed by transgenic technology. PMID:9861000

  18. Multiple lineage specific expansions within the guanylyl cyclase gene family

    Directory of Open Access Journals (Sweden)

    O'Halloran Damien M

    2006-03-01

    Full Text Available Abstract Background Guanylyl cyclases (GCs are responsible for the production of the secondary messenger cyclic guanosine monophosphate, which plays important roles in a variety of physiological responses such as vision, olfaction, muscle contraction, homeostatic regulation, cardiovascular and nervous function. There are two types of GCs in animals, soluble (sGCs which are found ubiquitously in cell cytoplasm, and receptor (rGC forms which span cell membranes. The complete genomes of several vertebrate and invertebrate species are now available. These data provide a platform to investigate the evolution of GCs across a diverse range of animal phyla. Results In this analysis we located GC genes from a broad spectrum of vertebrate and invertebrate animals and reconstructed molecular phylogenies for both sGC and rGC proteins. The most notable features of the resulting phylogenies are the number of lineage specific rGC and sGC expansions that have occurred during metazoan evolution. Among these expansions is a large nematode specific rGC clade comprising 21 genes in C. elegans alone; a vertebrate specific expansion in the natriuretic receptors GC-A and GC-B; a vertebrate specific expansion in the guanylyl GC-C receptors, an echinoderm specific expansion in the sperm rGC genes and a nematode specific sGC clade. Our phylogenetic reconstruction also shows the existence of a basal group of nitric oxide (NO insensitive insect and nematode sGCs which are regulated by O2. This suggests that the primordial eukaryotes probably utilized sGC as an O2 sensor, with the ligand specificity of sGC later switching to NO which provides a very effective local cell-to-cell signalling system. Phylogenetic analysis of the sGC and bacterial heme nitric oxide/oxygen binding protein domain supports the hypothesis that this domain originated from a cyanobacterial source. Conclusion The most salient feature of our phylogenies is the number of lineage specific expansions

  19. Proteome analysis of early lineage specification in bovine embryos.

    Science.gov (United States)

    Demant, Myriam; Deutsch, Daniela R; Fröhlich, Thomas; Wolf, Eckhard; Arnold, Georg J

    2015-02-01

    During mammalian embryo development, the zygote undergoes embryonic cleavage in the oviduct and reaches the uterus at the morula stage, when compaction and early lineage specification take place. To increase knowledge about the associated changes of the embryonic protein repertoire, we performed a comprehensive proteomic analysis of in vitro produced bovine morulae and blastocysts (six biological replicates), using an iTRAQ-based approach. A total of 560 proteins were identified of which 502 were quantified. The abundance of 140 proteins was significantly different between morulae and blastocysts, among them nucleophosmin (NPM1), eukaryotic translation initiation factor 5A-1 (EIF5A), receptor of activated protein kinase C 1 (GNB2L1/RACK1), and annexin A6 (ANXA6) with increased, and glutathione S-transferase mu 3 (GSTM3), peroxiredoxin 2 (PRDX2), and aldo-keto reductase family 1 member B1 (AKR1B1) with decreased abundance in blastocysts. Seventy-three percent of abundance altered proteins increased, reflecting an increase of translation activity in this period. This is further supported by an increase in the abundance of proteins involved in the translation machinery and the synthesis of ATP. Additionally, a complementary 2D saturation DIGE analysis led to the detection of protein isoforms, e.g. of GSTM3 and PRDX2, relevant for this period of mammalian development, and exemplarily verified the results of the iTRAQ approach. In summary, our systematic differential proteome analysis of bovine morulae and blastocysts revealed new molecular correlates of early lineage specification and differentiation events during bovine embryogenesis.

  20. Heritable and lineage-specific gene knockdown in zebrafish embryo.

    Directory of Open Access Journals (Sweden)

    Mei Dong

    Full Text Available BACKGROUND: Reduced expression of developmentally important genes and tumor suppressors due to haploinsufficiency or epigenetic suppression has been shown to contribute to the pathogenesis of various malignancies. However, methodology that allows spatio-temporally knockdown of gene expression in various model organisms such as zebrafish has not been well established, which largely limits the potential of zebrafish as a vertebrate model of human malignant disorders. PRINCIPAL FINDING: Here, we report that multiple copies of small hairpin RNA (shRNA are expressed from a single transcript that mimics the natural microRNA-30e precursor (mir-shRNA. The mir-shRNA, when microinjected into zebrafish embryos, induced an efficient knockdown of two developmentally essential genes chordin and alpha-catenin in a dose-controllable fashion. Furthermore, we designed a novel cassette vector to simultaneously express an intronic mir-shRNA and a chimeric red fluorescent protein driven by lineage-specific promoter, which efficiently reduced the expression of a chromosomally integrated reporter gene and an endogenously expressed gata-1 gene in the developing erythroid progenitors and hemangioblasts, respectively. SIGNIFICANCE: This methodology provides an invaluable tool to knockdown developmental important genes in a tissue-specific manner or to establish animal models, in which the gene dosage is critically important in the pathogenesis of human disorders. The strategy should be also applicable to other model organisms.

  1. Identification of Transcription Factors for Lineage-Specific ESC Differentiation

    Science.gov (United States)

    Yamamizu, Kohei; Piao, Yulan; Sharov, Alexei A.; Zsiros, Veronika; Yu, Hong; Nakazawa, Kazu; Schlessinger, David; Ko, Minoru S.H.

    2013-01-01

    Summary A network of transcription factors (TFs) determines cell identity, but identity can be altered by overexpressing a combination of TFs. However, choosing and verifying combinations of TFs for specific cell differentiation have been daunting due to the large number of possible combinations of ∼2,000 TFs. Here, we report the identification of individual TFs for lineage-specific cell differentiation based on the correlation matrix of global gene expression profiles. The overexpression of identified TFs—Myod1, Mef2c, Esx1, Foxa1, Hnf4a, Gata2, Gata3, Myc, Elf5, Irf2, Elf1, Sfpi1, Ets1, Smad7, Nr2f1, Sox11, Dmrt1, Sox9, Foxg1, Sox2, or Ascl1—can direct efficient, specific, and rapid differentiation into myocytes, hepatocytes, blood cells, and neurons. Furthermore, transfection of synthetic mRNAs of TFs generates their appropriate target cells. These results demonstrate both the utility of this approach to identify potent TFs for cell differentiation, and the unanticipated capacity of single TFs directly guides differentiation to specific lineage fates. PMID:24371809

  2. Lineage-specific proteins essential for endocytosis in trypanosomes.

    Science.gov (United States)

    Manna, Paul T; Obado, Samson O; Boehm, Cordula; Gadelha, Catarina; Sali, Andrej; Chait, Brian T; Rout, Michael P; Field, Mark C

    2017-04-15

    Clathrin-mediated endocytosis (CME) is the most evolutionarily ancient endocytic mechanism known, and in many lineages the sole mechanism for internalisation. Significantly, in mammalian cells CME is responsible for the vast bulk of endocytic flux and has likely undergone multiple adaptations to accommodate specific requirements by individual species. In African trypanosomes, we previously demonstrated that CME is independent of the AP-2 adaptor protein complex, that orthologues to many of the animal and fungal CME protein cohort are absent, and that a novel, trypanosome-restricted protein cohort interacts with clathrin and drives CME. Here, we used a novel cryomilling affinity isolation strategy to preserve transient low-affinity interactions, giving the most comprehensive trypanosome clathrin interactome to date. We identified the trypanosome AP-1 complex, Trypanosoma brucei (Tb)EpsinR, several endosomal SNAREs plus orthologues of SMAP and the AP-2 associated kinase AAK1 as interacting with clathrin. Novel lineage-specific proteins were identified, which we designate TbCAP80 and TbCAP141. Their depletion produced extensive defects in endocytosis and endomembrane system organisation, revealing a novel molecular pathway subtending an early-branching and highly divergent form of CME, which is conserved and likely functionally important across the kinetoplastid parasites. © 2017. Published by The Company of Biologists Ltd.

  3. Consistent and contrasting properties of lineage-specific genes in the apicomplexan parasites Plasmodium and Theileria

    Directory of Open Access Journals (Sweden)

    Kissinger Jessica C

    2008-04-01

    Full Text Available Abstract Background Lineage-specific genes, the genes that are restricted to a limited subset of related organisms, may be important in adaptation. In parasitic organisms, lineage-specific gene products are possible targets for vaccine development or therapeutics when these genes are absent from the host genome. Results In this study, we utilized comparative approaches based on a phylogenetic framework to characterize lineage-specific genes in the parasitic protozoan phylum Apicomplexa. Genes from species in two major apicomplexan genera, Plasmodium and Theileria, were categorized into six levels of lineage specificity based on a nine-species phylogeny. In both genera, lineage-specific genes tend to have a higher level of sequence divergence among sister species. In addition, species-specific genes possess a strong codon usage bias compared to other genes in the genome. We found that a large number of genus- or species-specific genes are putative surface antigens that may be involved in host-parasite interactions. Interestingly, the two parasite lineages exhibit several notable differences. In Plasmodium, the (G + C content at the third codon position increases with lineage specificity while Theileria shows the opposite trend. Surface antigens in Plasmodium are species-specific and mainly located in sub-telomeric regions. In contrast, surface antigens in Theileria are conserved at the genus level and distributed across the entire lengths of chromosomes. Conclusion Our results provide further support for the model that gene duplication followed by rapid divergence is a major mechanism for generating lineage-specific genes. The result that many lineage-specific genes are putative surface antigens supports the hypothesis that lineage-specific genes could be important in parasite adaptation. The contrasting properties between the lineage-specific genes in two major apicomplexan genera indicate that the mechanisms of generating lineage-specific genes

  4. Lineage-Specific Genes Are Prominent DNA Damage Hotspots during Leukemic Transformation of B Cell Precursors

    Directory of Open Access Journals (Sweden)

    Bryant Boulianne

    2017-02-01

    Full Text Available In human leukemia, lineage-specific genes represent predominant targets of deletion, with lymphoid-specific genes frequently affected in lymphoid leukemia and myeloid-specific genes in myeloid leukemia. To investigate the basis of lineage-specific alterations, we analyzed global DNA damage in primary B cell precursors expressing leukemia-inducing oncogenes by ChIP-seq. We identified more than 1,000 sensitive regions, of which B lineage-specific genes constitute the most prominent targets. Identified hotspots at B lineage genes relate to DNA-DSBs, affect genes that harbor genomic lesions in human leukemia, and associate with ectopic deletion in successfully transformed cells. Furthermore, we show that most identified regions overlap with gene bodies of highly expressed genes and that induction of a myeloid lineage phenotype in transformed B cell precursors promotes de novo DNA damage at myeloid loci. Hence, we demonstrate that lineage-specific transcription predisposes lineage-specific genes in transformed B cell precursors to DNA damage, which is likely to promote the frequent alteration of lineage-specific genes in human leukemia.

  5. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals.

    Science.gov (United States)

    Frankenberg, Stephen; Shaw, Geoff; Freyer, Claudia; Pask, Andrew J; Renfree, Marilyn B

    2013-03-01

    Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals.

  6. Functional annotation of novel lineage-specific genes using co-expression and promoter analysis

    Directory of Open Access Journals (Sweden)

    Loor Juan J

    2010-03-01

    Full Text Available Abstract Background The diversity of placental architectures within and among mammalian orders is believed to be the result of adaptive evolution. Although, the genetic basis for these differences is unknown, some may arise from rapidly diverging and lineage-specific genes. Previously, we identified 91 novel lineage-specific transcripts (LSTs from a cow term-placenta cDNA library, which are excellent candidates for adaptive placental functions acquired by the ruminant lineage. The aim of the present study was to infer functions of previously uncharacterized lineage-specific genes (LSGs using co-expression, promoter, pathway and network analysis. Results Clusters of co-expressed genes preferentially expressed in liver, placenta and thymus were found using 49 previously uncharacterized LSTs as seeds. Over-represented composite transcription factor binding sites (TFBS in promoters of clustered LSGs and known genes were then identified computationally. Functions were inferred for nine previously uncharacterized LSGs using co-expression analysis and pathway analysis tools. Our results predict that these LSGs may function in cell signaling, glycerophospholipid/fatty acid metabolism, protein trafficking, regulatory processes in the nucleus, and processes that initiate parturition and immune system development. Conclusions The placenta is a rich source of lineage-specific genes that function in the adaptive evolution of placental architecture and functions. We have shown that co-expression, promoter, and gene network analyses are useful methods to infer functions of LSGs with heretofore unknown functions. Our results indicate that many LSGs are involved in cellular recognition and developmental processes. Furthermore, they provide guidance for experimental approaches to validate the functions of LSGs and to study their evolution.

  7. Functional annotation of novel lineage-specific genes using co-expression and promoter analysis.

    Science.gov (United States)

    Kumar, Charu G; Everts, Robin E; Loor, Juan J; Lewin, Harris A

    2010-03-09

    The diversity of placental architectures within and among mammalian orders is believed to be the result of adaptive evolution. Although, the genetic basis for these differences is unknown, some may arise from rapidly diverging and lineage-specific genes. Previously, we identified 91 novel lineage-specific transcripts (LSTs) from a cow term-placenta cDNA library, which are excellent candidates for adaptive placental functions acquired by the ruminant lineage. The aim of the present study was to infer functions of previously uncharacterized lineage-specific genes (LSGs) using co-expression, promoter, pathway and network analysis. Clusters of co-expressed genes preferentially expressed in liver, placenta and thymus were found using 49 previously uncharacterized LSTs as seeds. Over-represented composite transcription factor binding sites (TFBS) in promoters of clustered LSGs and known genes were then identified computationally. Functions were inferred for nine previously uncharacterized LSGs using co-expression analysis and pathway analysis tools. Our results predict that these LSGs may function in cell signaling, glycerophospholipid/fatty acid metabolism, protein trafficking, regulatory processes in the nucleus, and processes that initiate parturition and immune system development. The placenta is a rich source of lineage-specific genes that function in the adaptive evolution of placental architecture and functions. We have shown that co-expression, promoter, and gene network analyses are useful methods to infer functions of LSGs with heretofore unknown functions. Our results indicate that many LSGs are involved in cellular recognition and developmental processes. Furthermore, they provide guidance for experimental approaches to validate the functions of LSGs and to study their evolution.

  8. In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pandi, Narayanan Sathiya, E-mail: sathiyapandi@gmail.com; Suganya, Sivagurunathan; Rajendran, Suriliyandi

    2013-10-04

    Highlights: •Identified stomach lineage specific gene set (SLSGS) was found to be under expressed in gastric tumors. •Elevated expression of SLSGS in gastric tumor is a molecular predictor of metabolic type gastric cancer. •In silico pathway scanning identified estrogen-α signaling is a putative regulator of SLSGS in gastric cancer. •Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. -- Abstract: Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However, the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC.

  9. In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer.

    Science.gov (United States)

    Pandi, Narayanan Sathiya; Suganya, Sivagurunathan; Rajendran, Suriliyandi

    2013-10-04

    Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However, the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Lineage-specific expression of bestrophin-2 and bestrophin-4 in human intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Go Ito

    Full Text Available Intestinal epithelial cells (IECs regulate the absorption and secretion of anions, such as HCO3(- or Cl(-. Bestrophin genes represent a newly identified group of calcium-activated Cl(- channels (CaCCs. Studies have suggested that, among the four human bestrophin-family genes, bestrophin-2 (BEST2 and bestrophin-4 (BEST4 might be expressed within the intestinal tissue. Consistently, a study showed that BEST2 is expressed by human colonic goblet cells. However, their precise expression pattern along the gastrointestinal tract, or the lineage specificity of the cells expressing these genes, remains largely unknown. Here, we show that BEST2 and BEST4 are expressed in vivo, each in a distinct, lineage-specific manner, in human IECs. While BEST2 was expressed exclusively in colonic goblet cells, BEST4 was expressed in the absorptive cells of both the small intestine and the colon. In addition, we found that BEST2 expression is significantly down-regulated in the active lesions of ulcerative colitis, where goblet cells were depleted, suggesting that BEST2 expression is restricted to goblet cells under both normal and pathologic conditions. Consistently, the induction of goblet cell differentiation by a Notch inhibitor, LY411575, significantly up-regulated the expression of not BEST4 but BEST2 in MUC2-positive HT-29 cells. Conversely, the induction of absorptive cell differentiation up-regulated the expression of BEST4 in villin-positive Caco-2 cells. In addition, we found that the up- or down-regulation of Notch activity leads to the preferential expression of either BEST4 or BEST2, respectively, in LS174T cells. These results collectively confirmed that BEST2 and BEST4 could be added to the lineage-specific genes of humans IECs due to their abilities to clearly identify goblet cells of colonic origin and a distinct subset of absorptive cells, respectively.

  11. Lineage-specific expression of bestrophin-2 and bestrophin-4 in human intestinal epithelial cells

    DEFF Research Database (Denmark)

    Ito, Go; Okamoto, Ryuichi; Murano, Tatsuro

    2013-01-01

    Intestinal epithelial cells (IECs) regulate the absorption and secretion of anions, such as HCO3(-) or Cl(-). Bestrophin genes represent a newly identified group of calcium-activated Cl(-) channels (CaCCs). Studies have suggested that, among the four human bestrophin-family genes, bestrophin-2...... (BEST2) and bestrophin-4 (BEST4) might be expressed within the intestinal tissue. Consistently, a study showed that BEST2 is expressed by human colonic goblet cells. However, their precise expression pattern along the gastrointestinal tract, or the lineage specificity of the cells expressing these genes...

  12. Data in support of genome-wide identification of lineage-specific genes within Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Kun Zhou

    2015-09-01

    Full Text Available Two sets of LSGs were identified using BLAST: Caenorhabditis elegans species-specific genes (SSGs, 1423, and Caenorhabditis genus-specific genes (GSGs, 4539. The data contained in this article show SSGs and GSGs have significant differences in evolution and that most of them were formed by gene duplication and integration of transposable elements (TEs. Subsequent observation of temporal expression and protein function presents that many SSGs and GSGs are expressed and that genes involved with sex determination, specific stress, immune response, and morphogenesis are most represented. The data are related to research article “Genome-wide identification of lineage-specific genes within Caenorhabditis elegans” in Journal of Genomics [1].

  13. Genome-wide identification of lineage-specific genes within Caenorhabditis elegans.

    Science.gov (United States)

    Zhou, Kun; Huang, Beibei; Zou, Ming; Lu, Dandan; He, Shunping; Wang, Guoxiu

    2015-10-01

    With the rapid growth of sequencing technology, a number of genomes and transcriptomes of various species have been sequenced, contributing to the study of lineage-specific genes (LSGs). We identified two sets of LSGs using BLAST: one included Caenorhabditis elegans species-specific genes (1423, SSGs), and the other consisted of Caenorhabditis genus-specific genes (4539, GSGs). The subsequent characterization and analysis of the SSGs and GSGs showed that they have significant differences in evolution and that most LSGs were generated by gene duplication and integration of transposable elements (TEs). We then performed temporal expression profiling and protein function prediction and observed that many SSGs and GSGs are expressed and that genes involved with sex determination, specific stress, immune response, and morphogenesis are over-represented, suggesting that these specific genes may be related to the Caenorhabditis nematodes' special ability to survive in severe and extreme environments.

  14. The monocytic lineage specific soluble CD163 is a plasma marker of coronary atherosclerosis

    DEFF Research Database (Denmark)

    Aristoteli, Lina Panayiota; Møller, Holger Jon; Bailey, Brian

    2006-01-01

    BACKGROUND: CD163 is a monocyte-macrophage lineage specific scavenger receptor that mediates the uptake and clearance of haptoglobin-haemoglobin complexes, and soluble CD163 (sCD163) is also present in plasma. As atherosclerosis involves infiltration by monocyte-derived macrophages, we investigated...... whether sCD163 may act as a marker of coronary atherosclerosis (CAD). METHODS AND RESULTS: Clinical features were identified and plasma was collected from 147 consecutive patients presenting for coronary angiography. Patients were classified as having CAD+, or being free of CAD- haemodynamically...... significant (>50% luminal diameter) coronary stenoses in one or more major coronary arteries (1, 2 or 3 vessel disease), and sCD163 concentration was measured by ELISA. Plasma sCD163 was non-parametrically distributed, being significantly higher in CAD+ patients (median 2.47 mg/L, 25th-75th percentile, 1...

  15. Lineage-Specific Changes in Biomarkers in Great Apes and Humans.

    Directory of Open Access Journals (Sweden)

    Claudius Ronke

    Full Text Available Although human biomedical and physiological information is readily available, such information for great apes is limited. We analyzed clinical chemical biomarkers in serum samples from 277 wild- and captive-born great apes and from 312 healthy human volunteers as well as from 20 rhesus macaques. For each individual, we determined a maximum of 33 markers of heart, liver, kidney, thyroid and pancreas function, hemoglobin and lipid metabolism and one marker of inflammation. We identified biomarkers that show differences between humans and the great apes in their average level or activity. Using the rhesus macaques as an outgroup, we identified human-specific differences in the levels of bilirubin, cholinesterase and lactate dehydrogenase, and bonobo-specific differences in the level of apolipoprotein A-I. For the remaining twenty-nine biomarkers there was no evidence for lineage-specific differences. In fact, we find that many biomarkers show differences between individuals of the same species in different environments. Of the four lineage-specific biomarkers, only bilirubin showed no differences between wild- and captive-born great apes. We show that the major factor explaining the human-specific difference in bilirubin levels may be genetic. There are human-specific changes in the sequence of the promoter and the protein-coding sequence of uridine diphosphoglucuronosyltransferase 1 (UGT1A1, the enzyme that transforms bilirubin and toxic plant compounds into water-soluble, excretable metabolites. Experimental evidence that UGT1A1 is down-regulated in the human liver suggests that changes in the promoter may be responsible for the human-specific increase in bilirubin. We speculate that since cooking reduces toxic plant compounds, consumption of cooked foods, which is specific to humans, may have resulted in relaxed constraint on UGT1A1 which has in turn led to higher serum levels of bilirubin in humans.

  16. Core genome components and lineage specific expansions in malaria parasites Plasmodium

    Directory of Open Access Journals (Sweden)

    Gu Jianying

    2010-12-01

    Full Text Available Abstract Background The increasing resistance of Plasmodium, the malaria parasites, to multiple commonly used drugs has underscored the urgent need to develop effective antimalarial drugs and vaccines. The new direction of genomics-driven target discovery has become possible with the completion of parasite genome sequencing, which can lead us to a better understanding of how the parasites develop the genetic variability that is associated with their response to environmental challenges and other adaptive phenotypes. Results We present the results of a comprehensive analysis of the genomes of six Plasmodium species, including two species that infect humans, one that infects monkeys, and three that infect rodents. The core genome shared by all six species is composed of 3,351 genes, which make up about 22%-65% of the genome repertoire. These components play important roles in fundamental functions as well as in parasite-specific activities. We further investigated the distribution and features of genes that have been expanded in specific Plasmodium lineage(s. Abundant duplicate genes are present in the six species, with 5%-9% of the whole genomes composed lineage specific radiations. The majority of these gene families are hypothetical proteins with unknown functions; a few may have predicted roles such as antigenic variation. Conclusions The core genome components in the malaria parasites have functions ranging from fundamental biological processes to roles in the complex networks that sustain the parasite-specific lifestyles appropriate to different hosts. They represent the minimum requirement to maintain a successful life cycle that spans vertebrate hosts and mosquito vectors. Lineage specific expansions (LSEs have given rise to abundant gene families in Plasmodium. Although the functions of most families remain unknown, these LSEs could reveal components in parasite networks that, by their enhanced genetic variability, can contribute to

  17. Lineage-specific evolution of Methylthioalkylmalate synthases (MAMs involved in glucosinolates biosynthesis

    Directory of Open Access Journals (Sweden)

    Jifang eZhang

    2015-02-01

    Full Text Available Methylthioalkylmalate synthases (MAMs encoded by MAM genes are central to the diversification of the glucosinolates, which are important secondary metabolites in Brassicaceae species. However, the evolutionary pathway of MAM genes is poorly understood. We analyzed the phylogenetic and synteny relationships of MAM genes from 13 sequenced Brassicaceae species. Based on these analyses, we propose that the syntenic loci of MAM genes, which underwent frequent tandem duplications, divided into two independent lineage-specific evolution routes and were driven by positive selection after the divergence from Aethionema arabicum. In the lineage I species Capsella rubella, Camelina sativa, Arabidopsis lyrata, and A. thaliana, the MAM loci evolved three tandem genes encoding enzymes responsible for the biosynthesis of aliphatic glucosinolates with different carbon chain-lengths. In lineage II species, the MAM loci encode enzymes responsible for the biosynthesis of short-chain aliphatic glucosinolates. Our proposed model of the evolutionary pathway of MAM genes will be useful for understanding the specific function of these genes in Brassicaceae species.

  18. Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    Full Text Available In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system.

  19. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates.

    Science.gov (United States)

    Warren, Ian A; Naville, Magali; Chalopin, Domitille; Levin, Perrine; Berger, Chloé Suzanne; Galiana, Delphine; Volff, Jean-Nicolas

    2015-09-01

    Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.

  20. Evolved structure of language shows lineage-specific trends in word-order universals.

    Science.gov (United States)

    Dunn, Michael; Greenhill, Simon J; Levinson, Stephen C; Gray, Russell D

    2011-05-05

    Languages vary widely but not without limit. The central goal of linguistics is to describe the diversity of human languages and explain the constraints on that diversity. Generative linguists following Chomsky have claimed that linguistic diversity must be constrained by innate parameters that are set as a child learns a language. In contrast, other linguists following Greenberg have claimed that there are statistical tendencies for co-occurrence of traits reflecting universal systems biases, rather than absolute constraints or parametric variation. Here we use computational phylogenetic methods to address the nature of constraints on linguistic diversity in an evolutionary framework. First, contrary to the generative account of parameter setting, we show that the evolution of only a few word-order features of languages are strongly correlated. Second, contrary to the Greenbergian generalizations, we show that most observed functional dependencies between traits are lineage-specific rather than universal tendencies. These findings support the view that-at least with respect to word order-cultural evolution is the primary factor that determines linguistic structure, with the current state of a linguistic system shaping and constraining future states.

  1. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations.

    Science.gov (United States)

    Tian, Chang Fu; Zhou, Yuan Jie; Zhang, Yan Ming; Li, Qin Qin; Zhang, Yun Zeng; Li, Dong Fang; Wang, Shuang; Wang, Jun; Gilbert, Luz B; Li, Ying Rui; Chen, Wen Xin

    2012-05-29

    The rhizobium-legume symbiosis has been widely studied as the model of mutualistic evolution and the essential component of sustainable agriculture. Extensive genetic and recent genomic studies have led to the hypothesis that many distinct strategies, regardless of rhizobial phylogeny, contributed to the varied rhizobium-legume symbiosis. We sequenced 26 genomes of Sinorhizobium and Bradyrhizobium nodulating soybean to test this hypothesis. The Bradyrhizobium core genome is disproportionally enriched in lipid and secondary metabolism, whereas several gene clusters known to be involved in osmoprotection and adaptation to alkaline pH are specific to the Sinorhizobium core genome. These features are consistent with biogeographic patterns of these bacteria. Surprisingly, no genes are specifically shared by these soybean microsymbionts compared with other legume microsymbionts. On the other hand, phyletic patterns of 561 known symbiosis genes of rhizobia reflected the species phylogeny of these soybean microsymbionts and other rhizobia. Similar analyses with 887 known functional genes or the whole pan genome of rhizobia revealed that only the phyletic distribution of functional genes was consistent with the species tree of rhizobia. Further evolutionary genetics revealed that recombination dominated the evolution of core genome. Taken together, our results suggested that faithfully vertical genes were rare compared with those with history of recombination including lateral gene transfer, although rhizobial adaptations to symbiotic interactions and other environmental conditions extensively recruited lineage-specific shell genes under direct or indirect control through the speciation process.

  2. Telomerase Protects Werner Syndrome Lineage-Specific Stem Cells from Premature Aging

    Directory of Open Access Journals (Sweden)

    Hoi-Hung Cheung

    2014-04-01

    Full Text Available Werner syndrome (WS patients exhibit premature aging predominantly in mesenchyme-derived tissues, but not in neural lineages, a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here, we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mechanistic insight into the origin of tissue-specific aging, we differentiated iPSCs to mesenchymal stem cells (MSCs and neural stem/progenitor cells (NPCs. We observed recurrence of premature senescence associated with accelerated telomere attrition and defective synthesis of the lagging strand telomeres in MSCs, but not in NPCs. We postulate this “aging” discrepancy is regulated by telomerase. Expression of hTERT or p53 knockdown ameliorated the accelerated aging phenotypein MSC, whereas inhibition of telomerase sensitized NPCs to DNA damage. Our findings unveil a role for telomerase in the protection of accelerated aging in a specific lineage of stem cells.

  3. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1.

    Science.gov (United States)

    Rosenbauer, Frank; Wagner, Katharina; Kutok, Jeffery L; Iwasaki, Hiromi; Le Beau, Michelle M; Okuno, Yutaka; Akashi, Koichi; Fiering, Steven; Tenen, Daniel G

    2004-06-01

    Transcription factors are believed to have a dominant role in acute myeloid leukemia (AML). This idea is supported by analysis of gene-knockout mice, which uncovered crucial roles of several transcription factors in normal hematopoiesis, and of individuals with leukemia, in whom transcription factors are frequently downregulated or mutated. However, analysis of knockout animals has not shown a direct link between abrogated transcription factors and the pathogenesis of AML. Sfpi1, encoding the lineage-specific transcription factor PU.1, is indispensable for normal myeloid and lymphoid development. We found that mice carrying hypomorphic Sfpi1 alleles that reduce PU.1 expression to 20% of normal levels, unlike mice carrying homo- or heterozygous deletions of Sfpi1, developed AML. Unlike complete or 50% loss, 80% loss of PU.1 induced a precancerous state characterized by accumulation of an abnormal precursor pool retaining responsiveness to G-CSF with disruption of M- and GM-CSF pathways. Malignant transformation was associated with a high frequency of clonal chromosomal changes. Retroviral restoration of PU.1 expression rescued myeloid differentiation of mutant progenitors and AML blasts. These results suggest that tightly graded reduction, rather than complete loss, of a lineage-indispensable transcription factor can induce AML.

  4. Tracing the evolution of lineage-specific transcription factor binding sites in a birth-death framework.

    Directory of Open Access Journals (Sweden)

    Ken Daigoro Yokoyama

    2014-08-01

    Full Text Available Changes in cis-regulatory element composition that result in novel patterns of gene expression are thought to be a major contributor to the evolution of lineage-specific traits. Although transcription factor binding events show substantial variation across species, most computational approaches to study regulatory elements focus primarily upon highly conserved sites, and rely heavily upon multiple sequence alignments. However, sequence conservation based approaches have limited ability to detect lineage-specific elements that could contribute to species-specific traits. In this paper, we describe a novel framework that utilizes a birth-death model to trace the evolution of lineage-specific binding sites without relying on detailed base-by-base cross-species alignments. Our model was applied to analyze the evolution of binding sites based on the ChIP-seq data for six transcription factors (GATA1, SOX2, CTCF, MYC, MAX, ETS1 along the lineage toward human after human-mouse common ancestor. We estimate that a substantial fraction of binding sites (∼58-79% for each factor in humans have origins since the divergence with mouse. Over 15% of all binding sites are unique to hominids. Such elements are often enriched near genes associated with specific pathways, and harbor more common SNPs than older binding sites in the human genome. These results support the ability of our method to identify lineage-specific regulatory elements and help understand their roles in shaping variation in gene regulation across species.

  5. Lineage-specific biology revealed by a finished genome assembly of the mouse.

    Science.gov (United States)

    Church, Deanna M; Goodstadt, Leo; Hillier, Ladeana W; Zody, Michael C; Goldstein, Steve; She, Xinwe; Bult, Carol J; Agarwala, Richa; Cherry, Joshua L; DiCuccio, Michael; Hlavina, Wratko; Kapustin, Yuri; Meric, Peter; Maglott, Donna; Birtle, Zoë; Marques, Ana C; Graves, Tina; Zhou, Shiguo; Teague, Brian; Potamousis, Konstantinos; Churas, Christopher; Place, Michael; Herschleb, Jill; Runnheim, Ron; Forrest, Daniel; Amos-Landgraf, James; Schwartz, David C; Cheng, Ze; Lindblad-Toh, Kerstin; Eichler, Evan E; Ponting, Chris P

    2009-05-05

    The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.

  6. Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.

    Science.gov (United States)

    Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa

    2015-05-01

    Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level.

  7. Identification and characterization of lineage-specific genes within the Poaceae.

    Science.gov (United States)

    Campbell, Matthew A; Zhu, Wei; Jiang, Ning; Lin, Haining; Ouyang, Shu; Childs, Kevin L; Haas, Brian J; Hamilton, John P; Buell, C Robin

    2007-12-01

    Using the rice (Oryza sativa) sp. japonica genome annotation, along with genomic sequence and clustered transcript assemblies from 184 species in the plant kingdom, we have identified a set of 861 rice genes that are evolutionarily conserved among six diverse species within the Poaceae yet lack significant sequence similarity with plant species outside the Poaceae. This set of evolutionarily conserved and lineage-specific rice genes is termed conserved Poaceae-specific genes (CPSGs) to reflect the presence of significant sequence similarity across three separate Poaceae subfamilies. The vast majority of rice CPSGs (86.6%) encode proteins with no putative function or functionally characterized protein domain. For the remaining CPSGs, 8.8% encode an F-box domain-containing protein and 4.5% encode a protein with a putative function. On average, the CPSGs have fewer exons, shorter total gene length, and elevated GC content when compared with genes annotated as either transposable elements (TEs) or those genes having significant sequence similarity in a species outside the Poaceae. Multiple sequence alignments of the CPSGs with sequences from other Poaceae species show conservation across a putative domain, a novel domain, or the entire coding length of the protein. At the genome level, syntenic alignments between sorghum (Sorghum bicolor) and 103 of the 861 rice CPSGs (12.0%) could be made, demonstrating an additional level of conservation for this set of genes within the Poaceae. The extensive sequence similarity in evolutionarily distinct species within the Poaceae family and an additional screen for TE-related structural characteristics and sequence discounts these CPSGs as being misannotated TEs. Collectively, these data confirm that we have identified a specific set of genes that are highly conserved within, as well as specific to, the Poaceae.

  8. Identification and Characterization of Lineage-Specific Genes within the Poaceae1[W][OA

    Science.gov (United States)

    Campbell, Matthew A.; Zhu, Wei; Jiang, Ning; Lin, Haining; Ouyang, Shu; Childs, Kevin L.; Haas, Brian J.; Hamilton, John P.; Buell, C. Robin

    2007-01-01

    Using the rice (Oryza sativa) sp. japonica genome annotation, along with genomic sequence and clustered transcript assemblies from 184 species in the plant kingdom, we have identified a set of 861 rice genes that are evolutionarily conserved among six diverse species within the Poaceae yet lack significant sequence similarity with plant species outside the Poaceae. This set of evolutionarily conserved and lineage-specific rice genes is termed conserved Poaceae-specific genes (CPSGs) to reflect the presence of significant sequence similarity across three separate Poaceae subfamilies. The vast majority of rice CPSGs (86.6%) encode proteins with no putative function or functionally characterized protein domain. For the remaining CPSGs, 8.8% encode an F-box domain-containing protein and 4.5% encode a protein with a putative function. On average, the CPSGs have fewer exons, shorter total gene length, and elevated GC content when compared with genes annotated as either transposable elements (TEs) or those genes having significant sequence similarity in a species outside the Poaceae. Multiple sequence alignments of the CPSGs with sequences from other Poaceae species show conservation across a putative domain, a novel domain, or the entire coding length of the protein. At the genome level, syntenic alignments between sorghum (Sorghum bicolor) and 103 of the 861 rice CPSGs (12.0%) could be made, demonstrating an additional level of conservation for this set of genes within the Poaceae. The extensive sequence similarity in evolutionarily distinct species within the Poaceae family and an additional screen for TE-related structural characteristics and sequence discounts these CPSGs as being misannotated TEs. Collectively, these data confirm that we have identified a specific set of genes that are highly conserved within, as well as specific to, the Poaceae. PMID:17951464

  9. Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses

    Directory of Open Access Journals (Sweden)

    Ryan Joseph F

    2011-01-01

    Full Text Available Abstract Background Mutations in the Otopetrin 1 gene (Otop1 in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH subtype 1G (Ush1g, both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF, a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq data in mouse and human embryonic stem (ES cells combined with detection of CTCF-binding motifs. Conclusions The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s of Ush1g and Otop in developmental pathways.

  10. Lineage-specific biology revealed by a finished genome assembly of the mouse.

    Directory of Open Access Journals (Sweden)

    Deanna M Church

    2009-05-01

    Full Text Available The mouse (Mus musculus is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes. In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.

  11. Parallel and lineage-specific molecular adaptation to climate in boreal black spruce.

    Science.gov (United States)

    Prunier, Julien; Gérardi, Sébastien; Laroche, Jérôme; Beaulieu, Jean; Bousquet, Jean

    2012-09-01

    In response to selective pressure, adaptation may follow different genetic pathways throughout the natural range of a species due to historical differentiation in standing genetic variation. Using 41 populations of black spruce (Picea mariana), the objectives of this study were to identify adaptive genetic polymorphisms related to temperature and precipitation variation across the transcontinental range of the species, and to evaluate the potential influence of historical events on their geographic distribution. Population structure was first inferred using 50 control nuclear markers. Then, 47 candidate gene SNPs identified in previous genome scans were tested for relationship with climatic factors using an F(ST) -based outlier method and regressions between allele frequencies and climatic variations. Two main intraspecific lineages related to glacial vicariance were detected at the transcontinental scale. Within-lineage analyses of allele frequencies allowed the identification of 23 candidate SNPs significantly related to precipitation and/or temperature variation, among which seven were common to both lineages, eight were specific to the eastern lineage and eight were specific to the western lineage. The implication of these candidate SNPs in adaptive processes was further supported by gene functional annotations. Multiple evidences indicated that the occurrence of lineage-specific adaptive SNPs was better explained by selection acting on historically differentiated gene pools rather than differential selection due to heterogeneity of interacting environmental factors and pleiotropic effects. Taken together, these findings suggest that standing genetic variation of potentially adaptive nature has been modified by historical events, hence affecting the outcome of recent selection and leading to different adaptive routes between intraspecific lineages. © 2012 Blackwell Publishing Ltd.

  12. Lineage-Specific Expansion of the Chalcone Synthase Gene Family in Rosids.

    Directory of Open Access Journals (Sweden)

    Kattina Zavala

    Full Text Available Rosids are a monophyletic group that includes approximately 70,000 species in 140 families, and they are found in a variety of habitats and life forms. Many important crops such as fruit trees and legumes are rosids. The evolutionary success of this group may have been influenced by their ability to produce flavonoids, secondary metabolites that are synthetized through a branch of the phenylpropanoid pathway where chalcone synthase is a key enzyme. In this work, we studied the evolution of the chalcone synthase gene family in 12 species belonging to the rosid clade. Our results show that the last common ancestor of the rosid clade possessed six chalcone synthase gene lineages that were differentially retained during the evolutionary history of the group. In fact, of the six gene lineages that were present in the last common ancestor, 7 species retained 2 of them, whereas the other 5 only retained one gene lineage. We also show that one of the gene lineages was disproportionately expanded in species that belonged to the order Fabales (soybean, barrel medic and Lotus japonicas. Based on the available literature, we suggest that this gene lineage possesses stress-related biological functions (e.g., response to UV light, pathogen defense. We propose that the observed expansion of this clade was a result of a selective pressure to increase the amount of enzymes involved in the production of phenylpropanoid pathway-derived secondary metabolites, which is consistent with the hypothesis that suggested that lineage-specific expansions fuel plant adaptation.

  13. Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Pauline Rimmelé

    2014-07-01

    Full Text Available Aging hematopoietic stem cells (HSCs exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging.

  14. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification.

    Science.gov (United States)

    Robertson, Fiona M; Gundappa, Manu Kumar; Grammes, Fabian; Hvidsten, Torgeir R; Redmond, Anthony K; Lien, Sigbjørn; Martin, Samuel A M; Holland, Peter W H; Sandve, Simen R; Macqueen, Daniel J

    2017-06-14

    The functional divergence of duplicate genes (ohnologues) retained from whole genome duplication (WGD) is thought to promote evolutionary diversification. However, species radiation and phenotypic diversification are often temporally separated from WGD. Salmonid fish, whose ancestor underwent WGD by autotetraploidization ~95 million years ago, fit such a 'time-lag' model of post-WGD radiation, which occurred alongside a major delay in the rediploidization process. Here we propose a model, 'lineage-specific ohnologue resolution' (LORe), to address the consequences of delayed rediploidization. Under LORe, speciation precedes rediploidization, allowing independent ohnologue divergence in sister lineages sharing an ancestral WGD event. Using cross-species sequence capture, phylogenomics and genome-wide analyses of ohnologue expression divergence, we demonstrate the major impact of LORe on salmonid evolution. One-quarter of each salmonid genome, harbouring at least 4550 ohnologues, has evolved under LORe, with rediploidization and functional divergence occurring on multiple independent occasions >50 million years post-WGD. We demonstrate the existence and regulatory divergence of many LORe ohnologues with functions in lineage-specific physiological adaptations that potentially facilitated salmonid species radiation. We show that LORe ohnologues are enriched for different functions than 'older' ohnologues that began diverging in the salmonid ancestor. LORe has unappreciated significance as a nested component of post-WGD divergence that impacts the functional properties of genes, whilst providing ohnologues available solely for lineage-specific adaptation. Under LORe, which is predicted following many WGD events, the functional outcomes of WGD need not appear 'explosively', but can arise gradually over tens of millions of years, promoting lineage-specific diversification regimes under prevailing ecological pressures.

  15. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    Science.gov (United States)

    Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon

    2016-07-01

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of

  16. APPROACHES TO ENGINEER STABILITY OF BEETLE LUCIFERASES

    Directory of Open Access Journals (Sweden)

    Mikhail I. Koksharov

    2012-09-01

    Full Text Available Luciferase enzymes from fireflies and other beetles have many important applications in molecular biology, biotechnology, analytical chemistry and several other areas. Many novel beetle luciferases with promising properties have been reported in the recent years. However, actual and potential applications of wild-type beetle luciferases are often limited by insufficient stability or decrease in activity of the enzyme at the conditions of a particular assay. Various examples of genetic engineering of the enhanced beetle luciferases have been reported that successfully solve or alleviate many of these limitations. This mini-review summarizes the recent advances in development of mutant luciferases with improved stability and activity characteristics. It discusses the common limitations of wild-type luciferases in different applications and presents the efficient approaches that can be used to address these problems.

  17. Approaches to engineer stability of beetle luciferases

    Directory of Open Access Journals (Sweden)

    Mikhail Koksharov

    2012-09-01

    Full Text Available Luciferase enzymes from fireflies and other beetles have many important applications in molecular biology, biotechnology, analytical chemistry and several other areas. Many novel beetle luciferases with promising properties have been reported in the recent years. However, actual and potential applications of wild-type beetle luciferases are often limited by insufficient stability or decrease in activity of the enzyme at the conditions of a particular assay. Various examples of genetic engineering of the enhanced beetle luciferases have been reported that successfully solve or alleviate many of these limitations. This mini-review summarizes the recent advances in development of mutant luciferases with improved stability and activity characteristics. It discusses the common limitations of wild-type luciferases in different applications and presents the efficient approaches that can be used to address these problems.

  18. Lineage-Specific and Non-specific Cytokine-Sensing Genes Respond Differentially to the Master Regulator STAT5.

    Science.gov (United States)

    Zeng, Xianke; Willi, Michaela; Shin, Ha Youn; Hennighausen, Lothar; Wang, Chaochen

    2016-12-20

    STAT5, a member of the family of signal transducers and activators of transcription, senses cytokines and controls the biology of cell lineages, including mammary, liver, and T cells. Here, we show that STAT5 activates lineage-specific and widely expressed genes through different mechanisms. STAT5 preferentially binds to promoter sequences of cytokine-responsive genes expressed across cell types and to putative enhancers of lineage-specific genes. While chromatin accessibility of STAT5-based enhancers was dependent on cytokine exposure, STAT5-responsive promoters of widely expressed target genes were generally constitutively accessible. While the contribution of STAT5 to enhancers is well established, its role on promoters is poorly understood. To address this, we focused on Socs2, a widely expressed cytokine-sensing gene. Upon deletion of the STAT5 response elements from the Socs2 promoter in mice, cytokine induction was abrogated, while basal activity remained intact. Our data suggest that promoter-bound STAT5 modulates cytokine responses and enhancer-bound STAT5 is mandatory for gene activation.

  19. Supramolecular Control over Split-Luciferase Complementation.

    Science.gov (United States)

    Bosmans, Ralph P G; Briels, Jeroen M; Milroy, Lech-Gustav; de Greef, Tom F A; Merkx, Maarten; Brunsveld, Luc

    2016-07-25

    Supramolecular split-enzyme complementation restores enzymatic activity and allows for on-off switching. Split-luciferase fragment pairs were provided with an N-terminal FGG sequence and screened for complementation through host-guest binding to cucurbit[8]uril (Q8). Split-luciferase heterocomplex formation was induced in a Q8 concentration dependent manner, resulting in a 20-fold upregulation of luciferase activity. Supramolecular split-luciferase complementation was fully reversible, as revealed by using two types of Q8 inhibitors. Competition studies with the weak-binding FGG peptide revealed a 300-fold enhanced stability for the formation of the ternary heterocomplex compared to binding of two of the same fragments to Q8. Stochiometric binding by the potent inhibitor memantine could be used for repeated cycling of luciferase activation and deactivation in conjunction with Q8, providing a versatile module for in vitro supramolecular signaling networks.

  20. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup

    DEFF Research Database (Denmark)

    Yu, Xiao-Jing; Zheng, Hong-Kun; Wang, Jun;

    2006-01-01

    Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during human evolution. However, without a closely...... related species as outgroup, it is difficult to identify human-lineage-specific changes, which is critical in delineating the biological uniqueness of humans. In this study, we conducted phylogeny-based analyses of 2633 human brain-expressed genes using rhesus macaque as the outgroup. We identified 47...... candidate genes showing strong evidence of positive selection in the human lineage. Genes with maximal expression in the brain showed a higher evolutionary rate in human than in chimpanzee. We observed that many immune-defense-related genes were under strong positive selection, and this trend was more...

  1. A comparative proteomic analysis of the simple amino acid repeat distributions in Plasmodia reveals lineage specific amino acid selection.

    Directory of Open Access Journals (Sweden)

    Andrew R Dalby

    Full Text Available BACKGROUND: Microsatellites have been used extensively in the field of comparative genomics. By studying microsatellites in coding regions we have a simple model of how genotypic changes undergo selection as they are directly expressed in the phenotype as altered proteins. The simplest of these tandem repeats in coding regions are the tri-nucleotide repeats which produce a repeat of a single amino acid when translated into proteins. Tri-nucleotide repeats are often disease associated, and are also known to be unstable to both expansion and contraction. This makes them sensitive markers for studying proteome evolution, in closely related species. RESULTS: The evolutionary history of the family of malarial causing parasites Plasmodia is complex because of the life-cycle of the organism, where it interacts with a number of different hosts and goes through a series of tissue specific stages. This study shows that the divergence between the primate and rodent malarial parasites has resulted in a lineage specific change in the simple amino acid repeat distribution that is correlated to A-T content. The paper also shows that this altered use of amino acids in SAARs is consistent with the repeat distributions being under selective pressure. CONCLUSIONS: The study shows that simple amino acid repeat distributions can be used to group related species and to examine their phylogenetic relationships. This study also shows that an outgroup species with a similar A-T content can be distinguished based only on the amino acid usage in repeats, and suggest that this might be a useful feature for proteome clustering. The lineage specific use of amino acids in repeat regions suggests that comparative studies of SAAR distributions between proteomes gives an insight into the mechanisms of expansion and the selective pressures acting on the organism.

  2. Lineage-specific detection of influenza B virus using real-time polymerase chain reaction with melting curve analysis.

    Science.gov (United States)

    Tewawong, Nipaporn; Chansaenroj, Jira; Klinfueng, Sirapa; Vichiwattana, Preeyaporn; Korkong, Sumeth; Thongmee, Thanunrat; Theamboonlers, Apiradee; Payungporn, Sunchai; Vongpunsawad, Sompong; Poovorawan, Yong

    2016-06-01

    Influenza B viruses comprise two lineages, Victoria (B/Vic) and Yamagata (B/Yam), which co-circulate globally. The surveillance data on influenza B virus lineages in many countries often underestimate the true prevalence due to the lack of a rapid, accurate, and cost-effective method for virus detection. We have developed a real-time PCR with melting curve analysis for lineage-specific differential detection of influenza B virus. By amplifying a region of the hemagglutinin gene using real-time PCR with SYBR Green I dye, B/Vic and B/Yam could be differentiated based on their melting temperature peaks. This method was efficient (B/Vic = 93.2 %; B/Yam 97.7 %), sensitive (B/Vic, 94.6 %; B/Yam, 96.3 %), and specific (B/Vic, 97.7 %; B/Yam, 97.1 %). The lower detection limit was 10(2) copies per microliter. The assay was evaluated using 756 respiratory specimens that were positive for influenza B virus, obtained between 2010 and 2015. The incidence of influenza B virus was approximately 18.9 % of all influenza cases, and the percentage was highest among children aged 6-17 years (7.57 %). The overall percentage of mismatched influenza B vaccine was 21.1 %. Our findings suggest that real-time PCR with melting curve analysis can provide a rapid, simple, and sensitive lineage-specific influenza B virus screening method to facilitate influenza surveillance.

  3. Creation of High Efficient Firefly Luciferase

    Science.gov (United States)

    Nakatsu, Toru

    Firefly emits visible yellow-green light. The bioluminescence reaction is carried out by the enzyme luciferase. The bioluminescence of luciferase is widely used as an excellent tool for monitoring gene expression, the measurement of the amount of ATP and in vivo imaging. Recently a study of the cancer metastasis is carried out by in vivo luminescence imaging system, because luminescence imaging is less toxic and more useful for long-term assay than fluorescence imaging by GFP. However the luminescence is much dimmer than fluorescence. Then bioluminescence imaging in living organisms demands the high efficient luciferase which emits near infrared lights or enhances the emission intensity. Here I introduce an idea for creating the high efficient luciferase based on the crystal structure.

  4. An LTR Retrotransposon-Derived Gene Displays Lineage-Specific Structural and Putative Species-Specific Functional Variations in Eutherians

    Science.gov (United States)

    Irie, Masahito; Koga, Akihiko; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2016-01-01

    Amongst the 11 eutherian-specific genes acquired from a sushi-ichi retrotransposon is the CCHC type zinc-finger protein-encoding gene SIRH11/ZCCHC16. Its contribution to eutherian brain evolution is implied because of its involvement in cognitive function in mice, possibly via the noradrenergic system. Although, the possibility that Sirh11/Zcchc16 functions as a non-coding RNA still remains, dN/dS ratios in pairwise comparisons between its orthologs have provided supportive evidence that it acts as a protein. It became a pseudogene in armadillos (Cingulata) and sloths (Pilosa), the only two extant orders of xenarthra, which prompted us to examine the lineage-specific variations of SIRH11/ZCCHC16 in eutherians. We examined the predicted SIRH11/ZCCHC16 open reading frame (ORF) in 95 eutherian species based on the genomic DNA information in GenBank. A large variation in the SIRH11/ZCCHC16 ORF was detected in several lineages. These include a lack of a CCHC RNA-binding domain in its C-terminus, observed in gibbons (Hylobatidae: Primates) and megabats (Megachiroptera: Chiroptera). A lack of the N-terminal half, on the other hand, was observed in New World monkeys (Platyrrhini: Primates) and species belonging to New World and African Hystricognaths (Caviomorpha and Bathyergidae: Rodents) along with Cetacea and Ruminantia (Cetartiodactyla). Among the hominoids, interestingly, three out of four genera of gibbons have lost normal SIRH11/ZCCHC16 function by deletion or the lack of the CCHC RNA-binding domain. Our extensive dN/dS analysis suggests that such truncated SIRH11/ZCCHC16 ORFs are functionally diversified even within lineages. Combined, our results show that SIRH11/ZCCHC16 may contribute to the diversification of eutherians by lineage-specific structural changes after its domestication in the common eutherian ancestor, followed by putative species-specific functional changes that enhanced fitness and occurred as a consequence of complex natural selection events

  5. Genetic vaccination against the melanocyte lineage-specific antigen gp100 induces cytotoxic T lymphocyte-mediated tumor protection.

    Science.gov (United States)

    Schreurs, M W; de Boer, A J; Figdor, C G; Adema, G J

    1998-06-15

    Melanocyte lineage-specific antigens, such as gp100, have been shown to induce both cellular and humoral immune responses against melanoma. Therefore, these antigens are potential targets for specific antimelanoma immunotherapy. A novel approach to induce both cellular and humoral immunity is genetic vaccination, the injection of antigen-encoding naked plasmid DNA. In a mouse model, we investigated whether genetic vaccination against the human gp100 antigen results in specific antitumor immunity. The results demonstrate that vaccinated mice were protected against a lethal challenge with syngeneic B16 melanoma-expressing human gp100, but not control-transfected B16. Both cytotoxic T cells and IgG specific for human gp100 could be detected in human gp100-vaccinated mice. However, only adoptive transfer of spleen-derived lymphocytes, not of the serum, isolated from protected mice was able to transfer antitumor immunity to nonvaccinated recipients, indicating that CTLs are the predominant effector cells. CTI, lines generated from human gp100-vaccinated mice specifically recognized human gp100. Interestingly, one of the CTL lines cross-reacted between human and mouse gp100, indicating the recognition of a conserved epitope. However, these CTLs did not appear to be involved in the observed tumor protection. Collectively, our results indicate that genetic vaccination can result in a potent antitumor response in vivo and constitutes a potential immunotherapeutic strategy to fight cancer.

  6. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    Directory of Open Access Journals (Sweden)

    Nidal Ghosheh

    2016-01-01

    Full Text Available Human pluripotent stem cells- (hPSCs- derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4 which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models.

  7. Changes in chromosome territory position within the nucleus reflect alternations in gene expression related to embryonic lineage specification.

    Science.gov (United States)

    Orsztynowicz, Maciej; Lechniak, Dorota; Pawlak, Piotr; Kociucka, Beata; Kubickova, Svatava; Cernohorska, Halina; Madeja, Zofia Eliza

    2017-01-01

    Loss of totipotentcy in an early embryo is directed by molecular processes responsible for cell fate decisions. Three dimensional genome organisation is an important factor linking chromatin architecture with stage specific gene expression patterns. Little is known about the role of chromosome organisation in gene expression regulation of lineage specific factors in mammalian embryos. Using bovine embryos as a model we have described these interactions at key developmental stages. Three bovine chromosomes (BTA) that differ in size, number of carried genes, and contain loci for key lineage regulators OCT4, NANOG and CDX2, were investigated. The results suggest that large chromosomes regardless of their gene density (BTA12 gene-poor, BTA5 gene-rich) do not significantly change their radial position within the nucleus. Gene loci however, may change its position within the chromosome territory (CT) and relocate its periphery, when stage specific process of gene activation is required. Trophectoderm specific CDX2 and epiblast precursor NANOG loci tend to locate on the surface or outside of the CTs, at stages related with their high expression. We postulate that the observed changes in CT shape reflect global alternations in gene expression related to differentiation.

  8. Lineage-specific differences between human and simian immunodeficiency virus regulation of gp120 trimer association and CD4 binding.

    Science.gov (United States)

    Finzi, Andrés; Pacheco, Beatriz; Xiang, Shi-Hua; Pancera, Marie; Herschhorn, Alon; Wang, Liping; Zeng, Xing; Desormeaux, Anik; Kwong, Peter D; Sodroski, Joseph

    2012-09-01

    Metastable conformations of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) must be maintained in the unliganded state of the envelope glycoprotein trimer. Binding of gp120 to the primary receptor, CD4, triggers the transition to an open conformation of the trimer, promoting interaction with the CCR5 chemokine receptor and ultimately leading to gp41-mediated virus-cell membrane fusion and entry. Topological layers in the gp120 inner domain contribute to gp120-trimer association in the unliganded state and to CD4 binding. Here we describe similarities and differences between HIV-1 and SIVmac gp120. In both viruses, the gp120 N/C termini and the inner domain β-sandwich and layer 2 support the noncovalent association of gp120 with the envelope glycoprotein trimer. Layer 1 of the SIVmac gp120 inner domain contributes more to trimer association than the corresponding region of HIV-1 gp120. On the other hand, layer 1 plays an important role in stabilizing the CD4-bound conformation of HIV-1 but not SIVmac gp120 and thus contributes to HIV-1 binding to CD4. In SIVmac, CD4 binding is instead enhanced by tryptophan 375, which fills the Phe 43 cavity of gp120. Activation of SIVmac by soluble CD4 is dependent on tryptophan 375 and on layer 1 residues that determine a tight association of gp120 with the trimer. Distinct biological requirements for CD4 usage have resulted in lineage-specific differences in the HIV-1 and SIV gp120 structures that modulate trimer association and CD4 binding.

  9. How Well Can We Detect Lineage-Specific Diversification-Rate Shifts? A Simulation Study of Sequential AIC Methods.

    Science.gov (United States)

    May, Michael R; Moore, Brian R

    2016-11-01

    Evolutionary biologists have long been fascinated by the extreme differences in species numbers across branches of the Tree of Life. This has motivated the development of statistical methods for detecting shifts in the rate of lineage diversification across the branches of phylogenic trees. One of the most frequently used methods, MEDUSA, explores a set of diversification-rate models, where each model assigns branches of the phylogeny to a set of diversification-rate categories. Each model is first fit to the data, and the Akaike information criterion (AIC) is then used to identify the optimal diversification model. Surprisingly, the statistical behavior of this popular method is uncharacterized, which is a concern in light of: (1) the poor performance of the AIC as a means of choosing among models in other phylogenetic contexts; (2) the ad hoc algorithm used to visit diversification models, and; (3) errors that we reveal in the likelihood function used to fit diversification models to the phylogenetic data. Here, we perform an extensive simulation study demonstrating that MEDUSA (1) has a high false-discovery rate (on average, spurious diversification-rate shifts are identified [Formula: see text] of the time), and (2) provides biased estimates of diversification-rate parameters. Understanding the statistical behavior of MEDUSA is critical both to empirical researchers-in order to clarify whether these methods can make reliable inferences from empirical datasets-and to theoretical biologists-in order to clarify the specific problems that need to be solved in order to develop more reliable approaches for detecting shifts in the rate of lineage diversification. [Akaike information criterion; extinction; lineage-specific diversification rates; phylogenetic model selection; speciation.]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  10. Lineage-specific diversification of killer cell Ig-like receptors in the owl monkey, a New World primate.

    Science.gov (United States)

    Cadavid, Luis F; Lun, Cheng-Man

    2009-01-01

    Killer cell Ig-like receptors (KIRs) modulate the cytotoxic effects of natural killer cells. In primates, the KIRs are highly diverse as a consequence of variation in gene content, alternative domain composition, and loci polymorphism. We analyzed a bacterial artificial chromosome (BAC) clone draft sequence spanning the owl monkey KIR cluster. The draft sequence had seven ordered yet unconnected contigs containing six full-length and two partial gene models, flanked by the LILRB and FcAR framework genes. Gene models were predicted to encode KIRs with inhibitory, activating, or dual functionality. Four gene models encoded three Ig domain receptors, while three others encoded molecules with four Ig domains. The additional domain resulted from an insertion in tandem of a 2,101 bp fragment containing the last 289 bp of intron 2, exon 3, and intron 3, resulting in molecules with two D0 domains. Re-screening of the owl monkey BAC library and sequencing of partial cDNAs from an owl monkey yielded five additional KIRs, four of which encoded receptors with short cytoplasmic domains with premature stop codons due to either a single nucleotide substitution or deletion or the absence of exon 8. Phylogenetic analysis by domains showed that owl monkey KIRs were monophyletic, clustering independently from other primate KIR lineages. Retroelements found in introns, however, were shared by KIRs from different primate lineages. This suggests that the owl monkey inherited a KIR cluster with a rich history of exon shuffling upon which positive selection for ligand binding operated to diversify the receptors in a lineage-specific fashion.

  11. Fiber optic biosensor of immobilized firefly luciferase

    Institute of Scientific and Technical Information of China (English)

    蔡谨; 吉鑫松; 等

    2002-01-01

    Luciferase from firefly lantern extract was immobilized on CNBr-activated Sepharose 4B,The kinetic properties of immobilized luciferase were extensively studied.The Km' for D-luciferin is 11.9umol/L,the optimum pH and temperature for Sepharose-bound enzyme were 7.8 and 25℃ respectively.A luminescence fiber optic biosensor,making use of immobilized crude luciferase was developed for assay of ATP.The peak light intensity was linear with respect to ATP concentration in range of 10-9-10-5mol/L.A biological application was also demonstrated with the determination of serum ATP from rats bred in low versus normal oxygen environments.

  12. Fiber optic biosensor of immobilized firefly luciferase

    Institute of Scientific and Technical Information of China (English)

    蔡谨; 孟文芳; 吉鑫松

    2002-01-01

    Luciferase from firefly lantern extract was immobilized on CNBr-activated Sepharose 4B. The kinetic properties of immobilized luciferase were extensively studied. The Km′ for D-luciferin is 11.9 μmol/L, the optimum pH and temperature for Sepharose-bound enzyme were 7.8 and 25℃ respectively. A luminescence fiber optic biosensor, making use of immobilized crude luciferase, was developed for assay of ATP. The peak light intensity was linear with respect to ATP concentration in range of 10-9-10-5 mol/L. A biological application was also demonstrated with the determination of serum ATP from rats bred in low versus normal oxygen environments.

  13. Multi-colony stimulating activity of interleukin 5 (IL-5) on hematopoietic progenitors from transgenic mice that express IL-5 receptor alpha subunit constitutively

    OpenAIRE

    1995-01-01

    The interleukin 3 (IL-3), IL-5, and granulocyte/macrophage colony- stimulating factor receptors consist of a cytokine-specific alpha subunit and the common beta subunit. Whereas IL-3 stimulates various lineages of hematopoietic cells, including multipotential progenitors, IL-5 acts mainly as an eosinophil lineage-specific factor. To investigate whether the lineage specificity of IL-5 is due to restricted expression of the IL-5 receptor alpha subunit (IL-5R alpha), we generated transgenic mice...

  14. Cell lineage specific distribution of H3K27 trimethylation accumulation in an in vitro model for human implantation.

    Directory of Open Access Journals (Sweden)

    Gijs Teklenburg

    Full Text Available Female mammals inactivate one of their two X-chromosomes to compensate for the difference in gene-dosage with males that have just one X-chromosome. X-chromosome inactivation is initiated by the expression of the non-coding RNA Xist, which coats the X-chromosome in cis and triggers gene silencing. In early mouse development the paternal X-chromosome is initially inactivated in all cells of cleavage stage embryos (imprinted X-inactivation followed by reactivation of the inactivated paternal X-chromosome exclusively in the epiblast precursors of blastocysts, resulting temporarily in the presence of two active X-chromosomes in this specific lineage. Shortly thereafter, epiblast cells randomly inactivate either the maternal or the paternal X-chromosome. XCI is accompanied by the accumulation of histone 3 lysine 27 trimethylation (H3K27me3 marks on the condensed X-chromosome. It is still poorly understood how XCI is regulated during early human development. Here we have investigated lineage development and the distribution of H3K27me3 foci in human embryos derived from an in-vitro model for human implantation. In this system, embryos are co-cultured on decidualized endometrial stromal cells up to day 8, which allows the culture period to be extended for an additional two days. We demonstrate that after the co-culture period, the inner cell masses have relatively high cell numbers and that the GATA4-positive hypoblast lineage and OCT4-positive epiblast cell lineage in these embryos have segregated. H3K27me3 foci were observed in ∼25% of the trophectoderm cells and in ∼7.5% of the hypoblast cells, but not in epiblast cells. In contrast with day 8 embryos derived from the co-cultures, foci of H3K27me3 were not observed in embryos at day 5 of development derived from regular IVF-cultures. These findings indicate that the dynamics of H3K27me3 accumulation on the X-chromosome in human development is regulated in a lineage specific fashion.

  15. Lineage specific evolution of the VNTR composite retrotransposon central domain and its role in retrotransposition of gibbon LAVA elements.

    Science.gov (United States)

    Lupan, Iulia; Bulzu, Paul; Popescu, Octavian; Damert, Annette

    2015-05-16

    VNTR (Variable Number of Tandem Repeats) composite retrotransposons - SVA (SINE-R-VNTR-Alu), LAVA (LINE-1-Alu-VNTR-Alu), PVA (PTGR2-VNTR-Alu) and FVA (FRAM-VNTR-Alu) - are specific to hominoid primates. Their assembly, the evolution of their 5' and 3' domains, and the functional significance of the shared 5' Alu-like region are well understood. The central VNTR domain, by contrast, has long been assumed to represent a more or less random collection of 30-50 bp GC-rich repeats. It is only recently that it attracted attention in the context of regulation of SVA expression. Here we provide evidence that the organization of the VNTR is non-random, with conserved repeat unit (RU) arrays at both the 5' and 3' ends of the VNTRs of human, chimpanzee and orangutan SVA and gibbon LAVA. The younger SVA subfamilies harbour highly organized internal RU arrays. The composition of these arrays is specific to the human/chimpanzee and orangutan lineages, respectively. Tracing the development of the VNTR through evolution we show for the first time how tandem repeats evolve within the constraints set by a functional, non-autonomous non-LTR retrotransposon in two different families - LAVA and SVA - in different hominoid lineages. Our analysis revealed that a microhomology-driven mechanism mediates expansion/contraction of the VNTR domain at the DNA level. Elements of all four VNTR composite families have been shown to be mobilized by the autonomous LINE1 retrotransposon in trans. In case of SVA, key determinants of mobilization are found in the 5' hexameric repeat/Alu-like region. We now demonstrate that in LAVA, by contrast, the VNTR domain determines mobilization efficiency in the context of domain swaps between active and inactive elements. The central domain of VNTR composites evolves in a lineage-specific manner which gives rise to distinct structures in gibbon LAVA, orangutan SVA, and human/chimpanzee SVA. The differences observed between the families and lineages are likely to

  16. Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs.

    Science.gov (United States)

    Ohmura, Sakie; Mizuno, Seiya; Oishi, Hisashi; Ku, Chia-Jui; Hermann, Mary; Hosoya, Tomonori; Takahashi, Satoru; Engel, James Douglas

    2016-03-01

    The transcription factor GATA3 is essential for the genesis and maturation of the T cell lineage, and GATA3 dysregulation has pathological consequences. Previous studies have shown that GATA3 function in T cell development is regulated by multiple signaling pathways and that the Notch nuclear effector, RBP-J, binds specifically to the Gata3 promoter. We previously identified a T cell-specific Gata3 enhancer (Tce1) lying 280 kb downstream from the structural gene and demonstrated in transgenic mice that Tce1 promoted T lymphocyte-specific transcription of reporter genes throughout T cell development; however, it was not clear if Tce1 is required for Gata3 transcription in vivo. Here, we determined that the canonical Gata3 promoter is insufficient for Gata3 transcriptional activation in T cells in vivo, precluding the possibility that promoter binding by a host of previously implicated transcription factors alone is responsible for Gata3 expression in T cells. Instead, we demonstrated that multiple lineage-affiliated transcription factors bind to Tce1 and that this enhancer confers T lymphocyte-specific Gata3 activation in vivo, as targeted deletion of Tce1 in a mouse model abrogated critical functions of this T cell-regulatory element. Together, our data show that Tce1 is both necessary and sufficient for critical aspects of Gata3 T cell-specific transcriptional activity.

  17. In Vivo Imaging of Human MDR1 Transcription in the Brain and Spine of MDR1-Luciferase Reporter Mice.

    Science.gov (United States)

    Yasuda, Kazuto; Cline, Cynthia; Lin, Yvonne S; Scheib, Rachel; Ganguly, Samit; Thirumaran, Ranjit K; Chaudhry, Amarjit; Kim, Richard B; Schuetz, Erin G

    2015-11-01

    P-glycoprotein (Pgp) [the product of the MDR1 (ABCB1) gene] at the blood-brain barrier (BBB) limits central nervous system (CNS) entry of many prescribed drugs, contributing to the poor success rate of CNS drug candidates. Modulating Pgp expression could improve drug delivery into the brain; however, assays to predict regulation of human BBB Pgp are lacking. We developed a transgenic mouse model to monitor human MDR1 transcription in the brain and spinal cord in vivo. A reporter construct consisting of ∼10 kb of the human MDR1 promoter controlling the firefly luciferase gene was used to generate a transgenic mouse line (MDR1-luc). Fluorescence in situ hybridization localized the MDR1-luciferase transgene on chromosome 3. Reporter gene expression was monitored with an in vivo imaging system following D-luciferin injection. Basal expression was detectable in the brain, and treatment with activators of the constitutive androstane, pregnane X, and glucocorticoid receptors induced brain and spinal MDR1-luc transcription. Since D-luciferin is a substrate of ABCG2, the feasibility of improving D-luciferin brain accumulation (and luciferase signal) was tested by coadministering the dual ABCB1/ABCG2 inhibitor elacridar. The brain and spine MDR1-luc signal intensity was increased by elacridar treatment, suggesting enhanced D-luciferin brain bioavailability. There was regional heterogeneity in MDR1 transcription (cortex > cerebellum) that coincided with higher mouse Pgp protein expression. We confirmed luciferase expression in brain vessel endothelial cells by ex vivo analysis of tissue luciferase protein expression. We conclude that the MDR1-luc mouse provides a unique in vivo system to visualize MDR1 CNS expression and regulation.

  18. Discrimination between lineage-specific shelters by bat- and human-associated bed bugs does not constitute a stable reproductive barrier.

    Science.gov (United States)

    Balvín, Ondřej; Bartonička, Tomáš; Pilařová, Kateřina; DeVries, Zachary; Schal, Coby

    2017-01-01

    The common bed bug Cimex lectularius, has been recently shown to constitute two host races, which are likely in the course of incipient speciation. The human-associated lineage splits from the ancestral bat-associated species deep in the history of modern humans, likely even prior to the Neolithic Period and establishment of the first permanent human settlements. Hybridization experiments between these two lineages show that post-mating reproductive barriers are incomplete due to local variation. As mating takes place in off-host refugia marked by aggregation semiochemicals, the present investigation tested the hypothesis that bed bugs use these semiochemicals to differentiate between refugia marked by bat- and human-associated bed bugs; this would constitute a pre-copulation isolation mechanism. The preference for lineage-specific odors was tested using artificial shelters conditioned by a group of either male or female bed bugs. Adult males were assayed individually in four-choice assays that included two clean unconditioned control shelters. In most assays, bed bugs preferred to rest in conditioned shelters, with no apparent fidelity to shelters conditioned by their specific lineage. However, 51 % of the bat-associated males preferred unconditioned shelters over female-conditioned shelters of either lineage. Thus, bed bugs show no preferences for lineage-specific shelters, strongly suggesting that semiochemicals associated with shelters alone do not function in reproductive isolation.

  19. Monitoring immediate-early gene expression through firefly luciferase imaging of HRS/J hairless mice

    Directory of Open Access Journals (Sweden)

    Geusz Michael E

    2003-08-01

    Full Text Available Abstract Background Gene promoters fused to the firefly luciferase gene (luc are useful for examining gene regulation in live transgenic mice and they provide unique views of functioning organs. The dynamics of gene expression in cells and tissues expressing luciferase can be observed by imaging this enzyme's bioluminescent oxidation of luciferin. Neural pathways involved in specific behaviors have been identified by localizing expression of immediate-early genes such as c-fos. A transgenic mouse line with luc controlled by the human c-fos promoter (fos::luc has enabled gene expression imaging in brain slice cultures. To optimize imaging of immediate-early gene expression throughout intact mice, the present study examined fos::luc mice and a second transgenic mouse containing luc controlled by the human cytomegalovirus immediate-early gene 1 promoter and enhancer (CMV::luc. Because skin pigments and hair can significantly scatter light from underlying structures, the two transgenic lines were crossed with a hairless albino mouse (HRS/J to explore which deep structures could be imaged. Furthermore, live anesthetized mice were compared with overdosed mice. Results Bioluminescence imaging of anesthetized mice over several weeks corresponded with expression patterns in mice imaged rapidly after a lethal overdose. Both fos::luc and CMV::luc mice showed quantifiable bright bioluminescence in ear, nose, paws, and tail whether they were anesthetized or overdosed. CMV::luc and fos::luc neonates had bioluminescence patterns similar to those of adults, although intensity was significantly higher in neonates. CMV::luc mice crossed with HRS/J mice had high expression in bone, claws, head, pancreas, and skeletal muscle, but less in extremities than haired CMV::luc mice. Imaging of brain bioluminescence through the neonatal skull was also practical. By imaging luciferin autofluorescence it was clear that substrate distribution did not restrict bioluminescence

  20. Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae and other angiosperms for marker choice.

    Directory of Open Access Journals (Sweden)

    Nadja Korotkova

    Full Text Available Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae-a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC-trnV, trnR-atpA, ndhF-rpl32, psbM-trnD, and trnQ-rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters. Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid, Olea (asterids and Cymbidium (monocots showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF-rpl32 and trnK-rps16 were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing

  1. Transgenic bioreactors.

    Science.gov (United States)

    Jänne, J; Alhonen, L; Hyttinen, J M; Peura, T; Tolvanen, M; Korhonen, V P

    1998-01-01

    Since the generation of the first transgenic mice in 1980, transgene technology has also been successfully applied to large farm animals. Although this technology can be employed to improve certain production traits of livestock, this approach has not been very successful so far owing to unwanted effects encountered in the production animals. However, by using tissue-specific targeting of the transgene expression, it is possible to produce heterologous proteins in the extracellular space of large transgenic farm animals. Even though some recombinant proteins, such as human hemoglobin, have been produced in the blood of transgenic pigs, in the majority of the cases mammary gland targeted expression of the transgene has been employed. Using production genes driven by regulatory sequences of milk protein genes a number of valuable therapeutic proteins have been produced in the milk of transgenic bioreactors, ranging from rabbits to dairy cattle. Unlike bacterial fermentors, the mammary gland of transgenic bioreactors appear to carry out proper postsynthetic modifications of human proteins required for full biological activity. In comparison with mammalian cell bioreactors, transgenic livestock with mammary gland targeted expression seems to be able to produce valuable human therapeutic proteins at very low cost. Although not one transgenically produced therapeutic protein is yet on the market, the first such proteins have recently entered or even completed clinical trials required for their approval.

  2. Efficient generation of hiPSC neural lineage specific knockin reporters using the CRISPR/Cas9 and Cas9 double nickase system.

    Science.gov (United States)

    Li, Shenglan; Xue, Haipeng; Long, Bo; Sun, Li; Truong, Tai; Liu, Ying

    2015-05-28

    Gene targeting is a critical approach for characterizing gene functions in modern biomedical research. However, the efficiency of gene targeting in human cells has been low, which prevents the generation of human cell lines at a desired rate. The past two years have witnessed a rapid progression on improving efficiency of genetic manipulation by genome editing tools such as the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system. This manuscript describes a protocol for generating lineage specific human induced pluripotent stem cell (hiPSC) reporters using CRISPR/Cas system assisted homologous recombination. Procedures for obtaining necessary components for making neural lineage reporter lines using the CRISPR/Cas system, focusing on construction of targeting vectors and single guide RNAs, are described. This protocol can be extended to platform establishment and mutation correction in hiPSCs.

  3. Surface molecules that drive T cell development in vitro in the absence of thymic epithelium and in the absence of lineage-specific signals.

    Science.gov (United States)

    Cibotti, R; Punt, J A; Dash, K S; Sharrow, S O; Singer, A

    1997-03-01

    Differentiation of immature double positive (DP) CD4+ CD8+ thymocytes into single positive (SP) CD4+ and CD8+ T cells is referred to as positive selection and requires physical contact with thymic cortical epithelium. We now have identified "coinducer" molecules on DP thymocytes that, together with TCR, signal DP thymocytes to differentiate into SP T cells in vitro in the absence of thymic epithelium. A remarkable number of different molecules on DP thymocytes possessed "coinducing" activity, including CD2, CD5, CD24, CD28, CD49d, CD81, and TSA-1. Interestingly, in vitro differentiation occurred in the absence of lineage-specific signals, yet resulted in the selective generation of CD4+CD8- T cells. Thus, the present study has identified surface molecules that can signal DP thymocytes to differentiate into SP T cells in the absence of thymic epithelium and has characterized a default pathway for CD4+ T cell differentiation.

  4. Hominoid lineage specific amplification of low-copy repeats on 22q11.2 (LCR22s) associated with velo-cardio-facial/digeorge syndrome.

    Science.gov (United States)

    Babcock, Melanie; Yatsenko, Svetlana; Hopkins, Janet; Brenton, Matthew; Cao, Qing; de Jong, Pieter; Stankiewicz, Pawel; Lupski, James R; Sikela, James M; Morrow, Bernice E

    2007-11-01

    Segmental duplications or low-copy repeats (LCRs) constitute approximately 5% of the sequenced portion of the human genome and are associated with many human congenital anomaly disorders. The low-copy repeats on chromosome 22q11.2 (LCR22s) mediate chromosomal rearrangements resulting in deletions, duplications and translocations. The evolutionary mechanisms leading to LCR22 formation is unknown. Four genes, USP18, BCR, GGTLA and GGT, map adjacent to the LCR22s and pseudogene copies are located within them. It has been hypothesized that gene duplication occurred during primate evolution, followed by recombination events, forming pseudogene copies. We investigated whether gene duplication could be detected in non-human hominoid species. FISH mapping was performed using probes to the four functional gene loci. There was evidence for a single copy in humans but additional copies in hominoid species. We then compared LCR22 copy number using LCR22 FISH probes. Lineage specific LCR22 variation was detected in the hominoid species supporting the hypothesis. To independently validate initial findings, real time PCR, and screening of gorilla BAC library filters were performed. This was compared to array comparative genome hybridization data available. The most striking finding was a dramatic amplification of LCR22s in the gorilla. The LCR22s localized to the telomeric or subtelomeric bands of gorilla chromosomes. The most parsimonious explanation is that the LCR22s became amplified by inter-chromosomal recombination between telomeric bands. In summary, our results are consistent with a lineage specific coupling between gene and LCR22 duplication events. The LCR22s thus serve as an important model for evolution of genome variation.

  5. Lineage-specific responses of tooth shape in murine rodents (murinae, rodentia to late Miocene dietary change in the Siwaliks of Pakistan.

    Directory of Open Access Journals (Sweden)

    Yuri Kimura

    Full Text Available Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades, and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation

  6. Lineage-specific responses of tooth shape in murine rodents (murinae, rodentia) to late Miocene dietary change in the Siwaliks of Pakistan.

    Science.gov (United States)

    Kimura, Yuri; Jacobs, Louis L; Flynn, Lawrence J

    2013-01-01

    Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades), and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation and define

  7. Luciferase does not Alter Metabolism in Cancer Cells

    Science.gov (United States)

    Johnson, Caroline H.; Fisher, Timothy S.; Hoang, Linh T.; Felding, Brunhilde H.; Siuzdak, Gary; O’Brien, Peter J.

    2014-01-01

    Luciferase transfected cell lines are used extensively for cancer models, revealing valuable biological information about disease mechanisms. However, these genetically encoded reporters, while useful for monitoring tumor response in cancer models, can impact cell metabolism. Indeed firefly luciferase and fatty acyl-CoA synthetases differ by a single amino acid, raising the possibility that luciferase activity might alter metabolism and introduce experimental artifacts. Therefore knowledge of the metabolic response to luciferase transfection is of significant importance, especially given the thousands of research studies using luciferase as an in vivo bioluminescence imaging (BLI) reporter. Untargeted metabolomics experiments were performed to examine three different types of lymphoblastic leukemia cell lines (Ramos, Raji and SUP T1) commonly used in cancer research, each were analyzed with and without vector transduction. The Raji model was also tested under perturbed starvation conditions to examine potential luciferase-mediated stress responses. The results showed that no significant metabolic differences were observed between parental and luciferase transduced cells for each cell line, and that luciferase overexpression does not alter cell metabolism under basal or perturbed conditions. PMID:24791164

  8. Luciferase detection during stationary phase in Lactococcus lactis

    NARCIS (Netherlands)

    Bachmann, H.; Santos, dos F.; Kleerebezem, M.; Hylckama Vlieg, van J.E.T.

    2007-01-01

    The luminescence signal of luxAB-encoded bacterial luciferase strongly depends on the metabolic state of the host cell, which restricts the use of this reporter system to metabolically active bacteria. Here we show that in stationary-phase cells of Lactococcus lactis, detection of luciferase is sign

  9. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications

    Directory of Open Access Journals (Sweden)

    Lu Jianguo

    2012-06-01

    Full Text Available Abstract Background Gene duplication has had a major impact on genome evolution. Localized (or tandem duplication resulting from unequal crossing over and whole genome duplication are believed to be the two dominant mechanisms contributing to vertebrate genome evolution. While much scrutiny has been directed toward discerning patterns indicative of whole-genome duplication events in teleost species, less attention has been paid to the continuous nature of gene duplications and their impact on the size, gene content, functional diversity, and overall architecture of teleost genomes. Results Here, using a Markov clustering algorithm directed approach we catalogue and analyze patterns of gene duplication in the four model teleost species with chromosomal coordinates: zebrafish, medaka, stickleback, and Tetraodon. Our analyses based on set size, duplication type, synonymous substitution rate (Ks, and gene ontology emphasize shared and lineage-specific patterns of genome evolution via gene duplication. Most strikingly, our analyses highlight the extraordinary duplication and retention rate of recent duplicates in zebrafish and their likely role in the structural and functional expansion of the zebrafish genome. We find that the zebrafish genome is remarkable in its large number of duplicated genes, small duplicate set size, biased Ks distribution toward minimal mutational divergence, and proportion of tandem and intra-chromosomal duplicates when compared with the other teleost model genomes. The observed gene duplication patterns have played significant roles in shaping the architecture of teleost genomes and appear to have contributed to the recent functional diversification and divergence of important physiological processes in zebrafish. Conclusions We have analyzed gene duplication patterns and duplication types among the available teleost genomes and found that a large number of genes were tandemly and intrachromosomally duplicated, suggesting

  10. Gaussia Luciferase for Bioluminescence Tumor Monitoring in Comparison with Firefly Luciferase

    Directory of Open Access Journals (Sweden)

    Yusuke Inoue

    2011-09-01

    Full Text Available Gaussia luciferase (Gluc is a secreted reporter, and its expression in living animals can be assessed by in vivo bioluminescence imaging (BLI or blood assays. We characterized Gluc as an in vivo reporter in comparison with firefly luciferase (Fluc. Mice were inoculated subcutaneously with tumor cells expressing both Fluc and Gluc and underwent Flue BLI, Gluc BLI, blood assays of Glue activity, and caliper measurement. In Gluc BLI, the signal from the tumor peaked immediately and then decreased rapidly. In the longitudinal monitoring, all measures indicated an increase in tumor burden early after cell inoculation. However, the increase reached plateaus in Gluc BLI and Fluc BLI despite a continuous increase in the caliper measurement and Gluc blood assay. Significant correlations were found between the measures, and the correlation between the blood signal and caliper volume was especially high. Gluc allows tumor monitoring in mice and should be applicable to dual-reporter assessment in combination with Fluc. The Gluc blood assay appears to provide a reliable indicator of viable tumor burden, and the combination of a blood assay and in vivo BLI using Glue should be promising for quantifying and localizing the tumors.

  11. Gene Loss and Lineage-Specific Restriction-Modification Systems Associated with Niche Differentiation in the Campylobacter jejuni Sequence Type 403 Clonal Complex.

    Science.gov (United States)

    Morley, Laura; McNally, Alan; Paszkiewicz, Konrad; Corander, Jukka; Méric, Guillaume; Sheppard, Samuel K; Blom, Jochen; Manning, Georgina

    2015-06-01

    Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation.

  12. Lineage-Specific Differences between the gp120 Inner Domain Layer 3 of Human Immunodeficiency Virus and That of Simian Immunodeficiency Virus.

    Science.gov (United States)

    Ding, Shilei; Medjahed, Halima; Prévost, Jérémie; Coutu, Mathieu; Xiang, Shi-Hua; Finzi, Andrés

    2016-11-15

    Binding of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) gp120 exterior envelope glycoprotein to CD4 triggers conformational changes in gp120 that promote its interaction with one of the chemokine receptors, usually CCR5, ultimately leading to gp41-mediated virus-cell membrane fusion and entry. We previously described that topological layers (layer 1, layer 2, and layer 3) in the gp120 inner domain contribute to gp120-trimer association in the unliganded state but also help secure CD4 binding. Relative to layer 1 of HIV-1 gp120, the SIVmac239 gp120 layer 1 plays a more prominent role in maintaining gp120-trimer association but is minimally involved in promoting CD4 binding, which could be explained by the existence of a well-conserved tryptophan at position 375 (Trp 375) in HIV-2/SIVsmm. In this study, we investigated the role of SIV layer 3 in viral entry, cell-to-cell fusion, and CD4 binding. We observed that a network of interactions involving some residues of the β8-α5 region in SIVmac239 layer 3 may contribute to CD4 binding by helping shape the nearby Phe 43 cavity, which directly contacts CD4. In summary, our results suggest that layer 3 in SIV has a greater impact on CD4 binding than in HIV-1. This work defines lineage-specific differences in layer 3 from HIV-1 and that from SIV.

  13. Misregulation of spermatogenesis genes in Drosophila hybrids is lineage-specific and driven by the combined effects of sterility and fast male regulatory divergence.

    Science.gov (United States)

    Gomes, S; Civetta, A

    2014-09-01

    Hybrid male sterility is a common outcome of crosses between different species. Gene expression studies have found that a number of spermatogenesis genes are differentially expressed in sterile hybrid males, compared with parental species. Late-stage sperm development genes are particularly likely to be misexpressed, with fewer early-stage genes affected. Thus, a link has been posited between misexpression and sterility. A more recent alternative explanation for hybrid gene misexpression has been that it is independent of sterility and driven by divergent evolution of male-specific regulatory elements between species (faster male hypothesis). The faster male hypothesis predicts that misregulation of spermatogenesis genes should be independent of sterility and approximately the same in both hybrids, whereas sterility should only affect gene expression in sterile hybrids. To test the faster male hypothesis vs. the effect of sterility on gene misexpression, we analyse spermatogenesis gene expression in different species pairs of the Drosophila phylogeny, where hybrid male sterility occurs in only one direction of the interspecies cross (i.e. unidirectional sterility). We find significant differences among genes in misexpression with effects that are lineage-specific and caused by sterility or fast male regulatory divergence. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  14. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus.

    Science.gov (United States)

    Wu, Wei; Yang, Yu-Lan; He, Wei-Ming; Rouard, Mathieu; Li, Wei-Ming; Xu, Meng; Roux, Nicolas; Ge, Xue-Jun

    2016-08-17

    Crop wild relatives are valuable resources for future genetic improvement. Here, we report the de novo genome assembly of Musa itinerans, a disease-resistant wild banana relative in subtropical China. The assembled genome size was 462.1 Mb, covering 75.2% of the genome (615.2Mb) and containing 32, 456 predicted protein-coding genes. Since the approximate divergence around 5.8 million years ago, the genomes of Musa itinerans and Musa acuminata have shown conserved collinearity. Gene family expansions and contractions enrichment analysis revealed that some pathways were associated with phenotypic or physiological innovations. These include a transition from wood to herbaceous in the ancestral Musaceae, intensification of cold and drought tolerances, and reduced diseases resistance genes for subtropical marginally distributed Musa species. Prevalent purifying selection and transposed duplications were found to facilitate the diversification of NBS-encoding gene families for two Musa species. The population genome history analysis of M. itinerans revealed that the fluctuated population sizes were caused by the Pleistocene climate oscillations, and that the formation of Qiongzhou Strait might facilitate the population downsizing on the isolated Hainan Island about 10.3 Kya. The qualified assembly of the M. itinerans genome provides deep insights into the lineage-specific diversification and also valuable resources for future banana breeding.

  15. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    Science.gov (United States)

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling.

  16. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla).

    Science.gov (United States)

    Gallus, S; Kumar, V; Bertelsen, M F; Janke, A; Nilsson, M A

    2015-10-25

    Ruminantia, the ruminating, hoofed mammals (cow, deer, giraffe and allies) are an unranked artiodactylan clade. Around 50-60 million years ago the BovB retrotransposon entered the ancestral ruminantian genome through horizontal gene transfer. A survey genome screen using 454-pyrosequencing of the Java mouse deer (Tragulus javanicus) and the lesser kudu (Tragelaphus imberbis) was done to investigate and to compare the landscape of transposable elements within Ruminantia. The family Tragulidae (mouse deer) is the only representative of Tragulina and phylogenetically important, because it represents the earliest divergence in Ruminantia. The data analyses show that, relative to other ruminantian species, the lesser kudu genome has seen an expansion of BovB Long INterspersed Elements (LINEs) and BovB related Short INterspersed Elements (SINEs) like BOVA2. In comparison the genome of Java mouse deer has fewer BovB elements than other ruminants, especially Bovinae, and has in addition a novel CHR-3 SINE most likely propagated by LINE-1. By contrast the other ruminants have low amounts of CHR SINEs but high numbers of actively propagating BovB-derived and BovB-propagated SINEs. The survey sequencing data suggest that the transposable element landscape in mouse deer (Tragulina) is unique among Ruminantia, suggesting a lineage specific evolutionary trajectory that does not involve BovB mediated retrotransposition. This shows that the genomic landscape of mobile genetic elements can rapidly change in any lineage.

  17. A Cytoplasmic Form of Gaussia luciferase Provides a Highly Sensitive Test for Cytotoxicity

    Science.gov (United States)

    Tsuji, Saori; Ohbayashi, Tetsuya; Yamakage, Kohji; Oshimura, Mitsuo; Tada, Masako

    2016-01-01

    The elimination of unfavorable chemicals from our environment and commercial products requires a sensitive and high-throughput in vitro assay system for drug-induced hepatotoxicity. Some previous methods for evaluating hepatotoxicity measure the amounts of cytoplasmic enzymes secreted from damaged cells into the peripheral blood or culture medium. However, most of these enzymes are proteolytically digested in the extracellular milieu, dramatically reducing the sensitivity and reliability of such assays. Other methods measure the decrease in cell viability following exposure to a compound, but such endpoint assays are often confounded by proliferation of surviving cells that replace dead or damaged cells. In this study, with the goal of preventing false-negative diagnoses, we developed a sensitive luminometric cytotoxicity test using a stable form of luciferase. Specifically, we converted Gaussia luciferase (G-Luc) from an actively secreted form to a cytoplasmic form by adding an ER-retention signal composed of the four amino acids KDEL. The bioluminescent signal was >30-fold higher in transgenic HepG2 human hepatoblastoma cells expressing G-Luc+KDEL than in cells expressing wild-type G-Luc. Moreover, G-Luc+KDEL secreted from damaged cells was stable in culture medium after 24 hr at 37°C. We evaluated the accuracy of our cytotoxicity test by subjecting identical samples obtained from chemically treated transgenic HepG2 cells to the G-Luc+KDEL assay and luminometric analyses based on secretion of endogenous adenylate kinase or cellular ATP level. Time-dependent accumulation of G-Luc+KDEL in the medium increased the sensitivity of our assay above those of existing tests. Our findings demonstrate that strong and stable luminescence of G-Luc+KDEL in human hepatocyte-like cells, which have high levels of metabolic activity, make it suitable for use in a high-throughput screening system for monitoring time-dependent cytotoxicity in a limited number of cells. PMID

  18. Multi-species sequence comparison reveals dynamic evolution of the elastin gene that has involved purifying selection and lineage-specific insertions/deletions

    Directory of Open Access Journals (Sweden)

    Green Eric D

    2004-05-01

    Full Text Available Abstract Background The elastin gene (ELN is implicated as a factor in both supravalvular aortic stenosis (SVAS and Williams Beuren Syndrome (WBS, two diseases involving pronounced complications in mental or physical development. Although the complete spectrum of functional roles of the processed gene product remains to be established, these roles are inferred to be analogous in human and mouse. This view is supported by genomic sequence comparison, in which there are no large-scale differences in the ~1.8 Mb sequence block encompassing the common region deleted in WBS, with the exception of an overall reversed physical orientation between human and mouse. Results Conserved synteny around ELN does not translate to a high level of conservation in the gene itself. In fact, ELN orthologs in mammals show more sequence divergence than expected for a gene with a critical role in development. The pattern of divergence is non-conventional due to an unusually high ratio of gaps to substitutions. Specifically, multi-sequence alignments of eight mammalian sequences reveal numerous non-aligning regions caused by species-specific insertions and deletions, in spite of the fact that the vast majority of aligning sites appear to be conserved and undergoing purifying selection. Conclusions The pattern of lineage-specific, in-frame insertions/deletions in the coding exons of ELN orthologous genes is unusual and has led to unique features of the gene in each lineage. These differences may indicate that the gene has a slightly different functional mechanism in mammalian lineages, or that the corresponding regions are functionally inert. Identified regions that undergo purifying selection reflect a functional importance associated with evolutionary pressure to retain those features.

  19. Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection.

    Science.gov (United States)

    Weber, Claudia C; Nabholz, Benoit; Romiguier, Jonathan; Ellegren, Hans

    2014-01-01

    The ratio of the rates of non-synonymous and synonymous substitution (dN/dS) is commonly used to estimate selection in coding sequences. It is often suggested that, all else being equal, dN/dS should be lower in populations with large effective size (Ne) due to increased efficacy of purifying selection. As Ne is difficult to measure directly, life history traits such as body mass, which is typically negatively associated with population size, have commonly been used as proxies in empirical tests of this hypothesis. However, evidence of whether the expected positive correlation between body mass and dN/dS is consistently observed is conflicting. Employing whole genome sequence data from 48 avian species, we assess the relationship between rates of molecular evolution and life history in birds. We find a negative correlation between dN/dS and body mass, contrary to nearly neutral expectation. This raises the question whether the correlation might be a method artefact. We therefore in turn consider non-stationary base composition, divergence time and saturation as possible explanations, but find no clear patterns. However, in striking contrast to dN/dS, the ratio of radical to conservative amino acid substitutions (Kr/Kc) correlates positively with body mass. Our results in principle accord with the notion that non-synonymous substitutions causing radical amino acid changes are more efficiently removed by selection in large populations, consistent with nearly neutral theory. These findings have implications for the use of dN/dS and suggest that caution is warranted when drawing conclusions about lineage-specific modes of protein evolution using this metric.

  20. Regulation of transgene expression in genetic immunization

    Directory of Open Access Journals (Sweden)

    Harms J.S.

    1999-01-01

    Full Text Available The use of mammalian gene expression vectors has become increasingly important for genetic immunization and gene therapy as well as basic research. Essential for the success of these vectors in genetic immunization is the proper choice of a promoter linked to the antigen of interest. Many genetic immunization vectors use promoter elements from pathogenic viruses including SV40 and CMV. Lymphokines produced by the immune response to proteins expressed by these vectors could inhibit further transcription initiation by viral promoters. Our objective was to determine the effect of IFN-g on transgene expression driven by viral SV40 or CMV promoter/enhancer and the mammalian promoter/enhancer for the major histocompatibility complex class I (MHC I gene. We transfected the luciferase gene driven by these three promoters into 14 cell lines of many tissues and several species. Luciferase assays of transfected cells untreated or treated with IFN-g indicated that although the viral promoters could drive luciferase production in all cell lines tested to higher or lower levels than the MHC I promoter, treatment with IFN-g inhibited transgene expression in most of the cell lines and amplification of the MHC I promoter-driven transgene expression in all cell lines. These data indicate that the SV40 and CMV promoter/enhancers may not be a suitable choice for gene delivery especially for genetic immunization or cancer cytokine gene therapy. The MHC I promoter/enhancer, on the other hand, may be an ideal transgene promoter for applications involving the immune system.

  1. Dual-Color Click Beetle Luciferase Heteroprotein Fragment Complementation Assays

    Science.gov (United States)

    Villalobos, Victor; Naik, Snehal; Bruinsma, Monique; Dothager, Robin S.; Pan, Mei-Hsiu; Samrakandi, Mustapha; Moss, Britney; Elhammali, Adnan; Piwnica-Worms, David

    2010-01-01

    Summary Understanding the functional complexity of protein interactions requires mapping biomolecular complexes within the cellular environment over biologically-relevant time scales. Herein we describe a novel set of reversible, multicolored heteroprotein complementation fragments based on various firefly and click beetle luciferases that utilize the same substrate, D-luciferin. Luciferase heteroprotein fragment complementation systems enabled dual-color quantification of two discreet pairs of interacting proteins simultaneously or two distinct proteins interacting with a third shared protein in live cells. Using real-time analysis of click beetle green and click beetle red luciferase heteroprotein fragment complementation applied to β-TrCP, an E3-ligase common to the regulation of both β-catenin and IκBα, GSK3β was identified as a novel candidate kinase regulating IκBα processing. These dual-color protein interaction switches may enable directed dynamic analysis of a variety of protein interactions in living cells. PMID:20851351

  2. Lineage-specific positive selection at the merozoite surface protein 1 (msp1 locus of Plasmodium vivax and related simian malaria parasites

    Directory of Open Access Journals (Sweden)

    Kawai Satoru

    2010-02-01

    -specifically on msp1. Conclusions The present results indicate that the msp1 locus of P. vivax and related parasite species has lineage-specific unique evolutionary history with positive selection. P. vivax and related simian malaria parasites offer an interesting system toward understanding host species-dependent adaptive evolution of immune-target surface antigen genes such as msp1.

  3. ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa paralogs

    Directory of Open Access Journals (Sweden)

    Lopes Karina L

    2011-01-01

    Full Text Available Abstract Background Duplications are very common in the evolution of plant genomes, explaining the high number of members in plant gene families. New genes born after duplication can undergo pseudogenization, neofunctionalization or subfunctionalization. Rice is a model for functional genomics research, an important crop for human nutrition and a target for biofortification. Increased zinc and iron content in the rice grain could be achieved by manipulation of metal transporters. Here, we describe the ZINC-INDUCED FACILITATOR-LIKE (ZIFL gene family in plants, and characterize the genomic structure and expression of rice paralogs, which are highly affected by segmental duplication. Results Sequences of sixty-eight ZIFL genes, from nine plant species, were comparatively analyzed. Although related to MSF_1 proteins, ZIFL protein sequences consistently grouped separately. Specific ZIFL sequence signatures were identified. Monocots harbor a larger number of ZIFL genes in their genomes than dicots, probably a result of a lineage-specific expansion. The rice ZIFL paralogs were named OsZIFL1 to OsZIFL13 and characterized. The genomic organization of the rice ZIFL genes seems to be highly influenced by segmental and tandem duplications and concerted evolution, as rice genome contains five highly similar ZIFL gene pairs. Most rice ZIFL promoters are enriched for the core sequence of the Fe-deficiency-related box IDE1. Gene expression analyses of different plant organs, growth stages and treatments, both from our qPCR data and from microarray databases, revealed that the duplicated ZIFL gene pairs are mostly co-expressed. Transcripts of OsZIFL4, OsZIFL5, OsZIFL7, and OsZIFL12 accumulate in response to Zn-excess and Fe-deficiency in roots, two stresses with partially overlapping responses. Conclusions We suggest that ZIFL genes have different evolutionary histories in monocot and dicot lineages. In rice, concerted evolution affected ZIFL duplicated genes

  4. Cryptic diversity in the estuarine copepod Acartia tonsa: reproductive isolation and lineage-specific divergence in transcriptomic response to salinity stress

    Science.gov (United States)

    Plough, L. V.

    2016-02-01

    physiological response to salinity stress. Future work will examine lineage-specific responses to other significant stressors such as hypoxia.

  5. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice

    Directory of Open Access Journals (Sweden)

    Liu Zhihui

    2008-08-01

    Full Text Available Abstract Background Interleukin 1 beta (IL-1β plays an important role in a number of chronic and acute inflammatory diseases. To understand the role of IL-1β in disease processes and develop an in vivo screening system for anti-inflammatory drugs, a transgenic mouse line was generated which incorporated the transgene firefly luciferase gene driven by a 4.5-kb fragment of the human IL-1β gene promoter. Luciferase gene expression was monitored in live mice under anesthesia using bioluminescence imaging in a number of inflammatory disease models. Results In a LPS-induced sepsis model, dramatic increase in luciferase activity was observed in the mice. This transgene induction was time dependent and correlated with an increase of endogenous IL-1β mRNA and pro-IL-1β protein levels in the mice. In a zymosan-induced arthritis model and an oxazolone-induced skin hypersensitivity reaction model, luciferase expression was locally induced in the zymosan injected knee joint and in the ear with oxazolone application, respectively. Dexamethasone suppressed the expression of luciferase gene both in the acute sepsis model and in the acute arthritis model. Conclusion Our data suggest that the transgenic mice model could be used to study transcriptional regulation of the IL-1β gene expression in the inflammatory process and evaluation the effect of anti-inflammatory drug in vivo.

  6. A cleavage clock regulates features of lineage-specific differentiation in the development of a basal branching metazoan, the ctenophore Mnemiopsis leidyi.

    Science.gov (United States)

    Fischer, Antje Hl; Pang, Kevin; Henry, Jonathan Q; Martindale, Mark Q

    2014-01-31

    ratio, are critical for the appearance of lineage-specific differentiation. Our work corroborates previous studies demonstrating that the cleavage program is causally involved in the spatial segregation and/or activation of factors that give rise to distinct cell types in ctenophore development. These factors are segregated independently to the appropriate lineage at the 8- and the 16-cell stages and have features of a clock, such that comb-plate-like cilia and light-emitting photoproteins appear at roughly the same developmental time in cleavage-arrested embryos as they do in untreated embryos. Nuclear division, which possibly affects DNA-cytoplasmic ratios, appears to be important in the timing of differentiation markers. Evidence suggests that the 60-cell stage, just prior to gastrulation, is the time of zygotic gene activation. Such cleavage-clock-regulated phenomena appear to be widespread amongst the Metazoa and these cellular and molecular developmental mechanisms probably evolved early in metazoan evolution.

  7. Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans

    Science.gov (United States)

    Nishiguchi, Tomoki; Yamada, Toshimichi; Nasu, Yusuke; Ito, Mashiho; Yoshimura, Hideaki; Ozawa, Takeaki

    2015-10-01

    Luciferase, a bioluminescent protein, has been used as an analytical tool to visualize intracellular phenomena. Luciferase with red light emission is particularly useful for bioluminescence imaging because of its high transmittance in mammalian tissues. However, the luminescence intensity of existing luciferases with their emission over 600 nm is insufficient for imaging studies because of their weak intensities. We developed mutants of Emerald luciferase (Eluc) from Brazilian click beetle (Pyrearinus termitilluminans), which emits the strongest bioluminescence among beetle luciferases. We successively introduced four amino acid mutations into the luciferase based on a predicted structure of Eluc using homology modeling. Results showed that quadruple mutations R214K/H241K/S246H/H347A into the beetle luciferase emit luminescence with emission maximum at 626 nm, 88-nm red-shift from the wild-type luciferase. This mutant luciferase is anticipated for application in in vivo multicolor imaging in living samples.

  8. Active-site properties of Phrixotrix railroad worm green and red bioluminescence-eliciting luciferases.

    Science.gov (United States)

    Viviani, V R; Arnoldi, F G C; Venkatesh, B; Neto, A J S; Ogawa, F G T; Oehlmeyer, A T L; Ohmiya, Y

    2006-10-01

    The luciferases of the railroad worm Phrixotrix (Coleoptera: Phengodidae) are the only beetle luciferases that naturally produce true red bioluminescence. Previously, we cloned the green- (PxGR) and red-emitting (PxRE) luciferases of railroad worms Phrixotrix viviani and P. hirtus[OLE1]. These luciferases were expressed and purified, and their active-site properties were determined. The red-emitting PxRE luciferase displays flash-like kinetics, whereas PxGR luciferase displays slow-type kinetics. The substrate affinities and catalytic efficiency of PxRE luciferase are also higher than those of PxGR luciferase. Fluorescence studies with 8-anilino-1-naphthalene sulfonic acid and 6-p-toluidino-2-naphthalene sulfonic acid showed that the PxRE luciferase luciferin-binding site is more polar than that of PxGR luciferase, and it is sensitive to guanidine. Mutagenesis and modelling studies suggest that several invariant residues in the putative luciferin-binding site of PxRE luciferase cannot interact with excited oxyluciferin. These results suggest that one portion of the luciferin-binding site of the red-emitting luciferase is tighter than that of PxGR luciferase, whereas the other portion could be more open and polar.

  9. Engineering luciferase enzymes and substrates for novel assay capabilities

    Science.gov (United States)

    Wood, Keith V.

    2004-06-01

    In the development of HTS as a central paradigm of drug discovery, fluorescent reporter molecules have generally been adopted as the favored signal transducer. Nevertheless, luminescence has maintained a prominent position among certain methodologies, most notably genetic reporters. Recently, there has been growing partiality for luminescent assays across a broader range of applications due to their sensitivity, extensive linearity, and robustness to library compounds and complex biological samples. This trend has been fostered by development several new assay designs for diverse targets such as kinases, cytochrome p450's, proteases, apoptosis, and cytotoxicity. This review addresses recent progress made in the use of bioluminescent assays for drug discovery, highlighting new detection capabilities brought about by engineering luciferase enzymes and substrates. In reporter gene applications, modified luciferases have provided greatly improved expression efficiency in mammalian cells, improved responsiveness to changes of transcriptional rate, and increased the magnitude of the reporter response. Highly stabilized luciferase mutants have enabled new assays strategies for high-throughput screening based on detection of ATP and luciferin. Assays based on ATP support rapid analysis of cell metabolism and enzymatic processes coupled to ATP hydrolysis. Although luciferin is found natively only in luminous beetles, coupled assays have been designed using modified forms of luciferin requiring the action of second enzyme to yield luminescence. Due to the very low inherent background and protection of the photon-emitter afforded by the enzyme, bioluminescent assays often outperform the analogous fluorescent assays for analyses performed in multiwell plates.

  10. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.

    2016-11-23

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  11. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  12. Electroporation facilitates introduction of reporter transgenes and virions into schistosome eggs.

    Directory of Open Access Journals (Sweden)

    Kristine J Kines

    2010-02-01

    Full Text Available The schistosome egg represents an attractive developmental stage at which to target transgenes because of the high ratio of germ to somatic cells, because the transgene might be propagated and amplified by infecting snails with the miracidia hatched from treated eggs, and because eggs can be readily obtained from experimentally infected rodents.We investigated the utility of square wave electroporation to deliver transgenes and other macromolecules including fluorescent (Cy3 short interference (si RNA molecules, messenger RNAs, and virions into eggs of Schistosoma mansoni. First, eggs were incubated in Cy3-labeled siRNA with and without square wave electroporation. Cy3-signals were detected by fluorescence microscopy in eggs and miracidia hatched from treated eggs. Second, electroporation was employed to introduce mRNA encoding firefly luciferase into eggs. Luciferase activity was detected three hours later, whereas luciferase was not evident in eggs soaked in the mRNA. Third, schistosome eggs were exposed to Moloney murine leukemia virus virions (MLV pseudotyped with vesicular stomatitis virus glycoprotein (VSVG. Proviral transgenes were detected by PCR in genomic DNA from miracidia hatched from virion-exposed eggs, indicating the presence of transgenes in larval schistosomes that had been either soaked or electroporated. However, quantitative PCR (qPCR analysis determined that electroporation of virions resulted in 2-3 times as many copies of provirus in these schistosomes compared to soaking alone. In addition, relative qPCR indicated a copy number for the proviral luciferase transgene of approximately 20 copies for 100 copies of a representative single copy endogenous gene (encoding cathepsin D.Square wave electroporation facilitates introduction of transgenes into the schistosome egg. Electroporation was more effective for the transduction of eggs with pseudotyped MLV than simply soaking the eggs in virions. These findings underscore the

  13. Luciferase-expressing Leishmania infantum allows the monitoring of amastigote population size, in vivo, ex vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Grégory Michel

    2011-09-01

    Full Text Available Here we engineered transgenic Leishmania infantum that express luciferase, the objectives being to more easily monitor in real time their establishment either in BALB/c mice--the liver and spleen being mainly studied-or in vitro. Whatever stationary phase L. infantum promastigotes population--wild type or engineered to express luciferase-the parasite burden was similar in the liver and the spleen at day 30 post the intravenous inoculation of BALB/c mice. Imaging of L. infantum hosting BALB/C mice provided sensitivity in the range of 20,000 to 40,000 amastigotes/mg tissue, two tissues-liver and spleen-being monitored. Once sampled and processed ex vivo for their luciferin-dependent bioluminescence the threshold sensitivity was shown to range from 1,000 to 6,000 amastigotes/mg tissue. This model further proved to be valuable for in vivo measurement of the efficiency of drugs such as miltefosine and may, therefore, additionally be used to evaluate vaccine-induced protection.

  14. Application of the dual-luciferase reporter assay to the analysis of promoter activity in Zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Mulero Victoriano

    2008-10-01

    Full Text Available Abstract Background The dual-luciferase assay has been widely used in cell lines to determine rapidly but accurately the activity of a given promoter. Although this strategy has proved very useful, it does not allow the promoter and gene function to be analyzed in the context of the whole organism. Results Here, we present a rapid and sensitive assay based on the classical dual-luciferase reporter technique which can be used as a new tool to characterize the minimum promoter region of a gene as well as the in vivo response of inducible promoters to different stimuli. We illustrate the usefulness of this system for studying both constitutive (telomerase and inducible (NF-κB-dependent promoters. The flexibility of this assay is demonstrated by induction of the NF-κB-dependent promoters using simultaneous microinjection of different pathogen-associated molecular patterns as well as with the use of morpholino-gene mediated knockdown. Conclusion This assay has several advantages compared with the classical in vitro (cell lines and in vivo (transgenic mice approaches. Among others, the assay allows a rapid and quantitative measurement of the effects of particular genes or drugs in a given promoter in the context of a whole organism and it can also be used in high throughput screening experiments.

  15. Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo.

    Science.gov (United States)

    Guse, K; Dias, J D; Bauerschmitz, G J; Hakkarainen, T; Aavik, E; Ranki, T; Pisto, T; Särkioja, M; Desmond, R A; Kanerva, A; Hemminki, A

    2007-06-01

    Oncolytic viruses kill cancer cells by tumor-selective replication. Clinical data have established the safety of the approach but also the need of improvements in potency. Efficacy of oncolysis is linked to effective infection of target cells and subsequent productive replication. Other variables include intratumoral barriers, access to target cells, uptake by non-target organs and immune response. Each of these aspects relates to the location and degree of virus replication. Unfortunately, detection of in vivo replication has been difficult, labor intensive and costly and therefore not much studied. We hypothesized that by coinfection of a luciferase expressing E1-deleted virus with an oncolytic virus, both viruses would replicate when present in the same cell. Photon emission due to conversion of D-Luciferin is sensitive and penetrates tissues well. Importantly, killing of animals is not required and each animal can be imaged repeatedly. Two different murine xenograft models were used and intratumoral coinjections of luciferase encoding virus were performed with eight different oncolytic adenoviruses. In both models, we found significant correlation between photon emission and infectious virus production. This suggests that the system can be used for non-invasive quantitation of the amplitude, persistence and dynamics of oncolytic virus replication in vivo, which could be helpful for the development of more effective and safe agents.

  16. Spatial Distribution of Transgenic Protein After Gene Electrotransfer to Porcine Muscle

    DEFF Research Database (Denmark)

    Spanggaard, Iben; Corydon, Thomas; Hojman, Pernille

    2012-01-01

    Abstract Gene electrotransfer is an effective nonviral technique for delivery of plasmid DNA into tissues. From a clinical perspective, muscle is an attractive target tissue as long-term, high-level transgenic expression can be achieved. Spatial distribution of the transgenic protein following gene...... electrotransfer to muscle in a large animal model has not yet been investigated. In this study, 17 different doses of plasmid DNA (1-1500 μg firefly luciferase pCMV-Luc) were delivered in vivo to porcine gluteal muscle using electroporation. Forty-eight hours post treatment several biopsies were obtained from...... each transfection site in order to examine the spatial distribution of the transgenic product. We found a significantly higher luciferase activity in biopsies from the center of the transfection site compared to biopsies taken adjacent to the center, 1 and 2 cm along muscle fiber orientation (p...

  17. Crystal structure of native and a mutant of Lampyris turkestanicus luciferase implicate in bioluminescence color shift.

    Science.gov (United States)

    Kheirabadi, Mitra; Sharafian, Zohreh; Naderi-Manesh, Hossein; Heineman, Udo; Gohlke, Ulrich; Hosseinkhani, Saman

    2013-12-01

    Firefly bioluminescence reaction in the presence of Mg(2+), ATP and molecular oxygen is carried out by luciferase. The luciferase structure alterations or modifications of assay conditions determine the bioluminescence color of firefly luciferase. Among different beetle luciferases, Phrixothrix hirtus railroad worm emits either yellow or red bioluminescence color. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional arginine residue at 353 that is absent in other firefly luciferases. It was reported that insertion of Arg in an important flexible loop350-359 showed changes in bioluminescence color from green to red and the optimum temperature activity was also increased. To explain the color tuning mechanism of firefly luciferase, the structure of native and a mutant (E354R/356R/H431Y) of Lampyris turkestanicus luciferase is determined at 2.7Å and 2.2Å resolutions, respectively. The comparison of structure of both types of Lampyris turkestanicus luciferases reveals that the conformation of this flexible loop is significantly changed by addition of two Arg in this region. Moreover, its surface accessibility is affected considerably and some ionic bonds are made by addition of two positive charge residues. Furthermore, we noticed that the hydrogen bonding pattern of His431 with the flexible loop is changed by replacing this residue with Tyr at this position. Juxtaposition of a flexible loop (residues 351-359) in firefly luciferase and corresponding ionic and hydrogen bonds are essential for color emission.

  18. Preparation and epitope characterization of monoclonal antibodies against firefly luciferase

    Institute of Scientific and Technical Information of China (English)

    徐沁; 丁建芳; 胡红雨; 许根俊

    1999-01-01

    The 6-His tagged firefly luciferase was highly expressed in E. coli and purified to homogeneity by affinity chromatography and gel filtration. After immunizing Balb/c mice with the antigen, 6 hybridomas clones were found to secrete monoelonal antibodies (mAbs) and the mAbs were also purified separately. The competitive binding experiments show that 2 mAbs can bind heat-denatured antigen or its proteolytic fragments but not the native lueiferase, suggesting that their epitopes might be accommodated in the internal segments of the protein. On the other hand, the other 4 mAbs are capable of binding both native and denatured antigens. It infers that their epitopes locate in the segments on the protein surface. The results also suggest that the six mAbs are all sequence-specific.

  19. Neuroanatomy and transgenic technologies

    Science.gov (United States)

    This is a short review that introduces recent advances of neuroanatomy and transgenic technologies. The anatomical complexity of the nervous system remains a subject of tremendous fascination among neuroscientists. In order to tackle this extraordinary complexity, powerful transgenic technologies a...

  20. A Luciferase-Expressing Leishmania braziliensis Line That Leads to Sustained Skin Lesions in BALB/c Mice and Allows Monitoring of Miltefosine Treatment Outcome.

    Directory of Open Access Journals (Sweden)

    Adriano C Coelho

    2016-05-01

    Full Text Available Leishmania braziliensis is the most prevalent species isolated from patients displaying cutaneous and muco-cutaneous leishmaniasis in South America. However, there are difficulties for studying L. braziliensis pathogenesis or response to chemotherapy in vivo due to the natural resistance of most mouse strains to infection with these parasites. The aim of this work was to develop an experimental set up that could be used to assess drug efficacy against L. braziliensis. The model was tested using miltefosine.A L. braziliensis line, originally isolated from a cutaneous leishmaniasis patient, was passaged repeatedly in laboratory rodents and further genetically manipulated to express luciferase. Once collected from a culture of parasites freshly transformed from amastigotes, 106 wild type or luciferase-expressing stationary phase promastigotes were inoculated subcutaneously in young BALB/c mice or golden hamsters. In both groups, sustained cutaneous lesions developed at the site of inoculation, no spontaneous self- healing being observed 4 months post-inoculation, if left untreated. Compared to the wild type line features, no difference was noted for the luciferase-transgenic line. Infected animals were treated with 5 or 15 mg/kg/day miltefosine orally for 15 days. At the end of treatment, lesions had regressed and parasites were not detected. However, relapses were observed in animals treated with both doses of miltefosine.Here we described experimental settings for a late-healing model of cutaneous leishmaniasis upon inoculation of a luciferase-expressing L. braziliensis line that can be applied to drug development projects. These settings allowed the monitoring of the transient efficacy of a short-term miltefosine administration.

  1. Bioorthogonal Catalysis: A General Method To Evaluate Metal-Catalyzed Reactions in Real Time in Living Systems Using a Cellular Luciferase Reporter System.

    Science.gov (United States)

    Hsu, Hsiao-Tieh; Trantow, Brian M; Waymouth, Robert M; Wender, Paul A

    2016-02-17

    The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)](+)PF6(-) 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification

  2. [Transgenic animals bioreactors].

    Science.gov (United States)

    Gou, Ke-Mian; An, Xiao-Rong; Tian, Jian-Hui; Chen, Yong-Fu

    2002-01-01

    The production of human recombinant proteins in milk of transgenic farm animals offers a safe, very cost-effective source of commercially important proteins that cannot be produced as efficiently in adequate quantities by other methods. This review has summarized the current status of gene selection, vector construct, transgenic methods, economics, and obvious potential in transgenic animals bioreactors. Recently, a more powerful approach was adopted in the transgenic animals founded on the application of nuclear transfer. As we will illustrate, this strategy presents a breakthrough in the overall efficiency of generating transgenic farm animals, product consistency, and time of product development. The successful adaptation of Cre-/lox P-mediated site-specific DNA recombination systems in farm animals will offer unprecedented possibilities for generating transgenic animals.

  3. zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish.

    Science.gov (United States)

    Chen, Chen-Hui; Durand, Ellen; Wang, Jinhu; Zon, Leonard I; Poss, Kenneth D

    2013-12-01

    The zebrafish has become a standard model system for stem cell and tissue regeneration research, based on powerful genetics, high tissue regenerative capacity and low maintenance costs. Yet, these studies can be challenged by current limitations of tissue visualization techniques in adult animals. Here we describe new imaging methodology and present several ubiquitous and tissue-specific luciferase-based transgenic lines, which we have termed zebraflash, that facilitate the assessment of regeneration and engraftment in freely moving adult zebrafish. We show that luciferase-based live imaging reliably estimates muscle quantity in an internal organ, the heart, and can longitudinally follow cardiac regeneration in individual animals after major injury. Furthermore, luciferase-based detection enables visualization and quantification of engraftment in live recipients of transplanted hematopoietic stem cell progeny, with advantages in sensitivity and gross spatial resolution over fluorescence detection. Our findings present a versatile resource for monitoring and dissecting vertebrate stem cell and regeneration biology.

  4. Development of functional genomic tools in trematodes: RNA interference and luciferase reporter gene activity in Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Gabriel Rinaldi

    Full Text Available The growing availability of sequence information from diverse parasites through genomic and transcriptomic projects offer new opportunities for the identification of key mediators in the parasite-host interaction. Functional genomics approaches and methods for the manipulation of genes are essential tools for deciphering the roles of genes and to identify new intervention targets in parasites. Exciting advances in functional genomics for parasitic helminths are starting to occur, with transgene expression and RNA interference (RNAi reported in several species of nematodes, but the area is still in its infancy in flatworms, with reports in just three species. While advancing in model organisms, there is a need to rapidly extend these technologies to other parasites responsible for several chronic diseases of humans and cattle. In order to extend these approaches to less well studied parasitic worms, we developed a test method for the presence of a viable RNAi pathway by silencing the exogenous reporter gene, firefly luciferase (fLUC. We established the method in the human blood fluke Schistosoma mansoni and then confirmed its utility in the liver fluke Fasciola hepatica. We transformed newly excysted juveniles of F. hepatica by electroporation with mRNA of fLUC and three hours later were able to detect luciferase enzyme activity, concentrated mainly in the digestive ceca. Subsequently, we tested the presence of an active RNAi pathway in F. hepatica by knocking down the exogenous luciferase activity by introduction into the transformed parasites of double-stranded RNA (dsRNA specific for fLUC. In addition, we tested the RNAi pathway targeting an endogenous F. hepatica gene encoding leucine aminopeptidase (FhLAP, and observed a significant reduction in specific mRNA levels. In summary, these studies demonstrated the utility of RNAi targeting reporter fLUC as a reporter gene assay to establish the presence of an intact RNAi pathway in helminth

  5. A destabilized bacterial luciferase for dynamic gene expression studies

    Science.gov (United States)

    Allen, Michael S.; Wilgus, John R.; Chewning, Christopher S.; Sayler, Gary S.

    2006-01-01

    Fusions of genetic regulatory elements with reporter genes have long been used as tools for monitoring gene expression and have become a major component in synthetic gene circuit implementation. A major limitation of many of these systems is the relatively long half-life of the reporter protein(s), which prevents monitoring both the initiation and the termination of transcription in real-time. Furthermore, when used as components in synthetic gene circuits, the long time constants associated with reporter protein decay may significantly degrade circuit performance. In this study, short half-life variants of LuxA and LuxB from Photorhabdus luminescens were constructed in Escherichia coli by inclusion of an 11-amino acid carboxy-terminal tag that is recognized by endogenous tail-specific proteases. Results indicated that the addition of the C-terminal tag affected the functional half-life of the holoenzyme when the tag was added to luxA or to both luxA and luxB, but modification of luxB alone did not have a significant effect. In addition, it was also found that alteration of the terminal three amino acid residues of the carboxy-terminal tag fused to LuxA generated variants with half-lives of intermediate length in a manner similar to that reported for GFP. This report is the first instance of the C-terminal tagging approach for the regulation of protein half-life to be applied to an enzyme or monomer of a multi-subunit enzyme complex and will extend the utility of the bacterial luciferase reporter genes for the monitoring of dynamic changes in gene expression. PMID:19003433

  6. Identification of paralogous genes of firefly luciferase in the Japanese firefly, Luciola cruciata.

    Science.gov (United States)

    Oba, Yuichi; Sato, Mitsunori; Ohta, Yuichiro; Inouye, Satoshi

    2006-03-01

    Two homologous genes of firefly luciferase, LcLL1 and LcLL2, were cloned from the Japanese firefly Luciola cruciata, and were expressed and characterized. The gene product of LcLL1 had long-chain fatty acyl-CoA synthetic activity, but not luciferase activity. The other gene product of LcLL2 did not show enzymatic activities of acyl-CoA synthetase and luciferase. RT-PCR analysis showed that the transcript of LcLL1 was abundant in larva but very low in adult, while LcLL2 was expressed in both larva and adult. Phylogenetic analysis indicated that LcLL1 and LcLL2 are paralogous genes of firefly luciferase. Recently, we found that CG6178 in Drosophila melanogaster is an orthologue of firefly luciferase and shows fatty acyl-CoA synthetic activity, but not luciferase activity. These results suggest that firefly luciferase might be evolved from a fatty acyl-CoA synthetase by gene duplication in insects.

  7. Correlation between luminescence intensity and cytotoxicity in cell-based cytotoxicity assay using luciferase.

    Science.gov (United States)

    Wakuri, S; Yamakage, K; Kazuki, Y; Kazuki, K; Oshimura, M; Aburatani, S; Yasunaga, M; Nakajima, Y

    2017-04-01

    The luciferase reporter assay has become one of the conventional methods for cytotoxicity evaluation. Typically, the decrease of luminescence expressed by a constitutive promoter is used as an index of cytotoxicity. However, to our knowledge, there have been no reports of the correlation between cytotoxicity and luminescence intensity. In this study, to accurately verify the correlation between them, beetle luciferase was stably expressed in human hepatoma HepG2 cells harboring the multi-integrase mouse artificial chromosome vector. We showed that the cytotoxicity assay using luciferase does not depend on the stability of luciferase protein and the kind of constitutive promoter. Next, HepG2 cells in which green-emitting beetle luciferase was expressed under the control of CAG promoter were exposed to 58 compounds. The luminescence intensity and cytotoxicity curves of cells exposed to 48 compounds showed similar tendencies, whereas those of cells exposed to 10 compounds did not do so, although the curves gradually approached each other with increasing exposure time. Finally, we demonstrated that luciferase expressed under the control of a constitutive promoter can be utilized both as an internal control reporter for normalizing a test reporter and for monitoring cytotoxicity when two kinds of luciferases are simultaneously used in the cytotoxicity assay. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Development and Characterization of West Nile Virus Replicon Expressing Secreted Gaussia Luciferase

    Institute of Scientific and Technical Information of China (English)

    Chao Shan; Xiaodan Li; Chenglin Deng; Baodi Shang; Linlin Xu; Hanqing Ye; Zhiming Yuan

    2013-01-01

    We developed a Gaussia luciferase (Gluc) reporter replicon of West Nile virus (WNV) and used it to quantify viral translation and RNA replication.The advantage of the Gluc replicon is that Gaussia luciferase is secreted into the culture medium from cells transfected with Gluc replicon RNA,and the medium can be assayed directly for luciferase activity.Using a known Flavivirus inhibitor (NITD008),we demonstrated that the Gluc-WNV replicon could be used for antiviral screening.The Gluc-WNV-Rep will be useful for research in antiviral drug development programs,as well as for studying viral replication and pathogenesis of WNV.

  9. A 'select and swap' strategy for the isolation of clones with tightly regulated transgenes.

    Science.gov (United States)

    Sullivan, M J; Carpenter, A J; Porter, A C

    2001-03-01

    Increasing numbers of biological problems are being addressed by genetic approaches that rely on inducible expression of transgenes. It is desirable that expression of such a transgene is tightly regulated, from close to zero expression in the 'off' state, to appreciable (at least physiological) expression in the 'on' state. Although there are many examples where tight regulation has been achieved, certain factors, including chromosomal position effects due to random integration of the transgene, often cause suboptimal inducibility and make the isolation of tightly regulated clones difficult and/or laborious. Here we describe a 'select and swap' strategy for the isolation, from a population of stable transfectants, of clones with tightly regulated transgenes. In this approach, a positively and negatively selectable, inducible marker gene is used to select for clones with optimal transgene regulation. After isolation of such clones, the marker gene is swapped with a linked gene of interest by the use of site-specific recombination. To test this strategy we introduced into human cells a plasmid with a tetracycline-inducible bacterial gpt gene linked to a promoterless luciferase gene, isolated clones with tight gpt expression and used the Cre/loxP site-specific recombination system to swap the gpt gene with the luciferase gene. We discuss ways for refining and developing the system and widening its applicability.

  10. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes

    National Research Council Canada - National Science Library

    Conti, Elena; Franks, Nick P; Brick, Peter

    1996-01-01

    Firefly luciferase is a 62 kDa protein that catalyzes the production of light. In the presence of MgATP and molecular oxygen, the enzyme oxidizes its substrate, firefly luciferin, emitting yellow-green light...

  11. Cycloheximide- and puromycin-induced heat resistance : different effects on cytoplasmic and nuclear luciferases

    NARCIS (Netherlands)

    Michels, AA; Kanon, B; Konings, AWT; Bensaude, O; Kampinga, HH

    2000-01-01

    Inhibition of translation can result in cytoprotection against heat shock. The mechanism of this protection has remained elusive so far. Here, the thermoprotective effects of the translation inhibitor cycloheximide (CHX) and puromycin were investigated, using as reporter firefly luciferase localized

  12. Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo

    Directory of Open Access Journals (Sweden)

    Rasko John EJ

    2010-11-01

    Full Text Available Abstract Live animal imaging is becoming an increasingly common technique for accurate and quantitative assessment of tumor burden over time. Bioluminescence imaging systems rely on a bioluminescent signal from tumor cells, typically generated from expression of the firefly luciferase gene. However, previous reports have suggested that either a high level of luciferase or the resultant light reaction produced upon addition of D-luciferin substrate can have a negative influence on tumor cell growth. To address this issue, we designed an expression vector that allows simultaneous fluorescence and luminescence imaging. Using fluorescence activated cell sorting (FACS, we generated clonal cell populations from a human breast cancer (MCF-7 and a mouse melanoma (B16-F10 cell line that stably expressed different levels of luciferase. We then compared the growth capabilities of these clones in vitro by MTT proliferation assay and in vivo by bioluminescence imaging of tumor growth in live mice. Surprisingly, we found that neither the amount of luciferase nor biophotonic activity was sufficient to inhibit tumor cell growth, in vitro or in vivo. These results suggest that luciferase toxicity is not a necessary consideration when designing bioluminescence experiments, and therefore our approach can be used to rapidly generate high levels of luciferase expression for sensitive imaging experiments.

  13. Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity.

    Science.gov (United States)

    Hume, David A

    2011-04-01

    Myeloid lineage cells contribute to innate and acquired immunity, homeostasis, wound repair, and inflammation. There is considerable interest in manipulation of their function in transgenic mice using myeloid-specific promoters. This review considers the applications and specificity of some of the most widely studied transgenes, driven by promoter elements of the lysM, csf1r, CD11c, CD68, macrophage SRA, and CD11b genes, as well as several others. Transgenes have been used in mice to generate myeloid lineage-specific cell ablation, expression of genes of interest, including fluorescent reporters, or deletion via recombination. In general, the specificity of such transgenes has been overinterpreted, and none of them provide well-documented, reliable, differential expression in any specific myeloid cell subset, macrophages, granulocytes, or myeloid DCs. Nevertheless, they have proved valuable in cell isolation, functional genomics, and live imaging of myeloid cell behavior in many different pathologies.

  14. Efficient expression of transgenes in adult zebrafish by electroporation

    Directory of Open Access Journals (Sweden)

    Rao S Hari

    2005-10-01

    Full Text Available Abstract Background Expression of transgenes in muscle by injection of naked DNA is widely practiced. Application of electrical pulses at the site of injection was demonstrated to improve transgene expression in muscle tissue. Zebrafish is a precious model to investigate developmental biology in vertebrates. In this study we investigated the effect of electroporation on expression of transgenes in 3–6 month old adult zebrafish. Results Electroporation parameters such as number of pulses, voltage and amount of plasmid DNA were optimized and it was found that 6 pulses of 40 V·cm-1 at 15 μg of plasmid DNA per fish increased the luciferase expression 10-fold compared to controls. Similar enhancement in transgene expression was also observed in Indian carp (Labeo rohita. To establish the utility of adult zebrafish as a system for transient transfections, the strength of the promoters was compared in A2 cells and adult zebrafish after electroporation. The relative strengths of the promoters were found to be similar in cell lines and in adult zebrafish. GFP fluorescence in tissues after electroporation was also studied by fluorescence microscopy. Conclusion Electroporation after DNA injection enhances gene expression 10-fold in adult zebrafish. Electroporation parameters for optimum transfection of adult zebrafish with tweezer type electrode were presented. Enhanced reporter gene expression upon electroporation allowed comparison of strengths of the promoters in vivo in zebrafish.

  15. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    YANG Ye-hua; WANG Xue-kui; YAO Ming-jing; FAN Yu-peng; GAO Da-yu

    2008-01-01

    @@ To date,more and more transgenic varieties of upland cotton (Gossypium hirsuturn L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct transgenic lines in a cultivar and possibly makes a significant contribution to cultivar improvement.

  16. Seminal vesicles and urinary bladder as sites of aromatization of androgens in men, evidenced by a CYP19A1-driven luciferase reporter mouse and human tissue specimens.

    Science.gov (United States)

    Strauss, Leena; Rantakari, Pia; Sjögren, Klara; Salminen, Anu; Lauren, Eve; Kallio, Jenny; Damdimopoulou, Pauliina; Boström, Minna; Boström, Peter J; Pakarinen, Pirjo; Zhang, FuPing; Kujala, Paula; Ohlsson, Claes; Mäkelä, Sari; Poutanen, Matti

    2013-04-01

    The human CYP19A1 gene is expressed in various tissues by the use of tissue-specific promoters, whereas the rodent cyp19a1 gene is expressed mainly in the gonads and brain. We generated a transgenic mouse model containing a >100-kb 5' region of human CYP19A1 gene connected to a luciferase reporter gene. The luciferase activity in mouse tissues mimicked the CYP19A1 gene expression pattern in humans. Interestingly, the reporter gene activity was 16 and 160 times higher in the urinary bladder and seminal vesicles, respectively, as compared with the activity in the testis. Accordingly, CYP19A1 gene and P450arom protein expression was detected in those human tissues. Moreover, the data revealed that the expression of CYP19A1 gene is driven by promoters PII, I.4, and I.3 in the seminal vesicles, and by promoters PII and I.4 in the urinary bladder. Furthermore, the reporter gene expression in the seminal vesicles was androgen dependent: Castration decreased the expression ∼20 times, and testosterone treatment restored it to the level of an intact mouse. This reporter mouse model facilitates studies of tissue-specific regulation of the human CYP19A1 gene, and our data provide evidence for seminal vesicles as important sites for estrogen production in males.

  17. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki [System Instruments Co., Ltd., 776-2 Komiya-cho, Hachioji, Tokyo 192-0031 (Japan); Noda, Mamoru; Igimi, Shizunobu [Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Ikebukuro, Kazunori, E-mail: ikebu@cc.tuat.ac.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2013-11-01

    Graphical abstract: -- Highlights: •Zif268 fused to luciferase was used for E. coli O157, Salmonella and coliform detection. •Artificial zinc finger protein fused to luciferase was constructed for Norovirus detection. •An analyzer that automatically detects PCR products by zinc finger protein fused to luciferase was developed. •Target pathogens were specifically detected by the automatic analyzer with zinc finger protein fused to luciferase. -- Abstract: An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 10{sup 6} copies.

  18. Transgenic Animal Mutation Assays

    Institute of Scientific and Technical Information of China (English)

    Tao Chen; Ph.D.D.A.B.T.

    2005-01-01

    @@ The novel transgenic mouse and rat mutation assays have provided a tool for analyzing in vivo mutation in any tissue, thus permitting the direct comparison of cancer incidence with mutant frequency.

  19. Weeding with transgenes.

    Science.gov (United States)

    Duke, Stephen O

    2003-05-01

    Transgenes promise to reduce insecticide and fungicide use but relatively little has been done to significantly reduce herbicide use through genetic engineering. Recently, three strategies for transgene utilization have been developed that have the potential to change this. These are the improvement of weed-specific biocontrol agents, enhancement of crop competition or allelopathic traits, and production of cover crops that will self-destruct near the time of planting. Failsafe risk mitigation technologies are needed for most of these strategies.

  20. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase.

    Science.gov (United States)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori

    2013-11-01

    An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268-luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF-luciferase fusion protein. By means of the automatic analyzer with ZF-luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0×10 to 1.0×10(6) copies.

  1. Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock.

    Science.gov (United States)

    Gooch, Van D; Mehra, Arun; Larrondo, Luis F; Fox, Julie; Touroutoutoudis, Melissa; Loros, Jennifer J; Dunlap, Jay C

    2008-01-01

    We report the complete reconstruction of the firefly luciferase gene, fully codon optimized for expression in Neurospora crassa. This reporter enhances light output by approximately 4 log orders over that with previously available versions, now producing light that is visible to the naked eye and sufficient for monitoring the activities of many poorly expressed genes. Time lapse photography of strains growing in race tubes, in which the frq or eas/ccg-2 promoter is used to drive luciferase, shows the highest levels of luciferase activity near the growth front and newly formed conidial bands. Further, we have established a sorbose medium colony assay that will facilitate luciferase-based screens. The signals from sorbose-grown colonies of strains in which the frq promoter drives luciferase exhibit the properties of circadian rhythms and can be tracked for many days to weeks. This reporter now makes it possible to follow the clock in real time, even in strains or under conditions in which the circadian rhythm in conidial banding is not expressed. This property has been used to discover short, ca. 15-h period rhythms at high temperatures, at which banding becomes difficult to observe in race tubes, and to generate a high-resolution temperature phase-response curve.

  2. Effects of iodide on the fluorescence and activity of the hydroperoxyflavin intermediate of Vibrio harveyi luciferase.

    Science.gov (United States)

    Huang, Shouqin; Tu, Shiao-Chun

    2005-01-01

    The 4a-hydroperoxy-4a,5-dihydroFMN intermediate (II or HFOOH) of Vibrio harveyi luciferase is known to transform from a low quantum yield IIx to a high quantum yield (lambdamax 485 nm, uncorrected) IIy fluorescent species on exposure to excitation light. Similar results were observed with II prepared from the alphaH44A luciferase mutant, which is very weak in bioluminescence activity. Because of the rapid decay of the alphaH44A II, its true fluorescence was obscured by the more intense 520 nm fluorescence (uncorrected) from its decay product oxidized flavin mononucleotide (FMN). Potassium iodide (KI) at 0.2 M was effective in quenching the FMN fluorescence, leaving the 485 nm fluorescence of II from both the wild-type (WT) and alphaH44A luciferase readily detectable. For both II species, the luciferase-bound peroxyflavin was well shielded from KI quenching. KI also enhanced the decay rates of both the WT and alphaH44A II. For alphaH44A, the transformation of IIx to IIy can be induced by KI in the dark, and it is proposed to be a consequence of a luciferase conformational change. The WT II formed a bioluminescence-inactive complex with KI, resulting in two distinct decay time courses based on absorption changes and decreases of bioluminescence activity of II.

  3. Firefly Luciferase Mutants Allow Substrate-Selective Bioluminescence Imaging in the Mouse Brain.

    Science.gov (United States)

    Adams, Spencer T; Mofford, David M; Reddy, G S Kiran Kumar; Miller, Stephen C

    2016-04-11

    Bioluminescence imaging is a powerful approach for visualizing specific events occurring inside live mice. Animals can be made to glow in response to the expression of a gene, the activity of an enzyme, or the growth of a tumor. But bioluminescence requires the interaction of a luciferase enzyme with a small-molecule luciferin, and its scope has been limited by the mere handful of natural combinations. Herein, we show that mutants of firefly luciferase can discriminate between natural and synthetic substrates in the brains of live mice. When using adeno-associated viral (AAV) vectors to express luciferases in the brain, we found that mutant luciferases that are inactive or weakly active with d-luciferin can light up brightly when treated with the aminoluciferins CycLuc1 and CycLuc2 or their respective FAAH-sensitive luciferin amides. Further development of selective luciferases promises to expand the power of bioluminescence and allow multiple events to be imaged in the same live animal.

  4. 3' Noncoding Region Construction of GHR Gene-luciferase Report Vector and Valuation

    Institute of Scientific and Technical Information of China (English)

    Jie Jing; Men Jing; Wang Chun-mei; Gao Xue-jun; Li Qing-zhang

    2012-01-01

    To analyze miR-139 target sites in 3' UTR of GHR gene in dairy cow mammary gland, a GHR 3' UTR- luciferase reporter vector was constructed and the effect of miRNA on its activity was evaluated in dairy cow mammary gland epithelial cells (DCMECs). The miR-139 targeting GHR 3' UTR was predicted by Target Scan 5.1 software, 3' UTR fragment of GHR was amplified by PCR from RNA of DCMECs. PCR products were cloned into Spe Ⅰ/Hind Ⅱ modified pMIR-Report vector. The luciferase reporter vector and miRNA eukaryotic expression vector were transferred into DCMECs using lipofectamine 2000 transfection reagent. The dualluciferase reporter assay system was used to quantitiate the reporter activity. The results showed that a 107 bp 3' UTR fragment of GHR gene was successfully cloned into the pMIR-Report vector, which authenticated by Spe Ⅰ/Hind Ⅲ digestion and DNA sequencing. The luciferase activity of reporter construction treated with miR-139 decreased 20.87% compared with the control group. It was concluded that the GHR3' UTR-luciferase reporter vector had been successfully constructed. The luciferase activity of the reporter could be suppressed by miR- 139.

  5. Fre Is the Major Flavin Reductase Supporting Bioluminescence from Vibrio harveyi Luciferase in Escherichia coli.

    Science.gov (United States)

    Campbell, Zachary T; Baldwin, Thomas O

    2009-03-27

    Unlike the vast majority of flavoenzymes, bacterial luciferase requires an exogenous source of reduced flavin mononucleotide for bioluminescence activity. Within bioluminescent bacterial cells, species-specific oxidoreductases are believed to provide reduced flavin for luciferase activity. The source of reduced flavin in Escherichia coli-expressing bioluminescence is not known. There are two candidate proteins potentially involved in this process in E. coli, a homolog of the Vibrio harveyi Frp oxidoreductase, NfsA, and a luxG type oxidoreductase, Fre. Using single gene knock-out strains, we show that deletion of fre decreased light output by greater than two orders of magnitude, yet had no effect on luciferase expression in E. coli. Purified Fre is capable of supporting bioluminescence in vitro with activity comparable to that with the endogenous V. harveyi reductase (Frp), using either FMN or riboflavin as substrate. In a pull-down experiment, we found that neither Fre nor Frp co-purify with luciferase. In contrast to prior work, we find no evidence for stable complex formation between luciferase and oxidoreductase. We conclude that in E. coli, an enzyme primarily responsible for riboflavin reduction (Fre) can also be utilized to support high levels of bioluminescence.

  6. Improvement of Chemically-activated Luciferase Gene Expression Bioassay for Detection of Dioxin-like Chemicals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To improve the chemically-activated luciferase expression (CALUX)bioassay for detection of dioxin-like chemicals (DLCs) based on the toxicity mechanisms of DLCs. Method A recombinant vector was constructed and used to transfect human hepatoma (HepG2). The expression of this vector was 10-100 folds higher than that of pGL2used in previous experiments. The transfected cells showed aromatic hydrocarbon receptor (AhR)-meditated luciferase gene expression. The reliability of luciferase induction in this cell line as a reporter of AhR-mediated toxicity was evaluated, the optimal detection time was examined and a comparison was made by using the commonly used ethoxyresoufin-Odeethylase (EROD) activity induction assay. Result The results suggested that the luciferase activity in recombinant cells was peaked at about 4 h and then decreased to a stable activity by 14 h after TCDD treatment. The detection limit of this cell line was 0.1 lpmol/L, or 10-fold lower than in previous studies, with a linear range from 1 to 100pmol/L, related coefficient of 0.997, and the coefficient of variability (CV) of 15-30%,Conclusion The luciferase induction is 30-fold more sensitive than EROD induction, the detection time is 68 h shorter and the detection procedure is also simpler.

  7. Sensitive Dual Color in vivo Bioluminescence Imaging Using a New Red Codon Optimized Firefly Luciferase and a Green Click Beetle Luciferase

    Science.gov (United States)

    2011-04-01

    expression of the bacterial luciferase gene cassette ( lux ) in a mammalian cell line. PLoS One 5: e12441. 6. Cheong WF, Prahl SA, Welch AJ (1990) A...Chemistry, Connecticut College, New London, Connecticut, United States of America Abstract Background: Despite a plethora of bioluminescent reporter genes ...challenging. This is partly attributable to the lack of optimization of cell reporter gene expression as well as too much spectral overlap of the color- coupled

  8. Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.

    Science.gov (United States)

    Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki

    2016-01-01

    We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells.

  9. Light without substrate amendment: the bacterial luciferase gene cassette as a mammalian bioreporter

    Science.gov (United States)

    Close, Dan M.; Xu, Tingting; Smartt, Abby E.; Jegier, Pat; Ripp, Steven A.; Sayler, Gary S.

    2011-06-01

    Bioluminescent production represents a facile method for bioreporter detection in mammalian tissues. The lack of endogenous bioluminescent reactions in these tissues allows for high signal to noise ratios even at low signal strength compared to fluorescent signal detection. While the luciferase enzymes commonly employed for bioluminescent detection are those from class Insecta (firefly and click beetle luciferases), these are handicapped in that they require concurrent administration of a luciferin compound to elicit a bioluminescent signal. The bacterial luciferase (lux) gene cassette offers the advantages common to other bioluminescent proteins, but is simultaneously capable of synthesizing its own luciferin substrates using endogenously available cellular compounds. The longstanding shortcoming of the lux cassette has been its recalcitrance to function in the mammalian cellular environment. This paper will present an overview of the work completed to date to overcome this limitation and provide examples of mammalian lux-based bioreporter technologies that could provide the framework for advanced, biomedically relevant real-time sensor development.

  10. Quantitative analysis of protein-protein interactions by split firefly luciferase complementation in plant protoplasts.

    Science.gov (United States)

    Li, Jian-Feng; Zhang, Dandan

    2014-07-01

    This unit describes the split firefly luciferase complementation (SFLC) assay, a high-throughput quantitative method that can be used to investigate protein-protein interactions (PPIs) in plant mesophyll protoplasts. In SFLC, the two proteins to be tested for interaction are expressed as chimeric proteins, each fused to a different half of firefly luciferase. If the proteins interact, a functional luciferase can be transitorily reconstituted, and is detected using the cell-permeable substrate D-luciferin. An advantage of the SFLC assay is that dynamic changes in PPIs in a cell can be detected in a near real-time manner. Another advantage is the unusually high DNA co-transfection and protein expression efficiencies that can be achieved in plant protoplasts, thereby enhancing the throughput of the method.

  11. Preparation of recombinant firefly luciferase by a simple and rapid expression and purification method and its application in bacterial detection

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A simple and rapid expression and purification method of recombinant firefly luciferase was developed for bacteria detection. A modified luciferase gene from North American firefly Photinus pyralis was cloned into pET28a expression vector and the recombinant protein was produced in Escherichia coli BL21. The recombinant luciferase,equipped with a polyhistidine affinity tag,was purified by immobilized metal ion affinity chromatography (IMAC). The approach generated an abundant expression and an efficient pur...

  12. Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo.

    Science.gov (United States)

    Kocher, Brandon; Piwnica-Worms, David

    2013-06-01

    Bioluminescent imaging (BLI) is a powerful noninvasive tool that has dramatically accelerated the in vivo interrogation of cancer systems and longitudinal analysis of mouse models of cancer over the past decade. Various luciferase enzymes have been genetically engineered into mouse models (GEMM) of cancer, which permit investigation of cellular and molecular events associated with oncogenic transcription, posttranslational processing, protein-protein interactions, transformation, and oncogene addiction in live cells and animals. Luciferase-coupled GEMMs ultimately serve as a noninvasive, repetitive, longitudinal, and physiologic means by which cancer systems and therapeutic responses can be investigated accurately within the autochthonous context of a living animal.

  13. Quantum/molecular mechanics study of firefly bioluminescence on luciferase oxidative conformation

    Science.gov (United States)

    Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.

    2014-07-01

    This is the first report of a computational study of the color tuning mechanism of firefly bioluminescence, using the oxidative conformation of luciferase. The results of these calculations demonstrated that the electrostatic field generated by luciferase is fundamental both for the emission shift and efficiency. Further calculations indicated that a shift in emission is achieved by modulating the energy, at different degrees, of the emissive and ground states. These differences in energy modulation will then lead to changes in the energy gap between the states.

  14. NanoLuc luciferase - A multifunctional tool for high throughput antibody screening

    Directory of Open Access Journals (Sweden)

    Nicolas eBoute

    2016-02-01

    Full Text Available Based on the recent development of NanoLuc Luciferase a small (19 kDa, highly stable, ATP independent, bioluminescent protein, an extremely robust and ultra high sensitivity screening system has been developed whereby primary hits of therapeutic antibodies and antibody fragments could be characterized and quantified without purification. This system is very versatile allowing cellular and solid phase ELISA but also homogeneous BRET based screening assays, relative affinity determinations with competition ELISA and direct western blotting. The new NanoLuc Luciferase protein fusion represents a swiss army knife solution for today and future high throughput antibody drug screenings.

  15. High-Throughput Screening for Bioactive Molecules Using Primary Cell Culture of Transgenic Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Haigen Huang

    2012-09-01

    Full Text Available Transgenic zebrafish embryos expressing tissue-specific green fluorescent protein (GFP can provide an unlimited supply of primary embryonic cells. Agents that promote the differentiation of these cells may be beneficial for therapeutics. We report a high-throughput approach for screening small molecules that regulate cell differentiation using lineage-specific GFP transgenic zebrafish embryonic cells. After validating several known regulators of the differentiation of endothelial and other cell types, we performed a screen for proangiogenic molecules using undifferentiated primary cells from flk1-GFP transgenic zebrafish embryos. Cells were grown in 384-well plates with 12,128 individual small molecules, and GFP expression was analyzed by means of an automated imaging system, which allowed us to screen thousands of compounds weekly. As a result, 23 molecules were confirmed to enhance angiogenesis, and 11 of them were validated to promote the proliferation of mammalian human umbilical vascular endothelial cells and induce Flk1+ cells from murine embryonic stem cells. We demonstrated the general applicability of this strategy by analyzing additional cell lineages using zebrafish expressing GFP in pancreatic, cardiac, and dopaminergic cells.

  16. Generation of transgenic frogs.

    Science.gov (United States)

    Loeber, Jana; Pan, Fong Cheng; Pieler, Tomas

    2009-01-01

    The possibility of generating transgenic animals is of obvious advantage for the analysis of gene function in development and disease. One of the established vertebrate model systems in developmental biology is the amphibian Xenopus laevis. Different techniques have been successfully applied to create Xenopus transgenics; in this chapter, the so-called meganuclease method is described. This technique is not only technically simple, but also comparably efficient and applicable to both Xenopus laevis and Xenopus tropicalis. The commercially available endonuclease I-SceI (meganuclease) mediates the integration of foreign DNA into the frog genome after coinjection into fertilized eggs. Tissue-specific gene expression, as well as germline transmission, has been observed.

  17. Targeted expression of Cre recombinase provokes placental-specific DNA recombination in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Cissy Chenyi Zhou

    Full Text Available BACKGROUND: Inadequate placental development is associated with a high incidence of early embryonic lethality and serious pregnancy disorders in both humans and mice. However, the lack of well-defined trophoblast-specific gene regulatory elements has hampered investigations regarding the role of specific genes in placental development and fetal growth. PRINCIPAL FINDINGS: By random assembly of placental enhancers from two previously characterized genes, trophoblast specific protein α (Tpbpa and adenosine deaminase (Ada, we identified a chimeric Tpbpa/Ada enhancer that when combined with the basal Ada promoter provided the highest luciferase activity in cultured human trophoblast cells, in comparison with non-trophoblast cell lines. We used this chimeric enhancer arrangement to drive the expression of a Cre recombinase transgene in the placentas of transgenic mice. Cre transgene expression occurred throughout the placenta but not in maternal organs examined or in the fetus. SIGNIFICANCE: In conclusion, we have provided both in vitro and in vivo evidence for a novel genetic system to achieve placental transgene expression by the use of a chimeric Tpbpa/Ada enhancer driven transgene. The availability of this expression vector provides transgenic opportunities to direct the production of desired proteins to the placenta.

  18. Transgenic Crops for Herbicide Resistance

    Science.gov (United States)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  19. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To date,more and more transgenic varieties of upland cotton(Gossypium hirsutum L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct

  20. Transgenic Farm Animals

    Science.gov (United States)

    The development of recombinant DNA technology has enabled scientists to isolate single genes, analyze and modify their nucleotide structure(s), make copies of these isolated genes, and insert copies of these genes into the genome of plants and animals. The transgenic technology of adding genes to li...

  1. [Progress on transgenic mosquitoes].

    Science.gov (United States)

    Yang, Pin

    2011-04-30

    The genetically modified mosquitoes have been developed aiming to control mosquito-borne diseases by either reducing population sizes or replacing existing populations with vectors unable to transmit the disease. introduces some progress on the generation of transgenic mosquitoes and their fitness in wild population. This paper

  2. The influence of hypoxia on bioluminescence in luciferase-transfected gliosarcoma tumor cells in vitro.

    Science.gov (United States)

    Moriyama, Eduardo H; Niedre, Mark J; Jarvi, Mark T; Mocanu, Joseph D; Moriyama, Yumi; Subarsky, Patrick; Li, Buhong; Lilge, Lothar D; Wilson, Brian C

    2008-06-01

    Firefly luciferase catalyzes the emission of light from luciferin in the presence of oxygen and adenosine triphosphate. This bioluminescence is commonly employed in imaging mode to monitor tumor growth and treatment responses in vivo. A potential concern is that, since solid tumors are often hypoxic, either constitutively and/or as a result of treatment, the oxygen available for the bioluminescence reaction could be reduced to limiting levels, leading to underestimation of the actual number of luciferase-labeled cells during in vivo experiments. We present studies of the oxygen dependence of bioluminescence in vitro in rat 9 L gliosarcoma cells tagged with the firefly luciferase gene (9L(luc)). We demonstrate that the bioluminescence signal decreases at pO(2) ATP due to the reduction of mitochondrial membrane potential. Hence, the data suggest that the decrease of intracellular ATP level in vitro is the limiting factor for bioluminescence reaction and so is responsible for the reduction of bioluminescence signal in 9L(luc) cells in acute hypoxia, rather than luciferase expression or oxygen itself.

  3. Interaction of aromatic compounds with Photobacterium leiognathi luciferase: fluorescence anisotropy study

    NARCIS (Netherlands)

    Kudryasheva, N.S.; Nemtseva, E.V.; Visser, A.J.W.G.; Hoek, van A.

    2003-01-01

    The time-resolved and steady-state fluorescence techniques were employed to elucidate possible interactions of four aromatic compounds (anthracene, POPOP, MSB and 1,4-naphthalendiol) with bacterial luciferase. Fluorescence spectra and fluorescence anisotropy decays of these compounds were studied in

  4. Transgenic animal bioreactors.

    Science.gov (United States)

    Houdebine, L M

    2000-01-01

    The production of recombinant proteins is one of the major successes of biotechnology. Animal cells are required to synthesize proteins with the appropriate post-translational modifications. Transgenic animals are being used for this purpose. Milk, egg white, blood, urine, seminal plasma and silk worm cocoon from transgenic animals are candidates to be the source of recombinant proteins at an industrial scale. Although the first recombinant protein produced by transgenic animals is expected to be in the market in 2000, a certain number of technical problems remain to be solved before the various systems are optimized. Although the generation of transgenic farm animals has become recently easier mainly with the technique of animal cloning using transfected somatic cells as nuclear donor, this point remains a limitation as far as cost is concerned. Numerous experiments carried out for the last 15 years have shown that the expression of the transgene is predictable only to a limited extent. This is clearly due to the fact that the expression vectors are not constructed in an appropriate manner. This undoubtedly comes from the fact that all the signals contained in genes have not yet been identified. Gene constructions thus result sometime in poorly functional expression vectors. One possibility consists in using long genomic DNA fragments contained in YAC or BAC vectors. The other relies on the identification of the major important elements required to obtain a satisfactory transgene expression. These elements include essentially gene insulators, chromatin openers, matrix attached regions, enhancers and introns. A certain number of proteins having complex structures (formed by several subunits, being glycosylated, cleaved, carboxylated...) have been obtained at levels sufficient for an industrial exploitation. In other cases, the mammary cellular machinery seems insufficient to promote all the post-translational modifications. The addition of genes coding for enzymes

  5. Characteristics and application of established luciferase hepatoma cell line that responds to dioxin-like chemicals

    Institute of Scientific and Technical Information of China (English)

    Zhi-Ren Zhang; Hong Yan; Shun-Qing Xu; Xi Sun; Yong-Jun Xu; Xiao-Kun Cai; Zhi-Wei Liu; Xiang-Lin Tan; Yi-Kai Zhou; Jun-Yue Zhang

    2003-01-01

    AIM: To establish a luciferase reporter cell line that responds dioxin-like chemicals (DLCs) and on this basis to evaluate its characteristics and application in the determination of DLCs.METHODS: A recombinant luciferase reporter plasmid was constructed by inserting dioxin-responsive element (DREs)and MMTV promoter segments into the pGL3-promoter plasmid immediately upstream of the luciferase gene, which was structurally demonstrated by fragment mapping analysis in gel electrophoresis and transfected into the human hepatoma cell line HepG2, both transiently and stably, to identify the inducible expression of luciferase by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). The time course,responsive period, sensitivity, structure-inducibility and doseeffect relationships of inducible luciferase expression to DLCs was dynamically observed in HepG2 cells stably transfected by the recombinant vector (HepG2-Luc) and compared with that assayed by ethoxyresorufin-O-deethylase (EROD) in non-transfected HepG2 cells (HepG2-wt).RESULTS: The inducible luciferase expression of HepG2-Luc cells wa s noted in a time-, dose-, and AhR-dependent manner, which peaked at 4 h and then decreased to a stable level at 14 h after TCDD treatment. The responsiveness of HepG2-Luc cells to TCDD induction was decreased with culture time and became undetectable at 10th month of HepG2-Luc cell formation. The fact that luciferase activity induced by 3, 3', 4, 4′-PCB in HepG2-Luc cells was much less than that induced by TCDD suggests a structureinducibility relationship existing among DLCs. Within the concentrations from 3.5× 10-12 to 5× 10-9 mol/L, significant correlations between TCDD doses and EROD activities were observed in both HepG2-luc and HepG2-wt cells. The correlation between TCDD doses from 1.1×10-13 to 1×10-8 mol/L and luciferase activities was also found to be significant in HepG2-luc cells (r=0.997, P<0.001), but not in their HepG2-wt counterparts. For the comparison of the

  6. F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Anna M

    2013-01-18

    The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2. Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.

  7. A Dual Luciferase Reporter System for B. burgdorferi Measures Transcriptional Activity during Tick-Pathogen Interactions

    Directory of Open Access Journals (Sweden)

    Philip P. Adams

    2017-05-01

    Full Text Available Knowledge of the transcriptional responses of vector-borne pathogens at the vector-pathogen interface is critical for understanding disease transmission. Borrelia (Borreliella burgdorferi, the causative agent of Lyme disease in the United States, is transmitted by the bite of infected Ixodes sp. ticks. It is known that B. burgdorferi has altered patterns of gene expression during tick acquisition, persistence and transmission. Recently, we and others have discovered in vitro expression of RNAs found internal, overlapping, and antisense to annotated open reading frames in the B. burgdorferi genome. However, there is a lack of molecular genetic tools for B. burgdorferi for quantitative, strand-specific, comparative analysis of these transcripts in distinct environments such as the arthropod vector. To address this need, we have developed a dual luciferase reporter system to quantify B. burgdorferi promoter activities in a strand-specific manner. We demonstrate that constitutive expression of a B. burgdorferi codon-optimized Renilla reniformis luciferase gene (rlucBb allows normalization of the activity of a promoter of interest when fused to the B. burgdorferi codon-optimized Photinus pyralis luciferase gene (flucBb on the same plasmid. Using the well characterized, differentially regulated, promoters for flagellin (flaBp, outer surface protein A (ospAp and outer surface protein C (ospCp, we document the efficacy of the dual luciferase system for quantitation of promoter activities during in vitro growth and in infected ticks. Cumulatively, the dual luciferase method outlined herein is the first dual reporter system for B. burgdorferi, providing a novel and highly versatile approach for strand-specific molecular genetic analyses.

  8. Engineering an enhanced, thermostable, monomeric bacterial luciferase gene as a reporter in plant protoplasts.

    Science.gov (United States)

    Cui, Boyu; Zhang, Lifeng; Song, Yunhong; Wei, Jinsong; Li, Changfu; Wang, Tietao; Wang, Yao; Zhao, Tianyong; Shen, Xihui

    2014-01-01

    The application of the luxCDABE operon of the bioluminescent bacterium Photorhabdus luminescens as a reporter has been published for bacteria, yeast and mammalian cells. We report here the optimization of fused luxAB (the bacterial luciferase heterodimeric enzyme) expression, quantum yield and its application as a reporter gene in plant protoplasts. The fused luxAB gene was mutated by error prone PCR or chemical mutagenesis and screened for enhanced luciferase activity utilizing decanal as substrate. Positive luxAB mutants with superior quantum yield were subsequently shuffled by DNase I digestion and PCR assembly for generation of recombinants with additional increases in luciferase activity in bacteria. The coding sequence of the best recombinant, called eluxAB, was then optimized further to conform to Arabidopsis (Arabidopsis thaliana) codon usage. A plant expression vector of the final, optimized eluxAB gene (opt-eluxAB) was constructed and transformed into protoplasts of Arabidopsis and maize (Zea mays). Luciferase activity was dramatically increased for opt-eluxAB compared to the original luxAB in Arabidopsis and maize cells. The opt-eluxAB driven by two copies of the 35S promoter expresses significantly higher than that driven by a single copy. These results indicate that the eluxAB gene can be used as a reporter in plant protoplasts. To our knowledge, this is the first report to engineer the bacterium Photorhabdus luminescens luciferase luxAB as a reporter by directed evolution which paved the way for further improving the luxAB reporter in the future.

  9. Luciferase from Fulgeochlizus bruchi (Coleoptera:Elateridae), a Brazilian click-beetle with a single abdominal lantern: molecular evolution, biological function and comparison with other click-beetle luciferases.

    Science.gov (United States)

    Amaral, Danilo T; Prado, Rogilene A; Viviani, Vadim R

    2012-07-01

    Bioluminescent click-beetles emit a wide range of bioluminescence colors (λ(Max) = 534-594 nm) from thoracic and abdominal lanterns, which are used for courtship. Only the luciferases from Pyrophorus and Pyrearinus species were cloned and sequenced. The Brazilian Fulgeochlizus bruchi click-beetle, which inhabits the Central-west Cerrado (Savannas), is noteworthy because, differently from other click-beetles, the adult stage displays only a functional abdominal lantern, which produces a bright green bioluminescence for sexual attraction purposes, and lacks functional thoracic lanterns. We cloned the cDNA for the abdominal lantern luciferase of this species. Notably, the primary sequence of this luciferase showed slightly higher identity with the green emitting dorsal lantern luciferases of the Pyrophorus genus instead of the abdominal lanterns luciferases. This luciferase displays a blue-shifted spectrum (λ(Max) = 540 nm), which is pH-insensitive from pH 7.5 to 9.5 and undergoes a slight red shift and broadening above this pH; the lowest K(M) for luciferin among studied click-beetle luciferases, and the highest optimum pH (9.0) ever reported for a beetle luciferase. At pH 9.0, the K(M) for luciferin increases, showing a decrease of affinity for this substrate, despite the higher activity. The slow luminescence decay rate of F. bruchi luciferase in vitro reaction could be an adaptation of this luciferase for the long and sustained in vivo luminescence display of the click-beetle during the courtship, and could be useful for in vivo intracellular imaging.

  10. Comparison of human optimized bacterial luciferase, firefly luciferase, and green fluorescent protein for continuous imaging of cell culture and animal models

    Science.gov (United States)

    Close, Dan M.; Hahn, Ruth E.; Patterson, Stacey S.; Baek, Seung J.; Ripp, Steven A.; Sayler, Gary S.

    2011-01-01

    Bioluminescent and fluorescent reporter systems have enabled the rapid and continued growth of the optical imaging field over the last two decades. Of particular interest has been noninvasive signal detection from mammalian tissues under both cell culture and whole animal settings. Here we report on the advantages and limitations of imaging using a recently introduced bacterial luciferase (lux) reporter system engineered for increased bioluminescent expression in the mammalian cellular environment. Comparison with the bioluminescent firefly luciferase (Luc) system and green fluorescent protein system under cell culture conditions demonstrated a reduced average radiance, but maintained a more constant level of bioluminescent output without the need for substrate addition or exogenous excitation to elicit the production of signal. Comparison with the Luc system following subcutaneous and intraperitoneal injection into nude mice hosts demonstrated the ability to obtain similar detection patterns with in vitro experiments at cell population sizes above 2.5 × 104 cells but at the cost of increasing overall image integration time. PMID:21529093

  11. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    Directory of Open Access Journals (Sweden)

    Zagozdzon Agnieszka M

    2012-05-01

    Full Text Available Abstract Background Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. Results A new mouse strain (MMTV-Luc2 mice expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. Conclusions We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  12. A modified RMCE-compatible Rosa26 locus for the expression of transgenes from exogenous promoters.

    Science.gov (United States)

    Tchorz, Jan S; Suply, Thomas; Ksiazek, Iwona; Giachino, Claudio; Cloëtta, Dimitri; Danzer, Claus-Peter; Doll, Thierry; Isken, Andrea; Lemaistre, Marianne; Taylor, Verdon; Bettler, Bernhard; Kinzel, Bernd; Mueller, Matthias

    2012-01-01

    Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice.

  13. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    LENUS (Irish Health Repository)

    Zagozdzon, Agnieszka M

    2012-05-30

    AbstractBackgroundNumerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study.ResultsA new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal.ConclusionsWe have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and\\/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  14. Bridging the species divide: transgenic mice humanized for type-I interferon response.

    Directory of Open Access Journals (Sweden)

    Daniel Harari

    Full Text Available We have generated transgenic mice that harbor humanized type I interferon receptors (IFNARs enabling the study of type I human interferons (Hu-IFN-Is in mice. These "HyBNAR" (Hybrid IFNAR mice encode transgenic variants of IFNAR1 and IFNAR2 with the human extracellular domains being fused to transmembrane and cytoplasmic segments of mouse sequence. B16F1 mouse melanoma cells harboring the HyBNAR construct specifically bound Hu-IFN-Is and were rendered sensitive to Hu-IFN-I stimulated anti-proliferation, STAT1 activation and activation of a prototypical IFN-I response gene (MX2. HyBNAR mice were crossed with a transgenic strain expressing the luciferase reporter gene under the control of the IFN-responsive MX2 promoter (MX2-Luciferase. Both the HyBNAR and HyBNAR/MX2-Luciferase mice were responsive to all Hu-IFN-Is tested, inclusive of IFNα2A, IFNβ, and a human superagonist termed YNSα8. The mice displayed dose-dependent pharmacodynamic responses to Hu-IFN-I injection, as assessed by measuring the expression of IFN-responsive genes. Our studies also demonstrated a weak activation of endogenous mouse interferon response, especially after high dose administration of Hu-IFNs. In sharp contrast to data published for humans, our pharmacodynamic readouts demonstrate a very short-lived IFN-I response in mice, which is not enhanced by sub-cutaneous (SC injections in comparison to other administration routes. With algometric differences between humans and mice taken into account, the HyBNAR mice provides a convenient non-primate pre-clinical model to advance the study of human IFN-Is.

  15. Establishment of a transient transfection system and expression of firefly luciferase in Entamoeba invadens.

    Science.gov (United States)

    Singh, Nishant; Ojha, Sandeep; Bhattacharya, Alok; Bhattacharya, Sudha

    2012-05-01

    Entamoeba invadens is used as a model system to study trophozoite to cyst differentiation since Entamoeba histolytica, the causative agent of amoebiasis cannot encyst in culture. However, a system for introduction of cloned genes in E. invadens is not available. Here we report an electroporation-based method for transfection of E. invadens tophozoites and demonstrate the expression of firefly luciferase reporter gene driven from the E. invadens ribosomal protein L3 promoter. The efficiency of luciferase expression driven from the promoters of three different E. invadens genes (rpl3, rps10 and h2b) was tested and found to correlate with the in vivo expression levels of the respective gene. This system will permit the analysis of regulatory elements required for gene expression in E. invadens.

  16. Inhibition of firefly luciferase by general anesthetics: effect on in vitro and in vivo bioluminescence imaging.

    Directory of Open Access Journals (Sweden)

    Marleen Keyaerts

    Full Text Available UNLABELLED: Bioluminescence imaging is routinely performed in anesthetized mice. Often isoflurane anesthesia is used because of its ease of use and fast induction/recovery. However, general anesthetics have been described as important inhibitors of the luciferase enzyme reaction. AIM: To investigate frequently used mouse anesthetics for their direct effect on the luciferase reaction, both in vitro and in vivo. MATERIALS AND METHODS: isoflurane, sevoflurane, desflurane, ketamine, xylazine, medetomidine, pentobarbital and avertin were tested in vitro on luciferase-expressing intact cells, and for non-volatile anesthetics on intact cells and cell lysates. In vivo, isoflurane was compared to unanesthetized animals and different anesthetics. Differences in maximal photon emission and time-to-peak photon emission were analyzed. RESULTS: All volatile anesthetics showed a clear inhibitory effect on the luciferase activity of 50% at physiological concentrations. Avertin had a stronger inhibitory effect of 80%. For ketamine and xylazine, increased photon emission was observed in intact cells, but this was not present in cell lysate assays, and was most likely due to cell toxicity and increased cell membrane permeability. In vivo, the highest signal intensities were measured in unanesthetized mice and pentobarbital anesthetized mice, followed by avertin. Isoflurane and ketamine/medetomidine anesthetized mice showed the lowest photon emission (40% of unanesthetized, with significantly longer time-to-peak than unanesthetized, pentobarbital or avertin-anesthetized mice. We conclude that, although strong inhibitory effects of anesthetics are present in vitro, their effect on in vivo BLI quantification is mainly due to their hemodynamic effects on mice and only to a lesser extent due to the direct inhibitory effect.

  17. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression

    Science.gov (United States)

    Auld, Douglas S.; Thorne, Natasha; Maguire, William F.; Inglese, James

    2009-01-01

    High-throughput screening (HTS) assays used in drug discovery frequently use reporter enzymes such as firefly luciferase (FLuc) as indicators of target activity. An important caveat to consider, however, is that compounds can directly affect the reporter, leading to nonspecific but highly reproducible assay signal modulation. In rare cases, this activity appears counterintuitive; for example, some FLuc inhibitors, acting through posttranslational Fluc reporter stabilization, appear to activate gene expression. Previous efforts to characterize molecules that influence luciferase activity identified a subset of 3,5-diaryl-oxadiazole-containing compounds as FLuc inhibitors. Here, we evaluate a number of compounds with this structural motif for activity against FLuc. One such compound is PTC124 {3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid}, a molecule originally identified in a cell-based FLuc assay as having nonsense codon suppression activity [Welch EM, et al., Nature (2007) 447:87–91]. We find that the potency of FLuc inhibition for the tested compounds strictly correlates with their activity in a FLuc reporter cell-based nonsense codon assay, with PTC124 emerging as the most potent FLuc inhibitor (IC50 = 7 ± 1 nM). However, these compounds, including PTC124, fail to show nonsense codon suppression activity when Renilla reniformis luciferase (RLuc) is used as a reporter and are inactive against the RLuc enzyme. This suggests that the initial discovery of PTC124 may have been biased by its direct effect on the FLuc reporter, implicating firefly luciferase as a molecular target of PTC124. Our results demonstrate the value of understanding potential interactions between reporter enzymes and chemical compounds and emphasize the importance of implementing the appropriate control assays before interpreting HTS results. PMID:19208811

  18. [Expression of thermostable recombiant Luciola lateralis luciferase and development of heat-stable pyrosequencing system].

    Science.gov (United States)

    Xu, Shu; Zou, Bingjie; Wang, Jianping; Wu, Haiping; Zhou, Guohua

    2012-06-01

    Pyrosequencing is a tool based on bioluminescence reaction for real-time analyzing DNA sequences. The sensitivity of pyrosequencing mainly depends on luciferase in reaction mixture. However, the instability of pyrosequencing reagents caused by fragile wild Photinus pyralis luciferase (PpL) in conventional pyrosequencing usually leads to unsatisfied results, which limits the application of pyrosequencing. In order to improve the stability of pyrosequencing reagents, the coding sequences of mutant thermostable Luciola lateralis luciferase (rt-LlL) was synthesized, and inserted into the plasmid of pET28a(+) to express the thermostable rt-LlL with a 6 x His-tag in the N terminal. The purified rt-LlL with the molecular mass of 60 kDa was obtained by Ni-affinity chromatography. The specific activity of rt-LlL was determined as 4.29 x 10(10) RLU/mg. Moreover, the thermostability of rt-LlL was investigated, and the results showed that rt-LlL had activity at 50 degrees C, and remained 90% of activity after incubated at 40 degrees C for 25 min. Finally, rt-LlL was used to substitute commercial Photinus pyralis luciferase in conventional pyrosequencing reagent to get thermostable pyrosequencing reagent. Comparing with conventional pyrosequencing reagent, the thermostable pyrosequencing reagent is more stable, and it's activity would not lose when incubated at 37 degrees C for 1 h. This study laid foundation of establishing reliable and stable pyrosequencing system which would be applied in Point-of-Care Testing.

  19. A mouse model of pulmonary metastasis from spontaneous osteosarcoma monitored in vivo by Luciferase imaging.

    Directory of Open Access Journals (Sweden)

    Silvia Miretti

    Full Text Available BACKGROUND: Osteosarcoma (OSA is lethal when metastatic after chemotherapy and/or surgical treatment. Thus animal models are necessary to study the OSA metastatic spread and to validate novel therapies able to control the systemic disease. We report the development of a syngeneic (Balb/c murine OSA model, using a cell line derived from a spontaneous murine tumor. METHODOLOGY: The tumorigenic and metastatic ability of OSA cell lines were assayed after orthotopic injection in mice distal femur. Expression profiling was carried out to characterize the parental and metastatic cell lines. Cells from metastases were propagated and engineered to express Luciferase, in order to follow metastases in vivo. PRINCIPAL FINDINGS: Luciferase bioluminescence allowed to monitor the primary tumor growth and revealed the appearance of spontaneous pulmonary metastases. In vivo assays showed that metastasis is a stable property of metastatic OSA cell lines after both propagation in culture and luciferase trasduction. When compared to parental cell line, both unmodified and genetically marked metastatic cells, showed comparable and stable differential expression of the enpp4, pfn2 and prkcd genes, already associated to the metastatic phenotype in human cancer. CONCLUSIONS: This OSA animal model faithfully recapitulates some of the most important features of the human malignancy, such as lung metastatization. Moreover, the non-invasive imaging allows monitoring the tumor progression in living mice. A great asset of this model is the metastatic phenotype, which is a stable property, not modifiable after genetic manipulation.

  20. Botulinum neurotoxin dose-dependently inhibits release of neurosecretory vesicle-vargeted luciferase from neuronal cells.

    Science.gov (United States)

    Pathe-Neuschäfer-Rube, Andrea; Neuschäfer-Rube, Frank; Genz, Lara; Püchel, Gerhard P

    2015-01-01

    Botulinum toxin is a bacterial toxin that inhibits neurotransmitter release from neurons and thereby causes a flaccid paralysis. It is used as drug to treat a number of serious ailments and, more frequently, for aesthetic medical interventions. Botulinum toxin for pharmacological applications is isolated from bacterial cultures. Due to partial denaturation of the protein, the specific activity of these preparations shows large variations.Because of its extreme potential toxicity, pharmacological preparations must be carefully tested for their activity. For the current gold standard, the mouse lethality assay, several hundred thousand mice are killed per year. Alternative methods have been developed that suffer from one or more of the following deficits: In vitro enzyme assays test only the activity of the catalytic subunit of the toxin. Enzymatic and cell based immunological assays are specific for just one of the different serotypes. The current study takes a completely different approach that overcomes these limitations: Neuronal cell lines were stably transfected with plasmids coding for luciferases of different species, which were N-terminally tagged with leader sequences that redirect the luciferase into neuro-secretory vesicles. From these vesicles, luciferases were released upon depolarization of the cells. The depolarization-dependent release was efficiently inhibited by of botulinum toxin in a concentration range (1 to 100 pM) that is used in pharmacological preparations. The new assay might thus be an alternative to the mouse lethality assay and the immunological assays already in use.

  1. Highly Potent Cell-Permeable and Impermeable NanoLuc Luciferase Inhibitors.

    Science.gov (United States)

    Walker, Joel R; Hall, Mary P; Zimprich, Chad A; Robers, Matthew B; Duellman, Sarah J; Machleidt, Thomas; Rodriguez, Jacquelynn; Zhou, Wenhui

    2017-04-21

    Novel engineered NanoLuc (Nluc) luciferase being smaller, brighter, and superior to traditional firefly (Fluc) or Renilla (Rluc) provides a great opportunity for the development of numerous biological, biomedical, clinical, and food and environmental safety applications. This new platform created an urgent need for Nluc inhibitors that could allow selective bioluminescent suppression and multiplexing compatibility with existing luminescence or fluorescence assays. Starting from thienopyrrole carboxylate 1, a hit from a 42 000 PubChem compound library with a low micromolar IC50 against Nluc, we derivatized four different structural fragments to discover a family of potent, single digit nanomolar, cell permeable inhibitors. Further elaboration revealed a channel that allowed access to the external Nluc surface, resulting in a series of highly potent cell impermeable Nluc inhibitors with negatively charged groups likely extending to the protein surface. The permeability was evaluated by comparing EC50 shifts calculated from both live and lysed cells expressing Nluc cytosolically. Luminescence imaging further confirmed that cell permeable compounds inhibit both intracellular and extracellular Nluc, whereas less permeable compounds differentially inhibit extracellular Nluc and Nluc on the cell surface. The compounds displayed little to no toxicity to cells and high luciferase specificity, showing no activity against firefly luciferase or even the closely related NanoBit system. Looking forward, the structural motifs used to gain access to the Nluc surface can also be appended with other functional groups, and therefore interesting opportunities for developing assays based on relief-of-inhibition can be envisioned.

  2. Using multiplexed regulation of luciferase activity and GFP translocation to screen for FOXO modulators

    Directory of Open Access Journals (Sweden)

    Carnero Amancio

    2009-02-01

    Full Text Available Abstract Background Independent luciferase reporter assays and fluorescent translocation assays have been successfully used in drug discovery for several molecular targets. We developed U2transLUC, an assay system in which luciferase and fluorescent read-outs can be multiplexed to provide a powerful cell-based high content screening method. Results The U2transLUC system is based on a stable cell line expressing a GFP-tagged FOXO transcription factor and a luciferase reporter gene under the control of human FOXO-responsive enhancers. The U2transLUC assay measures nuclear-cytoplasmic FOXO shuttling and FOXO-driven transcription, providing a means to analyze these two key features of FOXO regulation in the same experiment. We challenged the U2transLUC system with chemical probes with known biological activities and we were able to identify compounds with translocation and/or transactivation capacity. Conclusion Combining different biological read-outs in a single cell line offers significant advantages over conventional cell-based assays. The U2transLUC assay facilitates the maintenance and monitoring of homogeneous FOXO transcription factor expression and allows the reporter gene activity measured to be normalized with respect to cell viability. U2transLUC is suitable for high throughput screening and can identify small molecules that interfere with FOXO signaling at different levels.

  3. Enhanced red-emitting railroad worm luciferase for bioassays and bioimaging.

    Science.gov (United States)

    Li, Xueyan; Nakajima, Yoshihiro; Niwa, Kazuki; Viviani, Vadim R; Ohmiya, Yoshihiro

    2010-01-01

    A luciferase from the railroad worm (Phrixothrix hirtus) is the only red-emitting bioluminescent enzyme in nature that is advantageous in multicolor luciferase assays and in bioluminescence imaging (BLI). However, it is not used widely in scientific or industrial applications because of its low activity and stability. By using site-directed mutagenesis, we produced red-emitting mutants with higher activity and better stability. Compared with the wild-type (WT), the luminescent activities from extracts of cultured mammalian cells expressing mutant luciferase were 9.8-fold in I212L/N351K, 8.4-fold in I212L, and 7.8-fold in I212L/S463R; and the cell-based activities were 3.6-fold in I212L/N351K and 3.4-fold in N351K. The remaining activities after incubation at 37 degrees C for 10 min were 50.0% for I212L/S463R, 31.8% for I212L, and 23.0% for I212L/N351K, but only 5.2% for WT. To demonstrate an application of I212L/N351K, cell-based BLI was performed, and the luminescence signal was 3.6-fold higher than in WT. These results indicate that the mutants might improve the practicability of this signaling in bioassays and BLI.

  4. Transgenic algae engineered for higher performance

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  5. Ethical issues in transgenics.

    Science.gov (United States)

    Sherlock, R; Morrey, J D

    2000-01-01

    The arguments of critics and concerns of the public on generating transgenic cloned animals are analyzed for the absence or presence of logical structure. Critics' arguments are symbolically compared with "genetic trespassing," "genetic speeding," or "going the wrong way," and responses are provided to these arguments. Scientists will be empowered to participate in the public discussion and to engage the critics on these issues as they consider thoughtful, plausible responses to their concerns. Temporary moratoriums are recognized as a plausible approach to dealing with possible concerns of new scientific advancements.

  6. Stringent and reproducible tetracycline-regulated transgene expression by site-specific insertion at chromosomal loci with pre-characterised induction characteristics

    Directory of Open Access Journals (Sweden)

    Papanastasiou Antigoni M

    2007-05-01

    Full Text Available Abstract Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080 two of many possible implementations of this approach. Clones (e.g. Rht14-10 in which a GFP reporter gene is very stringently regulated by the tetracycline (tet transactivator (tTA protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet to more than 104-fold above background (-tet were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify

  7. Epigenetic silencing in transgenic plants

    Directory of Open Access Journals (Sweden)

    Sarma eRajeev Kumar

    2015-09-01

    Full Text Available Epigenetic silencing is a natural phenomenon in which the expression of gene is regulated through modifications of DNA, RNA or histone proteins. It is a mechanism for defending host genomes against the effects of transposable element, viral infection and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was discovery of silencing in transgenic tobacco plants due to interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, i.e. transcriptional gene silencing (TGS, which is associated with heavy methylation of promoter regions and blocks the transcription of transgene. The basic mechanism underlying post-transcriptional gene silencing (PTGS is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of a major concern in transgenic technology used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes are required. The current status of epigenetic silencing in transgenic technology has been discussed and summarized in this mini-review.

  8. Epigenetic silencing in transgenic plants

    Science.gov (United States)

    Rajeevkumar, Sarma; Anunanthini, Pushpanathan; Sathishkumar, Ramalingam

    2015-01-01

    Epigenetic silencing is a natural phenomenon in which the expression of genes is regulated through modifications of DNA, RNA, or histone proteins. It is a mechanism for defending host genomes against the effects of transposable elements and viral infection, and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was the discovery of silencing in transgenic tobacco plants due to the interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, that is, transcriptional gene silencing, which is associated with heavy methylation of promoter regions and blocks the transcription of transgenes, and post-transcriptional gene silencing (PTGS), the basic mechanism is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of major concern in the transgenic technologies used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes is required. The current status of epigenetic silencing in transgenic technology is discussed and summarized in this mini-review. PMID:26442010

  9. Relative quantification of protein-protein interactions using a dual luciferase reporter pull-down assay system.

    Directory of Open Access Journals (Sweden)

    Shuaizheng Jia

    Full Text Available The identification and quantitative analysis of protein-protein interactions are essential to the functional characterization of proteins in the post-proteomics era. The methods currently available are generally time-consuming, technically complicated, insensitive and/or semi-quantitative. The lack of simple, sensitive approaches to precisely quantify protein-protein interactions still prevents our understanding of the functions of many proteins. Here, we develop a novel dual luciferase reporter pull-down assay by combining a biotinylated Firefly luciferase pull-down assay with a dual luciferase reporter assay. The biotinylated Firefly luciferase-tagged protein enables rapid and efficient isolation of a putative Renilla luciferase-tagged binding protein from a relatively small amount of sample. Both of these proteins can be quantitatively detected using the dual luciferase reporter assay system. Protein-protein interactions, including Fos-Jun located in the nucleus; MAVS-TRAF3 in cytoplasm; inducible IRF3 dimerization; viral protein-regulated interactions, such as MAVS-MAVS and MAVS-TRAF3; IRF3 dimerization; and protein interaction domain mapping, are studied using this novel assay system. Herein, we demonstrate that this dual luciferase reporter pull-down assay enables the quantification of the relative amounts of interacting proteins that bind to streptavidin-coupled beads for protein purification. This study provides a simple, rapid, sensitive, and efficient approach to identify and quantify relative protein-protein interactions. Importantly, the dual luciferase reporter pull-down method will facilitate the functional determination of proteins.

  10. Sequential monitoring of transgene expression following Agrobacterium-mediated transformation of rice.

    Science.gov (United States)

    Saika, Hiroaki; Nonaka, Satoko; Osakabe, Keishi; Toki, Seiichi

    2012-11-01

    Although Agrobacterium-mediated transformation technology is now used widely in rice, many varieties of indica-type rice are still recalcitrant to Agrobacterium-mediated transformation. It was reported recently that T-DNA integration into the rice genome could be the limiting step in this method. Here, we attempted to establish an efficient sequential monitoring system for stable transformation events by visualizing stable transgene expression using a non-destructive and highly sensitive visible marker. Our results demonstrate that click beetle luciferase (ELuc) is an excellent marker allowing the observation of transformed cells in rice callus, exhibiting a sensitivity >30-fold higher than that of firefly luciferase. Since we have previously shown that green fluorescent protein (GFP) is a useful visual marker with which to follow transient and/or stable expression of transgenes in rice, we constructed an enhancer trap vector using both the gfbsd2 (GFP fused to the N-terminus of blasticidin S deaminase) and eluc genes. In this vector, the eluc gene is under the control of the Cauliflower mosaic virus 35S minimal promoter, while the gfbsd2 gene is under the control of the full-length rice elongation factor gene promoter. Observation of transformed callus under a dissecting microscope demonstrated that the level of ELuc luminescence reflected exclusively stable transgene expression, and that both transient and stable expression could be monitored by the level of GFP fluorescence. Moreover, we show that our system enables sequential quantification of transgene expression via differential measurement of ELuc luminescence and GFP fluorescence.

  11. A Double-Switch Cell Fusion-Inducible Transgene Expression System for Neural Stem Cell-Based Antiglioma Gene Therapy

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available Recent progress in neural stem cell- (NSC- based tumor-targeted gene therapy showed that NSC vectors expressing an artificially engineered viral fusogenic protein, VSV-G H162R, could cause tumor cell death specifically under acidic tumor microenvironment by syncytia formation; however, the killing efficiency still had much room to improve. In the view that coexpression of another antitumoral gene with VSV-G can augment the bystander effect, a synthetic regulatory system that triggers transgene expression in a cell fusion-inducible manner has been proposed. Here we have developed a double-switch cell fusion-inducible transgene expression system (DoFIT to drive transgene expression upon VSV-G-mediated NSC-glioma cell fusion. In this binary system, transgene expression is coregulated by a glioma-specific promoter and targeting sequences of a microRNA (miR that is highly expressed in NSCs but lowly expressed in glioma cells. Thus, transgene expression is “switched off” by the miR in NSC vectors, but after cell fusion with glioma cells, the miR is diluted and loses its suppressive effect. Meanwhile, in the syncytia, transgene expression is “switched on” by the glioma-specific promoter. Our in vitro and in vivo experimental data show that DoFIT successfully abolishes luciferase reporter gene expression in NSC vectors but activates it specifically after VSV-G-mediated NSC-glioma cell fusion.

  12. Tumorigenesis and spontaneous metastasis by luciferase-labeled human xenograft osteosarcoma cells in nude mice.

    Science.gov (United States)

    Du, Lin; Xu, Wen-ting; Fan, Qi-ming; Tu, Bing; Shen, Yang; Yan, Wei; Tang, Ting-ting; Wang, You

    2012-11-01

    Osteosarcoma (OS) is the most common primary malignant tumor of bone. Mouse models of human OS can invariably provide greater insight into the complex mechanisms that underlie the development and pathogenesis of this aggressive tumor. Bioluminescence technology favored tracing cancer cells in vivo. In this study, an OS model was described and evaluated using human OS cell line, Saos2, labeled with luciferase (Saos2-luc). Saos2 cells were infected by lentivirus loading a firefly luciferase gene. Luciferase expression of Saos2-luc cells was characterized both in vitro and in vivo. Specific biologic and oncologic features of Saos2-luc cells were analyzed. The OS was established as orthotopic xenografts in nude mice. Both orthotopic tumors and spontaneous lung metastasis were analyzed. Tumorigenesis and spontaneous lung metastasis in nude mice could be monitored in vivo through in vivo imaging system. The enhancement in proliferation, migration and invasion abilities and the attenuation in adhesion ability were observed in Saos2-luc cells compared with Saos2 cells. Furthermore, there were the up-regulation of Osteocalcin, CCR10, CXCR1 and ID1 and the down-regulation of ALP, collagen I, CCR1, CCR3, CXCR3, NID and N-cadherin in Saos2-luc cells compare to Saos2 cells. The rate of spontaneous lung metastasis in Saos2-luc cells was higher than that in Saos2 cells, although without significant difference. Lentivirus transfection may cause alteration of gene expression profiles and further biological functions. This model can be used in the elucidation of molecular mechanisms of tumorigenesis and the screening of new therapeutic agents.

  13. Measurements of serum glucose using the luciferin/Luciferase system and a liquid scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Idahl, L.A.; Sandstroem, P.E.; Sehlin, J.

    1986-05-15

    A single-step assay for serum glucose measurements is described. The assay is based on the phosphorylation of D-glucose by glucokinase and the measurement of ATP consumption by firefly luciferase. The luminescence is recorded in an ordinary liquid scintillation spectrometer. The use of stable reagents and a stable final signal (light emission) makes it possible to analyze a large number of samples in each assay run. The assay is of particular value when repeated serum glucose determinations are performed on samples from small laboratory animals.

  14. COMPARISON TRANSGENIC AND NON-TRANSGENIC MILK QUALITY

    Directory of Open Access Journals (Sweden)

    Peter Chrenek

    2012-02-01

    Full Text Available Transgenic founder rabbits carrying a gene construct consisting of a 2.5 kb murine whey acidic protein promoter (mWAP, 7.2 kb of the human clotting factor VIII (hFVIII cDNA and 4.6 kb of 3’ flanking sequences of mWAP gene were crossed for five generations. Transgenic females showed high level of recombinant hFVIII (rhFVIII mRNA expression in biopsed mammary gland tissues. The presence of the mWAP-hFVIII transgene in rabbit genome and secretion of rhFVIII into milk of transgenic females (F1, F2, F3, F4 and F5 generation did not have any adverse phenotypic effect on milk quality.

  15. Transgenics, agroindustry and food sovereignty

    Directory of Open Access Journals (Sweden)

    Xavier Alejandro León Vega

    2014-10-01

    Full Text Available Food sovereignty has been implemented constitutionally in Ecuador; however, many of the actions and policies are designed to benefit the dominant model of food production, based in agroindustry, intensive monocultures, agrochemicals and transgenics. This article reflects upon the role of family farming as a generator of food sovereignty, and secondly the threat to them by agroindustry agriculture based in transgenic. The role played by food aid in the introduction of transgenic in Latin America and other regions of the world is also analyzed.

  16. Luciferase NanoLuc as a reporter for gene expression and protein levels in Saccharomyces cerevisiae

    Science.gov (United States)

    Masser, Anna E.; Kandasamy, Ganapathi; Kaimal, Jayasankar Mohanakrishnan

    2016-01-01

    Abstract Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon‐optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half‐lives of 40 and 5 min, respectively. The commercial substrate Nano‐Glo® is compatible with detection of yNluc bioluminescence in bioluminescent signal and mRNA levels during both induction and decay. We demonstrated that the bioluminescence of yNluc fused to the C‐terminus of a temperature‐sensitive protein reports on its protein levels. In conclusion, yNluc and yNlucPEST are valuable new reporter proteins suitable for experiments with yeast using standard commercial substrate. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd. PMID:26860732

  17. Codon optimization of bacterial luciferase (lux) for expression in mammalian cells.

    Science.gov (United States)

    Patterson, Stacey S; Dionisi, Hebe M; Gupta, Rakesh K; Sayler, Gary S

    2005-03-01

    Expression of the bacterial luciferase (lux) system in mammalian cells would culminate in a new generation of bioreporters for in vivo monitoring and diagnostics technology. Past efforts to express bacterial luciferase in mammalian cells have resulted in only modest gains due in part to low overall expression of the bacterial genes. To optimize expression, we have designed and synthesized codon-optimized versions of the luxA and luxB genes from Photorhabdus luminsecens. To evaluate these genes in vivo, stable HEK293 cell lines were created harboring wild type luxA and luxB (WTA/WTB), codon-optimized luxA and wild type luxB (COA/WTB), and codon-optimized versions of both luxA and luxB genes (COA/COB). Although mRNA levels within these clones remained approximately equal, LuxA protein levels increased significantly after codon optimization. On average, bioluminescence levels were increased by more than six-fold [5x10(5) vs 2.9x10(6) relative light units (RLU)/mg total protein] with the codon-optimized luxA and wild type luxB. Bioluminescence was further enhanced upon expression of both optimized genes (2.7x10(7) RLU/mg total protein). These results show promise toward the potential development of an autonomous light generating lux reporter system in mammalian cells.

  18. Development of luciferase tagged brain tumour models in mice for chemotherapy intervention studies.

    Science.gov (United States)

    Kemper, E M; Leenders, W; Küsters, B; Lyons, S; Buckle, T; Heerschap, A; Boogerd, W; Beijnen, J H; van Tellingen, O

    2006-12-01

    The blood-brain barrier (BBB) is considered one of the major causes for the low efficacy of cytotoxic compounds against primary brain tumours. The aim of this study was to develop intracranial tumour models in mice featuring intact or locally disrupted BBB properties, which can be used in testing chemotherapy against brain tumours. These tumours were established by intracranial injection of suspensions of different tumour cell lines. All cell lines had been transfected with luciferase to allow non-invasive imaging of tumour development using a super-cooled CCD-camera. Following their implantation, tumours developed which displayed the infiltrative, invasive or expansive growth patterns that are also found in primary brain cancer or brain metastases. Contrast-enhanced magnetic resonance imaging showed that the Mel57, K1735Br2 and RG-2 lesions grow without disruption of the BBB, whereas the BBB was leaky in the U87MG and VEGF-A-transfected Mel57 lesions. This was confirmed by immunohistochemistry. Bioluminescence measurements allowed the visualisation of tumour burden already within 4 days after injection of the tumour cells. The applicability of our models for performing efficacy studies was demonstrated in an experiment using temozolomide as study drug. In conclusion, we have developed experimental brain tumour models with partly disrupted, or completely intact BBB properties. In vivo imaging by luciferase allows convenient follow-up of tumour growth and these models will be useful for chemotherapeutic intervention studies.

  19. A luciferase-based screening method for inhibitors of alphavirus replication applied to nucleoside analogues.

    Science.gov (United States)

    Pohjala, Leena; Barai, Vladimir; Azhayev, Alex; Lapinjoki, Seppo; Ahola, Tero

    2008-06-01

    Several members of the widespread alphavirus group are pathogenic, but no therapy is available to treat these RNA virus infections. We report here a quantitative assay to screen for inhibitors of Semliki Forest virus (SFV) replication, and demonstrate the effects of 29 nucleosides on SFV and Sindbis virus replication. The anti-SFV assay developed is based on a SFV strain containing Renilla luciferase inserted after the nsP3 coding region, yielding a marker virus in which the luciferase is cleaved out during polyprotein processing. The reporter-gene assay was miniaturized, automated and validated, resulting in a Z' value of 0.52. [3H]uridine labeling for 1 h at the maximal viral RNA synthesis time point was used as a comparative method. Anti-SFV screening and counter-screening for cell viability led to the discovery of several new SFV inhibitors. 3'-amino-3'-deoxyadenosine was the most potent inhibitor in this set, with an IC50 value of 18 microM in the reporter-gene assay and 2 microM in RNA synthesis rate detection. Besides the 3'-substituted analogues, certain N6-substituted nucleosides had similar IC50 values for both SFV and Sindbis replication, suggesting the applicability of this methodology to alphaviruses in general.

  20. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes.

    Science.gov (United States)

    Markstein, Michele; Pitsouli, Chrysoula; Villalta, Christians; Celniker, Susan E; Perrimon, Norbert

    2008-04-01

    A major obstacle to creating precisely expressed transgenes lies in the epigenetic effects of the host chromatin that surrounds them. Here we present a strategy to overcome this problem, employing a Gal4-inducible luciferase assay to systematically quantify position effects of host chromatin and the ability of insulators to counteract these effects at phiC31 integration loci randomly distributed throughout the Drosophila genome. We identify loci that can be exploited to deliver precise doses of transgene expression to specific tissues. Moreover, we uncover a previously unrecognized property of the gypsy retrovirus insulator to boost gene expression to levels severalfold greater than at most or possibly all un-insulated loci, in every tissue tested. These findings provide the first opportunity to create a battery of transgenes that can be reliably expressed at high levels in virtually any tissue by integration at a single locus, and conversely, to engineer a controlled phenotypic allelic series by exploiting several loci. The generality of our approach makes it adaptable to other model systems to identify and modify loci for optimal transgene expression.

  1. Transgenic mice in developmental toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Woychik, R.P.

    1992-01-01

    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areas of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.

  2. Transgenic mice in developmental toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Woychik, R.P.

    1992-12-31

    Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areas of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.

  3. Structural evolution of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site.

    Science.gov (United States)

    Prado, R A; Barbosa, J A; Ohmiya, Y; Viviani, V R

    2011-07-01

    The structural origin and evolution of bioluminescent activity of beetle luciferases from AMP/CoA ligases remains a mystery. Previously we cloned the luciferase-like enzyme from Zophobas morio mealworm, a reasonable protoluciferase model that could shine light on this mystery. Kinetic characterization and studies with D- and L-luciferin and their adenylates showed that stereoselectivity constitutes a critical feature for the origin of luciferase activity in AMP/CoA ligases. Comparison of the primary structures and modeling studies of this protoluciferase and the three main families of beetle luciferases showed that the carboxylic acid substrate binding site of this enzyme is smaller and more hydrophobic than the luciferin binding site of beetle luciferases, showing several substitutions of otherwise conserved residues. Thus, here we performed a site-directed mutagenesis survey of the carboxylic binding site motifs of the protoluciferase by replacing their residues by the respective conserved ones found in beetle luciferases in order to identify the structural determinants of luciferase/oxygenase activity. Although most of the substitutions had negative impact on the luminescence activity of the protoluciferase, only the substitution I327T improved the luminescence activity, resulting in a broad and 15 nm blue-shifted luminescence spectrum. Such substitution indicates the importance of the loop motif 322YGMSEI327 (341YGLTETT347 in Photinus pyralis luciferase) for luciferase activity, and indicates a possible route for the evolution of bioluminescence function of beetle luciferases.

  4. The Mechanism of the Silencing of a Transgene, NCED3‐LUC, in Arabidopsis Thaliana

    KAUST Repository

    Zhao, Junsong

    2011-06-20

    The Arabidopsis thaliana NCED3‐LUC transgenic line was constructed by several groups to study the regulatory network of the NCED3 gene, the protein of which catalyzes the rate‐limiting step of ABA biosynthesis under drought. The transgenic luciferase gene is expressed when the plants encounter drought stress. Intriguingly, this transgenic luciferase gene is silenced after propagation for several generations. To determine the mechanism of this gene silencing, we used a forward genetics approach. The seeds of NCED3‐LUC (referred as the ‘wild type’) were mutagenized by ethane methyl sulfonate (EMS). One mutant line, denoted as #73, with recovered luciferase activity was selected for further study. Analysis of the methylation status by bisulfite sequencing revealed that the transgenic NCED3 promoter in the #73 mutant had less methylation than the wild type. Demethylation was also evident for the endogenous NCED3 promoter and retrotransposon AtSN1 in the #73 mutant. The phenotype of #73 mutant includes small size, rapid dehydration rate, altered morphology, and a thin epicuticular wax layer. By use of map‐based cloning, the region containing the mutated gene was delimited to a contig of two BAC clones, F11F19 and F9C22, on chromosome 2. Our results indicate that NCED3‐LUC gene silencing results from hypermethylation of its promoter region, but additional study is required to determine the exact position of the mutated gene and to fully understand the mechanism of NCED3‐LUC silencing. 4 ACKNOWLEDGEMENTS I would like to take this opportunity to thank my committee chair, Professor Jian‐Kang Zhu, who is also the supervisor of my master’s thesis, for his guidance throughout the course of this research. I also would like to thank my committee members, Professor Liming Xiong and Professor Samir Hamdan, for their patience and support in reviewing my thesis. My appreciation also goes to Dr. Zhenyu Wang for taking time to teach me basic experimental skills and

  5. An enhanced chimeric firefly luciferase-inspired enzyme for ATP detection and bioluminescence reporter and imaging applications.

    Science.gov (United States)

    Branchini, Bruce R; Southworth, Tara L; Fontaine, Danielle M; Kohrt, Dawn; Talukder, Munya; Michelini, Elisa; Cevenini, Luca; Roda, Aldo; Grossel, Martha J

    2015-09-01

    Firefly luciferases, which emit visible light in a highly specific ATP-dependent process, have been adapted for a variety of applications, including gene reporter assays, whole-cell biosensor measurements, and in vivo imaging. We previously reported the approximately 2-fold enhanced activity and 1.4-fold greater bioluminescence quantum yield properties of a chimeric enzyme that contains the N-domain of Photinus pyralis luciferase joined to the C-domain of Luciola italica luciferase. Subsequently, we identified 5 amino acid changes based on L. italica that are the main determinants of the improved bioluminescence properties. Further engineering to enhance thermal and pH stability produced a novel luciferase called PLG2. We present here a systematic comparison of the spectral and physical properties of the new protein with P. pyralis luciferase and demonstrate the potential of PLG2 for use in assays based on the detection of femtomole levels of ATP. In addition, we compared the performance of a mammalian codon-optimized version of the cDNA for PLG2 with the luc2 gene in HEK293T cells. Using an optimized low-cost assay system, PLG2 activity can be monitored in mammalian cell lysates and living cells with 4.4-fold and approximately 3.0-fold greater sensitivity, respectively. PLG2 could be an improved alternative to Promega's luc2 for reporter and imaging applications.

  6. An enhanced chimeric firefly luciferase-inspired enzyme for ATP detection and bioluminescence reporter and imaging applications

    Science.gov (United States)

    Branchini, Bruce R.; Southworth, Tara L.; Fontaine, Danielle M.; Kohrt, Dawn; Talukder, Munya; Michelini, Elisa; Cevenini, Luca; Roda, Aldo; Grossel, Martha J.

    2015-01-01

    Firefly luciferases, which emit visible light in a highly specific ATP-dependent process, have been adapted for a variety of applications including gene reporter assays, whole-cell biosensor measurements and in vivo imaging. We have previously reported the ~2-fold enhanced activity and 1.4-greater bioluminescence quantum yield properties of a chimeric enzyme that contains the N-domain of Photinus pyralis luciferase joined to the C-domain of Luciola italica luciferase. Subsequently, we identified 5 amino acid changes based on L. italica that are the main determinants of the improved bioluminescence properties. Further engineering to enhance thermal and pH stability produced a novel luciferase called PLG2. We present here a systematic comparison of the spectral and physical properties of the new protein with P. pyralis luciferase and demonstrate the potential of PLG2 for use in assays based on the detection of femtomol levels of ATP. Additionally, we compared the performance of a mammalian codon-optimized version of the cDNA for PLG2 with the luc2 gene in HEK293T cells. Using an optimized low-cost assay system, PLG2 activity can be monitored in mammalian cell lysates and in living cells offering an improved alternative to Promega’s luc2 for reporter and imaging applications. PMID:26049097

  7. Monitoring of prostate cancer growth and metastasis using a PSA luciferase report plasmid in a mouse model

    Institute of Scientific and Technical Information of China (English)

    Qi-Qi Mao; Yi-Wei Lin; Hong Chen; Kai Yang; De-Bo Kong; Hai Jiang

    2014-01-01

    Objective:To construct a PSA luciferase report plasmid and monitor the growth and metastasis of prostate cancer after emasculation in SCID mice. Methods: PSA promoter sequence and luciferase gene were amplified by PCR and subsequently inserted into pZsGreen1-1 vector to construct pPSA-FL-Luc vector. LNCaP cells that were stably transfected with pPSA-FL-Luc were used to establish a SCID mouse xenograft model. Then, the growth and metastasis of prostate cancer were monitored via living imaging. Results:We successfully constructed a PSA luciferase plasmid, pPSA-FL-Luc. DHT enhanced luciferase activity in a concentration-dependent manner in 293T cells with pPSA-FL-Luc transfection. Prostate cancer SCID mouse model was established with pPSA-FL-Luc transfected LNCaP cells. In tumor bearing mice with or without emasculation, pPSA-FL-Luc plasmid was applied to monitored tumor growth and metastasis based on bioluminescence imaging. Conclusions: We construct a pPSA-FL-Luc plasmid, which stably expresses luciferase and can be applied to monitor tumor development in a prostate SCID mouse model.

  8. Pharming and transgenic plants.

    Science.gov (United States)

    Liénard, David; Sourrouille, Christophe; Gomord, Véronique; Faye, Loïc

    2007-01-01

    Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories.

  9. Heterologous expression in transgenic mosquitoes

    Institute of Scientific and Technical Information of China (English)

    Santhosh P K; Yu hua Deng; Weidong Gu; Xiaoguang Chen

    2010-01-01

    Arthropod-borne diseases such as malaria and dengue virus afflict billions of people worldwide imposing major economic and social burdens. Control of such pathogens is mainly performed by vector management and treatment of affected individuals with drugs. The failure of these conventional approaches due to emergence of insecticide-resistant insects and drug-resistant parasites demonstrate the need of novel and efficacious control strategies to combat these diseases. Genetic modification(GM) of mosquito vectors to impair their ability to be infected and transmit pathogens has emerged as a new strategy to reduce transmission of many vector-borne diseases and deliver public health gains. Several advances in developing transgenic mosquitoes unable to transmit pathogens have gained support, some of them attempt to manipulate the naturally occurring endogenous refractory mechanisms, while others initiate the identification of an exogenous foreign gene which disrupt the pathogen development in insect vectors. Heterologous expression of transgenes under a native or heterologous promoter is important for the screening and effecting of the transgenic mosquitoes. The effect of the transgene on mosquito fitness is a crucial parameter influencing the success of this transgenic approach. This review examines these two aspects and describes the basic research work that has been accomplished towards understanding the complex relation between the parasite and its vector and focuses on recent advances and perspectives towards construction of transgenic mosquitoes refractory to vector-borne disease transmission.

  10. Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride.

    Science.gov (United States)

    Hattori, Noriaki; Sakakibara, Tatsuya; Kajiyama, Naoki; Igarashi, Toshinori; Maeda, Masako; Murakami, Seiji

    2003-08-15

    In a biomass assay based on adenosine 5(')-triphosphate (ATP) bioluminescence, extracellular ATP is removed; then intracellular ATP is extracted from the microorganism by an ATP extractant and subsequently reacted with luciferase. To provide a highly sensitive assay, the concentration of benzalkonium chloride (BAC) in the ATP extractant was optimized by using a mutant luciferase resistant to BAC. The use of 0.2% BAC, which was acceptable for the luciferase, simultaneously achieved the maximum extraction of intracellular ATP from microorganisms and the inactivation of the ATP-eliminating enzymes for removal of extracellular ATP. The detection limit (blank+3 SD) for ATP was 1.8x10(-14)M (1.8x10(-18)mol/assay) in the presence of the ATP extractant with coefficients of variation of 0.7 to 6.3%. The reagent system coupled with the ATP-eliminating enzymes allowed for the detection of 93 colony-forming units (CFU)/ml of Escherichia coli ATCC 25922, 170CFU/ml of Pseudomonas aeruginosa ATCC 27853, 170CFU/ml of Proteus mirabilis ATCC 29906, 68CFU/ml of Staphylococcus aureus ATCC 25923, and 7.7CFU/ml of Bacillus subtilis ATCC 6051. The yeast cell of Saccharomyces cerevisiae IFO 10217 could be detected at 1CFU/ml. With 54 kinds of microorganisms, the average ATP extraction efficiency compared to the trichloroacetic acid extraction method was 81.0% in 24 strains among gram-negative bacteria, 99.4% in 13 strains among gram-positive bacteria, and 97.0% in 17 strains among yeast. The ATP contents of the gram-negative bacteria, gram-positive bacteria, and yeasts ranged from 0.40 to 2.70x10(-18)mol/CFU (mean=1.5x10(-18)mol/CFU), from 0.41 to 16.7x10(-18)mol/CFU (mean=5.5x10(-18)mol/CFU), and from 0.714 to 54.6x10(-16)mol/CFU (mean=8.00x10(-16)mol/CFU), respectively.

  11. Fimbrolide Natural Products Disrupt Bioluminescence of Vibrio By Targeting Autoinducer Biosynthesis and Luciferase Activity.

    Science.gov (United States)

    Zhao, Weining; Lorenz, Nicola; Jung, Kirsten; Sieber, Stephan A

    2016-01-18

    Vibrio is a model organism for the study of quorum sensing (QS) signaling and is used to identify QS-interfering drugs. Naturally occurring fimbrolides are important tool compounds known to affect QS in various organisms; however, their cellular targets have so far remained elusive. Here we identify the irreversible fimbrolide targets in the proteome of living V. harveyi and V. campbellii via quantitative mass spectrometry utilizing customized probes. Among the major hits are two protein targets with essential roles in Vibrio QS and bioluminescence. LuxS, responsible for autoinducer 2 biosynthesis, and LuxE, a subunit of the luciferase complex, were both covalently modified at their active-site cysteines leading to inhibition of activity. The identification of LuxE unifies previous reports suggesting inhibition of bioluminescence downstream of the signaling cascade and thus contributes to a better mechanistic understanding of these QS tool compounds.

  12. Luciferase Genes as Reporter Reactions: How to Use Them in Molecular Biology?

    Science.gov (United States)

    Cevenini, L; Calabretta, M M; Calabria, D; Roda, A; Michelini, E

    2016-01-01

    : The latest advances in molecular biology have made available several biotechnological tools that take advantage of the high detectability and quantum efficiency of bioluminescence (BL), with an ever-increasing number of novel applications in environmental, pharmaceutical, food, and forensic fields. Indeed, BL proteins are being used to develop ultrasensitive binding assays and cell-based assays, thanks to their high detectability and to the availability of highly sensitive BL instruments. The appealing aspect of molecular biology tools relying on BL reactions is their general applicability in both in vitro assays, such as cell cultures or purified proteins, and in vivo settings, such as in whole-animal BL imaging. The aim of this chapter is to provide the reader with an overview of state-of-the-art bioluminescent tools based on luciferase genes, highlighting molecular biology strategies that have been applied so far, together with some selected examples.

  13. Evaluation of the Luciferase Assay-Based In Vitro Elicitation Test for Serum IgE

    Directory of Open Access Journals (Sweden)

    Ryosuke Nakamura

    2012-01-01

    Results: The area under the ROC curves was highest in the EXiLE test (0.977, followed by CAP-FEIA (0.926 and degranulation (0.810. At an optimal cutoff range (1.648-1.876 calculated from the ROC curve of the EXiLE test, sensitivity and specificity were 0.944 and 0.917, respectively. A 95% positive predictive value was given at a cutoff level of 2.054 (fold increase in luciferase expression by logistic regression analysis. Conclusions: In contrast to in vivo tests, the EXiLE test appears to be a useful tool in diagnosing patients suspected of having IgE-dependent EW allergy without the risk of severe systemic reactions.

  14. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124

    Energy Technology Data Exchange (ETDEWEB)

    Auld, Douglas S.; Lovell, Scott; Thorne, Natasha; Lea, Wendy A.; Maloney, David J.; Shen, Min; Rai, Ganesha; Battaile, Kevin P.; Thomas, Craig J.; Simeonov, Anton; Hanzlik, Robert P.; Inglese, James (NIH); (Kansas); (HWMRI)

    2010-04-07

    Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 {angstrom} cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; KD = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the 'off-target' effect of a small molecule is mediated by an MAI mechanism.

  15. Point mutations in firefly luciferase C-domain demonstrate its significance in green color of bioluminescence.

    Science.gov (United States)

    Modestova, Yulia; Koksharov, Mikhail I; Ugarova, Natalia N

    2014-09-01

    Firefly luciferase is a two-domain enzyme that catalyzes the bioluminescent reaction of firefly luciferin oxidation. Color of the emitted light depends on the structure of the enzyme, yet the exact color-tuning mechanism remains unknown by now, and the role of the C-domain in it is rarely discussed, because a very few color-shifting mutations in the C-domain were described. Recently we reported a strong red-shifting mutation E457K in the C-domain; the bioluminescence spectra of this enzyme were independent of temperature or pH. In the present study we investigated the role of the residue E457 in the enzyme using the Luciola mingrelica luciferase with a thermostabilized N-domain as a parent enzyme for site-directed mutagenesis. We obtained a set of mutants and studied their catalytic properties, thermal stability and bioluminescence spectra. Experimental spectra were represented as a sum of two components (bioluminescence spectra of putative "red" and "green" emitters); λmax of these components were constant for all the mutants, but the ratio of these emitters was defined by temperature and mutations in the C-domain. We suggest that each emitter is stabilized by a specific conformation of the active site; thus, enzymes with two forms of the active site coexist in the reactive media. The rigid structure of the C-domain is crucial for maintaining the conformation corresponding to the "green" emitter. We presume that the emitters are the keto- and enol forms of oxyluciferin.

  16. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124

    Science.gov (United States)

    Auld, Douglas S.; Lovell, Scott; Thorne, Natasha; Lea, Wendy A.; Maloney, David J.; Shen, Min; Rai, Ganesha; Battaile, Kevin P.; Thomas, Craig J.; Simeonov, Anton; Hanzlik, Robert P.; Inglese, James

    2010-01-01

    Firefly luciferase (FLuc), an ATP-dependent bioluminescent reporter enzyme, is broadly used in chemical biology and drug discovery assays. PTC124 (Ataluren; (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid) discovered in an FLuc-based assay targeting nonsense codon suppression, is an unusually potent FLuc-inhibitor. Paradoxically, PTC124 and related analogs increase cellular FLuc activity levels by posttranslational stabilization. In this study, we show that FLuc inhibition and stabilization is the result of an inhibitory product formed during the FLuc-catalyzed reaction between its natural substrate, ATP, and PTC124. A 2.0 Å cocrystal structure revealed the inhibitor to be the acyl-AMP mixed-anhydride adduct PTC124-AMP, which was subsequently synthesized and shown to be a high-affinity multisubstrate adduct inhibitor (MAI; KD = 120 pM) of FLuc. Biochemical assays, liquid chromatography/mass spectrometry, and near-attack conformer modeling demonstrate that formation of this novel MAI is absolutely dependent upon the precise positioning and reactivity of a key meta-carboxylate of PTC124 within the FLuc active site. We also demonstrate that the inhibitory activity of PTC124-AMP is relieved by free coenzyme A, a component present at high concentrations in luciferase detection reagents used for cell-based assays. This explains why PTC124 can appear to increase, instead of inhibit, FLuc activity in cell-based reporter gene assays. To our knowledge, this is an unusual example in which the “off-target” effect of a small molecule is mediated by an MAI mechanism. PMID:20194791

  17. Development of HSPA1A promoter-driven luciferase reporter gene assays in human cells for assessing the oxidative damage induced by silver nanoparticles.

    Science.gov (United States)

    Xin, Lili; Wang, Jianshu; Zhang, Leshuai W; Che, Bizhong; Dong, Guangzhu; Fan, Guoqiang; Cheng, Kaiming

    2016-08-01

    The exponential increase in the total number of engineered nanoparticles in consumer products requires novel tools for rapid and cost-effective toxicology screening. In order to assess the oxidative damage induced by nanoparticles, toxicity test systems based on a human HSPA1A promoter-driven luciferase reporter in HepG2, LO2, A549, and HBE cells were established. After treated with heat shock and a group of silver nanoparticles (AgNPs) with different primary particle sizes, the cell viability, oxidative damage, and luciferase activity were determined. The time-dependent Ag(+) ions release from AgNPs in cell medium was also evaluated. Our results showed that heat shock produced a strong time-dependent induction of relative luciferase activity in the four luciferase reporter cells. Surprisingly, at 4h of recovery, the relative luciferase activity was >98× the control level in HepG2-luciferase cells. Exposure to different sizes of AgNPs resulted in activation of the HSPA1A promoter in a dose-dependent manner, even at low cytotoxic or non-cytotoxic doses. The smaller (5nm) AgNPs were more potent in luciferase induction than the larger (50 and 75nm) AgNPs. These results were generally in accordance with the oxidative damage indicated by malondialdehyde concentration, reactive oxygen species induction and glutathione depletion, and Ag(+) ions release in cell medium. Compared with the other three luciferase reporter cells, the luciferase signal in HepG2-luciferase cells is obviously more sensitive and stable. We conclude that the luciferase reporter cells, especially the HepG2-luciferase cells, could provide a valuable tool for rapid screening of the oxidative damage induced by AgNPs.

  18. TRANSGENIC PLANTS RESISTANT TO INSECTS

    Directory of Open Access Journals (Sweden)

    S. Kereša

    2009-09-01

    Full Text Available Proteinase inhibitors are secondary metabolites present in all plants and it seems that their major role is protection of plants against attacks of animals, insects and microorganisms. One of the family of proteinase inhibitors are squash inhibitors of serine proteinases purified from seeds belonging to genera Cucurbita, Cucumis and Momordica. Squash inhibitors consist of 29-32 amino acid residues and are considered to be the smallest inhibitors of the serine proteinases known. Because of shortness, genes for these inhibitors could be synthesised and modified at different ways. Modifications could lead to changes in inhibitor activity. Tobacco as a model plant was transformed with 12 different genes of squash inhibitors. Stable integration of transgenes in putative transgenic plants was determined by PCR analysis using genomic DNA and primers that anneal to promoter and terminator region. The first step of proteinase inhibitor gene expression in transgenic plants was revealed by RT-PCR analysis. In entomological tests where larvae were fed with leaves, influence of transgenic T0 plants, as well as non-transgenic control plants on retardation of larval growth of S. littoralis was examined. Results of entomological tests showed that it is possible to express squash proteinase inhibitors in plants at level that significantly reduces S. littoralis larval growth.

  19. A scalable assessment of Plasmodium falciparum transmission in the standard membrane-feeding assay, using transgenic parasites expressing green fluorescent protein-luciferase

    NARCIS (Netherlands)

    Stone, W.J.R.; Churcher, T.S.; Graumans, W.; Gemert, G.J.A. van; Vos, M.W.; Lanke, K.H.W.; Vegte-Bolmer, M.G. van de; Siebelink-Stoter, R.; Dechering, K.J.; Vaughan, A.M.; Camargo, N.; Kappe, S.H.; Sauerwein, R.W.; Bousema, T.

    2014-01-01

    BACKGROUND: The development of drugs and vaccines to reduce malaria transmission is an important part of eradication plans. The transmission-reducing activity (TRA) of these agents is currently determined in the standard membrane-feeding assay (SMFA), based on subjective microscopy-based readouts an

  20. Heritable and Lineage-Specific Gene Knockdown in Zebrafish Embryo

    NARCIS (Netherlands)

    Dong, Mei; Fu, Yan-Fang; Du, Ting-Ting; Jing, Chang-Bin; Fu, Chun-Tang; Chen, Yi; Jin, Yi; Deng, Min; Liu, Ting Xi

    2009-01-01

    Background: Reduced expression of developmentally important genes and tumor suppressors due to haploinsufficiency or epigenetic suppression has been shown to contribute to the pathogenesis of various malignancies. However, methodology that allows spatio-temporally knockdown of gene expression in var

  1. Stem cell lineage specification: you become what you eat.

    Science.gov (United States)

    Folmes, Clifford D L; Terzic, Andre

    2014-09-02

    Nutrient availability and intermediate metabolism are increasingly recognized to govern stem cell behavior. Oburoglu et al. (2014) now demonstrate that glutamine- and glucose-dependent nucleotide synthesis segregate erythroid versus myeloid differentiation during hematopoietic stem cell specification, implicating a metabolism-centric regulation of lineage choices.

  2. Lineage-specific virulence determinants of Haemophilus influenzae biogroup aegyptius.

    Science.gov (United States)

    Strouts, Fiona R; Power, Peter; Croucher, Nicholas J; Corton, Nicola; van Tonder, Andries; Quail, Michael A; Langford, Paul R; Hudson, Michael J; Parkhill, Julian; Kroll, J Simon; Bentley, Stephen D

    2012-03-01

    An emergent clone of Haemophilus influenzae biogroup aegyptius (Hae) is responsible for outbreaks of Brazilian purpuric fever (BPF). First recorded in Brazil in 1984, the so-called BPF clone of Hae caused a fulminant disease that started with conjunctivitis but developed into septicemic shock; mortality rates were as high as 70%. To identify virulence determinants, we conducted a pan-genomic analysis. Sequencing of the genomes of the BPF clone strain F3031 and a noninvasive conjunctivitis strain, F3047, and comparison of these sequences with 5 other complete H. influenzae genomes showed that >77% of the F3031 genome is shared among all H. influenzae strains. Delineation of the Hae accessory genome enabled characterization of 163 predicted protein-coding genes; identified differences in established autotransporter adhesins; and revealed a suite of novel adhesins unique to Hae, including novel trimeric autotransporter adhesins and 4 new fimbrial operons. These novel adhesins might play a critical role in host-pathogen interactions.

  3. Lineage specification of neuronal precursors in the mouse spinal cord.

    OpenAIRE

    L.J. Richards; Murphy, M.; Dutton, R; Kilpatrick, T J; Puche, A. C.; Key, B; Tan, S S; Talman, P S; Bartlett, P. F.

    1995-01-01

    We have investigated the differentiation potential of precursor cells within the developing spinal cord of mice and have shown that spinal cord cells from embryonic day 10 specifically give rise to neurons when plated onto an astrocytic monolayer, Ast-1. These neurons had the morphology of motor neurons and > 83% expressed the motor neuron markers choline acetyltransferase, peripherin, calcitonin gene-related peptide, and L-14. By comparison, < 10% of the neurons arising on monolayers of othe...

  4. Lineage-specific reprogramming as a strategy for cell therapy.

    Science.gov (United States)

    Darabi, Radbod; Perlingeiro, Rita C R

    2008-06-15

    Embryonic stem (ES) cells are endowed with extensive ability for self renewal and differentiation. These features make them a promising candidate for cell therapy. However, despite the enthusiasm and hype surrounding the potential therapeutic use of human ES cells and more recently induced pluripotent stem (iPS) cells, to date few reports have documented successful therapeutic outcome with ES-derived cell populations. This is probably due to two main caveats associated with ES cells, their capacity to form teratomas and the challenge of isolating the appropriate therapeutic cell population from differentiating ES cells. We have focused our efforts on the derivation of skeletal muscle progenitors from ES cells and here we will discuss the strategy of reprogramming lineage choices by overexpression of a master regulator, which has proven successful for the generation of the skeletal myogenic lineage from mouse ES cells.

  5. Lineage-specific laminar organization of cortical GABAergic interneurons.

    Science.gov (United States)

    Ciceri, Gabriele; Dehorter, Nathalie; Sols, Ignasi; Huang, Z Josh; Maravall, Miguel; Marín, Oscar

    2013-09-01

    In the cerebral cortex, pyramidal cells and interneurons are generated in distant germinal zones, and so the mechanisms that control their precise assembly into specific microcircuits remain an enigma. Here we report that cortical interneurons labeled at the clonal level do not distribute randomly but rather have a strong tendency to cluster in the mouse neocortex. This behavior is common to different classes of interneurons, independently of their origin. Interneuron clusters are typically contained within one or two adjacent cortical layers, are largely formed by isochronically generated neurons and populate specific layers, as revealed by unbiased hierarchical clustering methods. Our results suggest that different progenitor cells give rise to interneurons populating infra- and supragranular cortical layers, which challenges current views of cortical neurogenesis. Thus, specific lineages of cortical interneurons seem to be produced to primarily mirror the laminar structure of the cerebral cortex, rather than its columnar organization.

  6. Lineage specific recombination rates and microevolution in Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Nightingale Kendra K

    2008-10-01

    Full Text Available Abstract Background The bacterium Listeria monocytogenes is a saprotroph as well as an opportunistic human foodborne pathogen, which has previously been shown to consist of at least two widespread lineages (termed lineages I and II and an uncommon lineage (lineage III. While some L. monocytogenes strains show evidence for considerable diversification by homologous recombination, our understanding of the contribution of recombination to L. monocytogenes evolution is still limited. We therefore used STRUCTURE and ClonalFrame, two programs that model the effect of recombination, to make inferences about the population structure and different aspects of the recombination process in L. monocytogenes. Analyses were performed using sequences for seven loci (including the house-keeping genes gap, prs, purM and ribC, the stress response gene sigB, and the virulence genes actA and inlA for 195 L. monocytogenes isolates. Results Sequence analyses with ClonalFrame and the Sawyer's test showed that recombination is more prevalent in lineage II than lineage I and is most frequent in two house-keeping genes (ribC and purM and the two virulence genes (actA and inlA. The relative occurrence of recombination versus point mutation is about six times higher in lineage II than in lineage I, which causes a higher genetic variability in lineage II. Unlike lineage I, lineage II represents a genetically heterogeneous population with a relatively high proportion (30% average of genetic material imported from external sources. Phylograms, constructed with correcting for recombination, as well as Tajima's D data suggest that both lineages I and II have suffered a population bottleneck. Conclusion Our study shows that evolutionary lineages within a single bacterial species can differ considerably in the relative contributions of recombination to genetic diversification. Accounting for recombination in phylogenetic studies is critical, and new evolutionary models that account for the possibility of changes in the rate of recombination would be required. While previous studies suggested that only L. monocytogenes lineage I has experienced a recent bottleneck, our analyses clearly show that lineage II experienced a bottleneck at about the same time, which was subsequently obscured by abundant homologous recombination after the lineage II bottleneck. While lineage I and lineage II should be considered separate species from an evolutionary viewpoint, maintaining single species name may be warranted since both lineages cause the same type of human disease.

  7. Transgenic woody plants for biofuel

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Anna Y.Tang

    2014-01-01

    Transgenic trees as a new source for biofuel have brought a great interest in tree biotechnology. Genetically modifying forest trees for ethanol production have advantages in technical challenges, costs, environmental concerns, and financial problems over some of crops. Genetic engineering of forest trees can be used to reduce the level of lignin, to produce the fast-growing trees, to develop trees with higher cellulose, and to allow the trees to be grown more widely. Trees can establish themselves in the field with less care of farmers, compared to most of crops. Transgenic crops as a new source for biofuel have been recently reviewed in several reviews. Here, we overview transgenic woody plants as a new source for biofuel including genetically modified woody plants and environment; main focus of woody plants genetic modifications;solar to chemical energy transfer; cellulose biosynthesis;lignin biosynthesis;and cellulosic ethanol as biofuel.

  8. Transgenic agriculture and environmental indicators

    Directory of Open Access Journals (Sweden)

    Denize Dias de Carvalho

    2006-12-01

    Full Text Available Despite the rapid diffusion of transgenic crops, there are still few environmental impact studies capable of supplying a conclusive scientific response in regard to its technical and economic advantages and disadvantages. Prospective scenarios were elaborated to assist environmental impact assessment, using techniques derived from SWOT (Strength, Weakness, Opportunity, Threat analysis and the DPSIR (Driving Force – human activity, Pressure, State, Impact, Response model, to evaluate the environmental indicators and the relationship between them. Control and management actions were identified, searching the integration of aspects related to the biotechnology applied to transgenic processes, biodiversity, biosafety and intellectual property. It was demonstrated that the DPSIR model is, in fact, an instrument for integrated environmental assessment and the application of the proposed methodology resulted in favorable indicators to the adoption of transgenic agriculture. The elaborated scenarios are useful to develop an Environmental Management System (EMS to agriculture.

  9. Ratiometric bioluminescence indicators for monitoring cyclic adenosine 3',5'-monophosphate in live cells based on luciferase-fragment complementation.

    Science.gov (United States)

    Takeuchi, Masaki; Nagaoka, Yasutaka; Yamada, Toshimichi; Takakura, Hideo; Ozawa, Takeaki

    2010-11-15

    Bioluminescent indicators for cyclic 3',5'-monophosphate AMP (cAMP) are powerful tools for noninvasive detection with high sensitivity. However, the absolute photon counts are affected substantially by adenosine 5'-triphosphate (ATP) and d-luciferin concentrations, limiting temporal analysis in live cells. This report describes a genetically encoded bioluminescent indicator for detecting intracellular cAMP based on complementation of split fragments of two-color luciferase mutants originated from click beetles. A cAMP binding domain of protein kinase A was connected with an engineered carboxy-terminal fragment of luciferase, of which ends were connected with amino-terminal fragments of green luciferase and red luciferase. We demonstrated that the ratio of green to red bioluminescence intensities was less influenced by the changes of ATP and d-luciferin concentrations. We also showed an applicability of the bioluminescent indicator for time-course and quantitative assessments of intracellular cAMP in living cells and mice. The bioluminescent indicator will enable quantitative analysis and imaging of spatiotemporal dynamics of cAMP in opaque and autofluorescent living subjects.

  10. Visualization of Oxidative Stress Induced by Experimental Periodontitis in Keap1-Dependent Oxidative Stress Detector-Luciferase Mice.

    Science.gov (United States)

    Kataoka, Kota; Ekuni, Daisuke; Tomofuji, Takaaki; Irie, Koichiro; Kunitomo, Muneyoshi; Uchida, Yoko; Fukuhara, Daiki; Morita, Manabu

    2016-11-16

    The aim of this study was to investigate whether a Keap1-dependent oxidative stress detector-luciferase (OKD-LUC) mouse model would be useful for the visualization of oxidative stress induced by experimental periodontitis. A ligature was placed around the mandibular first molars for seven days to induce periodontitis. Luciferase activity was measured with an intraperitoneal injection of d-luciferin on days 0, 1, and 7. The luciferase activity in the periodontitis group was significantly greater than that in the control group at seven days. The expressions of heme oxygenase-1 (HO-1) and malondialdehyde in periodontal tissue were significantly higher in the periodontitis group than in the control group. Immunofluorescent analysis confirmed that the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) occurred more frequently in the periodontitis group than in the control group. This study found that under oxidative stress induced by experimental periodontitis, the Nrf2/antioxidant defense pathway was activated and could be visualized from the luciferase activity in the OKD-LUC model. Thus, the OKD-LUC mouse model may be useful for exploring the mechanism underlying the relationship between the Nrf2/antioxidant defense pathway and periodontitis by enabling the visualization of oxidative stress over time.

  11. Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Tana A. Omokoko

    2016-01-01

    Full Text Available Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard 51Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the 51Cr release and further confirmed the assay’s ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay’s combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies.

  12. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    Science.gov (United States)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  13. Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fisheri NAD(P)H:FMN-oxidoreductase

    NARCIS (Netherlands)

    Vetrova, E.V.; Kudryasheva, N.S.; Visser, A.J.W.G.; Hoek, van A.

    2005-01-01

    The bioluminescent bacterial enzyme system NAD(P)H:FMN-oxidoreductase-luciferase has been used as a test system for ecological monitoring. One of the modes to quench bioluminescence is the interaction of xenobiotics with the enzymes, which inhibit their activity. The use of endogenous flavin fluores

  14. Microbial starch binding domains are superior to granule bound starch synthase 1 for anchoring luciferase to potato starch granules

    NARCIS (Netherlands)

    Ji, Q.; Vincken, J.P.; Suurs, L.C.J.M.; Visser, R.G.F.

    2006-01-01

    Microbial starch-binding domains (SBD) and granule-bound starch synthase I (GBSSI) are proteins which are accumulated in potato starch granules. The efficiency of SBD and GBSSI for targeting active luciferase reporter proteins to granules during starch biosynthesis was compared. GBSSI or SBD sequenc

  15. Dual-color bioluminescence imaging assay using green- and red-emitting beetle luciferases at subcellular resolution.

    Science.gov (United States)

    Yasunaga, Mayu; Nakajima, Yoshihiro; Ohmiya, Yoshihiro

    2014-09-01

    Bioluminescence imaging is widely used to monitor cellular events, including gene expression in vivo and in vitro. Moreover, recent advances in luciferase technology have made possible imaging at the single-cell level. To improve the bioluminescence imaging system, we have developed a dual-color imaging system in which the green-emitting luciferase from a Brazilian click beetle (Emerald Luc, ELuc) and the red-emitting luciferase from a railroad worm (Stable Luciferase Red, SLR) were used as reporters, which were localized to the peroxisome and the nucleus, respectively. We clearly captured simultaneously the subcellular localization of ELuc in the peroxisome and SLR in the nucleus of a single cell using a high-magnification objective lens with 3-min exposure time without binning using a combination of optical filters. Furthermore, to apply this system to quantitative time-lapse imaging, the activation of nuclear factor triggered by tumor necrosis factor α was measured using nuclear-targeted SLR and peroxisome-targeted ELuc as the test and internal control reporters, respectively. We successfully quantified the kinetics of activation of nuclear factor κB using nuclear-targeted SLR and the transcriptional change of the internal control promoter using peroxisome-targeted ELuc simultaneously in a single cell, and showed that the activation kinetics, including activation rate and amplitude, differed among cells. The results demonstrated that this imaging system can visualize the subcellular localization of reporters and track the expressions of two genes simultaneously at subcellular resolution.

  16. Rapid obtention of stable, bioluminescent tumor cell lines using a tCD2-luciferase chimeric construct

    Directory of Open Access Journals (Sweden)

    Gourzones Claire

    2011-03-01

    Full Text Available Abstract Background Bioluminescent tumor cell lines are experimental tools of major importance for cancer investigation, especially imaging of tumors in xenografted animals. Stable expression of exogenous luciferase in tumor cells combined to systemic injection of luciferin provides an excellent signal/background ratio for external optical imaging. Therefore, there is a need to rationalize and speed up the production of luciferase-positive tumor cell lines representative of multiple tumor phenotypes. For this aim we have designed a fusion gene linking the luciferase 2 protein to the c-terminus of a truncated form of the rat CD2 protein (tCD2-luc2. To allow simultaneous assessment of the wild-type luciferase 2 in a context of tCD2 co-expression, we have made a bicistronic construct for concomitant but separate expression of these two proteins (luc2-IRES-tCD2. Both the mono- and bi-cistronic constructs were transduced in lymphoid and epithelial cells using lentiviral vectors. Results The tCD2-luc2 chimera behaves as a type I membrane protein with surface presentation of CD2 epitopes. One of these epitopes reacts with the OX34, a widely spread, high affinity monoclonal antibody. Stably transfected cells are sorted by flow cytometry on the basis of OX34 staining. In vitro and, moreover, in xenografted tumors, the tCD2-luc2 chimera retains a substantial and stable luciferase activity, although not as high as the wild-type luciferase expressed from the luc2-IRES-tCD2 construct. Expression of the tCD2-luc2 chimera does not harm cell and tumor growth. Conclusion Lentiviral transduction of the chimeric tCD2-luc2 fusion gene allows selection of cell clones with stable luciferase expression in less than seven days without antibiotic selection. We believe that it will be helpful to increase the number of tumor cell lines available for in vivo imaging and assessment of novel therapeutic modalities. On a longer term, the tCD2-luc2 chimera has the potential to

  17. Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters.

    Science.gov (United States)

    Ramanathan, Chidambaram; Khan, Sanjoy K; Kathale, Nimish D; Xu, Haiyan; Liu, Andrew C

    2012-09-27

    In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere. Individual cells are the functional units for generation and maintenance of circadian rhythms, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection or stable transduction. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host

  18. Transgene landbouwhuisdieren : het overwegen waard?

    NARCIS (Netherlands)

    Linskens, M.

    1989-01-01

    Het rapport geeft informatie over de ontwikkelingen die, momenteel nog vooral in het onderzoek, op dit terrein gaande zijn. Het geeft aan wanneer de eerste transgene landbouwhuisdieren, bij een ongewijzigd beleid, op de boerderij kunnen rondlopen. Verder wordt er inzicht verschaft in de maatschappel

  19. The interaction of luciferase, flavin mono-nucleotide and long-chain aldehydes in the light reaction catalyzed by preparations of luminous bacteria

    NARCIS (Netherlands)

    Terpstra, Willeke

    1958-01-01

    The light reaction catalyzed by a luciferase preparation of a dark strain of Photobacterium splendidum, probably containing a slightly altered luciferase molecule, was compared with the light reaction catalyzed by a similar preparation of a brightly luminescent strain of Photobacterium phosphoreum.

  20. Uptake kinetics and biodistribution of C-14-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction : impact on bioluminescence based reporter gene imaging

    NARCIS (Netherlands)

    Berger, Frank; Paulmurugan, Ramasamy; Bhaumik, Srabani; Gambhir, Sanjiv Sam

    2008-01-01

    Purpose Firefly luciferase catalyzes the oxidative decarboxylation of D-luciferin to oxyluciferin in the presence of cofactors, producing bioluminescence. This reaction is used in optical bioluminescence-based molecular imaging approaches to detect the expression of the firefly luciferase reporter g

  1. Discovery, adaptation and transcriptional activity of two tick promoters: Construction of a dual luciferase reporter system for optimization of RNA interference in Rhipicephalus (Boophilus) microplus cell lines

    Science.gov (United States)

    Dual luciferase reporter systems are valuable tools for functional genomic studies, but have not previously been developed for use in tick cell culture. We evaluated expression of available luciferase constructs in tick cell cultures derived from Rhipicephalus (Boophilus) microplus, an important vec...

  2. The influence of the region between residues 220 and 344 and beyond in Phrixotrix railroad worm luciferases green and red bioluminescence.

    Science.gov (United States)

    Viviani, Vadim R; Joaquim da Silva Neto, Antonio; Ohmiya, Yoshihiro

    2004-02-01

    To find the regions having a major influence on the bioluminescence spectra of railroad worm luciferases, we constructed new chimeric luciferases switching the fragments from residues 1-219 and from 220-545 between Phrixotrix viviani (PxvGR; lambda(max) = 548 nm) green light-emitting luciferase and Phrixothrix hirtus (PxhRE; lambda(max) = 623 nm) red light-emitting luciferases. The emission spectrum (lambda(max) = 571 nm) and K(M) for luciferin in the chimera PxRE220GR (1-219, PxhRE; 220-545, PxvGR) suggested that the region above residue 220 of PxvGR had a major effect on the active site. However, switching the sequence between the residues 220-344 from PxvGR luciferase into PxhRE (PxREGRRE) luciferase resulted in red light emission (lambda(max) = 603 nm), indicating that the region 220-344 by itself does not determine the emission spectrum. Furthermore, the sequence before residue 220 of the green-emitting luciferase is incompatible for light emission with the sequence above residue 220 of PxhRE. These results suggest that the fragments before and after residue 220, which correspond to distinct subdomains, may fold differently in the green- and red-emitting luciferases, affecting the active site conformation.

  3. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence.

    Science.gov (United States)

    England, Christopher G; Ehlerding, Emily B; Cai, Weibo

    2016-05-18

    The biomedical field has greatly benefited from the discovery of bioluminescent proteins. Currently, scientists employ bioluminescent systems for numerous biomedical applications, ranging from highly sensitive cellular assays to bioluminescence-based molecular imaging. Traditionally, these systems are based on Firefly and Renilla luciferases; however, the applicability of these enzymes is limited by their size, stability, and luminescence efficiency. NanoLuc (NLuc), a novel bioluminescence platform, offers several advantages over established systems, including enhanced stability, smaller size, and >150-fold increase in luminescence. In addition, the substrate for NLuc displays enhanced stability and lower background activity, opening up new possibilities in the field of bioluminescence imaging. The NLuc system is incredibly versatile and may be utilized for a wide array of applications. The increased sensitivity, high stability, and small size of the NLuc system have the potential to drastically change the field of reporter assays in the future. However, as with all such technology, NLuc has limitations (including a nonideal emission for in vivo applications and its unique substrate) which may cause it to find restricted use in certain areas of molecular biology. As this unique technology continues to broaden, NLuc may have a significant impact in both preclinical and clinical fields, with potential roles in disease detection, molecular imaging, and therapeutic monitoring. This review will present the NLuc technology to the scientific community in a nonbiased manner, allowing the audience to adopt their own views of this novel system.

  4. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux in a mammalian cell line.

    Directory of Open Access Journals (Sweden)

    Dan M Close

    Full Text Available The bacterial luciferase (lux gene cassette consists of five genes (luxCDABE whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2 was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp from Vibrio harveyi. FMNH(2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.

  5. Autonomous Bioluminescent Expression of the Bacterial Luciferase Gene Cassette (lux) in a Mammalian Cell Line

    Science.gov (United States)

    Close, Dan M.; Patterson, Stacey S.; Ripp, Steven; Baek, Seung J.; Sanseverino, John; Sayler, Gary S.

    2010-01-01

    Background The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo. Methodology/Principal Findings Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH2) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background. Conclusions/Significance The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies. PMID:20805991

  6. A rapid and quantitative coat protein complex II vesicle formation assay using luciferase reporters.

    Science.gov (United States)

    Fromme, J Chris; Kim, Jinoh

    2012-02-15

    The majority of protein export from the endoplasmic reticulum (ER) is facilitated by coat protein complex II (COPII). The COPII proteins deform the ER membrane into vesicles at the ER exit sites. During the vesicle formation step, the COPII proteins load cargo molecules into the vesicles. Formation of COPII vesicles has been reconstituted in vitro in yeast and in mammalian systems. These in vitro COPII vesicle formation assays involve incubation of microsomal membranes and purified COPII proteins with nucleotides. COPII vesicles are separated from the microsomes by differential centrifugation. Interestingly, the efficiency of the COPII vesicle formation with purified recombinant mammalian COPII proteins is lower than that with cytosol, suggesting that an additional cytosolic factor(s) is involved in this process. Indeed, other studies have also implicated additional factors. To facilitate biochemical identification of such regulators, a rapid and quantitative COPII vesicle formation assay is necessary because the current assay is lengthy. To expedite this assay, we generated luciferase reporter constructs. The reporter proteins were packaged into COPII vesicles and yielded quantifiable luminescent signals, resulting in a rapid and quantitative COPII vesicle formation assay.

  7. Bioluminescence inhibition of bacterial luciferase by aliphatic alcohol, amine and carboxylic acid: inhibition potency and mechanism.

    Science.gov (United States)

    Yamasaki, Shinya; Yamada, Shuto; Takehara, Kô

    2013-01-01

    The inhibitory effects of hydrophobic molecules on the bacterial luciferase, BL, luminescence reaction were analyzed using an electrochemically-controlled BL luminescence system. The inhibition potency of alkyl amines, C(n)NH(2), and fatty acids, C(m)COOH (m = n - 1), on the BL reaction increased with an increase in the alkyl chain-length of these aliphatic compounds. C(m)COOH showed lower inhibition potency than C(n)NH(2) and alkyl alcohols, C(n)OH, data for which have been previously reported. To make clear the inhibition mechanisms of the aliphatic compounds on the BL reaction, the initial rate of the BL reaction was measured and analyzed using the Dixon plot and Cornish-Bowden plot. The C(12)OH inhibited the BL reaction in competition with the substrate C(11)CHO, while C(12)NH(2) and C(11)COOH inhibited in an uncompetitive manner with the C(11)CHO. These results suggest that the alkyl chain-length and the terminal unit of the aliphatic compound determine the inhibition potency and the inhibition mechanism, respectively.

  8. Leishmania tropica experimental infection in the rat using luciferase-transfected parasites.

    Science.gov (United States)

    Talmi-Frank, Dalit; Jaffe, Charles L; Nasereddin, Abedelmajeed; Baneth, Gad

    2012-06-08

    Leishmania tropica is the causative agent of zoonotic cutaneous leishmaniasis in different parts of the Old World. Although it is a common cause of disease in some areas of the world, there is insufficient knowledge on the pathogenicity of this parasite in mammalian hosts and animal models. L. tropica luciferase-transfected metacyclic-stage promastigotes were inoculated into the footpad or ear of Sprague Dawley (SD) rats. Parasite DNA was detected by kDNA real time PCR in the blood at varying levels from 2 days to 5 weeks post infection (PI) in the absence of clinical signs. Parasite DNA was found in the spleen of all rats at the end of the study, and the parasitic load was up to 40 times higher in the spleen when compared with inoculation sites. Parasites were cultured from the spleen, and skin inoculation sites 5 weeks PI. Bioluminescent parasites were observed by in vivo imaging at one day PI, but the technique was not sufficiently sensitive to follow parasite spread after this time. This study provides new evidence for the viscerotropic spread of L. tropica in the rat and demonstrates that the rat can serve as a model for persistent visceralizing infection with this parasite.

  9. Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.

    Science.gov (United States)

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2016-02-23

    We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift.

  10. Knock-in Luciferase Reporter Mice for In Vivo Monitoring of CREB Activity.

    Directory of Open Access Journals (Sweden)

    Dmitry Akhmedov

    Full Text Available The cAMP response element binding protein (CREB is induced during fasting in the liver, where it stimulates transcription of rate-limiting gluconeogenic genes to maintain metabolic homeostasis. Adenoviral and transgenic CREB reporters have been used to monitor hepatic CREB activity non-invasively using bioluminescence reporter imaging. However, adenoviral vectors and randomly inserted transgenes have several limitations. To overcome disadvantages of the currently used strategies, we created a ROSA26 knock-in CREB reporter mouse line (ROSA26-CRE-luc. cAMP-inducing ligands stimulate the reporter in primary hepatocytes and myocytes from ROSA26-CRE-luc animals. In vivo, these animals exhibit little hepatic CREB activity in the ad libitum fed state but robust induction after fasting. Strikingly, CREB was markedly stimulated in liver, but not in skeletal muscle, after overnight voluntary wheel-running exercise, uncovering differential regulation of CREB in these tissues under catabolic states. The ROSA26-CRE-luc mouse line is a useful resource to study dynamics of CREB activity longitudinally in vivo and can be used as a source of primary cells for analysis of CREB regulatory pathways ex vivo.

  11. Philosophical Reflection on Risks of Transgenic Technology

    Institute of Scientific and Technical Information of China (English)

    Xiaolu WANG

    2012-01-01

    Abstract [Objective] The aim was to analyze risks of transgenic technology. [Method] Discussions on risks of transgenic technologies were conducted from per- spective of philosophy. [Result] Mechanistic philosophy and reductionism are causes of reflection on risks of transgenic technology. Considering transgene is an artificial choice taking place of natural choice, it is inevitable for risks of transgenic technolo- gy to be found, in addition, social system constitutes the root for out-of-control of transgenic technology, hence, mechanism risk is the primary cause of transgenic risks. [Conclusion] It is inescapable for science view to be changed from arbitrary and lopsided to reflective and comprehensive and for technology view to be changed from exterminative and genesic to protective and symbiotic.

  12. Transgenic Epigenetics: Using Transgenic Organisms to Examine Epigenetic Phenomena

    Directory of Open Access Journals (Sweden)

    Lori A. McEachern

    2012-01-01

    Full Text Available Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model. Interestingly, while transgenic Drosophila and mice have provided significant insight into the molecular mechanisms and evolutionary conservation of the epigenetic processes that target epigenetic control regions in other model organisms, this method has so far been under-exploited for non-model organism epigenetic analysis. This paper details several experiments that have examined the epigenetic processes of genomic imprinting and paramutation, by transferring an epigenetic control region from one model organism to another. These cross-species experiments demonstrate that valuable insight into both the molecular mechanisms and evolutionary conservation of epigenetic processes may be obtained via transgenic experiments, which can then be used to guide further investigations and experiments in the species of interest.

  13. The human lactase persistence-associated SNP -13910*T enables in vivo functional persistence of lactase promoter-reporter transgene expression.

    Science.gov (United States)

    Fang, Lin; Ahn, Jong Kun; Wodziak, Dariusz; Sibley, Eric

    2012-07-01

    Lactase is the intestinal enzyme responsible for digestion of the milk sugar lactose. Lactase gene expression declines dramatically upon weaning in mammals and during early childhood in humans (lactase nonpersistence). In various ethnic groups, however, lactase persists in high levels throughout adulthood (lactase persistence). Genetic association studies have identified that lactase persistence in northern Europeans is strongly associated with a single nucleotide polymorphism (SNP) located 14 kb upstream of the lactase gene: -13910*C/T. To determine whether the -13910*T SNP can function in vivo to mediate lactase persistence, we generated transgenic mice harboring human DNA fragments with the -13910*T SNP or the ancestral -13910*C SNP cloned upstream of a 2-kb rat lactase gene promoter in a luciferase reporter construct. We previously reported that the 2-kb rat lactase promoter directs a post-weaning decline of luciferase transgene expression similar to that of the endogenous lactase gene. In the present study, the post-weaning decline directed by the rat lactase promoter is impeded by addition of the -13910*T SNP human DNA fragment, but not by addition of the -13910*C ancestral SNP fragment. Persistence of transgene expression associated with the -13910*T SNP represents the first in vivo data in support of a functional role for the -13910*T SNP in mediating the human lactase persistence phenotype.

  14. Age-related response of IL-4/Luc/CNS-1 transgenic miceto phthalic anhydrideexposure

    Directory of Open Access Journals (Sweden)

    Sung Ji Eun

    2016-01-01

    Full Text Available Age-related changes are associated with susceptibility to infection, malignancy, autoimmunity, response to vaccination and wound healing. To investigate the relationship of several pathological phenotypes of allergic inflammationto age, alterations in theIL-4 derived luciferase signal and general phenotype biomarkers were measured in young (2-month-old and old (12-month-old IL-4/Luc/CNS-1 transgenic (Tg mice with phthalic anhydride (PA-induced allergic inflammationfor 2 weeks. There was no difference in the ear phenotypes and thickness between young and old mice, although these levels were higher in the PA-treated group thantheacetone-olive oil (AOO-treated group. The luciferase signal was detected in the mesenteric lymph node (ML, thymus and pancreas of both young and old PA-treated mice, but showed a greater increasein old Tg mice (exceptin thethymus. Agreaterincrease inthe epidermal thickness and dermal thickness was measured in old PA-treated mice than young PA-treated mice, while total mast cell number remainedconstant in both groups. Furthermore, the concentration of IgE was greater in young PA-treated mice than in old PA-treated mice,as wasthe expression of VEGF and IL-6. Taken together, theresults of this study showed that an animal’s age is an important factor that must be considered when PA-induced allergic inflammation in IL-4/Luc/CNS-1 Tg mice areinvestigated to screen for allergens and therapeutic compounds.

  15. The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter.

    Science.gov (United States)

    Close, Dan; Xu, Tingting; Smartt, Abby; Rogers, Alexandra; Crossley, Robert; Price, Sarah; Ripp, Steven; Sayler, Gary

    2012-01-01

    The bacterial luciferase gene cassette (lux) is unique among bioluminescent bioreporter systems due to its ability to synthesize and/or scavenge all of the substrate compounds required for its production of light. As a result, the lux system has the unique ability to autonomously produce a luminescent signal, either continuously or in response to the presence of a specific trigger, across a wide array of organismal hosts. While originally employed extensively as a bacterial bioreporter system for the detection of specific chemical signals in environmental samples, the use of lux as a bioreporter technology has continuously expanded over the last 30 years to include expression in eukaryotic cells such as Saccharomyces cerevisiae and even human cell lines as well. Under these conditions, the lux system has been developed for use as a biomedical detection tool for toxicity screening and visualization of tumors in small animal models. As the technologies for lux signal detection continue to improve, it is poised to become one of the first fully implantable detection systems for intra-organismal optical detection through direct marriage to an implantable photon-detecting digital chip. This review presents the basic biochemical background that allows the lux system to continuously autobioluminesce and highlights the important milestones in the use of lux-based bioreporters as they have evolved from chemical detection platforms in prokaryotic bacteria to rodent-based tumorigenesis study targets. In addition, the future of lux imaging using integrated circuit microluminometry to image directly within a living host in real-time will be introduced and its role in the development of dose/response therapeutic systems will be highlighted.

  16. Bioluminescent indicator for determining protein-protein interactions using intramolecular complementation of split click beetle luciferase.

    Science.gov (United States)

    Kim, Sung Bae; Otani, Yosuke; Umezawa, Yoshio; Tao, Hiroaki

    2007-07-01

    Click beetle luciferase (CBLuc) is insensitive to pH, temperature, and heavy metals, and emits a stable, highly tissue-transparent red light with luciferin in physiological circumstances. Thus, the luminescence signal is optimal for a bioanalytical index reporting the magnitude of a signal transduction of interest. Here, we validated a single-molecule-format complementation system of split CBLuc to study signal-controlled protein-protein (peptide) interactions. First, we generated 10 pairs of N- and C-terminal fragments of CBLuc to examine respectively whether a significant recovery of the activity occurs through the intramolecular complementation. The ligand binding domain of androgen receptor (AR LBD) was connected to a functional peptide sequence through a flexible linker. The fusion protein was then sandwiched between the dissected N- and C-terminal fragments of CBLuc. Androgen induces the association between AR LBD and a functional peptide and the subsequent complementation of N- and C-terminal fragments of split CBLuc inside the single-molecule-format probe, which restores the activities of CBLuc. The examination about the dissection sites of CBLuc revealed that the dissection positions next to the amino acids D412 and I439 admit a stable recovery of CBLuc activity through an intramolecular complementation. The ligand sensitivity and kinetics of the single molecular probe with split CBLuc were discussed in various cell lines and in different protein-peptide binding models. The probe is applicable to developing biotherapeutic agents on the AR signaling and for screening adverse chemicals that possibly influence the signal transduction of proteins in living cells or animals.

  17. The Evolution of the Bacterial Luciferase Gene Cassette (lux) as a Real-Time Bioreporter

    Science.gov (United States)

    Close, Dan; Xu, Tingting; Smartt, Abby; Rogers, Alexandra; Crossley, Robert; Price, Sarah; Ripp, Steven; Sayler, Gary

    2012-01-01

    The bacterial luciferase gene cassette (lux) is unique among bioluminescent bioreporter systems due to its ability to synthesize and/or scavenge all of the substrate compounds required for its production of light. As a result, the lux system has the unique ability to autonomously produce a luminescent signal, either continuously or in response to the presence of a specific trigger, across a wide array of organismal hosts. While originally employed extensively as a bacterial bioreporter system for the detection of specific chemical signals in environmental samples, the use of lux as a bioreporter technology has continuously expanded over the last 30 years to include expression in eukaryotic cells such as Saccharomyces cerevisiae and even human cell lines as well. Under these conditions, the lux system has been developed for use as a biomedical detection tool for toxicity screening and visualization of tumors in small animal models. As the technologies for lux signal detection continue to improve, it is poised to become one of the first fully implantable detection systems for intra-organismal optical detection through direct marriage to an implantable photon-detecting digital chip. This review presents the basic biochemical background that allows the lux system to continuously autobioluminesce and highlights the important milestones in the use of lux-based bioreporters as they have evolved from chemical detection platforms in prokaryotic bacteria to rodent-based tumorigenesis study targets. In addition, the future of lux imaging using integrated circuit microluminometry to image directly within a living host in real-time will be introduced and its role in the development of dose/response therapeutic systems will be highlighted. PMID:22368493

  18. The Evolution of the Bacterial Luciferase Gene Cassette (lux as a Real-Time Bioreporter

    Directory of Open Access Journals (Sweden)

    Gary Sayler

    2012-01-01

    Full Text Available The bacterial luciferase gene cassette (lux is unique among bioluminescent bioreporter systems due to its ability to synthesize and/or scavenge all of the substrate compounds required for its production of light. As a result, the lux system has the unique ability to autonomously produce a luminescent signal, either continuously or in response to the presence of a specific trigger, across a wide array of organismal hosts. While originally employed extensively as a bacterial bioreporter system for the detection of specific chemical signals in environmental samples, the use of lux as a bioreporter technology has continuously expanded over the last 30 years to include expression in eukaryotic cells such as Saccharomyces cerevisiae and even human cell lines as well. Under these conditions, the lux system has been developed for use as a biomedical detection tool for toxicity screening and visualization of tumors in small animal models. As the technologies for lux signal detection continue to improve, it is poised to become one of the first fully implantable detection systems for intra-organismal optical detection through direct marriage to an implantable photon-detecting digital chip. This review presents the basic biochemical background that allows the lux system to continuously autobioluminesce and highlights the important milestones in the use of lux-based bioreporters as they have evolved from chemical detection platforms in prokaryotic bacteria to rodent-based tumorigenesis study targets. In addition, the future of lux imaging using integrated circuit microluminometry to image directly within a living host in real-time will be introduced and its role in the development of dose/response therapeutic systems will be highlighted.

  19. Identification of cis-acting signals in the giardiavirus (GLV) genome required for expression of firefly luciferase in Giardia lamblia.

    OpenAIRE

    1996-01-01

    Giardiavirus (GLV) is a 6,277-bp double-stranded RNA virus of Giardia lamblia, one of the earliest eukaryotic divergents from the prokaryotes. Our previous success in GLV-mediated transfection of G. lamblia has provided an effective way of monitoring the mechanisms underlining GLV gene replication and mRNA translation in this organism. Here we have investigated the cis-acting signals in the GLV genome that regulate replication, transcription, and translation of an inserted firefly luciferase ...

  20. Molecular insights on the evolution of the lateral and head lantern luciferases and bioluminescence colors in Mastinocerini railroad-worms (Coleoptera: Phengodidae).

    Science.gov (United States)

    Arnoldi, Frederico G C; da Silva Neto, Antonio Joaquim; Viviani, Vadim R

    2010-01-01

    Among bioluminescent beetles of Elateroidea superfamily, railroad-worms (Phengodidae) produce the widest range of colors, from green to red, using the same luciferin-luciferase system. Members of the Mastinocerini tribe display additional unique cephalic organs that emit red-shifted light, with Phrixothrix railroad-worms being the most dramatic cases with head lanterns emitting red light. Although the luciferases from the head lanterns of Phrixothrix hirtus and from the lateral lanterns of P. vivianii were previously cloned, the luciferases from both lanterns of the same species were not cloned yet. Therefore the origin and evolution of head and lateral lanterns luciferases in Phengodidae remains unknown. In the present work, we cloned by PCR the cDNA for lateral lantern luciferases of three Mastinocerini species: Phrixothrix hirtus, Brasilocerus sp(3). and Taximastioncerus sp. The results suggest that the head and lateral lanterns luciferases in Mastinocerini are coded by paralogous genes, and that the ancestral luciferase in the Phengodinae subfamily produced green bioluminescence. The evolutionary history of bioluminescence colors within Phengodinae is discussed.

  1. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Directory of Open Access Journals (Sweden)

    Jian-Feng Li

    Full Text Available Protein-protein interactions (PPIs constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  2. High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses.

    Science.gov (United States)

    Uebelhoer, Luke S; Albariño, César G; McMullan, Laura K; Chakrabarti, Ayan K; Vincent, Joel P; Nichol, Stuart T; Towner, Jonathan S

    2014-06-01

    Marburg virus (MARV) and Ebola virus (EBOV), members of the family Filoviridae, represent a significant challenge to global public health. Currently, no licensed therapies exist to treat filovirus infections, which cause up to 90% mortality in human cases. To facilitate development of antivirals against these viruses, we established two distinct screening platforms based on MARV and EBOV reverse genetics systems that express secreted Gaussia luciferase (gLuc). The first platform is a mini-genome replicon to screen viral replication inhibitors using gLuc quantification in a BSL-2 setting. The second platform is complementary to the first and expresses gLuc as a reporter gene product encoded in recombinant infectious MARV and EBOV, thereby allowing for rapid quantification of viral growth during treatment with antiviral compounds. We characterized these viruses by comparing luciferase activity to virus production, and validated luciferase activity as an authentic real-time measure of viral growth. As proof of concept, we adapt both mini-genome and infectious virus platforms to high-throughput formats, and demonstrate efficacy of several antiviral compounds. We anticipate that both approaches will prove highly useful in the development of anti-filovirus therapies, as well as in basic research on the filovirus life cycle.

  3. Comprehensive Luciferase-Based Reporter Gene Assay Reveals Previously Masked Up-Regulatory Effects of miRNAs

    Directory of Open Access Journals (Sweden)

    Danae Campos-Melo

    2014-09-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that regulate the majority of the transcriptome at a post-transcriptional level. Because of this critical role, it is important to ensure that the assays used to determine their functionality are robust and reproducible. Typically, the reporter gene assay in cell-based systems has been the first-line method to study miRNA functionality. In order to overcome some of the potential errors in interpretation that can be associated with this assay, we have developed a detailed protocol for the luciferase reporter gene assay that has been modified for miRNAs. We demonstrate that normalization against the effect of the miRNA and cellular factors on the luciferase coding sequence is essential to obtain the specific impact of the miRNA on the 3'UTR (untranslated region target. Our findings suggest that there is a real possibility that the roles for miRNA in transcriptome regulation may be misreported due to inaccurate normalization of experimental data and also that up-regulatory effects of miRNAs are not uncommon in cells. We propose to establish this comprehensive method as standard for miRNA luciferase reporter assays to avoid errors and misinterpretations in the functionality of miRNAs.

  4. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang, E-mail: wangdang511@126.com; Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  5. Transgene expression systems in the Triticeae cereals.

    Science.gov (United States)

    Hensel, Götz; Himmelbach, Axel; Chen, Wanxin; Douchkov, Dimitar K; Kumlehn, Jochen

    2011-01-01

    The control of transgene expression is vital both for the elucidation of gene function and for the engineering of transgenic crops. Given the dominance of the Triticeae cereals in the agricultural economy of the temperate world, the development of well-performing transgene expression systems of known functionality is of primary importance. Transgenes can be expressed either transiently or stably. Transient expression systems based on direct or virus-mediated gene transfer are particularly useful in situations where the need is to rapidly screen large numbers of genes. However, an unequivocal understanding of gene function generally requires that a transgene functions throughout the plant's life and is transmitted through the sexual cycle, since this alone allows its effect to be decoupled from the plant's response to the generally stressful gene transfer event. Temporal, spatial and quantitative control of a transgene's expression depends on its regulatory environment, which includes both its promoter and certain associated untranslated region sequences. While many transgenic approaches aim to manipulate plant phenotype via ectopic gene expression, a transgene sequence can be also configured to down-regulate the expression of its endogenous counterpart, a strategy which exploits the natural gene silencing machinery of plants. In this review, current technical opportunities for controlling transgene expression in the Triticeae species are described. Apart from protocols for transient and stable gene transfer, the choice of promoters and other untranslated regulatory elements, we also consider signal peptides, as they too govern the abundance and particularly the sub-cellular localization of transgene products.

  6. Photodynamic therapy using luciferase nanoconjugate as a treatment for colon cancer

    Science.gov (United States)

    Koritarov, Tamara

    Photodynamic Therapy (PDT) has proven itself in previous studies to be a successful therapeutic treatment for surface tumors, but its effectiveness is limited to only shallow depths that allow for the penetration of light. This study demonstrates that we have improved upon the conventional method of PDT and have overcome the previous depth limitation by creating the light at the location of the tumor in situ. We conjugated a bioluminescent protein, Luciferase, to a semiconductor nanoparticle, TiO2, and with a cell specific antibody, anti-EGFR monoclonal antibody C225. The nanoconjugate, TiDoL-C225, was then activated by ATP and Luciferin in a reaction that creates reactive oxygen species (ROS) and induces apoptosis in the tumor cells. We created the optimal nanoconjugate synthesis protocol to make TiDoL and TiDoL-C225 for use in the PDT treatment. The TiDoL-C225 nanoconjugate is able to bind specifically to colon caner cells as the C225 antibody recognizes EGFR expressed at the surface of the cells, and further, when activated it will react only with the tumor cells. The optimal cell staining protocols were developed to visualize the treatment process and later analyze with the laser confocal microscope. The TiDoL nanoconjugate was found to only be operational and effective at killing tumor cells after being activated by Luciferin and ATP, which then enhances the control we have over the therapy. The TiDoL-C225 nanoconjugate increases the efficacy of binding to tumor cells and the speed of the reaction in the cells to begin apoptosis, even in lower concentrations when compared to the free TiDoL nanoconjugate. Finally, our PDT technique allowed us to monitor the tumor cells as they begin to undergo apoptosis in less than five minutes after the Luciferin was added to activate the reaction. The advantage of our method of PDT with the TiDoL-C225 nanoconjugate is that it can be used for early detection as well as developed into an effective treatment for cancers in all

  7. Folding, stability, and physical properties of the alpha subunit of bacterial luciferase.

    Science.gov (United States)

    Noland, B W; Dangott, L J; Baldwin, T O

    1999-12-01

    Bacterial luciferase is a heterodimeric (alphabeta) enzyme composed of homologous subunits. When the Vibrio harveyi luxA gene is expressed in Escherichia coli, the alpha subunit accumulates to high levels. The alpha subunit has a well-defined near-UV circular dichroism spectrum and a higher intrinsic fluorescence than the heterodimer, demonstrating fluorescence quenching in the enzyme which is reduced in the free subunit [Sinclair, J. F., Waddle, J. J., Waddill, W. F., and Baldwin, T. O. (1993) Biochemistry 32, 5036-5044]. Analytical ultracentrifugation of the alpha subunit has revealed a reversible monomer to dimer equilibrium with a dissociation constant of 14.9 +/- 4.0 microM at 18 degrees C in 50 mM phosphate and 100 mM NaCl, pH 7.0. The alpha subunit unfolded and refolded reversibly in urea-containing buffers by a three-state mechanism. The first transition occurred over the range of 0-2 M urea with an associated free-energy change of 2.24 +/- 0.25 kcal/mol at 18 degrees C in 50 mM phosphate buffer, pH 7.0. The second, occurring between 2.5 and 3.5 M urea, comprised a cooperative transition with a free-energy change of 6.50 +/- 0.75 kcal/mol. The intermediate species, populated maximally at ca. 2 M urea, has defined near-UV circular dichroism spectral properties distinct from either the native or the denatured states. The intrinsic fluorescence of the intermediate suggested that, although the quantum yield had decreased, the tryptophanyl residues remained largely buried. The far-UV circular dichroism spectrum of the intermediate indicated that it had lost ca. 40% of its native secondary structure. N-Terminal sequencing of the products of limited proteolysis of the intermediate showed that the C-terminal region of the alpha subunit became protease labile over the urea concentration range at which the intermediate was maximally populated. These observations have led us to propose an unfolding model in which the first transition is the unfolding of a C

  8. Construction and Expression of Periplanete fuliginosa densovirus Recombinant Plasmid Which Contains Luciferase Gene%含荧光素酶基因的黑胸大蠊浓核病毒重组质粒的构建与表达

    Institute of Scientific and Technical Information of China (English)

    杨娟; 张珈敏; 蒋洪; 邓晓军; 胡建芳; 胡远扬

    2003-01-01

    A luciferase gene has been inserted into the recombinant plasmid PfDNV-pUC119 which contained partly deletion of genome of Periplanete fuliginosa densovirus(PfDNV.)The recombinant plasmid with luciferase gene was co-transfrected with PfDNV-pUC 119 into Periplanele fuliginosa larvae and had a high luciferase gene expression in enteron of the transfected larvae.

  9. Integration mechanisms of transgenes and population fitness of GH transgenic fish

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It has been more than 20 years since the first batch of transgenic fish was produced. Five stable germ-line transmitted growth hormone (GH) transgenic fish lines have been generated. This paper reviews the mechanisms of integration and gene targeting of the transgene, as well as the viability, reproduction and transgenic approaches for the reproductive containment of GH-transgenic fish. Further, we propose that it should be necessary to do the following studies, in particularly, of the breeding of transgenic fish: to assess the fitness of transgenic fish in an aqueous environment with a large space and a complex structure; and to develop a controllable on-off strategy of reproduction in transgenic fish.

  10. Optimization of Biofuel Production From Transgenic Microalgae

    Science.gov (United States)

    2013-02-27

    AFRL-OSR-VA-TR-2013-0145 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Richard Sayre Donald Danforth...Technical 20080815 to 20120630 OPTIMIZATION OF BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE FA9550-08-1-0451 Richard Sayre Donald Danforth Plant...BIOFUEL PRODUCTION FROM TRANSGENIC MICROALGAE Grant/Contract Number: FA9550-08-1-0451 Reporting Period: Final Report Abstract: We have compared the

  11. Expression Systems and Species Used for Transgenic Animal Bioreactors

    OpenAIRE

    Yanli Wang; Sihai Zhao; Liang Bai; Jianglin Fan; Enqi Liu

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm ...

  12. Expression Systems and Species Used for Transgenic Animal Bioreactors

    OpenAIRE

    Yanli Wang; Sihai Zhao; Liang Bai; Jianglin Fan; Enqi Liu

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm ...

  13. Selection of in vitro produced, transgenic embryos by nested PCR for efficient production of transgenic goats.

    Science.gov (United States)

    Huang, S Z; Huang, Y; Chen, M J; Zeng, F Y; Ren, Z R; Zeng, Y T

    2001-09-01

    The production of valuable pharmaceutical proteins using transgenic animals as bioreactors has become one of the goals of biotechnology. However, the efficiency of producing transgenic animals by means of pronuclear microinjection is low. This may be attributed in part to the low integration rate of foreign DNA. Therefore, a large number of recipients are required to produce transgenic animals. We recently developed a transgenic procedure that combined the techniques of goat oocyte in vitro maturation (IVM), in vitro fertilization (IVF), microinjection, preimplantation selection of the transgenic embryos with nested PCR and transferring the transgenic embryos into the recipient goat uterus to produce transgenic goats. Thirty-seven transgenic embryos determined by nested PCR were transferred to thirty-two recipient goats. In the end, four live-born kids were produced. As predicted, all the live kids were transgenic as identified by PCR as well as Southern blot hybridization, The integration rate was 100% (4/4) which was completely in accordance with the results of embryo preimplantation detection. The results showed a significant decrease in the number of recipients required as only 8 recipients (32/4) were needed to obtain one live transgenic goat. We suggest that the transgenic system described herein may provide an improved way to efficiently produce transgenic goats on a large scale.

  14. Hydration kinetics of transgenic soybeans

    Directory of Open Access Journals (Sweden)

    Aline Francielle Fracasso

    2015-01-01

    Full Text Available The kinetic and experimental analyses of the hydration process of transgenic soybeans (BRS 225 RR are provided. The importance of the hydration process consists of the grain texture modifications which favor grinding and extraction of soybeans. The soaking isotherms were obtained for four different temperatures. Results showed that temperature affected transgenic soybeans´ hydration rate and time. Moisture content d.b. of the soybeans increased from 0.12 ± 0.01 kg kg-1 to 1.45 ± 0.19 kg kg-1 during 270 min. of process. Two models were used to fit the kinetic curves: an empirical model developed by Peleg (1988 and a phenomenological one, proposed by Omoto et al. (2009. The two models adequately represented the hydration kinetics. Peleg model was applied to the experimental data and the corresponding parameters were obtained and correlated to temperature. The model by Omoto et al. (2009 showed a better statistical fitting. Although Ks was affected by temperature (Ks = 0.38079 exp (-2289.3 T-1, the equilibrium concentration remained practically unchanged.

  15. Nematode neuropeptides as transgenic nematicides.

    Science.gov (United States)

    Warnock, Neil D; Wilson, Leonie; Patten, Cheryl; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J

    2017-02-01

    Plant parasitic nematodes (PPNs) seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP) family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars.

  16. In vivo cell kinetics of the bone marrow transplantation using dual colored transgenic rat system

    Science.gov (United States)

    Kai, Kotaro; Teraoka, Satoshi; Adachi, Yasushi; Ikehara, Susumu; Murakami, Takashi; Kobayashi, Eiji

    2008-02-01

    Because bone marrow is an adequate site for bone marrow stem cells, intra-bone marrow - bone marrow transplantation (IBM-BMT) is an efficient strategy for bone marrow transplantation (BMT). However, the fate of the transplanted cells remains unclear. Herein, we established a dual-colored transgenic rat system utilizing green fluorescent protein (GFP) and a luciferase (luc) marker. We then utilized this system to investigate the in vivo kinetics of transplanted bone marrow cells (BMCs) after authentic intravenous (IV)-BMT or IBM-BMT. The in vivo fate of the transplanted cells was tracked using an in vivo luminescent imaging technique; alterations in peripheral blood chimerism were also followed using flow cytometry. IBM-BMT and IV-BMT were performed using syngeneic and allogeneic rat combinations. While no difference in the proliferation pattern was observed between the two treatment groups at 7 days after BMT, different distribution patterns were clearly observed during the early phase. In the IBM-BMT-treated rats, the transplanted BMCs were engrafted immediately at the site of the injected bone marrow and expanded more rapidly than in the IV-BMT-treated rats during this phase. Graft-versus-host disease was also visualized. Our bio-imaging system using dual-colored transgenic rats is a powerful tool for performing quantitative and morphological assessments in vivo.

  17. Investigation of oncogenic cooperation in simple liver-specific transgenic mouse models using noninvasive in vivo imaging.

    Directory of Open Access Journals (Sweden)

    Hye-Lim Ju

    Full Text Available Liver cancer is a complex multistep process requiring genetic alterations in multiple proto-oncogenes and tumor suppressor genes. Although hundreds of genes are known to play roles in hepatocarcinogenesis, oncogenic collaboration among these genes is still largely unknown. Here, we report a simple methodology by which oncogenic cooperation between cancer-related genes can be efficiently investigated in the liver. We developed various non-germline transgenic mouse models using hydrodynamics-based transfection which express HrasG12V, SmoM2, and a short-hairpin RNA down-regulating p53 (shp53 individually or in combination in the liver. In this transgenic system, firefly luciferase was co-expressed with the oncogenes as a reporter, allowing tumor growth in the liver to be monitored over time without an invasive procedure. Very strong bioluminescence imaging (BLI signals were observed at 4 weeks post-hydrodynamic injection (PHI in mice co-expressing HrasG12V and shp53, while only background signals were detected in other double or single transgenic groups until 30 weeks PHI. Consistent with the BLI data, tumors were observed in the HrasG12V plus shp53 group at 4 weeks PHI, while other transgenic groups failed to exhibit a hyperplastic nodule at 30 weeks PHI. In the HrasG12V plus shp53 transgenic group, BLI signals were well-correlated with actual tumor growth in the liver, confirming the versatility of BLI-based monitoring of tumor growth in this organ. The methodology described here is expected to accelerate and facilitate in vivo studies of the hepatocarcinogenic potential of cancer-related genes by means of oncogenic cooperation.

  18. Identifying a kinase network regulating FGF14:Nav1.6 complex assembly using split-luciferase complementation.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Hsu

    Full Text Available Kinases play fundamental roles in the brain. Through complex signaling pathways, kinases regulate the strength of protein:protein interactions (PPI influencing cell cycle, signal transduction, and electrical activity of neurons. Changes induced by kinases on neuronal excitability, synaptic plasticity and brain connectivity are linked to complex brain disorders, but the molecular mechanisms underlying these cellular events remain for the most part elusive. To further our understanding of brain disease, new methods for rapidly surveying kinase pathways in the cellular context are needed. The bioluminescence-based luciferase complementation assay (LCA is a powerful, versatile toolkit for the exploration of PPI. LCA relies on the complementation of two firefly luciferase protein fragments that are functionally reconstituted into the full luciferase enzyme by two interacting binding partners. Here, we applied LCA in live cells to assay 12 kinase pathways as regulators of the PPI complex formed by the voltage-gated sodium channel, Nav1.6, a transmembrane ion channel that elicits the action potential in neurons and mediates synaptic transmission, and its multivalent accessory protein, the fibroblast growth factor 14 (FGF14. Through extensive dose-dependent validations of structurally-diverse kinase inhibitors and hierarchical clustering, we identified the PI3K/Akt pathway, the cell-cycle regulator Wee1 kinase, and protein kinase C (PKC as prospective regulatory nodes of neuronal excitability through modulation of the FGF14:Nav1.6 complex. Ingenuity Pathway Analysis shows convergence of these pathways on glycogen synthase kinase 3 (GSK3 and functional assays demonstrate that inhibition of GSK3 impairs excitability of hippocampal neurons. This combined approach provides a versatile toolkit for rapidly surveying PPI signaling, allowing the discovery of new modular pathways centered on GSK3 that might be the basis for functional alterations between the

  19. [Progress in transgenic fish techniques and application].

    Science.gov (United States)

    Ye, Xing; Tian, Yuan-Yuan; Gao, Feng-Ying

    2011-05-01

    Transgenic technique provides a new way for fish breeding. Stable lines of growth hormone gene transfer carps, salmon and tilapia, as well as fluorescence protein gene transfer zebra fish and white cloud mountain minnow have been produced. The fast growth characteristic of GH gene transgenic fish will be of great importance to promote aquaculture production and economic efficiency. This paper summarized the progress in transgenic fish research and ecological assessments. Microinjection is still the most common used method, but often resulted in multi-site and multi-copies integration. Co-injection of transposon or meganuclease will greatly improve the efficiency of gene transfer and integration. "All fish" gene or "auto gene" should be considered to produce transgenic fish in order to eliminate misgiving on food safety and to benefit expression of the transferred gene. Environmental risk is the biggest obstacle for transgenic fish to be commercially applied. Data indicates that transgenic fish have inferior fitness compared with the traditional domestic fish. However, be-cause of the genotype-by-environment effects, it is difficult to extrapolate simple phenotypes to the complex ecological interactions that occur in nature based on the ecological consequences of the transgenic fish determined in the laboratory. It is critical to establish highly naturalized environments for acquiring reliable data that can be used to evaluate the environ-mental risk. Efficacious physical and biological containment strategies remain to be crucial approaches to ensure the safe application of transgenic fish technology.

  20. A simplified method of generating transgenic Xenopus

    OpenAIRE

    Sparrow, Duncan B.; Latinkic, Branko; Mohun, Tim J.

    2000-01-01

    Currently transgenic frog embryos are generated using restriction-enzyme-mediated integration (REMI) on decondensed sperm nuclei followed by nuclear transplantation into unfertilized eggs. We have developed a simplified version of this protocol that has the potential to increase the numbers of normally developing transgenic embryos.

  1. Positron emission tomography : measurement of transgene expression

    NARCIS (Netherlands)

    de Vries, EFJ; Vaalburg, W

    2002-01-01

    Noninvasive and repetitive imaging of transgene expression can play a pivotal role in the development of gene therapy strategies, as it offers investigators a means to determine the effectiveness of their gene transfection protocols. In the last decade, imaging of transgene expression using positron

  2. Transcription-dependent silencing of inducible convergent transgenes in transgenic mice

    Directory of Open Access Journals (Sweden)

    Calero-Nieto Fernando J

    2010-01-01

    Full Text Available Abstract Background Silencing of transgenes in mice is a common phenomenon typically associated with short multi-copy transgenes. We have investigated the regulation of the highly inducible human granulocyte-macrophage colony-stimulating-factor gene (Csf2 in transgenic mice. Results In the absence of any previous history of transcriptional activation, this transgene was expressed in T lineage cells at the correct inducible level in all lines of mice tested. In contrast, the transgene was silenced in a specific subset of lines in T cells that had encountered a previous episode of activation. Transgene silencing appeared to be both transcription-dependent and mediated by epigenetic mechanisms. Silencing was accompanied by loss of DNase I hypersensitive sites and inability to recruit RNA polymerase II upon stimulation. This pattern of silencing was reflected by increased methylation and decreased acetylation of histone H3 K9 in the transgene. We found that silenced lines were specifically associated with a single pair of tail-to-tail inverted repeated copies of the transgene embedded within a multi-copy array. Conclusions Our study suggests that epigenetic transgene silencing can result from convergent transcription of inverted repeats which can lead to silencing of an entire multi-copy transgene array. This mechanism may account for a significant proportion of the reported cases of transgene inactivation in mice.

  3. Accumulation of nickel in transgenic tobacco

    Science.gov (United States)

    Sidik, Nik Marzuki; Othman, Noor Farhan

    2013-11-01

    The accumulation of heavy metal Ni in the roots and leaves of four T1 transgenic lines of tobacco (T(1)20E, T(1)24C, T(1)18B1 and T(1)20B) expressing eiMT1 from E.indica was assessed. The aim of the study was to investigate the level of Ni accumulation in the leaves and roots of each transgenic lines and to evaluate the eligibility of the plants to be classified as a phytoremediation agent. All of the transgenic lines showed different ability in accumulating different metals and has translocation factor (TF) less than 1 (TFmetal treatment. Among the 4 transgenic lines, transgenic line T(1)24C showed the highest accumulation of Ni (251.9 ± 0.014 mg/kg) and the lowest TF value (TFT(1)24C=0.0875) at 60 ppm Ni.

  4. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Li-Jing Shen

    Full Text Available BACKGROUND: Amplification of MYCN (N-Myc oncogene has been reported as a frequent event and a poor prognostic marker in human acute myeloid leukemia (AML. The molecular mechanisms and transcriptional networks by which MYCN exerts its influence in AML are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We introduced murine MYCN gene into embryonic zebrafish through a heat-shock promoter and established the stable germline Tg(MYCN:HSE:EGFP zebrafish. N-Myc downstream regulated gene 1 (NDRG1, negatively controlled by MYCN in human and functionally involved in neutrophil maturation, was significantly under-expressed in this model. Using peripheral blood smear detection, histological section and flow cytometric analysis of single cell suspension from kidney and spleen, we found that MYCN overexpression promoted cell proliferation, enhanced the repopulating activity of myeloid cells and the accumulation of immature hematopoietic blast cells. MYCN enhanced primitive hematopoiesis by upregulating scl and lmo2 expression and promoted myelopoiesis by inhibiting gata1 expression and inducing pu.1, mpo expression. Microarray analysis identified that cell cycle, glycolysis/gluconeogenesis, MAPK/Ras, and p53-mediated apoptosis pathways were upregulated. In addition, mismatch repair, transforming and growth factor β (TGFβ were downregulated in MYCN-overexpressing blood cells (p<0.01. All of these signaling pathways are critical in the proliferation and malignant transformation of blood cells. CONCLUSION/SIGNIFICANCE: The above results induced by overexpression of MYCN closely resemble the main aspects of human AML, suggesting that MYCN plays a role in the etiology of AML. MYCN reprograms hematopoietic cell fate by regulating NDRG1 and several lineage-specific hematopoietic transcription factors. Therefore, this MYCN transgenic zebrafish model facilitates dissection of MYCN-mediated signaling in vivo, and enables high-throughput scale screens to identify the

  5. A transgenic mouse model expressing an ERα folding biosensor reveals the effects of Bisphenol A on estrogen receptor signaling

    Science.gov (United States)

    Sekar, Thillai V.; Foygel, Kira; Massoud, Tarik F.; Gambhir, Sanjiv S.; Paulmurugan, Ramasamy

    2016-01-01

    Estrogen receptor-α (ERα) plays an important role in normal and abnormal physiology of the human reproductive system by interacting with the endogenous ligand estradiol (E2). However, other ligands, either analogous or dissimilar to E2, also bind to ERα. This may create unintentional activation of ER signaling in reproductive tissues that can lead to cancer development. We developed a transgenic mouse model that constitutively expresses a firefly luciferase (FLuc) split reporter complementation biosensor (NFLuc-ER-LBDG521T-CFLuc) to simultaneously evaluate the dynamics and potency of ligands that bind to ERα. We first validated this model using various ER ligands, including Raloxifene, Diethylstilbestrol, E2, and 4-hydroxytamoxifen, by employing FLuc-based optical bioluminescence imaging of living mice. We then used the model to investigate the carcinogenic property of Bisphenol A (BPA), an environmental estrogen, by long-term exposure at full and half environmental doses. We showed significant carcinogenic effects on female animals while revealing activated downstream ER signaling as measured by bioluminescence imaging. BPA induced tumor-like outgrowths in female transgenic mice, histopathologically confirmed to be neoplastic and epithelial in origin. This transgenic mouse model expressing an ERα folding-biosensor is useful in evaluation of estrogenic ligands and their downstream effects, and in studying environmental estrogen induced carcinogenesis in vivo. PMID:27721470

  6. Nucleocytoplasmic transport of luciferase gene mRNA requires CRM1/Exportin1 and RanGTPase.

    Science.gov (United States)

    Kimura, Tominori; Hashimoto, Iwao; Nishikawa, Masao; Yamada, Hisao

    2009-06-01

    Human immunodeficiency virus type 1 Rev (regulator of the expression of the virion) protein was shown to reduce the expression level of the co-transfected luciferase reporter gene (luc+) introduced to monitor transfection efficiency. We studied the mechanism of the inhibitory Rev effect. The effect, caused by nuclear retention of luc+ mRNA, was reversed if rev had a point mutation that makes its nuclear export signal (NES) unable to associate with cellular transport factors. The Rev NES receptor CRM1 (chromosome region maintenance 1)-specific inhibitor, leptomycin B, blocked luc+ mRNA export. This finding was also supported by the overexpression of delta CAN, another specific CRM1 inhibitor that caused inhibition of luciferase gene expression. Experiments involving tsBN2 cells, which have a temperature-sensitive RCC1 (regulator of chromosome condensation 1) allele, demonstrated that luc+ expression required generation of the GTP-bound form of RanGTPase (RanGTP) by RCC1. The constitutive transport element (CTE)-mediated nuclear export of luc+ mRNA was found to also depend upon RanGTP. Nuclear export of luc+ mRNA is thus suggested to involve CRM1 and RanGTP, which Rev employs to transport viral mRNA. The Rev effect is therefore considered to involve competition between two molecules for common transport factors.

  7. Overexpression, purification and characterization of the catalytic component of Oplophorus luciferase in the deep-sea shrimp, Oplophorus gracilirostris.

    Science.gov (United States)

    Inouye, Satoshi; Sasaki, Satoko

    2007-12-01

    The luciferase secreted by the deep-sea shrimp Oplophorus consists of 19 and 35kDa proteins. The 19-kDa protein (19kOLase), the catalytic component of luminescence reaction, was expressed in Escherichia coli using the cold-shock inducted expression system. 19kOLase, expressed as inclusion bodies, was solubilized with 6M urea and purified by urea-nickel chelate affinity chromatography. The yield of 19kOLase was 16 mg from 400 ml of cultured cells. 19kOLase in 6M urea could be refolded rapidly by dilution with 50mM Tris-HCl (pH 7.8)-10mM EDTA, and the refolded protein showed luminescence activity. The luminescence properties of refolded 19kOLase were characterized, in comparison with native Oplophorus luciferase. Luminescence intensity with bisdeoxycoelenterazine as a substrate was stimulated in the presence of organic solvents. The 19kOLase is a thermolabile protein and is 98 % inhibited by 1muM Cu2+. The cysteine residue of 19kOLase is not essential for catalysis of the luminescence reaction.

  8. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.

    Science.gov (United States)

    Branchini, Bruce

    2016-01-01

    We describe here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)-fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyzes yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-Infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. This method successfully employs an efficient sequential BRET-FRET energy transfer process based on firefly luciferase bioluminescence to assay physiologically important protease activities and should be generally applicable to the measurement of any endoprotease lacking accessible cysteine residues.

  9. Aminoglycosides, but not PTC124 (Ataluren), rescue nonsense mutations in the leptin receptor and in luciferase reporter genes.

    Science.gov (United States)

    Bolze, Florian; Mocek, Sabine; Zimmermann, Anika; Klingenspor, Martin

    2017-04-21

    In rare cases, monogenetic obesity is caused by nonsense mutations in genes regulating energy balance. A key factor herein is the leptin receptor. Here, we focus on leptin receptor nonsense variants causing obesity, namely the human W31X, murine Y333X and rat Y763X mutations, and explored their susceptibilities to aminoglycoside and PTC124 mediated translational read-through in vitro. In a luciferase based assay, all mutations - when analysed within the mouse receptor - were prone to aminoglycoside mediated nonsense suppression with the highest susceptibility for W31X, followed by Y763X and Y333X. For the latter, the corresponding rodent models appear valuable for in vivo experiments. When W31X was studied in the human receptor, its superior read-through susceptibility - initially observed in the mouse receptor - was eliminated, likely due to the different nucleotide context surrounding the mutation in the two orthologues. The impact of the surrounding context on the read-through opens the possibility to discover novel sequence elements influencing nonsense suppression. As an alternative to toxic aminoglycosides, PTC124 was indicated as a superior nonsense suppressor but inconsistent data concerning its read-through activity are reported. PTC124 failed to rescue W31X as well as different nonsense mutated luciferase reporters, thus, challenging its ability to induce translational read-through.

  10. Recombinant Pseudorabies Virus (PRV Expressing Firefly Luciferase Effectively Screened for CRISPR/Cas9 Single Guide RNAs and Antiviral Compounds

    Directory of Open Access Journals (Sweden)

    Yan-Dong Tang

    2016-03-01

    Full Text Available A Pseudorabies virus (PRV variant has emerged in China since 2011 that is not protected by commercial vaccines, and has not been well studied. The PRV genome is large and difficult to manipulate, but it is feasible to use clustered, regularly interspaced short palindromic repeats (CRISPR/Cas9 technology. However, identification of single guide RNA (sgRNA through screening is critical to the CRISPR/Cas9 system, and is traditionally time and labor intensive, and not suitable for rapid and high throughput screening of effective PRV sgRNAs. In this study, we developed a recombinant PRV strain expressing firefly luciferase and enhanced green fluorescent protein (EGFP as a reporter virus for PRV-specific sgRNA screens and rapid evaluation of antiviral compounds. Luciferase activity was apparent as soon as 4 h after infection and was stably expressed through 10 passages. In a proof of the principle screen, we were able to identify several PRV specific sgRNAs and confirmed that they inhibited PRV replication using traditional methods. Using the reporter virus, we also identified PRV variants lacking US3, US2, and US9 gene function, and showed anti-PRV activity for chloroquine. Our results suggest that the reporter PRV strain will be a useful tool for basic virology studies, and for developing PRV control and prevention measures.

  11. High-sensitivity real-time imaging of dual protein-protein interactions in living subjects using multicolor luciferases.

    Directory of Open Access Journals (Sweden)

    Naoki Hida

    Full Text Available Networks of protein-protein interactions play key roles in numerous important biological processes in living subjects. An effective methodology to assess protein-protein interactions in living cells of interest is protein-fragment complement assay (PCA. Particularly the assays using fluorescent proteins are powerful techniques, but they do not directly track interactions because of its irreversibility or the time for chromophore formation. By contrast, PCAs using bioluminescent proteins can overcome these drawbacks. We herein describe an imaging method for real-time analysis of protein-protein interactions using multicolor luciferases with different spectral characteristics. The sensitivity and signal-to-background ratio were improved considerably by developing a carboxy-terminal fragment engineered from a click beetle luciferase. We demonstrate its utility in spatiotemporal characterization of Smad1-Smad4 and Smad2-Smad4 interactions in early developing stages of a single living Xenopus laevis embryo. We also describe the value of this method by application of specific protein-protein interactions in cell cultures and living mice. This technique supports quantitative analyses and imaging of versatile protein-protein interactions with a selective luminescence wavelength in opaque or strongly auto-fluorescent living subjects.

  12. Tumor tissue characterization evaluating the luciferase activity under the control of a hsp70 promoter and MR imaging in three tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Hundt, Walter [Department of Radiology, Lucas MRS Research Center, Stanford School of Medicine, Stanford, CA 94305 (United States); Department of Clinical Radiology, University of Munich (Germany)], E-mail: walter.hundt@web.de; Steinbach, Silke [Department of Otolaryngology-Head and Neck Surgery, Technical University of Munich (Germany); O' Connell-Rodwell, Caitlin E. [Department of Pediatrics, Microbiology and Immunology and Radiology, Stanford School of Medicine, Stanford, CA 94305 (United States); Mayer, Dirk; Bednarski, Mark D.; Guccione, Samira [Department of Radiology, Lucas MRS Research Center, Stanford School of Medicine, Stanford, CA 94305 (United States)

    2009-05-15

    We investigated the luciferase activity under the control of a hsp70 promoter and MR imaging for three tumor cell lines. Three tumor cell lines, SCCVII, NIH3T3 and M21 were transfected with a plasmid containing the hsp70 promoter fragment and the luciferase reporter gene and grown in mice. Bioluminescence imaging of the tumors was performed every other day. MR imaging, pre- and post-contrast T1-wt SE, T2-wt FSE, Diffusion-wt STEAM-sequence, T2-time determination were obtained on a 1.5-T GE MRI scanner at a tumor size of 600-800 mm{sup 3} and 1400-1600 mm{sup 3}. Comparing the different tumor sizes the luciferase activity of the M21 tumors increased about 149.3%, for the NIH3T3 tumors about 47.4% and for the SCCVII tumors about 155.8%. Luciferase activity of the M21 tumors (r = 0.82, p < 0.01) and the SCCVII tumors (r = 0.62, p = 0.03) correlated significant with the diffusion coefficient. In the NIH3T3 tumors the best correlation between the luciferase activity and the MRI parameter was seen for the SNR (T2) values (r = 0.78, p < 0.01). The luciferase activity per mm{sup 3} tumor tissue correlated moderate with the contrast medium uptake (r = 0.55, p = 0.01) in the M21 tumors. In the NIH3T3 and SCCVII tumors a negative correlation (r = -0.78, p < 0.01, respectively, r = -0.49, p = 0.02) was found with the T2 time. Different tissue types have different luciferase activity under the control of the same hsp70 promoter. The combination of MR imaging with bioluminescence imaging improves the characterization of tumor tissue giving better information of this tissue on the molecular level.

  13. A mouse model based on replication-competent Tiantan vaccinia expressing luciferase/HIV-1 Gag fusion protein for the evaluation of protective efficacy of HIV vaccine

    Institute of Scientific and Technical Information of China (English)

    HUANG Yang; QIU Chao; LIU Lian-xing; FENG Yan-meng; ZHU Ting; XU Jian-qing

    2009-01-01

    Background Developing an effective vaccine against human immunodeficiency virus type 1 (HIV-1) remains a grand challenge after more than two decades of intensive effort. It is partially due to the lack of suitable animal models for screening and prioritizing vaccine candidates. In this study, we aim to develop a mice model to test HIV-1 vaccine efficacy. Methods We constructed a recombinant vaccinia expressing firefly luciferase and HIV-1 Gag fusion protein based on Tiantan strain, an attenuated but replication-competent poxvirus (rTTV-lucgag). By quantifying the luciferase activity as its read out, we defined the biodistribution of Tiantan strain poxvirus in mice inoculated intraperitoneally and attempted to apply this model to evaluate the HIV-1 vaccine efficacy. Results Our data demonstrated that the rTTV-lucgag was able to express high level of luciferase (≤106 relative luciferase units (RLU)/mg protein) and HIV-1 Gag (>3 folds increase comparing to the control). After intraperitoneal inoculation, this virus had dominant replication in the ovary, uterus, and cervix of mice and the luciferase activities in those organs are significantly correlated with viral titers (r2=0.71, P <0.01). Pre-immunization with an HIV gag DNA vaccine reduced the luciferase activity in ovary from (6006+3141) RLU/mg protein in control group to (1538±463) RLU/mg protein in vaccine group (P=0.1969). Conclusions The luciferase activity in ovary could represent viral replication in vivo;, this rTTV-lucgag/mice model may be suitable to assess the protective efficacy of cytotoxic T-cell responses to HIV Gag with less tedious work and high through-put.

  14. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy

    Science.gov (United States)

    Luna, Aderval S.; da Silva, Arnaldo P.; Pinho, Jéssica S. A.; Ferré, Joan; Boqué, Ricard

    Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.

  15. Generation of Transgenic Hydra by Embryo Microinjection

    Science.gov (United States)

    Juliano, Celina E.; Lin, Haifan; Steele, Robert E.

    2014-01-01

    As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology1. Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost. PMID:25285460

  16. Generation of red fluorescent protein transgenic dogs.

    Science.gov (United States)

    Hong, So Gun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Park, Jung Eun; Kang, Jung Taek; Koo, Ok Jae; Kim, Teoan; Kwon, Mo Sun; Koo, Bon Chul; Ra, Jeong Chan; Kim, Dae Yong; Ko, CheMyong; Lee, Byeong Chun

    2009-05-01

    Dogs (Canis familiaris) share many common genetic diseases with humans and development of disease models using a transgenic approach has long been awaited. However, due to the technical difficulty in obtaining fertilizable eggs and the unavailability of embryonic stem cells, no transgenic dog has been generated. Canine fetal fibroblasts were stably transfected with a red fluorescent protein (RFP) gene-expressing construct using retrovirus gene delivery method. Somatic cell nuclear transfer was then employed to replace the nucleus of an oocyte with the nucleus of the RFP-fibroblasts. Using this approach, we produced the first generation of transgenic dogs with four female and two male expressing RFP.

  17. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    Science.gov (United States)

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also

  18. Relative fitness of transgenic vs. non-transgenic maize x teosinte hybrids: a field evaluation.

    Science.gov (United States)

    Guadagnuolo, R; Clegg, J; Ellstrand, N C

    2006-10-01

    Concern has been often expressed regarding the impact and persistence of transgenes that enter wild populations via gene flow. The impact of a transgene and its persistence are largely determined by the relative fitness of transgenic hybrids and hybrid derivatives compared to non-transgenic plants. Nevertheless, few studies have addressed this question experimentally in the field. Despite the economic importance of maize, and the fact that it naturally hybridizes with the teosinte taxon Zea mays ssp. mexicana, sometimes known as "chalco teosinte," the question has received little experimental attention in this system. Using a glyphosate-tolerant maize cultivar and chalco teosinte as parental lines, we carried out a field experiment testing (1) the relative fitness of maize x teosinte hybrids, compared to their parental taxa, as well as (2) the relative fitness of transgenic hybrids compared to non-transgenic hybrids created from the same parental stock. In order to evaluate the influence of the transgenic construct in different genetic backgrounds, our study included transgenic and non-transgenic pure maize progeny from the cultivar as well. We measured both vegetative and reproductive parameters. Our results demonstrated that hybrids have greater vigor and produced more seeds than the wild parent. However, in the absence of selective pressure from glyphosate herbicide, we did not observe any direct positive or negative impact of the transgene on the fitness or vigor of either the hybrids or pure maize progeny. We discuss our results in terms of the potential for spontaneous transgene flow and introgression from transgenic maize into sympatric teosinte.

  19. The cAMP-dependent protein kinase inhibitor H-89 attenuates the bioluminescence signal produced by Renilla Luciferase.

    Directory of Open Access Journals (Sweden)

    Katie J Herbst

    Full Text Available BACKGROUND: Investigations into the regulation and functional roles of kinases such as cAMP-dependent protein kinase (PKA increasingly rely on cellular assays. Currently, there are a number of bioluminescence-based assays, for example reporter gene assays, that allow the study of the regulation, activity, and functional effects of PKA in the cellular context. Additionally there are continuing efforts to engineer improved biosensors that are capable of detecting real-time PKA signaling dynamics in cells. These cell-based assays are often utilized to test the involvement of PKA-dependent processes by using H-89, a reversible competitive inhibitor of PKA. PRINCIPAL FINDINGS: We present here data to show that H-89, in addition to being a competitive PKA inhibitor, attenuates the bioluminescence signal produced by Renilla luciferase (RLuc variants in a population of cells and also in single cells. Using 10 microM of luciferase substrate and 10 microM H-89, we observed that the signal from RLuc and RLuc8, an eight-point mutation variant of RLuc, in cells was reduced to 50% (+/-15% and 54% (+/-14% of controls exposed to the vehicle alone, respectively. In vitro, we showed that H-89 decreased the RLuc8 bioluminescence signal but did not compete with coelenterazine-h for the RLuc8 active site, and also did not affect the activity of Firefly luciferase. By contrast, another competitive inhibitor of PKA, KT5720, did not affect the activity of RLuc8. SIGNIFICANCE: The identification and characterization of the adverse effect of H-89 on RLuc signal will help deconvolute data previously generated from RLuc-based assays looking at the functional effects of PKA signaling. In addition, for the current application and future development of bioluminscence assays, KT5720 is identified as a more suitable PKA inhibitor to be used in conjunction with RLuc-based assays. These principal findings also provide an important lesson to fully consider all of the potential

  20. Transgenic plants with enhanced growth characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  1. Transgenic crops: Current challenges and future perspectives

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... development of Genetically Modified (GM) crops. As the time went on, ... INTRODUCTION. Food crops that are being produced or modified by the ...... Testing transgenes for insect resistance using Arabidopsis. Mol. Breed. 3:.

  2. Transgenic cassava lines carrying heterologous alternative oxidase ...

    African Journals Online (AJOL)

    To screen positive lines for gene function, leaf lobes from two transgenic lines with a line carrying an empty vector and the wild type were subjected to somatic embryogenesis (SE), a known oxidative ... African Journal of Biotechnology Vol.

  3. Transgenic animals resistant to infectious diseases.

    Science.gov (United States)

    Tiley, L

    2016-04-01

    The list of transgenic animals developed to test ways of producing livestock resistant to infectious disease continues to grow. Although the basic techniques for generating transgenic animals have not changed very much in the ten years since they were last reviewed for the World Organisation for Animal Health, one recent fundamental technological advance stands to revolutionise genome engineering. The advent of technically simple and efficient site-specific gene targeting has profound implications for genetically modifying livestock species.

  4. Transgenic Wheat, Barley and Oats: Future Prospects

    Science.gov (United States)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  5. Microbial starch-binding domains are superior to granule-bound starch synthase I for anchoring luciferase to potato starch granules

    Institute of Scientific and Technical Information of China (English)

    JI Qin; Jean-Paul VINCKEN; Luc C.J.M. SUURS; Richard G.F. VISSER

    2006-01-01

    Microbial starch-binding domains (SBD) and granule-hound starch synthase I (GBSSI) are proteins which are accumulated in potato starch granules. The efficiency of SBD and GBSSI for targeting active luciferase reporter proteins to granules during starch biosynthesis was compared. GBSSI or SBD sequences were fused to the N- or C-terminus of the luciferase (LUC) gene, via an artificial Pro-Thr encoding linker sequence. The genes were introduced into an amylose-free (am f) potato mutant. It appeared that SBD was superior to GBSSI as a targeting sequence, mainly because the luciferase retained higher activity in the SBD-containing fusion proteins than in the GBSSI-containing ones.

  6. The Influence of Hypoxia and pH on Bioluminescence Imaging of Luciferase-Transfected Tumor Cells and Xenografts

    Directory of Open Access Journals (Sweden)

    Ashraf A. Khalil

    2013-01-01

    Full Text Available Bioluminescence imaging (BLI is a relatively new noninvasive technology used for quantitative assessment of tumor growth and therapeutic effect in living animal models. BLI involves the generation of light by luciferase-expressing cells following administration of the substrate luciferin in the presence of oxygen and ATP. In the present study, the effects of hypoxia, hypoperfusion, and pH on BLI signal (BLS intensity were evaluated in vitro using cultured cells and in vivo using a xenograft model in nude mice. The intensity of the BLS was significantly reduced in the presence of acute and chronic hypoxia. Changes in cell density, viability, and pH also affected BLS. Although BLI is a convenient non-invasive tool for tumor assessment, these factors should be considered when interpreting BLS intensity, especially in solid tumors that could be hypoxic due to rapid growth, inadequate blood supply, and/or treatment.

  7. Combined image guided monitoring the pharmacokinetics of rapamycin loaded human serum albumin nanoparticles with a split luciferase reporter

    Science.gov (United States)

    Wang, Fu; Yang, Kai; Wang, Zhe; Ma, Ying; Gutkind, J. Silvio; Hida, Naoki; Niu, Gang; Tian, Jie

    2016-02-01

    Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies.Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery

  8. Titration-based screening for evaluation of natural product extracts: identification of an aspulvinone family of luciferase inhibitors

    Science.gov (United States)

    Cruz, Patricia G.; Auld, Douglas S.; Schultz, Pamela J.; Lovell, Scott; Battaile, Kevin P.; MacArthur, Ryan; Shen, Min; Tamayo-Castillo, Giselle; Inglese, James; Sherman, David H.

    2011-01-01

    The chemical diversity of nature has tremendous potential for discovery of new molecular probes and medicinal agents. However, sensitivity of HTS assays to interfering components of crude extracts derived from plants, macro- and microorganisms has curtailed their use in lead discovery efforts. Here we describe a process for leveraging the concentration-response curves (CRCs) obtained from quantitative HTS to improve the initial selection of “actives” from a library of partially fractionated natural product extracts derived from marine actinomycetes and fungi. By using pharmacological activity, the first-pass CRC paradigm aims to improve the probability that labor-intensive subsequent steps of re-culturing, extraction and bioassay-guided isolation of active component(s) target the most promising strains and growth conditions. We illustrate how this process identified a family of fungal metabolites as potent inhibitors of firefly luciferase, subsequently resolved in molecular detail by x-ray crystallography. PMID:22118678

  9. The Influence of Hypoxia and pH on Bioluminescence Imaging of Luciferase-Transfected Tumor Cells and Xenografts

    Science.gov (United States)

    Khalil, Ashraf A.; Jameson, Mark J.; Broaddus, William C.; Lin, Peck Sun; Dever, Seth M.; Golding, Sarah E.; Rosenberg, Elizabeth; Valerie, Kristoffer; Chung, Theodore D.

    2013-01-01

    Bioluminescence imaging (BLI) is a relatively new noninvasive technology used for quantitative assessment of tumor growth and therapeutic effect in living animal models. BLI involves the generation of light by luciferase-expressing cells following administration of the substrate luciferin in the presence of oxygen and ATP. In the present study, the effects of hypoxia, hypoperfusion, and pH on BLI signal (BLS) intensity were evaluated in vitro using cultured cells and in vivo using a xenograft model in nude mice. The intensity of the BLS was significantly reduced in the presence of acute and chronic hypoxia. Changes in cell density, viability, and pH also affected BLS. Although BLI is a convenient non-invasive tool for tumor assessment, these factors should be considered when interpreting BLS intensity, especially in solid tumors that could be hypoxic due to rapid growth, inadequate blood supply, and/or treatment. PMID:23936647

  10. Titration-based screening for evaluation of natural product extracts: identification of an aspulvinone family of luciferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, P.G.; Auld, D.S.; Schultz, P.J.; Lovell, S.; Battaile, K.P.; MacArthur, R.; Shen, M.; Tamayo-Castillo, G.; Inglese, J.; Sherman, D.H. (Michigan); (NIH); (Kansas); (Costa Rica); (HWMRI)

    2011-11-28

    The chemical diversity of nature has tremendous potential for the discovery of molecular probes and medicinal agents. However, sensitivity of HTS assays to interfering components of crude extracts derived from plants, and macro- and microorganisms has curtailed their use in lead discovery. Here, we describe a process for leveraging the concentration-response curves obtained from quantitative HTS to improve the initial selection of actives from a library of partially fractionated natural product extracts derived from marine actinomycetes and fungi. By using pharmacological activity, the first-pass CRC paradigm improves the probability that labor-intensive subsequent steps of reculturing, extraction, and bioassay-guided isolation of active component(s) target the most promising strains and growth conditions. We illustrate how this process identified a family of fungal metabolites as potent inhibitors of firefly luciferase, subsequently resolved in molecular detail by X-ray crystallography.

  11. The stem-loop luciferase assay for polyadenylation (SLAP) method for determining CstF-64-dependent polyadenylation activity.

    Science.gov (United States)

    Hockert, J Andrew; Macdonald, Clinton C

    2014-01-01

    Polyadenylation is an essential cellular process in eukaryotic cells (Edmonds M and Abrams R, J Biol Chem 235, 1142-1149, 1960; Zhao J et al., Microbiol Mol Biol Rev 63, 405-445, 1999; Edmonds M, Progr Nucleic Acid Res Mol Biol 71, 285-389, 2002). For this reason, it has been difficult to examine the functions of specific polyadenylation proteins in vivo. Here, we describe a cell culture assay that allows structure-function experiments on CstF-64, a protein that binds to pre-mRNAs downstream of the cleavage site for accurate and efficient polyadenylation. We also demonstrate that the stem-loop luciferase assay for polyadenylation (SLAP) accurately reflects CstF-64-dependent polyadenylation. This assay could be easily adapted to the study of other important RNA-binding proteins in polyadenylation.

  12. The ToI-beta transgenic mouse: a model to study the specific role of NF-kappaB in beta-cells.

    Science.gov (United States)

    Eldor, Roy; Baum, Ketty; Abel, Roy; Sever, Dror; Melloul, Danielle

    2009-12-01

    Type 1 diabetes is characterized by the infiltration of inflammatory cells into pancreatic islets of Langerhans, followed by the selective and progressive destruction of insulin-secreting beta-cells. Islet infiltrating leukocytes secrete cytokines including IL-1beta and IFN-gamma, which contribute to beta-cell death. In vitro evidence suggests that cytokine-induced activation of the transcription factor NF-kappaB is an important component of the signal triggering beta-cell apoptosis. To study the role of NF-kappaB in vivo we generated a transgenic mouse line expressing a degradation-resistant NF-kappaB protein inhibitor (DeltaNIkappaBalpha) and the luciferase gene, acting specifically in beta-cells, in an inducible and reversible manner, by using the tet-on regulation system. Using this new mouse model, termed the ToI-beta mouse (for Tet-Ondelta I kappaB in beta-cells) we have previously shown in vitro, that islets expressing the DeltaNIkappaBalpha protein were resistant to the deleterious effects of IL-1beta and IFN-gamma, as assessed by reduced NO production and beta-cell apoptosis. In vivo, a nearly complete protection against multiple low dose streptozocin-induced diabetes was observed, with reduced intra-islet lymphocytic infiltration. In the present study we demonstrate the tight regulated and reversible expression of the DeltaNIkappaBalpha transgene in the ToI-beta mouse model as well as the effect of its overexpression on glucose metabolism and insulin secretion. The results show a lack of effect of transgene induction on both in vivo glucose tolerance tests and in vitro islet insulin secretion and content. Furthermore, to prove the tight control of induction in the model, luciferase mediated light emission was only detected at constant levels in Dox-treated double transgenic mice or islets as well as in a model of islet transplantation. Upon removal of the inducing stimulus, complete reversal of both NF-kappaB inhibition and luciferase activity were

  13. Selenoprotein-Transgenic Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiazuan Ni

    2013-02-01

    Full Text Available Selenium (Se deficiency is associated with the occurrence of many diseases. However, excessive Se supplementation, especially with inorganic Se, can result in toxicity. Selenoproteins are the major forms of Se in vivo to exert its biological function. Expression of those selenoproteins, especially with the application of a newly developed system, is thus very important for studying the mechanism of Se in nutrition. The use of Chlamydomonas reinhardtii (C. reinhardtii as a biological vector to express an heterogeneous protein is still at the initial stages of development. In order to investigate the possibility of using this system to express selenoproteins, human 15-KDa selenoprotein (Sep15, a small but widely distributed selenoprotein in mammals, was chosen for the expression platform test. Apart from the wild-type human Sep15 gene fragment, two Sep15 recombinants were constructed containing Sep15 open reading frame (ORF and the selenocysteine insertion sequence (SECIS element from either human Sep15 or C. reinhardtii selenoprotein W1, a highly expressed selenoprotein in this alga. Those Sep15-containing plasmids were transformed into C. reinhardtii CC-849 cells. Results showed that Sep15 fragments were successfully inserted into the nuclear genome and expressed Sep15 protein in the cells. The transgenic and wild-type algae demonstrated similar growth curves in low Se culture medium. To our knowledge, this is the first report on expressing human selenoprotein in green alga.

  14. Transgenic technologies to induce sterility

    Directory of Open Access Journals (Sweden)

    Wimmer Ernst A

    2009-11-01

    Full Text Available Abstract The last few years have witnessed a considerable expansion in the number of tools available to perform molecular and genetic studies on the genome of Anopheles mosquitoes, the vectors of human malaria. As a consequence, knowledge of aspects of the biology of mosquitoes, such as immunity, reproduction and behaviour, that are relevant to their ability to transmit disease is rapidly increasing, and could be translated into concrete benefits for malaria control strategies. Amongst the most important scientific advances, the development of transgenic technologies for Anopheles mosquitoes provides a crucial opportunity to improve current vector control measures or design novel ones. In particular, the use of genetic modification of the mosquito genome could provide for a more effective deployment of the sterile insect technique (SIT against vector populations in the field. Currently, SIT relies on the release of radiation sterilized males, which compete with wild males for mating with wild females. The induction of sterility in males through the genetic manipulation of the mosquito genome, already achieved in a number of other insect species, could eliminate the need for radiation and increase the efficiency of SIT-based strategies. This paper provides an overview of the mechanisms already in use for inducing sterility by transgenesis in Drosophila and other insects, and speculates on possible ways to apply similar approaches to Anopheles mosquitoes.

  15. TRANSGENIC FISH MODEL IN ENVIRONMENTAL TOXICOLOGY

    Directory of Open Access Journals (Sweden)

    Madhuri Sharma

    2012-05-01

    Full Text Available A number of experiments and the use of drugs have been performed in fish. The fish may be used as model organism in various biological experiments, including environmental toxicology. Aquatic animals are being engineered to increase aquaculture production, for medical and industrial research, and for ornamental reasons. Fish have been found to play an important role in assessing potential risks associated with exposure to toxic substances in aquatic environment. Hence, it has been thought that the development of transgenic fish can enhance the use of fish in environmental toxicology. India has developed experimental transgenics of rohu fish, zebra fish, cat fish and singhi fish. Genes, promoters and vectors of indigenous origin are now available for only two species namely rohu and singhi for engineering growth. Development of fish model carrying identical transgenes to those found in rodents is beneficial and has shown that several aspects of in vivo mutagenesis are similar between the two classes of vertebrates. Fish shows the frequencies of spontaneous mutations similar to rodents and respond to mutagen exposure consistent with known mutagenic mechanisms. The feasibility of in vivo mutation analysis using transgenic fish has been demonstrated and the potential value of transgenic fish as a comparative animal model has been illustrated. Therefore, the transgenic fish can give the significant contribution to study the environmental toxicity in animals as a whole.

  16. Transgene flow: Facts, speculations and possible countermeasures

    Science.gov (United States)

    Ryffel, Gerhart U

    2014-01-01

    Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology. PMID:25523171

  17. Transgenic animals and their application in medicine

    Directory of Open Access Journals (Sweden)

    Bagle TR, Kunkulol RR, Baig MS, More SY

    2013-01-01

    Full Text Available Transgenic animals are animals that are genetically altered to have traits that mimic symptoms of specific human pathologies. They provide genetic models of various human diseases which are important in understanding disease and developing new targets. In early 1980 Gordon and co-workers described the first gene addition experiment using the microinjection technology and since then the impact of transgenic technology on basic research has been significant. Within 20 years of its inception, ATryn the first drug approved by USFDA from transgenic animals was developed and it has opened door to drugs from transgenic animals. In addition, they are looked upon as potential future donors for xenotransplantation. With increasing knowledge about the genetics and improvements in the transgenetic technology numerous useful applications like biologically safe new-generation drugs based on human regulatory proteins are being developed.Various aspects of concern in the coming years are the regulatory guidelines, ethical issues and patents related to the use of transgenic animals. This modern medicine is on the threshold of a pharmacological revolution. Use of transgenic animals will provide solutions for drug research, xenotransplantation, clinical trials and will prove to be a new insight in drug development.

  18. A new humanized in vivo model of KIT D816V+ advanced systemic mastocytosis monitored using a secreted luciferase.

    Science.gov (United States)

    Bibi, Siham; Zhang, Yanyan; Hugonin, Caroline; Mangean, Mallorie Depond; He, Liang; Wedeh, Ghaith; Launay, Jean-Marie; Van Rijn, Sjoerd; Würdinger, Thomas; Louache, Fawzia; Arock, Michel

    2016-12-13

    Systemic mastocytosis are rare neoplasms characterized by accumulation of mast cells in at least one internal organ. The majority of systemic mastocytosis patients carry KIT D816V mutation, which activates constitutively the KIT receptor. Patient with advanced forms of systemic mastocytosis, such as aggressive systemic mastocytosis or mast cell leukemia, are poorly treated to date. Unfortunately, the lack of in vivo models reflecting KIT D816V+ advanced disease hampers pathophysiological studies and preclinical development of new therapies for such patients. Here, we describe a new in vivo model of KIT D816V+ advanced systemic mastocytosis developed by transplantation of the human ROSAKIT D816V-Gluc mast cell line in NOD-SCID IL-2R γ-/- mice, using Gaussia princeps luciferase as a reporter. Intravenous injection of ROSAKIT D816V-Gluc cells led, in 4 weeks, to engraftment in all injected primary recipient mice. Engrafted cells were found at high levels in bone marrow, and at lower levels in spleen, liver and peripheral blood. Disease progression was easily monitored by repeated quantification of Gaussia princeps luciferase activity in peripheral blood. This quantification evidenced a linear relationship between the number of cells injected and the neoplastic mast cell burden in mice. Interestingly, the secondary transplantation of ROSAKIT D816V-Gluc cells increased their engraftment capability. To conclude, this new in vivo model mimics at the best the features of human KIT D816V+ advanced systemic mastocytosis. In addition, it is a unique and convenient tool to study the kinetics of the disease and the potential in vivo activity of new drugs targeting neoplastic mast cells.

  19. Characterization of human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic human immune system mice.

    Science.gov (United States)

    Billerbeck, Eva; Horwitz, Joshua A; Labitt, Rachael N; Donovan, Bridget M; Vega, Kevin; Budell, William C; Koo, Gloria C; Rice, Charles M; Ploss, Alexander

    2013-08-15

    Humanized mice have emerged as a promising model to study human immunity in vivo. Although they are susceptible to many pathogens exhibiting an almost exclusive human tropism, human immune responses to infection remain functionally impaired. It has recently been demonstrated that the expression of HLA molecules improves human immunity to lymphotropic virus infections in humanized mice. However, little is known about the extent of functional human immune responses in nonlymphoid tissues, such as in the liver, and the role of HLA expression in this context. Therefore, we analyzed human antiviral immunity in humanized mice during a hepatotropic adenovirus infection. We compared immune responses of conventional humanized NOD SCID IL-2Rγ-deficient (NSG) mice to those of a novel NOD SCID IL-2Rγ-deficient strain transgenic for both HLA-A*0201 and a chimeric HLA-DR*0101 molecule. Using a firefly luciferase-expressing adenovirus and in vivo bioluminescence imaging, we demonstrate a human T cell-dependent partial clearance of adenovirus-infected cells from the liver of HLA-transgenic humanized mice. This correlated with liver infiltration and activation of T cells, as well as the detection of Ag-specific humoral and cellular immune responses. When infected with a hepatitis C virus NS3-expressing adenovirus, HLA-transgenic humanized mice mounted an HLA-A*0201-restricted hepatitis C virus NS3-specific CD8(+) T cell response. In conclusion, our study provides evidence for the generation of partial functional antiviral immune responses against a hepatotropic pathogen in humanized HLA-transgenic mice. The adenovirus reporter system used in our study may serve as simple in vivo method to evaluate future strategies for improving human intrahepatic immune responses in humanized mice.

  20. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes

    NARCIS (Netherlands)

    Mlynarova, L.; Conner, A.J.; Nap, J.P.H.

    2006-01-01

    A major challenge for future genetically modified (GM) crops is to prevent undesired gene flow of transgenes to plant material intended for another use. Recombinase-mediated auto excision of transgenes directed by a tightly controlled microspore-specific promoter allows efficient removal of either t

  1. Efforts of Transgene Oncostatin M on the Development of Retinal Neuron in Transgenic Mice

    Institute of Scientific and Technical Information of China (English)

    Xiaobo Xia; Qin Chen

    2003-01-01

    Purpose:Oncostatin M(OSM) is a cytokine released by macrophages and lymphocytesthat can function as a growth regulator. A current study shows that leukemia inhibitoryfactor (LIF), a homologue of OSM, can prevent photoreceptor cell death when expressedin the lens of transgenic mice. We determined the efforts of lens-specific overexpressionof OSM on the development of eye.Methods: A truncated mouse OSM cDNA ( ~ 660 bp) was linked to the αA-crytallinpromoter, and injected into single-cell embryos with microinjection. Then, transgenic micewere established. The mRNA expression of transgene OSM was detected by in situhybridization. Immunohistochemistry was used to detect the expression of syntaxin, glialfibrillary acidic protein (GFAP), synaptophysin in the retinas of transgenic mice.Results: At embryonic day (E 17.5), the expression of the syntaxin at the inner and midportion of the retinas of transgenic mice was much higher than that of the retinas ofnon-transgenic mice. The expression of GFAP was detected in the retinas of transgenicmice, while no expression in non-transgenic normal FVB(FVB/N) mice was detected inthis stage. At postnatal day one (P1), the expression of synaptophysin was detected inthe retinas of transgenic mice, but there was no such expression in FVB/N mice.Conclusions: Lens-specific overexpression of OSM induces premature differentiation ofamacrine cells, gial cells, and photoreceptors in vivo.

  2. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes

    NARCIS (Netherlands)

    Mlynarova, L.; Conner, A.J.; Nap, J.P.H.

    2006-01-01

    A major challenge for future genetically modified (GM) crops is to prevent undesired gene flow of transgenes to plant material intended for another use. Recombinase-mediated auto excision of transgenes directed by a tightly controlled microspore-specific promoter allows efficient removal of either

  3. Transgenic farm animals: applications in agriculture and biomedicine.

    Science.gov (United States)

    Yang, X; Tian, X C; Dai, Y; Wang, B

    2000-01-01

    During the last decade, tremendous progress has been made in the area of transgenic farm animals. While there are many important transgenic farm animal applications in agriculture, funding has been very limited and progress has been rather slow in this area. Encouragingly, the potential applications of transgenic farm animals as bioreactors for producing human therapeutic proteins and as organ donors for transplantations in humans have attracted vast funding from the private sectors. Several transgenic animal products are already in various phases of clinical trials. Estimates are, that in the near future, the worlds demands on human pharmaceutical proteins may largely be met by transgenic farm animals. While there are still major challenges ahead in the area of xenotransplantation using transgenic animal organs, transgenic tissues or cells have demonstrated promising results as a potential tool for gene therapy. Recent development on cloning, embryonic stem cells and alternative transgenic methods may further expand the transgenic applications in both agriculture and biomedicine.

  4. Transgenic cotton: from biotransformation methods to agricultural application.

    Science.gov (United States)

    Zhang, Baohong

    2013-01-01

    Transgenic cotton is among the first transgenic plants commercially adopted around the world. Since it was first introduced into the field in the middle of 1990s, transgenic cotton has been quickly adopted by cotton farmers in many developed and developing countries. Transgenic cotton has offered many important environmental, social, and economic benefits, including reduced usage of pesticides, indirect increase of yield, minimizing environmental pollution, and reducing labor and cost. Agrobacterium-mediated genetic transformation method is the major method for obtaining transgenic cotton. However, pollen tube pathway-mediated method is also used, particularly by scientists in China, to breed commercial transgenic cotton. Although transgenic cotton plants with disease-resistance, abiotic stress tolerance, and improved fiber quality have been developed in the past decades, insect-resistant and herbicide-tolerant cotton are the two dominant transgenic cottons in the transgenic cotton market.

  5. Generation of stable Xenopus laevis transgenic lines expressing a transgene controlled by weak promoters.

    Science.gov (United States)

    L'hostis-Guidet, Anne; Recher, Gaëlle; Guillet, Brigitte; Al-Mohammad, Abdulrahim; Coumailleau, Pascal; Tiaho, François; Boujard, Daniel; Madigou, Thierry

    2009-10-01

    Combining two existing protocols of trangenesis, namely the REMI and the I-SceI meganuclease methods, we generated Xenopus leavis expressing a transgene under the control of a promoter that presented a restricted pattern of activity and a low level of expression. This was realized by co-incubating sperm nuclei, the I-SceI enzyme and the transgene prior to transplantation into unfertilized eggs. The addition of the woodchuck hepatitis virus posttranscriptional regulatory element in our constructs further enhanced the expression of the transgene without affecting the tissue-specificity of the promoter activity. Using this combination of methods we produced high rates of fully transgenic animals that stably transmitted the transgene to the next generations with a transmission rate of 50% indicating a single integration event.

  6. Subchronic toxicity study of GH transgenic carp.

    Science.gov (United States)

    Yong, Ling; Liu, Yu-Mei; Jia, Xu-Dong; Li, Ning; Zhang, Wen-Zhong

    2012-11-01

    A subchronic toxicity study of GH (growth hormone) transgenic carp was carried out with 60 SD rats aged 4 weeks, weight 115∼125 g. Ten male and 10 female rats were allotted into each group. Animals of the three groups (transgenic carp group (GH-TC), parental carp group (PC) and control group) were fed soy- and alfalfa-free diet (SAFD) with 10% GH transgenic carp powder, 10% parental carp powder or 10% common carp powder for 90 consecutive days, respectively. In the end of study, animals were killed by exsanguination via the carotid artery under diethyl ether anesthesia, then weights of heart, liver, kidneys, spleen, thymus, brain, ovaries and uterus/testis were measured. Pathological examination of organs was determined. Endocrine hormones of triiodothyronine (T3), thyroid hormone (T4), follicle-stimulating hormone (FSH), 17β-estradiol (E2), progesterone (P) and testosterone (T) levels were detected by specific ELISA kit. Parameters of blood routine and blood biochemical were measured. The weights of the body and organs of the rats, food intake, blood routine, blood biochemical test and serum hormones showed no significant differences among the GH transgenic carp-treated, parental carp-treated and control groups (P>0.05). Thus, it was concluded that at the dose level of this study, GH transgenic carp showed no subchronic toxicity and endocrine disruption to SD rats.

  7. Research advances on transgenic plant vaccines.

    Science.gov (United States)

    Han, Mei; Su, Tao; Zu, Yuan-Gang; An, Zhi-Gang

    2006-04-01

    In recent years, with the development of genetics molecular biology and plant biotechnology, the vaccination (e.g. genetic engineering subunit vaccine, living vector vaccine, nucleic acid vaccine) programs are taking on a prosperous evolvement. In particular, the technology of the use of transgenic plants to produce human or animal therapeutic vaccines receives increasing attention. Expressing vaccine candidates in vegetables and fruits open up a new avenue for producing oral/edible vaccines. Transgenic plant vaccine disquisitions exhibit a tempting latent exploiting foreground. There are a lot of advantages for transgenic plant vaccines, such as low cost, easiness of storage, and convenient immune-inoculation. Some productions converged in edible tissues, so they can be consumed directly without isolation and purification. Up to now, many transgenic plant vaccine productions have been investigated and developed. In this review, recent advances on plant-derived recombinant protein expression systems, infectious targets, and delivery systems are presented. Some issues of high concern such as biosafety and public health are also discussed. Special attention is given to the prospects and limitations on transgenic plant vaccines.

  8. Influenza A virus encoding secreted Gaussia luciferase as useful tool to analyze viral replication and its inhibition by antiviral compounds and cellular proteins.

    Science.gov (United States)

    Eckert, Nadine; Wrensch, Florian; Gärtner, Sabine; Palanisamy, Navaneethan; Goedecke, Ulrike; Jäger, Nils; Pöhlmann, Stefan; Winkler, Michael

    2014-01-01

    Reporter genes inserted into viral genomes enable the easy and rapid quantification of virus replication, which is instrumental to efficient in vitro screening of antiviral compounds or in vivo analysis of viral spread and pathogenesis. Based on a published design, we have generated several replication competent influenza A viruses carrying either fluorescent proteins or Gaussia luciferase. Reporter activity could be readily quantified in infected cultures, but the virus encoding Gaussia luciferase was more stable than viruses bearing fluorescent proteins and was therefore analyzed in detail. Quantification of Gaussia luciferase activity in the supernatants of infected culture allowed the convenient and highly sensitive detection of viral spread, and enzymatic activity correlated with the number of infectious particles released from infected cells. Furthermore, the Gaussia luciferase encoding virus allowed the sensitive quantification of the antiviral activity of the neuraminidase inhibitor (NAI) zanamivir and the host cell interferon-inducible transmembrane (IFITM) proteins 1-3, which are known to inhibit influenza virus entry. Finally, the virus was used to demonstrate that influenza A virus infection is sensitive to a modulator of endosomal cholesterol, in keeping with the concept that IFITMs inhibit viral entry by altering cholesterol levels in the endosomal membrane. In sum, we report the characterization of a novel influenza A reporter virus, which allows fast and sensitive detection of viral spread and its inhibition, and we show that influenza A virus entry is sensitive to alterations of endosomal cholesterol levels.

  9. Influenza A virus encoding secreted Gaussia luciferase as useful tool to analyze viral replication and its inhibition by antiviral compounds and cellular proteins.

    Directory of Open Access Journals (Sweden)

    Nadine Eckert

    Full Text Available Reporter genes inserted into viral genomes enable the easy and rapid quantification of virus replication, which is instrumental to efficient in vitro screening of antiviral compounds or in vivo analysis of viral spread and pathogenesis. Based on a published design, we have generated several replication competent influenza A viruses carrying either fluorescent proteins or Gaussia luciferase. Reporter activity could be readily quantified in infected cultures, but the virus encoding Gaussia luciferase was more stable than viruses bearing fluorescent proteins and was therefore analyzed in detail. Quantification of Gaussia luciferase activity in the supernatants of infected culture allowed the convenient and highly sensitive detection of viral spread, and enzymatic activity correlated with the number of infectious particles released from infected cells. Furthermore, the Gaussia luciferase encoding virus allowed the sensitive quantification of the antiviral activity of the neuraminidase inhibitor (NAI zanamivir and the host cell interferon-inducible transmembrane (IFITM proteins 1-3, which are known to inhibit influenza virus entry. Finally, the virus was used to demonstrate that influenza A virus infection is sensitive to a modulator of endosomal cholesterol, in keeping with the concept that IFITMs inhibit viral entry by altering cholesterol levels in the endosomal membrane. In sum, we report the characterization of a novel influenza A reporter virus, which allows fast and sensitive detection of viral spread and its inhibition, and we show that influenza A virus entry is sensitive to alterations of endosomal cholesterol levels.

  10. A new orange emitting luciferase from the Southern-Amazon Pyrophorus angustus (Coleoptera: Elateridae) click-beetle: structure and bioluminescence color relationship, evolutional and ecological considerations.

    Science.gov (United States)

    Amaral, Danilo T; Oliveira, Gabriela; Silva, Jaqueline R; Viviani, Vadim R

    2016-09-31

    Bioluminescent click-beetles display a wide variation of bioluminescence colors ranging from green to orange, including an unusual intra-specific color variation in the Jamaican Pyrophorus plagiophthalamus. Recently, we collected individuals of the Pyrophorus angustus species from the Southern Amazon forest, in Brazil, which displays an orange light emitting abdominal lantern. This species was also previously described from Central America, but displaying a bioluminescence spectrum from 536 nm (dorsal) to 578 nm (ventral). The biogeographic variation of the bioluminescence color in this species could be an adaptation to environmental reflectance and inter/intraspecific sexual competition. Here, we cloned, sequenced, characterized and performed site-direct mutagenesis of this new orange emitting luciferase. The in vitro luciferase spectrum displayed a peak at 594 nm, KM values for ATP and d-luciferin of 160 μM and 17 μM, respectively, and an optimum pH of approximately 8.5. Comparative multialignment and site-directed mutagenesis using different color emitting click-beetle luciferases from P. angustus, Fulgeochlizus bruchi and Pyrearinus termitilluminans luciferases cloned by our group showed an integral role of residue 247 in bioluminescence color modulation.

  11. Using the stable HSPA1A promoter-driven luciferase reporter HepG2 cells to assess the overall toxicity of coke oven emissions

    Institute of Scientific and Technical Information of China (English)

    信丽丽

    2013-01-01

    Objective Using the stable HSPA1A(HSP70-1) promoter-driven luciferase reporter HepG2 cells(HepG2/HSPA1A cells) to assess the overall toxicity of coke oven emissions. Methods The stable HepG2/HSPA1A cells were treated with different concentrations of coke oven

  12. A New Screen for Tuberculosis Drug Candidates Utilizing a Luciferase-Expressing Recombinant Mycobacterium bovis Bacillus Calmette-Gueren.

    Directory of Open Access Journals (Sweden)

    Yuriko Ozeki

    Full Text Available Tuberculosis (TB is a serious infectious disease caused by a bacterial pathogen. Mortality from tuberculosis was estimated at 1.5 million deaths worldwide in 2013. Development of new TB drugs is needed to not only to shorten the medication period but also to treat multi-drug resistant and extensively drug-resistant TB. Mycobacterium tuberculosis (Mtb grows slowly and only multiplies once or twice per day. Therefore, conventional drug screening takes more than 3 weeks. Additionally, a biosafety level-3 (BSL-3 facility is required. Thus, we developed a new screening method to identify TB drug candidates by utilizing luciferase-expressing recombinant Mycobacterium bovis bacillus Calmette-Guéren (rBCG. Using this method, we identified several candidates in 4 days in a non-BSL-3 facility. We screened 10,080 individual crude extracts derived from Actinomyces and Streptomyces and identified 137 extracts which possessed suppressive activity to the luciferase of rBCG. Among them, 41 compounds inhibited the growth of both Mtb H37Rv and the extensively drug-resistant Mtb (XDR-Mtb strains. We purified the active substance of the 1904-1 extract, which possessed strong activity toward rBCG, Mtb H37Rv, and XDR-Mtb but was harmless to the host eukaryotic cells. The MIC of this substance was 0.13 μg/ml, 0.5 μg/ml, and 2.0-7.5 μg/ml against rBCG, H37Rv, and 2 XDR-strains, respectively. Its efficacy was specific to acid-fast bacterium except for the Mycobacterium avium intracellular complex. Mass spectrometry and nuclear magnetic resonance analyses revealed that the active substance of 1904-1 was cyclomarin A. To confirm the mode of action of the 1904-1-derived compound, resistant BCG clones were used. Whole genome DNA sequence analysis showed that these clones contained a mutation in the clpc gene which encodes caseinolytic protein, an essential component of an ATP-dependent proteinase, and the likely target of the active substance of 1904-1. Our method

  13. Toxins for Transgenic Resistance to Hemipteran Pests

    Directory of Open Access Journals (Sweden)

    Bryony C. Bonning

    2012-06-01

    Full Text Available The sap sucking insects (Hemiptera, which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  14. Toxins for transgenic resistance to hemipteran pests.

    Science.gov (United States)

    Chougule, Nanasaheb P; Bonning, Bryony C

    2012-06-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  15. Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line.

    Science.gov (United States)

    Legler, J; van den Brink, C E; Brouwer, A; Murk, A J; van der Saag, P T; Vethaak, A D; van der Burg, B

    1999-03-01

    Development of an estrogen receptor-mediated, chemical-activated luciferase reporter gene-expression (ER-CALUX) assay was attempted by stable transfection of luciferase reporter genes in a number of cell lines. Stable transfection of the chimeric Gal4 estrogen receptor and luciferase gene constructs in MCF-7 breast cancer and Hepa.1c1c7 mouse hepatoma cell lines, as well as transfection of a newly constructed luciferase reporter gene pEREtata-Luc in the ECC-1 human endometrial cell line, resulted in constitutive, non-estradiol-inducible clones. Stable transfection of pEREtata-Luc in the T47D breast cancer cell line, however, resulted in an extremely sensitive, highly responsive cell line. Following a 24-h exposure to estradiol (E2), stably transfected T47D.Luc cells demonstrated a detection limit of 0.5 pM, an EC50 of 6 pM, and a maximum induction of 100-fold relative to solvent controls. No clear reduction in responsiveness has been found over extended culture periods (50 passages). Anti-estrogens ICI 182,780, TCDD, and tamoxifen inhibited the estradiol-mediated luciferase induction. Genistein, nonylphenol, and o,p'DDT were the most potent (pseudo-)estrogens tested in this system (EC50 100, 260, and 660 nM, respectively). Determination of interactive effects of the (pseudo-)estrogens nonylphenol, o,p'DDT, chlordane, endosulfan, dieldrin, and methoxychlor revealed that, in combination with 3 pM E2, (pseudo-)estrogens were additive. Slightly more than additive effects (less than 2-fold) were found for combinations of dieldrin and endosulfan tested in the range of 3 to 6 microM. At these concentrations, the combination of endosulfan and chlordane demonstrated additive interaction. The ER-CALUX assay with T47D cells can provide a sensitive, responsive, and rapid in vitro system to detect and measure substances with potential (anti-)estrogenic activity.

  16. Transient Expression of Transgenic IL-12 in Mouse Liver Triggers Unremitting Inflammation Mimicking Human Autoimmune Hepatitis.

    Science.gov (United States)

    Gil-Farina, Irene; Di Scala, Marianna; Salido, Eduardo; López-Franco, Esperanza; Rodríguez-García, Estefania; Blasi, Mercedes; Merino, Juana; Aldabe, Rafael; Prieto, Jesús; Gonzalez-Aseguinolaza, Gloria

    2016-09-15

    The etiopathogenesis of autoimmune hepatitis (AIH) remains poorly understood. In this study, we sought to develop an animal model of human AIH to gain insight into the immunological mechanisms driving this condition. C57BL/6 mice were i.v. injected with adeno-associated viral vectors encoding murine IL-12 or luciferase under the control of a liver-specific promoter. Organ histology, response to immunosuppressive therapy, and biochemical and immunological parameters, including Ag-specific humoral and cellular response, were analyzed. Mechanistic studies were carried out using genetically modified mice and depletion of lymphocyte subpopulations. Adeno-associated virus IL-12-treated mice developed histological, biochemical, and immunological changes resembling type 1 AIH, including marked and persistent liver mononuclear cell infiltration, hepatic fibrosis, hypergammaglobulinemia, anti-nuclear and anti-smooth muscle actin Abs, and disease remission with immunosuppressive drugs. Interestingly, transgenic IL-12 was short-lived, but endogenous IL-12 expression was induced, and both IL-12 and IFN-γ remained elevated during the entire study period. IFN-γ was identified as an essential mediator of liver damage, and CD4 and CD8 T cells but not NK, NKT, or B cells were essential executors of hepatic injury. Furthermore, both MHC class I and MHC class II expression was upregulated at the hepatocellular membrane, and induction of autoreactive liver-specific T cells was detected. Remarkably, although immunoregulatory mechanisms were activated, they only partially mitigated liver damage. Thus, low and transient expression of transgenic IL-12 in hepatocytes causes loss of tolerance to hepatocellular Ags, leading to chronic hepatitis resembling human AIH type 1. This model provides a practical tool to explore AIH pathogenesis and novel therapies.

  17. Transgenic cultures: from the economic viewpoint

    Directory of Open Access Journals (Sweden)

    Mauricio Mosquera

    2011-12-01

    Full Text Available The introduction of transgenic seeds for agricultural purposes poses modification to their production, due to the potential for reaching desired characteristics such as greater yield, this being fundamental in an economic environment characterised by open market conditions. However, acceptance of products resulting from genetic engineering is far from becoming a simple process; discussion relating to the predominance of private sector interests, the monopoly of knowledge and the safety of such seeds/food is currently in the spotlight. This article presents the main points of debate regarding adoption of transgenic cultures, contributing to discussion about this topic for Colombia.

  18. Developments in transgenic technology: applications for medicine.

    Science.gov (United States)

    Hunter, Cheryl V; Tiley, Laurence S; Sang, Helen M

    2005-06-01

    Recent advances in the efficiency of transgenic technology have important implications for medicine. The production of therapeutic proteins from animal bioreactors is well established and the first products are close to market. The genetic modification of pigs to improve their suitability as organ donors for xenotransplantation has been initiated, but many challenges remain. The use of transgenesis, in combination with the method of RNA interference to knock down gene expression, has been proposed as a method for making animals resistant to viral diseases, which could reduce the likelihood of transmission to humans. Here, the latest developments in transgenic technology and their applications relevant to medicine and human health will be discussed.

  19. Design and Management of a Transgenic Facility

    Institute of Scientific and Technical Information of China (English)

    Bob Springsteen

    2001-01-01

    @@ In 1965, I was given the opportunity to manage a research animal colony. At that time, the animal colony consisted of numerous species, such as primates, dogs, cats, rab bits, guinea pigs, hamsters, rats, mice, and some farm animals as well. Over the years,this menagerie was reduced to mice and rab bits. The animal facility now houses 8 000mice, of which 80% are transgenics. In approximately six years, transgenic mice have become the mainstay of the Berkeley Lab animal facility, and this population continues to grow.

  20. Influence of DNA methylation on transgene expression

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    DNA methylation plays an important role in gene expression in eukaryote. But DNA methylation of transgene usually leads to target gene silencing in plant genetic engineering. In this research, reporter gene b-glu- curonidase (GUS) gene (uidA) was introduced into tobaccos via Agrobacterium-mediated transformation method, and the foreign uidA gene became inactive in some transgenic tobaccos. No mRNA of uidA was detected in these plants by Northern blotting analysis, and DNA methylation of promoter region was found. The results indicated that gene silencing might be caused by DNA methylation of promoter.

  1. Generation of BAC transgenic epithelial organoids.

    Directory of Open Access Journals (Sweden)

    Gerald Schwank

    Full Text Available Under previously developed culture conditions, mouse and human intestinal epithelia can be cultured and expanded over long periods. These so-called organoids recapitulate the three-dimensional architecture of the gut epithelium, and consist of all major intestinal cell types. One key advantage of these ex vivo cultures is their accessibility to live imaging. So far the establishment of transgenic fluorescent reporter organoids has required the generation of transgenic mice, a laborious and time-consuming process, which cannot be extended to human cultures. Here we present a transfection protocol that enables the generation of recombinant mouse and human reporter organoids using BAC (bacterial artificial chromosome technology.

  2. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity.

    Science.gov (United States)

    Cevenini, Luca; Calabretta, Maria Maddalena; Lopreside, Antonia; Tarantino, Giuseppe; Tassoni, Annalisa; Ferri, Maura; Roda, Aldo; Michelini, Elisa

    2016-12-01

    The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. Graphical abstract Smartphone-based bioluminescence cell biosensor.

  3. Luciferase reporter phage phAE85 for rapid detection of rifampicin resistance in clinical isolates of Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    Gomathi Sivaramakrishnan; Balaji Subramanyam; Ponnuraja C; Vanaja Kumar

    2013-01-01

    Objective:To evaluate luciferase reporter phage (LRP) phAE85 in rapid detection of rifampicin resistance in a region where TB is endemic. Methods:One hundred and ninety primary isolates on Lowenstein-Jensen medium were tested. Middlebrook 7H9 complete medium with and without rifampicin at 2μg/mL was inoculated with standard inoculum from suspensions of the clinical isolate. After incubation for 72 h, LRP was added. Following 4 h of further incubation, light output from both control and test was measured as relative light units. Strains exhibiting a reduction of less than 50%relative light units in the drug containing vial compared to control were classified as resistant. Results were compared with the conventional minimum inhibitory concentration method (MIC) of drug susceptibility testing. Results:The two methods showed high level of agreement of 97% (CI 0.94, 0.99) and P value was 0.000 1. The sensitivity and specificity of LRP assay for detection of rifampicin resistance were 91%(CI 0.75, 0.98) and 99%(CI 0.95, 1.00) respectively. Time to detection of resistance by LRP assay was 3 d in comparison with 28 d by the minimum inhibitory concentration method. Conclusions: LRP assay with phAE85 is 99%specific, 91%sensitive and is highly reproducible. Thus the assay offers a simple procedure for drug sensitivity testing, within the scope of semi-automation.

  4. Coupling ex vivo electroporation of mouse retinas and luciferase reporter assays to assess rod-specific promoter activity.

    Science.gov (United States)

    Boulling, Arnaud; Escher, Pascal

    2016-07-01

    Ex vivo electroporation of mouse retinas is an established tool to modulate gene expression and to study cell type-specific gene expression. Here we coupled ex vivo electroporation to luciferase reporter assays to facilitate the study of rod-photoreceptor-specific gene promoters. The activity of the rod-specific proximal bovine rhodopsin promoter was significantly increased in C57BL/6J wild-type retinas at postnatal days 1 and 7 by 3.4-fold and 8.7-fold respectively. In C57BL/6J Nr2e3(rd7/rd7) retinas, where the rod photoreceptor-specific nuclear receptor Nr2e3 is not expressed, a significant increase by 2.5-fold was only observed at postnatal day 7. Cone-specific S-opsin promoter activity was not modulated in C57BL/6J wild-type and Nr2e3(rd7/rd7) retinas. Taken together, we describe an easily implementable protocol to assess rod-specific promoter activity in a physiological context resembling that of the developing postnatal mouse retina.

  5. Specific detection of peste des petits ruminants virus antibodies in sheep and goat sera by the luciferase immunoprecipitation system.

    Science.gov (United States)

    Berguido, Francisco J; Bodjo, Sanne Charles; Loitsch, Angelika; Diallo, Adama

    2016-01-01

    Peste des petits ruminants (PPR) is a contagious and often fatal transboundary animal disease affecting mostly sheep, goats and wild small ruminants. This disease is endemic in most of Africa, the Middle, Near East, and large parts of Asia. The causal agent is peste des petits ruminants virus (PPRV), which belongs to the genus Morbillivirus in the family Paramyxoviridae. This genus also includes measles virus (MV), canine distemper virus (CDV) and rinderpest virus (RPV). All are closely related viruses with serological cross reactivity. In this study, we have developed a Luciferase Immunoprecipitation System (LIPS) for the rapid detection of antibodies against PPRV in serum samples and for specific differentiation from antibodies against RPV. PPR and rinderpest (RP) serum samples were assayed by PPR-LIPS and two commercially available PPR cELISA tests. The PPR-LIPS showed high sensitivity and specificity for the samples tested and showed no cross reactivity with RPV unlike the commercial PPR cELISA tests which did cross react with RPV. Based on the results shown in this study, PPR-LIPS is presented as a good candidate for the specific serosurveillance of PPR. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Lectin cDNA and transgenic plants derived therefrom

    Science.gov (United States)

    Raikhel, Natasha V.

    2000-10-03

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  7. Insect resistance to Nilaparvata lugens and Cnaphalocrocis medinalis in transgenic indica rice and the inheritance of gna+sbti transgenes.

    Science.gov (United States)

    Li, Guiying; Xu, Xinping; Xing, Hengtai; Zhu, Huachen; Fan, Qin

    2005-04-01

    Molecular genetic analysis and insect bioassay of transgenic indica rice 'Zhuxian B' plants carrying snowdrop lectin gene (gna) and soybean trypsin inhibitor gene (sbti) were investigated in detail. PCR, 'dot' blot and PCR-Southern blot analysis showed that both transgenes had been incorporated into the rice genome and transmitted up to R3 progeny in most lines tested. Some transgenic lines exhibited Mendelian segregation, but the other showed either 1:1 (positive: negative for the transgenes) or other aberrant segregation patterns. The segregation patterns of gna gene crossed between R2 and R3 progeny. In half of transgenic R3 lines, gna and sbti transgenes co-segregated. Two independent homozygous lines expressing double transgenes were identified in R3 progeny. Southern blot analysis demonstrated that the copy numbers of integrated gna and sbti transgenes varied from one to ten in different lines. Insect bioassay data showed that most transgenic plants had better resistance to both Nilaparvata lugens (Stahl) and Cnaphalocrocis medinalis (Guenee) than wild-type plants. The insect resistance of transgenic lines increased with the increase in transgene positive ratio in most of the transgenic lines. In all, we obtained nine lines of R3 transgenic plants, including one pure line, which had better resistance to both N lugens and C medinalis than wild-type plants.

  8. Advancing environmental risk assessment for transgenic biofeedstock crops

    OpenAIRE

    2009-01-01

    Abstract Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider t...

  9. Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats

    Science.gov (United States)

    Davidson, Alec J.; Stokkan, Karl-Arne; Yamazaki, Shin; Menaker, Michael

    2002-01-01

    The mammalian Per1 gene is an important component of the core cellular clock mechanism responsible for circadian rhythms. The rodent liver and other tissues rhythmically express Per1 in vitro but typically damp out within a few cycles. In the liver, the peak of this rhythm occurs in the late subjective night in an ad lib-fed rat, but will show a large phase advance in response to restricted availability of food during the day. The relationship between this shift in the liver clock and food-anticipatory activity (FAA), the circadian behavior entrained by daily feeding, is currently unknown. Insulin is released during feeding in mammals and could serve as an entraining signal to the liver. To test the role of insulin in the shift in liver Per1 expression and the generation of FAA, per-luciferase transgenic rats were made diabetic with a single injection of streptozotocine. Following 1 week of restricted feeding and locomotor activity monitoring, liver was collected for per-luc recording. In two separate experiments, FAA emerged and liver Per1 phase-shifted in response to daytime 8-h food restriction. The results rule out insulin as a necessary component of this system.

  10. [Methods of hygromycin B phosphotransferase activity assay in transgenic plant].

    Science.gov (United States)

    Zhuo, Qin; Yang, Xiaoguang

    2004-07-01

    Hygromycin B phosphotransferase (HPT) is a widely used selectable marker protein of transgenic plant. Detection of its activity is critical to studies on the development of various transgenic plants, silence of inserted gene, marker-free system development and safety assessment of transgenic food. In this paper, several methods for detecting the activity of this enzyme were reviewed.

  11. The past, present and future of transgenic bioreactors.

    Science.gov (United States)

    Drohan, W N

    1997-07-01

    Hybrid genes can control the tissue-specific synthesis of human proteins in transgenic animals. Thus, it is now possible to produce proteins of biomedical value in the body fluids or cells of transgenic livestock. In fact, the first transgenically produced protein, antithrombin III, is now in clinical trials and others will soon follow.

  12. Production of recombinant proteins in milk of transgenic and non-transgenic goats

    Directory of Open Access Journals (Sweden)

    Raylene Ramos Moura

    2011-10-01

    Full Text Available Among all the transgenic mammalians produced so far, goats have represented an excellent model of transgenesis when considering the factors such as the market demand for protein, volume of milk produced per lactation and reproductive rate. Various recombinant proteins have been obtained from the transgenic and non-transgenic goats, and among these, human antithrombin, produced by the transgenic goats, was the first recombinant protein of animal origin to be released as a drug for the clinical use in humans. This review reports the aspects inherent to the production of recombinant proteins in the goats, from the production of the animal bioreactors up to the expression of these proteins in their milk.

  13. Strategies for antiviral resistance in transgenic plants

    NARCIS (Netherlands)

    Prins, M.W.; Laimer, M.; Noris, E.; Schubert, J.; Wassenegger, M.; Tepfer, M.

    2008-01-01

    Genetic engineering offers a means of incorporating new virus resistance traits into existing desirable plant cultivars. The initial attempts to create transgenes conferring virus resistance were based on the pathogen-derived resistance concept. The expression of the viral coat protein gene in

  14. [Allergic risk of transgenic food: prevention strategies].

    Science.gov (United States)

    Moneret-Vautrin, Denise-Anne

    2002-01-01

    Numerous allergens proceed from foods. The allergic risk of transgenic foods needs to be evaluated according recommendations from the Joint Expert Committee FAO/WHO. Potential issues are the risk of cross reactivity with existing allergens, the modification of allergenicity of the transgenic protein induced by a modified metabolism in the host, the modified allergenicity of the proteins of the transgenic plant, a potential neo-allergenicity of the transgenic protein, and the risk of dissemination through pollens, inducing a respiratory sensitization then a cross food allergy. The algorithm includes three steps for evaluation: first the search for significant homology of the protein with allergens listed in allergen databanks, or the identity of a sequence of six aminoacids with known allergens, then a cross reactivity explored through the binding to IgEs from patients allergic to the source of the gene, or allergic to organisms of the same group or botanical family, and finally the extent of the pepsine resistance. The risk of immunogenicity has to be studied with appropriate animal models. A post-marketing surveillance is recommended for monitoring of adverse effects. The structure of an Allergo-Vigilance Network, the tools for efficiency and the groups at higher risk will be discussed.

  15. Transgenic lilies via pollen mediated transformation

    NARCIS (Netherlands)

    Leede-Plegt, van der L.M.; Kronenburg-van de Ven, van B.C.E.; Franken, J.; Tuyl, van J.M.; Tunen, van A.J.; Dons, J.J.M.

    1997-01-01

    We have developed a procedure for the production of transgenic lilies by using the pollen grain as vector for DNA delivery. First, a particle gun was used for the introduction of the NPTII gene (for kanamycin resistance) into pollen of lily (Lilium longiflorum), cv ‘Gelria’. Subsequently the bombard

  16. A transgenic mouse model for trilateral retinoblastoma

    NARCIS (Netherlands)

    O'Brien, J.M.; Marcus, D.M.; Bernards, R.A.; Carpenter, J.L.; Windle, J.J.; Mellon, P.; Albert, D.M.

    1990-01-01

    We present a murine model of trilateral retinoblastoma. Ocular retinoblastoma and central nervous system tumors are observed in a line of mice formed by the transgenic expression of SV40 T-antigen. An oncogenic protein known to bind to the retinoblastoma gene product (p105-Rb) is specifically expres

  17. Biological containment strategies for transgenic crops

    NARCIS (Netherlands)

    Maagd, de R.A.; Boutilier, K.A.

    2013-01-01

    Biological containment is the prevention or reduction in the spread of transgenes by modifying plant growth or development, most commonly through modification of reproductive characteristics. This review provides a summary of the current strategies for biological containment, including the use of bo

  18. Cancer immunotherapy : insights from transgenic animal models

    NARCIS (Netherlands)

    McLaughlin, PMJ; Kroesen, BJ; Harmsen, MC; de Leij, LFMH

    2001-01-01

    A wide range of strategies in cancer immunotherapy has been developed in the last decade, some of which are currently being used in clinical settings. The development of these immunotherapeutical strategies has been facilitated by the generation of relevant transgenic animal models. Since the

  19. Cancer immunotherapy : insights from transgenic animal models

    NARCIS (Netherlands)

    McLaughlin, PMJ; Kroesen, BJ; Harmsen, MC; de Leij, LFMH

    2001-01-01

    A wide range of strategies in cancer immunotherapy has been developed in the last decade, some of which are currently being used in clinical settings. The development of these immunotherapeutical strategies has been facilitated by the generation of relevant transgenic animal models. Since the differ

  20. Assessing the value of transgenic crops.

    Science.gov (United States)

    Lacey, Hugh

    2002-10-01

    In the current controversy about the value of transgenic crops, matters open to empirical inquiry are centrally at issue. One such matter is a key premise in a common argument (that I summarize) that transgenic crops should be considered to have universal value. The premise is that there are no alternative forms of agriculture available to enable the production of sufficient food to feed the world. The proponents of agroecology challenge it, claiming that agroecology provides an alternative, and they deny the claim that it is well founded on empirical evidence. It is, therefore, a matter of both social and scientific importance that this premise and the criticisms of it be investigated rigorously and empirically, so that the benefits and disadvantages of transgenic-intensive agriculture and agroecology can be compared in a reliable way. Conducting adequate investigation about the potential contribution of agroecology requires that the cultural conditions of its practice (and, thus, of the practices and movements of small-scale farmers in the "third world") be strengthened--and this puts the interests of investigation into tension with the socio-economic interests driving the development of transgenics. General issues about relationship between ethical argument and empirical (scientific) investigation are raised throughout the article.

  1. Can Transgenic Maize Affect Soil Microbial Communities?

    NARCIS (Netherlands)

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-01-01

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical gu

  2. Transgenic plants protected from insect attack

    Science.gov (United States)

    Vaeck, Mark; Reynaerts, Arlette; Höfte, Herman; Jansens, Stefan; de Beuckeleer, Marc; Dean, Caroline; Zabeau, Marc; Montagu, Marc Van; Leemans, Jan

    1987-07-01

    The Gram-positive bacterium Bacillus thuringiensis produces proteins which are specifically toxic to a variety of insect species. Modified genes have been derived from bt2, a toxin gene cloned from one Bacillus strain. Transgenic tobacco plants expressing these genes synthesize insecticidal proteins which protect them from feeding damage by larvae of the tobacco hornworm.

  3. Retrofitting BACs with G418 resistance, luciferase, and oriP and EBNA-1 – new vectors for in vitro and in vivo delivery

    Directory of Open Access Journals (Sweden)

    Wagner Ernst

    2003-02-01

    Full Text Available Abstract Background Bacterial artificial chromosomes (BACs have been used extensively for sequencing the human and mouse genomes and are thus readily available for most genes. The large size of BACs means that they can generally carry intact genes with all the long range controlling elements that drive full levels of tissue-specific expression. For gene expression studies and gene therapy applications it is useful to be able to retrofit the BACs with selectable genes such as G418 resistance, reporter genes such as luciferase, and oriP/EBNA-1 from Epstein Barr virus which allows long term episomal maintenance in mammalian cells. Results We describe a series of retrofitting plasmids and a protocol for in vivo loxP/Cre recombination. The vector pRetroNeo carries a G418 resistance cassette, pRetroNeoLuc carries G418 resistance and a luciferase expression cassette, pRetroNeoLucOE carries G418 resistance, luciferase and an oriP/EBNA-1 cassette and pRetroNeoOE carries G418 resistance and oriP/EBNA-1. These vectors can be efficiently retrofitted onto BACs without rearrangement of the BAC clone. The luciferase cassette is expressed efficiently from the retrofitting plasmids and from retrofitted BACs after transient transfection of B16F10 cells in tissue culture and after electroporation into muscles of BALB/c mice in vivo. We also show that a BAC carrying GFP, oriP and EBNA-1 can be transfected into B16F10 cells with Lipofectamine 2000 and can be rescued intact after 5 weeks. Conclusion The pRetro vectors allow efficient retrofitting of BACs with G418 resistance, luciferase and/or oriP/EBNA-1 using in vivo expression of Cre. The luciferase reporter gene is expressed after transient transfection of retrofitted BACs into cells in tissue culture and after electroporation into mouse muscle in vivo. OriP/EBNA-1 allows stable maintenance of a 150-kb BAC without rearrangement for at least 5 weeks.

  4. The substantive equivalence of transgenic (Bt and Chi) and non-transgenic cotton based on metabolite profiles.

    Science.gov (United States)

    Modirroosta, Bentol Hoda; Tohidfar, Masoud; Saba, Jalal; Moradi, Foad

    2014-03-01

    Compositional studies comparing transgenic with non-transgenic counterpart plants are almost universally required by governmental regulatory bodies. In the present study, two T(2) transgenic cotton lines containing chitinase (Line 11/57) and Bt lines (Line 61) were compared with non-transgenic counterpart. To do this, biochemical characteristics of leaves and seeds, including amino acids, fatty acids, carbohydrates, anions, and cations contents of the studied lines were analyzed using GC/MS, high-performance liquid chromatography (HPLC), and ion chromatography (IC) analyzers, respectively. polymerase chain reaction (PCR) and Western blot analyses confirmed the presence and expression of Chi and Bt genes in the studied transgenic lines. Although, compositional analysis of leaves contents confirmed no significant differences between transgenic and non-transgenic counterpart lines, but it was shown that glucose content of chitinase lines, fructose content of transgenic lines (Bt and chitinase) and asparagine and glutamine of chitinase lines were significantly higher than the non-transgenic counterpart plants. Both the transgenic lines (Bt and chitinase) showed significant decrease in the amounts of sodium in comparison to the non-transgenic counterpart plants. The experiments on the seeds showed that histidine, isoleucine, leucine, and phenylalanine contents of all transgenic and non-transgenic lines were the same, whereas other amino acids were significantly increased in the transgenic lines. Surprisingly, it was observed that the concentrations of stearic acid, myristic acid, oleic acid, and linoleic acid in the chitinase line were significantly different than those of non-transgenic counterpart plants, but these components were the same in both Bt line and its non-transgenic counterpart. It seems that more changes observed in the seed contents than leaves is via this point that seeds are known as metabolites storage organs, so they show greater changes in the

  5. Transgenic studies on homeobox genes in nervous system development: spina bifida in Isl1 transgenic mice.

    Science.gov (United States)

    Kappen, Claudia; Yaworsky, Paul J; Muller, Yunhua L; Salbaum, J Michael

    2013-04-01

    To develop in vivo assays for homeobox gene function in neural development, we generated transgenic mice in which the expression of a homeobox gene is altered only within the nervous system, in neurons or neuronal precursor cells. Transgenic expression of Hoxc8 did not result in gross abnormalities, while a Hoxd4 transgene caused death shortly after birth. In neural progenitor cells, the motorneuron-specific homeodomain transcription factor Isl1 induced early developmental defects, including absence of anterior neural structures, profound defects in the neuroepithelium and defective neural tube closure. A fraction of Isl1 transgenic mice exhibited spina bifida. Isl1 transgene expression was also associated with decreased proliferation and increased Pbx1 expression in the ventral neural tube. Our results suggest a function for some homeobox genes in development of the nervous system, and that cell-type- and region-specific transgenic models will be useful to identify the cellular and molecular targets of homeobox transcription factors in nervous system development.

  6. Split-Cre complementation restores combination activity on transgene excision in hair roots of transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Mengling Wen

    Full Text Available The Cre/loxP system is increasingly exploited for genetic manipulation of DNA in vitro and in vivo. It was previously reported that inactive ''split-Cre'' fragments could restore Cre activity in transgenic mice when overlapping co-expression was controlled by two different promoters. In this study, we analyzed recombination activities of split-Cre proteins, and found that no recombinase activity was detected in the in vitro recombination reaction in which only the N-terminal domain (NCre of split-Cre protein was expressed, whereas recombination activity was obtained when the C-terminal (CCre or both NCre and CCre fragments were supplied. We have also determined the recombination efficiency of split-Cre proteins which were co-expressed in hair roots of transgenic tobacco. No Cre recombination event was observed in hair roots of transgenic tobacco when the NCre or CCre genes were expressed alone. In contrast, an efficient recombination event was found in transgenic hairy roots co-expressing both inactive split-Cre genes. Moreover, the restored recombination efficiency of split-Cre proteins fused with the nuclear localization sequence (NLS was higher than that of intact Cre in transgenic lines. Thus, DNA recombination mediated by split-Cre proteins provides an alternative method for spatial and temporal regulation of gene expression in transgenic plants.

  7. Molecular characterization of transgene integration by next-generation sequencing in transgenic cattle.

    Directory of Open Access Journals (Sweden)

    Ran Zhang

    Full Text Available As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species.

  8. Characterization of transgene integration pattern in F4 hGH-transgenic common carp (Cyprinus carpio L.)

    Institute of Scientific and Technical Information of China (English)

    Bo WU; Yong Hua SUN; Yan Wu WANG; Ya Ping WANG; Zuo Yan ZHU

    2005-01-01

    The integration pattern and adjacent host sequences of the inserted pMThGH-transgene in the F4 hGH-transgenic common carp were extensively studied. Here we show that each F4 transgenic fish contained about 200 copies of the pMThGH-transgene and the transgenes were integrated into the host genome generally with concatemers in a head-totail arrangement at 4-5 insertion sites. By using a method of plasmid rescue, four hundred copies of transgenes from two individuals of F4 transgenic fish, A and B, were recovered and clarified into 6 classes. All classes of recovered transgenes contained either complete or partial pMThGH sequences. The class Ⅰ, which comprised 83% and 84.5% respectively of the recovered transgene copies from fish A and B, had maintained the original configuration, indicating that most transgenes were faithfully inherited during the four generations of reproduction. The other five classes were different from the original configuration in both molecular weight and restriction map, indicating that a few transgenes had undergone mutation, rearrangement or deletion during integration and germline transmission. In the five types of aberrant transgenes, three flanking sequences of the host genome were analyzed. These sequences were common carp β-actin gene, common carp DNA sequences homologous to mouse phosphoglycerate kinase-1 and human epidermal keratin 14, respectively.

  9. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  10. Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice

    Directory of Open Access Journals (Sweden)

    Hill Colin

    2008-09-01

    Full Text Available Abstract Background Probiotics such as bifidobacteria have been shown to maintain a healthy intestinal microbial balance and help protect against infections. However, despite these benefits, bifidobacteria still remain poorly understood at the biochemical, physiological and especially the genetic level. Herein we describe, for the first time, the development of a non-invasive luciferase-based reporter system for real-time tracking of Bifidobacterium species in vivo. Results The reporter vector pLuxMC1 is based on the recently described theta-type plasmid pBC1 from B. catenatulatum 1 and the luxABCDE operon from pPL2lux 2. Derivatives of pLuxMC1, harbouring a bifidobacterial promoter (pLuxMC2 as well as a synthetically derived promoter (pLuxMC3 3 placed upstream of luxABCDE, were constructed and found to stably replicate in B. breve UCC2003. The subsequent analysis of these strains allowed us to assess the functionality of pLuxMC1 both in vitro and in vivo. Conclusion Our results demonstrate the potential of pLuxMC1 as a real-time, non-invasive reporter system for Bifidobacterium. It has also allowed us, for the first time, to track the colonisation potential and persistence of this probiotic species in real time. An interesting and significant outcome of the study is the identification of the caecum as a niche environment for B. breve UCC2003 within the mouse gastrointestinal tract (GI tract.

  11. Remote detection of human toxicants in real time using a human-optimized, bioluminescent bacterial luciferase gene cassette bioreporter

    Science.gov (United States)

    Close, Dan; Webb, James; Ripp, Steven; Patterson, Stacey; Sayler, Gary

    2012-06-01

    Traditionally, human toxicant bioavailability screening has been forced to proceed in either a high throughput fashion using prokaryotic or lower eukaryotic targets with minimal applicability to humans, or in a more expensive, lower throughput manner that uses fluorescent or bioluminescent human cells to directly provide human bioavailability data. While these efforts are often sufficient for basic scientific research, they prevent the rapid and remote identification of potentially toxic chemicals required for modern biosecurity applications. To merge the advantages of high throughput, low cost screening regimens with the direct bioavailability assessment of human cell line use, we re-engineered the bioluminescent bacterial luciferase gene cassette to function autonomously (without exogenous stimulation) within human cells. Optimized cassette expression provides for fully endogenous bioluminescent production, allowing continuous, real time monitoring of the bioavailability and toxicology of various compounds in an automated fashion. To access the functionality of this system, two sets of bioluminescent human cells were developed. The first was programed to suspend bioluminescent production upon toxicological challenge to mimic the non-specific detection of a toxicant. The second induced bioluminescence upon detection of a specific compound to demonstrate autonomous remote target identification. These cells were capable of responding to μM concentrations of the toxicant n-decanal, and allowed for continuous monitoring of cellular health throughout the treatment process. Induced bioluminescence was generated through treatment with doxycycline and was detectable upon dosage at a 100 ng/ml concentration. These results demonstrate that leveraging autonomous bioluminescence allows for low-cost, high throughput direct assessment of toxicant bioavailability.

  12. Ultrasound Backscatter Microscopy Image-Guided Intraventricular Gene Delivery at Murine Embryonic Age 9.5 and 10.5 Produces Distinct Transgene Expression Patterns at the Adult Stage

    Directory of Open Access Journals (Sweden)

    Jiwon Jang

    2013-11-01

    Full Text Available In utero injection of a retroviral vector into the embryonic telencephalon aided by ultrasound backscatter microscopy permits introduction of a gene of interest at an early stage of development. In this study, we compared the tissue distribution of gene expression in adult mice injected with retroviral vectors at different embryonic ages in utero. Following ultrasound image-guided gene delivery (UIGD into the embryonic telencephalon, adult mice were subjected to whole-body luciferase imaging and immunohistochemical analysis at 6 weeks and 1 year postinjection. Luciferase activity was observed in a wide range of tissues in animals injected at embryonic age 9.5 (E9.5, whereas animals injected at E10.5 showed brain-localized reporter gene expression. These results suggest that mouse embryonic brain creates a closed and impermeable structure around E10. Therefore, by injecting a transgene before or after E10, transgene expression can be manipulated to be local or systemic. Our results also provide information that widens the applicability of UIGD beyond neuroscience studies.

  13. Development of a novel Dengue-1 virus replicon system expressing secretory Gaussia luciferase for analysis of viral replication and discovery of antiviral drugs.

    Science.gov (United States)

    Kato, Fumihiro; Kobayashi, Takeshi; Tajima, Shigeru; Takasaki, Tomohiko; Miura, Tomoyuki; Igarashi, Tatsuhiko; Hishiki, Takayuki

    2014-01-01

    Replicon systems have been used for high-throughput screening of anti-dengue virus (anti-DENV) inhibitors and for understanding mechanisms of viral replication. In the present study, we constructed novel DENV-1 replicons encoding Gaussia luciferase that was secreted into the culture medium. Two types of constructs were generated: RNA-based and DNA-based. Each type was translated in an internal ribosome entry site (IRES)-dependent or IRES-independent manner. Among these constructs, the DNA-based replicon employing IRES-dependent translation (DGL2) produced the highest titer. Luciferase levels in the culture medium revealed that the DGL2 replicon was inhibited by ribavirin (a well-known DENV inhibitor) at levels similar to those measured for drug inhibition of multi-round DENV-1 infection. These results indicate that the DNA-based IRES-driven DENV-1 replicon may facilitate studies on viral replication and antiviral compound discovery.

  14. A Luciferase Functional Quantitative Assay for Measuring NF-ĸB Promoter Transactivation Mediated by HTLV-1 and HTLV-2 Tax Proteins.

    Science.gov (United States)

    Bergamo, Elisa; Diani, Erica; Bertazzoni, Umberto; Romanelli, Maria Grazia

    2017-01-01

    HTLV-1 and HTLV-2 viruses express Tax transactivator proteins required for viral genome transcription and capable of transforming cells in vivo and in vitro. Although Tax oncogenic potential needs to be further elucidated, it is well established that Tax proteins activate, among others, transcription factors of the NF-ĸB family, which are involved in immune and inflammatory responses, cell growth, apoptosis, stress responses and oncogenesis. Here, we describe a reporter gene assay applied for quantitative analysis of Tax-dependent NF-ĸB activation. The procedure is based on co-transfection of two individual vectors containing the cDNA for firefly and Renilla luciferase enzymes and vectors expressing Tax proteins. The luciferase expression is driven by cis-NF-ĸB promoter regulatory elements responsive to Tax transactivating factor. This assay is particularly useful to investigate Tax influence on NF-ĸB activation mediated by viral or host factors.

  15. A real time Metridia luciferase based non-invasive reporter assay of mammalian cell viability and cytotoxicity via the β-actin promoter and enhancer.

    Science.gov (United States)

    Lupold, Shawn E; Johnson, Tamara; Chowdhury, Wasim H; Rodriguez, Ronald

    2012-01-01

    Secreted reporter molecules offer a means to evaluate biological processes in real time without the need to sacrifice samples at pre-determined endpoints. Here we have adapted the secreted bioluminescent reporter gene, Metridia luciferase, for use in a real-time viability assay for mammalian cells. The coding region of the marine copepod gene has been codon optimized for expression in human cells (hMLuc) and placed under the control of the human β-actin promoter and enhancer. Metridia luciferase activity of stably transfected cell models corresponded linearly with cell number over a 4-log dynamic range, detecting as few as 40 cells. When compared to standard endpoint viability assays, which measure the mitochondrial dehydrogenase reduction of tetrazolium salts, the hMLuc viability assay had a broader linear range of detection, was applicable to large tissue culture vessels, and allowed the same sample to be repeatedly measured over several days. Additional studies confirmed that MLuc activity was inhibited by serum, but demonstrated that assay activity remained linear and was measurable in the serum of mice bearing subcutaneous hMLuc-expressing tumors. In summary, these comparative studies demonstrate the value of humanized Metridia luciferase as an inexpensive and non-invasive method for analyzing viable cell number, growth, tumor volume, and therapeutic response in real time.

  16. A real time Metridia luciferase based non-invasive reporter assay of mammalian cell viability and cytotoxicity via the β-actin promoter and enhancer.

    Directory of Open Access Journals (Sweden)

    Shawn E Lupold

    Full Text Available Secreted reporter molecules offer a means to evaluate biological processes in real time without the need to sacrifice samples at pre-determined endpoints. Here we have adapted the secreted bioluminescent reporter gene, Metridia luciferase, for use in a real-time viability assay for mammalian cells. The coding region of the marine copepod gene has been codon optimized for expression in human cells (hMLuc and placed under the control of the human β-actin promoter and enhancer. Metridia luciferase activity of stably transfected cell models corresponded linearly with cell number over a 4-log dynamic range, detecting as few as 40 cells. When compared to standard endpoint viability assays, which measure the mitochondrial dehydrogenase reduction of tetrazolium salts, the hMLuc viability assay had a broader linear range of detection, was applicable to large tissue culture vessels, and allowed the same sample to be repeatedly measured over several days. Additional studies confirmed that MLuc activity was inhibited by serum, but demonstrated that assay activity remained linear and was measurable in the serum of mice bearing subcutaneous hMLuc-expressing tumors. In summary, these comparative studies demonstrate the value of humanized Metridia luciferase as an inexpensive and non-invasive method for analyzing viable cell number, growth, tumor volume, and therapeutic response in real time.

  17. Novel application of luciferase assay for the in vitro functional assessment of KAL1 variants in three females with septo-optic dysplasia (SOD)

    Science.gov (United States)

    McCabe, Mark J.; Hu, Youli; Gregory, Louise C.; Gaston-Massuet, Carles; Alatzoglou, Kyriaki S.; Saldanha, José W.; Gualtieri, Angelica; Thankamony, Ajay; Hughes, Ieuan; Townshend, Sharron; Martinez-Barbera, Juan-Pedro; Bouloux, Pierre-Marc; Dattani, Mehul T.

    2015-01-01

    KAL1 is implicated in 5% of Kallmann syndrome cases, a disorder which genotypically overlaps with septo-optic dysplasia (SOD). To date, a reporter-based assay to assess the functional consequences of KAL1 mutations is lacking. We aimed to develop a luciferase assay for novel application to functional assessment of rare KAL1 mutations detected in a screen of 422 patients with SOD. Quantitative analysis was performed using L6-myoblasts stably expressing FGFR1, transfected with a luciferase-reporter vector containing elements of the FGF-responsive osteocalcin promoter. The two variants assayed [p.K185N, p.P291T], were detected in three females with SOD (presenting with optic nerve hypoplasia, midline and pituitary defects). Our novel assay revealed significant decreases in transcriptional activity [p.K185N: 21% (p < 0.01); p.P291T: 40% (p < 0.001)]. Our luciferase-reporter assay, developed for assessment of KAL1 mutations, determined that two variants in females with hypopituitarism/SOD are loss-of-function; demonstrating that this assay is suitable for quantitative assessment of mutations in this gene. PMID:26375424

  18. Cloning of the Orange Light-Producing Luciferase from Photinus scintillans-A New Proposal on how Bioluminescence Color is Determined.

    Science.gov (United States)

    Branchini, Bruce R; Southworth, Tara L; Fontaine, Danielle M; Murtiashaw, Martha H; McGurk, Alex; Talukder, Munya H; Qureshi, Rakhshi; Yetil, Deniz; Sundlov, Jesse A; Gulick, Andrew M

    2017-03-01

    Unlike the enchanting yellow-green flashes of light produced on warm summer evenings by Photinus pyralis, the most common firefly species in North America, the orange lights of Photinus scintillans are infrequently observed. These Photinus species, and likely all bioluminescent beetles, use the same substrates beetle luciferin, ATP and oxygen to produce light. It is the structure of the particular luciferase enzyme that is the key to determining the color of the emitted light. We report here the molecular cloning of the P. scintillans luc gene and the expression and characterization of the corresponding novel recombinant luciferase enzyme. A comparison of the amino acid sequence with that of the highly similar P. pyralis enzyme and subsequent mutagenesis studies revealed that the single conservative amino acid change tyrosine to phenylalanine at position 255 accounted for the entire emission color difference. Additional mutagenesis and crystallographic studies were performed on a H-bond network, which includes the position 255 residue and five other stringently conserved beetle luciferase residues, that is proximal to the substrate/emitter binding site. The results are interpreted in the context of a speculative proposal that this network is key to the understanding of bioluminescence color determination. © 2016 The American Society of Photobiology.

  19. Production of transgenic medaka with increased resistance to bacterial pathogens.

    Science.gov (United States)

    Sarmasik, Aliye; Warr, Gregory; Chen, Thomas T

    2002-06-01

    Cecropins, first identified in silk moth (Hyalophora cecropia), are a group of antimicrobial peptides with bactericidal activity against a broad spectrum of bacteria. In this study we investigated whether (1) this group of antimicrobial peptides could exhibit bactericidal activity toward known fish bacterial pathogens and (2) expression of cecropin transgenes in transgenic medaka (Oryzias latipas) could result in increasing resistance of the transgenic fish to infection by fish bacterial pathogens. Cecropin gene construct containing silk moth preprocecropin B, procecropin B and cecropin B, and porcine cecropin P1 driven by a cytomegalovirus (CMV) promoter were transfected into chinook salmon embryonic cells (CHSE-214) by lipofection, and the resulting permanent transformants were collected. In an "inhibition zone" assay medium isolated from each transformant exhibited strong bactericidal activity toward known fish bacterial pathogens such as Pseudomonas fluorescens, Aeromonas hydrophila, and Vibrio anguillarum. The same cecropin transgene constructs were introduced into newly fertilized medaka eggs by electroporation to produce transgenic fish. About 40% to 60% of the embryos survived from electroporation, and about 5% to 11% of the surviving fish were shown to contain cecropin transgenes by polymerase chain reaction analysis of genomic DNA samples isolated from presumptive transgenic fish. These P1 transgenic fish were used as founder stocks, and following generations of successive breeding, a total of 20 F2 families of transgenic fish were established. Expression of cecropin transgenes was detected in the F2 transgenics by reverse transcriptase polymerase chain reaction analysis. Southern blot analysis of genomic DNA isolated from different F2 fish showed that cecropin transgenes were integrated into the genomes of F2 transgenic fish. To determine whether transgenic fish carrying cecropin transgenes could exhibit resistance to infection by known fish bacterial

  20. Assessment of peanut quality and compositional characteristics among transgenic sclerotinia blight-resistant and non-transgenic susceptible cultivars.

    Science.gov (United States)

    Hu, Jiahuai; Telenko, Darcy E P; Phipps, Patrick M; Grabau, Elizabeth A

    2014-08-06

    This study presents the results of a comparison that includes an analysis of variance and a canonical discriminant analysis to determine compositional equivalence and similarity between transgenic, sclerotinia blight-resistant and non-transgenic, susceptible cultivars of peanut in 3 years of field trials. Three Virginia-type cultivars (NC 7, Wilson, and Perry) and their corresponding transgenic lines (N70, W73, and P39) with a barley oxalate oxidase gene were analyzed for differences in key mineral nutrients, fatty acid components, hay constituents, and grade characteristics. Results from both analyses demonstrated that transgenic lines were compositionally similar to their non-transgenic parent cultivar in all factors as well as market-grade characteristics and nutritional value. Transgenic lines expressing oxalate oxidase for resistance to sclerotinia blight were substantially equivalent to their non-transgenic parent cultivar in quality and compositional characteristics.

  1. Review and prospect of transgenic rice research

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao; LIN YongJun; ZHANG QiFa

    2009-01-01

    Rice is one of the most important crops as the staple food for more than half of the world's population.Rice improvement has achieved remarkable success in the past half-century,with the yield doubled in most parts of the world and even tripled in certain regions,which has contributed greatly to food security globally.Rapid population growth and economic development pose a constantly increased food requirement.However,rice yield has been hovering in the past decade,which is mainly caused by the absence of novel breeding technologies,reduction of genetic diversity of rice cultivars,and serious yield loss due to increasingly severe occurrences of insects,diseases,and abiotic stresses.To address these challenges,Chinese scientists proposed a novel rice breeding goal of developing Green Super Rice to improve rice varieties and realize the sustainable development of agriculture,by focusing on the following 5 classes of traits:insect and disease resistance,drought-tolerance,nutrient-use efficiency,quality and yield potential.As a modern breeding approach,transgenic strategy will play an important role in realizing the goal of Green Super Rice.Presently,many transgenic studies of rice have been conducted,and most of target traits are consistent with the goal of Green Super Rice.In this paper,we firstly review technical advances of rice transformation,and then outline the main progress in transgenic rice research with respect to the most important traits:insect and disease-resistance,drought-tolerance,nutrient-use efficiency,quality,yield potential and herbicide-tolerance.The prospects of developing transgenic rice are also discussed.

  2. Transgenic nonhuman primates for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Chan Anthony WS

    2004-06-01

    Full Text Available Abstract Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD, Parkinson's disease (PD and Huntington's disease (HD have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which

  3. Transgenic oil palm: production and projection.

    Science.gov (United States)

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.

  4. Transgenic approaches to western corn rootworm control.

    Science.gov (United States)

    Narva, Kenneth E; Siegfried, Blair D; Storer, Nicholas P

    2013-01-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is a significant corn pest throughout the United States corn belt. Rootworm larvae feed on corn roots causing yield losses and control expenditures that are estimated to exceed US$1 billion annually. Traditional management practices to control rootworms such as chemical insecticides or crop rotation have suffered reduced effectiveness due to the development of physiological and behavioral resistance. Transgenic maize expressing insecticidal proteins are very successful in protecting against rootworm damage and preserving corn yield potential. However, the high rate of grower adoption and early reliance on hybrids expressing a single mode of action and low-dose traits threatens the durability of commercialized transgenic rootworm technology for rootworm control. A summary of current transgenic approaches for rootworm control and the corresponding insect resistance management practices is included. An overview of potential new modes of action based on insecticidal proteins, and especially RNAi targeting mRNA coding for essential insect proteins is provided.

  5. Studies of an expanded trinucleotide repeat in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, P.; Wang, S.; Merry, D. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1994-09-01

    Spinal and bulbar muscular atrophy (SBMA) is a progressive motor neuron disease caused by expansion of a trinucleotide repeat in the androgen receptor gene (AR{sup exp}). AR{sup exp} repeats expand further or contract in approximately 25% of transmissions. Analogous {open_quotes}dynamic mutations{close_quotes} have been reported in other expanded trinucleotide repeat disorders. We have been developing a mouse model of this disease using a transgenic approach. Expression of the SBMA AR was documented in transgenic mice with an inducible promoter. No phenotypic effects of transgene expression were observed. We have extended our previous results on stability of the expanded trinucleotide repeat in transgenic mice in two lines carrying AR{sup exp}. Tail DNA was amplified by PCR using primers spanning the repeat on 60 AR{sup exp} transgenic mice from four different transgenic lines. Migration of the PCR product through an acrylamide gel showed no change of the 45 CAG repeat length in any progeny. Similarly, PCR products from 23 normal repeat transgenics showed no change from the repeat length of the original construct. Unlike the disease allele in humans, the expanded repeat AR cDNA in transgenic mice showed no change in repeat length with transmission. The relative stability of CAG repeats seen in the transgenic mice may indicate either differences in the fidelity of replicative enzymes, or differences in error identification and repair between mice and humans. Integration site or structural properties of the transgene itself might also play a role.

  6. In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research

    Directory of Open Access Journals (Sweden)

    Shaw Peter

    2006-11-01

    Full Text Available Abstract Genetic engineering of commercially important crops has become routine in many laboratories. However, the inability to predict where a transgene will integrate and to efficiently select plants with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in situ hybridization (FISH is a powerful technique that can be used to visualize transgene integration sites and provide a better understanding of transgene behavior. Studies using FISH to characterize transgene integration have focused primarily on metaphase chromosomes, because the number and position of integration sites on the chromosomes are more easily determined at this stage. However gene (and transgene expression occurs mainly during interphase. In order to accurately predict the activity of a transgene, it is critical to understand its location and dynamics in the three-dimensional interphase nucleus. We and others have developed in situ methods to visualize transgenes (including single copy genes and their transcripts during interphase from different tissues and plant species. These techniques reduce the time necessary for characterization of transgene integration by eliminating the need for time-consuming segregation analysis, and extend characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of transgene activity. Furthermore, this approach is useful for studying nuclear organization and the dynamics of genes and chromatin.

  7. Transgenes in F4 pMThGH- transgenic common carp (Cy- prinus carpio L.) are highly polymorphic

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To gain information on the integration pattern of pMThGH-tansgene, 50 transgenes were recovered from F4 generation of pMThGH transgenic common carp (Cyprinus carpio L.) and 33 recovered genes were analyzed. The restriction maps of these recovered genes were constructed by digestion with five kinds of enzymes. These transgenes can be classified into 4 types according to their restriction maps. Only one type of transgenes maintains its original molecular form, whereas the other three types are very different from the original one and vary each other on both molecular weight and restriction maps. This implies that the sequences of most transgenes have been deleted and/or rearranged during integration and inheritance. The results of PCR am-plification and Southern blot hybridization indicate that MThGH in TypeI transgene keeps intact but most of its se-quence has been deleted in other three types. All these results suggest that transgenes in F4 generation of transgenic carp are highly polymorphic. Two DNA fragments concerning integration site of transgenes were cloned from recovered transgenes, and found to be homologous to the 5′UTR of β-actin gene of common carp and mouse mRNA for receptor tyrosine kinase (RTK), respectively.

  8. β3-Naphthoflavone Can Inhibit Luciferase Activity%β-萘黄酮能抑制荧光素酶活性

    Institute of Scientific and Technical Information of China (English)

    王胜; 陈云芳; 付欣; 洪伟; 李冰

    2011-01-01

    Objective: To investigate the effect of p-Naphthoflavone on the firefly luciferase activity. Methods: A549, HepG2, HeLa, MCF-7, Bel-7402, 16HBE cells were transfected with GCLC5'-upstream regulatory sequence driven PGL3-enhancer-Luciferase reporter vector (PL45)and treated with β-NF. The dual-luciferase reporter assay system was used to analyze the effect of β-Naphthoflavone on the expression of GCLC gene. Western blot was used to detect the change of protein level. AS49 and HepG2 cells were transfected with the eukaryotic expression vector pRC/CMV2- luc+ and treated with β-NF. The dual-luciferase reporter assay system was used to analyze the effect of β-Naphthoflavone on the firefly luciferase activity. AS49 and HepG2 cells were transfected with the PL45 vector, cells were lysed, then treated with β-NF for 25 min to analyze the effect of β-NF on the firefly luciferase activity. Results: In all the cells, the relative luciferase activity of β-NF treatment group was significantly lower compared with that in DMSO control group (P<0.01). The result of western bot showed that the expression of GCLC were higher inβ-NF treatment group than that in DMSO control group. In A549 and HepG2 cells, after transfected with pRC/CMV2- luc+ vector, the relative luciferase activity of β-NF treatment group was lower than that in DMSO control group (P<0.01 ).A549 and HepG2 cells were transfected with PL45 vector, then lysed, and the relative luciferase activity in β-NF treatment group was lower than that in DMSO control group (P<0.01).Conclusion: β-Naphthoflavone directly inhibits Firefly Luciferase activity.%目的:研究β-蔡黄酮对荧光素酶活性的影响.方法:利用人GCLC基因调控序列驱动的GCLC-PGL3-enhancer-Luciferase报道载体( PL45)转染人肺腺癌细胞A549,人肝癌细胞HepG2,人子宫颈癌细胞HeLa,人乳腺癌细胞MCF-7,人肝癌细胞Bel-7402,人支气管上皮细胞16HBE,β-萘黄酮刺激后,双荧光素酶报告基因检测系统分

  9. Transgenic plants as vital components of integrated pest management.

    Science.gov (United States)

    Kos, Martine; van Loon, Joop J A; Dicke, Marcel; Vet, Louise E M

    2009-11-01

    Although integrated pest management (IPM) strategies have been developed worldwide, further improvement of IPM effectiveness is required. The use of transgenic technology to create insect-resistant plants can offer a solution to the limited availability of highly insect-resistant cultivars. Commercially available insect-resistant transgenic crops show clear benefits for agriculture and there are many exciting new developments such as transgenic plants that enhance biological control. Effective evaluation tools are needed to ascertain that transgenic plants do not result in undesired non-target effects. If these conditions are met, there will be ample opportunities for transgenic plants to become key components of environmentally benign and durable pest management systems. Here we discuss the potential and challenges for incorporating transgenic plants in IPM.

  10. Welfare assessment in transgenic pigs expressing green fluorescent protein (GFP)

    DEFF Research Database (Denmark)

    Huber, Reinhard C.; Remuge, Liliana; Carlisle, Ailsa

    2012-01-01

    Since large animal transgenesis has been successfully attempted for the first time about 25 years ago, the technology has been applied in various lines of transgenic pigs. Nevertheless one of the concerns with the technology—animal welfare—has not been approached through systematic assessment...... and statements regarding the welfare of transgenic pigs have been based on anecdotal observations during early stages of transgenic programs. The main aim of the present study was therefore to perform an extensive welfare assessment comparing heterozygous transgenic animals expressing GFP with wildtype animals...... months. The absence of significant differences between GFP and wildtype animals in the parameters observed suggests that the transgenic animals in question are unlikely to suffer from deleterious effects of transgene expression on their welfare and thus support existing anecdotal observations of pigs...

  11. Transgenic Expression of the Recombinant Phytase in Rice (Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    LIU Qiao-quan; LI Qian-feng; JIANG Li; ZHANG Da-jiang; WANG Hong-mei; GU Ming-hong; YAO Quan-hong

    2006-01-01

    In most of the cereal crop, phytic acid is the main storage form of phosphorus, which can decrease the bioavailability of phosphate. Transgenic expression of phytase is regarded as an efficient way to release phosphate from phytate in transgenic plants.In this study, a plant expression vector, containing the recombinant phytase gene driven by the maize ubiquitin (Ubi) promoter was constructed and introduced into an elite rice variety via Agrobacterium-mediated transformation. During the experiment, a total of 15 independent transgenic rice lines were regenerated. The results of PCR and Southern blot indicated that the target gene was integrated into the genome of transgenic rice plants. Moreover, the RT-PCR analysis of total RNAs extracted from the immature seeds of several transgenic lines showed that the recombinant phytase gene could be normally expressed. The inorganic phosphorus content, both in the mature seeds and the leaf was significantly higher in the transgenic plants than in the untransformed wild type.

  12. [Effect of transgenic plants on biodiversity of agroecosystem].

    Science.gov (United States)

    Nie, Chengrong; Wang, Jianwu; Luo, Shiming

    2003-08-01

    The effect of transgenic plants on the biodiversity of agroecosystem is an important environmental issue. There are many researches in this field at home and abroad recently. This paper reviewed the advances of the researches based on three levels of biodiversity as genetic diversity, species diversity and ecosystem diversity. They included following aspects: the effect of insect-resistant transgenic crops on target pest; the effect of herbicide-resistant transgenic crops on crops and wild weedy relatives; the effect of virus-resistant transgenic crops on virus; and the effect of transgenic crops on non-target organisms. This paper also discussed the effect of transgenic crops on soil ecosystem and crop genetic diversity. Their potential risks included uncontrolled flows of genes to wild relatives; development of herbicide, insect, and virus resistance in wild relatives; reduced crop genetic diversity; and adverse effects on organisms that were not pests, such as beneficial insects.

  13. Heritable retroviral transgenes are highly expressed in chickens.

    OpenAIRE

    Briskin, M J; Hsu, R Y; Boggs, T; Schultz, J. A.; Rishell, W; Bosselman, R A

    1991-01-01

    This report describes expression of heritable reticuloendotheliosis virus (REV) vector ME111 in 20 independent lines of transgenic chickens. The results are strikingly different from studies of Moloney virus in transgenic mice, where restricted expression of inherited proviruses has led to their use primarily as insertional mutagens rather than general agents for gene transfer. In contrast, the REV ME111 provirus is actively transcribed in a variety of tissues from transgenic chickens, is exp...

  14. [Effects of transgenic crops on soil microorganisms: a review].

    Science.gov (United States)

    Zhang, Yan-Jun; Xie, Ming; Peng, De-Liang

    2013-09-01

    The worldwide cultivation of transgenic crops not only provides tremendous economic benefits, but also induces the concern about the potential risks of transgenic crops on soil ecosystem in which microorganisms are involved. The potential effects of transgenic crops on soil microorganisms include the direct effects of the transgenic proteins on non-target soil microorganisms, and the indirect effects of the unintentional changes in the chemical compositions of root exudates induced by the introduction of the exogenous transgenic proteins. Most of the studies on transgenic crops suggested that transgenic crops could affect the quantity and structure of soil microbial populations. However, the perceivable effects on the soil microorganisms are inconsistent, with some in significant and others in non-significant, or some with persistent and others with non-persistent. This paper summarized the effects of different transgenic crops on soil microorganisms, and discussed the factors affecting the assessment reliability, including the species of transgenic crops and the experimental technologies and principles. Some issues needed to be paid special attention to in the future studies were put forward.

  15. Antifungal activity of a virally encoded gene in transgenic wheat.

    Science.gov (United States)

    Clausen, M; Kräuter, R; Schachermayr, G; Potrykus, I; Sautter, C

    2000-04-01

    The cDNA encoding the antifungal protein KP4 from Ustilago maydis-infecting virus was inserted behind the ubiquitin promoter of maize and genetically transferred to wheat varieties particularly susceptible to stinking smut (Tilletia tritici) disease. The transgene was integrated and inherited over several generations. Of seven transgenic lines, three showed antifungal activity against U. maydis. The antifungal activity correlated with the presence of the KP4 transgene. KP4-transgenic, soil-grown wheat plants exhibit increased endogenous resistance against stinking smut.

  16. Generation of bovine transgenics using somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Stice Steven L

    2003-11-01

    Full Text Available Abstract The ability to produce transgenic animals through the introduction of exogenous DNA has existed for many years. However, past methods available to generate transgenic animals, such as pronuclear microinjection or the use of embryonic stem cells, have either been inefficient or not available in all animals, bovine included. More recently somatic cell nuclear transfer has provided a method to create transgenic animals that overcomes many deficiencies present in other methods. This review summarizes the benefits of using somatic cell nuclear transfer to create bovine transgenics as well as the possible opportunities this method creates for the future.

  17. Transgenic chickens as bioreactors for protein-based drugs.

    Science.gov (United States)

    Lillico, Simon G; McGrew, Michael J; Sherman, Adrian; Sang, Helen M

    2005-02-01

    The potential of using transgenic animals for the synthesis of therapeutic proteins was suggested over twenty years ago. Considerable progress has been made in developing methods for the production of transgenic animals and specifically in the expression of therapeutic proteins in the mammary glands of cows, sheep and goats. Development of transgenic hens for protein production in eggs has lagged behind these systems. The positive features associated with the use of the chicken in terms of cost, speed of development of a production flock and potentially appropriate glycosylation of target proteins have led to significant advances in transgenic chicken models in the past few years.

  18. Transgene detection by digital droplet PCR.

    Directory of Open Access Journals (Sweden)

    Dirk A Moser

    Full Text Available Somatic gene therapy is a promising tool for the treatment of severe diseases. Because of its abuse potential for performance enhancement in sports, the World Anti-Doping Agency (WADA included the term 'gene doping' in the official list of banned substances and methods in 2004. Several nested PCR or qPCR-based strategies have been proposed that aim at detecting long-term presence of transgene in blood, but these strategies are hampered by technical limitations. We developed a digital droplet PCR (ddPCR protocol for Insulin-Like Growth Factor 1 (IGF1 detection and demonstrated its applicability monitoring 6 mice injected into skeletal muscle with AAV9-IGF1 elements and 2 controls over a 33-day period. A duplex ddPCR protocol for simultaneous detection of Insulin-Like Growth Factor 1 (IGF1 and Erythropoietin (EPO transgenic elements was created. A new DNA extraction procedure with target-orientated usage of restriction enzymes including on-column DNA-digestion was established. In vivo data revealed that IGF1 transgenic elements could be reliably detected for a 33-day period in DNA extracted from whole blood. In vitro data indicated feasibility of IGF1 and EPO detection by duplex ddPCR with high reliability and sensitivity. On-column DNA-digestion allowed for significantly improved target detection in downstream PCR-based approaches. As ddPCR provides absolute quantification, it ensures excellent day-to-day reproducibility. Therefore, we expect this technique to be used in diagnosing and monitoring of viral and bacterial infection, in detecting mutated DNA sequences as well as profiling for the presence of foreign genetic material in elite athletes in the future.

  19. First molecular identification of the transgene red fluorescent protein (RFP) in transgenic ornamental zebrafish (Danio rerio) introduced in Peru

    OpenAIRE

    Carlos Scotto; Fernando Serna

    2013-01-01

    In this paper the transgenic fluorescent red, orange and pink zebra fish (Danio rerio), found in local aquariums in Peru, were identified using the PCR technique to amplify the transgene RFP sea anemone belonging to Discosoma spp. The gene expression of the red fluorescent protein (RFP) transgene was found to determine different gradients-of-bioluminescence (shades in color) in each GMO fish analyzed. We performed sequence analysis of the two variants of the RFP along with six variants of the...

  20. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    Science.gov (United States)

    Hu, Jianjun; Zhang, Jin; Chen, Xingling; Lv, Jinhui; Jia, Huixia; Zhao, Shutang; Lu, Mengzhu

    2017-01-01

    To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar) and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0%) compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture) after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  1. Comparative Proteomics of Leaves from Phytase-Transgenic Maize and Its Non-transgenic Isogenic Variety

    Science.gov (United States)

    Tan, Yanhua; Yi, Xiaoping; Wang, Limin; Peng, Cunzhi; Sun, Yong; Wang, Dan; Zhang, Jiaming; Guo, Anping; Wang, Xuchu

    2016-01-01

    To investigate unintended effects in genetically modified crops (GMCs), a comparative proteomic analysis between the leaves of the phytase-transgenic maize and the non-transgenic plants was performed using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed proteins (DEPs) were successfully identified, which represents 44 unique proteins. Functional classification of the identified proteins showed that these DEPs were predominantly involved in carbohydrate transport and metabolism category, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Among them, 15 proteins were found to show protein-protein interactions with each other, and these proteins were mainly participated in glycolysis and carbon fixation. Comparison of the changes in the protein and tanscript levels of the identified proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially different between the leaves of the phytase-transgenic maize and the non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences between the leaf proteome might be attributed to both genetic modification and hybrid influence. PMID:27582747

  2. Comparative Proteomics of Leaves from Phytase-transgenic Maize and the Non-transgenic Isogenic Variety

    Directory of Open Access Journals (Sweden)

    Yanhua Tan

    2016-08-01

    Full Text Available To investigate unintended effects in genetically modified crops (GMCs, a comparative proteomics analysis between the leaves of the phytase-transgenic maize and those of non-transgenic plants was performed by using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed protein spots (DEPs were successfully identified, which represented 44 unique proteins. Functional classification of the identified unique proteins showed that these proteins were predominantly involved in carbohydrate transport and metabolism, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Comparison of the changes in the protein and gene transcript levels of the identified unique proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially altered between the leaves of phytase-transgenic maize and its non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences of proteome between the two kinds of maize leaves might be attributed to both genetic modification and hybrid influence.

  3. A transgenic tri-modality reporter mouse.

    Directory of Open Access Journals (Sweden)

    Xinrui Yan

    Full Text Available Transgenic mouse with a stably integrated reporter gene(s can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk driven by a constitutive chicken β-actin promoter. This "Tri-Modality Reporter Mouse" system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2, fluorescent (tdTomato, and positron emission tomography (PET (ttk modalities. Transgenic colonies with different levels of tri-fusion reporter gene expression showed a linear correlation between all three-reporter proteins (R(2=0.89 for TdTomato vs Fluc, R(2=0.94 for Fluc vs TTK, R(2=0.89 for TdTomato vs TTK in vitro from tissue lysates and in vivo by optical and PET imaging. Mesenchymal stem cells (MSCs isolated from this transgenics showed high level of reporter gene expression, which linearly correlated with the cell numbers (R(2=0.99 for bioluminescence imaging (BLI. Both BLI (R(2=0.93 and micro-PET (R(2=0.94 imaging of the subcutaneous implants of Tri-Modality Reporter Mouse derived MSCs in nude mice showed linear correlation with the cell numbers and across different imaging modalities (R(2=0.97. Serial imaging of MSCs transplanted to mice with acute myocardial infarction (MI by intramyocardial injection exhibited significantly higher signals in MI heart at days 2, 3, 4, and 7 (p<0.01. MSCs transplanted to the ischemic hindlimb of nude mice showed significantly higher BLI and PET signals in the first 2 weeks that dropped by 4(th week due to poor cell survival. However, laser Doppler perfusion imaging revealed that blood circulation in the ischemic limb was significantly improved in the MSCs transplantation group compared with the control group. In summary, this mouse can be used as a source of donor cells and organs in various research areas such as stem cell

  4. Gene therapy: X-SCID transgene leukaemogenicity.

    Science.gov (United States)

    Thrasher, Adrian J; Gaspar, H Bobby; Baum, Christopher; Modlich, Ute; Schambach, Axel; Candotti, Fabio; Otsu, Makoto; Sorrentino, Brian; Scobie, Linda; Cameron, Ewan; Blyth, Karen; Neil, Jim; Abina, Salima Hacein-Bey; Cavazzana-Calvo, Marina; Fischer, Alain

    2006-09-21

    Gene therapy has been remarkably effective for the immunological reconstitution of patients with severe combined immune deficiency, but the occurrence of leukaemia in a few patients has stimulated debate about the safety of the procedure and the mechanisms of leukaemogenesis. Woods et al. forced high expression of the corrective therapeutic gene IL2RG, which encodes the gamma-chain of the interleukin-2 receptor, in a mouse model of the disease and found that tumours appeared in a proportion of cases. Here we show that transgenic IL2RG does not necessarily have potent intrinsic oncogenic properties, and argue that the interpretation of this observation with respect to human trials is overstated.

  5. Mosquito transgenic technologies to reduce Plasmodium transmission.

    Science.gov (United States)

    Fuchs, Silke; Nolan, Tony; Crisanti, Andrea

    2013-01-01

    The ability to introduce genetic constructs of choice into the genome of Anopheles mosquitoes provides a valuable tool to study the molecular interactions between the Plasmodium parasite and its insect host. In the long term, this technology could potentially offer new ways to control vector-borne diseases through the suppression of target mosquito populations or through the introgression of traits that preclude pathogen transmission. Here, we describe in detail protocols for the generation of transgenic Anopheles gambiae mosquitoes based on germ-line transformation using either modified transposable elements or the site-specific PhiC31 recombinase.

  6. A Transgenic Tri-Modality Reporter Mouse

    Science.gov (United States)

    Yan, Xinrui; Ray, Pritha; Paulmurugan, Ramasamy; Tong, Ricky; Gong, Yongquan; Sathirachinda, Ataya; Wu, Joseph C.; Gambhir, Sanjiv S.

    2013-01-01

    Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This “Tri-Modality Reporter Mouse” system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent (tdTomato), and positron emission tomography (PET) (ttk) modalities. Transgenic colonies with different levels of tri-fusion reporter gene expression showed a linear correlation between all three-reporter proteins (R2=0.89 for TdTomato vs Fluc, R2=0.94 for Fluc vs TTK, R2=0.89 for TdTomato vs TTK) in vitro from tissue lysates and in vivo by optical and PET imaging. Mesenchymal stem cells (MSCs) isolated from this transgenics showed high level of reporter gene expression, which linearly correlated with the cell numbers (R2=0.99 for bioluminescence imaging (BLI)). Both BLI (R2=0.93) and micro-PET (R2=0.94) imaging of the subcutaneous implants of Tri-Modality Reporter Mouse derived MSCs in nude mice showed linear correlation with the cell numbers and across different imaging modalities (R2=0.97). Serial imaging of MSCs transplanted to mice with acute myocardial infarction (MI) by intramyocardial injection exhibited significantly higher signals in MI heart at days 2, 3, 4, and 7 (p<0.01). MSCs transplanted to the ischemic hindlimb of nude mice showed significantly higher BLI and PET signals in the first 2 weeks that dropped by 4th week due to poor cell survival. However, laser Doppler perfusion imaging revealed that blood circulation in the ischemic limb was significantly improved in the MSCs transplantation group compared with the control group. In summary, this mouse can be used as a source of donor cells and organs in various research areas such as stem cell research

  7. Characterization of a novel type of HIV-1 particle assembly inhibitor using a quantitative luciferase-Vpr packaging-based assay.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gonzalez

    Full Text Available The HIV-1 auxiliary protein Vpr and Vpr-fusion proteins can be copackaged with Gag precursor (Pr55Gag into virions or membrane-enveloped virus-like particles (VLP. Taking advantage of this property, we developed a simple and sensitive method to evaluate potential inhibitors of HIV-1 assembly in a living cell system. Two proteins were coexpressed in recombinant baculovirus-infected Sf9 cells, Pr55Gag, which formed the VLP backbone, and luciferase fused to the N-terminus of Vpr (LucVpr. VLP-encapsidated LucVpr retained the enzymatic activity of free luciferase. The levels of luciferase activity present in the pelletable fraction recovered from the culture medium correlated with the amounts of extracellular VLP released by Sf9 cells assayed by conventional immunological methods. Our luciferase-based assay was then applied to the characterization of betulinic acid (BA derivatives that differed from the leader compound PA-457 (or DSB by their substituant on carbon-28. The beta-alanine-conjugated and lysine-conjugated DSB could not be evaluated for their antiviral potentials due to their high cytotoxicity, whereas two other compounds with a lesser cytotoxicity, glycine-conjugated and ε-NH-Boc-lysine-conjugated DSB, exerted a dose-dependent negative effect on VLP assembly and budding. A fifth compound with a low cytotoxicity, EP-39 (ethylene diamine-conjugated DSB, showed a novel type of antiviral effect. EP-39 provoked an aberrant assembly of VLP, resulting in nonenveloped, morula-like particles of 100-nm in diameter. Each morula was composed of nanoparticle subunits of 20-nm in diameter, which possibly mimicked transient intermediates of the HIV-1 Gag assembly process. Chemical cross-linking in situ suggested that EP-39 favored the formation or/and persistence of Pr55Gag trimers over other oligomeric species. EP-39 showed a novel type of negative effect on HIV-1 assembly, targeting the Pr55Gag oligomerisation. The biological effect of EP-39

  8. Position-independent expression of transgenes in zebrafish.

    Science.gov (United States)

    Caldovic, L; Agalliu, D; Hackett, P B

    1999-10-01

    The variability in expression patterns of transgenes, caused by the influence of neighboring chromatin, is called 'position effect'. Border elements are DNA sequences, which have the ability to alleviate position effects. The abilities of two types of border elements, scs/scs' from the D. melanogaster 87A7 heat shock locus and the A-element from the chicken lysozyme gene, to protect transgenes from position effects were quantified in developing zebrafish embryos. The transgenic construct used was FV3CAT, which consists of the carp beta-actin transcriptional regulatory region, the chloramphenicol acetyltransferase (CAT) gene and the 3'-untranslated region from the Chinook salmon growth hormone gene. FV3CAT constructs flanked by either scs/scs'-elements or A-elements were introduced into zebrafish chromosomes and the spatial and temporal expression patterns of the transgenes were quantified in multiple generations of transgenic zebrafish. Levels of transgene expression were uniform in the pre-differentiated and fully differentiated populations of cells present during embryonic development. Levels of transgene expression were proportional to the numbers of integrated transgenes. Expression of transgenes per cell varied less than two-fold in different transgenic lines. Both types of border elements were able to prevent the influences of neighboring chromatin on transgene expression through three generations of fish. The results are consistent with the ability of border elements to function with equal efficiencies in the many cell types found in vertebrates. Thus, inclusion of border elements in genetic constructs can provide reliable and reproducible levels of gene expression in multiple lines of fish.

  9. Adventitious presence of transgenic events in the maize supply chain in Peru: A case study

    NARCIS (Netherlands)

    Santa-Maria, M.C.; Lajo-Morgan, G.; Guardia, L.

    2014-01-01

    Cultivation and trade of transgenic or genetically modified organisms (GMO) and commodities has become widespread worldwide. In particular, production of transgenic crops has seen an accelerated growth along with a complex regulatory process. Current Peruvian legislation prohibits import of transgen

  10. Investigations into the hypothesis of transgenic cannabis.

    Science.gov (United States)

    Cascini, Fidelia

    2012-05-01

    The unusual concentration of cannabinoids recently found in marijuana samples submitted to the forensic laboratory for chemical analysis prompted an investigation into whether genetic modifications have been made to the DNA of Cannabis sativa L. to increase its potency. Traditional methods for the detection of genetically modified organisms (GMO) were used to analyze herbal cannabis preparations. Our analyses support the hypothesis that marijuana samples submitted to forensic laboratories and characterized by an abnormal level of Δ(9)-THC are the product of breeding selection rather than of transgenic modifications. Further, this research has shown a risk of false positive results associated with the poor quality of the seized samples and probably due to the contamination by other transgenic vegetable products. On the other hand, based on these data, a conclusive distinction between the hypothesis of GMO plant contamination and the other of genetic modification of cannabis cannot be made requiring further studies on comparative chemical and genetic analyses to find out an explanation for the recently detected increased potency of cannabis.

  11. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  12. Transgenic Mice for cGMP Imaging

    Science.gov (United States)

    Thunemann, Martin; Wen, Lai; Hillenbrand, Matthias; Vachaviolos, Angelos; Feil, Susanne; Ott, Thomas; Han, Xiaoxing; Fukumura, Dai; Jain, Rakesh K.; Russwurm, Michael; de Wit, Cor; Feil, Robert

    2014-01-01

    Rationale Cyclic GMP (cGMP) is an important intracellular signaling molecule in the cardiovascular system, but its spatiotemporal dynamics in vivo is largely unknown. Objective To generate and characterize transgenic mice expressing the fluorescence resonance energy transfer–based ratiometric cGMP sensor, cGMP indicator with an EC50 of 500 nmol/L (cGi500), in cardiovascular tissues. Methods and Results Mouse lines with smooth muscle–specific or ubiquitous expression of cGi500 were generated by random transgenesis using an SM22α promoter fragment or by targeted integration of a Cre recombinase–activatable expression cassette driven by the cytomegalovirus early enhancer/chicken β-actin/β-globin promoter into the Rosa26 locus, respectively. Primary smooth muscle cells isolated from aorta, bladder, and colon of cGi500 mice showed strong sensor fluorescence. Basal cGMP concentrations were 3 µmol/L could also be monitored in blood vessels of the isolated retina and in the cremaster microcirculation of anesthetized mice. Moreover, with the use of a dorsal skinfold chamber model and multiphoton fluorescence resonance energy transfer microscopy, nitric oxide–stimulated vascular cGMP signals associated with vasodilation were detected in vivo in an acutely untouched preparation. Conclusions These cGi500 transgenic mice permit the visualization of cardiovascular cGMP signals in live cells, tissues, and mice under normal and pathological conditions or during pharmacotherapy with cGMP-elevating drugs. PMID:23801067

  13. Modeling Alzheimer's disease in transgenic rats.

    Science.gov (United States)

    Do Carmo, Sonia; Cuello, A Claudio

    2013-10-25

    Alzheimer's disease (AD) is the most common form of dementia. At the diagnostic stage, the AD brain is characterized by the accumulation of extracellular amyloid plaques, intracellular neurofibrillary tangles and neuronal loss. Despite the large variety of therapeutic approaches, this condition remains incurable, since at the time of clinical diagnosis, the brain has already suffered irreversible and extensive damage. In recent years, it has become evident that AD starts decades prior to its clinical presentation. In this regard, transgenic animal models can shed much light on the mechanisms underlying this "pre-clinical" stage, enabling the identification and validation of new therapeutic targets. This paper summarizes the formidable efforts to create models mimicking the various aspects of AD pathology in the rat. Transgenic rat models offer distinctive advantages over mice. Rats are physiologically, genetically and morphologically closer to humans. More importantly, the rat has a well-characterized, rich behavioral display. Consequently, rat models of AD should allow a more sophisticated and accurate assessment of the impact of pathology and novel therapeutics on cognitive outcomes.

  14. Single-copy insertion of transgenes in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Frøkjaer-Jensen, Christian; Davis, M Wayne; Hopkins, Christopher E;

    2008-01-01

    At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have...

  15. Public reactions and scientific responses to transgenic crops.

    Science.gov (United States)

    Dale, P J

    1999-04-01

    There is currently intense debate in parts of Europe about the commercial production of transgenic food crops. Information from the press and lobbying groups has not encouraged an informed and balanced consideration of the issues. In marked contrast, there is widespread acceptance of transgenic food crops in North America.

  16. Development and application of transgenic technologies in cassava

    NARCIS (Netherlands)

    Taylor, N.; Chavarriaga, P.; Raemakers, C.J.J.M.; Sititunga, D.; Zhang, P.

    2004-01-01

    The capacity to integrate transgenes into the tropical root crop cassava (Manihot esculenta Crantz) is now established and being utilized to generate plants expressing traits of agronomic interest. The tissue culture and gene transfer systems currently employed to produce these transgenic cassava

  17. Principles and application of transgenic technology in marine organisms

    Science.gov (United States)

    Marine organisms into which a foreign gene or noncoding DNA fragment is artificially introduced and stably integrated in their genomes are termed transgenic marine organisms. Since the first report in 1985, a wide range of transgenic fish and marine bivalve mollusks have been produced by microinjec...

  18. Overview on the investigations of transgenic plums in Romania

    Science.gov (United States)

    Transgenic plums of Prunus domestica L. transformed with the Plum pox virus coat protein gene (PPV-CP) were the subjects of three experiments undertaken in Romania. In the first experiment, PPV-CP transgenic clones C2, C3, C4, C5, C6, PT3 and PT5 were evaluated for Sharka resistance under high natu...

  19. Overview of the investigation of transgenic plums in Romania

    Science.gov (United States)

    Transgenic plums of Prunus domestica L. transformed with the Plum pox virus coat protein gene (PPV-CP) were the subjects of three experiments undertaken in Romania. In the first experiment, PPV-CP transgenic clones C2, C3, C4, C5, C6 and PT3 were evaluated for Sharka resistance under high natural i...

  20. Production of transgenic calves by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    GONG Guochun; WAN Rong; HUANG Yinghua; LI Ning; DAI Yunping; FAN Baoliang; ZHU Huabing; WANG Lili; WANG Haiping; TANG Bo; LIU Ying; LI Rong

    2004-01-01

    Bovine fetal oviduct epithelial cells were transfected with constructed double marker selective vector (pCE-EGFP-IRES-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation, and a transgenic cell line was obtained. Somatic cell nuclear transfer (SCNT) was carried out using the transgenic cells as nuclei donor. A total of 424 SCNT embryos were reconstructed and 208 (49.1%) of them developed to blastocyst stage. 17 blastocysts on D 7 after reconstruction were transferred to 17 surrogate calves, and 5 (29.4%) recipients were found to be pregnant. Three of them maintained to term and delivered three cloned calves. PCR and Southern blot analysis confirmed the integration of transgene in all of the three cloned calves. In addition, expression of EGFP was detected in biopsy isolated from the transgenic cloned calves and fibroblasts derived from the biopsy. Our results suggest that transgenic calves could be efficiently produced by SCNT using transgenic cells as nuclei donor. Furthermore, all cloned animals could be ensured to be transgenic by efficiently pre-screening transgenic cells and SCNT embryos using the constructed double marker selective vector.

  1. Apoptosis of transgenic cloned and recloned bovine blastocysts

    Institute of Scientific and Technical Information of China (English)

    Guojie Sun; Rong Li; Yunping Dai; Haiping Wang; Lili Wang; Ying Liu; Fangrong Ding; Hengxi Wei; Ning Li

    2009-01-01

    Apoptosis plays an important role in preimplantation embryonic development. Investigating mechanisms of apoptosis can provide useful information for obtaining high-quality embryos and help to improve cloning efficiency. Here, we investigated the incidence of blastomere apoptosis in transgenic blastocysts generated by somatic cell nuclear transfer (SCNT) and recloning using a terminal deoxy-nucleotidyl transferase-mediated d-UTP nick end-labeling (TUNEL) assay. Transgenic recloned embryos were the second generation SCNT embryos derived from the somatic cells of a transgenic SCNT calf. The blastocyst rate of transgenic SCNT embryos was lower than that of nontransgenic SCNT embryos. The incidence of apoptosis in transgenic SCNT embryos was higher than that of nontrans-genie SCNT embryos. The blastocyst rate and the incidence of apoptosis in transgenic recloned embryos were similar to nontransgenic SCNT embryos. The process of donor cell transfection and drug selection may decrease the developmental capacity of transgenic SCNT embryos. Serial cloning did not influence the developmental capacity of transgenic recloned embryos.

  2. Recent advances in the development of new transgenic animal technology.

    Science.gov (United States)

    Miao, Xiangyang

    2013-03-01

    Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.

  3. Expression systems and species used for transgenic animal bioreactors.

    Science.gov (United States)

    Wang, Yanli; Zhao, Sihai; Bai, Liang; Fan, Jianglin; Liu, Enqi

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon), the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow) that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.

  4. Biodiversity versus transgenic sugar beet : the one Euro question

    NARCIS (Netherlands)

    Demont, M.; Wesseler, J.; Tollens, E.

    2002-01-01

    The decision whether to release transgenic crops in the EU is one subject to flexibility, uncertainty and irreversibility. The case of herbicide tolerant sugar beet is analysed. Reassessed is whether the 1998 de facto moratorium of the EU on transgenic crops for sugar beet was correct from a cost-be

  5. Biodiversity versus transgenic sugar beet: the one euro question

    NARCIS (Netherlands)

    Demont, M.; Wesseler, J.H.H.; Tollens, E.

    2004-01-01

    The decision on whether to release transgenic crops in the EU is subject to irreversibility, uncertainty and flexibility. We analyse the case of herbicide-tolerant sugar beet and assess whether the EU's 1998 de facto moratorium on transgenic crops for sugar beet was correct from a cost-benefit persp

  6. Transgenic manipulation of the metabolism of polyamines in poplar cells

    Science.gov (United States)

    Pratiksha Bhatnagar; Bernadette M. Glasheen; Suneet K. Bains; Stephanie L. Long; Rakesh Minocha; Christian Walter; Subhash C. Minocha

    2001-01-01

    The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra 3 maximowiczii) expressing a...

  7. Bacterial Diversity in Rhizospheres of Nontransgenic and Transgenic Corn

    OpenAIRE

    Fang, Min; Kremer, Robert J.; Peter P. Motavalli; Davis, Georgia

    2005-01-01

    Bacterial diversity in transgenic and nontransgenic corn rhizospheres was determined. In greenhouse and field studies, metabolic profiling and molecular analysis of 16S rRNAs differentiated bacterial communities among soil textures but not between corn varieties. We conclude that bacteria in corn rhizospheres are affected more by soil texture than by cultivation of transgenic varieties.

  8. Transgenic Crops and Sustainable Agriculture in the European Context

    Science.gov (United States)

    Ponti, Luigi

    2005-01-01

    The rapid adoption of transgenic crops in the United States, Argentina, and Canada stands in strong contrast to the situation in the European Union (EU), where a de facto moratorium has been in place since 1998. This article reviews recent scientific literature relevant to the problematic introduction of transgenic crops in the EU to assess if…

  9. Bioavailability of transgenic microRNAs in genetically modified plants

    Science.gov (United States)

    Transgenic expression of small RNAs is a prevalent approach in agrobiotechnology for the global enhancement of plant foods. Meanwhile, emerging studies have, on the one hand, emphasized the potential of transgenic microRNAs (miRNAs) as novel dietary therapeutics and, on the other, suggested potentia...

  10. Clean vector technology for marker-free transgenic fruit crops

    NARCIS (Netherlands)

    Krens, F.A.; Pelgrom, K.T.B.; Schaart, J.G.; Nijs, den A.P.M.; Rouwendal, G.J.A.

    2004-01-01

    Marker-free transgenic crops confer several advantages over transgenic crops equipped with selection genes coding e.g. for antibiotic resistance. Firstly, the European Union has prepared a guidance document for risk assessment of GM-crops to be introduced in the environment (E.U. Joint Working Group

  11. Clean vector technology for marker-free transgenic fruit crops

    NARCIS (Netherlands)

    Krens, F.A.; Pelgrom, K.T.B.; Schaart, J.G.; Nijs, den A.P.M.; Rouwendal, G.J.A.

    2004-01-01

    Marker-free transgenic crops confer several advantages over transgenic crops equipped with selection genes coding e.g. for antibiotic resistance. Firstly, the European Union has prepared a guidance document for risk assessment of GM-crops to be introduced in the environment (E.U. Joint Working Group

  12. Expression Systems and Species Used for Transgenic Animal Bioreactors

    Directory of Open Access Journals (Sweden)

    Yanli Wang

    2013-01-01

    Full Text Available Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon, the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.

  13. Development and application of transgenic technologies in cassava

    NARCIS (Netherlands)

    Taylor, N.; Chavarriaga, P.; Raemakers, C.J.J.M.; Sititunga, D.; Zhang, P.

    2004-01-01

    The capacity to integrate transgenes into the tropical root crop cassava (Manihot esculenta Crantz) is now established and being utilized to generate plants expressing traits of agronomic interest. The tissue culture and gene transfer systems currently employed to produce these transgenic cassava ha

  14. Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence.

    Science.gov (United States)

    Koksharov, Mikhail I; Ugarova, Natalia N

    2013-11-01

    Bioluminescence spectra of firefly luciferases demonstrate highly pH-sensitive spectra changing the color from green to red light when pH is lowered from alkaline to acidic. This reflects a change of ratio of the green and red emitters in the bimodal spectra of bioluminescence. We show that the mutations strongly stabilizing green (Y35N) or red (H433Y) emission compensate each other leading to the WT color of firefly luciferase. We further used this compensating ability of Y35N to search for strong red-shifting mutations in the C-domain of firefly luciferase by random mutagenesis. The discovered mutation E457K substantially increased the contribution of the red emitter and caused a 12 nm red shift of the green emitter as well. E457 is highly conservative not only in beetle luciferases but also in a whole ANL superfamily of adenylating enzymes and forms a conservative structural hydrogen bond with V471. Our results suggest that the removal of this hydrogen bond only mildly affects luciferase properties and that most of the effect of E457K is caused by the introduction of positive charge. E457 forms a salt bridge with R534 in most ANL enzymes including pH-insensitive luciferases which is absent in pH-sensitive firefly luciferases. The mutant A534R shows that this salt bridge is not important for pH-sensitivity but considerably improves in vivo thermostability. Although E457 is located far from the oxyluciferin-binding site, the properties of the mutant E457K suggest that it affects color by influencing the AMP binding.

  15. ADAM 12 protease induces adipogenesis in transgenic mice

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Xu, Xiufeng; Tajima, Rie

    2002-01-01

    in the perivascular space in muscle tissue of 1- to 2-week-old transgenic mice whereas mature lipid-laden adipocytes were seen at 3 to 4 weeks. Moreover, female transgenics expressing ADAM 12-S exhibited increases in body weight, total body fat mass, abdominal fat mass, and herniation, but were normoglycemic and did......-anchored protein, ADAM 12-L, and a shorter secreted form, ADAM 12-S. Here we report the occurrence of adipocytes in the skeletal muscle of transgenic mice in which overexpression of either form is driven by the muscle creatine kinase promoter. Cells expressing a marker of early adipogenesis were apparent...... not exhibit increased serum insulin, cholesterol, or triglycerides. Male transgenics were slightly overweight and also developed herniation but did not become obese. Transgenic mice expressing a truncated form of ADAM 12-S lacking the prodomain and the metalloprotease domain did not develop this adipogenic...

  16. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    Directory of Open Access Journals (Sweden)

    Tomotsugu Ichikawa

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1 ETR is a sensitive MR marker gene; 2 several transgenes can be efficiently expressed from a single amplicon; 3 expression of each transgene results in functional gene product; and 4 ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression.

  17. Advancing environmental risk assessment for transgenic biofeedstock crops

    Directory of Open Access Journals (Sweden)

    Wolt Jeffrey D

    2009-11-01

    Full Text Available Abstract Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release. For currently envisioned biofeedstock crops, particular emphasis in risk assessment will be given to characterization of altered metabolic profiles and their implications relative to non-target environmental effects and food safety; weediness and invasiveness when plants are modified for abiotic stress tolerance or are domesticated; and aggregate risk when plants are platforms for multi-product production. Robust risk assessments for transgenic biofeedstock crops are case-specific, initiated through problem formulation, and use tiered approaches for risk characterization.

  18. Spatial and temporal control of transgene expression in zebrafish.

    Directory of Open Access Journals (Sweden)

    Alexander A Akerberg

    Full Text Available Transgenic zebrafish research has provided valuable insights into gene functions and cell behaviors directing vertebrate development, physiology, and disease models. Most approaches use constitutive transgene expression and therefore do not provide control over the timing or levels of transgene induction. We describe an inducible gene expression system that uses new tissue-specific zebrafish transgenic lines that express the Gal4 transcription factor fused to the estrogen-binding domain of the human estrogen receptor. We show these Gal4-ERT driver lines confer rapid, tissue-specific induction of UAS-controlled transgenes following tamoxifen exposure in both embryos and adult fish. We demonstrate how this technology can be used to define developmental windows of gene function by spatiotemporal-controlled expression of constitutively active Notch1 in embryos. Given the array of existing UAS lines, the modular nature of this system will enable many previously intractable zebrafish experiments.

  19. Transgene directionally integrated into C-genome of Brassica napus

    Institute of Scientific and Technical Information of China (English)

    FANG Xiaoping; WANG Zhuan; LI Jun; LUO Lixia; HU Qiong

    2006-01-01

    Integration of a transgene into a C-genome chromosome plays an important role in reducing ecological risk of transgenic Brassica napus.To obtain C-genome transgenic B. napus, herbicide-resistant bar gene was firstly transferred into B.oleracea var. a/bog/abra mediated by Agrobacterium tumefaciens strain LBA4404. Then using the transgenic B. oleracea as paternal plants and 8 nontransgenic varieties of B. rapa as maternal plants, Cgenome transgenic B. napus with bar gene was artificially resynthesized by means of ovary culture and chromosome doubling. Among 67 lines of the resynthesized B. napus, 31 were positive, and 36 were negative according to PCR test for bar gene. At least 2 plants from each line were kept for PPT spray confirmation. The result was in consistence with the PCR test. Genomic Southern blotting of three randomly chosen lines also showed that bar gene had been integrated into the genome of resynthesized B. napus lines.

  20. Reduction of choline acetyltransferase activities in APP770 transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transgenic mice overexpressing the 770-amino acid isoform of human Alzheimer amyloid precursor protein exhibit extracellular b -amyloid deposits in brain regions including cerebral cortex and hippocampus, which are severely affected in Alzheimer's disease patients. Significant reduction in choline acetyltransferase (ChAT) activities has been observed in both cortical and hippocampal brain regions in the transgenic mice at the age of 10 months compared with the age-matched non-transgenic mice, but such changes have not been observed in any brain regions of the transgenic mice under the age of 5 months. These results suggest that deposition of b -amyloid can induce changes in the brain cholinergic system of the transgenic mice.

  1. Characterization of Growth and Reproduction Performance, Transgene Integration, Expression, and Transmission Patterns in Transgenic Pigs Produced by piggyBac Transposition-Mediated Gene Transfer.

    Science.gov (United States)

    Zeng, Fang; Li, Zicong; Cai, Gengyuan; Gao, Wenchao; Jiang, Gelong; Liu, Dewu; Urschitz, Johann; Moisyadi, Stefan; Wu, Zhenfang

    2016-10-01

    Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance and characterized the transgene insertion, transmission, and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression, and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favorable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition.

  2. Transgenic rabbits as therapeutic protein bioreactors and human disease models.

    Science.gov (United States)

    Fan, Jianglin; Watanabe, Teruo

    2003-09-01

    Genetically modified laboratory animals provide a powerful approach for studying gene expression and regulation and allow one to directly examine structure-function and cause-and-effect relationships in pathophysiological processes. Today, transgenic mice are available as a research tool in almost every research institution. On the other hand, the development of a relatively large mammalian transgenic model, transgenic rabbits, has provided unprecedented opportunities for investigators to study the mechanisms of human diseases and has also provided an alternative way to produce therapeutic proteins to treat human diseases. Transgenic rabbits expressing human genes have been used as a model for cardiovascular disease, AIDS, and cancer research. The recombinant proteins can be produced from the milk of transgenic rabbits not only at lower cost but also on a relatively large scale. One of the most promising and attractive recombinant proteins derived from transgenic rabbit milk, human alpha-glucosidase, has been successfully used to treat the patients who are genetically deficient in this enzyme. Although the pronuclear microinjection is still the major and most popular method for the creation of transgenic rabbits, recent progress in gene targeting and animal cloning has opened new avenues that should make it possible to produce transgenic rabbits by somatic cell nuclear transfer in the future. Based on a computer-assisted search of the studies of transgenic rabbits published in the English literature here, we introduce to the reader the achievements made thus far with transgenic rabbits, with emphasis on the application of these rabbits as human disease models and live bioreactors for producing human therapeutic proteins and on the recent progress in cloned rabbits.

  3. Characterization of sevoflurane effects on Per2 expression using ex vivo bioluminescence imaging of the suprachiasmatic nucleus in transgenic rats.

    Science.gov (United States)

    Matsuo, Izumi; Iijima, Norio; Takumi, Ken; Higo, Shimpei; Aikawa, Satoko; Anzai, Megumi; Ishii, Hirotaka; Sakamoto, Atsuhiro; Ozawa, Hitoshi

    2016-06-01

    The inhalation anesthetic sevoflurane suppresses Per2 expression in the suprachiasmatic nucleus (SCN) in rodents. Here, we investigated the intra-SCN regional specificity, time-dependency, and pharmacological basis of sevoflurane-effects. Bioluminescence image was taken from the SCN explants of mPer2 promoter-destabilized luciferase transgenic rats, and each small regions of interest (ROI) of the image was analyzed. Sevoflurane suppressed bioluminescence in all ROIs, suggesting that all regions in the SCN are sensitive to sevoflurane. Clear time-dependency in sevoflurane effects were also observed; application during the trough phase of the bioluminescence cycle suppressed the subsequent increase in bioluminescence and resulted in a phase delay of the cycle; sevoflurane applied during the middle of the ascending phase induced a phase advance; sevoflurane on the descending phase showed no effect. These results indicate that the sevoflurane effect may depend on the intrinsic state of circadian machinery. Finally, we examined the involvement of GABAergic signal transduction in the sevoflurane effect. Co-application of both GABAA and GABAB receptor antagonists completely blocked the effect of sevoflurane on the bioluminescence rhythm, suggesting that sevoflurane inhibits Per2 expression via GABAergic signal transduction. Current study elucidated the anesthetic effects on the molecular mechanisms of circadian rhythm.

  4. Minute Pirate Bug (Orius Insidiosus Say) populations on transgenic and non-transgenic maize using different sampling techniques

    Science.gov (United States)

    Field experiments were conducted to evaluate the populations of minute pirate bug [Orius insidiosus (Say)] using visual, sticky cards, and destructive sampling techniques in transgenic and non-transgenic maize in three locations in Nebraska (Mead, Clay Center, and Concord), United States of America,...

  5. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots

    DEFF Research Database (Denmark)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke;

    2014-01-01

    Composite plants, with transgenic roots on a non-transgenic shoot, can be obtained by shoot explant transformation with Agrobacterium rhizogenes. The aim of this study was to generate composite potato plants (Solanum tuberosum) to be used as a model system in future studies on root...... of composite potato plants expressed significantly higher amounts of β-glucuronidase (GUS) than the roots of a GUS-transgenic potato line event. Silencing of the uidA transgene (GUS) was tested by inducing roots on the GUS-transgenic cv. Albatros event with strains of A. rhizogenes over-expressing either......-mediated silencing (co-suppression) was not functional in roots. The results suggest that composite plants offer a useful experimental system for potato research, which has gained little previous attention....

  6. Bioluminescence of beetle luciferases with 6'-amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors.

    Science.gov (United States)

    Viviani, Vadim R; Neves, Deimison Rodrigues; Amaral, Danilo Trabuco; Prado, Rogilene A; Matsuhashi, Takuto; Hirano, Takashi

    2014-08-19

    Beetle luciferases produce different bioluminescence colors from green to red using the same d-luciferin substrate. Despite many studies of the mechanisms and structural determinants of bioluminescence colors with firefly luciferases, the identity of the emitters and the specific active site interactions responsible for bioluminescence color modulation remain elusive. To address these questions, we analyzed the bioluminescence spectra with 6'-amino-D-luciferin (aminoluciferin) and its 5,5-dimethyl analogue using a set of recombinant beetle luciferases that naturally elicit different colors and different pH sensitivities (pH-sensitive, Amydetes vivianii λmax=538 nm, Macrolampis sp2 λmax=564 nm; pH-insensitive, Phrixotrix hirtus λmax=623 nm, Phrixotrix vivianii λmax=546 nm, and Pyrearinus termitilluminans λmax=534 nm), a luciferase-like enzyme (Tenebrionidae, Zophobas morio λmax=613 nm), and mutants of C311 (S314). The green-yellow-emitting luciferases display red-shifted bioluminescence spectra with aminoluciferin in relation to those with D-luciferin, whereas the red-emitting luciferases displayed blue-shifted spectra. Bioluminescence spectra with 5,5-dimethylaminoluciferin, in which enolization is blocked, were almost identical to those of aminoluciferin. Fluorescence probing using 2-(4-toluidino)naphthalene-6-sulfonate and inference with aminoluciferin confirm that the luciferin binding site of the red-shifted luciferases is more polar than in the case of the green-yellow-emitting luciferases. Altogether, the results show that the keto form of excited oxyluciferin is the emitter in beetle bioluminescence and that bioluminescence colors are essentially modulated by interactions of the 6'-hydroxy group of oxyluciferin and basic moieties under the influence of the microenvironment polarity of the active site: a strong interaction between a base moiety and oxyluciferin phenol in a hydrophobic microenvironment promotes green-yellow emission, whereas a more polar

  7. Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing.

    Science.gov (United States)

    Rivella, S; Sadelain, M

    1998-04-01

    Gene addition strategies are rational approaches to the treatment of sickle cell anemia and thalassemia. The goal of such genetic treatments is to introduce a functional globin transcription unit in hematopoietic stem cells and express the transgene in a manner that is erythroid-specific, elevated, relatively constant from one cell to another, and sustained over time. Gene transfer is mediated by an expanding array of viral and nonviral vectors. High-titer retroviral vectors harboring the human beta-globin gene and the core sequences of the human beta-globin locus control region yield erythroid-specific gene expression in erythroid cell lines and in short-term murine bone marrow chimeras. However, we show that expression remains subject to position effect variegation and often decreases over time in vivo. Rather than a progressive transcriptional silencing in all cells, we ascribe the waning expression to the gradual emergence in blood of erythroid progeny derived from more and more primitive precursor cells in the months after transplantation. In our model, transgene expression is therefore determined by the integration site and the differentiation stage of the transduced cell at the time of integration. Globin expression is thus different in the progeny of a transduced erythroid progenitor cell and in the erythroid progeny of a transduced hematopoietic stem cell, reflecting the effect of flanking chromatin in differentiated cells and of chromatin remodeling at the site of integration in the progeny of multipotential cells. This model predicts that insulators and matrix attachment regions could be highly valuable to gene therapy in combination with potent transcriptional activators. When efficient gene transfer in hematopoietic stem cells is achieved at last, the challenge will be to regulate gene expression in vivo and overcome transgene variegation and transgene silencing.

  8. The methods to generate transgenic animals and to control transgene expression.

    Science.gov (United States)

    Houdebine, Louis-Marie

    2002-09-25

    Transgenic animals have been used for years to study gene function and to create models for the study of human diseases. This approach has become still more justified after the complete sequencing of several genomes. Transgenic animals are ready to become industrial bioreactors for the preparation of pharmaceuticals in milk and probably in the future in egg white. Improvement of animal production by transgenesis is still in infancy. Despite its intensive use, animal transgenesis is still suffering from technical limitations. The generation of transgenics has recently become easier or possible for different species thanks to the use of transposons or retrovirus, to incubation of sperm which DNA followed by fertilization by intracellular sperm injection or not and to the use of the cloning technique using somatic cells in which genes have been added or inactivated. The Cre-LoxP system is more and more used to withdraw a given sequence from the genome or to target the integration of a foreign DNA. The tetracycline system has been improved and can more and more frequently be used to obtain faithful expression of transgenes. Several tools: RNA forming a triple helix with DNA, antisense RNA including double strand RNA inducing RNA interference and ribozymes, and also expression of proteins having a negative transdominant effect, are tentatively being improved to inhibit specifically the expression of host or viral genes.All these techniques are expected to offer experimenters new and more precise models to study gene function even in large animals. Improvement of breeding by transgenesis has become more plausible including through the precise allele replacement in farm animals.

  9. A Transgenic Mouse Model of Poliomyelitis.

    Science.gov (United States)

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  10. Novel transgenic rice-based vaccines.

    Science.gov (United States)

    Azegami, Tatsuhiko; Itoh, Hiroshi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-04-01

    Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

  11. ADVANCES IN TRANSGENIC MAIZE FOR QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    M.Rajendar Reddy

    2015-12-01

    Full Text Available Maize (Zea mays is a major food and animal feed worldwide and occupies a relevant place in the world economy and trade as an industrial grain crop. Currently more than 70% of maize production is used for food and feed; therefore, knowledge of genes involved in grain structure and chemical is important for improving the nutritional and food-making properties of maize. It is a good source of carbohydrates, fats, proteins, vitamins and minerals but deficient in two essential amino acids, Viz., lysine and tryptophan. To overcome this problem and to improve the above quality characters the maize breeders have followed different strategies like opaque 2, QPM and development of transgenic maize with improved quality characters. Finally we can conclude that the conventional breeding techniques and now plant biotechnology are helping meet the growing demand for food production, nutrition security while preserving our environment for future generations

  12. T cell immunity using transgenic B lymphocytes

    Science.gov (United States)

    Gerloni, Mara; Rizzi, Marta; Castiglioni, Paola; Zanetti, Maurizio

    2004-03-01

    Adaptive immunity exists in all vertebrates and plays a defense role against microbial pathogens and tumors. T cell responses begin when precursor T cells recognize antigen on specialized antigen-presenting cells and differentiate into effector cells. Currently, dendritic cells are considered the only cells capable of stimulating T lymphocytes. Here, we show that mature naïve B lymphocytes can be genetically programmed by using nonviral DNA and turned into powerful antigen-presenting cells with a dual capacity of synthesis and presentation of antigen to T cells in vivo. A single i.v. injection of transgenic lymphocytes activates T cell responses reproducibly and specifically even at very low cell doses (102). We also demonstrate that T cell priming can occur in the absence of dendritic cells and results in immunological memory with protective effector functions. These findings disclose aspects in the regulation of adaptive immunity and indicate possibilities for vaccination against viruses and cancer in humans.

  13. WP1: transgenic opto-animals

    Science.gov (United States)

    UŻarowska, E.; Czajkowski, Rafał; Konopka, W.

    2014-11-01

    We aim to create a set of genetic tools where permanent opsin expression (ChR or NpHR) is precisely limited to the population of neurons that express immediate early gene c-fos during a specific temporal window of behavioral training. Since the c-fos gene is only expressed in neurons that form experience-dependent ensemble, this approach will result in specific labeling of a small subset of cells that create memory trace for the learned behavior. To this end we employ two alternative inducible gene expression systems: Tet Expression System and Cre/lox System. In both cases, the temporal window for opsin induction is controlled pharmacologically, by doxycycline or tamoxifen, respectively. Both systems will be used for creating lines of transgenic animals.

  14. Transgenic Studies with a Keratin Promoter-Driven Growth Hormone Transgene: Prospects for Gene Therapy

    Science.gov (United States)

    Wang, Xiaoming; Zinkel, Sandra; Polonsky, Kenneth; Fuchs, Elaine

    1997-01-01

    Keratinocytes are potentially appealing vehicles for the delivery of secreted gene products because they can be transferred to human skin by the relatively simple procedure of grafting. Adult human keratinocytes can be efficiently propagated in culture with sufficient proliferative capacity to produce enough epidermis to cover the body surface of an average adult. However, the feasibility of delivering secreted proteins through skin grafting rests upon (i) the strength of the promoter in keratinocytes and (ii) the efficiency of protein transport through the basement membrane of the stratified epithelium and into the bloodstream. In this paper, we use transgenic technology to demonstrate that the activity of the human keratin 14 promoter remains high in adult skin and that keratinocyte-derived human growth hormone (hGH) can be produced, secreted, and transported to the bloodstream of mice with efficiency that is sufficient to exceed by an order of magnitude the circulating hGH concentration in growing children. Transgenic skin grafts from these adults continue to produce and secrete hGH stably, at ≈ 1/10 physiological levels in the bloodstream of nontransgenic recipient mice. These studies underscore the utility of the keratin 14 promoter for expressing foreign transgenes in keratinocytes and demonstrate that keratinocytes can be used as effective vehicles for transporting factors to the bloodstream and for eliciting metabolic changes. These findings have important implications for considering the keratinocyte as a possible vehicle for gene therapy.

  15. Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay

    Energy Technology Data Exchange (ETDEWEB)

    Schiliro, Tiziana, E-mail: tiziana.schiliro@unito.it [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Porfido, Arianna [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Spina, Federica; Varese, Giovanna Cristina [Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino (Italy); Gilli, Giorgio [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy)

    2012-08-15

    This study quantified the biological oestrogenic activity in the effluent of a textile industrial wastewater treatment plant (IWWTP) in northwestern Italy. Samples of the IWWTP effluent were collected monthly, both before and after tertiary treatment (ozonation). After solid phase extraction, all samples were subjected to two in vitro tests of total estrogenic activity, the human breast cancer cell line (MCF-7 BUS) proliferation assay, or E-screen test, and the luciferase-transfected human breast cancer cell line (MELN) gene-reporter assay, to measure the 17{beta}-oestradiol equivalent quantity (EEQ). In the E-screen test, the mean EEQ values were 2.35 {+-} 1.68 ng/L pre-ozonation and 0.72 {+-} 0.58 ng/L post-ozonation; in the MELN gene-reporter luciferase assay, the mean EEQ values were 4.18 {+-} 3.54 ng/L pre-ozonation and 2.53 {+-} 2.48 ng/L post-ozonation. These results suggest that the post-ozonation IWWTP effluent had a lower oestrogenic activity (simple paired t-tests, p < 0.05). The average reduction of estrogenic activity of IWWTP effluent after ozonation was 67 {+-} 26% and 52 {+-} 27% as measured by E-screen test and MELN gene-reporter luciferase assay, respectively. There was a positive and significant correlation between the two tests (Rho S = 0.650, p = 0.022). This study indicates that the environmental risk is low because oestrogenic substances are deposited into the river via IWWTP at concentrations lower than those at which chronic exposure has been reported to affect the endocrine system of living organisms. -- Highlights: Black-Right-Pointing-Pointer The two in vitro tests are suited for oestrogenic activity assessment in textile WWTP. Black-Right-Pointing-Pointer There is a significant correlation between the results of the two in vitro tests. Black-Right-Pointing-Pointer The oestrogenic activity of the effluent is reduced by ozonation. Black-Right-Pointing-Pointer The input of estrogenic substances into the river via textile WWTP is low.

  16. [Effect of transgenic insect-resistant rice on biodiversity].

    Science.gov (United States)

    Zhang, Lei; Zhu, Zhen

    2011-05-01

    Rice is the most important food crops in maintaining food security in China. The loss of China's annual rice production caused by pests is over ten million tons. Present studies showed that the transgenic insect-resistant rice can substantially reduce the application amount of chemical pesticides. In the case of no pesticide use, the pest density in transgenic rice field is significantly lower than that in non-transgenic field, and the neutral insects and natural enemies of pests increased significantly, indicating that the ecological environment and biodiversity toward the positive direction. The gene flow frequency from transgenic rice is dramatically reduced with the distance increases, reaching less than 0.01% at the distance of 6.2 m. Application of transgenic insect-resistant rice in China has an important significance for ensuring food security, maintaining sustainable agricultural development, and protecting the ecological environment and biodiversity. This review summarized the research progress in transgenic insect-resistant rice and its effect on biodiversity. The research directions and development trends of crop pest controlling in future are discussed. These help to promote better use of transgenic insect-resistant rice.

  17. High-level expressing YAC vector for transgenic animal bioreactors.

    Science.gov (United States)

    Fujiwara, Y; Miwa, M; Takahashi, R; Kodaira, K; Hirabayashi, M; Suzuki, T; Ueda, M

    1999-04-01

    The position effect is one major problem in the production of transgenic animals as mammary gland bioreactors. In the present study, we introduced the human growth hormone (hGH) gene into 210-kb human alpha-lactalbumin position-independent YAC vectors using homologous recombination and produced transgenic rats via microinjection of YAC DNA into rat embryos. The efficiency of producing transgenic rats with the YAC vector DNA was the same as that using plasmid constructs. All analyzed transgenic rats had one copy of the transgene and produced milk containing a high level of hGH (0.25-8.9 mg/ml). In transgenic rats with the YAC vector in which the human alpha-lactalbumin gene was replaced with the hGH gene, tissue specificity of hGH mRNA was the same as that of the endogenous rat alpha-lactalbumin gene. Thus, the 210-kb human alpha-lactalbumin YAC is a useful vector for high-level expression of foreign genes in the milk of transgenic animals.

  18. Transgenic dairy cattle: genetic engineering on a large scale.

    Science.gov (United States)

    Wall, R J; Kerr, D E; Bondioli, K R

    1997-09-01

    Amid the explosion of fundamental knowledge generated from transgenic animal models, a small group of scientists has been producing transgenic livestock with goals of improving animal production efficiency and generating new products. The ability to modify mammary-specific genes provides an opportunity to pursue several distinctly different avenues of research. The objective of the emerging gene "pharming" industry is to produce pharmaceuticals for treating human diseases. It is argued that mammary glands are an ideal site for producing complex bioactive proteins that can be cost effectively harvested and purified. Consequently, during the past decade, approximately a dozen companies have been created to capture the US market for pharmaceuticals produced from transgenic bioreactors estimated at $3 billion annually. Several products produced in this way are now in human clinical trials. Another research direction, which has been widely discussed but has received less attention in the laboratory, is genetic engineering of the bovine mammary gland to alter the composition of milk destined for human consumption. Proposals include increasing or altering endogenous proteins, decreasing fat, and altering milk composition to resemble that of human milk. Initial studies using transgenic mice to investigate the feasibility of enhancing manufacturing properties of milk have been encouraging. The potential profitability of gene "pharming" seems clear, as do the benefits of transgenic cows producing milk that has been optimized for food products. To take full advantage of enhanced milk, it may be desirable to restructure the method by which dairy producers are compensated. However, the cost of producing functional transgenic cattle will remain a severe limitation to realizing the potential of transgenic cattle until inefficiencies of transgenic technology are overcome. These inefficiencies include low rates of gene integration, poor embryo survival, and unpredictable transgene

  19. Transgenic fish systems and their application in ecotoxicology.

    Science.gov (United States)

    Lee, Okhyun; Green, Jon M; Tyler, Charles R

    2015-02-01

    The use of transgenics in fish is a relatively recent development for advancing understanding of genetic mechanisms and developmental processes, improving aquaculture, and for pharmaceutical discovery. Transgenic fish have also been applied in ecotoxicology where they have the potential to provide more advanced and integrated systems for assessing health impacts of chemicals. The zebrafish (Daniorerio) is the most popular fish for transgenic models, for reasons including their high fecundity, transparency of their embryos, rapid organogenesis and availability of extensive genetic resources. The most commonly used technique for producing transgenic zebrafish is via microinjection of transgenes into fertilized eggs. Transposon and meganuclease have become the most reliable methods for insertion of the genetic construct in the production of stable transgenic fish lines. The GAL4-UAS system, where GAL4 is placed under the control of a desired promoter and UAS is fused with a fluorescent marker, has greatly enhanced model development for studies in ecotoxicology. Transgenic fish have been developed to study for the effects of heavy metal toxicity (via heat-shock protein genes), oxidative stress (via an electrophile-responsive element), for various organic chemicals acting through the aryl hydrocarbon receptor, thyroid and glucocorticoid response pathways, and estrogenicity. These models vary in their sensitivity with only very few able to detect responses for environmentally relevant exposures. Nevertheless, the potential of these systems for analyses of chemical effects in real time and across multiple targets in intact organisms is considerable. Here we illustrate the techniques used for generating transgenic zebrafish and assess progress in the development and application of transgenic fish (principally zebrafish) for studies in environmental toxicology. We further provide a viewpoint on future development opportunities.

  20. [Effects of phytase transgenic corn planting on soil nematode community].

    Science.gov (United States)

    Zhao, Zong-Chao; Su, Ying; Mou, Wen-Ya; Liu, Man-Qiang; Chen, Xiao-Yun; Chen, Fa-Jun

    2014-04-01

    A healthy soil ecosystem is essential for nutrient cycling and energy conversion, and the impact of exogenous genes from genetically modified crops had aroused wide concerns. Phytase transgenic corn (i. e., the inbred line BVLA430101) was issued a bio-safety certificate on 27 September 2009 in China, which could improve the efficiency of feed utilization, reduce environmental pollution caused by animal manure. In this study, the abundance of trophic groups, community structure and ecological indices of soil nematodes were studied over the growing cycle of phytase transgenic corn (ab. transgenic corn) and control conventional parental corn (ab. control corn) in the field. Totally 29 and 26 nematode genera were isolated from transgenic corn and control corn fields, respectively. The abundances of bacterivores and omnivores-predators, the total number of soil nematodes, and the Shannon index (H) were significantly greater under transgenic corn than under control corn, while the opposite trend was found for the relative abundance of herbivores and the maturity index (Sigma MI) of soil nematodes. Repeated-measures analysis of variance (ANOVA) did not detect any significant effects of transgenic corn on the composition and abundance of nematode trophic groups and ecological indices of soil nematodes. Furthermore, the Student-T test showed that the abundances of bacterivores and omnivores-predators and the total number of soil nematodes during the milk-ripe stage were significant higher in the transgenic corn field than in the control corn field. The effects of transgenic corn planting on soil nematodes might be related to the increase in the nitrogen content of field soil under transgenic corn compared to control corn.

  1. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    Directory of Open Access Journals (Sweden)

    Hye-Jung Yeom

    Full Text Available Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1, an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs. Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  2. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    Science.gov (United States)

    Yeom, Hye-Jung; Koo, Ok Jae; Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J; Kim, Hyunil; Surh, Charles D; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  3. Lineage-specific stem cells, signals and asymmetries during stomatal development.

    Science.gov (United States)

    Han, Soon-Ki; Torii, Keiko U

    2016-04-15

    Stomata are dispersed pores found in the epidermis of land plants that facilitate gas exchange for photosynthesis while minimizing water loss. Stomata are formed from progenitor cells, which execute a series of differentiation events and stereotypical cell divisions. The sequential activation of master regulatory basic-helix-loop-helix (bHLH) transcription factors controls the initiation, proliferation and differentiation of stomatal cells. Cell-cell communication mediated by secreted peptides, receptor kinases, and downstream mitogen-activated kinase cascades enforces proper stomatal patterning, and an intrinsic polarity mechanism ensures asymmetric cell divisions. As we review here, recent studies have provided insights into the intrinsic and extrinsic factors that control stomatal development. These findings have also highlighted striking similarities between plants and animals with regards to their mechanisms of specialized cell differentiation. © 2016. Published by The Company of Biologists Ltd.

  4. Dual lineage-specific expression of Sox17 during mouse embryogenesis

    DEFF Research Database (Denmark)

    Choi, Eunyoung; Kraus, Marine R C; Lemaire, Laurence A

    2012-01-01

    is expressed in the endothelial cells (ECs) at the para-aortic splanchnopleural region that contribute to the formation of HSCs at a later stage. The identification of two distinct progenitor cell populations that express Sox17 at E9.5 was confirmed using fluorescence-activated cell sorting together with RNA-Seq...

  5. Functional microRNAs and target sites are created by lineage-specific transposition.

    Science.gov (United States)

    Spengler, Ryan M; Oakley, Clayton K; Davidson, Beverly L

    2014-04-01

    Transposable elements (TEs) account for nearly one-half of the sequence content in the human genome, and de novo germline transposition into regulatory or coding sequences of protein-coding genes can cause heritable disorders. TEs are prevalent in and around protein-coding genes, providing an opportunity to impart regulation. Computational studies reveal that microRNA (miRNA) genes and miRNA target sites reside within TE sequences, but there is little experimental evidence supporting a role for TEs in the birth of miRNAs, or as platform for gene regulation by miRNAs. In this work, we validate miRNAs and target sites derived from TE families prevalent in the human genome, including the ancient long interspersed nuclear element 2 (LINE2/L2), mammalian-wide interspersed repeat (MIR) retrotransposons and the primate-specific Alu family. We show that genes with 3' untranslated region (3' UTR) MIR elements are enriched for let-7 targets and that these sites are conserved and responsive to let-7 expression. We also demonstrate that 3' UTR-embedded Alus are a source of miR-24 and miR-122 target sites and that a subset of active genomic Alus provide for de novo target site creation. Finally, we report that although the creation of miRNA genes by Alu elements is relatively uncommon relative to their overall genomic abundance, Alu-derived miR-1285-1 is efficiently processed from its genomic locus and regulates genes with target sites contained within homologous elements. Taken together, our data provide additional evidence for TEs as a source for miRNAs and miRNA target sites, with instances of conservation through the course of mammalian evolution.

  6. MLL rearrangements in pediatric acute lymphoblastic and myeloblastic leukemias: MLL specific and lineage specific signatures

    Directory of Open Access Journals (Sweden)

    te Kronnie Geertruy

    2009-06-01

    Full Text Available Abstract Background The presence of MLL rearrangements in acute leukemia results in a complex number of biological modifications that still remain largely unexplained. Armstrong et al. proposed MLL rearrangement positive ALL as a distinct subgroup, separated from acute lymphoblastic (ALL and myeloblastic leukemia (AML, with a specific gene expression profile. Here we show that MLL, from both ALL and AML origin, share a signature identified by a small set of genes suggesting a common genetic disregulation that could be at the basis of mixed lineage leukemia in both phenotypes. Methods Using Affymetrix® HG-U133 Plus 2.0 platform, gene expression data from 140 (training set + 78 (test set ALL and AML patients with (24+13 and without (116+65 MLL rearrangements have been investigated performing class comparison (SAM and class prediction (PAM analyses. Results We identified a MLL translocation-specific (379 probes signature and a phenotype-specific (622 probes signature which have been tested using unsupervised methods. A final subset of 14 genes grants the characterization of acute leukemia patients with and without MLL rearrangements. Conclusion Our study demonstrated that a small subset of genes identifies MLL-specific rearrangements and clearly separates acute leukemia samples according to lineage origin. The subset included well-known genes and newly discovered markers that identified ALL and AML subgroups, with and without MLL rearrangements.

  7. C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis

    OpenAIRE

    Inoue, Takao; Sternberg, Paul W.

    2010-01-01

    The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited numb...

  8. C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis.

    Science.gov (United States)

    Inoue, Takao; Sternberg, Paul W

    2010-02-15

    The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited number of cell types including vulval cells whose divisions are affected in bed-3 mutants. A bed-3 mutation also affects the expression pattern of the cdh-3 cadherin gene in the vulva. The phenotype of bed-3 mutants is similar to the phenotype caused by mutations in cog-1 (Nkx6), a component of a gene regulatory network controlling cell type specific gene expression in the vulval lineage. These results suggest that bed-3 is a key component linking the gene regulatory network controlling cell-type specification to control of cell division during vulval organogenesis.

  9. Parallel Evolution and Lineage-Specific Expansion of RNA Editing in Ctenophores

    Science.gov (United States)

    Kohn, Andrea B.; Sanford, Rachel S.; Yoshida, Masa-aki; Moroz, Leonid L.

    2015-01-01

    RNA editing is a process of targeted alterations of nucleotides in all types of RNA molecules (e.g., rRNA, tRNA, mRNA, and miRNA). As a result, the transcriptional output differs from its genomic DNA template. RNA editing can be defined both by biochemical mechanisms and by enzymes that perform these reactions. There are high levels of RNA editing detected in the mammalian nervous system, suggesting that nervous systems use this mechanism to increase protein diversity, because the post-transcription modifications lead to new gene products with novel functions. By re-annotating the ctenophore genomes, we found that the number of predicted RNA-editing enzymes is comparable to the numbers in mammals, but much greater than in other non-bilaterian basal metazoans. However, the overall molecular diversity of RNA-editing enzymes in ctenophores is lower, suggesting a possible “compensation” by an expansion of the ADAT1-like subfamily in this lineage. In two genera of ctenophores, Pleurobrachia and Mnemiopsis, there are high levels of expression for RNA-editing enzymes in their aboral organs, the integrative center involved in control of locomotion and geotaxis. This finding supports the hypothesis that RNA editing is correlated with the complexity of tissues and behaviors. Smaller numbers of RNA-editing enzymes in Porifera and Placozoa also correlates with the primary absence of neural and muscular systems in these lineages. In ctenophores, the expansion of the RNA-editing machinery can also provide mechanisms that support the remarkable capacity for regeneration in these animals. In summary, despite their compact genomes, a wide variety of epigenomic mechanisms employed by ctenophores and other non-bilaterian basal metazoans can provide novel insights into the evolutionary origins of biological novelties. PMID:26089435

  10. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...

  11. Sex-and lineage-specific inheritance of depression-like behavior in the rat

    Science.gov (United States)

    Solberg, Leah C.; Baum, Amber E.; Ahmadiyeh, Nasim; Shimomura, Kazuhiro; Li, Renhua; Turek, Fred W.; Churchil, Gary A.; Takahashi, Joseph S.; Redei, Eva E.

    2013-01-01

    The Wistar–Kyoto (WKY) rat exhibits physiological and behavioral similarities to endophenotypes of human depression. In the forced swim test (FST), a wel-characterized antidepressant-reversible test for behavioral despair in rodents, WKYs express characteristics of behavioral despair; increased immobility, and decreased climbing. To map genetic loci linked to behavior in the FST, we conducted a quantitative trait loci (QTL) analysis of the segregating F2 generation of a WKY · Fisher 344 (F344) reciprocal intercross. Using linear-model-based genome scans to include covariate (sex or lineage) by-QTL interaction effects, four significant QTL influencing climbing behavior were identified. In addition, we identified three, seven, and two suggestive QTL for climbing, immobility, and swimming, respectively. One of these loci was pleiotropic, affecting both immobility and climbing. As found in human linkage studies, several of these QTL showed sex-and/or lineage-dependent effects. A simultaneous search strategy identified three epistatic locus pairs for climbing. Multiple regression analysis was employed to characterize the joint contributions of these QTL and to clarify the sex-and lineage-dependent effects. As expected for complex traits, FST behavior is influenced by multiple QTL of smal effect, each contributing 5%–10%, accounting for a total 10%–30% of the phenotypic variance. A number of loci mapped in this study share overlapping candidate regions with previously identified emotionality QTL in mice as wel as with susceptibility loci recognized by linkage or genome scan analyses for major depression or bipolar disorder in humans. The presence of these loci across species suggests that these QTL may represent universal genetic factors contributing to mood disorders. PMID:15457344

  12. Lineage Specification of Ovarian Theca Cells Requires Multi-Cellular Interactions via Oocyte and Granulosa Cells

    Science.gov (United States)

    Liu, Chang; Peng, Jia; Matzuk, Martin M.; Yao, Humphrey H-C

    2015-01-01

    Organogenesis of the ovary is a highly orchestrated process involving multiple lineage determinations of ovarian surface epithelium, granulosa cells, and theca cells. While the sources of ovarian surface epithelium and granulosa cells are known, the origin(s) of theca progenitor cells have not been definitively identified. Here we show that theca cells derive from two sources: Wt1+ cells indigenous to the ovary and Gli1+ mesenchymal cells migrated from the mesonephros. These progenitors acquire theca lineage marker Gli1 in response to paracrine signals Desert hedgehog (Dhh) and Indian hedgehog (Ihh) from granulosa cells. Ovaries lacking Dhh/Ihh exhibit theca layer loss, blunted steroid production, arrested folliculogenesis, and failure to form corpora lutea. Production of Dhh/Ihh in granulosa cells requires Growth differentiation factor 9 (GDF9) from the oocyte. Our studies provide the first genetic evidence for the origins of theca cells and reveal a multicellular interaction critical for the formation of a functional theca. PMID:25917826

  13. Dual lineage-specific expression of Sox17 during mouse embryogenesis

    DEFF Research Database (Denmark)

    Choi, Eunyoung; Kraus, Marine R C; Lemaire, Laurence A

    2012-01-01

    Sox17 is essential for both endoderm development and fetal hematopoietic stem cell (HSC) maintenance. While endoderm-derived organs are well known to originate from Sox17-expressing cells, it is less certain whether fetal HSCs also originate from Sox17-expressing cells. By generating a Sox17(GFPCre......) allele and using it to assess the fate of Sox17-expressing cells during embryogenesis, we confirmed that both endodermal and a part of definitive hematopoietic cells are derived from Sox17-positive cells. Prior to E9.5, the expression of Sox17 is restricted to the endoderm lineage. However, at E9.5 Sox17...... is expressed in the endothelial cells (ECs) at the para-aortic splanchnopleural region that contribute to the formation of HSCs at a later stage. The identification of two distinct progenitor cell populations that express Sox17 at E9.5 was confirmed using fluorescence-activated cell sorting together with RNA...

  14. Preferential Lineage-Specific Differentiation of Osteoblast-Derived Induced Pluripotent Stem Cells into Osteoprogenitors

    Science.gov (United States)

    Roberts, Casey L.; Chen, Silvia S.; Murchison, Angela C.; Ogle, Rebecca A.; Francis, Michael P.; Ogle, Roy C.

    2017-01-01

    While induced pluripotent stem cells (iPSCs) hold great clinical promise, one hurdle that remains is the existence of a parental germ-layer memory in reprogrammed cells leading to preferential differentiation fates. While it is problematic for generating cells vastly different from the reprogrammed cells' origins, it could be advantageous for the reliable generation of germ-layer specific cell types for future therapeutic use. Here we use human osteoblast-derived iPSCs (hOB-iPSCs) to generate induced osteoprogenitors (iOPs). Osteoblasts were successfully reprogrammed and demonstrated by endogenous upregulation of Oct4, Sox2, Nanog, TRA-1-81, TRA-16-1, SSEA3, and confirmatory hPSC Scorecard Algorithmic Assessment. The hOB-iPSCs formed embryoid bodies with cells of ectoderm and mesoderm but have low capacity to form endodermal cells. Differentiation into osteoprogenitors occurred within only 2–6 days, with a population doubling rate of less than 24 hrs; however, hOB-iPSC derived osteoprogenitors were only able to form osteogenic and chondrogenic cells but not adipogenic cells. Consistent with this, hOB-iOPs were found to have higher methylation of PPARγ but similar levels of methylation on the RUNX2 promoter. These data demonstrate that iPSCs can be generated from human osteoblasts, but variant methylation patterns affect their differentiation capacities. Therefore, epigenetic memory can be exploited for efficient generation of clinically relevant quantities of osteoprogenitor cells. PMID:28250775

  15. New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis

    Directory of Open Access Journals (Sweden)

    Florian Rambow

    2015-10-01

    Full Text Available Molecular signatures specific to particular tumor types are required to design treatments for resistant tumors. However, it remains unclear whether tumors and corresponding cell lines used for drug development share such signatures. We developed similarity core analysis (SCA, a universal and unsupervised computational framework for extracting core molecular features common to tumors and cell lines. We applied SCA to mRNA/miRNA expression data from various sources, comparing melanoma cell lines and metastases. The signature obtained was associated with phenotypic characteristics in vitro, and the core genes CAPN3 and TRIM63 were implicated in melanoma cell migration/invasion. About 90% of the melanoma signature genes belong to an intrinsic network of transcription factors governing neural development (TFAP2A, DLX2, ALX1, MITF, PAX3, SOX10, LEF1, and GAS7 and miRNAs (211-5p, 221-3p, and 10a-5p. The SCA signature effectively discriminated between two subpopulations of melanoma patients differing in overall survival, and classified MEKi/BRAFi-resistant and -sensitive melanoma cell lines.

  16. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF.

    Directory of Open Access Journals (Sweden)

    Claudia Wellbrock

    Full Text Available The Microphthalmia-associated transcription factor (MITF is an important regulator of cell-type specific functions in melanocytic cells. MITF is essential for the survival of pigmented cells, but whereas high levels of MITF drive melanocyte differentiation, lower levels are required to permit proliferation and survival of melanoma cells. MITF is phosphorylated by ERK, and this stimulates its activation, but also targets it for degradation through the ubiquitin-proteosome pathway, coupling MITF degradation to its activation. We have previously shown that because ERK is hyper-activated in melanoma cells in which BRAF is mutated, the MITF protein is constitutively down-regulated. Here we describe another intriguing aspect of MITF regulation by oncogenic BRAF in melanoma cells. We show oncogenic BRAF up-regulates MITF transcription through ERK and the transcription factor BRN2 (N-Oct3. In contrast, we show that in melanocytes this pathway does not exist because BRN2 is not expressed, demonstrating that MITF regulation is a newly acquired function of oncogenic BRAF that is not performed by the wild-type protein. Critically, in melanoma cells MITF is required downstream of oncogenic BRAF because it regulates expression of key cell cycle regulatory proteins such as CDK2 and CDK4. Wild-type BRAF does not regulate this pathway in melanocytes. Thus, we show that oncogenic BRAF exerts exquisite control over MITF on two levels. It downregulates the protein by stimulating its degradation, but then counteracts this by increasing transcription through BRN2. Our data suggest that oncogenic BRAF plays a critical role in regulating MITF expression to ensure that its protein levels are compatible with proliferation and survival of melanoma cells. We propose that its ability to appropriate the regulation of this critical factor explains in part why BRAF is such a potent oncogene in melanoma.

  17. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation.

    Directory of Open Access Journals (Sweden)

    Roderick Nigel Finn

    Full Text Available A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16. The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.

  18. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity.

    Directory of Open Access Journals (Sweden)

    Laura M J Ylinen

    Full Text Available TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5alpha but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations.

  19. A CRISPR/Cas9-Based System for Reprogramming Cell Lineage Specification

    Directory of Open Access Journals (Sweden)

    Syandan Chakraborty

    2014-12-01

    Full Text Available Gene activation by the CRISPR/Cas9 system has the potential to enable new approaches to science and medicine, but the technology must be enhanced to robustly control cell behavior. We show that the fusion of two transactivation domains to Cas9 dramatically enhances gene activation to a level that is necessary to reprogram cell phenotype. Targeted activation of the endogenous Myod1 gene locus with this system led to stable and sustained reprogramming of mouse embryonic fibroblasts into skeletal myocytes. The levels of myogenic marker expression obtained by the activation of endogenous Myod1 gene were comparable to that achieved by overexpression of lentivirally delivered MYOD1 transcription factor.

  20. 5-Hydroxymethylcytosine Remodeling Precedes Lineage Specification during Differentiation of Human CD4(+) T Cells

    OpenAIRE

    Colm E. Nestor; Antonio Lentini; Cathrine Hägg Nilsson; Danuta R. Gawel; Mika Gustafsson; Lina Mattson; Hui Wang; Olof Rundquist; Richard R. Meehan; Bernward Klocke; Martin Seifert; Stefanie M. Hauck; Helmut Laumen; Huan Zhang; Mikael Benson

    2016-01-01

    5-methylcytosine (5mC) is converted to 5-hydroxymethylcytosine (5hmC) by the TET family of enzymes as part of a recently discovered active DNA de-methylation pathway. 5hmC plays important roles in regulation of gene expression and differentiation and has been implicated in T cell malignancies and autoimmunity. Here, we report early and widespread 5mC/5hmC remodeling during human CD4(+) T cell differentiation ex vivo at genes and cell-specific enhancers with known T cell function. We observe s...

  1. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Jawdy, Sara [ORNL; Tschaplinski, Timothy J [ORNL; Tuskan, Gerald A [ORNL

    2009-01-01

    Protein sequences were compared among Arabidopsis, Oryza and Populus to identify differential gene (DG) sets that are in one but not the other two genomes. The DG sets were screened against a plant transcript database, the NR protein database and six newly-sequenced genomes (Carica, Glycine, Medicago, Sorghum, Vitis and Zea) to identify a set of species-specific genes (SS). Gene expression, protein motif and intron number were examined. 192, 641 and 109 SS genes were identified in Arabidopsis, Oryza and Populus, respectively. Some SS genes were preferentially expressed in flowers, roots, xylem and cambium or up-regulated by stress. Six conserved motifs in Arabidopsis and Oryza SS proteins were found in other distant lineages. The SS gene sets were enriched with intronless genes. The results reflect functional and/or anatomical differences between monocots and eudicots or between herbaceous and woody plants. The Populus-specific genes are candidates for carbon sequestration and biofuel research.

  2. Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development

    Institute of Scientific and Technical Information of China (English)

    Alexey Ruzov1; Yanina Tsenkina; Andrea Serio; Tatiana Dudnakova; Judy Fletcher; Yu Bai; Tatiana Chebotareva

    2011-01-01

    Methylation of cytosine is a DNA modification associated with gene repression.Recently,a novel cytosine modification,5-hydroxymethylcytosine (5-hmC) has been discovered.Here we examine 5-hmC distribution during mammalian development and in cellular systems,and show that the developmental dynamics of 5-hmC are different from those of 5-methylcytosine (5-mC); in particular 5-hmC is enriched in embryonic contexts compared to adult tissues.A detectable 5-hmC signal appears in pre-implantation development starting at the zygote stage,where the paternal genome is subjected to a genome-wide hydroxylation of 5-mC,which precisely coincides with the loss of the 5-mC signal in the paternal pronucleus.Levels of 5-hmC are high in cells of the inner cell mass in blastocysts,and the modification colocalises with nestin-expressing cell populations in mouse post-implantation embryos.Compared to other adult mammalian organs,5-hmC is strongly enriched in bone marrow and brain,wherein high 5-hmC content is a feature of both neuronal progenitors and post-mitotic neurons.We show that high levels of 5-hmC are not only present in mouse and human embryonic stem cells (ESCs) and lost during differentiation,as has been reported previously,but also reappear during the generation of induced pluripotent stem cells; thus 5-hmC enrichment correlates with a pluripotent cell state.Our findings suggest that apart from the cells of neuronal lineages,high levels of genomic 5-hmC are an epigenetic feature of embryonic cell populations and cellular pluri- and multi-lineage potency.To our knowledge,5-hmC represents the first epigenetic modification of DNA discovered whose enrichment is so cell-type specific.

  3. The evolution of lineage-specific regulatory activities in the human embryonic limb.

    Science.gov (United States)

    Cotney, Justin; Leng, Jing; Yin, Jun; Reilly, Steven K; DeMare, Laura E; Emera, Deena; Ayoub, Albert E; Rakic, Pasko; Noonan, James P

    2013-07-03

    The evolution of human anatomical features likely involved changes in gene regulation during development. However, the nature and extent of human-specific developmental regulatory functions remain unknown. We obtained a genome-wide view of cis-regulatory evolution in human embryonic tissues by comparing the histone modification H3K27ac, which provides a quantitative readout of promoter and enhancer activity, during human, rhesus, and mouse limb development. Based on increased H3K27ac, we find that 13% of promoters and 11% of enhancers have gained activity on the human lineage since the human-rhesus divergence. These gains largely arose by modification of ancestral regulatory activities in the limb or potential co-option from other tissues and are likely to have heterogeneous genetic causes. Most enhancers that exhibit gain of activity in humans originated in mammals. Gains at promoters and enhancers in the human limb are associated with increased gene expression, suggesting they include molecular drivers of human morphological evolution.

  4. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    Directory of Open Access Journals (Sweden)

    Tran Lan T

    2012-08-01

    Full Text Available Abstract Background Plant polyphenol oxidases (PPOs are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss and Glycine max (soybean each had 11 genes. Populus trichocarpa (poplar contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae genomes or Arabidopsis (A. lyrata and A. thaliana. We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on primary sequence data. The dynamic nature of this gene family differentiates PPO from other oxidative enzymes, and is consistent with a protein important for a diversity of functions relating to environmental adaptation.

  5. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation.

    Science.gov (United States)

    Yin, Zi; Chen, Xiao; Song, Hai-Xin; Hu, Jia-Jie; Tang, Qiao-Mei; Zhu, Ting; Shen, Wei-Liang; Chen, Jia-Lin; Liu, Huanhuan; Heng, Boon Chin; Ouyang, Hong-Wei

    2015-03-01

    Physical topographic cues from various substrata have been shown to exert profound effects on the growth and differentiation of stem cells due to their niche-mimicking features. However, the biological function of different topographic materials utilized as bio-scaffolds in vivo have not been rigorously characterized. This study investigated the divergent differentiation pathways of mesenchymal stem cells (MSCs) and neo-tissue formation trigged by aligned and randomly-oriented fibrous scaffolds, both in vitro and in vivo. The aligned group was observed to form more mature tendon-like tissue in the Achilles tendon injury model, as evidenced by histological scoring and collagen I immunohistochemical staining data. In contrast, the randomly-oriented group exhibited much chondrogenesis and subsequent bone tissue formation through ossification. Additionally, X-ray imaging and osteocalcin immunohistochemical staining also demonstrated that osteogenesis in vivo is driven by randomly oriented topography. Furthermore, MSCs on the aligned substrate exhibited tenocyte-like morphology and enhanced tenogenic differentiation compared to cells grown on randomly-oriented scaffold. qRT-PCR analysis of osteogenic marker genes and alkaline phosphatase (ALP) staining demonstrated that MSCs cultured on randomly-oriented fiber scaffolds displayed enhanced osteogenic differentiation compared with cells cultured on aligned fiber scaffolds. Finally, it was demonstrated that cytoskeletal tension release abrogated the divergent differentiation pathways on different substrate topography. Collectively, these findings illustrate the relationship between topographic cues of the scaffold and their inductive role in tissue regeneration; thus providing an insight into future development of smart functionalized bio-scaffold design and its application in tissue engineering.

  6. Phylogenetics of Lophotrochozoan bHLH Genes and the Evolution of Lineage-Specific Gene Duplicates

    Science.gov (United States)

    Bao, Yongbo

    2017-01-01

    The gain and loss of genes encoding transcription factors is of importance to understanding the evolution of gene regulatory complexity. The basic helix–loop–helix (bHLH) genes encode a large superfamily of transcription factors. We systematically classify the bHLH genes from five mollusc, two annelid and one brachiopod genomes, tracing the pattern of bHLH gene evolution across these poorly studied Phyla. In total, 56–88 bHLH genes were identified in each genome, with most identifiable as members of previously described bilaterian families, or of new families we define. Of such families only one, Mesp, appears lost by all these species. Additional duplications have also played a role in the evolution of the bHLH gene repertoire, with many new lophotrochozoan-, mollusc-, bivalve-, or gastropod-specific genes defined. Using a combination of transcriptome mining, RT-PCR, and in situ hybridization we compared the expression of several of these novel genes in tissues and embryos of the molluscs Crassostrea gigas and Patella vulgata, finding both conserved expression and evidence for neofunctionalization. We also map the positions of the genes across these genomes, identifying numerous gene linkages. Some reflect recent paralog divergence by tandem duplication, others are remnants of ancient tandem duplications dating to the lophotrochozoan or bilaterian common ancestors. These data are built into a model of the evolution of bHLH genes in molluscs, showing formidable evolutionary stasis at the family level but considerable within-family diversification by tandem gene duplication. PMID:28338988

  7. Endogenous allergen upregulation: transgenic vs. traditionally bred crops.

    Science.gov (United States)

    Herman, Rod A; Ladics, Gregory S

    2011-10-01

    The safety assessment for transgenic food crops currently includes an evaluation of the endogenous allergy potential (via serum IgE screening) when the non-transgenic counterpart is a commonly allergenic food. The value of this analysis in the safety assessment of transgenic crops, especially with reference to recent requests to quantify individual allergen concentrations in raw commodities, is examined. We conclude that the likelihood of upregulating an endogenous allergen due to transgenesis is no greater than from traditional breeding which has a history of safety and is largely unregulated. The potential consequences of upregulating an endogenous allergen are also unclear.

  8. Generation of transgenic dogs that conditionally express green fluorescent protein.

    Science.gov (United States)

    Kim, Min Jung; Oh, Hyun Ju; Park, Jung Eun; Kim, Geon A; Hong, So Gun; Jang, Goo; Kwon, Mo Sun; Koo, Bon Chul; Kim, Teoan; Kang, Sung Keun; Ra, Jeong Chan; Ko, Chemyong; Lee, Byeong Chun

    2011-06-01

    We report the creation of a transgenic dog that conditionally expresses eGFP (enhanced green fluorescent protein) under the regulation of doxycycline. Briefly, fetal fibroblasts infected with a Tet-on eGFP vector were used for somatic cell nuclear transfer. Subsequently reconstructed oocytes were transferred to recipients. Three clones having transgenes were born and one dog was alive. The dog showed all features of inducible expression of eGFP upon doxycycline administration, and successful breeding resulted in eGFP-positive puppies, confirming stable insertion of the transgene into the genome. This inducible dog model will be useful for a variety of medical research studies.

  9. Recombinant Human Factor IX Produced from Transgenic Porcine Milk

    OpenAIRE

    Meng-Hwan Lee; Yin-Shen Lin; Ching-Fu Tu; Chon-Ho Yen

    2014-01-01

    Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitat...

  10. Insulin promoter-driven Gaussia luciferase-based insulin secretion biosensor assay for discovery of β-cell glucose-sensing pathways.

    Science.gov (United States)

    Kalwat, Michael A; Wichaidit, Chonlarat; Nava Garcia, Alejandra Y; McCoy, Melissa K; McGlynn, Kathleen; Hwang, In Hyun; MacMillan, John B; Posner, Bruce A; Cobb, Melanie H

    2016-10-28

    High throughput screening of insulin secretion is intractable with current methods. We developed a secreted insulin-luciferase system (Ins-GLuc) in β cells that is rapid, inexpensive, and amenable to 96- and 384-well formats. We treated stable Ins-GLuc-expressing MIN6 cells overnight with 6298 marine natural product fractions. The cells were then washed to remove media and chemicals, followed by stimulation with glucose in the diazoxide paradigm. These conditions allowed the discovery of many insulin secretion suppressors and potentiators. The mechanisms of action of these natural products must be long-lasting given the continuance of secretory phenotypes in the absence of chemical treatment. We anticipate that these natural products and their target pathways will lead to a greater understanding of glucose-stimulated insulin secretion.

  11. Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes.

    Science.gov (United States)

    Domínguez, A; Fagoaga, C; Navarro, L; Moreno, P; Peña, L

    2002-06-01

    Insertion of foreign DNA into plant genomes frequently results in the recovery of transgenic plants with silenced transgenes. To investigate to what extent regeneration under selective conditions limits the recovery of transgenic plants showing gene silencing in woody species, Mexican lime [ Citrus aurantifolia (Christm.) Swing.] plants were transformed with the p25 coat protein gene of Citrus tristeza virus (CTV) with or without selection for nptII and uidA. Strikingly, more than 30% of the transgenic limes regenerated under non-selective conditions had silenced transgenes, and in all cases silencing affected all the three transgenes incorporated. These results indicate that the frequency of transgene silencing may be greatly underestimated when the rate of silencing is estimated from the number of regenerants obtained under selective conditions. To our knowledge, this is the first report in which the frequency of gene silencing after transformation has been quantified. When the integration pattern of T-DNA was analyzed in silenced and non-silenced lines, it was observed that inverted repeats as well as direct repeats and even single integrations were able to trigger gene silencing. Gene silencing has often been associated with the insertion of DNA sequences as inverted repeats. Interestingly, here, direct repeats and single-copy insertions were found in both silenced and non-silenced lines, suggesting that the presence of inverted-repeat T-DNAs and the subsequent formation of dsRNAs triggering gene silencing cannot account for all silencing events.

  12. Disruption of bbe02 by Insertion of a Luciferase Gene Increases Transformation Efficiency of Borrelia burgdorferi and Allows Live Imaging in Lyme Disease Susceptible C3H Mice.

    Directory of Open Access Journals (Sweden)

    Kamfai Chan

    Full Text Available Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future.

  13. Identification of MMV malaria box inhibitors of plasmodium falciparum early-stage gametocytes using a luciferase-based high-throughput assay.

    Science.gov (United States)

    Lucantoni, Leonardo; Duffy, Sandra; Adjalley, Sophie H; Fidock, David A; Avery, Vicky M

    2013-12-01

    The design of new antimalarial combinations to treat Plasmodium falciparum infections requires drugs that, in addition to resolving disease symptoms caused by asexual blood stage parasites, can also interrupt transmission to the mosquito vector. Gametocytes, which are essential for transmission, develop as sexual blood stage parasites in the human host over 8 to 12 days and are the most accessible developmental stage for transmission-blocking drugs. Considerable effort is currently being devoted to identifying compounds active against mature gametocytes. However, investigations on the drug sensitivity of developing gametocytes, as well as screening methods for identifying inhibitors of early gametocytogenesis, remain scarce. We have developed a luciferase-based high-throughput screening (HTS) assay using tightly synchronous stage I to III gametocytes from a recombinant P. falciparum line expressing green fluorescent protein (GFP)-luciferase. The assay has been used to evaluate the early-stage gametocytocidal activity of the MMV Malaria Box, a collection of 400 compounds with known antimalarial (asexual blood stage) activity. Screening this collection against early-stage (I to III) gametocytes yielded 64 gametocytocidal compounds with 50% inhibitory concentrations (IC50s) below 2.5 μM. This assay is reproducible and suitable for the screening of large compound libraries, with an average percent coefficient of variance (%CV) of ≤5%, an average signal-to-noise ratio (S:N) of >30, and a Z' of ∼0.8. Our findings highlight the need for screening efforts directed specifically against early gametocytogenesis and indicate the importance of experimental verification of early-stage gametocytocidal activity in the development of new antimalarial candidates for combination therapy.

  14. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins.

    Science.gov (United States)

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-11-15

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion.

  15. A novel luciferase fusion protein for highly sensitive optical imaging: from single-cell analysis to in vivo whole-body bioluminescence imaging.

    Science.gov (United States)

    Mezzanotte, Laura; Blankevoort, Vicky; Löwik, Clemens W G M; Kaijzel, Eric L

    2014-09-01

    Fluorescence and bioluminescence imaging have different advantages and disadvantages depending on the application. Bioluminescence imaging is now the most sensitive optical technique for tracking cells, promoter activity studies, or for longitudinal in vivo preclinical studies. Far-red and near-infrared fluorescence imaging have the advantage of being suitable for both ex vivo and in vivo analysis and have translational potential, thanks to the availability of very sensitive imaging instrumentation. Here, we report the development and validation of a new luciferase fusion reporter generated by the fusion of the firefly luciferase Luc2 to the far-red fluorescent protein TurboFP635 by a 14-amino acid linker peptide. Expression of the fusion protein, named TurboLuc, was analyzed in human embryonic kidney cells, (HEK)-293 cells, via Western blot analysis, fluorescence microscopy, and in vivo optical imaging. The created fusion protein maintained the characteristics of the original bioluminescent and fluorescent protein and showed no toxicity when expressed in living cells. To assess the sensitivity of the reporter for in vivo imaging, transfected cells were subcutaneously injected in animals. Detection limits of cells were 5 × 10(3) and 5 × 10(4) cells for bioluminescent and fluorescent imaging, respectively. In addition, hydrodynamics-based in vivo gene delivery using a minicircle vector expressing TurboLuc allowed for the analysis of luminescent signals over time in deep tissue. Bioluminescence could be monitored for over 30 days in the liver of animals. In conclusion, TurboLuc combines the advantages of both bioluminescence and fluorescence and allows for highly sensitive optical imaging ranging from single-cell analysis to in vivo whole-body bioluminescence imaging.

  16. Establishment and evaluation of a new highly metastatic tumor cell line 5a-D-Luc-ZsGreen expressing both luciferase and green fluorescent protein.

    Science.gov (United States)

    Sudo, Hitomi; Tsuji, Atsushi B; Sugyo, Aya; Takuwa, Hiroyuki; Masamoto, Kazuto; Tomita, Yutaka; Suzuki, Norihiro; Imamura, Takeshi; Koizumi, Mitsuru; Saga, Tsuneo

    2016-02-01

    Breast cancer is the most common cancer in women. Although advances in diagnostic imaging for early detection, surgical techniques and chemotherapy have improved overall survival, the prognosis of patients with metastatic breast cancer remains poor. Understanding cancer cell dynamics in the metastatic process is important to develop new therapeutic strategies. Experimental animal models and imaging would be powerful tools for understanding of the molecular events of multistep process of metastasis. In the present study, to develop a new cancer cell line that is applicable to bioluminescence and fluorescence imaging, we transfected the expression vector of a green fluorescent protein ZsGreen1 into a metastatic cell line 5a-D-Luc, which is a subclone of the MDA-MB-231 breast cancer cell line expressing luciferase, and established a new tumor cell line 5a-D-Luc-ZsGreen expressing both luciferase and ZsGreen1. The 5a-D-Luc-ZsGreen cells proliferate more rapidly and have a more invasive phenotype compared with 5a-D-Luc cells following intracardiac injection. Metastasis sites were easily detected in the whole body by bioluminescence imaging and in excised tissues by ex vivo fluorescence imaging. The fluorescence of 5a-D-Luc-ZsGreen cells was not lost after formalin fixation and decalcification. It enabled us to easily evaluate tumor spread and localization at the cellular level in microscopic analysis. The strong fluorescence of 5a-D-Luc-ZsGreen cells allowed for real-time imaging of circulating tumor cells in cerebral blood vessels of live animals immediately after intracardiac injection of cells using two-photon laser-scanning microscopy. These findings suggest that the 5a-D-Luc-ZsGreen cells would be a useful tool for research on mechanisms of metastatic process in animal models.

  17. Metastasizing, Luciferase Transduced MAT‑Lu Rat Prostate Cancer Models: Follow up of Bolus and Metronomic Therapy with Doxorubicin as Model Drug

    Directory of Open Access Journals (Sweden)

    Peter Woias

    2011-06-01

    Full Text Available The most fatal outcomes of prostate carcinoma (PCa result from hormone-refractory variants of the tumor, especially from metastatic spread rather than from primary tumor burden. The goal of the study was to establish and apply rat MAT-Lu prostate cancer tumor models for improved non-invasive live follow up of tumor growth and metastasis by in vivo bioluminescence. We established luciferase transduced MAT-Lu rat PCa cells and studied tumor growth and metastatic processes in an ectopic as well as orthotopic setting. An intravenous bolus treatment with doxorubicin was used to demonstrate the basic applicability of in vivo imaging to follow up therapeutic intervention in these models. In vitro analysis of tissue homogenates confirmed major metastatic spread of subcutaneous tumors into the lung. Our sensitive method, however, for the first time detects metastasis also in lymph node (11/24, spleen (3/24, kidney (4/24, liver (5/24, and bone tissue (femur or spinal cord - 5/20 and 12/20, respectively. Preliminary data of orthotopic implantation (three animals showed metastatic invasion to investigated organs in all animals but with varying preference (e.g., to lymph nodes. Intravenous bolus treatment of MAT-Lu PCa with doxorubicin reduced subcutaneous tumor growth by about 50% and the number of animals affected by metastatic lesions in lymph nodes (0/4, lung (3/6 or lumbar spine (0/2, as determined by in vivo imaging and in vitro analysis. Additionally, the possible applicability of the luciferase transduced MAT-Lu model(s to study basic principles of metronomic therapies via jugular vein catheter, using newly established active microport pumping systems, is presented.

  18. Metastasizing, Luciferase Transduced MAT-Lu Rat Prostate Cancer Models: Follow up of Bolus and Metronomic Therapy with Doxorubicin as Model Drug

    Energy Technology Data Exchange (ETDEWEB)

    Jantscheff, Peter, E-mail: jantscheff@tumorbio.uni-freiburg.de [Tumour Biology Center, Clinical Research, Department Lipids & Liposomes, Breisacher Str.117, D-79106 Freiburg (Germany); Esser, Norbert [ProQinase GmbH, Breisacher Str. 117, D-79106 Freiburg (Germany); Geipel, Andreas; Woias, Peter [Laboratory for Design of Microsystems, Department of Microsystems Engineering (IMTEK), Georges-Köhler-Allee 106, D-79110 Freiburg (Germany); Ziroli, Vittorio [Tumour Biology Center, Clinical Research, Department Lipids & Liposomes, Breisacher Str.117, D-79106 Freiburg (Germany); Goldschmidtboing, Frank [Laboratory for Design of Microsystems, Department of Microsystems Engineering (IMTEK), Georges-Köhler-Allee 106, D-79110 Freiburg (Germany); Massing, Ulrich [Tumour Biology Center, Clinical Research, Department Lipids & Liposomes, Breisacher Str.117, D-79106 Freiburg (Germany)

    2011-06-17

    The most fatal outcomes of prostate carcinoma (PCa) result from hormone-refractory variants of the tumor, especially from metastatic spread rather than from primary tumor burden. The goal of the study was to establish and apply rat MAT-Lu prostate cancer tumor models for improved non-invasive live follow up of tumor growth and metastasis by in vivo bioluminescence. We established luciferase transduced MAT-Lu rat PCa cells and studied tumor growth and metastatic processes in an ectopic as well as orthotopic setting. An intravenous bolus treatment with doxorubicin was used to demonstrate the basic applicability of in vivo imaging to follow up therapeutic intervention in these models. In vitro analysis of tissue homogenates confirmed major metastatic spread of subcutaneous tumors into the lung. Our