WorldWideScience

Sample records for line resonances flrs

  1. Spatial Variations of Poloidal and Toroidal Mode Field Line Resonances Observed by MMS

    Science.gov (United States)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Anderson, B. J.; Kepko, L.; Nakamura, R.; Plaschke, F.; Torbert, R. B.

    2017-12-01

    Field line resonances (FLRs) are magnetosphere's responses to solar wind forcing and internal instabilities generated by solar wind-magnetospheric interactions. They are standing waves along the Earth's magnetic field lines oscillating in either poloidal or toroidal modes. The two types of waves have their unique frequency characteristics. The eigenfrequency of FLRs is determined by the length of the field line and the plasma density, and thus gradually changes with L. For toroidal mode oscillations with magnetic field perturbations in the azimuthal direction, ideal MHD predicts that each field line oscillates independently with its own eigenfrequency. For poloidal mode waves with field lines oscillating radially, their frequency cannot change with L easily as L shells need to oscillate in sync to avoid efficient damping due to phase mixing. Observations, mainly during quiet times, indeed show that poloidal mode waves often exhibit nearly constant frequency across L shells. Our recent observations, on the other hand, reveal a clear L-dependent frequency trend for a long lasting storm-time poloidal wave event, indicating the wave can maintain its power with changing frequencies for an extended period [Le et al., 2017]. The spatial variation of the frequency shows discrete spatial structures. The frequency remains constant within each discrete structure that spans about 1 REalong L, and changes discretely. We present a follow-up study to investigate spatial variations of wave frequencies using the Wigner-Ville distribution. We examine both poloidal and toroidal waves under different geomagnetic conditions using multipoint observations from MMS, and compare their frequency and occurrence characteristics for insights into their generation mechanisms. Reference: Le, G., et al. (2017), Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm, Geophys. Res. Lett., 44, 3456-3464, doi:10.1002/2017GL073048.

  2. Pseudo-field line resonances in ground Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-02-01

    Full Text Available In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a has observationally established that a solar wind pressure pulse (stepwise pressure variation produces a twin-vortex (single vortex current system over the ionosphere; second, Sarafopoulos (2004b has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20RE. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5RE in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude

  3. Pseudo-field line resonances in ground Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-02-01

    Full Text Available In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a has observationally established that a solar wind pressure pulse (stepwise pressure variation produces a twin-vortex (single vortex current system over the ionosphere; second, Sarafopoulos (2004b has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20RE. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5RE in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude dependent phase-shifts of 180°, at the

  4. Transmission Line Resonator Segmented with Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2016-01-01

    Transmission line resonators are often used as coils in high field MRI. Due to distributed nature of such resonators, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the resonator. The equations for optimal...... values of evenly distributed capacitors are presented. The performances of the segmented resonator and a regular transmission line resonator are compared....

  5. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  6. Modeling Pc4 Pulsations in Two and a Half Dimensions with Comparisons to Van Allen Probes Observations

    Science.gov (United States)

    McEachern, Charles A.

    Field line resonances---that is, Alfven waves bouncing between the northern and southern foot points of a geomagnetic field line---serve to energize magnetospheric particles through drift-resonant interactions, carry energy from high to low altitude, induce currents in the magnetosphere, and accelerate particles into the atmosphere. Wave structure and polarization significantly impact the execution these roles. The present work showcases a new two and a half dimensional code, Tuna, ideally suited to model FLRs, with the ability to consider large-but-finite azimuthal modenumbers, coupling between the poloidal, toroidal, and compressional modes, and arbitrary harmonic structure. Using Tuna, the interplay between Joule dissipation and poloidal-to-toroidal rotation is considered for both dayside and nightside conditions. An attempt is also made to demystify giant pulsations, a class of FLR knows for its distinctive ground signatures. Numerical results are supplemented by a survey of ˜700 FLRs using data from the Van Allen Probes, the first such survey to characterize each event by both polarization and harmonic. The combination of numerical and observational results suggests an explanation for the disparate distributions observed in poloidal and toroidal FLR events.

  7. Los resonance lines in promethiumlike heavy ions

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki; Kobayashi, Yusuke; Kato, Daiji; Sakaue, Hiroyuki A.; Murakami, Izumi

    2016-01-01

    Identifying the ns - np resonance lines in alkali-metal-like ions is an important issue in fusion plasma science in the view of spectroscopic diagnostics and radiation power loss. Whereas for n=2, 3 and 4 these resonances are prominent and well studied, so far no one could clearly identify the resonance lines for n=5 in the promethiumlike sequence. We have now experimentally clarified the reason for the 'lost resonance lines. In the present study, highly-charged bismuth ions have been studied using a compact electron beam ion trap (EBIT). Extreme ultraviolet emission from the bismuth ions produced and trapped in the EBIT is observed with a grazing-incidence flat-field spectrometer. The energy dependent spectra are compared with a collisional-radiative model calculation, and we show that the 5s - 5p resonance lines are very weak in plasma with a wide range of electron density due to the presence of a long-lived metastable state. (author)

  8. A case study testing the cavity mode model of the magnetosphere

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-07-01

    Full Text Available Based on a case study we test the cavity mode model of the magnetosphere, looking for eigenfrequencies via multi-satellite and multi-instrument measurements. Geotail and ACE provide information on the interplanetary medium that dictates the input parameters of the system; the four Cluster satellites monitor the magnetopause surface waves; the POLAR (L=9.4 and LANL 97A (L=6.6 satellites reveal two in-situ monochromatic field line resonances (FLRs with T=6 and 2.5 min, respectively; and the IMAGE ground magnetometers demonstrate latitude dependent delays in signature arrival times, as inferred by Sarafopoulos (2004b. Similar dispersive structures showing systematic delays are also extensively scrutinized by Sarafopoulos (2005 and interpreted as tightly associated with the so-called pseudo-FLRs, which show almost the same observational characteristics with an authentic FLR. In particular for this episode, successive solar wind pressure pulses produce recurring ionosphere twin vortex Hall currents which are identified on the ground as pseudo-FLRs. The BJN ground magnetometer records the pseudo-FLR (alike with the other IMAGE station responses associated with an intense power spectral density ranging from 8 to 12 min and, in addition, two discrete resonant lines with T=3.5 and 7 min. In this case study, even though the magnetosphere is evidently affected by a broad-band compressional wave originated upstream of the bow shock, nevertheless, we do not identify any cavity mode oscillation within the magnetosphere. We fail, also, to identify any of the cavity mode frequencies proposed by Samson (1992.

    Keywords. Magnetospheric physics (Magnetosphereionosphere interactions; Solar wind-magnetosphere interactions; MHD waves and instabilities

  9. Line shapes of atomic-candle-type Rabi resonances

    International Nuclear Information System (INIS)

    Coffer, J.G.; Camparo, J.C.; Sickmiller, B.; Presser, A.

    2002-01-01

    When atoms interact with a phase-modulated field, the probability of finding the atom in the excited-state oscillates at the second harmonic of the modulation frequency, 2ω m . The amplitude of this oscillating probability is a resonant function of the Rabi frequency Ω, and this is termed a β Rabi resonance. In this work, we examine the line shape of the β Rabi resonance both theoretically and experimentally. We find that a small-signal theory of the β-Rabi-resonance condition captures much of the line shape's character, and, in particular, that the resonance's 'line Q' (i.e., 2δΩ 1/2 /Ω) is proportional to the modulation frequency. This result can be applied to the atomic candle, where β Rabi resonances are employed to stabilize field strength. Considering our results in the context of developing an optical atomic candle, we find that a free-running diode laser's intensity noise could be improved by orders of magnitude using the atomic candle concept

  10. Resonance line-profiles in galactic disk UV-bright stars

    International Nuclear Information System (INIS)

    Carrasco, L.; Costero, R.

    1987-01-01

    We have made a comparative analysis of UV resonance line-profiles in O-type stars members of young clusters and OB associations, with those of hot stars located away from sites of recent star formation (including ''runaway'' stars). The resonance line-profiles are found to be generally dominated by stellar winds that appear to depend mainly on the surface gravity and temperature of the star, and not on its mass. We also present the C IV, Si IV and N V resonance line-profiles for eleven stars not published in the previous two papers. The use of only the largest stellar wind velocity detectable in the resonance lines as a stellar population indicator, is disputed. (author)

  11. Characterization of superconducting transmission line resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.

  12. Large field-of-view transmission line resonator for high field MRI

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Johannesson, Kristjan Sundgaard; Boer, Vincent

    2016-01-01

    Transmission line resonators is often a preferable choice for coils in high field magnetic resonance imaging (MRI), because they provide a number of advantages over traditional loop coils. The size of such resonators, however, is limited to shorter than half a wavelength due to high standing wave....... Achieved magnetic field distribution is compared to the conventional transmission line resonator. Imaging experiments are performed using 7 Tesla MRI system. The developed resonator is useful for building coils with large field-of-view....

  13. Wireless overhead line temperature sensor based on RF cavity resonance

    International Nuclear Information System (INIS)

    Ghafourian, Maryam; Nezhad, Abolghasem Zeidaabadi; Bridges, Greg E; Thomson, Douglas J

    2013-01-01

    The importance of maximizing power transfer through overhead transmission lines necessitates the use of dynamic power control to keep transmission line temperatures within acceptable limits. Excessive conductor operating temperatures lead to an increased sag of the transmission line conductor and may reduce their expected life. In this paper, a passive wireless sensor based on a resonant radio frequency (RF) cavity is presented which can be used to measure overhead transmission line temperature. The temperature sensor does not require a power supply and can be easily clamped to the power line with an antenna attached. Changing temperature causes a change of cavity dimensions and a shift in resonant frequency. The resonant frequency of the cavity can be interrogated wirelessly. This temperature sensor has a resolution of 0.07 °C and can be interrogated from distances greater than 4.5 m. The sensor has a deviation from linearity of less than 2 °C. (paper)

  14. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    International Nuclear Information System (INIS)

    Naqui, J.; Su, L.; Mata, J.; Martín, F.

    2015-01-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc

  15. Dielectronic satellites to the Ne-like yttrium resonance lines

    International Nuclear Information System (INIS)

    Osterheld, A.L.; Nilsen, J.; Khakhalin, S.Ya.; Faenov, A.Ya.; Pikuz, S.A.

    1996-01-01

    We present a detailed analysis of the spectrum of satellite transitions to the n=2-3 and n=2-4 Ne-like yttrium resonance lines. Satellite lines from the double excited 2s 2 2p 5 3l3l', 2s 2 2p 5 3l4l', 2s2p 6 3l3l' and 2s2p 6 3l4l' levels of Na-like Y as well as from 2s 2 2p 5 3l3l'3l '' and 2s2p 6 3l3l'3l '' levels of Mg-like Y were observed in spectra from a laser-produced plasma. The X-ray spectra were recorded with high spectral resolution λ/Δλ∼3500-5000 in the wavelength region of the n=2-3 Ne-like resonance lines and with λ/Δλ>1000 in the region of the n=2-4 Ne-like resonance lines. A total of more than 50 spectral features were identified, and their wavelengths were measured. A simple intensity model was developed, which agreed well with the measured spectra and assisted the line identification. The consistency of the model for different spectral regions demonstrates the potential of the Na-like and Mg-like satellite lines for diagnosing plasma conditions. (orig.)

  16. On field line resonances of hydromagnetic Alfven waves in dipole magnetic field

    International Nuclear Information System (INIS)

    Chen, Liu; Cowley, S.C.

    1989-07-01

    Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs

  17. Dielectronic satellites to the Ne-like yttrium resonance lines

    Energy Technology Data Exchange (ETDEWEB)

    Osterheld, A.L. [Lawrence Livermore National Lab., CA (United States); Nilsen, J. [Lawrence Livermore National Lab., CA (United States); Khakhalin, S.Ya. [MISDC, VNIIFTRI, Mendeleevo (Russian Federation); Faenov, A.Ya. [MISDC, VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, S.A. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.

    1996-09-01

    We present a detailed analysis of the spectrum of satellite transitions to the n=2-3 and n=2-4 Ne-like yttrium resonance lines. Satellite lines from the double excited 2s{sup 2}2p{sup 5}3l3l`, 2s{sup 2}2p{sup 5}3l4l`, 2s2p{sup 6}3l3l` and 2s2p{sup 6}3l4l` levels of Na-like Y as well as from 2s{sup 2}2p{sup 5}3l3l`3l{sup ``} and 2s2p{sup 6}3l3l`3l{sup ``} levels of Mg-like Y were observed in spectra from a laser-produced plasma. The X-ray spectra were recorded with high spectral resolution {lambda}/{Delta}{lambda}{approx}3500-5000 in the wavelength region of the n=2-3 Ne-like resonance lines and with {lambda}/{Delta}{lambda}>1000 in the region of the n=2-4 Ne-like resonance lines. A total of more than 50 spectral features were identified, and their wavelengths were measured. A simple intensity model was developed, which agreed well with the measured spectra and assisted the line identification. The consistency of the model for different spectral regions demonstrates the potential of the Na-like and Mg-like satellite lines for diagnosing plasma conditions. (orig.).

  18. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    Directory of Open Access Journals (Sweden)

    Martina Gerken

    2013-06-01

    Full Text Available Multiferroic composite magnetoelectric (ME sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line

  19. Radiofrequency spark chambers and delay line resonators

    International Nuclear Information System (INIS)

    Sayag, Jacques

    1971-01-01

    According to a suggestion of A. Kastler, a spark chamber was excited by an undamped radiofrequency pulse and tracks about 1 mm wide obtained; the result was interpreted by computation of the coefficients of electronic amplification and partial ambipolar diffusion. This work led us to the construction of a new fast triggering undamped wave-train generator of very high tension (patent taken out by the C.E.A. under the no.: EN 7 134 650 the 27.9.1971). Since this apparatus uses a resonant storage line, its design implied a precise knowledge of high impedance delay lines. The experimental radiofrequency spectra of the input impedance of opened or short-circuited lines were plotted completely and analysed by the circuits theory, new measuring methods were established, dispersion relations accurately checked and the equivalence of the formulas, within the third order, with theses of Debye's Dipolar Absorption demonstrated. General properties of Hilbert's transform were also investigated. From the experimental point of view, the electromagnetic energy storage process was extended to the case of a liquid nitrogen-immersed resonant delay line. The good behavior of the cryogenic experiment, where the main difficulty of icing was overcame by the construction of special electrodes, offers great promise for extrapolation to superconductivity. (author) [fr

  20. Resonance broadening of Hg lines as a density diagnostic in high intensity discharge lamps

    International Nuclear Information System (INIS)

    Lawler, J E

    2004-01-01

    The use of width measurements on resonance broadened lines of Hg as a density diagnostic in high intensity discharge (HID) lamps is reviewed and further developed in this paper. Optical depths of Hg I lines at 491.6 nm, 577.0 nm, and 1014 nm are computed as a function of temperature to confirm that these lines are optically thin in most HID lamps. The effect of quadratic and quartic radial temperature variation on the width of resonance broadened lines is computed for arc core temperatures from 4000 K to 7000 K. Such variations in temperature, and inverse variations in Hg density, are found to increase the line widths by less than 10% for 'side-on' emission measurements averaged over the arc radius. Theoretical profiles of resonance broadened spectral lines, both radially averaged and as a function of chord offset, are presented. Observations of resonance broadened lines in a metal-halide HID lamp are presented and analysed. It is concluded that the widths of resonance broadened lines provide a convenient and reliable diagnostic for the arc core Hg density but are generally not very sensitive to the radial temperature and Hg density gradient

  1. Thirteen pump-probe resonances of the sodium D1 line

    International Nuclear Information System (INIS)

    Wong, Vincent; Boyd, Robert W.; Stroud, C. R. Jr.; Bennink, Ryan S.; Marino, Alberto M.

    2003-01-01

    We present the results of a pump-probe laser spectroscopic investigation of the Doppler-broadened sodium D1 resonance line. We find 13 resonances in the resulting spectra. These observations are well described by the numerical predictions of a four-level atomic model of the hyperfine structure of the sodium D1 line. We also find that many, but not all, of these features can be understood in terms of processes originating in a two-level or three-level subset of the full four-level model. The processes we observed include forward near-degenerate four-wave mixing and saturation in a two-level system, difference-frequency crossing and nondegenerate four-wave mixing in a three-level V system, electromagnetically induced transparency and optical pumping in a three-level lambda system, cross-transition resonance in a four-level double-lambda system, and conventional optical pumping. Most of these processes lead to sub-Doppler or even subnatural linewidths. The dependence of these resonances on the pump intensity and pump detuning from atomic resonance are also studied

  2. Argon line broadening by neutral atoms and application to the measurement of oscillator strengths of AI resonance lines

    International Nuclear Information System (INIS)

    Vallee, O.; Ranson, P.; Chapelle, J.

    1977-01-01

    AI line broadening was studied from collisions between neutral argon atoms (3p 5 4p-3p 5 4s transitions) in a weakly ionised plasma jet (neutral atoms temperature T 0 approximately 4000K, electrons temperature Tsub(e) approximately 6000K, electronic density Nsub(e) 15 cm -3 , ionisation rate α -4 , and pressure range from 1 to 3 kg/cm 2 ). A satisfactory description of Van der Waals broadened lines is obtained by means of a Lennard-Jones potential. Measurement of line widths whose corresponding transitions occur on resonant levels, gives with relatively good accuracy the oscillator strength of the argon resonance lines [fr

  3. Resonant Alfven waves on auroral field lines

    International Nuclear Information System (INIS)

    Chiu, Y.T.

    1987-01-01

    It is shown that resonant Alfven waves on dipole magnetic field geometry and plasma distributions suitable for auroral field lines can be conveniently treated in the theory of Mathieu functions. Resurgent interest in invoking large-scale Alfven waves to structure some elements of auroral electrodynamics calls for interpretation of measured perpendicular electric and magnetic disturbance fields in terms of Alfven waves. The ability to express the resonant eigenmodes in closed form in terms of Mathieu functions allows for convenient tests of the Alfven wave structuring hypothesis. Implications for current vector electric and magnetic disturbance measurements are discussed

  4. Use of Green functions in line shape problems in nuclear Magnetic resonance

    International Nuclear Information System (INIS)

    Martin, M.; Moreno, J.A.

    1982-01-01

    A method based on the two times Green function formalism is presented. It permits the straightforward determination of the line shape in Magnetic Resonance experiments together with its temperature behavior. Model calculations are made on a two-spin system attached to a one-dimensional rotor obtaining the temperature dependence of its Magnetic Resonance line shape and second moment

  5. Excitation of helium resonance lines in solar flares

    International Nuclear Information System (INIS)

    Porter, J.G.; Gebbie, K.B.; November, L.J.; Joint Institute for Laboratory Astrophysics, Boulder, CO; National Solar Observatory, Sunspot, NM)

    1985-01-01

    Helium resonance line intensities are calculated for a set of six flare models corresponding to two rates of heating and three widely varying incident fluxes of soft X-rays. The differing ionization and excitation equilibria produced by these models, the processes which dominate the various cases, and the predicted helium line spectra are examined. The line intensities and their ratios are compared with values derived from Skylab NRL spectroheliograms for a class M flare, thus determining which of these models most nearly represents the density vs temperature structure and soft X-ray flux in the flaring solar transition region, and the temperature and dominant mechanaism of formation of the helium line spectrum during a flare. 26 references

  6. Experimental verification of the line-shape distortion in resonance Auger spectra

    International Nuclear Information System (INIS)

    Aksela, S.; Kukk, E.; Aksela, H.; Svensson, S.

    1995-01-01

    When the mean excitation energy and the width of a broad photon band are varied the Kr 3d 5/2 -1 5p→4p -2 5p resonance Auger electron lines show strong asymmetry and their average kinetic energies shift. Even extra peaks appear. Our results demonstrate experimentally, for the first time, that the incident photon energy distribution has very crucial importance on the resonance Auger line shape and thus on the reliable data analysis of complicated Auger spectra

  7. Off-line tests of superconducting resonators of the JAERI tandem booster

    International Nuclear Information System (INIS)

    Shibata, Michihiro; Ishii, Tetsuro; Takeuchi, Suehiro

    1993-01-01

    The JAERI tandem booster linac, which consists of 46 superconducting quarter wave resonators, is under construction. Off-line tests for resonators were performed. Accelerating field levels of 7MV/m were obtained at an rf input of 4W with most resonators. A maximum field level of 12.7MV/m was obtained. The Q-value was degraded when resonators were cooled down slowly around a temperature of 120K. We investigated this phenomenon by changing the cooling rate. (author)

  8. Analysis and design of a coupled coaxial line TEM resonator for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Benahmed, Nasreddine; Feham, Mohammed; Khelif, M'Hamed

    2006-01-01

    In this paper, we have successfully realized a numerical tool to analyse and to design an n-element unloaded coaxial line transverse electromagnetic (TEM) resonator. This numerical tool allows the determination of the primary parameters, matrices [L], [C] and [R], and simulates the frequency response of S 11 at the RF port of the designed TEM resonator. The frequency response permits evaluation of the unloaded quality factor Q 0 . As an application, we present the analysis and the design of an eight-element unloaded TEM resonator for animal studies at 4.7 T. The simulated performance has a -62.81 dB minimum reflection and a quality factor of 260 around 200 MHz

  9. Unresolved dielectronic satellites of the resonance line of heliumlike iron (Fe XXV)

    International Nuclear Information System (INIS)

    Bitter, M.; von Goeler, S.; Hill, K.W.; Horton, R.; Johnson, D.; Roney, W.; Sauthoff, N.; Silver, E.; Stodiek, W.

    1981-02-01

    (1s 2 nl - 1s2pnl, n greater than or equal to 3) dielectronic satellites of the resonance line of Fe XXV at 1.85 A have been observed from PLT (Princeton Large Torus) tokamak discharges and are used for a detailed comparison with theory. The necessary corrections for Doppler broadening measurements are discussed, and accurate satellite to resonance line ratios allowing for a determination of the total dielectronic recombination rate of Fe XXV are derived

  10. Mechanically Reconfigurable Microstrip Lines Loaded with Stepped Impedance Resonators and Potential Applications

    Directory of Open Access Journals (Sweden)

    J. Naqui

    2014-01-01

    Full Text Available This paper is focused on exploring the possibilities and potential applications of microstrip transmission lines loaded with stepped impedance resonators (SIRs etched on top of the signal strip, in a separated substrate. It is shown that if the symmetry plane of the line (a magnetic wall is perfectly aligned with the electric wall of the SIR at the fundamental resonance, the line is transparent. However, if symmetry is somehow ruptured, a notch in the transmission coefficient appears. The notch frequency and depth can thus be mechanically controlled, and this property can be of interest for the implementation of sensors and barcodes, as it is discussed.

  11. Active high-power RF pulse compression using optically switched resonant delay lines

    International Nuclear Information System (INIS)

    Tantawi, S.G.; Ruth, R.D.; Vlieks, A.E.

    1996-11-01

    The authors present the design and a proof of principle experimental results of an optically controlled high power rf pulse compression system. The design should, in principle, handle few hundreds of Megawatts of power at X-band. The system is based on the switched resonant delay line theory. It employs resonant delay lines as a means of storing rf energy. The coupling to the lines is optimized for maximum energy storage during the charging phase. To discharge the lines, a high power microwave switch increases the coupling to the lines just before the start of the output pulse. The high power microwave switch, required for this system, is realized using optical excitation of an electron-hole plasma layer on the surface of a pure silicon wafer. The switch is designed to operate in the TE 01 mode in a circular waveguide to avoid the edge effects present at the interface between the silicon wafer and the supporting waveguide; thus, enhancing its power handling capability

  12. Line ratios and wavelengths of helium-like argon n=2 satellite transitions and resonance lines

    International Nuclear Information System (INIS)

    Biedermann, C.; Radtke, R.; Fournier, K.

    2003-01-01

    The characteristic X-ray emission from helium-like argon was investigated as a mean to diagnose hot plasmas. We have measured the radiation from n=2-1 parent lines and from KLn dielectronic recombination satellites with high wavelength resolution as function of the excitation energy using the Berlin Electron Beam Ion Trap. Values of wavelength relative to the resonance and forbidden line are tabulated and compared with references. The line intensity observed over a wide range of excitation energies is weighted with a Maxwellian electron-energy distribution to analyze line ratios as function of plasma temperature. Line ratios (j+z)/w and k/w compare nicely with theoretical predictions and demonstrate their applicability as temperature diagnostic. The ratio z/(x+y) shows not to depend on the electron density

  13. Parallel inhomogeneity and the Alfven resonance. 1: Open field lines

    Science.gov (United States)

    Hansen, P. J.; Harrold, B. G.

    1994-01-01

    In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.

  14. Measurements of line overlap for resonant spoiling of x-ray lasing transitions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Elliott, S.R.; MacGowan, B.J.; Nilsen, J.

    1994-06-01

    High-precision measurements are presented of candidate line pairs for resonant spoiling of x-ray lasing transitions in the nickel-like W 46+ , the neon-like Fe 16+ , and the neon-like La 47+ x-ray lasers. Our measurements were carried out with high-resolution crystal spectrometers, and a typical precision of 20--50 ppM was achieved. While most resonances appear insufficient for effective photo-spoiling, two resonance pairs are identified that provide a good overlap. These are the 4p 1/2 → 3d 3/2 transition in nickel-like W 46+ with the 2p 3/2 → 1s 1/2 transition in hydrogenic Al 12+ , and the 3s 1/2 → 2p 3/2 transition in neon-like La 47+ with the 1 1 S 0 -2 1 P 1 line in heliumlike Ti 20+

  15. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    International Nuclear Information System (INIS)

    Klofai, Yerima; Essimbi, B Z; Jaeger, D

    2011-01-01

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  16. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    Energy Technology Data Exchange (ETDEWEB)

    Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

    2011-10-15

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  17. Simulating the Mg II NUV Spectra & C II Resonance Lines During Solar Flares

    Science.gov (United States)

    Kerr, Graham Stewart; Allred, Joel C.; Leenaarts, Jorrit; Butler, Elizabeth; Kowalski, Adam

    2017-08-01

    The solar chromosphere is the origin of the bulk of the enhanced radiative output during solar flares, and so comprehensive understanding of this region is important if we wish to understand energy transport in solar flares. It is only relatively recently, however, with the launch of IRIS that we have routine spectroscopic flarea observations of the chromsphere and transition region. Since several of the spectral lines observed by IRIS are optically thick, it is necessary to use forward modelling to extract the useful information that these lines carry about the flaring chromosphere and transition region. We present the results of modelling the formation properties Mg II resonance lines & subordinate lines, and the C II resonance lines during solar flares. We focus on understanding their relation to the physical strucutre of the flaring atmosphere, exploiting formation height differences to determine if we can extract information about gradients in the atmosphere. We show the effect of degrading the profiles to the resolution of the IRIS, and that the usual observational techniques used to identify the line centroid do a poor job in the early stages of the flare (partly due to multiple optically thick line components). Finally, we will tentatively comment on the effects that 3D radiation transfer may have on these lines.

  18. Observations of polar patches generated by solar wind Alfvén wave coupling to the dayside magnetosphere

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    1999-04-01

    Full Text Available A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz < 0. The ionosondes measured electron densities of up to 9 × 1011 m-3 in the patch center, an increase above the density minimum between patches by a factor of \\sim4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs. In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations

  19. Effects of pairing correlation on low-lying quasi-particle resonance in neutron drip-line nuclei

    OpenAIRE

    Kobayashi, Yoshihiko; Matsuo, Masayuki

    2015-01-01

    We discuss effects of pairing correlation on quasi-particle resonance. We analyze in detail how the width of low-lying quasi-particle resonance is governed by the pairing correlation in the neutron drip-line nuclei. We consider the 46Si + n system to discuss low-lying p wave quasi-particle resonance. Solving the Hartree-Fock-Bogoliubov equation in the coordinate space with scattering boundary condition, we calculate the phase shift, the elastic cross section, the resonance width and the reson...

  20. [Influence of cold spot temperature on 253.7 nm resonance spectra line of electrodeless discharge lamps].

    Science.gov (United States)

    Dong, Jin-yang; Zhang, Gui-xin; Wang, Chang-quan

    2012-01-01

    As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.

  1. Calculation of Resonance Interaction Effects Using a Rational Approximation to the Symmetric Resonance Line Shape Function

    International Nuclear Information System (INIS)

    Haeggblom, H.

    1968-08-01

    The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances

  2. Calculation of Resonance Interaction Effects Using a Rational Approximation to the Symmetric Resonance Line Shape Function

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H

    1968-08-15

    The method of calculating the resonance interaction effect by series expansions has been studied. Starting from the assumption that the neutron flux in a homogeneous mixture is inversely proportional to the total cross section, the expression for the flux can be simplified by series expansions. Two types of expansions are investigated and it is shown that only one of them is generally applicable. It is also shown that this expansion gives sufficient accuracy if the approximate resonance line shape function is reasonably representative. An investigation is made of the approximation of the resonance shape function with a Gaussian function which in some cases has been used to calculate the interaction effect. It is shown that this approximation is not sufficiently accurate in all cases which can occur in practice. Then, a rational approximation is introduced which in the first order approximation gives the same order of accuracy as a practically exact shape function. The integrations can be made analytically in the complex plane and the method is therefore very fast compared to purely numerical integrations. The method can be applied both to statistically correlated and uncorrelated resonances.

  3. The Ratio of the Resonance Line to Intercombination Line in Neonlike Ions

    Science.gov (United States)

    Panchenko, D.; Andrianarijaona, Vm; Brown, Gv; Hell, N.; Beiersdorfer, P.

    2017-04-01

    We present the measurement results of the intensity ratios of astrophysically important 1s22s22p1/2 53d3/2 -> 1s22s22p6 resonance line to the 1s2 2s2 2p3/253d5/2 -> 1s22s22p6 intercombination line for Ne-like Kr26+ and Mo32+. The experiment was done at the EBIT-I electron beam ion trap at Lawrence Livermore National Laboratory and utilized an x-ray microcalorimeter. The Mo32+ experiment is the highest Z-measurement of such type to date, where the dominant role of the intercombination line, known to increase with Z, puts our measurement firmly into the relativistic regime. Compared to the earlier measurements of ions with lower atomic numbers, the measurement for Mo32+ shows much a closer agreement with theory. Our results support the hypothesis that the disagreement should narrow with atomic number. This implies that the disagreement with theory may be confined to the range of atomic numbers where the correlation effects are largest. This work was performed under the auspices of the U.S. DoE by LLNL, contract DE-AC52-07NA27344, and was supported in part by NASA's APRA program and by the ESA, contract 4000114313/15/NL/CB.

  4. On the synthesis of resonance lines in dynamical models of structured hot-star winds

    Science.gov (United States)

    Puls, J.; Owocki, S. P.; Fullerton, A. W.

    1993-01-01

    We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles are then derived from formal solution integration using this source function. Two more approximate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10% or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.

  5. Observations of polar patches generated by solar wind Alfvén wave coupling to the dayside magnetosphere

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    Full Text Available A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz < 0. The ionosondes measured electron densities of up to 9 × 1011 m-3 in the patch center, an increase above the density minimum between patches by a factor of sim4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs. In the solar

  6. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.

    2016-10-21

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  7. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Andreeva, C.; Cinins, A.; Markovski, A.; Iftikhar, Z.; Ekers, Aigars; Ryabtsev, I. I.

    2016-01-01

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  8. Transmission line model for coupled rectangular double split‐ring resonators

    DEFF Research Database (Denmark)

    Yan, Lei; Tang, Meng; Krozer, Viktor

    2011-01-01

    In this work, a model based on a coupled transmission line formulation is developed for microstrip rectangular double split‐ring resonators (DSRRs). This model allows using the physical dimensions of the DSRRs as an input avoiding commonly used extraction of equivalent parameters. The model inclu...... simulations of the DSRR structures. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1311–1315, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25988...

  9. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Measurement of the Auger decay after resonance excitation of Xe 4d and Kr 3d resonance lines

    International Nuclear Information System (INIS)

    Eberhardt, W.; Kalkoffen, G.; Kunz, C.

    1978-03-01

    The Nsub(4,5) 0sub(2,3) 0sub(2,3) Auger spectra from Xe and the Msub(4,5) Nsub(2,3) Nsub(2,3) Auger spectra from Kr are investigated for different photon energies around threshold of ionization. When exciting at the resonance line (4d 9 5s 2 5p 6 6p for Xe and 3d 9 4s 2 4p 6 5p for Kr) we observe the usual Auger multiplet structure to be shifted to higher kinetic energies. Additionally, new lines appear which can be assigned to shake-up processes int he Xe + and Kr + ions. (orig.) [de

  11. Calculation of self-absorption coefficients of calcium resonance lines in the case of a CaCl2-water plasma

    International Nuclear Information System (INIS)

    Hannachi, R.; Cressault, Y.; Teulet, Ph.; Gleizes, A.; Lakhdar, Z. Ben

    2008-01-01

    The resonance escape factors for the lines emitted by a neutral calcium atom Ca I at 4226.73 A and of ionic calcium Ca II at 3933.66 A and at 3968.47 A are calculated assuming a Voigt profile and in the case of CaCl 2 -water plasma. The dependence of the escape factor on the optical thickness f 0 from the line center which itself depends on the two main spectral line shape broadening mechanisms (pressure and Doppler effects) are considered. The variation of the resonance escape factors with the temperature, the CaCl 2 molar proportion and the size of the plasma are also investigated. This calculation is useful for the application of Laser-Induced Breakdown Spectroscopy in the quantitative analysis of elemental composition. Its application allows us to reduce the non-linearities in the relation between resonance lines intensities of calcium in our case and its concentration

  12. Shape of the Hα emission line in non resonant charge exchange in hydrogen plasmas

    International Nuclear Information System (INIS)

    Susino Bueno, A.; Zurro Hernandez, B.

    1977-01-01

    The Hα line shape emitted from a maxwellian hydrogen plasma and produced by non resonant change exchange has been calculated. Its explicit shape depends on the ion temperature, on background neutral energy and on the relative shape of the collision cross section. A comparison between theoretical and experimental shapes of the Hα line is carried out to check the model and to deduce the ion plasma temperature. (author) [es

  13. Quality factor of a transmission line coupled coplanar waveguide resonator

    Energy Technology Data Exchange (ETDEWEB)

    Besedin, Ilya [National University for Science and Technology (MISiS), Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Menushenkov, Alexey P. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2018-12-15

    We investigate analytically the coupling of a coplanar waveguide resonator to a coplanar waveguide feedline. Using a conformal mapping technique we obtain an expression for the characteristic mode impedances and coupling coefficients of an asymmetric multi-conductor transmission line. Leading order terms for the external quality factor and frequency shift are calculated. The obtained analytical results are relevant for designing circuit-QED quantum systems and frequency division multiplexing of superconducting bolometers, detectors and similar microwave-range multi-pixel devices. (orig.)

  14. Transmission-line resonators for the study of individual two-level tunneling systems

    Science.gov (United States)

    Brehm, Jan David; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey V.; Lisenfeld, Jürgen

    2017-09-01

    Parasitic two-level tunneling systems (TLS) emerge in amorphous dielectrics and constitute a serious nuisance for various microfabricated devices, where they act as a source of noise and decoherence. Here, we demonstrate a new test bed for the study of TLS in various materials which provides access to properties of individual TLS as well as their ensemble response. We terminate a superconducting transmission-line resonator with a capacitor that hosts TLS in its dielectric. By tuning TLS via applied mechanical strain, we observe the signatures of individual TLS strongly coupled to the resonator in its transmission characteristics and extract the coupling components of their dipole moments and energy relaxation rates. The strong and well-defined coupling to the TLS bath results in pronounced resonator frequency fluctuations and excess phase noise, through which we can study TLS ensemble effects such as spectral diffusion, and probe theoretical models of TLS interactions.

  15. Ferromagnetic resonance frequency increase and resonance line broadening of a ferromagnetic Fe–Co–Hf–N film with in-plane uniaxial anisotropy by high-frequency field perturbation

    International Nuclear Information System (INIS)

    Seemann, K.; Leiste, H.; Krüger, K.

    2013-01-01

    Soft ferromagnetic Fe-Co-Hf-N films, produced by reactive r.f. magnetron sputtering, are useful to study the ferromagnetic resonance (FMR) by means of frequency domain permeability measurements up to the GHz range. Films with the composition Fe 33 Co 43 Hf 10 N 14 exhibit a saturation polarisation J s of around 1.35 T. They are consequently considered as being uniformly magnetised due to an in-plane uniaxial anisotropy of approximately μ 0 H u ≈4.5 m T after annealing them, e.g., at 400 °C in a static magnetic field for 1 h. Being exposed to a high-frequency field, the precession of magnetic moments leads to a marked frequency-dependent permeability with a sharp Lorentzian shaped imaginary part at around 2.33 GHz (natural resonance peak), which is in a very good agreement with the modified Landau–Lifschitz–Gilbert (LLG) differential equation. A slightly increased FMR frequency and a clear increase in the resonance line broadening due to an increase of the exciting high-frequency power (1–25.1 mW), considered as an additional perturbation of the precessing system of magnetic moments, could be discovered. By solving the homogenous LLG differential equation with respect to the in-plane uniaxial anisotropy, it was revealed that the high-frequency field perturbation impacts the resonance peak position f FMR and resonance line broadening Δf FMR characterised by a completed damping parameter α=α eff +Δα. Adapted from this result, the increase in f FMR and decrease in lifetime of the excited level of magnetic moments associated with Δf FMR , similar to a spin-½ particle in a static magnetic field, was theoretically elaborated as well as compared with experimental data. - Highlights: • Impact on the resonance frequency and resonance line by the high-frequency power. • Theoretic approach by solving the LLG differential equation. • Experimental verification and magnon processes. • Theoretical and experimental determination of the resonance state

  16. 600 GHz resonant mode in a parallel array of Josephson tunnel junctions connected by superconducting microstrip lines

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Larsen, Britt Hvolbæk; Mygind, Jesper

    1994-01-01

    on experimental and numerical investigations of a resonant step observed at a voltage corresponding to 600 GHz in the dc current-voltage characteristic of a parallel array of 20 identical small NbAl2O3Nb Josephson junctions interconnected by short sections of superconducting microstrip line. The junctions...... are mutually phase locked due to collective interaction with the line sections excited close to the half wavelength resonance. The phase locking range can be adjusted by means of an external dc magnetic field and the step size varies periodically with the magnetic field. The largest step corresponds...

  17. The Transfer of Resonance Line Polarization with Partial Frequency Redistribution in the General Hanle–Zeeman Regime

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, E. Alsina; Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Belluzzi, L., E-mail: ealsina@iac.es [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland)

    2017-02-10

    The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from a theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle–Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code that solves the full non-LTE radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that we have developed and implemented. We finally present some illustrative applications to two resonance lines that form at different heights in the solar atmosphere, and provide a detailed physical interpretation of the calculated Stokes profiles. We find that magneto-optical effects have a strong impact on the linear polarization signals that PRD effects produce in the wings of strong resonance lines. We also show that the weak-field approximation has to be used with caution when PRD effects are considered.

  18. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong; Chen, Youhe

    2015-01-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields

  19. A low cost surface plasmon resonance biosensor using a laser line generator

    Science.gov (United States)

    Chen, Ruipeng; Wang, Manping; Wang, Shun; Liang, Hao; Hu, Xinran; Sun, Xiaohui; Zhu, Juanhua; Ma, Liuzheng; Jiang, Min; Hu, Jiandong; Li, Jianwei

    2015-08-01

    Due to the instrument designed by using a common surface plasmon resonance biosensor is extremely expensive, we established a portable and cost-effective surface plasmon resonance biosensing system. It is mainly composed of laser line generator, P-polarizer, customized prism, microfluidic cell, and line Charge Coupled Device (CCD) array. Microprocessor PIC24FJ128GA006 with embedded A/D converter, communication interface circuit and photoelectric signal amplifier circuit are used to obtain the weak signals from the biosensing system. Moreover, the line CCD module is checked and optimized on the number of pixels, pixels dimension, output amplifier and the timing diagram. The micro-flow cell is made of stainless steel with a high thermal conductivity, and the microprocessor based Proportional-Integral-Derivative (PID) temperature-controlled algorithm was designed to keep the constant temperature (25 °C) of the sample solutions. Correspondingly, the data algorithms designed especially to this biosensing system including amplitude-limiting filtering algorithm, data normalization and curve plotting were programmed efficiently. To validate the performance of the biosensor, ethanol solution samples at the concentrations of 5%, 7.5%, 10%, 12.5% and 15% in volumetric fractions were used, respectively. The fitting equation ΔRU = - 752987.265 + 570237.348 × RI with the R-Square of 0.97344 was established by delta response units (ΔRUs) to refractive indexes (RI). The maximum relative standard deviation (RSD) of 4.8% was obtained.

  20. A scheme to expand the delay-bandwidth product in the resonator-based delay lines by optical OFDM technique

    DEFF Research Database (Denmark)

    Zhu, Jiangbo; Tao, Li; Zhang, Ziran

    2013-01-01

    We propose a novel scheme to expand the inherent limit in the product of the optical delay and the transmission bandwidth in resonator-based delay lines, with the optical orthogonal frequency division multiplexing (OOFDM) technique. The optical group delay properties of a single ring resonator we...

  1. Excitation dependence of resonance line self-broadening at different atomic densities

    OpenAIRE

    Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2009-01-01

    We study the dipole-dipole spectral broadening of a resonance line at high atomic densities when the self-broadening dominates. The selective reflection spectrum of a weak probe beam from the interface of the cell window and rubidium vapor are recorded in the presence of a far-detuned pump beam. The excitation due to the pump reduces the self-broadening. We found that the self-broadening reduction dependence on the pump power is atomic density independent. These results provide experimental e...

  2. Effects of diffusion and surface interactions on the line shape of electron paramagnetic resonances in the presence of a magnetic field gradient

    International Nuclear Information System (INIS)

    Schaden, M.; Zhao, K. F.; Wu, Z.

    2007-01-01

    In an evanescent wave magnetometer the Zeeman polarization is probed at micrometer to submicrometer distances from the cell surface. The electron paramagnetic resonance lines of an evanescent wave magnetometer in the presence of a magnetic field gradient exhibit edge enhancement seen previously in nuclear magnetic resonance lines. We present a theoretical model that describes quantitatively the shape of the magnetic resonance lines of an evanescent wave magnetometer under a wide range of experimental conditions. It accounts for diffusion broadening in the presence of a magnetic field gradient as well as interactions of spin polarized Rb atoms with the coated Pyrex glass surfaces. Depending on the field gradient, cell thickness, and buffer gas pressure, the resonance line may have the form of a single asymmetric peak or two peaks localized near the front and back surfaces in frequency space. The double-peaked response depends on average characteristics of the surface interactions. Its shape is sensitive to the dwell time, relaxation probability, and average phase shift of adsorbed spin polarized Rb atoms

  3. Miniaturized bandpass filter using a meandered stepped-impedance resonator with a meandered-line stub-load on a GaAs substrate.

    Science.gov (United States)

    Chuluunbaatar, Z; Wang, C; Kim, N Y

    2014-01-01

    This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  4. Experimental study on the 4H-SiC-based VDMOSFETs with lightly doped P-well field-limiting rings termination

    Science.gov (United States)

    He, Yan Jing; Lv, Hong Liang; Tang, Xiao Yan; Song, Qing Wen; Zhang, Yi Meng; Han, Chao; Zhang, Yi Men; Zhang, Yu Ming

    2017-03-01

    A lightly doped P-well field-limiting rings (FLRs) termination on 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) has been investigated. Based on the simulation, the proposed termination applied to 4H-SiC VDMOSFET could achieve an almost same breakdown voltage (BV) and have the advantage of lower ion-implantation damage comparing with P+ FLRs termination. Meanwhile, this kind of termination also reduces the difficulty and consumption of fabrication process. 4H-SiC VDMOSFETs with lightly doped P-well (FLRs) termination have been fabricated on 10 μm thick epi-layer with nitrogen doping concentration of 6.2 × 1015 cm-3. The maximum breakdown voltage of the 4H-SiC VDMOSFETs has achieved as high as 1610 V at a current of 15 μA, which is very close to the simulated result of 1643 V and about 90% of the plane parallel breakdown voltage of 1780 V. It is considered that P-well FLRs termination is an effective, robust and process-tolerant termination structure suitable for 4H-SiC VDMOSFET.

  5. Evaluation of acoustic resonance at branch section in main steam line. Part 1. Effects of steam wetness on acoustic resonance

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2011-01-01

    The power uprating of the nuclear power plant (NPP) is conducted in United States, EU countries and so on, and also is planned in Japan. However, the degradation phenomena such as flow-induced vibration and wall thinning may increase or expose in the power uprate condition. In U.S. NPP, the dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a 17% extended power uprating (EPU) condition. This is caused by acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSL). Increased velocity by uprating excites the pressure fluctuations and makes large amplitude resonance. To evaluate the acoustic resonance at the stub pipes of SRVs in actual BWR, it is necessary to clarify the acoustic characteristics in steam flow. Although there are several previous studies about acoustic resonance, most of them are not steam flow but air flow. Therefore in this study, to investigate the acoustic characteristics in steam flow, we conducted steam flow experiments in each dry and wet steam conditions, and also nearly saturated condition. We measured pressure fluctuation at the top of the single stub pipe and in main steam piping. As a result, acoustic resonance in dry steam flow could be evaluated as same as that in air flow. It is clarified that resonance amplitude of fluctuating pressure at the top of the stub pipe in wet steam was reduced to one-tenth compared with that in dry. (author)

  6. Miniaturized Bandpass Filter Using a Meandered Stepped-Impedance Resonator with a Meandered-Line Stub-Load on a GaAs Substrate

    Directory of Open Access Journals (Sweden)

    Z. Chuluunbaatar

    2014-01-01

    Full Text Available This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  7. In-line moisture monitoring in fluidized bed granulation using a novel multi-resonance microwave sensor.

    Science.gov (United States)

    Peters, Johanna; Bartscher, Kathrin; Döscher, Claas; Taute, Wolfgang; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2017-08-01

    Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 'Two-color' reflection multilayers for He-I and He-II resonance lines for micro-UPS using Schwarzschild objective

    International Nuclear Information System (INIS)

    Ejima, Takeo; Kondo, Yuzi; Watanabe, Makoto

    2000-01-01

    'Two-color' multilayers reflecting both He-I (58.4 nm) and He-II (30.4 nm) resonance lines have been designed and fabricated for reflection coatings of Schwarzschild objectives of micro-UPS instruments. They are designed so that their reflectances for both He-I and He-II resonance lines are more than 20%. The 'two-color' multilayers are piled double layers coated with top single layers. Fabricated are multilayers of SiC(top layer)-Mg/SiC(double layers) and SiC(top layer)-Mg/Y 2 O 3 (double layers), and their reflectances for the He-I and the He-II are 23% and 17%, and 20% and 23%, respectively

  9. Study of the interplay between magnetic shear and resonances using Hamiltonian models for the magnetic field lines

    Science.gov (United States)

    Firpo, M.-C.; Constantinescu, D.

    2011-03-01

    The issue of magnetic confinement in magnetic fusion devices is addressed within a purely magnetic approach. Using some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is shown in a unified way. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and stochastic transport reduction. When low shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be quite low. The approach can be applied to assess the robustness versus magnetic perturbations of general (almost) integrable magnetic steady states, including nonaxisymmetric ones such as the important single-helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  10. Source biases in midlatitude magnetotelluric transfer functions due to Pc3-4 geomagnetic pulsations

    Science.gov (United States)

    Murphy, Benjamin S.; Egbert, Gary D.

    2018-01-01

    The magnetotelluric (MT) method for imaging the electrical conductivity structure of the Earth is based on the assumption that source magnetic fields can be considered quasi-uniform, such that the spatial scale of the inducing source is much larger than the intrinsic length scale of the electromagnetic induction process (the skin depth). Here, we show using EarthScope MT data that short spatial scale source magnetic fields from geomagnetic pulsations (Pc's) can violate this fundamental assumption. Over resistive regions of the Earth, the skin depth can be comparable to the short meridional range of Pc3-4 disturbances that are generated by geomagnetic field-line resonances (FLRs). In such cases, Pc's can introduce narrow-band bias in MT transfer function estimates at FLR eigenperiods ( 10-100 s). Although it appears unlikely that these biases will be a significant problem for data inversions, further study is necessary to understand the conditions under which they may distort inverse solutions.[Figure not available: see fulltext.

  11. Case Studies on MHD Wave Propagation by the Exos-D Electric Field Measurements

    Directory of Open Access Journals (Sweden)

    Jeong-Seon Hwang

    1997-12-01

    Full Text Available Magnetohydrodynamic wave phenomena have been investigated in the deep plasmasphere by the electric field measurements in the EXOS-D(Akebono satellite. EXOS-D has highly eccentric orbits(the perigee: 274km, the apogee: 10,500km, which allows relatively long observational time interval near the apogee region compared to othe satellites which pass by the same region with less eccentric orbits. Case studies are peformed on one month data of October in 1989 where the apogee is located near the equator and the magnetic local time is about 9:00-12:00 a.m. in the dayside plasmasphere. The observational region ranges from L=2 to L=3 and the magnetic latitude is restricted to less than 30 degress. The power spectrum is examined for each 128 point series of 8-sec averaged data through a FFT, which covers f=0-62.3 mHz frequency bands. The results are well consistent with field line resonances(FLRs and cavity modes in the plasmasphere.

  12. The dielectronic satellites to the 2s-3p Ne-like krypton resonance lines

    International Nuclear Information System (INIS)

    Khakhalin, S.Ya.; Dyakin, V.M.; Faenov, A.Ya.; Fiedorowicz, H.; Bartnik, A.; Parys, P.; Nilsen, J.; Osterheld, A.

    1994-01-01

    We present an analysis of dielectronic satellite spectra of 2p 6 -2s2p 6 3p Ne-like krypton resonance lines. The satellite structure was registered with high (better than λ/Δλ > 3500) spectral resolution in the emission of a laser irradiated gas puff target. We perform an unambiguous identification of satellite lines caused by radiative transitions from autoionizing states of sodium-like krypton ions. A total of about 20 spectral features are identified, most of them for the first time. Very good agreement between the satellite structure calculations and experimental emission spectra is obtained. (orig.)

  13. The dielectronic satellites to the 2s-3p Ne-like krypton resonance lines

    Energy Technology Data Exchange (ETDEWEB)

    Khakhalin, S.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Dyakin, V.M. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Faenov, A.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Fiedorowicz, H. (Inst. of Optoelectronics, Warsaw (Poland)); Bartnik, A. (Inst. of Optoelectronics, Warsaw (Poland)); Parys, P. (Inst. of Plasma Physics and Laser Microfusion, Warsaw (Poland)); Nilsen, J. (Lawrence Livermore National Lab., Livermore, CA (United States)); Osterheld, A. (Lawrence Livermore National Lab., Livermore, CA (United States))

    1994-08-01

    We present an analysis of dielectronic satellite spectra of 2p[sup 6]-2s2p[sup 6]3p Ne-like krypton resonance lines. The satellite structure was registered with high (better than [lambda]/[Delta][lambda] > 3500) spectral resolution in the emission of a laser irradiated gas puff target. We perform an unambiguous identification of satellite lines caused by radiative transitions from autoionizing states of sodium-like krypton ions. A total of about 20 spectral features are identified, most of them for the first time. Very good agreement between the satellite structure calculations and experimental emission spectra is obtained. (orig.).

  14. Coordinated observation of field line resonance in the mid-tail

    Directory of Open Access Journals (Sweden)

    Y. Zheng

    2006-03-01

    Full Text Available Standing Alfvén waves of 1.1 mHz (~15 min in period were observed by the Cluster satellites in the mid-tail during 06:00-07:00 UT on 8 August 2003. Pulsations with the same frequency were also observed at several ground stations near Cluster's footpoint. The standing wave properties were determined from the electric and magnetic field measurements of Cluster. Data from the ground magnetometers indicated a latitudinal amplitude and phase structure consistent with the driven field line resonance (FLR at 1.1 mHz. Simultaneously, quasi-periodic oscillations at different frequencies were observed in the post-midnight/early morning sector by GOES 12 (l0≈8.7, Polar (l0≈11-14 and Geotail (l0≈9.8. The 8 August 2003 event yields rare and interesting datasets. It provides, for the first time, coordinated in situ and ground-based observations of a very low frequency FLR in the mid-tail on stretched field lines.

  15. Inverse resonance problems for the Schrödinger operator on the real line with mixed given data

    Science.gov (United States)

    Xu, Xiao-Chuan; Yang, Chuan-Fu

    2018-01-01

    In this work, we study inverse resonance problems for the Schrödinger operator on the real line with the potential supported in [0, 1]. In general, all eigenvalues and resonances cannot uniquely determine the potential. (i) It is shown that if the potential is known a priori on [0, 1 / 2], then the unique recovery of the potential on the whole interval from all eigenvalues and resonances is valid. (ii) If the potential is known a priori on [0, a], then for the case a>1/2, infinitely many eigenvalues and resonances can be missing for the unique determination of the potential, and for the case alogarithmic derivative values of eigenfunctions and wave-functions at 1 / 2, can uniquely determine the potential.

  16. Production of radioactive ion beams and resonance ionization spectroscopy with the laser ion source at on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    Fedosseev, V.N.; )

    2005-01-01

    Full text: The resonance ionisation laser ion source (RILIS) of the ISOLDE on-line isotope separation facility at CERN is based on the method of laser step-wise resonance ionisation of atoms in a hot metal cavity. Using the system of dye lasers pumped by copper vapour lasers the ion beams of many different metallic elements have been produced at ISOLDE with an ionization efficiency of up to 27%. The high selectivity of the resonance ionization is an important asset for the study of short-lived nuclides produced in targets bombarded by the proton beam of the CERN Booster accelerator. Radioactive ion beams of Be, Mg, Al, Mn, Ni, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Tb, Yb, Tl, Pb and Bi have been generated with the RILIS. Setting the RILIS laser in the narrow line-width mode provides conditions for a high-resolution study of hyperfine structure and isotopic shifts of atomic lines for short-lived isotopes. The isomer selective ionization of Cu, Ag and Pb isotopes has been achieved by appropriate tuning of laser wavelengths

  17. Population trapping: The mechanism for the lost resonance lines in Pm-like ions

    Science.gov (United States)

    Kato, Daiji; Sakaue, Hiroyuki A.; Murakami, Izumi; Nakamura, Nobuyuki

    2017-10-01

    We report a population kinetics study on line emissions of the Pm-like Bi22+ performed by using a collisional-radiative (CR) model. Population rates of excited levels are analyzed to explain the population trapping in the 4f135s2 state which causes the loss of the 5s - 5p resonance lines in emission spectra. Based on the present analysis, we elucidate why the population trapping is not facilitated for a meta-stable excited level of the Sm-like Bi21+. The emission line spectra are calculated for the Pm-like isoelectronic sequence from Au18+ through W13+ and compared with experimental measurements by electron-beam-ion-traps (EBITs). Structures of the spectra are similar for all of the cases except for calculated W13+ spectra. The calculated spectra are hardly reconciled with the measured W13+ spectrum using the compact electron-beam-ion-trap (CoBIT) [Phys. Rev. A 92 (2015) 022510].

  18. Measurement of collisional self broadening of atomic resonance lines in selective reflection experiment

    International Nuclear Information System (INIS)

    Papoyan, A.V.

    1998-01-01

    A method is developed to measure directly the collisional self broadening rate for a dense atomic vapor from selective reflection spectra. Experimental realization for the atomic D 1 and D 2 resonance lines of Rb confirms a validity of the proposed technique. The deflection of experimentally measured values is not more than 20% from theoretically predicted ones in the atomic number density range of 7· 10 16 - 7· 10 17 cm - 3 . 10 refs

  19. Spectrophotometry near the atmospheric cutoff of the strongest Bowen resonance fluorescence lines of O III in two planetary nebulae

    Science.gov (United States)

    O'Dell, C. R.; Opal, Chet B.

    1989-01-01

    Spectrophotometric results are presented for the stronger, well-resolved Bowen O III resonance fluorescence emission lines in the planetary nebulae 7027 and NGC 7662 down to and including the intrinsically strong line at 3133 A. These data are combined with results from the IUE atlas of spectra and similar results for the longer wavelength lines by Likkel and Aller (1986) to give the first full coverage of the Bowen lines. Good agreement is found with fluorescence theory for the primary cascade lines, except for the Likkel and Aller results. The efficiency of conversion of the exciting He II Ly-alpha into O III lines is determined, and values comparable to other planetary nebulae are found.

  20. Resonance gamma-transducer with thin converter

    International Nuclear Information System (INIS)

    Mirzababaev, R.M.

    1993-01-01

    A resonance detector with stainless steel foil (∼3000 A) is more efficient than conventional detectors as regards the recording Rayleigh scattering of Moessbauer effect. If the scatterer contains resonance nuclei (iron), the detector simultaneously records in the same spectrum both Zeeman lines and the line resulted to Rayleigh quanta scattering on electrons. Zeeman lines are formed due to photoabsorption in the converter. The central line is associated with resonance absorption in the converter

  1. M series resonant x-ray lines of barium for near threshold electron excitation

    International Nuclear Information System (INIS)

    Morgon, D.V.

    1992-01-01

    An investigation of the M series resonant x-ray emission lines of barium for near threshold electron excitation was undertaken with a vacuum double crystal spectrometer equipped with potassium acid phthalate crystals. X-ray continuum isochromats were obtained for barium samples using the double crystal spectrometer as a monochrometer set to pass 532 eV photons. The rotatable anode allowed the samples to be observed by either the double crystal spectrometer or a soft x-ray appearance potential spectrometer, which was used for monitoring the surface of the varium sample for contamination, and to provide a cross-check for the double crystal spectrometer data. Barium M series characteristic x-ray spectra for 2.0 keV electron excitation were obtained for a variety of samples, and it was discovered that the fluorescent and resonant x-ray emission line energies remained virtually the same, regardless of the chemical condition of the sample. The continuum resonance effect was observed for near-threshold energy electron excitation, but it was significantly weaker than the same effect observed previously for lanthanum or cerium. The electron excitation energy and intensity of this effect were strongly dependent on the chemical condition of the barium sample. X-ray continuum isochromats were observed for pure and contaminated barium samples at a photon energy of 532 eV. For pure metallic barium, a peak associated with 4f electronic states was observed at an energy of about 10.2 eV above the Fermi level. When the sample was exposed to 1.5 x 10 4 Langmuir of air, the 4f structure became more sharply peaked, and shifted to an energy of about 12.0 eV above the Fermi level. A continuum isochromat of barium oxide was also observed. Chemical shifts in barium M IV and M V appearance potential spectra are therefore caused soley by shifts in the energy position of the empty 4f electronic states relative to the Fermi level

  2. Resonance ionization laser ion sources for on-line isotope separators (invited)

    International Nuclear Information System (INIS)

    Marsh, B. A.

    2014-01-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented

  3. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) bea...

  4. Measurement of the profile and intensity of the solar He I lambda 584-A resonance line

    Science.gov (United States)

    Maloy, J. O.; Hartmann, U. G.; Judge, D. L.; Carlson, R. W.

    1978-01-01

    The intensity and profile of the helium resonance line at 584 A from the entire disk of the sun was investigated by using a rocket-borne helium-filled spectrometer and a curve-of-growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 + or - 10 mA, while the integrated intensity was measured to be 2.6 + or - 1.3 billion photons/s per sq cm at solar activity levels of F(10.7) = 90.8 x 10 to the -22nd per sq m/Hz and Rz = 27. The measured line width is in good agreement with previous spectrographic measurements, but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of 20 + or - 10 billion photons/s per sq cm/A is in good agreement with values inferred from airglow measurements.

  5. Simulation and analysis of auroral radar signatures generated by a magnetospheric cavity mode

    International Nuclear Information System (INIS)

    McDiarmid, D.R.; Allan, W.

    1990-01-01

    Coherent auroral radar pulsation data are simulated for impulsively excited field line resonances (FLR) driven by a magnetospheric MHD cavity mode. These data are then analyzed according to three assumptions namely, (1) that each radar time sequence is monochromatic with a frequency fixed over latitude, (2) that each radar time sequence is monochromatic with a frequency which varies with latitude, and (3) that each radar time sequence consists of the sum of two damped sinusoids for which the frequency of one varies and the other is constant with latitude. Pulsations corresponding to all three assumptions have been previously observed and described in the literature. The results indicate the degree to which these analyses can misdirect the researcher with respect to the excitation of the pulsation. The first two analyses can indicate the existence of a constant-frequency single-component pulsation when there exists, in fact, an additional period-varying component as well. The results also suggest that the variation of the period with time in thse pulsations may be a useful detection criterion for cavity-driven FLRs

  6. Autoionization spectral line shapes in dense plasmas

    International Nuclear Information System (INIS)

    Rosmej, F.B.; Hoffmann, D.H.H.; Faenov, A.Ya.; Pikuz, T.A.; Suess, W.; Geissel, M.

    2001-01-01

    The distortion of resonance line shapes due to the accumulation of a large number of satellite transitions is discovered by means of X-ray optical methods with simultaneous high spectral (λ/δλ≅8000) and spatial resolution (δx≅7 μm). Disappearance of the He α resonance line emission near the target surface is observed while Rydberg satellite intensity accumulates near the resonance line position. He β and He γ resonance line shapes are also shown to be seriously affected by opacity, higher-order line emissions from autoionizing states and inhomogeneous spatial emission. Opposite to resonance line emissions the He β satellites originate only from a very narrow spatial interval. New temperature and density diagnostics employing the 1s2131' and 1s3131'-satellites are developed. Moreover, even-J components of the satellite line emissions were resolved in the present high resolution experiments. Line transitions from the autoionizing states 1s2131' are therefore also proposed for space resolved Stark broadening analysis and local high density probing. Theorists are encouraged to provide accurate Stark broadening data for the transitions 1s2131 ' →1s 2 21+hv

  7. Small scale structure of magnetospheric electron density through on-line tracking of plasma resonances

    International Nuclear Information System (INIS)

    Higel, B.

    1978-01-01

    The plasma resonance phenomena observed at fsub(pe), nfsub(ce), and fsub(qn) by the GEOS-1 S-301 relaxation sounder are identified through a pattern recognition software process implemented in a mini-computer which receives on-line the compressed data. First, this processing system distributes in real time fsub(pe) and fsub(ce) measurements to the ground media. Second, it drives and controls automatically the S-301 on-board experiment by sending appropriate telecommands: the tracking of resonances is performed by shortening the frequency sweeps to a narrow range centered on the resonance location. Examples of such tracking sequences are presented, exhibiting sampling rates of the electron density measurements from once every 22s (slowest rate) to once every 86 ms (highest rate available). The results give evidence of the existence of very small scale structures in the magnetospheric density, having characteristic sizes of the order of a few 10 2 m or/and a few 10 -1 s. The relative amplitude of these density fluctuations is typically 1%. Because of satellite spinning, fixed frequency sounding sequences allow to measure in a few seconds the directivity features of the plasma resonance signals. Examples of directional patterns in the plane perpendicular to the geomagnetic field are presented: the electrostatic nature of the waves received at fsub(pe), nfsub(ce), and fsub(qn) being consistent with these patterns, the corresponding k vector orientations become available. The Bernstein modes properties are used to interpret the nfsub(ce) and fsub(qn) results. (Auth.)

  8. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    International Nuclear Information System (INIS)

    Drakakis, E.; Karabourniotis, D.

    2012-01-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  9. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    Energy Technology Data Exchange (ETDEWEB)

    Drakakis, E. [Technological Educational Institute, Department of Electrical Engineering, 71004 Heraklion (Greece); Karabourniotis, D. [Institute of Plasma Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece)

    2012-09-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  10. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state

  11. Thermal fluctuations in resonant motion of fluxons on a Josephson transmission line: Theory and experiment

    DEFF Research Database (Denmark)

    Jørgensen, E.; Koshelets, V. P.; Monaco, Roberto

    1982-01-01

    The radiation emission from long and narrow Josephson tunnel junctions dc-current biased on zero-field steps has been ascribed to resonant motion of fluxons on the transmission line. Within this dynamic model a theoretical expression for the radiation linewidth is derived from a full statistical ...... treatment of thermal fluctuations in the fluxon velocity. The result appears to be very general and is corroborated by experimental determination of linewidth and frequency of radiation emitted from overlap Nb-I-Pb junctions....

  12. Resonant detector of γ-quanta with thin converter

    International Nuclear Information System (INIS)

    Mirzababaev, R.M.

    1994-01-01

    A resonant detector with a converter made from an enriched stainless-steel foil about 3000 angstrom thick is more efficient in detecting spectra of Rayleigh-scattered γ-quanta than conventional detectors. If the scatterer contains resonant nuclei (iron), both Zeeman lines and lines due to Rayleigh scattering by electrons are detected in the same spectrum. Zeeman lines are due to γ-radiation absorption in the converter, while the central line is due to resonant absorption in the converter

  13. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    Science.gov (United States)

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. © 2012 Acoustical Society of America

  14. The observation of the Ne-like ion resonance line satellites for CrXV ... Ni XIX CO2-laser produced plasma

    International Nuclear Information System (INIS)

    Khakhalin, S.Ya.; Faenov, A.Ya.; Skobelev, I.Yu.; Pikuz, S.A.; Nilsen, J.; Osterheld, A.

    1994-01-01

    We present an analysis of dielectronic satellite spectra of Ne-like ion resonance lines for elements from Cr to Ni. For these low-Z elements, we use spectra from strongly underionized CO 2 -laser produced plasma to minimize the emission from open L-shell ions. This simplifies the spectra and allows the identification of satellite lines caused by radiative transitions from autoionizing states of sodium like ions. Good agreement between the satellite structure calculations and the experimental emission spectra is obtained. (orig.)

  15. Statistical reexamination of analytical method on the observed electron spin (or nuclear) resonance curves

    International Nuclear Information System (INIS)

    Kim, J.W.

    1980-01-01

    Observed magnetic resonance curves are statistically reexamined. Typical models of resonance lines are Lorentzian and Gaussian distribution functions. In the case of metallic, alloy or intermetallic compound samples, observed resonance lines are supperposed with the absorption line and the dispersion line. The analyzing methods of supperposed resonance lines are demonstrated. (author)

  16. Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications

    Directory of Open Access Journals (Sweden)

    Singh Ashish

    2017-11-01

    Full Text Available In this paper, theoretical analysis of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator is presented. The proposed antenna shows that the dualband operation depends on gap between parasitic element, split-ring resonator, length and width of microstrip line. It is found that antenna resonates at two distinct resonating modes i.e., 0.9 GHz and 1.8 GHz for lower and upper resonance frequencies respectively. The antenna shows dual frequency nature with frequency ratio 2.0. The characteristics of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator antenna is compared with other prototype microstrip line fed antennas. Further, the theoretical results are compared with simulated and reported experimental results, they are in close agreement.

  17. The observation of the Ne-like ion resonance line satellites for CrXV. Ni XIX CO[sub 2]-laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khakhalin, S.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Faenov, A.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Skobelev, I.Yu. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Pikuz, S.A. (P. N. Lebedev Physical Inst., Russian Academy of Science, Moscow (Russian Federation)); Nilsen, J. (Lawrence Livermore National Lab., Livermore, CA (United States)); Osterheld, A. (Lawrence Livermore National Lab., Livermore, CA (United States))

    1994-08-01

    We present an analysis of dielectronic satellite spectra of Ne-like ion resonance lines for elements from Cr to Ni. For these low-Z elements, we use spectra from strongly underionized CO[sub 2]-laser produced plasma to minimize the emission from open L-shell ions. This simplifies the spectra and allows the identification of satellite lines caused by radiative transitions from autoionizing states of sodium like ions. Good agreement between the satellite structure calculations and the experimental emission spectra is obtained. (orig.).

  18. Resonance scattering formalism for the hydrogen lines in the presence of magnetic and electric fields

    International Nuclear Information System (INIS)

    Casini, Roberto

    2005-01-01

    We derive a formalism for the computation of resonance-scattering polarization of hydrogen lines in the presence of simultaneous magnetic and electric fields, within a framework of the quantum theory of polarized line formation in the limit of complete frequency redistribution and of collisionless regime. Quantum interferences between fine-structure levels are included in this formalism. In the presence of a magnetic field, these interferences affect, together with the magnetic Hanle effect, the polarization of the atomic levels. In the presence of an electric field, interferences between distinct orbital configurations are also induced, further affecting the polarization of the hydrogen levels. In turn, the electric field is expected to affect the polarization of the atomic levels (electric Hanle effect), in a way analogous to the magnetic Hanle effect. We find that the simultaneous action of electric and magnetic fields give rise to complicated patterns of polarization and depolarization regimes, for varying geometries and field strengths

  19. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    On-line monitoring of high-voltage electrical equipment (HV-EE) aiming to detect faults effectively has become crucial to avoid serious accidents. Moreover, highly reliable power supplies are the key component for the wireless sensors equipped in such on-line monitoring systems. Therefore......, in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...... power is able to be delivered to the wireless sensor through the designed MR-WPS, and therefore the theoretical analysis and design is verified....

  20. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line

    Science.gov (United States)

    Umeshkumar, Dubey Suhmita; Kumar, Manish

    2018-04-01

    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  1. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    Science.gov (United States)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  2. Multiphotonic resonance processes in potassium vapor

    International Nuclear Information System (INIS)

    Bensoussan, Paul.

    1975-01-01

    Despite several theoretical and experimental investigations, the phenomena of resonance multiphotonic ionization are still not completely understood. The following lines of investigation were undertaken to try and elucidate certain aspects of the resonance processes. The first line of investigation aims at finding the processes which can compete with ionization. Resonance ionization processes can be considered as taking place in two stages: absorption induced excitation of a bound state, followed by photoionization from the excited level. The problem is now to determine what are the processes which compete with the ionization processes starting from a level selectively populated by the absorption of one or two photons. The second line aims at finding the influence of the polarization of the radiation on resonance multiphotonic ionization for the second photon and to check the validity of the selection rules on the magnetic quantic number of the resonance bound linked states. The last study therefore relates to the development of a method of multiphotonic spectrometry which could determine the energy levels in the alcaline f series [fr

  3. The natural line shape of the giant dipole resonance

    International Nuclear Information System (INIS)

    Gordon, E.F.; Pitthan, R.

    1977-01-01

    Investigation of photoabsorption experiments in the spherical nucleus 141 Pr, the quasispherical dynamically deformed 197 Au, and the statically deformed 165 Ho showed that the function which describes best the energy dependence of the reduced transition probability is given by the Breit-Wigner form rather than the Lorentz form. However, the form of the resulting measured cross section is approximately of the Lorentz type. The dependence of the giant resonance width GAMMA on the excitation energy was also investigated, and found to be less than 1% per MeV if one considered the known isovector E2 resonance above the giant dipole resonance. Best fit values of the reduced transition probabilities for the three nuclei are given and compared to (e,e') results. (Auth.)

  4. Complicated Fermi-type vibronic resonance: Untangling of the single-site quasi-line fluorescence excitation spectra of a methylated dibenzoporphin

    International Nuclear Information System (INIS)

    Arabei, S.M.; Kuzmitsky, V.A.; Solovyov, K.N.

    2008-01-01

    The quasi-line low-temperature (4.2 K) fluorescence excitation spectra of 2,3,12,13-tetramethyldibenzo[g,q]porphin introduced into an n-octane matrix have been measured in the range of the S 2 0 electronic transition at selective fluorescence monitoring for the two main types of impurity centers (sites). A characteristic feature of these spectra is that a conglomerate of quasi-lines - a structured complex band - is observed instead of one 0-0 quasi-line of the S 2 0 transition. In this band, the intensity distributions for the two main sites considerably differ from each other. The occurrence of such conglomerates is interpreted as a result of nonadiabatic vibrational-electronic interaction between the vibronic S 2 and S 1 states (the complex vibronic analogue of the Fermi resonance). The frequencies and intensities of individual transitions determined from the deconvolution of complex conglomerates are used as the initial data for solving the inverse spectroscopic problem: the determination of the unperturbed electronic and vibrational levels of states involved in the resonance and the vibronic-interaction matrix elements between them. This problem is solved with a method developed previously. The experimental results and their analysis are compared to the analogous data obtained earlier for meso-tetraazaporphin and meso-tetrapropylporphin. The energy intervals between the S 2 and S 1 electronic levels (ΔE S 2 S 1 ) of the two main types of impurity centers formed by molecules of a given porphyrin in the crystal matrix are found to significantly differ from each other, the values of this difference (δΔE S 2 S 1 ) being considerably greater for tetramethyldibenzoporphin, δΔE S 2 S 1 =228cm -1 , than for the two other porphyrins. At the same time, the energies of the unperturbed vibrational states of the S 1 electronic level participating in the resonance are very close to each other for these two sites

  5. Study of CPO resonances on the intercombination line in 173Yb

    Science.gov (United States)

    Kumar, Pushpander; Singh, Alok K.; Bharti, Vineet; Natarajan, Vasant; Pandey, Kanhaiya

    2018-02-01

    We study coherent population oscillations in an odd isotope of the two-electron atom Yb. The experiments are done using magnetic sublevels of the {F}g=5/2\\to {F}e=3/2 hyperfine transition in 173Yb of the {}1{{{S}}}0\\to {}3{{{P}}}1 intercombination line. The experiments are done both with and without an applied magnetic field. In the absence of an applied field, the complicated sublevel structure along with the saturated fluorescence effect causes the linewidth to be larger than the 190 kHz natural linewidth of the transition. In the presence of a field (of magnitude 330 mG), a well-defined quantization axis is present which results in the formation of two M-type systems. The total fluorescence is then limited by spin coherence among the ground sublevels. In addition, the pump beam gets detuned from resonance which results in a reduced scattering rate from the {}3{{{P}}}1 state. Both of these effects result in a reduction of the linewidth to a subnatural value of about 100 kHz.

  6. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    Science.gov (United States)

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  7. Starlight excitation of permitted lines in gaseous nebulae

    International Nuclear Information System (INIS)

    Grandi, S.A.

    1975-01-01

    The weak heavy element permitted lines observed in the spectra of gaseous nebula have, with only a few exceptions, been thought to be excited only by recombination. The accuracy of this assumption for individual lines in nebula spectra is investigated in detail via model nebula calculations. First, approximations and techniques of calculation are considered for the three possible excitation mechanisms: recombination, resonance fluorescence by the starlight continuum, and resonance fluorescence by other nebular emission lines. Next, the permitted lines of O I as observed in gaseous nebulae are discussed. Thirdly, it is shown that varying combinations of recombination, resonance fluorescence by starlight, and resonance fluorescence by other nebula lines can successfully account for the observed strengths in the Orion Nebula of lines of the following ions: C II, N I, N II, N III, O II, Ne II, Si II, Si III, and S III. A similar analysis is performed for the lines in the spectra of the planetary nebulae NGC7662 and NGC7027, and, with some exceptions, satisfactory agreement between the observed and predicted line strengths is found. Finally, observations of the far red spectra of the Orion Nebula, the planetary nebulae NGC3242, NGC6210, NGC2392, IC3568, IC4997, NGC7027, and MGC7662, and the reflection nebulae IC431 and NGC2068 are reported

  8. Uncertainty quantification in resonance absorption

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2012-01-01

    We assess the uncertainty in the resonance escape probability due to uncertainty in the neutron and radiation line widths for the first 21 resonances in 232 Th as given by . Simulation, quadrature and polynomial chaos methods are used and the resonance data are assumed to obey a beta distribution. We find the uncertainty in the total resonance escape probability to be the equivalent, in reactivity, of 75–130 pcm. Also shown are pdfs of the resonance escape probability for each resonance and the variation of the uncertainty with temperature. The viability of the polynomial chaos expansion method is clearly demonstrated.

  9. Line broadening in multiphoton processes with a resonant intermediate transition

    International Nuclear Information System (INIS)

    Wang, C.C.; James, J.V.; Xia, J.

    1983-01-01

    The linewidth of the excitation spectrum for multiphoton ionization is found to be broadened much more severely than the cascade fluorescence originating from the resonant intermediate level. These results are due to the mutual effects of the ionizing and resonating transitions, which are not properly accounted for in perturbative treatments

  10. Time-dependent scattering in resonance lines

    International Nuclear Information System (INIS)

    Kunasz, P.B.

    1983-01-01

    A numerical finite-difference method is presented for the problem of time-dependent line transfer in a finite slab in which material density is sufficiently low that the time of flight between scatterings greatly exceeds the relaxation time of the upper state of the scattering transition. The medium is assumed to scatter photons isotropically, with complete frequency redistribution. Numerical solutions are presented for a homogeneous, time-independent slab illuminated by an externally imposed radiation field which enters the slab at t = 0. Graphical results illustrate relaxation to steady state of trapped internal radiation, emergent energy, and emergent profiles. A review of the literature is also given in which the time-dependent line transfer problem is discussed in the context of recent analytical work

  11. Electron-impact excitation of the In+ ion resonance line

    International Nuclear Information System (INIS)

    Gomonai, A.; OvcharenkO, E.; Imre, A.; Hutych, Yu.

    2004-01-01

    Full text: Study of the electron-impact excitation of the In + ion is important not only for atomic structure research, but also for applications to astrophysics, analytical techniques and fusion research, as well as for new applications of this ion such as a component of solid state laser media and as a source for an optical frequency standart. The energy dependence of the electron-impact excitation of the In + ion resonance line was studied by spectroscopic method using the crossed-beam technique in the energy range from the threshold up to 300 eV for the following process: e + In + (4d 10 5s 2 ) 1 S 0 e' + In + (4d 10 5s5p) 1 P 0 1 e' + In + (4d 10 5s 2 ) 1 S 0 +h (1) Process (1) includes the direct electron-impact excitation of the 5s5p 1 P 0 1 state from the ground 5s 2 1 S 0 state, as well as the contribution of the cascade transitions and resonance processes: In + (4d 10 5s nln 1 l 1 , 4d 10 5p 2 nl, 4d 9 5s 2 nln 1 l 1 ) In + (4d 10 5s 2 ) 1 S 0 + e' (2) The peculiarity of this investigation is the presence of low lying metastable states and high temperature (T1250K) of atomic vapour. The ions produced in the ion source on the heated tantalum surface were extracted, focused and accelerated by a system of ion optical lenses into a beam (E i = 700eV, I i (11.4)10 -6 A), separated from neutral atoms by means of a 90 deg electrostatic selector and crossed at the right angle by the ribbon electron beam (E e = (7300)eV, Ie = (610)10 -5 A, 0 1/2 (0.40.5)eV) in the collision region (at P 10 -8 Torr) [1]. Radiation observed at 90 deg with respect to the beam intersection plane was spectrally separated by a 70 deg vacuum monochromator (d/dl = 1.7nm/mm) based on the Seya- Namioka scheme and detected by a photomultiplier. The measurements and experimental data processing were realised by means of a PC. The drop of the energy dependence of the excitation cross section obey the E -1 lnE rule specific for the optically allow transitions. A distinct structure in the energy

  12. Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator

    International Nuclear Information System (INIS)

    Zhen-Gang, Shi; Xiong-Wen, Chen; Xi-Xiang, Zhu; Ke-Hui, Song

    2009-01-01

    This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on dc-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, but also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line. (general)

  13. Simulation of Standby Efficiency Improvement for a Line Level Control Resonant Converter Based on Solar Power Systems

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2015-01-01

    Full Text Available This paper proposes a new scheme to improve the standby efficiency of the high-power half-bridge line level control (LLC resonant converter. This new circuit is applicable to improving the efficiency of the renewable energy generation system in distributed power systems. The main purpose is to achieve high-efficiency solar and wind power and stable output under different load conditions. In comparison with the traditional one, this novel method can improve standby efficiency at standby. The system characteristics of this proposed method have been analyzed through detailed simulations, which prove its feasibility.

  14. Identification and quantification of polycarboxylates in detergent products using off-line size exclusion chromatography-nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ilona, E-mail: ilona.visser@unilever.com [Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, PO box 114, 3130 AC Vlaardingen (Netherlands); Klinkenberg, Monique; Hoos, Peter; Janssen, Hans-Gerd; Duynhoven, John van [Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, PO box 114, 3130 AC Vlaardingen (Netherlands)

    2009-11-03

    The performance of many contemporary detergent products critically depends on polymers. Water-soluble polycarboxylates represent an important class of detergent polymers, and their quantitative assessment in detergent matrices stands as a considerable challenge. The presence of high levels of surfactants is a major complication, due to the strong tendency of surfactants to form micelles and to interact with the polymers. First, we addressed critical steps in the subsequent combined use of liquid extraction and off-line size exclusion chromatography-nuclear magnetic resonance (SEC-NMR) for identification and quantification of polycarboxylates in detergent products. Next, the different steps in the off-line SEC-NMR procedure were optimized with respect to precision and accuracy. This resulted in recoveries of more than 80% for maleic acid/acrylic acid copolymers; in detergent products a proportional bias of 30% is achieved. The method showed good precision with a relative standard deviation of within-laboratory reproducibility between 5% and 14%.

  15. Identification and quantification of polycarboxylates in detergent products using off-line size exclusion chromatography-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Visser, Ilona; Klinkenberg, Monique; Hoos, Peter; Janssen, Hans-Gerd; Duynhoven, John van

    2009-01-01

    The performance of many contemporary detergent products critically depends on polymers. Water-soluble polycarboxylates represent an important class of detergent polymers, and their quantitative assessment in detergent matrices stands as a considerable challenge. The presence of high levels of surfactants is a major complication, due to the strong tendency of surfactants to form micelles and to interact with the polymers. First, we addressed critical steps in the subsequent combined use of liquid extraction and off-line size exclusion chromatography-nuclear magnetic resonance (SEC-NMR) for identification and quantification of polycarboxylates in detergent products. Next, the different steps in the off-line SEC-NMR procedure were optimized with respect to precision and accuracy. This resulted in recoveries of more than 80% for maleic acid/acrylic acid copolymers; in detergent products a proportional bias of 30% is achieved. The method showed good precision with a relative standard deviation of within-laboratory reproducibility between 5% and 14%.

  16. Electron spin resonance investigations on polycarbonate irradiated with U ions

    Energy Technology Data Exchange (ETDEWEB)

    Chipara, M.I.; Reyes-Romero, J

    2001-12-01

    Electron spin resonance investigations on polycarbonate irradiated with uranium ions are reported. The dependence of the resonance line parameters (line intensity, line width, double integral) on penetration depth and dose is studied. The nature of free radicals induced in polycarbonate by the incident ions is discussed in relation with the track structure. The presence of severe exchange interactions among free radicals is noticed.

  17. On resonance processes in near threshold excitation of resonance lines of Zn+ ion at electron-ion collisions

    International Nuclear Information System (INIS)

    Imre, A.I.; Gomonaj, A.N.; Vukstich, V.S.; Nemet, A.N.

    1998-01-01

    The results of spectroscopic investigation of resonances in excitation of near threshold region of separate components of resonance doublet 4p 2 P 1/2,3/2 0 of Zn + ion by electron impact are given in the present work. The physical basis of their production nature is suggested

  18. Ramifide resonators for cyclotrons

    International Nuclear Information System (INIS)

    Smirnov, Yu.V.

    2000-01-01

    The resonators with the conductors ramified form for cyclotrons are systematized and separated into the self-contained class - the ramified resonators for cyclotrons (Carr). The ramified resonators are compared with the quarter-wave and half-wave nonramified resonators, accomplished from the transmitting lines fragments. The CRR are classified into two types: ones with the additional structural element, switched in parallel and in series. The CRR may include several additional structural elements. The CRR calculations may be concluded by analytical methods - the method of matrix calculation or the method of telegraph equations and numerical methods - by means of the ISFEL3D, MAFIA and other programs [ru

  19. Low field magnetic resonance experiments in superfluid 3He--A

    International Nuclear Information System (INIS)

    Gully, W.J. Jr.

    1976-01-01

    Measurements of the longitudinal and transverse nuclear magnetic resonance signals have been made on the A phase of liquid 3 He. They were performed on a sample of 3 He self-cooled by the Pomeranchuk effect to the critical temperature of the superfluid at 2.7 m 0 K. The longitudinal resonance is a magnetic mode of the liquid excited by radio frequency magnetic fields applied in the direction of the static magnetic field. Frequency profiles of this resonance were indirectly obtained by contour techniques from signals recorded by sweeping the temperature. Its frequency is found to be related to the frequency shift of the transverse resonance in agreement with theoretical predictions for the ABM pairing state. Its linewidth also agrees with theoretical predictions based upon dissipative phenomena peculiar to the superfluid phase. An analysis of the linewidth of the longitudinal resonance yields a value for the quasiparticle collision time. Transverse NMR lines were also studied. In low magnetic fields (20 Oersted) these lines were found to become extremely broad. This is shown to be a manifestation of the same collisional processes that broaden the longitudinal resonance lines. Also, the effects of various textures on the resonance lines are discussed, including the results of an attempt to create a single domain of 3 He with crossed electric and magnetic fields

  20. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    Science.gov (United States)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  1. THE RESONANT OVERVOLTAGE IN NON-SINUSOIDAL MODE OF MAIN ELECTRIC NETWORK

    Directory of Open Access Journals (Sweden)

    V. G. Kuznetsov

    2018-04-01

    Full Text Available Purpose. The resonant overvoltage arises in main electrical networks as a result of random coincidence of some parameters of circuit and its mode and it may exist for a relatively long time. Therefore, the traditional means of limitation of short duration commutation surges are not effective in this case. The study determines conditions of appearance and development of non-sinusoidal mode after switching idle autotransformer to the overhead line of extra high voltage. The purpose of the paper is to choice measures for prevention overvoltage, too. Methodology. The study has used the result of extra high voltage line testing, the methods of electric circuit theory and the simulation in the MATLAB & Simulink package. Results. The simulation model of the extra high voltage transmission line for the study of resonant non-sinusoidal overvoltage is developed. The conditions for the appearance of resonant circuits in the real power line are found and harmonic frequency in which overvoltage arises are obtained. The study proposes using the controlled switching device as a measure to prevent resonance surges and determines the appropriate settings. Originality. The expression for calculation of resonant length of extra high voltage line was derived. The special investigation of processes in the resonant circuit of the extra high voltage transmission line for higher harmonic components of voltage is carried out. The program of switching for control apparatus that prevents non-sinusoidal overvoltage has been developed at the first time. Practical value. The using of the proposed settings of controlled switchgear will prevent the occurrence of hazardous resonant surge on higher harmonic components of voltage.

  2. Precise measurements and theoretical calculations of He-like ion resonance line satellites radiated from Be-, B-, C-, N-, O-, and F-like ions

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Pikuz, S.A.; Shlyaptseva, A.S.

    1994-01-01

    Spectra with spectral resolution λ/Δλ∼ =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO 2 laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was ±(0.0005-0.001) A, but in some cases it was ±(0.002-0.003) A. (orig.)

  3. Precise measurements and theoretical calculations of He-like ion resonance line satellites radiated from Be-, B-, C-, N-, O-, and F-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [MISDC, NPO `VNIIFTRI`, Mendeleevo (Russian Federation); Pikuz, S.A. [P.N. Lebedev Physical Inst., Russian Academy of Sciences, Moscow (Russian Federation); Shlyaptseva, A.S. [Inst. of Technical Glasses, Moscow (Russian Federation)

    1994-01-01

    Spectra with spectral resolution {lambda}/{Delta}{lambda}{approx} =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO{sub 2} laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was {+-}(0.0005-0.001) A, but in some cases it was {+-}(0.002-0.003) A. (orig.).

  4. Stochastic resonance in bistable systems driven by harmonic noise

    International Nuclear Information System (INIS)

    Neiman, A.; Schimansky-Geier, L.

    1994-01-01

    We study stochastic resonance in a bistable system which is excited simultaneously by white and harmonic noise which we understand as the signal. In our case the spectral line of the signal has a finite width as it occurs in many real situations. Using techniques of cumulant analysis as well as computer simulations we find that the effect of stochastic resonance is preserved in the case of harmonic noise excitation. Moreover we show that the width of the spectral line of the signal at the output can be decreased via stochastic resonance. The last could be of importance in the practical using of the stochastic resonance

  5. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    Science.gov (United States)

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  6. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  7. Resonance lines in the Ag I and Pd I isoelectronic sequences: Cs IX through Sm XVI and Cs X through Nd XV

    International Nuclear Information System (INIS)

    Sugar, J.

    1977-01-01

    Spectra of Cs, Ba, La, Ce, Pr, Nd, and Sm ions were obtained with a low-temperature triggered spark produced with a 14.2 μF capacitor charged to voltages of 3--15 KV. They were photographed with a 10.7 m grazing incidence spectrograph in the range of 60--600 A. Resonance lines in the Pd I isolectronic sequences 4d 10 --4d 9 5p and 4d 10 --4d 9 4f were identified. In the Ag I sequences, spectral lines arising from 5s--5p, 5p--5d, 4f--5d, and 4f--5g transitions were identified

  8. A Compact Symmetric Microstrip Filter Based on a Rectangular Meandered-Line Stepped Impedance Resonator with a Triple-Band Bandstop Response

    Directory of Open Access Journals (Sweden)

    Rajendra Dhakal

    2013-01-01

    Full Text Available This paper presents a symmetric-type microstrip triple-band bandstop filter incorporating a tri-section meandered-line stepped impedance resonator (SIR. The length of each section of the meandered line is 0.16, 0.15, and 0.83 times the guided wavelength (λg, so that the filter features three stop bands at 2.59 GHz, 6.88 GHz, and 10.67 GHz, respectively. Two symmetric SIRs are employed with a microstrip transmission line to obtain wide bandwidths of 1.12, 1.34, and 0.89 GHz at the corresponding stop bands. Furthermore, an equivalent circuit model of the proposed filter is developed, and the model matches the electromagnetic simulations well. The return losses of the fabricated filter are measured to be −29.90 dB, −28.29 dB, and −26.66 dB while the insertion losses are 0.40 dB, 0.90 dB, and 1.10 dB at the respective stop bands. A drastic reduction in the size of the filter was achieved by using a simplified architecture based on a meandered-line SIR.

  9. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2014-07-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state with a continuum one. During the last decade this concept has been applied in plasmonics where the interference between a narrowband polariton and a broader one has been used to generate electromagnetically induced transparency (EIT) (M. Rahmani, et al., Laser Photon. Rev., 7, 329-349, 2013).

  10. Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xiaoliang Zhang

    2011-07-01

    Full Text Available In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.

  11. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance.

    Science.gov (United States)

    Martin, S J; Bandey, H L; Cernosek, R W; Hillman, A R; Brown, M J

    2000-01-01

    We derive a lumped-element, equivalent-circuit model for the thickness-shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of pi/2 rad. For low-loss films, this model accurately predicts the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. Elements of the parallel LCR resonator are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and Sauerbrey models.

  12. Spectrophotometry of Bowen resonance fluorescence lines in three planetary nebulae

    Science.gov (United States)

    O'Dell, C. R.; Miller, Christopher O.

    1992-01-01

    The results are presented of a uniquely complete, carefully reduced set of observations of the O III Bowen fluorescence lines in the planetary nebulae NGC 6210, NGC 7027, and NGC 7662. A detailed comparison with the predictions of radiative excitation verify that some secondary lines are enhanced by selective population by the charge exchange mechanism involving O IV. Charge exchange is most important in NGC 6210, which is of significantly lower ionization than the other nebulae. In addition to the principal Bowen lines arising from Ly-alpha pumping of the O III O1 line, lines arising from pumping of the O3 line are also observed. Comparison of lines produced by O1 and O3 with the theoretical predictions of Neufeld indicate poor agreement; comparison with the theoretical predictions of Harrington show agreement with NGC 7027 and NGC 7662.

  13. Resonant infiltration of an opal: Reflection line shape and contribution from in-depth regions.

    Science.gov (United States)

    Maurin, Isabelle; Bloch, Daniel

    2015-06-21

    We analyze the resonant variation of the optical reflection on an infiltrated artificial opal made of transparent nanospheres. The resonant infiltration is considered as a perturbation in the frame of a previously described one-dimensional model based upon a stratified effective index. We show that for a thin slice of resonant medium, the resonant response oscillates with the position of this slice. We derive that for adequate conditions of incidence angle, this spatially oscillating behavior matches the geometrical periodicity of the opal and hence the related density of resonant infiltration. Close to these matching conditions, the resonant response of the global infiltration varies sharply in amplitude and shape with the incidence angle and polarization. The corresponding resonant reflection originates from a rather deep infiltration, up to several wavelengths or layers of spheres. Finally, we discuss the relationship between the present predictions and our previous observations on an opal infiltrated with a resonant vapor.

  14. Multi-turn multi-gap transmission line resonators - Concept, design and first implementation at 4.7T and 7T.

    Science.gov (United States)

    Frass-Kriegl, Roberta; Laistler, Elmar; Hosseinnezhadian, Sajad; Schmid, Albrecht Ingo; Moser, Ewald; Poirier-Quinot, Marie; Darrasse, Luc; Ginefri, Jean-Christophe

    2016-12-01

    A novel design scheme for monolithic transmission line resonators (TLRs) is presented - the multi-turn multi-gap TLR (MTMG-TLR) design. The MTMG-TLR design enables the construction of TLRs with multiple turns and multiple gaps. This presents an additional degree of freedom in tuning self-resonant TLRs, as their resonance frequency is fully determined by the coil geometry (e.g. diameter, number of turns, conductor width, etc.). The novel design is evaluated at 4.7T and 7T by simulations and experiments, where it is demonstrated that MTMG-TLRs can be used for MRI, and that the B 1 distribution of MTMG-TLRs strongly depends on the number and distribution of turns. A comparison to conventional loop coils revealed that the B 1 performance of MTMG-TLRs is comparable to a loop coil with the same mean diameter; however, lower 10g SAR values were found for MTMG-TLRs. The MTMG-TLR design is expected to bring most benefits at high static field, where it allows for independent size and frequency selection, which cannot be achieved with standard TLR design. However, it also enables more accurate geometric optimization at low static field. Thereby, the MTMG-TLR design preserves the intrinsic advantages of TLRs, i.e. mechanical flexibility, high SAR efficiency, mass production, and coil miniaturization. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Contribution to the study of electron paramagnetic resonance and relaxation

    International Nuclear Information System (INIS)

    Theobald, Jean-Gerard

    1962-01-01

    This research thesis reports an experimental work which comprises the development of a very practical and very sensitive electron paramagnetic resonance spectrometer, and the use of this equipment for the study of irradiated substances and carbons. By studying electronic resonance signals by fast modulation of the magnetic field, the author studied phenomena of quick passage in electronic resonance, and showed that the study of these phenomena requires observation systems with a particularly large bandwidth. He reports the measurement of the line width of packs of spins of inhomogeneous lines by two different methods [fr

  16. Ghost lines in Moessbauer relaxation spectra

    International Nuclear Information System (INIS)

    Price, D.C.

    1985-01-01

    The appearance in Moessbauer relaxation spectra of 'ghost' lines, which are narrow lines that do not correspond to transitions between real hyperfine energy levels of the resonant system, is examined. It is shown that in many cases of interest, the appearance of these 'ghost' lines can be interpreted in terms of the relaxational averaging of one or more of the static interactions of the ion. (orig.)

  17. Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-11-01

    We report on Fano resonances in a high-quality (Q) whispering-gallery mode (WGM) spherical resonator coupled to a multi-mode waveguide in the terahertz (THz) frequency range. The asymmetric line shape and phase of the Fano resonances detected with coherent continuous-wave (CW) THz spectroscopy measurements are in excellent agreement with the analytical model. A very high Q factor of 1600, and a finesse of 22 at critical coupling is observed around 0.35 THz. To the best of our knowledge this is the highest Q factor ever reported for a THz WGM resonator.

  18. Millimeter-wave sensor based on a λ/2-line resonator for identification and dielectric characterization of non-ionic surfactants.

    Science.gov (United States)

    Rodilla, H; Kim, A A; Jeffries, G D M; Vukusic, J; Jesorka, A; Stake, J

    2016-01-20

    Studies of biological and artificial membrane systems, such as niosomes, currently rely on the use of fluorescent tags, which can influence the system under investigation. For this reason, the development of label-free, non-invasive detection techniques is of great interest. We demonstrate an open-volume label-free millimeter-wave sensing platform based on a coplanar waveguide, developed for identification and characterization of niosome constituents. A design based on a λ/2-line resonator was used and on-wafer measurements of transmission and reflection parameters were performed up to 110 GHz. Our sensor was able to clearly distinguish between common niosome constituents, non-ionic surfactants Tween 20 and Span 80, measuring a resonance shift of 3 GHz between them. The complex permittivities of the molecular compounds have been extracted. Our results indicate insignificant frequency dependence in the investigated frequency range (3 GHz - 110 GHz). Values of permittivity around 3.0 + 0.7i and 2.2 + 0.4i were obtained for Tween 20 and Span 80, respectively.

  19. Magnetosonic resonance in a dipole-like magnetosphere

    Directory of Open Access Journals (Sweden)

    A. S. Leonovich

    2006-09-01

    Full Text Available A theory of resonant conversion of fast magnetosonic (FMS waves into slow magnetosonic (SMS oscillations in a magnetosphere with dipole-like magnetic field has been constructed. Monochromatic FMS waves are shown to drive standing (along magnetic field lines SMS oscillations, narrowly localized across magnetic shells. The longitudinal and transverse structures, as well as spectrum of resonant SMS waves are determined. Frequencies of fundamental harmonics of standing SMS waves lie in the range of 0.1–1 mHz, and are about two orders of magnitude lower than frequencies of similar Alfvén field line resonance harmonics. This difference makes an effective interaction between these MHD modes impossible. The amplitude of SMS oscillations rapidly decreases along the field lines from the magnetospheric equator towards the ionosphere. In this context, magnetospheric SMS oscillations cannot be observed on the ground, and the ionosphere does not play any role either in their generation or dissipation. The theory developed can be used to interpret the occurrence of compressional Pc5 waves in a quiet magnetosphere with a weak ring current.

  20. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  1. Magnetically coupled Fano resonance of dielectric pentamer oligomer

    International Nuclear Information System (INIS)

    Zhang, Fuli; Li, Chang; He, Xuan; Chen, Lei; Fan, Yuancheng; Zhao, Qian; Zhang, Weihong; Zhou, Ji

    2017-01-01

    We present magnetically induced Fano resonance inside a dielectric metamaterial pentamer composed of ceramic bricks. Unlike previous reports where different sizes of dielectric resonators were essential to produce Fano resonance, under external magnetic field excitation, central and outer dielectric bricks with identical sizes exhibit in-phase and out-of-phase magnetic Mie oscillations. An asymmetric line shape of Fano resonance along with enhanced group delay is observed due to the interference between the magnetic resonance of the central brick and the symmetric magnetic resonance of outer bricks. Besides, Fano resonance blueshifts with the increasing resonance of the smaller central brick. The thermal-dependent permittivity of ceramics allows Fano resonance to be reversibly tuned by 300 MHz when temperature varies by 60 °C. (paper)

  2. Continuous neutron slowing down theory applied to resonances

    International Nuclear Information System (INIS)

    Segev, M.

    1977-01-01

    Neutronic formalisms that discretize the neutron slowing down equations in large numerical intervals currently account for the bulk effect of resonances in a given interval by the narrow resonance approximation (NRA). The NRA reduces the original problem to an efficient numerical formalism through two assumptions: resonance narrowness with respect to the scattering bands in the slowing down equations and resonance narrowness with respect to the numerical intervals. Resonances at low energies are narrow neither with respect to the slowing down ranges nor with respect to the numerical intervals, which are usually of a fixed lethargy width. Thus, there are resonances to which the NRA is not applicable. To stay away from the NRA, the continuous slowing down (CSD) theory of Stacey was invoked. The theory is based on a linear expansion in lethargy of the collision density in integrals of the slowing down equations and had notable success in various problems. Applying CSD theory to the assessment of bulk resonance effects raises the problem of obtaining efficient quadratures for integrals involved in the definition of the so-called ''moderating parameter.'' The problem was solved by two approximations: (a) the integrals were simplified through a rationale, such that the correct integrals were reproduced for very narrow or very wide resonances, and (b) the temperature-broadened resonant line shapes were replaced by nonbroadened line shapes to enable analytical integration. The replacement was made in such a way that the integrated capture and scattering probabilities in each resonance were preserved. The resulting formalism is more accurate than the narrow-resonance formalisms and is equally as efficient

  3. THE {sup 7}Be ii RESONANCE LINES IN TWO CLASSICAL NOVAE V5668 SGR AND V2944 OPH

    Energy Technology Data Exchange (ETDEWEB)

    Tajitsu, Akito [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Sadakane, Kozo [Astronomical Institute, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582 (Japan); Naito, Hiroyuki [Nayoro Observatory, 157-1 Nisshin, Nayoro, Hokkaido 096-0066 (Japan); Arai, Akira; Kawakita, Hideyo [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Aoki, Wako, E-mail: tajitsu@naoj.org [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We report spectroscopic observations of the resonance lines of singly ionized {sup 7}Be in the blueshifted absorption line systems found in the post-outburst spectra of two classical novae—V5668 Sgr (Nova Sagittarii 2015 No. 2) and V2944 Oph (Nova Ophiuchi 2015). The unstable isotope {sup 7}Be should have been created during the thermonuclear runaway (TNR) of these novae and decayed to form {sup 7}Li within a short period (a half-life of 53.22 days). These confirmations of {sup 7}Be are the second and the third ones following the first case found in V339 Del by Tajitsu et al. The blueshifted absorption line systems in both novae are clearly divided into two velocity components, both of which contain {sup 7}Be. This means that the absorbing gases in both velocity components consist of products of TNR. We estimated the amounts of {sup 7}Be produced during the outbursts of both novae and concluded that significant {sup 7}Li should have been created. These findings strongly suggest that the explosive production of {sup 7}Li via the reaction {sup 3}He(α,γ){sup 7}Be and its  subsequent decay to {sup 7}Li occurs frequently among classical novae and contributes to the process of Galactic Li enrichment.

  4. Optical Microspherical Resonators for Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  5. VUV emission spectra from binary rare gas mixtures near the resonance lines of Xe I and Kr I

    CERN Document Server

    Morozov, A; Gerasimov, G; Arnesen, A; Hallin, R

    2003-01-01

    Emission spectra of Xe-X (X = He, Ne, Ar and Kr) and of Kr-Y (Y = He, Ne and Ar) mixtures with low concentrations of the heavier gases (0.1-1%) and moderate total pressures (50-200 hPa) have been recorded near each of the two resonance lines of Xe and Kr in DC glow capillary discharges. The recorded intense emissions have narrow spectral profiles with FWHM of about 0.1 nm. The profiles are very similar in shape to profiles of known high resolution absorption spectra recorded at comparable gas pressures. A tentative identification of the emission structures is given, which involves transitions in heteronuclear molecules and quasimolecules between weakly-bound states.

  6. Preliminary results from the Orbiting Solar Observatory 8 - Observations of optically thin lines

    Science.gov (United States)

    Shine, R. A.; Roussel-Dupre, D.; Bruner, E. C., Jr.; Chipman, E. G.; Lites, B. W.; Rottman, G. J.; Athay, R. G.; White, O. R.

    1976-01-01

    The University of Colorado spectrometer aboard OSO 8 has measured the high temperature C IV resonance lines (at 1548 and 1551 A) and the Si IV resonance lines (at 1393 and 1402 A) formed in the solar chromosphere-corona transition region. Preliminary results include studies of mean profiles, a comparison of cell and network profiles, and the behavior of the lines at the extreme solar limb.

  7. Iron forbidden lines in tokamak discharges

    International Nuclear Information System (INIS)

    Suckewer, S.; Hinnov, E.

    1979-03-01

    Several spectrum lines from forbidden transitions in the ground configurations of highly ionized atoms have been observed in the PLT tokamak discharges. Such lines allow localized observations, in the high-temperature regions of the plasma, of ion-temperatures, plasma motions, and spatial distributions of ions. Measured absolute intensities of the forbidden lines have been compared with simultaneous observations of the ion resonance lines and with model calculations in order to deduce the mechanism of level populaions by means of electron collisions and radiative transitions

  8. Iron forbidden lines in tokamak discharges

    Energy Technology Data Exchange (ETDEWEB)

    Suckewer, S.; Hinnov, E.

    1979-03-01

    Several spectrum lines from forbidden transitions in the ground configurations of highly ionized atoms have been observed in the PLT tokamak discharges. Such lines allow localized observations, in the high-temperature regions of the plasma, of ion-temperatures, plasma motions, and spatial distributions of ions. Measured absolute intensities of the forbidden lines have been compared with simultaneous observations of the ion resonance lines and with model calculations in order to deduce the mechanism of level populaions by means of electron collisions and radiative transitions.

  9. Spin injection in n-type resonant tunneling diodes.

    Science.gov (United States)

    Orsi Gordo, Vanessa; Herval, Leonilson Ks; Galeti, Helder Va; Gobato, Yara Galvão; Brasil, Maria Jsp; Marques, Gilmar E; Henini, Mohamed; Airey, Robert J

    2012-10-25

    We have studied the polarized resolved photoluminescence of n-type GaAs/AlAs/GaAlAs resonant tunneling diodes under magnetic field parallel to the tunnel current. Under resonant tunneling conditions, we have observed two emission lines attributed to neutral (X) and negatively charged excitons (X-). We have observed a voltage-controlled circular polarization degree from the quantum well emission for both lines, with values up to -88% at 15 T at low voltages which are ascribed to an efficient spin injection from the 2D gases formed at the accumulation layers.

  10. Ferromagnetic resonance in a Ni-Mo superlattice

    International Nuclear Information System (INIS)

    Pechan, M.J.; Salamon, M.B.; Schuller, I.K.

    1985-01-01

    Ferromagnetic resonance (FMR) measurements, at room temperature and at 4.2 K, have been made on a layered Ni (249 A)-Mo(83 A) superlattice. We have examined the resonance position as a function of the angle between the film normal and the applied field. The measured g value agrees with that of bulk Ni, but the magnetization is lower than that obtained for bulk Ni and also for this sample using both light scattering and direct measurement techniques. This low magnetization contrasts with FMR measurements on compositionally modulated Ni-Cu samples, where the magnetization was reported to be greater than that of bulk Ni. We show that a reduced value of the magnetization is consistent with perpendicular uniaxial anisotropy. When the applied field is less than 20 0 from the surface normal, additional lines appear that move to higher fields than the main resonance. These lines are consistent with the existence of nonuniform regions of distinct magnetization. An observed resonance, which is suggestive of a spin-wave mode, is discussed

  11. Resonator Sensitivity Optimization in Magnetic Resonance and the Development of a Magic Angle Spinning Probe for the NMR Study of Rare Spin Nuclei on Catalytic Surfaces.

    Science.gov (United States)

    Doty, Francis David

    The sensitivity of an arbitrary resonator for the detection of a magnetic resonance signal is derived from basic energy considerations, and is shown to be dependent on V(,s)/t(,90)P(' 1/2). The radiation damping time constant is shown to be inversely dependent on the rf filling factor. Several resonators are analyzed in detail. The optimum solenoid is shown to have a length of about 1.5 times the diameter. The multilayer solenoid and the capacitively shortened slotted line resonator are shown to have advantages for samples with high dielectric losses. The capacitively shortened slotted line resonator is shown to substantially reduce acoustic ringing problems. Efficient methods are discussed for double and triple tuning these resonators. A slotted cylindrical resonator is described which gives higher sensitivity and faster response time than conventional cavities for very small samples at X-band ESR frequencies. Double tuned circuits using lumped elements are shown to be generally more efficient than those using transmission lines in generating rf fields. The optimum inductance ratio of the two coils in a ('13)C, ('1)H CP experiment is about 3. The high speed cylindrical sample spinner is analyzed in terms of compressible fluid dynamics, resonant modes, and structural analysis to arrive at optimum air bearing and spinner design recommendations. The optimum radial clearance is shown to depend on the 1/3 power of the rotor diameter. The required air bearing hole diameter has a square root dependence on the rotor diameter. Air pockets are shown to increase the resonant frequencies. Relevant data for a number of high strength insulators including hard ceramics are tabulated, and limiting speeds are calculated. CP MAS experiments on a 5% monolayer of n-butylamine absorbed on (gamma)-alumina reveal six lines. By comparison with the liquid phase spectrum it was determined that at least two types of chemically different surface species were present and that surface

  12. Vortices at the magnetic equator generated by hybrid Alfvén resonant waves

    Science.gov (United States)

    Hiraki, Yasutaka

    2015-01-01

    We performed three-dimensional magnetohydrodynamic simulations of shear Alfvén waves in a full field line system with magnetosphere-ionosphere coupling and plasma non-uniformities. Feedback instability of the Alfvén resonant modes showed various nonlinear features under the field line cavities: (i) a secondary flow shear instability occurs at the magnetic equator, (ii) trapping of the ionospheric Alfvén resonant modes facilitates deformation of field-aligned current structures, and (iii) hybrid Alfvén resonant modes grow to cause vortices and magnetic oscillations around the magnetic equator. Essential features in the initial brightening of auroral arc at substorm onsets could be explained by the dynamics of Alfvén resonant modes, which are the nature of the field line system responding to a background rapid change.

  13. FPSPH DFPSPF, Line Shape Function for Doppler Broadened Resonance Cross-Sections Calculation

    International Nuclear Information System (INIS)

    Ribon, P.

    1982-01-01

    1 - Description of problem or function: In the computation of Doppler- broadened resonance cross sections, use is made of the symmetric and anti-symmetric line shape functions. These functions usually denoted as Psi and Phi (Psi and Chi in Anglo-Saxon formalism) are defined in terms of the real and imaginary parts of the error function for complex arguments. They are the product of the convolution of a Gaussian function with the symmetric and anti-symmetric Breit-Wigner functions, respectively. FPSPH and DFPSPH compute these functions. 2 - Method of solution: For (1+x 2 ) > 20 Beta 2 , the calculation is based upon the asymptotic expansion: Psi+(i*Phi) = 1/(1-ix)*(1-t+3t 2 -3.5t 3 +3.5+7t 4 ---), with: t = 1/(2z 2 ); z = (1-ix)/Beta. The half-plane (Beta,x) is split in several parts, and use is made of PADE approximants. For 1 + x 2 2 , the calculation is based upon the relation with the erf function: Psi + i*Phi = SQRT(Pi)/Beta*(e (z 2 ) )*(1-erf(z)) (z = (1-ix)/Beta, and erf(z) being calculated from its analytic expansion: erf(z) = 2/SQRT(Pi)*z*e (-z 2 ) *(1+z 2 /3+z 4 /(3*5) + z 6 /(3*5*7)+---). PADE approximants are used to compute the expansion and e z 2

  14. Properties of spiral resonators

    International Nuclear Information System (INIS)

    Haeuser, J.

    1989-10-01

    The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de

  15. Measurement of optical Feshbach resonances in an ideal gas.

    Science.gov (United States)

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  16. Measurement of Optical Feshbach Resonances in an Ideal Gas

    International Nuclear Information System (INIS)

    Blatt, S.; Nicholson, T. L.; Bloom, B. J.; Williams, J. R.; Thomsen, J. W.; Ye, J.; Julienne, P. S.

    2011-01-01

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic 88 Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  17. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    Science.gov (United States)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  18. Time dependence of the UV resonance lines in the cataclysmic variables SU UMa, RX And and 0623+71

    International Nuclear Information System (INIS)

    Woods, J.A.; Drew, J.E.; Verbunt, Frank

    1990-01-01

    We present IUE observations of the dwarf novae SU UMa and RX And, and of the nova-like variable 0623 + 71. At the time of observation, SU UMa and RX And were in outburst. All three systems show variability in the wind-formed UV resonance lines of N v λ 1240, Si IV λ 1397 and C IV λ 1549 on timescale of hours. The amplitude of variation is smallest in RX And and largest in 0623 + 71. There is evidence that the variations observed in SU UMa's UV spectrum repeat on the orbital period. Our observations of SU UMa also reveal variability in the continuum flux during the decline from outburst maximum that is much more marked in the UV than at optical wavelengths. (author)

  19. Isomeric shift compensation when using resonance detectors in Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Irkaev, S.M.; Semenkin, V.A.; Sokolov, M.M.

    1981-01-01

    Method for compensation of isomeric shift of lines observed during operation of resonance detectors being part of spectrometers of nuclear gamma resonance is suggested. A flowsheet of device permitting to realize the method described is given. The method is based on using the Doppler effect. A source of resonance radiation is moved at a constant velocity, which is choosen so as to compensate energy shift of lines of the source and convertors of the resonance detector. The absorber under investigation is put in motion with a constant acceleration. The resonance detector signals are amplified selected according to amplitude by a discriminator and come to the input of multichannel analyzer operating in the regime of subsequent scaling. Analysis of experimental spectra obtained at velocities of source movement from 0 to +3 mm/s shows that value of resonance absorption effect drops as increasing energy shift in the source-converter system. It is concluded that application of the method described will permit to considerably extend the field of application of resonance detectors in the Moessbauer spectroscopy and investigate in practice all the isotopes having converted transitions [ru

  20. Degenerate four-wave mixing in a resonant homogeneously broadened system

    International Nuclear Information System (INIS)

    Lind, R.C.; Steel, D.G.

    1979-01-01

    Detailed measurements have been made of degenerate four-wave mixing (DFWM) in a resonant homogeneously broadened gas. The measurements were performed in SF 6 using a CO 2 laser operated on the 10.4-μm branch. The experimental results were compared to a two-level theory for a resonant saturable absorber developed by Abrams and Lind. The measured value of 7% reflectivity on the P(20) line was in excellent agreement with Abrams and Lind when corrected for thermal motion. A peak reflectivity of 38% was observed for off-resonant operation on the P(8) line. In addition to the usual two-level nonlinear response, discussion and measurement of the coherent three-level nonlinearity is also presented. A two-photon contribution in SF 6 using the P(16) line of CO 2 equals the one-photon response. Initial observations of coherent propagation effects are also presented

  1. Antioxidant capacity of hesperidin from citrus peel using electron spin resonance and cytotoxic activity against human carcinoma cell lines.

    Science.gov (United States)

    Al-Ashaal, Hanan A; El-Sheltawy, Shakinaz T

    2011-03-01

    Hesperidin is a flavonoid that has various pharmacological activities including anti-inflammatory, antimicrobial and antiviral activities. The aim of the study is the isolation of hesperidin from the peel of Citrus sinensis L. (Rutaceae), and the evaluation of its antioxidant capacity and cytotoxicity against different human carcinoma cell lines. In the present work, hesperidin is identified and confirmed using chromatographic and spectral analysis. To correlate between hesperidin concentration and antioxidant capacity of peel extracts, extraction was carried out using 1% HCl-MeOH, MeOH, alkaline solution, the concentration of hesperidin determined qualitatively and quantitatively using high performance thin layer chromatography (HPTLC), high performance liquid chromatography (HPLC) analysis, in vitro antioxidant capacity of hesperidin and the extracts against free radical diphenylpicrylhydrazyl (DPPH•) performed using an electron spin resonance spectrophotometer (ESR). Cytotoxic assay against larynx, cervix, breast and liver carcinoma cell lines was performed. Hesperidin was found to be moderately active as an antioxidant agent; its capacity reached 36%. In addition, the results revealed that hesperidin exhibited pronounced anticancer activity against the selected cell lines. IC₅₀ were 1.67, 3.33, 4.17, 4.58 µg/mL, respectively. Orange peels are considered to be a cheap source for hesperidin which may be used in the pharmaceutical industry as a natural chemopreventive agent. Hesperidin and orange peel extract could possess antioxidant properties with a wide range of therapeutic applications.

  2. A resonant ionization laser ion source at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Stracener, D.W.

    2016-06-01

    Multi-step resonance laser ionization has become an essential tool for the production of isobarically pure radioactive ion beams at the isotope separator on-line (ISOL) facilities around the world. A resonant ionization laser ion source (RILIS) has been developed for the former Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory. The RILIS employs a hot-cavity ion source and a laser system featuring three grating-tuned and individually pumped Ti:Sapphire lasers, especially designed for stable and simple operation. The RILIS has been installed at the second ISOL production platform of former HRIBF and has successfully provided beams of exotic neutron-rich Ga isotopes for beta decay studies. This paper reports the features, advantages, limitations, and on-line and off-line performance of the RILIS.

  3. Resonance detection of Moessbauer radiation

    International Nuclear Information System (INIS)

    Morozov, V.V.

    1985-01-01

    The resonance detection method as compared with the usual method of registering Moessbauer spectra has a number of advantages, one of which is the increase of resolution of the Moessbauer spectrum. The method is based on the modulation of a secondary radiation of a converter tuned in the resonance with the Moessbauer gamma-quantum source. The resonance detection method with account of supression, secondary radiation outgoing from the converter is investigated. The converter represents a substrate enriched by the Moessbauer isotope placed either inside the gas counter, or coupled with any other detecting device. Analytical expressions for Moessbauer spectrum parameters: effect, area and width of the spectral line are derived. It is shown that the joint application of usual and resonance detection methods for registering the Moessbauer spectrum allows one to determine parameters of the source, converter and the investigated absorber

  4. Suppression of mechanical resonance in digital servo system considering oscillation frequency deviation

    DEFF Research Database (Denmark)

    Chen, Yangyang; Yang, Ming; Hu, Kun

    2017-01-01

    High-stiffness servo system is easy to cause mechanical resonance in elastic coupling servo system. Although on-line adaptive notch filter is effective in most cases, it will lead to a severer resonance when resonance frequency deviated from the natural torsional frequency. To explain...

  5. Wideband Bandpass Filter with High Selectivity and an Adjustable Notched-band Adopting a Multi-mode Resonator

    Science.gov (United States)

    Ma, Xing-Bing; Jiang, Ting

    2018-04-01

    A wideband bandpass filter (BPF) with an adjustable notched-band and high selectivity is proposed. The proposed BPF consists of a multi-mode resonator (MMR), two λ/2 resonators, and I/O feed lines with 50 ohm characteristic impedance. The MMR, connected as a whole by a wide stub, is composed of one I-shaped resonator and two open-loop resonators. Tightly coupling is built between MMR and λ/2 resonators. I/O feed lines are directly connected with two λ/2 resonators, respectively. Due to the use of tapped-line coupling, one transmission zero (TZ) is formed near low-edge of aim passband. High-edge of passband with one attendant TZ can be tuned to desired location by adjusting bottom-side position of used wide stub or bottom-side length of I-shaped resonator in MMR. The top-side length of I-shaped resonator is applied to improve upper stopband performance and shift undesired resonant mode of MMR near high-edge of aim passband to proper frequency point. The notched-band in aim passband is dominated by top-side position of wide stub in MMR. Good agreement is observed between simulated and measured results.

  6. Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluids

    International Nuclear Information System (INIS)

    Marin, C.N.

    2006-01-01

    Thermal and particle size distribution effects on the ferromagnetic resonance of magnetic fluids were theoretically investigated, assuming negligible interparticle interactions and neglecting the viscosity of the carrier liquid. The model is based on the usual approach for the ferromagnetic resonance description of single-domain magnetic particle systems, which was amended in order to take into account the finite particle size effect, the particle size distribution and the orientation mobility of the particles within the magnetic fluid. Under these circumstances the shape of the resonance line, the resonance field and the line width are found to be strongly affected by the temperature and by the particle size distribution of magnetic fluids

  7. Optimal Value of Series Capacitors for Uniform Field Distribution in Transmission Line MRI Coils

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2016-01-01

    Transmission lines are often used as coils in high field magnetic resonance imaging (MRI). Due to the distributed nature of transmission lines, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the coil....... The equations for optimal values of evenly distributed capacitors are derived and expressed in terms of the implemented transmission line parameters.The achieved magnetic field homogeneity is estimated under quasistatic approximation and compared to the regular transmission line resonator. Finally, a more...... practical case of a microstrip line coil with two series capacitors is considered....

  8. The particle concentration effect on magnetic resonance linewidth for magnetic liquids with chain aggregates

    International Nuclear Information System (INIS)

    Marin, C.N.

    2002-01-01

    Based on the assumption of particle chains formation within a magnetic liquid, computer simulation of the magnetic resonance line is presented. The dependence on particle concentration within a magnetic liquid of magnetic resonance linewidth is analyzed. The computer simulation demonstrates that the particles chaining has an important effect on the enlargement of the magnetic resonance line. Increasing the particle concentration within magnetic liquid leads to an increase in the linewidth. The agreement with some experimental findings is discussed

  9. Status of ACCULINNA beam line

    CERN Document Server

    Rodin, A M; Bogdanov, D D; Golovkov, M S; Fomichev, A S; Sidorchuk, S I; Slepnev, R S; Wolski, R; Ter-Akopian, G M; Oganessian, Yu T; Yukhimchuk, A A; Perevozchikov, V V; Vinogradov, Yu I; Grishenchkin, S K; Demin, A M; Zlatoustovskii, S V; Kuryakin, A V; Filchagin, S V; Ilkaev, R I

    2003-01-01

    The separator ACCULINNA was upgraded to achieve new experimental requirements. The beam line was extended by new ion-optical elements beyond the cyclotron hall. The new arrangements yield much better background conditions. The intensities of sup 6 He and sup 8 He radioactive beams produced in fragmentation of 35 A MeV sup 1 sup 1 B ions were increased up to a factor of 10. The upgraded beam line was used in experiments to study the sup 5 H resonance states populated in the t+t reaction. A cryogenic liquid tritium target was designed and installed at the separator beam line.

  10. Resonance reduction for AC drives with small capacitance in the DC link

    DEFF Research Database (Denmark)

    Máthé, Lászlo; Török, Lajos; Wang, Dong

    2016-01-01

    Pulse Width Modulated AC drives equipped with small DC-link capacitor are becoming an attractive solution for electric drive applications with moderate requirements for shaft dynamic performance. However, when these drives are fed from a weak grid a resonance between the line side impedance...... and the DC-link capacitor appears. Due to this resonance, the THD and the partially weighted harmonic distortion of the line currents are increased, which may rise compatibility problems with the AC line harmonic standards. By using vector control the motor drive is transformed into a constant power load...

  11. Scattering analysis of asymmetric metamaterial resonators by the Riemann-Hilbert approach

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Ziolkowski, Richard W.; Arslanagic, Samel

    2016-01-01

    This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell with an ap......This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell...... with an aperture. Exact analytical solution of the problem is derived; it is based on the n-series approach which is casted into the equivalent Riemann-Hilbert problem. The examined configuration leads to large enhancements of the radiated field and to steerable Huygens-like directivity patterns. Particularly...

  12. Development of a magnetic resonance sensor for on-line monitoring of 99Tc and 23Na in tank waste cleanup processes: Final report and implementation plan

    International Nuclear Information System (INIS)

    Dieckman, S. L.; Jendrzejczyk, J. A.; Raptis, A. C.

    2000-01-01

    In response to US Department of Energy (DOE) requirements for advanced cross-cutting technologies, Argonne National Laboratory is developing an on-line sensor system for the real-time monitoring of 99 Tc and 23 Na in various locations throughout radioactive-waste processing facilities. Based on nuclear magnetic resonance spectroscopy, the highly automated sensor system can provide near-real-time response with minimal sampling. The technology, in the form of a flow-through nuclear-magnetic-resonance-based on-line process sensing and control system, can rapidly monitor 99 Tc speciation and concentration (from 0.1 molar to 10 micro molar) in the feedstocks and eluents of radioactive-waste treatment processes. The system is nonintrusive, capable of withstanding harsh plant environments, and reasonably immune to contaminants. Furthermore, the system is capable of operating over large variations in pH, conductivity, and salinity. This document describes design parameters, results from sensitivity studies, and initial results obtained from oxidation-reduction studies that were conducted on technetium standards and waste specimens obtained from DOE's Hanford site. A cursory investigation of the system's capabilities to monitor 23 Na at high concentrations are also reported, as are descriptions of site requirements, implementation recommendations, and testing techniques

  13. Resonant excitation of uranium atoms by an argon ion laser

    Energy Technology Data Exchange (ETDEWEB)

    Maeyama, H; Morikawa, M; Aihara, Y; Mochizuki, T; Yamanaka, C [Osaka Univ. (Japan)

    1979-03-01

    Photoionization of uranium atoms by UV lines, 3511 A and 3345 A, of an argon ion laser was observed and attributed due to resonant two-photon ionization. The dependence of the photoion currents on laser power was measured in focusing and non-focusing modes of laser beam, which has enabled us to obtain an absorption cross section and an ionization cross section independently. The orders of magnitude of these cross sections averaged over the fine structure were determined to be 10/sup -14/ cm/sup 2/ and 10/sup -17/ cm/sup 2/ respectively from a rate equation model. Resonance between 3511-A laser line and the absorption line of uranium isotopes was also confirmed by the ionization spectra obtained by near-single-frequency operation of the ion laser, which allowed the isotopic selective excitation of the uranium atoms. The maximum value of the enrichment of /sup 235/U was about 14%. The isotope separation of uranium atoms by this resonant excitation has been discussed.

  14. Experiments on resonantly photo-pumped x-ray lasers

    International Nuclear Information System (INIS)

    Nilsen, J.; Porter, J.L.; Da Silva, L.B.; MacGowan, B.; Beiersdorfer, P..; Elliott, S.R.; Young, B.K.

    1992-01-01

    We describe our recent effort to identify and study a promising resonantly photopumped x-ray laser scheme. In particular we will describe a scheme which uses the strong emission lines of a nickel-like ion to resonantly photo-pump a neon-like ion and enhance the lasing of the neon-like 3p → 3s transitions

  15. First observation of the Λ(1405) line shape in electroproduction

    Science.gov (United States)

    Lu, H. Y.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.

    2013-10-01

    We report the first observation of the line shape of the Λ(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K+Λ(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0resonance parameters, nor free parameters fitting to a single Breit-Wigner resonance represent the line shape. In our fits, the line shape corresponds approximately to predictions of a two-pole meson-baryon picture of the Λ(1405), with a lower mass pole near 1368 MeV/c2 and a higher mass pole near 1423 MeV/c2. Furthermore, with increasing photon virtuality the mass distribution shifts toward the higher mass pole.

  16. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khalkhali, S.M.H. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2017-02-15

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in M{sub x} configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design. - Highlights: • Highly sensitive atomic magnetometers have been used to measure weak magentic filed. • To obtain narrower resonance signal, we impalnted harmonic detection of magnetic resonance. • The nonlinear spin polarization dynamics in detetion of the higher harmonics were imployed.

  17. Resonance chains in open systems, generalized zeta functions and clustering of the length spectrum

    International Nuclear Information System (INIS)

    Barkhofen, S; Faure, F; Weich, T

    2014-01-01

    In many non-integrable open systems in physics and mathematics, resonances have been found to be surprisingly ordered along curved lines in the complex plane. In this article we provide a unifying approach to these resonance chains by generalizing dynamical zeta functions. By means of a detailed numerical study we show that these generalized zeta functions explain the mechanism that creates the chains of quantum resonance and classical Ruelle resonances for three-disk systems as well as geometric resonances on Schottky surfaces. We also present a direct system-intrinsic definition of the continuous lines on which the resonances are strung together as a projection of an analytic variety. Additionally, this approach shows that the existence of resonance chains is directly related to a clustering of the classical length spectrum on multiples of a base length. Finally, this link is used to construct new examples where several different structures of resonance chains coexist. (paper)

  18. Review on resonance cone fields

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro.

    1980-02-01

    Resonance cone fields and lower hybrid heating are reviewed in this report. The resonance cone fields were reported by Fisher and Gould, and they proposed the use of the measurement of resonance cones and structure as a diagnostic tool to determine the plasma density and electron temperature in magnetoplasma. After the resonance cone, a wave-like disturbance persists. Ohnuma et al. have measured bending, reflection and ducting of resonance cones in detail. The thermal modes in inhomogeneous magnetoplasma were seen. The reflection of thermal mode near an electron plasma frequency layer and an insulating plate has been observed. The non-linear effects of resonance cones is reported. Monochromatic electron beam produces the noise of broad band whistler mode. Lower hybrid waves have been the subject of propagation from the edge of plasma to the lower hybrid layer. Linear lower hybrid waves were studied. The lower hybrid and ion acoustic waves radiated from a point source were observed. The parametric decay of finite-extent, cold electron plasma waves was studied. The lower hybrid cone radiated from a point source going along magnetic field lines was observed. Several experimental data on the lower hybrid heating in tokamak devices have been reported. The theories on resonance cones and lower hybrid waves are introduced in this report. (Kato, T.)

  19. RF MEMS suspended band-stop resonator and filter for frequency and bandwidth continuous fine tuning

    International Nuclear Information System (INIS)

    Jang, Yun-Ho; Kim, Yong-Kweon; Llamas-Garro, Ignacio; Kim, Jung-Mu

    2012-01-01

    We firstly propose the concept of a frequency and bandwidth fine-tuning method using an RF MEMS-based suspended tunable band-stop resonator. We experimentally show the feasibility of the continuously tuned resonator, including a second-order filter, which consists of cascaded resonators to achieve center frequency and bandwidth fine tuning. The structure consists of a freestanding half-wavelength (λ/2) resonator connected to a large displacement comb actuator. The lateral movement of the λ/2 resonator over the main transmission line produces different electromagnetic decoupling values from the main transmission line. The decoupled energy leads to continuous center frequency and bandwidth tuning using the band-stop resonator circuit for fine-tuning applications. The freestanding λ/2 resonator plays the role of a variable capacitor as well as a decoupling resonator in the proposed structure. The fabricated tunable filter shows suitability for Ku-band wireless communication system applications with continuous reconfiguration

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Bhalchandra W Gore. Articles written in Resonance – Journal of Science Education. Volume 22 Issue 7 July 2017 pp 705-714 Classroom. On Finding the Shortest Distance of a Point From a Line: Which Method Do You Prefer? Bhalchandra W Gore · More Details ...

  1. Acoustic Wave Propagation in Pressure Sense Lines

    Science.gov (United States)

    Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin

    2003-01-01

    Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.

  2. High frequency study of a short niobium/lead alloy line

    International Nuclear Information System (INIS)

    Mazuer, J.; Gilchrist, J.

    1974-01-01

    The resonant Q-factors of coaxial lines 1.42 m in length, consisting of fine niobium wires in superconducting tubes, have been studied. The lines are either open-circuited at each end or else short-circuited at each end. In either case the fundamental resonance and odd harmonics up to the ninth were observed. Various surface treatments of the wire made no appreciable difference to the Q value of the open-circuited lines. The short-circuited lines had much lower Q values due to imperfect short-circuiting contacts, and were used mainly to study the effect of a superposed direct current. This was appreciable even when the current was much smaller than the current that the wire would support without resistive transition. The additional high-frequency loss caused by the current was attributed to flux penetration. (author)

  3. A SEMI-ANALYTICAL LINE TRANSFER MODEL TO INTERPRET THE SPECTRA OF GALAXY OUTFLOWS

    International Nuclear Information System (INIS)

    Scarlata, C.; Panagia, N.

    2015-01-01

    We present a semi-analytical line transfer model, (SALT), to study the absorption and re-emission line profiles from expanding galactic envelopes. The envelopes are described as a superposition of shells with density and velocity varying with the distance from the center. We adopt the Sobolev approximation to describe the interaction between the photons escaping from each shell and the remainder of the envelope. We include the effect of multiple scatterings within each shell, properly accounting for the atomic structure of the scattering ions. We also account for the effect of a finite circular aperture on actual observations. For equal geometries and density distributions, our models reproduce the main features of the profiles generated with more complicated transfer codes. Also, our SALT line profiles nicely reproduce the typical asymmetric resonant absorption line profiles observed in starforming/starburst galaxies whereas these absorption profiles cannot be reproduced with thin shells moving at a fixed outflow velocity. We show that scattered resonant emission fills in the resonant absorption profiles, with a strength that is different for each transition. Observationally, the effect of resonant filling depends on both the outflow geometry and the size of the outflow relative to the spectroscopic aperture. Neglecting these effects will lead to incorrect values of gas covering fraction and column density. When a fluorescent channel is available, the resonant profiles alone cannot be used to infer the presence of scattered re-emission. Conversely, the presence of emission lines of fluorescent transitions reveals that emission filling cannot be neglected

  4. Interference shake-up effects in the resonant Auger decay of krypton

    International Nuclear Information System (INIS)

    Lagutin, B.M.; Sukhorukov, V.L.; Petrov, I.D.; Demekhin, Ph.V.; Schartner, K.-H.; Ehresmann, A.; Schmoranzer, H.

    2004-01-01

    Full text: Recently it was shown that the resonant Auger effect (RA) has a complex multiple-pathway character. In particular, the intensities, I, of the two groups of lines in the RA spectrum of Kr corresponding to the 4p 4 ( 1 D)5pLSJ and the 4p 4 ( 1 D)6pLSJ final ionic states were measured as functions of the exciting-photon energy, E, at the two close-lying 3d -1 3/2 5p and 3d -1 5/2 6p resonance states. The experimental results were qualitatively interpreted within the frame of the two-levels model in which each group of the final ionic states was approximated as a single one. It was demonstrated that for both cases the I(E) dependence cannot be fitted as a sum of two Lorentzian curves corresponding to distinguishable transitions via the isolated 3d -1 3/2 5p or 3d -1 5/2 6p resonances. However, within the restrictions of the model, it was not possible to determine unambiguously the significance of each of the interfering partial resonant amplitudes as well as the direct non-resonant one. In the present work, for the first time, the ab initio calculation of the RA characteristics for each individual line of the Kr RA spectrum was performed with taking into account the interference between many resonant and direct non-resonant transition amplitudes. It was shown that in each of the above groups there is a line(or lines) for which the sign (destructive or constructive) of the interference of the partial amplitude is opposite to that one estimated in the two-levels model. This means that the studied RA decay is more complex than was suggested in. It is theoretically predicted that the interference effects would be more pronounced in the angular distribution of the products of the RA photoionization of which future measurements are desirable

  5. Characteristics of the λ/4 transmission line resonator

    International Nuclear Information System (INIS)

    Hashimoto, Y.; Masuda, H.; Yoshida, K.; Arai, S.; Niki, K.

    1994-01-01

    Though the spiral cavity is adequate for low frequency operation, mechanical instability becomes serious for such a low frequency as 20 MHz. We have then studied how to shorten the spiral length by using λ/4 transmission line models. Four models with reduced spiral length are presented. (author)

  6. Line radiative transfer and statistical equilibrium*

    Directory of Open Access Journals (Sweden)

    Kamp Inga

    2015-01-01

    Full Text Available Atomic and molecular line emission from protoplanetary disks contains key information of their detailed physical and chemical structures. To unravel those structures, we need to understand line radiative transfer in dusty media and the statistical equilibrium, especially of molecules. I describe here the basic principles of statistical equilibrium and illustrate them through the two-level atom. In a second part, the fundamentals of line radiative transfer are introduced along with the various broadening mechanisms. I explain general solution methods with their drawbacks and also specific difficulties encountered in solving the line radiative transfer equation in disks (e.g. velocity gradients. I am closing with a few special cases of line emission from disks: Radiative pumping, masers and resonance scattering.

  7. Proton nuclear magnetic resonance in paramagnetic CoCl2.6H2O

    International Nuclear Information System (INIS)

    Oravcova, J.; Murin, J.; Rakos, M.; Olcak, D.

    1978-01-01

    Nuclear magnetic resonance (NMR) is studied of protons of the crystal water of paramagnetic CoCl 2 .6H 2 O. The measurements were carried out on powdered samples at room temperature, for values of the external magnetic field ranging from 0.3 to 1.0 T. The NMR signals of protons of the crystal water exhibit asymmetric shape which changes with the applied external magnetic field. We found that the second moment of the resonance line shows a linear dependence on the square of the induction of the externally applied magnetic field. The cause of the asymmetry of the NMR line of protons of the crystal water and the dependence of the second moment of the resonance line on the induction of external magnetic field are interpreted. (author)

  8. Experimental results of the betatron sum resonance

    International Nuclear Information System (INIS)

    Wang, Y.; Ball, M.; Brabson, B.

    1993-06-01

    The experimental observations of motion near the betatron sum resonance, ν x + 2ν z = 13, are presented. A fast quadrupole (Panofsky-style ferrite picture-frame magnet with a pulsed power supplier) producing a betatron tune shift of the order of 0.03 at rise time of 1 μs was used. This quadrupole was used to produce betatron tunes which jumped past and then crossed back through a betatron sum resonance line. The beam response as function of initial betatron amplitudes were recorded turn by turn. The correlated growth of the action variables, J x and J z , was observed. The phase space plots in the resonance frame reveal the features of particle motion near the nonlinear sum resonance region

  9. Compact Dual-Band Zeroth-Order Resonance Antenna

    International Nuclear Information System (INIS)

    Xu He-Xiu; Wang Guang-Ming; Gong Jian-Qiang

    2012-01-01

    A novel microstrip zeroth-order resonator (ZOR) antenna and its equivalent circuit model are exploited with two zeroth-order resonances. It is constructed based on a resonant-type composite right/left handed transmission line (CRLH TL) using a Wunderlich-shaped extended complementary single split ring resonator pair (W-ECSSRRP) and a series capacitive gap. The gap either can be utilized for double negative (DNG) ZOR antenna or be removed to engineer a simplified elision-negative ZOR (ENG) antenna. For verification, a DNG ZOR antenna sample is fabricated and measured. Numerical and experimental results agree well with each other, indicating that the omnidirectional radiations occur at two frequency bands which are accounted for by two shunt branches in the circuit model. The size of the antenna is 49% more compact than its previous counterpart. The superiority of W-ECSSRRP over CSSRRP lies in the lower fundamental resonance of the antenna by 38.2% and the introduction of a higher zeroth-order resonance. (fundamental areas of phenomenology(including applications))

  10. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.

    Science.gov (United States)

    Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2015-04-01

    The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.

  11. Calculation of the resonance cross section functions

    International Nuclear Information System (INIS)

    Slipicevic, K.F.

    1967-11-01

    This paper includes the procedure for calculating the Doppler broadened line shape functions ψ and χ which are needed for calculation of resonance cross section functions. The obtained values are given in tables

  12. Calculation of the resonance cross section functions

    Energy Technology Data Exchange (ETDEWEB)

    Slipicevic, K F [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1967-11-15

    This paper includes the procedure for calculating the Doppler broadened line shape functions {psi} and {chi} which are needed for calculation of resonance cross section functions. The obtained values are given in tables.

  13. Outphasing control of gallium nitride based very high frequency resonant converters

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2015-01-01

    In this paper an outphasing modulation control method suitable for line regulation of very high frequency resonant converters is described. The pros and cons of several control methods suitable for very high frequency resonant converters are described and compared to outphasing modulation...

  14. Effect of an additional magnetic field on Hanle-type absorption resonances

    International Nuclear Information System (INIS)

    Singh Grewal, Raghwinder; Pattabiraman, M

    2014-01-01

    We computationally compare Hanle-type resonances for a F g =1→F e =0 transition of the 87 RbD 2 line for magnetic field scans parallel (longitudinal scan) and perpendicular (transverse scan) to the direction of propagation of the optical field in the presence of an additional transverse magnetic field (TMF). For a linearly polarized light, the coherent population trapping (CPT) resonances split at line centre and are identical for both longitudinal and transverse scans. When the probe beam ellipticity is varied, the effect of the TMF is found to be opposite for longitudinal and transverse scans. For a longitudinal scan, the splitting observed in the CPT resonance evolves into an enhanced absorption resonance with an increase in ellipticity. For a transverse scan, the splitting vanishes at higher ellipticities. This can be understood in terms of population redistribution in the ground state sublevels and near-neighbor ground state coherences created by the TMF. We also show that the enhanced absorption signal that splits the CPT resonance strongly depends on transit time, and the CPT resonance strength depends on the excited state dephasing rate. (paper)

  15. Slit shaped microwave induced atmospheric pressure plasma based on a parallel plate transmission line resonator

    Science.gov (United States)

    Kang, S. K.; Seo, Y. S.; Lee, H. Wk; Aman-ur-Rehman; Kim, G. C.; Lee, J. K.

    2011-11-01

    A new type of microwave-excited atmospheric pressure plasma source, based on the principle of parallel plate transmission line resonator, is developed for the treatment of large areas in biomedical applications such as skin treatment and wound healing. A stable plasma of 20 mm width is sustained by a small microwave power source operated at a frequency of 700 MHz and a gas flow rate of 0.9 slm. Plasma impedance and plasma density of this plasma source are estimated by fitting the calculated reflection coefficient to the measured one. The estimated plasma impedance shows a decreasing trend while estimated plasma density shows an increasing trend with the increase in the input power. Plasma uniformity is confirmed by temperature and optical emission distribution measurements. Plasma temperature is sustained at less than 40 °C and abundant amounts of reactive species, which are important agents for bacteria inactivation, are detected over the entire plasma region. Large area treatment ability of this newly developed device is verified through bacteria inactivation experiment using E. coli. Sterilization experiment shows a large bacterial killing mark of 25 mm for a plasma treatment time of 10 s.

  16. Nanoscale constrictions in superconducting coplanar waveguide resonators

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Mark David; Naether, Uta; Ciria, Miguel; Zueco, David; Luis, Fernando, E-mail: fluis@unizar.es [Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza, 50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Sesé, Javier [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Atkinson, James; Barco, Enrique del [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Sánchez-Azqueta, Carlos [Dpto. de Ingeniería Electrónica y Telecomunicaciones, Universidad de Zaragoza, 50009 Zaragoza (Spain); Majer, Johannes [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna (Austria)

    2014-10-20

    We report on the design, fabrication, and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing, and electron paramagnetic resonance.

  17. Entangling distant resonant exchange qubits via circuit quantum electrodynamics

    Science.gov (United States)

    Srinivasa, V.; Taylor, J. M.; Tahan, Charles

    2016-11-01

    We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.

  18. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  19. Determination of the electromagnetic field in a high-Tc linear superconducting resonator

    International Nuclear Information System (INIS)

    Trotel, A.; Sautrot, S.; Pyee, M.

    1994-01-01

    In this paper, the electromagnetic field configuration in a linear SHTC resonator is described. Two areas are considered: 1) the superconducting strip, 2) the dielectric around the strip. The calculation is based on the current density given by Bowers for an infinite superconducting line. The current density in the resonator is defined by these relations and the resonance conditions. (orig.)

  20. Analysis of resonance-driving imperfections in the AGS Booster

    International Nuclear Information System (INIS)

    Gardner, C.; Shoji, Y.; Danby, G.; Glenn, J.W.; Jackson, G.J.; Soukas, A.; van Asselt, W.; Whalen, C.

    1994-01-01

    At the design intensity of 1.5 x 10 13 ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. The beam tunes are therefore spread over many lower order resonance lines and the associated stopbands must be corrected in order to minimize the amplitude growth due to resonance excitation. This requires proper compensation of the resonance-driving harmonics which result from random magnetic field errors. The observation and correction of second and third order resonance stopbands in the AGS Booster is reviewed, and an analysis of magnetic field imperfections based on the required corrections is given

  1. On-line control of the nonlinear dynamics for synchrotrons

    Science.gov (United States)

    Bengtsson, J.; Martin, I. P. S.; Rowland, J. H.; Bartolini, R.

    2015-07-01

    We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of "smart sextupole knobs" attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.

  2. Interference shake-up effects in the resonant Auger decay of krypton

    International Nuclear Information System (INIS)

    Lagutin, B.M.; Sukhorukov, V.L.; Petrov, I.D.; Demekhin, Ph.V.; Schartner, K.-H.; Ehresmann, A.; Schmoranzer, H.

    2005-01-01

    Parameters of the resonant 4p 4p -3dε-bar Auger effect (RA) following the 3d-n p (n=5,6) excitation in Kr were calculated with taking into account the interference between several resonant and direct non-resonant transition amplitudes. For the first time all individual lines of the extended RA spectrum which comprises both the 4p 4 ( 1 D) 5p and the 4p 4 ( 1 D) 6p groups of final ionic states were considered. It was revealed that each group contains individual lines where the interference contributions have different signs thus providing a weak interference effect on the average over the whole group. Interference effects are found to be more pronounced in the angular distribution of the RA products

  3. Construction of a resonant loop with the ICRF antenna for KSTAR

    International Nuclear Information System (INIS)

    Bae, Young Dug; Jeong, Sung Un; Yoon, Jae Sung; Hong, Bong Geon

    2003-01-01

    The antenna of the KSTAR ICRF heating system consists of four current straps, each of which is grounded at the center, and has two coaxial ports, one at each end. The top and bottom ports of each strap are fed by one transmitter. The two ports are connected at tee connector to form a resonant loop, and the coaxial feed line from the transmitter is connected to the tee. One resonant loop with the proto-type antenna is built at the RF test stand in KAERI. It is composed with one current strap, one tee connector and two arms connecting them. Each arm consists of a 6-inch vacuum transmission line, a vacuum feed through, a part of pressurized 9-inch coaxial line, and an adjustable phase shifter to cover wide frequency range of 25-60 MHz. Total electrical length is changeable from 45 to 51 m. Many voltage probes and directional couplers are installed to measure RF voltage of the standing wave, power flow and phase difference. Resonant and matching conditions are investigated for various frequencies

  4. Resonance integral of cylindrical absorber; Rezonantni integral cilindricnog absorbera

    Energy Technology Data Exchange (ETDEWEB)

    Slipicevic, K [Elektrotehnicki fakultet, Belgrade (Yugoslavia)

    1968-07-01

    This paper presents the procedure for calculating effective resonance integral for cylindrical rod which enables derivation of improved spatial distribution of source neutron flux. Application of this new expression for penetration factor, simultaneously with Doppler broadening of Breight-Wigner line enabled derivation of new equation for resonance integral which is valid for the whole range of surface-volume ratio of the rod, has correct boundary conditions and gives as special, results same as Wigner and Pomeranchuk. Functions for correcting the effects of interference of potential and resonance dissipation are derived separately.

  5. Interferometric measurement of lines shift in flames in connection with interpretation of lined absorption method in atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    L'vov, B.V.; Polzik, L.K.; Katskov, D.A.; Kruglikova, L.P.

    1975-01-01

    This paper is concerned with interferometric measuring of the line shift in flames in the view of interpretation of absorption lines in the atomic absorption spectroscopy. The newly measured line shifts were compared to the known data on Lorentz broadening of the same lines obtained by methods free of the systematic errors. The resonant lines of the alkaline earth elements (Sr, Ca, Ba) were investigated. To reduce self-absorption in the flame the solutions with minimum concentrations of the elements were used. The computation scheme includes the spectrometer apparatus width and line broadening due to the self-absorption. Formulae are given for computing the values studied. Good agreement was observed between the computed and experimental results. Error analysis was performed. It was concluded that any line shifts in the hydrocarbons were correctly taken into an account in the absolute computations of absorption

  6. Biosensing by WGM Microspherical Resonators

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2016-06-01

    Full Text Available Whispering gallery mode (WGM microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 108–109 lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed.

  7. Errata Resonance, Vol.20, No.12, 2015. Rajaram Nityananda, Sun ...

    Indian Academy of Sciences (India)

    IAS Admin

    Resonance, Vol.20, No.12, 2015. Rajaram Nityananda, Sun, Sky and Clouds: Where Light and Matter Meet. Page 1121: The correct Figure 5 is reproduced below: Resonance, Vol.20, No.11, 2015. Anil Kumar, Felix Bloch (1905–1983). Page 956: Para 1, Line 5, 'also from Zürich' should be read as 'from nearby Bern'.

  8. EIT in resonator chains: similarities and differences with atomic media

    Science.gov (United States)

    Matsko, A. B.; Maleki, L.; Savchenkov, A. A.; Ilchenko, V. S.

    2004-01-01

    We theoretically study a parallel configuration of two interacting whispering gallery mode optical resonators and show a narrow-band modal structure as a basis for a widely tunable delay line. For the optimum coupling configuration the system can possess an unusually narrow spectral feature with a much narrower bandwidth than the loaded bandwidth of each individual resonator.

  9. Squamous-lined cyst of the pancreas: Radiological–pathological correlation

    International Nuclear Information System (INIS)

    Kubo, T.; Takeshita, T.; Shimono, T.; Hashimoto, S.; Miki, Y.

    2014-01-01

    Pancreatic cystic lesions are increasingly being detected incidentally because of the increased use of cross-sectional imaging. Squamous-lined cysts of the pancreas (lymphoepithelial cyst, epidermoid cyst, and dermoid cyst) are rare cystic lesions lined with squamous epithelium. Distinguishing squamous-lined cysts from other cystic lesions of the pancreas is important to avoid unnecessary surgery, because squamous-lined cysts of the pancreas have no malignant potential. The purpose of this review is to describe findings on computed tomography and magnetic resonance imaging and the histopathological characteristics of squamous-lined cysts, and to summarize the key points of differential diagnosis for pancreatic cystic lesions

  10. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal......We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  11. Hard X ray lines from neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.

    1982-01-01

    Experimental evidence is presented and evaluated concerning the features of the hard X-ray spectra detected in a number of cosmic X-ray sources which contain a neutron star. The strong emission line at cyclotron resonance detected in the spectrum of Her XI at an energy of 58 keV is evaluated and the implications of this finding are discussed. Also examined is the presence of spectral features in the energy range 20-80 keV found in the spectra of gamma-ray bursts, which have been interpreted as cyclotron resonance from interstellar-gas-accreting neutron stars. The less understood finding of a variable emission line at approximately 70 keV in the spectrum of the Crab Pulsar is considered. It is determined that several features varying with time are present in the spectra of cosmic X-ray sources associated with neutron stars. If these features are due to cyclotron resonance, it is suggested that they provide a direct measurement of neutron star magnetic fields on the order of 10 to the 11th-10 to the 13th Gauss. However, the physical condition of the emitting region and its geometry are still quite obscure.

  12. Coupled-mode theory and Fano resonances in guided-mode resonant gratings: the conical diffraction mounting.

    Science.gov (United States)

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2017-01-23

    We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.

  13. A Quarter Ellipse Microstrip Resonator for Filters in Microwave Frequencies

    Directory of Open Access Journals (Sweden)

    Samuel Á. Jaramillo-Flórez

    2013-11-01

    Full Text Available This work describes the results of computational simulations and construction of quadrant elliptical resonators excited by coplanar slot line waveguide for designing microwave filters in RF communications systems. By means of the equation of optics, are explained the fundamentals of these geometry of resonators proposed. Are described the construction of quadrant elliptical resonators, one of microstrip and other two of cavity, of size different, and an array of four quadrant elliptical resonators in cascade. The results of the measures and the computational calculus of scattering S11 and S21 of elliptical resonators is made for to identify the resonant frequencies of the resonators studied, proving that these have performance in frequency as complete ellipses by the image effect due to their two mirror in both semiaxis, occupying less area, and the possible applications are discussed.

  14. Proton magnetic resonance spectroscopy (MRS) in on-line game addiction

    Science.gov (United States)

    Han, Doug Hyun; Lee, Young Sik; Shi, Xianfeng; Renshaw, Perry F.

    2015-01-01

    Recent brain imaging studies suggested that both the frontal and temporal cortices are important candidate areas for mediating the symptoms of internet addiction. We hypothesized that deficits of prefrontal and temporal cortical function in patients with on-line game addiction (PGA) would be reflected in decreased levels of N-acetyl aspartate (NAA) and cytosolic, choline containing compound (Cho). Seventy three young PGA and 38 age and sex matched healthy control subjects were recruited in the study. Structural MR and 1H MRS data were acquired using a 3.0 T MRI scanner. Voxels were sequentially placed in right frontal cortex and right medial temporal cortices. In the right frontal cortex, the levels of NAA in PGA were lower than those in healthy controls. In the medial temporal cortex, the levels of Cho in PGA participants were lower than those observed in healthy controls. The Young Internet Addiction Scale (YIAS) scores and perseverative responses in PGA were negatively correlated with the level of NAA in right frontal cortex. The Beck Depressive Inventory (BDI) scores in the PGA cohort were negatively correlated with Cho levels in the right temporal lobe. To the best of our knowledge, this is the first MRS study of individuals with on-line game addiction. Although, the subjects with on-line game addiction in the current study were free from psychiatric co-morbidity, patients with on-line game addiction appear to share characteristics with ADHD and MDD in terms of neurochemical changes in frontal and temporal cortices. PMID:25088284

  15. Resonant Orbital Dynamics in LEO Region: Space Debris in Focus

    Directory of Open Access Journals (Sweden)

    J. C. Sampaio

    2014-01-01

    Full Text Available The increasing number of objects orbiting the earth justifies the great attention and interest in the observation, spacecraft protection, and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, objects in resonant orbital motions are studied in low earth orbits. Using the two-line elements (TLE of the NORAD, resonant angles and resonant periods associated with real motions are described, providing more accurate information to develop an analytical model that describes a certain resonance. The time behaviors of the semimajor axis, eccentricity, and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  16. On-line control of the nonlinear dynamics for synchrotrons

    Directory of Open Access Journals (Sweden)

    J. Bengtsson

    2015-07-01

    Full Text Available We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of “smart sextupole knobs” attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.

  17. Broadband strip-line ferromagnetic resonance spectroscopy of soft magnetic CoFeTaZr patterned thin films

    Science.gov (United States)

    Gupta, S.; Kumar, D.; Jin, T. L.; Nongjai, R.; Asokan, K.; Ghosh, A.; Aparnadevi, M.; Suri, P.; Piramanayagam, S. N.

    2018-05-01

    In this paper, magnetic and magnetization dynamic properties of compositionally patterned Co46Fe40Ta9Zr5 thin films are investigated. A combination of self-assembly and ion-implantation was employed to locally alter the composition of Co46Fe40Ta9Zr5 thin film in a periodic manner. 20 keV O+ and 60 keV N+ ions were implanted at different doses in order to modify the magnetization dynamic properties of the samples in a controlled fashion. Magnetic hysteresis loop measurements revealed significant changes in the coercivity for higher influences of 5 × 1016 ions per cm2. In particular, N+ implantation was observed to induce two phase formation with high and low coercivities. Broadband strip-line ferromagnetic resonance spectroscopy over wide range of frequency (8 - 20 GHz) was used to study the magnetization dynamics as a function of ion-beam dosage. With higher fluences, damping constant showed a continuous increase from 0.0103 to 0.0430. Such control of magnetic properties at nano-scale using this method is believed to be useful for spintronics and microwave device applications.

  18. Magnetic islands created by resonant helical windings

    International Nuclear Information System (INIS)

    Fernandes, A.S.; Heller, M.V.; Caldas, I.L.

    1986-01-01

    The triggering of disruptive instabilities by resonant helical windings in large aspect-ratio tokamaks is associated to destruction of magnetic surfaces. The Chirikov condition is applied to estimate analytically the helical winding current thresholds for ergodization of the magnetic field lines. (Autor) [pt

  19. High-resolution profiles of sodium and potassium lines in alpha Orionis

    International Nuclear Information System (INIS)

    Goldberg, L.; Ramsey, L.; Testerman, L.; Carbon, D.

    1975-01-01

    Profiles of the K i resonance line at 7698.98 A and of the D 1 and D 2 lines of Na i in the spectrum of α Ori have been rocorded photoelectrically using the main beam of the McMath solar telescope at KPNO. The Na lines were observed in the fourth order of the spectrograph and the K i line in the third order, providing a resolving power of approximately 50 mA. The observed profiles are consistent with a model in which radiation from the stellar photosphere is scattered and reemitted by an expanding envelope or envelopes of radius large compared with that of the photosphere. Each blueshifted absorption core appears to consist of two components of approximately the same intensity. The first has a heliocentric radial velocity of +11-13 km s -1 , which agrees very well with measurements of other resonance lines by other observers, whereas the second is in the range +4-6 km s -1 and appears not to have been detected previously

  20. Storage and on-demand release of microwaves using superconducting resonators with tunable coupling

    International Nuclear Information System (INIS)

    Pierre, Mathieu; Svensson, Ida-Maria; Raman Sathyamoorthy, Sankar; Johansson, Göran; Delsing, Per

    2014-01-01

    We present a system which allows to tune the coupling between a superconducting resonator and a transmission line. This storage resonator is addressed through a second, coupling resonator, which is frequency-tunable and controlled by a magnetic flux applied to a superconducting quantum interference device. We experimentally demonstrate that the lifetime of the storage resonator can be tuned by more than three orders of magnitude. A field can be stored for 18 μs when the coupling resonator is tuned off resonance and it can be released in 14 ns when the coupling resonator is tuned on resonance. The device allows capture, storage, and on-demand release of microwaves at a tunable rate.

  1. Optically detected cyclotron resonance in a single GaAs/AlGaAs heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Gregor

    2011-09-23

    Optically detected far-infrared cyclotron resonance (FIR-ODCR) in GaAs/AlGaAs HJs is interpreted in the frame of an exciton-dissociation mechanism. It is possible to explain the ODR mechanism by an exciton drag, mediated by ballistically propagating phonons. Furthermore, very narrow resonances are presented and realistic electron mobility values can be calculated. The exceptionally narrow ODCRs allow to measure conduction-band nonparabolicity effects and resolve satellite resonances, close to the main cyclotron resonance line.

  2. Properties of Sub-wavelength Resonances in Metamaterial Cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Clausen, N.C.J.; Pedersen, R.R.

    2008-01-01

    The analytical solution for the canonical configuration with electric line source illumination of concentric metamaterial cylinders is employed to study the properties of the observed sub-wavelength resonances. The near- and far-field distributions, the frequency and geometry bandwidths, and the ......, and the line source impedance are investigated for varying electromagnetic and geometrical parameters. The results of this study are of importance for metamaterial-based miniaturization of antennas....

  3. On the interpretation and rotational assignment of degenerate four-wave mixing spectra: Four-photon line strengths for crossover resonances in NO A 2Σ+--X 2Π

    International Nuclear Information System (INIS)

    Friedman-Hill, E.J.; Rahn, L.A.; Farrow, R.L.

    1994-01-01

    We present here a set of equations specifically adapted to simulation of fully resonant, high-resolution, phase-conjugate degenerate four-wave mixing (DFWM) in molecular gases. Signal-intensity dependence on molecular wave functions, lifetimes, and laser beam polarizations is explicitly included in these equations. The emphasis of the presentation is on both physically intuitive interpretation and a practical, ''cookbook'' approach to spectral simulation. We present experimental verification of our calculations drawn from the spectrum of dilute NO in N 2 at low pressures. Both degenerate two-level and three-level (crossover) resonances were observed. The experimental spectral intensities are accurately reproduced by the expressions presented here. We point out some of the subtleties of DFWM spectra that could be used as aids to interpretation, especially the use of laser polarization as a probe for spectral line assignments

  4. Effect of Tower Shadow and Wind Shear in a Wind Farm on AC Tie-Line Power Oscillations of Interconnected Power Systems

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2013-01-01

    This paper describes a frequency domain approach for evaluating the impact of tower shadow and wind shear effects (TSWS) on tie-line power oscillations. A simplified frequency domain model of an interconnected power system with a wind farm is developed. The transfer function, which relates the tie......-line power variation to the mechanical power variation of a wind turbine, and the expression of the maximum magnitude of tie-line power oscillations are derived to identify the resonant condition and evaluate the potential risk. The effects of the parameters on the resonant magnitude of the tie-line power...... are also discussed. The frequency domain analysis reveals that TSWS can excite large tie-line power oscillations if the frequency of TSWS approaches the tie-line resonant frequency, especially in the case that the wind farm is integrated into a relatively small grid and the tie-line of the interconnected...

  5. The research status and development trend of stochastic resonance

    Science.gov (United States)

    Xu, Lei; Peng, Yueping; Liu, Man

    2017-12-01

    The synergistic reaction under specific conditions of the nonlinear system, weak driving signal and moderate noise can make noise to be advantageous in a certain extent, so as to achieve the purpose of signal enhancement, this seemingly anomalous phenomenon is defined as stochastic resonance. In this paper, the weak signal detection under strong noise background is the main line. The principle of white noise to counteract external noise is expounded, and the present research situation and development trend of stochastic resonance are reviewed in that paper, it also pointed out the direction of further research of stochastic resonance technology.

  6. N III Bowen Lines and Fluorescence Mechanism in the Symbiotic Star AG Peg

    Science.gov (United States)

    Hyung, Siek; Lee, Seong-Jae; Lee, Kang Hwan

    2018-03-01

    We have investigated the intensities and full width at half maximum (FWHM) of the high dispersion spectroscopic N III emission lines of AG Peg, observed with the Hamilton Echelle Spectrograph (HES) in three different epochs at Mt. Hamilton's Lick Observatory. The earlier theoretical Bowen line study assumed the continuum fluorescence effect, presenting a large discrepancy with the present data. Hence, we analyzed the observed N III lines assuming line fluorescence as the only suitable source: (1) The O III and N III resonance line profiles near λ 374 were decomposed, using the Gaussian function, and the contributions from various O III line components were determined. (2) Based on the theoretical resonant N III intensities, the expected N III Bowen intensities were obtained to fit the observed values. Our study shows that the incoming line photon number ratio must be considered to balance at each N III Bowen line level in the ultraviolet radiation according to the observed lines in the optical zone. We also found that the average FWHM of the N III Bowen lines was about 5 km·s-1 greater than that of the O III Bowen lines, perhaps due to the inherently different kinematic characteristics of their emission zones.

  7. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  8. The helium line formation in late-type stars: Pt. 1

    International Nuclear Information System (INIS)

    Batalha, C.C.; De La Reza, R.

    1989-01-01

    The formation of helium lines and continua in an atmospheric model representing the medium quiet sun has been investigated considering principally the influence of: (i) changes in the temperature gradient at Transition Region (TR); (ii) the coronal radiation and (iii) the overlapping of He II Lyα at 304 A and the continuum radiation of He I at λ≤504 A. By diminishing the thermal gradient in the Transition Region a large part of the helium observations are reproduced. This is the case for the He II resonance λ304 line which is collisionally controlled and is formed at 1.0 x 10 5 K, and the He I resonance line at 584 A which is also collisionally controlled but is formed at deeper layers with a mean temperature of 2.5 x 10 4 K. The He II continuum at 228 A as well as the Lβ line at 256 A can be adjusted to observations if a characteristic solar coronal flux is incident on the optimized Transition Region. (author)

  9. A line driven Rayleigh-Taylor-type instability in hot stars

    International Nuclear Information System (INIS)

    Nelson, G.D.; Hearn, A.G.

    1978-01-01

    The existence of a Rayleigh-Taylor-type instability in the atmosphere of hot stars, driven by the radiative force associated with impurity ion resonance lines, is demonstrated. In a hot star with an effective temperature of 50 000 K, the instability will grow exponentially with a time scale of approximately 50 s in the layers where the stellar wind velocity is 5% of the thermal velocity of the ion. As a result, radially symmetric stellar winds driven by resonance line radiative forces will break up in small horizontal scale lengths. The energy fed into the instability provides a possible source of mechanical heating in the atmosphere for a chromosphere or corona. (orig.) [de

  10. Nuclear magnetic resonance line-shape analysis and determination of exchange rates

    International Nuclear Information System (INIS)

    Rao, B.D.

    1989-01-01

    The fact that chemical exchange processes occur at rates that cover a broad range and produce readily detectable effects on the spectrum is one of the attractive features of high-resolution NMR. The description of these line shapes in the presence of spin-spin coupling requires the density matrix theory which is rather complex. Analysis of the line shapes usually needs computer simulations and is capable of providing reliable information on the exchange rates as well as spectral parameters in the absence of exchange. Simplified procedures, ignoring spin-spin coupling, often result in deviations in these exchange and spectral parameters determined. A step-by-step procedure is detailed in this chapter for setting up the matrices required for computing the line shapes of exchanges involving weakly coupled spin systems on the basis of the density matrix theory without the need for a detailed understanding of the theory. A knowledge of the energy level structure and allowed transitions in the NMR spectra of the individual weakly coupled spin systems is all that is required. The procedure is amenable to numerical computation. The group of illustrative examples chosen to demonstrate the development of the computational tools cover some of the commonly encountered cases of exchange from simple systems to rather complex ones. Such exchanges occur frequently in biological molecules, especially those involving enzyme-substrate complexes. In cases where the experimental line shapes are obtained with respectable precision, and the relevant exchange processes are unambiguously identifiable, the computer simulation method of line-shape analysis is capable of providing useful and incisive information. The example of the 31P exchanges in the adenylate kinase is illustrative of this point

  11. Phase-locking transition in a chirped superconducting Josephson resonator.

    Science.gov (United States)

    Naaman, O; Aumentado, J; Friedland, L; Wurtele, J S; Siddiqi, I

    2008-09-12

    We observe a sharp threshold for dynamic phase locking in a high-Q transmission line resonator embedded with a Josephson tunnel junction, and driven with a purely ac, chirped microwave signal. When the drive amplitude is below a critical value, which depends on the chirp rate and is sensitive to the junction critical current I0, the resonator is only excited near its linear resonance frequency. For a larger amplitude, the resonator phase locks to the chirped drive and its amplitude grows until a deterministic maximum is reached. Near threshold, the oscillator evolves smoothly in one of two diverging trajectories, providing a way to discriminate small changes in I0 with a nonswitching detector, with potential applications in quantum state measurement.

  12. Asymmetries of the solar Ca II lines

    International Nuclear Information System (INIS)

    Heasley, J.N.

    1975-01-01

    A theoretical study of the influence of propagating acoustic pulses in the solar chromosphere upon the line profiles of the Ca II resonance and infrared triplet lines has been made. The major objective has been to explain the observed asymmetries seen in the cores of the H and K lines and to predict the temporal behavior of the infrared lines caused by passing acoustic or shock pulses. The velocities in the pulses, calculated from weak shock theory, have been included consistently in the non-LTE calculations. The results of the calculations show that these lines are very sensitive to perturbations in the background atmosphere caused by the pulses. Only minor changes in the line shapes result from including the velocities consistently in the line source function calculations. The qualitative changes in the line profiles vary markedly with the strength of the shock pulses. The observed differences in the K line profiles seen on the quiet Sun can be explained in terms of a spectrum of pulses with different wavelengths and initial amplitudes in the photosphere. (Auth.)

  13. Open Resonator for Summation of Powers in Sub-Terahertz and Terahertz Frequencies

    Science.gov (United States)

    Kuz'michev, I. K.; Yeryomka, V. D.; May, A. V.; Troshchilo, A. S.

    2017-03-01

    Purpose: Study of excitation features for the first higher axialasymmetric type oscillations in an open resonator connected into the waveguide transmission line. Design/methodology/approach: To determine the efficiency of higher oscillation excitation in the resonator by using the highest wave of a rectangular waveguide, the coefficient of the antenna surface utilization is used. The coefficient of reflection from the open resonator is determined by the known method of summation of the partial coefficients of reflection from the resonant system. Findings: The excitation efficiency of the first higher axial asymmetric type TEM10q oscillations in an open resonator connected into the waveguide transmission line, using the TE20 type wave, is considered. The research efforts were made with accounting for the electromagnetic field vector nature. It is shown that for certain sizes of exciting coupler the excitation efficiency of the working excitation is equal to 0.867. Besides, this resonant system has a single frequency response within a wide band of frequencies. Due to this, it can be applied for summation of powers for individual sources of oscillations. Since this resonant system allows separating the matching functions as to the field and coupling, it is possible to provide any prescribed coupling of sources with a resonant volume. For this purpose, one- dimensional diffraction gratings (E-polarization) are used. Conclusions: With the matched excitation of axially asymmetric modes of oscillations the resonant system has an angular and frequency spectrum selection that is of great practical importance for powers summation. By application of one- dimensional diffraction gratings (E-polarization), located in apertures of coupling elements, the active elements can be matched with the resonant volume.

  14. Coupled superconducting resonant cavities for a heavy ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W [Argonne National Lab., IL (United States); Roy, A [Nuclear Science Center, New Delhi (India)

    1992-11-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs.

  15. Coupled superconducting resonant cavities for a heavy ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.

    1992-01-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs

  16. Anomalies in resonant absorption line profiles of atoms with large hyperfine splitting

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; Pod'yachev, S.P.; Privalov, T.I.; Shalagin, A.M.

    1997-01-01

    We examine a monochromatic absorption line in the velocity-nonselective excitation of atoms when the components of the hyperfine stricture of the electronic ground states are optically pumped. We show that the absorption lines possess unusual substructures for some values of the hyperfine splitting of the ground state (which exceed the Doppler absorption linewidth severalfold). These substructures in the absorption spectrum are most apparent if the hyperfine structure of the excited electronic state is taken into account. We calculate the absorption spectra of monochromatic light near the D 1 and D 2 lines of atomic rubidium 85,87 Rb. With real hyperfine splitting taken into account, the D 1 and D 2 lines are modeled by 4- and 6-level diagrams, respectively. Finally, we show that atomic rubidium vapor can be successfully used to observe the spectral features experimentally

  17. Fluid dynamics of giant resonances on high spin states

    International Nuclear Information System (INIS)

    Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.

    1983-01-01

    We describe giant resonances built on high spin states along the yrast line as scaling solutions of a linearized Vlasov equation in a rotating frame obtained from a TDHF theory in phase space. For oblate cranked solutions we get a shift and a splitting of the isoscalar giant resonances in terms of the angular velocity. Results are shown for 40 Ca and 168 Er. The relative CM strengths are also calculated. (orig.)

  18. Cyclotron resonant gas breakdown with a 1.22-nm 13CH3F laser

    International Nuclear Information System (INIS)

    Hacker, M.P.; Lax, B.; Metz, R.N.; Temkin, R.J.

    1979-01-01

    Cyclotron-resonant laser-induced gas breakdown has been studied for the first time in the transverse geometry, using 1.222-nm 13 CH 3 F laser radiation propagating perpendicular to the magnetic field axis. The line shape of absorbed laser radiation versus magnetic field near electron cyclotron resonance (87.75 kG) indicates a strong dependence of the line shape on the focused laser intensity. This dependence is not predicted by the standard equilibrium theory of high-frequency gas breakdown in a magnetic field. We have developed an analytic theory to explain the observed line shapes. The theory takes into account the laser propagation characteristics, in particular that there is nonuniform ionization due to strong resonant absorption of the laser radiation in a length comparable to or shorter than that of the laser focal volume. The transverse geometry simplifies the theoretical analysis because the observed line shapes are not significantly affected by Doppler broadening. Extensive data have been obtained on the fraction of laser pulse energy absorbed in the gas breakdown volume as a function of magnetic field, helium gas pressure, and incident laser pulse energy. Good quantitative agreement is obtained between the observed laser pulse absorption line shapes and the nonuniform ionization theory

  19. Laser systems for on-line laser ion sources

    International Nuclear Information System (INIS)

    Geppert, Christopher

    2008-01-01

    Since its initiation in the middle of the 1980s, the resonant ionization laser ion source has been established as a reliable and efficient on-line ion source for radioactive ion beams. In comparison to other on-line ion sources it comprises the advantages of high versatility for the elements to be ionized and of high selectivity and purity for the ion beam generated by resonant laser radiation. Dye laser systems have been the predominant and pioneering working horses for laser ion source applications up to recently, but the development of all-solid-state titanium:sapphire laser systems has nowadays initiated a significant evolution within this field. In this paper an overview of the ongoing developments will be given, which have contributed to the establishment of a number of new laser ion source facilities worldwide during the last five years.

  20. Determination of nuclear moments and nuclear radii changes of the metastable silverisotopes sup(108m)Ag and sup(110m)Ag from the hyperfine structure of silver-I-resonance lines

    International Nuclear Information System (INIS)

    Meier, T.

    1973-01-01

    The hyperfine structure of the resonance lines of the metastable silver isotopes sup(108m), sup(110m)Ag were investigated by means of optical interference spectroscopy. Both radioactive silver isotopes were obtained by irradiating isotope-pure 107 Ag or 109 Ag with neutrons in the reactor. In spite of the slight enrichment of the isotopes to be investigated compared to the stable isotopes ( [de

  1. Paramagnetic resonance and susceptibility of ilmenite, FeTiO3 crystal

    Science.gov (United States)

    Mcdonald, P. F.; Parasiris, A.; Pandey, R. K.; Gries, B. L.; Kirk, W. P.

    1991-01-01

    Large high-purity single crystals of FeTiO3 with ilmenite structure have been grown from a stoichiometric melt of Fe2O3 and TiO2 under an inert atmosphere using the modified Czochralski technique. Susceptibility and X-band paramagnetic resonance studies have been performed. Susceptibility measurements indicate a Neel temperature of about 59 K. The paramagnetic resonance spectrum for magnetic field perpendicular to the crystal c axis consists of a portion of a single, very intense approximately Lorentzian absorption line with its peak at about 600 G and half width at half maximum almost 1200 G. The absorption extends to zero magnetic field. For magnetic field approximately parallel to the c axis, the paramagnetic absorption is much smaller and may be considered a superposition of two approximately Lorentzian line shapes. The magnetic resonance measurements indicate a weak temperature dependence and large angular anisotropy.

  2. Absorption of aluminium X-ray lines in a laser created gold plasma

    International Nuclear Information System (INIS)

    Combis, P.; Busquet, M.; Louis-Jacquet, M.

    1986-04-01

    We have studied the absorption of aluminium X-ray lines through a gold plasma by focusing a high intensity laser-beam onto a specific target. Absorption in the wavelength range of 5 to 7 A has been evidenced and measured for Aluminium resonance lines

  3. 13C, 15N Resonance Assignment of Parts of the HET-s Prion Protein in its Amyloid Form

    International Nuclear Information System (INIS)

    Siemer, Ansgar B.; Ritter, Christiane; Steinmetz, Michel O.; Ernst, Matthias; Riek, Roland; Meier, Beat H.

    2006-01-01

    The partial 15 N and 13 C solid-state NMR resonance assignment of the HET-s prion protein fragment 218-289 in its amyloid form is presented. It is based on experiments measured at MAS frequencies in the range of 20-40 kHz using exclusively adiabatic polarization-transfer schemes. The resonance assignment within each residue is based on two-dimensional 13 C-- 13 C correlation spectra utilizing the DREAM mixing scheme. The sequential linking of the assigned residues used a set of two- and three-dimensional 15 N-- 13 C correlation experiments. Almost all cross peaks visible in the spectra are assigned, but only resonances from 43 of the 78 amino-acid residues could be detected. The missing residues are thought to be highly disordered and/or highly dynamic giving rise to broad resonance lines that escaped detection in the experiments applied. The line widths of the observed resonances are narrow and comparable to line widths observed in micro-crystalline samples. The 43 assigned residues are located in two fragments of about 20 residues

  4. Size optimization for complex permeability measurement of magnetic thin films using a short-circuited microstrip line up to 30 GHz

    Science.gov (United States)

    Takeda, Shigeru; Naoe, Masayuki

    2018-03-01

    High-frequency permeability spectra of magnetic films were measured over a wideband frequency range of 0.1-30 GHz using a shielded and short-circuited microstrip line jig. In this measurement, spurious resonances had to be suppressed up to the highest frequency. To suppress these resonances, characteristic impedance of the microstrip line should approach 50 Ω at the junction between connector and microstrip line. The main factors dominating these resonances were structures of the jig and the sample. The dimensions were optimized in various experiments, and results demonstrated that the frequency could be raised to at least 20 GHz. For the transverse electromagnetic mode to transmit stably along the microstrip line, the preferred sample was rectangular, with the shorter side parallel to the line and the longer side perpendicular to it, and characteristic impedance strongly depended on the signal line width of the jig. However, too small a jig and sample led to a lower S/N ratio.

  5. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    International Nuclear Information System (INIS)

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D.

    2003-01-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting

  6. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D

    2003-03-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting.

  7. Evaluation of acoustic resonance at branch section in main steam line. Part 2. Proposal of method for predicting resonance frequency in steam flow

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2012-01-01

    Flow-induced acoustic resonances of piping system containing closed side-branches are sometimes encountered in power plants. Acoustic standing waves with large amplitude pressure fluctuation in closed side-branches are excited by the unstable shear layer which separates the mean flow in the main piping from the stagnant fluid in the branch. In U.S. NPP, the steam dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a power uprating condition. Our previous research developed the method for evaluating the acoustic resonance at the branch sections in actual power plants by using CFD. In the method, sound speed in wet steam is evaluated by its theory on the assumption of homogeneous flow, although it may be different from practical sound speed in wet steam. So, it is necessary to consider and introduce the most suitable model of practical sound speed in wet steam. In addition, we tried to develop simplified prediction method of the amplitude and frequency of pressure fluctuation in wet steam flow. Our previous experimental research clarified that resonance amplitude of fluctuating pressure at the top of the branch in wet steam. However, the resonance frequency in steam condition could not be estimated by using theoretical equation as the end correction in steam condition and sound speed in wet steam is not clarified as same reason as CFD. Therefore, in this study, we tried to evaluate the end correction in each dry and wet steam and sound speed of wet steam from experimental results. As a result, method for predicting resonance frequency by using theoretical equation in each wet and dry steam condition was proposed. (author)

  8. Hybrid Active Filter with Variable Conductance for Harmonic Resonance Suppression in Industrial Power Systems

    DEFF Research Database (Denmark)

    Lee, Tzung-Lin; Wang, Yen-Ching; Li, Jian-Cheng

    2015-01-01

    Unintentional series and/or parallel resonances, due to the tuned passive filter and the line inductance, may result in severe harmonic distortion in the industrial power system. This paper presents a hybrid active filter to suppress harmonic resonance and reduce harmonic distortion as well...... expensive. A reasonable trade-off between filtering performances and cost is to use the hybrid active filter. Design consideration are presented and experimental results are provided to validate effectiveness of the proposed method. Furthermore, this paper discusses filtering performances on line impedance...

  9. CONTINOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE

    International Nuclear Information System (INIS)

    GLENN, J.W.; TSOUPAS, N.; BROWN, K.A.; BIRYUKOV, V.M.

    2001-01-01

    A method to split off a few percent of the 6 x 10 13 AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given

  10. Comb-Line Filter with Coupling Capacitor in Ground Plane

    Directory of Open Access Journals (Sweden)

    Toshiaki Kitamura

    2011-01-01

    Full Text Available A comb-line filter with a coupling capacitor in the ground plane is proposed. The filter consists of two quarter-wavelength microstrip resonators. A coupling capacitor is inserted into the ground plane in order to build strong coupling locally along the resonators. The filtering characteristics are investigated through numerical simulations as well as experiments. Filtering characteristics that have attenuation poles at both sides of the passband are obtained. The input susceptances of even and odd modes and coupling coefficients are discussed. The filters using stepped impedance resonators (SIRs are also discussed, and the effects of the coupling capacitor for an SIR structure are shown.

  11. A Compact Multiband BPF Using Step-impedance Resonators with Interdigital Capacitors

    Directory of Open Access Journals (Sweden)

    S. Meesomklin

    2016-06-01

    Full Text Available A compact multiband band-pass filter design for applications of GSM, Wi-MAX and WLAN systems is presented. The design is based on the resonant characteristics of step-impedance and interdigital capacitor resonators with overlap cross coupling structure. The fabricated filter has been operated at the fundamental, first and second harmonic resonant frequencies of 1.8 GHz, 3.7 GHz, and 5.2 GHz, respectively. The experimental results of the fabricated filter agree very well with the simulation expectations using IE3D package. The proposed filter has good performances, while the resonator size can be reduced from λ/2 to λ/8, resulting in the most compact multiband band-pass filter compared with the others using transmission line resonators .

  12. Magnetic resonance imaging of breast implants.

    Science.gov (United States)

    Shah, Mala; Tanna, Neil; Margolies, Laurie

    2014-12-01

    Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications.

  13. Interaction of plasma vortices with resonant particles

    DEFF Research Database (Denmark)

    Jovanovic, D.; Pécseli, Hans; Juul Rasmussen, J.

    1990-01-01

    Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime...... particles. The evolution equations indicate the possibility of excitation of plasma vortices by electron beams....... they possess localized solutions in the form of dipolar vortices, which can efficiently interact with resonant electrons. In the adiabatic limit, evolution equations are derived for the vortex parameters, describing exchange of the energy, enstrophy, and of the Poynting vector between the vortex and resonant...

  14. Polariton condensation, superradiance and difference combination parametric resonance in mode-locked laser

    Science.gov (United States)

    Bagayev, S. N.; Arkhipov, R. M.; Arkhipov, M. V.; Egorov, V. S.; Chekhonin, I. A.; Chekhonin, M. A.

    2017-11-01

    The generation of the ring mode-locked laser containing resonant absorption medium in the cavity was investigated. It is shown that near the strong resonant absorption lines a condensation of polaritons arises. Intensive radiation looks like as superradiance in a medium without population inversion. We studied theoretically the microscopic mechanism of these phenomena. It was shown that in this system in absorbing medium a strong self-induced difference combination parametric resonance exists. Superradiance on polaritonic modes in the absorbing medium are due to the emergence of light-induced resonant polarization as a result of fast periodic nonadiabatic quantum jumps in the absorber.

  15. Improved Field Homogeneity for Transmission Line MRI Coils Using Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Dong, Yunfeng

    2015-01-01

    High field magnetic resonance imaging (MRI) systems often use short sections of transmission lines for generating and sensing alternating magnetic fields. Due to distributed nature of transmission lines, the generated field is inhomogeneous. This work investigates the application of series capaci...... capacitors to improve the field homogeneity. The resulting magnetic field distribution is estimated analytically and evaluated numerically. The results are compared to a case of a conventional transmission line coil realization....

  16. A numerical investigation of sub-wavelength resonances in polygonal metamaterial cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2009-01-01

    The sub-wavelength resonances, known to exist in metamaterial radiators and scatterers of circular cylindrical shape, are investigated with the aim of determining if these resonances also exist for polygonal cylinders and, if so, how they are affected by the shape of the polygon. To this end, a set...... of polygonal cylinders excited by a nearby electric line current is analyzed numerically and it is shown, through detailed analysis of the near-field distribution and radiation resistance, that these polygonal cylinders do indeed support sub-wavelength resonances similar to those of the circular cylinders...

  17. Plasmon resonances in large noble-metal clusters

    International Nuclear Information System (INIS)

    Soennichsen, C; Franzl, T; Wilk, T; Plessen, G von; Feldmann, J

    2002-01-01

    We investigate the optical properties of spherical gold and silver clusters with diameters of 20 nm and larger. The light scattering spectra of individual clusters are measured using dark-field microscopy, thus avoiding inhomogeneous broadening effects. The dipolar plasmon resonances of the clusters are found to have nearly Lorentzian line shapes. With increasing size we observe polaritonic red-shifts of the plasmon line and increased radiation damping for both gold and silver clusters. Apart from some cluster-to-cluster variations of the plasmon lines, agreement with Mie theory is reasonably good for the gold clusters. However, it is less satisfactory for the silver clusters, possibly due to cluster faceting or chemical effects

  18. Tunable superconducting resonators with integrated trap structures for coupling with ultracold atomic gases

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, Benedikt; Wiedmaier, Dominik; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Bothner, Daniel [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands)

    2016-07-01

    We intend to investigate a hybrid quantum system where ultracold atomic gases play the role of a long-living quantum memory, coupled to a superconducting qubit via a coplanar waveguide transmission line resonator. As a first step we developed a resonator chip containing a Z-shaped trapping wire for the atom trap. In order to suppress parasitic resonances due to stray capacitances, and to achieve good ground connection we use hybrid superconductor - normal conductor chips. As an additional degree of freedom we add a ferroelectric capacitor making the resonators voltage-tunable. We furthermore show theoretical results on the expected coupling strength between resonator and atomic cloud.

  19. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    Science.gov (United States)

    Santavicca, Daniel F.; Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.

    2016-06-01

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.

  20. Design and characterization of a novel toroidal split-ring resonator

    International Nuclear Information System (INIS)

    Bobowski, J. S.; Nakahara, Hiroko

    2016-01-01

    The design and characterization of a novel toroidal split-ring resonator (SRR) are described in detail. In conventional cylindrical SRRs, there is a large magnetic flux within the bore of the resonator. However, there also exists a non-negligible magnetic flux in the free space surrounding the resonator. The energy losses associated with this radiated power diminish the resonator’s quality factor. In the toroidal SRR, on the other hand, the magnetic field lines are strongly confined within the bore of the resonator resulting in high intrinsic quality factors and stable resonance frequencies without requiring additional electromagnetic shielding. This paper describes the design and construction of a toroidal SRR as well as an experimental investigation of its cw response in the frequency-domain and its time-domain response to a rf pulse. Additionally, the dependence of the toroidal SRR’s resonant frequency and quality factor on the strength of inductive coupling to external circuits is investigated both theoretically and experimentally

  1. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    Science.gov (United States)

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Electromagnetically induced transparency resonances inverted in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, A.; Sarkisyan, D., E-mail: davsark@yahoo.com, E-mail: david@ipr.sci.am [National Academy of Sciences of Armenia, Institute for Physical Research (Armenia); Pashayan-Leroy, Y.; Leroy, C. [Université de Bourgogne-Dijon, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS (France); Cartaleva, S. [Bulgarian Academy of Sciences, Institute of Electronics (Bulgaria); Wilson-Gordon, A. D. [Bar-Ilan University Ramat Gan, Department of Chemistry (Israel); Auzinsh, M. [University of Latvia, Department of Physics (Latvia)

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  3. Magnetic resonances spectroscopy of nanosize particles La0.7Sr0.3MnO3

    International Nuclear Information System (INIS)

    Krivoruchko, Vladimir; Konstantinova, Tat'yana; Mazur, Anton; Prokhorov, Andrey; Varyukhin, Victor

    2006-01-01

    Using a co-precipitation method, perovskite-type manganese oxide La 0.7 Sr 0.3 MnO 3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55 Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ∼2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La 0.7 Sr 0.3 MnO 3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K

  4. Proton Resonance Lines of Water in Heulandite, Mordenite and Clinoptilolite

    International Nuclear Information System (INIS)

    Cruz Inclan, C.; Diaz Quintanilla, D.; Diaz Ruano, A.

    1986-01-01

    It is reported for the first time the proton magnetic resonance spectra of the clinoptilolite and mordenite between 220 K and 440 K. In mordenite it was observed that all water molecules have so an intensive diffusive movement, that they are completely delocalized. In clinoptilolite below 390 K, only a part of the water molecules are completely delocalized. Over 390 K all water molecules become delocalized. This particular behavior of the water molecules in clinoptilolite and mordenite is confronted with those structural models proposed by D.W. Breck. The concept of non-localized quantum state is introduced in order to explain the difference observed with the structural models. (author)

  5. Analytical Model of Planar Double Split Ring Resonator

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2007-01-01

    This paper focuses on accurate modelling of microstrip double split ring resonators. The impedance matrix representation for coupled lines is applied for the first time to model the SRR, resulting in excellent model accuracy over a wide frequency range. Phase compensation is implemented to take i...

  6. Simulation of a low energy beam transport line

    International Nuclear Information System (INIS)

    Yang Yao; Liu Zhanwen; Zhang Wenhui; Ma Hongyi; Zhang Xuezhen; Zhao Hongwei; Yao Ze'en

    2012-01-01

    A 2.45 GHz electron cyclotron resonance intense proton source and a low energy beam transport line with dual-Glaser lens were designed and fabricated by Institute of Modern Physics for a compact pulsed hadron source at Tsinghua. The intense proton beams extracted from the ion source are transported through the transport line to match the downstream radio frequency quadrupole accelerator. Particle-in-cell code BEAMPATH was used to carry out the beam transport simulations and optimize the magnetic field structures of the transport line. Emittance growth due to space charge and spherical aberrations of the Glaser lens were studied in both theory and simulation. The results show that narrow beam has smaller aberrations and better beam quality through the transport line. To better match the radio frequency quadrupole accelerator, a shorter transport line is desired with sufficient space charge neutralization. (authors)

  7. Temperature diagnostic line ratios of Fe XVII

    International Nuclear Information System (INIS)

    Raymond, J.C.; Smith, B.W.; Los Alamos National Lab., NM)

    1986-01-01

    Based on extensive calculations of the excitation rates of Fe XVII, four temperature-sensitive line ratios are investigated, paying special attention to the contribution of resonances to the excitation rates and to the contributions of dielectronic recombination satellites to the observed line intensities. The predictions are compared to FPCS observations of Puppis A and to Solar Maximum Mission (SMM) and SOLEX observations of the sun. Temperature-sensitive line ratios are also computed for emitting gas covering a broad temperature range. It is found that each ratio yields a differently weighted average for the temperature and that this accounts for some apparent discrepancies between the theoretical ratios and solar observations. The effects of this weighting on the Fe XVII temperature diagnostics and on the analogous Fe XXIV/Fe XXV satellite line temperature diagnostics are discussed. 27 references

  8. {sup 13}C, {sup 15}N Resonance Assignment of Parts of the HET-s Prion Protein in its Amyloid Form

    Energy Technology Data Exchange (ETDEWEB)

    Siemer, Ansgar B. [Physical Chemistry (Switzerland); Ritter, Christiane [Salk Institute, Structural Biology Laboratory (United States); Steinmetz, Michel O. [Paul Scherrer Institut, Biomolecular Research, Structural Biology (Switzerland); Ernst, Matthias [Physical Chemistry (Switzerland); Riek, Roland [Salk Institute, Structural Biology Laboratory (United States); Meier, Beat H. [Physical Chemistry (Switzerland)

    2006-02-15

    The partial {sup 15}N and {sup 13}C solid-state NMR resonance assignment of the HET-s prion protein fragment 218-289 in its amyloid form is presented. It is based on experiments measured at MAS frequencies in the range of 20-40 kHz using exclusively adiabatic polarization-transfer schemes. The resonance assignment within each residue is based on two-dimensional {sup 13}C--{sup 13}C correlation spectra utilizing the DREAM mixing scheme. The sequential linking of the assigned residues used a set of two- and three-dimensional {sup 15}N--{sup 13}C correlation experiments. Almost all cross peaks visible in the spectra are assigned, but only resonances from 43 of the 78 amino-acid residues could be detected. The missing residues are thought to be highly disordered and/or highly dynamic giving rise to broad resonance lines that escaped detection in the experiments applied. The line widths of the observed resonances are narrow and comparable to line widths observed in micro-crystalline samples. The 43 assigned residues are located in two fragments of about 20 residues.

  9. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    Science.gov (United States)

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Two-dimensional thermometry by using neutron resonance absorption spectrometer DOG

    International Nuclear Information System (INIS)

    Kamiyama, T.; Noda, H.; Kiyanagi, Y.; Ikeda, S.

    2001-01-01

    We applied the neutron resonance absorption spectroscopy to thermometry of a bulk object. The measurement was done by using the neutron resonance absorption spectrometer, DOG, installed at KENS, High Energy Accelerator Research Organization Neutron Source, which enables us to investigate effective temperature of a particular element by analyzing line width of resonance absorption spectrum. The effective temperature becomes consistence with the sample temperature above room temperature. For the analysis we applied the computed tomography method to reconstruct the temperature distribution on the object cross section. The results and the calculated distribution by the heat conducting equation are well agreed on the temperature difference inside the object. (author)

  11. Theory of the effect of third-harmonic generation on three-photon resonantly enhanced multiphoton ionization in focused beams

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.

    1983-01-01

    Multiphoton ionization in the region near a three-photon resonance is treated for focused, plane-polarized Gaussian beams with diffraction-limited beam divergence. In this situation, a third-harmonic field is generated within the laser beam. At, and very near, three-photon resonance the driving rate for the upper-state probability amplitude due to one-photon absorption of third-harmonic light becomes nearly equal to the corresponding three-photon rate due to the laser field, but these effects are 180 0 out of phase. As a consequence of this cancellation between two pumping terms, the three-photon resonance line essentially disappears at moderate concentrations and the observed ionization has a line shape that is close to the phase-matching curve for third-harmonic generation. The ionization signal, near but not on the resonance, is due almost entirely to absorption of third-harmonic photons plus other laser photons; three-photon resonantly enhanced multiphoton ionization by the laser is much weaker. This is particularly true on the blue side of the three-photon resonance at detunings where phase matching occurs. The problem is treated quite generally with predictions of the full line shape for n-photon ionization and third-harmonic light generation near three-photon resonance, including the rather strong influences of positively dispersive buffer gases. We also show that the cancellation between the one-photon and the three-photon process is partially spoiled in the presence of a counterpropagating beam at the same frequency

  12. Comparative analysis of magnetic resonance in the polaron pair recombination and the triplet exciton-polaron quenching models

    Science.gov (United States)

    Mkhitaryan, V. V.; Danilović, D.; Hippola, C.; Raikh, M. E.; Shinar, J.

    2018-01-01

    We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π -conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing a monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I /I is ∝PL within the PPR model, while it is ∝PL2 crossing over to PL3 within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.

  13. Variety of Polarized Line Profiles in Interacting Supernovae

    Science.gov (United States)

    Hoffman, Jennifer L.; Huk, L. N.; Peters, C. L.

    2013-01-01

    The dense circumstellar material that creates strong emission lines in the spectra of interacting supernovae also gives rise to complex line polarization behavior. Viewed in polarized light, the emission line profiles of these supernovae encode information about the geometrical and optical characteristics of their surrounding circumstellar material (CSM) that is inaccessible by other observational techniques. To facilitate quantitative interpretation of these spectropolarimetric signatures, we have created a large grid of model polarized line profiles using a three-dimensional radiative transfer code that simulates polarization via electron and resonant/fluorescent line scattering. The simulated polarized lines take on an array of profile shapes that vary with viewing angle and CSM properties. We present the major results from the grid and investigate the dependence of polarized line profiles on CSM characteristics including temperature, optical depth, and geometry. These results will allow more straightforward interpretation of polarized line profiles in interacting supernovae than has previously been possible. This research is supported by the National Science Foundation through the AAG program and the XSEDE collaboration, and uses the resources of the Texas Advanced Computing Center.

  14. Electron paramagnetic resonance investigations of carbon-doped β rhombohedral boron

    International Nuclear Information System (INIS)

    Gercke, U.; Siems, C.-D.

    1979-01-01

    Electron paramagnetic resonance (EPR) measurements at 9 and 35 GHz on polycrystalline β rhombohedral boron with various carbon contents resulted in partly resolved absorption spectra. At 300 K the spin density ratio of two lines (called D and E) showed a linear increase with the carbon content. This ratio is temperature dependent. The lines D and E are photo-EPR active with different quantum efficiencies at various temperatures. (Auth.)

  15. Electromagnetically induced reflectance and Fano resonance in one dimensional superconducting photonic crystal

    Science.gov (United States)

    Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.

    2018-04-01

    In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.

  16. Development of two U.H.F. band resonators for application to CO2 laser electro-optical modulation

    International Nuclear Information System (INIS)

    Egan, M.G.; Blanc, P.; Sexton, M.C.

    1980-01-01

    The purpose of this report is to describe the design and testing of two U.H.F. band resonators destined for use in the linear electro-optical modulator of the CO 2 Laser Rapid Interferometer diagnostic at present under development for the WEGA Tokamak. The resonators take the form of a re-entrant coaxial line cavity and an interdigital line filter, both of which possess the regions of high electric field necessary to activate the linear electro-optical effect

  17. Contribution to the Study of Nuclear Magnetic Resonance in Ferromagnets; Contribution a l'etude de la resonance nucleaire dans les corps ferromagnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Robert, C [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    Properties of nuclear magnetic resonance in the field acting on the nucleus in a ferromagnet were studied. Nuclei were {sup 57}Fe in iron and yttrium iron garnet. Static properties of resonance (frequency, line-width, dipolar structure) were investigated and compared with magnetic behavior and magnetic structure of the materials. Relaxation in garnet points out importance of long range fluctuations induced by impurities in a ferromagnetic lattice. (author) [French] Nous avons etudie les proprietes de la resonance nucleaire dans le champ existant a remplacement d'un noyau dans un corps ferromagnetique (champ local). Les noyaux etaient ceux de {sup 57}Fe dans le fer et dans le grenat d'yttrium et de fer. Les proprietes statiques de la resonance (frequence de resonance, largeur de la raie, structures dues a l'interaction dipolaire) ont ete etudiees et reliees aux caracteristiques magnetiques et a la structure de ces corps. La relaxation dans le grenat a mis en evidence les fluctuations a longue distance induites par des impuretes dans un reseau ferromagnetique. (auteur)

  18. Assessment of tumor energy and oxygenation status by bioluminescence, nuclear magnetic resonance spectroscopy, and cryospectrophotometry.

    Science.gov (United States)

    Mueller-Klieser, W; Schaefer, C; Walenta, S; Rofstad, E K; Fenton, B M; Sutherland, R M

    1990-03-15

    The energy and oxygenation status of tumors from two murine sarcoma lines (KHT, RIF-1) and two human ovarian carcinoma xenograft lines (MLS, OWI) were assessed using three independent techniques. Tumor energy metabolism was investigated in vivo by 31P nuclear magnetic resonance spectroscopy. After nuclear magnetic resonance measurements, tumors were frozen in liquid nitrogen to determine the tissue ATP concentration by imaging bioluminescence and to register the intracapillary oxyhemoglobin (HbO2) saturation using the cryospectrophotometric method. There was a positive correlation between the nucleoside triphosphate beta/total resonance ratio or a negative correlation between the Pi/total resonance ratio and the model ATP concentration obtained by bioluminescence, respectively. This was true for small tumors with no extended necrosis irrespective of tumor type. Moreover, a positive correlation was obtained between the HbO2 saturations and the ATP concentration measured with bioluminescence. The results demonstrate the potential of combined studies using noninvasive, integrating methods and high-resolution imaging techniques for characterizing the metabolic milieu in tumors.

  19. Fano resonance in anodic aluminum oxide based photonic crystals.

    Science.gov (United States)

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  20. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.

    1994-01-01

    The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...... of this magnetic scattering and analyzed it using a simple model based on electric dipole and quadrupole transitions among atomic orbitals. The line shapes can be fitted to a magnetic structure combining both c-axis-modulated and basal-plane components. Below 18 K, we have observed unusual behavior of the magnetic...

  1. Time-domain numerical computations of electromagnetic fields in cylindrical co-ordinates using the transmission line matrix: evaluation of radiaion losses from a charge bunch passing through a pill-box resonator

    International Nuclear Information System (INIS)

    Sarma, J.; Robson, P.N.

    1979-01-01

    The two dimensional transmission line matrix (TLM) numerical method has been adapted to compute electromagnetic field distributions in cylindrical co-ordinates and it is applied to evaluate the radiation loss from a charge bunch passing through a 'pill-box' resonator. The computer program has been developed to calculate not only the total energy loss to the resonator but also that component of it which exists in the TM 010 mode. The numerically computed results are shown to agree very well with the analytically derived values as found in the literature which, therefore, established the degree of accuracy that is obtained with the TLM method. The particular features of computational simplicity, numerical stability and the inherently time-domain solutions produced by the TLM method are cited as additional, attractive reasons for using this numerical procedure in solving such problems. (Auth.)

  2. Line width of Josephson flux flow oscillators

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Dmitriev, P.N.; Sobolev, A.S.

    2002-01-01

    to be proven before one initiates real FFO applications. To achieve this goal a comprehensive set of line width measurements of the FFO operating in different regimes has been performed. FFOs with tapered shape have been successfully implemented in order to avoid the superfine resonant structure with voltage...... spacing of about 20 nV and extremely low differential resistance, recently observed in the IVC of the standard rectangular geometry. The obtained results have been compared with existing theories and FFO models in order to understand and possibly eliminate excess noise in the FFO. The intrinsic line width...

  3. 31P nuclear magnetic resonance spectroscopy studies of tumor energy metabolism and its relationship to intracapillary oxyhemoglobin saturation status and tumor hypoxia.

    Science.gov (United States)

    Rofstad, E K; DeMuth, P; Fenton, B M; Sutherland, R M

    1988-10-01

    Relationships between tumor bioenergetic status on the one hand and intracapillary oxyhemoglobin (HbO2) saturation status and fraction of radiobiologically hypoxic cells on the other were studied using two murine sarcoma lines (KHT, RIF-1) and two human ovarian carcinoma xenograft lines (MLS, OWI). Tumor energy metabolism was studied in vivo by 31P nuclear magnetic resonance (NMR) spectroscopy and the resonance area ratio (PCr + NTP beta)/Pi was used as parameter for bioenergetic status. Intracapillary HbO2 saturation status reflects the oxygen supply conditions in tumors and was measured in vitro using a cryospectrophotometric method. The KHT, RIF-1, and MLS lines showed decreasing bioenergetic status, i.e., decreasing PCr and NTP beta resonances and an increasing Pi resonance, with increasing tumor volume, whereas the OWI line showed no changes in these resonances during tumor growth. The volume-dependence of the HbO2 saturation status differed similarly among the tumor lines; HbO2 saturation status decreased with increasing tumor volume for the KHT, RIF-1, and MLS lines and was independent of tumor volume for the OWI line. Moreover, linear correlations were found between bioenergetic status and HbO2 saturation status for individual tumors of the KHT, RIF-1, and MLS lines. These observations together indicated a direct relationship between 31P-NMR spectral parameters and tumor oxygen supply conditions. However, this relationship was not identical for the different tumor lines, suggesting that it was influenced by intrinsic properties of the tumor cells such as rate of respiration and ability to survive under hypoxia. Similarly, there was no correlation between bioenergetic status and fraction of radiobiologically hypoxic cells across the four tumor lines. This indicates that 31P-NMR spectroscopy data have to be supplemented with other data, e.g., rate of oxygen consumption, cell survival time under hypoxic stress, and/or fraction of metabolically active

  4. Magnetic resonance tracking of fluorescent nanodiamond fabrication

    International Nuclear Information System (INIS)

    Shames, A I; Panich, A M; Osipov, V Yu; Vul’, A Ya; Boudou, J P; Treussart, F; Von Bardeleben, H J

    2015-01-01

    Magnetic resonance techniques (electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR)) are used for tracking the multi-stage process of the fabrication of fluorescent nanodiamonds (NDs) produced by high-energy electron irradiation, annealing, and subsequent nano-milling. Pristine commercial high pressure and high temperature microdiamonds (MDs) with mean size 150 μm contain ∼5  ×  10 18  spins/g of singlet (S = 1/2) substitutional nitrogen defects P1, as well as sp 3 C–C dangling bonds in the crystalline lattice. The half-field X-band EPR clearly shows (by the appearance of the intense ‘forbidden’ g = 4.26 line) that high-energy electron irradiation and annealing of MDs induce a large amount (∼5  ×  10 17  spins/g) of triplet (S = 1) magnetic centers, which are identified as negatively charged nitrogen vacancy defects (NV − ). This is supported by EPR observations of the ‘allowed’ transitions between Zeeman sublevels of the triplet state. After progressive milling of the fluorescent MDs down to an ultrasubmicron scale (≤100 nm), the relative abundance of EPR active NV − defects in the resulting fluorescent NDs (FND) substantially decreases and, vice versa, the content of C-inherited singlet defects correlatively increases. In the fraction of the finest FNDs (mean particle size <20 nm), which are contained in the dried supernatant of ultracentrifuged aqueous dispersion of FNDs, the NV − content is found to be reduced by one order of magnitude whereas the singlet defects content increases up to ∼2  ×  10 19  spins/g. In addition, another triplet-type defect, which is characterized by the g = 4.00 ‘forbidden’ line, appears. On reduction of the particle size below the 20 nm limit, the ‘allowed’ EPR lines become practically unobservable, whereas the ‘forbidden’ lines remain as a reliable fingerprint of the presence of NV − centers in small ND systems. The same size reduction

  5. Time dependence of resonance γ-radiation modulated by acoustic excitations

    International Nuclear Information System (INIS)

    Mkrtchyan, A.R.; Arakelyan, A.R.; Gabrielyan, R.G.; Kocharyan, L.A.; Grigoryan, G.R.; Slavinskii, M.M.

    1984-01-01

    Experimental investigations of the time dependence of the γ-resonance absorption line intensity in case of modulation by acoustic waves are presented. 57 Co was used as source and a stainless steel foil was chosen as an absorber. The time dependences of the counting rate of the resonant γ-quanta corresponding to excitations with 3400 Hz and with 1.5 or 7 V at the vibrosystem transducer are plotted. The measurements show that the method has principal advantages over the conventional Moessbauer spectroscopy

  6. Battery charger with a capacitor-diode clamped LLC resonant converter

    OpenAIRE

    Tsang, C.; Bingham, C.; Foster, M. P.; Stone, D.; Leech, J.

    2016-01-01

    The paper proposes a novel battery charger through use of\\ud two serially-connected LLC resonant converters. The first\\ud stage utilises a capacitor-diode clamped LLC resonant\\ud converter which allows operation in both constant voltage\\ud (CV) and constant current (CC) modes, as found in most\\ud battery chargers, to be realised, whilst the second stage\\ud provides the necessary gain and line and load regulation. A\\ud design example is included that demonstrates the resulting\\ud converter top...

  7. A microscopic study of giant resonances in nuclei near drip lines

    CERN Document Server

    Sagawa, H; Zhang, X Z

    1999-01-01

    We study giant resonances using the self-consistent Hartree-Fock calculation plus the random phase approximation with Skyrme interactions. Including simultaneously both the isoscalar and the isovector correlation the RPA response function is calculated in the coordinate space so as to take properly into account the continuum effect. Giant monopole states are discussed in relation with the nuclear compression modulus of the nuclear matter K sub n sub m. The core polarization charges are also discussed in comparison with recent empirical data in sup 1 sup 0 sup 0 Sn region.

  8. Spectral signature barcodes based on S-shaped Split Ring Resonators (S-SRRs

    Directory of Open Access Journals (Sweden)

    Herrojo Cristian

    2016-01-01

    Full Text Available In this paper, it is shown that S-shaped split ring resonators (S-SRRs are useful particles for the implementation of spectral signature (i.e., a class of radiofrequency barcodes based on coplanar waveguide (CPW transmission lines loaded with such resonant elements. By virtue of its S shape, these resonators are electrically small. Hence S-SRRs are of interest for the miniaturization of the barcodes, since multiple resonators, each tuned at a different frequency, are used for encoding purposes. In particular, a 10-bit barcode occupying 1 GHz spectral bandwidth centered at 2.5 GHz, with dimensions of 9 cm2, is presented in this paper.

  9. The Ca II resonance lines in M dwarf stars without H-alpha emission

    Energy Technology Data Exchange (ETDEWEB)

    Giampapa, M.S.; Cram, L.E.; Wild, W.J. (National Solar Observatory, Tucson, AZ (USA) Sydney Univ. (Australia) Arizona Univ., Tucson (USA))

    1989-10-01

    Spectra of the Ca II H and K lines in a sample of 31 M dwarf stars without H-alpha emission are used to calculate chromospheric K line radiative losses, F(k), and to study the joint response of Ca II K and H-alpha to chromospheric heating in dwarf M stars. It is suggested that the poor correlation found in the equivalent width - log F(K) diagram may be due either to radial segregation of the H-alpha and K line forming regions or to lateral inhomogeneities in the chromospheres. The results confirm the existence of dM stars with weak H-alpha absorption and K line emission only slightly weaker than that of the dMe stars, and show that dM stars with weak H-alpha but kinematics and metallicities representative of the young disk population belong to a class characterized by a comparatively high degree of chromospheric activity. 32 refs.

  10. Interaction between confined phonons and photons in periodic silicon resonators

    Science.gov (United States)

    Iskandar, A.; Gwiazda, A.; Younes, J.; Kazan, M.; Bruyant, A.; Tabbal, M.; Lerondel, G.

    2018-03-01

    In this paper, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. The interaction between confined phonons and confined photons in silicon resonator arrays is observed by means of Raman scattering. The Raman spectra from large arrays of dielectric silicon resonators exhibited Raman enhancement accompanied with a downshift and broadening. The analysis of the Raman intensity and line shape using finite-difference time-domain simulations and a spatial correlation model demonstrated an interaction between photons confined in the resonators and phonons confined in highly defective regions prompted by the structuring process. It was shown that the Raman enhancement is due to collective lattice resonance inducing field confinement in the resonators, while the spectra downshift and broadening are signatures of the relaxation of the phonon wave vector due to phonon confinement in defective regions located in the surface layer of the Si resonators. We found that as the resonators increase in height and their shape becomes cylindrical, the amplitude of their coherent oscillation increases and hence their ability to confine the incoming electric field increases.

  11. Persistence, resistance, resonance

    Science.gov (United States)

    Tsadka, Maayan

    form of musical consumption and experience. The three pieces draw lines connecting different aspects of persistence, resistance, and resonance.

  12. Contribution to the Study of Nuclear Magnetic Resonance in Ferromagnets; Contribution a l'etude de la resonance nucleaire dans les corps ferromagnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Robert, C. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    Properties of nuclear magnetic resonance in the field acting on the nucleus in a ferromagnet were studied. Nuclei were {sup 57}Fe in iron and yttrium iron garnet. Static properties of resonance (frequency, line-width, dipolar structure) were investigated and compared with magnetic behavior and magnetic structure of the materials. Relaxation in garnet points out importance of long range fluctuations induced by impurities in a ferromagnetic lattice. (author) [French] Nous avons etudie les proprietes de la resonance nucleaire dans le champ existant a remplacement d'un noyau dans un corps ferromagnetique (champ local). Les noyaux etaient ceux de {sup 57}Fe dans le fer et dans le grenat d'yttrium et de fer. Les proprietes statiques de la resonance (frequence de resonance, largeur de la raie, structures dues a l'interaction dipolaire) ont ete etudiees et reliees aux caracteristiques magnetiques et a la structure de ces corps. La relaxation dans le grenat a mis en evidence les fluctuations a longue distance induites par des impuretes dans un reseau ferromagnetique. (auteur)

  13. Controllable scattering of photons in a one-dimensional resonator waveguide

    Science.gov (United States)

    Sun, C. P.; Zhou, L.; Gong, Z. R.; Liu, Y. X.; Nori, F.

    2009-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. [4pt] L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons in a 1D resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). URL: http://link.aps.org/abstract/PRL/v101/e100501

  14. Analysis of slotted cylindrical ring resonators | Letsididi | Botswana ...

    African Journals Online (AJOL)

    In this paper the Transmission Line Modeling method is used to determine the effects of using a high dielectric constant material on the size and coupling constant of the resonator. Modeling and simulations are done using Microstripes, a commercial TLM field solver from Flomerics. The paper shows that by placing a high ...

  15. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    Science.gov (United States)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  16. Resonance Raman and optical dephasing study of tricarbocyanine dyes

    NARCIS (Netherlands)

    Ashworth, SH; Kummrow, A; Lenz, K

    Fluorescence lineshape analysis based on resonance Raman spectra of the dye HITCI was used to determine the details and magnitude of the vibrational part of the line broadening function, Forced light scattering (FLS) was applied to measure optical dephasing of HITCI in ethylene glycol, pumping at

  17. Flux qubit to a transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlein, Max; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Xie, Edwar; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    Within the last decade, superconducting qubits coupled to microwave resonators have been extensively studied within the framework of quantum electrodynamics. Ultimately, quantum computing seems within reach in such architectures. However, error correction schemes are necessary to achieve the required fidelity in multi-qubit operations, drastically increasing the number of qubits involved. In this work, we couple a flux qubit to a transmission line where it interacts with itinerant microwave photons granting access to all-optical quantum computing. In this approach, travelling photons generate entanglement between two waveguides, containing the qubit information. In this presentation, we show experimental data on flux qubits coupled to transmission lines. Furthermore, we will discuss entanglement generation between two separate paths.

  18. Collective properties of drip-line nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, I. [Univ. of Lund (Sweden); Sagawa, H. [Univ. of Aizu, Fukushima (Japan)

    1996-12-31

    Performing the spherical Hartree-Fock (HF) calculations with Skyrme interactions and, then, using RPA solved in the coordinate space with the Green`s function method, the authors have studied the effect of the unique shell structure as well as the very low particle threshold on collective modes in drip line nuclei. In this method a proper strength function in the continuum is obtained, though the spreading width of collective modes is not included. They have examined also one-particle resonant states in the obtained HF potential. Unperturbed particle-hole (p-h) response functions are carefully studied, which contain all basic information on the exotic behaviour of the RPA strength function in drip line nuclei.

  19. Resonant soft x-ray GISAXS on block copolymer films

    Science.gov (United States)

    Wang, Cheng; Araki, T.; Watts, B.; Ade, H.; Hexemer, A.; Park, S.; Russell, T. P.; Schlotter, W. F.; Stein, G. E.; Tang, C.; Kramer, E. J.

    2008-03-01

    Ordered block copolymer thin films may have important applications in modern device fabrication. Current characterization methods such as conventional GISAXS have fixed electron density contrast that can be overwhelmed by surface scattering. However, soft x-rays have longer wavelength, energy dependent contrast and tunable penetration, making resonant GISAXS a very promising tool for probing nanostructured polymer thin films. Our preliminary investigation was performed using PS-b-P2VP block copolymer films on beam-line 5-2 SSRL, and beam-line 6.3.2 at ALS, LBNL. The contrast/sensitivity of the scattering pattern varies significantly with photon energy close to the C K-edge (˜290 eV). Also, higher order peaks are readily observed, indicating hexagonal packing structure in the sample. Comparing to the hard x-ray GISAXS data of the same system, it is clear that resonant GISAXS has richer data and better resolution. Beyond the results on the A-B diblock copolymers, results on ABC block copolymers are especially interesting.

  20. An Operator Perturbation Method of Polarized Line Transfer V ...

    Indian Academy of Sciences (India)

    tribpo

    imate Lambda Iteration) method to the resonance scattering in spectral lines formed in the presence of weak magnetic fields. The method is based on an operator perturbation approach, and can efficiently give solutions for oriented vector magnetic fields in the solar atmosphere. Key words. ... 1999 for observational.

  1. Quantum heat engine with coupled superconducting resonators

    Science.gov (United States)

    Hardal, Ali Ü. C.; Aslan, Nur; Wilson, C. M.; Müstecaplıoǧlu, Özgür E.

    2017-12-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.

  2. Line overlap measurements for resonant photo-pumping of x-ray lasers

    International Nuclear Information System (INIS)

    Elliott, S.R.; Beiersdorfer, P.; Nilsen, J.

    1993-01-01

    Measurement taken on the LLNL EBIT to search for the possible photo-pumping of the 3p-3s lasing transitions in Ni-like ions of elements with Z=30--40 and the 4d-4p lasing transitions in Ne-like ions of elements with Z=47-73 are reported. A high-resolution crystral spectrometer was used to measure wavelengths of the Ne-like 2p-4d and the Ni-like 3d-5f and 3d-6f laser level feeding transitions relative to candidate pump lines in various H-, He-, and Ni-like ions. To date, the most promising candidate is Ni-like Pt pumping Ne-like Rb at 2512 eV. The line energies differ by 0.4±0.1 eV or by 160 ppm

  3. In-Source Laser Resonance Ionization at ISOL Facilities

    CERN Document Server

    Marsh, Bruce; Feddosseev, Valentin

    Resonance ionization laser ion source development has been carried out at two radioactive ion beam facilities: ISOLDE (CERN, Switzerland) and the IGISOL facility (Jyvaskyla, Finland). The scope of the Resonance Ionization Laser Ion Source has been extended to 27 elements with the development of new three-step ionization schemes for Sb, Sc, Dy, Y and Au. The efficiencies were determined to be in the range of 2 - 20 %. Additionally, a new two-step ionization scheme has been developed for bismuth in an off-line atomic beam unit. The scheme relies on ionization via a strong and broad auto-ionizing resonance at an energy of 63196.79 cm$^{−1}$. This scheme may offer an improvement over the existing RILIS efficiency and will be more convenient for use during resonance ionization spectroscopy of Bi isotopes. The RILIS can be used as a spectroscopic tool to probe features such as the hyperfine structures and the isotope-shifts of radioisotopes with low production rates. By coupling a laser scanning process that dire...

  4. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    International Nuclear Information System (INIS)

    Spassov, Velin

    1996-01-01

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  5. High Contrast Coherent Population Trapping Resonances in Cs Vapour Cells with a Simple-Architecture Laser System

    International Nuclear Information System (INIS)

    Liu, Xiaochi

    2013-01-01

    This thesis reports the development of a simple-architecture laser system resonant at 895 nm used for the detection of high-contrast coherent population trapping (CPT) resonances in Cs vapor cells. The laser system combines a distributed feedback-diode (DFB) laser, a pigtailed Mach-Zehnder intensity electro-optic modulator (EOM) driven at 4.596 GHz for the generation of optical sidebands frequency-split by 9.192 GHz and a Michelson delay-line system to produce a bi-chromatic optical field that alternates between right and left circular polarization. This polarization pumping scheme, first proposed by Happer's group in Princeton on K atoms, allows to optically pump a maximum number of Cs atoms into the 0-0 magnetic field insensitive clock transition. Advanced noise reduction techniques were implemented in order to stabilize the laser power, the optical carrier suppression at the output of the EOM and the DFB laser frequency. Using this system, we demonstrated the detection of CPT resonances with a contrast of 80% in cm-scale Cs vapor cells. This contrast was measured to be increased until a saturation effect with the laser power at the expense of the CPT line broadening. To circumvent this issue, we proposed with a simple setup Ramsey spectroscopy of CPT resonances in vapor cells to combine high-contrast and narrow line width of the CPT resonances. In this setup, the EOM is used both for optical sidebands generation and light switch to produce Ramsey interaction. Ramsey fringes of 166 Hz line width with a contrast better than 30% were detected with this setup. This laser system will be in a near future devoted to be used for the development of a high-performance CPT-based atomic clock. (author)

  6. Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Maksim Skorobogatiy

    2009-01-01

    Full Text Available We review application of microstructured and photonic bandgap fibers for designing resonant optical sensors of changes in the value of analyte refractive index. This research subject has recently invoked much attention due to development of novel fiber types, as well as due to development of techniques for the activation of fiber microstructure with functional materials. Particularly, we consider two sensors types. The first sensor type employs hollow core photonic bandgap fibers where core guided mode is confined in the analyte filled core through resonant effect in the surrounding periodic reflector. The second sensor type employs metalized microstructured or photonic bandgap waveguides and fibers, where core guided mode is phase matched with a plasmon propagating at the fiber/analyte interface. In resonant sensors one typically employs fibers with strongly nonuniform spectral transmission characteristics that are sensitive to changes in the real part of the analyte refractive index. Moreover, if narrow absorption lines are present in the analyte transmission spectrum, due to Kramers-Kronig relation this will also result in strong variation in the real part of the refractive index in the vicinity of an absorption line. Therefore, resonant sensors allow detection of minute changes both in the real part of the analyte refractive index (10−6–10−4 RIU, as well as in the imaginary part of the analyte refractive index in the vicinity of absorption lines. In the following we detail various resonant sensor implementations, modes of operation, as well as analysis of sensitivities for some of the common transduction mechanisms for bio- and chemical sensing applications. Sensor designs considered in this review span spectral operation regions from the visible to terahertz.

  7. Magnetic Resonance Imaging of Liver Metastasis.

    Science.gov (United States)

    Karaosmanoglu, Ali Devrim; Onur, Mehmet Ruhi; Ozmen, Mustafa Nasuh; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver magnetic resonance imaging (MRI) is becoming the gold standard in liver metastasis detection and treatment response assessment. The most sensitive magnetic resonance sequences are diffusion-weighted images and hepatobiliary phase images after Gd-EOB-DTPA. Peripheral ring enhancement, diffusion restriction, and hypointensity on hepatobiliary phase images are hallmarks of liver metastases. In patients with normal ultrasonography, computed tomography (CT), and positron emission tomography (PET)-CT findings and high clinical suspicion of metastasis, MRI should be performed for diagnosis of unseen metastasis. In melanoma, colon cancer, and neuroendocrine tumor metastases, MRI allows confident diagnosis of treatment-related changes in liver and enables differential diagnosis from primary liver tumors. Focal nodular hyperplasia-like nodules in patients who received platinum-based chemotherapy, hypersteatosis, and focal fat can mimic metastasis. In cancer patients with fatty liver, MRI should be preferred to CT. Although the first-line imaging for metastases is CT, MRI can be used as a problem-solving method. MRI may be used as the first-line method in patients who would undergo curative surgery or metastatectomy. Current limitation of MRI is low sensitivity for metastasis smaller than 3mm. MRI fingerprinting, glucoCEST MRI, and PET-MRI may allow simpler and more sensitive diagnosis of liver metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. An improved intermediate resonance method for heterogeneous media

    International Nuclear Information System (INIS)

    Chiovato, O.; Corno, S.; Pasquantonio, F.Di.

    1977-01-01

    A new formulation is described of the Intermediate Resonance method which incorporates the previous developments suitably modified and improved, together with some new contributions. The 'intermediate' character is directly introduced in the integral operator K, allowing a more rigorous deduction of the equations for evaluating the intermediate parameters related to the nuclides involved in the system. There is no limit to the number of internal (admixed in the fuel) and external moderators. The capability to take into account the interference scattering has been extended to heterogeneous systems. The Doppler broadening is described by means of new accurate rational approximations to the broadened line shape psi. Finally the use of energy mean values suitably defined refines the values of the resonance integrals and resonance absorption cross sections. The Intermediate Resonance method so extended and improved, has been coded in a group of FORTRAN routines, which have been inserted as a calculation option in the fast section of the GGC code for the evaluation of multigroup cross sections. A series of calculations has been carried out, using these routines, and comparisons have been made with Monte Carlo and Nordheim's methods. The results obtained show that the Intermediate Resonance method developed in the present work offers considerable advantages over Nordheim's method: better accuracy in evaluating resonance absorption cross sections, and much smaller computing times. (author)

  9. Coherent Population Trapping Resonances in Cs Atomic Vapor Layers of Micrometric Thickness

    Directory of Open Access Journals (Sweden)

    A. Krasteva

    2011-01-01

    Full Text Available We report on a novel behavior of the electromagnetically induced absorption (EIA resonance observed on the D2 line of Cs for atoms confined in cells with micrometric thickness. With the enhancement of light intensity, the EIA resonance amplitude suffers from fast reduction, and even at very low intensity (W < 1 mW/cm2, resonance sign reversal takes place and electromagnetically induced transparency (EIT resonance is observed. Similar EIA resonance transformation to EIT one is not observed in conventional cm-size cells. A theoretical model is proposed to analyze the physical processes behind the EIA resonance sign reversal with light intensity. The model involves elastic interactions between Cs atoms as well as elastic interaction of atom micrometric-cell windows, both resulting in depolarization of excited state which can lead to the new observations. The effect of excited state depolarization is confirmed also by the fluorescence (absorption spectra measurement in micrometric cells with different thicknesses.

  10. Design of a resonator for a flat-top acceleration system in the RIKEN AVF cyclotron

    International Nuclear Information System (INIS)

    Kohara, Shigeo; Miyazawa, Yoshitoshi; Kamigaito, Osamu; Goto, Akira

    1997-01-01

    A resonator for a flat-top acceleration system in the RIKEN AVF cyclotron is designed to improve the extraction efficiency and the energy spread of a beam. In order to generate the flat-top accelerating voltage on the dee, an additional resonator or a transmission line is capacitively coupled to the AVF resonator with a coupling capacitor. The flat-top accelerating voltage is obtained by the superimposition of the fundamental frequency and the fifth-harmonic-frequency voltages. Length of the additional resonator is 90 cm and capacitance of the coupling capacitor 30 pF. The frequency range of the AVF resonator is from 12 to 23 MHz. Structure and rf characteristics of the resonator designed for the flat-top acceleration system is described. (author)

  11. Observation and correction of resonance stopbands in the AGS Booster

    International Nuclear Information System (INIS)

    Gardner, C.; Shoji, Y.; Ahrens, L.; Glenn, J.W.; Lee, Y.Y.; Roser, T.; Soukas, A.; van Asselt, W.; Weng, W.T.

    1993-01-01

    At the design intensity of 1.5 x 10 13 ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. Therefore, the beam is spread over may lower order resonance lines and the stopbands have to be corrected to minimize the amplitude growth by proper compensation of the driving harmonics resulting from random errors. The observation and correction of second and third order resonance stopbands in the AGS Booster, and the establishment of a favorable operating point at high intensity are discussed

  12. On effect of stability of magnetic resonance position by harmonized field

    International Nuclear Information System (INIS)

    Ivanchenko, E.A.; Tolstoluzhsky, A.P.

    2006-01-01

    The formalism of density matrix in a two level system is used to study the time-periodic modulation of the magnetic field stabilizating the magnetic resonance position. An exact solution for density matrix at resonance is found. It is shown that the fundamental resonance is stable with respect to consistent variations of longitudinal and transversal magnetic fields. A differential equation for the transition probability is obtained. The dependence of time-averaged spin flip probability on the normalized Larmor frequency was numerically researched in different parameter regimes with account of dissipation and decoherence. It is shown that the position of the main resonance is independent of field deformation and dissipation; only the width of resonance line changes upon field deformation and dissipation. The odd parametric (multi-photon) resonance transitions is studied. Static magnetization induced by time-periodic modulated magnetic field is considered. The results of the investigation may be useful for analysis of interference experiments, improvement of magnetic spectrometers and in the field of quantum computing manipulation of q-bits

  13. The Fourier transform method for infinite medium resonance absorption problems

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Sahni, D.C.

    1978-01-01

    A new method, using Fourier transforms, is developed for solving the integral equation of slowing down of neutrons in the resonance region. The transformations replace the slowing down equation with a discontinuous kernel by an integral equation with a continuous kernel over the interval (-infinity, infinity). Further the Doppler broadened line shape functions have simple analytical representations in the transform variable. In the limit of zero temperature, the integral equation reduces to a second order differential equation. Accurate expressions for the zero temperature resonance integrals are derived, using the WKB method. In general, the integral equation is seen to be amenable to solution by Ganss-Hermite quadrature formule. Doppler coefficients of 238 U resonances are given and compared with Monte Carlo calculations. The method is extended to include the effect of interference between neighbouring resonances of an absorber. For the case of two interfering resonances the slowing down equation is transformed to the coupled integral equations that are amenable to solution by methods indicated earlier. Numerical results presented for the low lying thorium-232 doublet show that the Doppler coefficients of the resonances are reduced considerably because of the overlap between them. (author)

  14. Waveguide resonances with selectable polarization in an infrared thermal emitter

    Directory of Open Access Journals (Sweden)

    Wei-Lun Huang

    2017-08-01

    Full Text Available A multi-band infrared thermal emitter with polarized waveguide resonances was investigated. The device is constructed by embedding the metallic grating strips within the resonant cavity of a metal/dielectric/metal (MDM structure. The proposed arrangement makes it possible to generate waveguide resonances with mutually orthogonal polarization, thereby providing an additional degree of freedom to vary the resonant wavelengths and polarizations in the medium infrared region. The measured reflection spectra and the finite-difference time-domain (FDTD simulation indicated that the electric fields of the waveguide modes with two orthogonal polarizations are distributed in different regions of the cavity. Resonant wavelengths in different polarizations can be adjusted by altering the period, the metallic line width, or the position of the embedded gold strips. The ratio of the full width at half maximum (FWHM to the peak wavelength was achieved to be smaller than 0.035. This study demonstrated a multi-band infrared thermal emission featuring a narrow bandwidth and polarization characteristics, which is quite suitable to be applied to the non-dispersive infrared (NDIR detection system.

  15. Electron Spin Resonance studies on PS, PP and PS/PP blends under gamma irradiation

    International Nuclear Information System (INIS)

    Reyes, J.; Claro, M.; Albano, C.; Venezuela Central University, Caracas; Moronta, D.

    2002-01-01

    Complete text of publication follows. Electron Spin Resonance (ESR) studies on Polystyrene (PS), Polypropylene (PP) and their mixtures at compositions of 80/20 with and without a compatibilizer (SBS in block), 7.5 wt.%, irradiated with gamma rays from a Cobalt-60 source with a dose rate of 4.8 KGy/h at integral doses of radiation of 10, 25, 50, 60, 70, 400, 800 and 1300 KGy in the presence of air and at room temperature (RT) are reported. The dependence of resonance line width, Hpp; resonance line shapes K, and radical concentration, S, with the integral dose of irradiation is investigated. The nature of the free radicals after ten days of air storage is discussed. The free radical concentration, the double integral of the resonance line, S, has been estimated at room temperature, RT, for a group of single lines, characterized by the same giromagnetic, g, value by direct numerical double integration. In the samples studied no spectrum of 0 kGy of integral dose was observed. The concentration of radicals, S, observed when the integral radiation doses was increased, presents a maximum value in the PP samples at high doses (70-1300 kGy) and minimum values in the PS samples with the same doses. This shows that the PP degrades at a faster rate than the PS, owing to the presence of the bencenic ring in the latter. In the PS/PP mixtures studied with and without compatibilizer, the values of the radical concentration is found between the observed values in the homopolymers, being closer to the PS, which might imply that the presence of PS decays the degradation process of the PP in the mixture

  16. Comparison of explicit calculations for n = 3 to 8 dielectronic satellites of the FeXXV Kα resonance line with experimental data from the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Decaux, V.; Bitter, M.; Hsuan, H.; Hill, K.W.; von Goeler, S.; Park, H.; Bhalla, C.P.

    1991-12-01

    Dielectronic satellite spectra of the FeXXV Kα resonance line observed from the Tokamak Fusion Test Reactor (TFTR) plasmas have been compared with recent explicit calculations for the n = 3 to 8 dielectronic satellites as well as the earlier theoretical predictions, which were based on the 1/n 3 scaling law for n > 4 satellites. The analysis has been performed by least-squares fits of synthetic spectra to the experimental data. The synthetic spectra constructed from both theories are in good agreement with the observed data. However, the electron temperature values obtained from the fit of the present explicit calculations are in better agreement with independent measurements. 20 refs., 4 figs

  17. Resonances in photoabsorption: Predissociation line shapes in the 3pπD1Π+u ← Χ1Σg+ system in H2

    International Nuclear Information System (INIS)

    Mezei, J. Zs.; Schneider, I. F.; Glass-Maujean, M.; Jungen, Ch.

    2014-01-01

    The predissociation of the 3pπD 1 Π u + ,v≥3,N=1, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit a complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally

  18. Singular equivariant spectral asymptotics of Schroedinger operators in Rn and resonances of Schottky surfaces

    International Nuclear Information System (INIS)

    Weich, Tobias

    2014-01-01

    This work consists of four self-containedly presented parts. In the first part we prove equivariant spectral asymptotics for h-pseudo-differential operators for compact orthogonal group actions generalizing results of El-Houakmi and Helffer (1991) and Cassanas (2006). Using recent results for certain oscillatory integrals with singular critical sets (Ramacher 2010) we can deduce a weak equivariant Weyl law. Furthermore, we can prove a complete asymptotic expansion for the Gutzwiller trace formula without any additional condition on the group action by a suitable generalization of the dynamical assumptions on the Hamilton flow. In the second and third part we study resonance chains which have been observed in many different physical and mathematical scattering problems. In the second part we present a mathematical rigorous study of the resonance chains on three funneled Schottky surfaces. We prove the analyticity of the generalized zeta function which provide the central mathematical tool for understanding the resonance chains. Furthermore we prove for a fixed ratio between the funnel lengths and in the limit of large lengths that after a suitable rescaling the resonances in a bounded domain align equidistantly along certain lines. The position of these lines is given by the zeros of an explicit polynomial which only depends on the ratio of the funnel lengths. In the third part we provide a unifying approach to these resonance chains by generalizing dynamical zeta functions. By means of a detailed numerical study we show that these generalized zeta functions explain the mechanism that creates the chains of quantum resonance and classical Ruelle resonances for 3-disk systems as well as geometric resonances on Schottky surfaces. We also present a direct system-intrinsic definition of the continuous lines on which the resonances are strung together as a projection of an analytic variety. Additionally, this approach shows that the existence of resonance chains is

  19. Magnetic resonance of native defects of spin-Peierls magnetics CuGeO3

    International Nuclear Information System (INIS)

    Smirnov, A.I.; Glazkov, V.N.; Leonyuk, L.I.; Vetkin, A.G.; Eremina, R.M.

    1998-01-01

    Magnetic resonance within 9-75 GHz frequency range and 1.2-25 K temperature range was studied in pure monocrystalline spin-Peierls CuGwO 3 . Splitting of the magnetic resonance line is observed within temperature range below 5 K. Analysis of magnetic resonance spectra at various directions of magnetic field and under various temperatures enables to set off EPR-signals of spin-Peierls phase defects with S=1/2 and defects with S=1 from these components; g-factor corresponding to these EPR signals is similar one and close to values typical for Cu 2+ ion [ru

  20. Direct excitation of resonant torsional Alfven waves by footpoint motions

    NARCIS (Netherlands)

    Ruderman, M. S.; Berghmans, D.; Goossens, M.; Poedts, S.

    1997-01-01

    The present paper studies the heating of coronal loops by linear resonant Alfven waves that are excited by the motions of the photospheric footpoints of the magnetic field lines. The analysis is restricted to torsionally polarised footpoint motions in an axially symmetric system so that only

  1. Emission lines of Mg2 and Ca2 in planetary nebulae

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1979-01-01

    Conditions of exciting resonance lines in the emission of ionized magnesium (lambda lambda 2796+2803 Mg2) and calcium (lambda lambda 3934+3968 Ca2) in planetary nebulae have been analyzed. It is shown that the allowed lines are excited with the same mechanism, as the forbidden lines, i.e. inelastic electron collisions, but not with common fluorescence. The emission line lambda 2800 Mg2 of enough force can be observed only in the spectra of planetary nebulae with mean excitation (IC 2149) as well as in the spectra of diffuse nebulae. The line must not be observed in high-excited planetary nebulae (NGC 7026, 7662). The absence of emission lines H and K Ca2 in planetary nebulae spectra results from the fact, that their expected intensity is by 3-4 orders less than the intensity of the line lambda 2800 Mg2 or Hsub(β) hydrogen

  2. Relationship between the nuclear resonance of cobalt metal and its ferromagnetic properties; Relations entre la resonance nucleaire du cobalt metallique et ses proprietes ferromagnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Aubrun, J.N. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-05-15

    Theoretical study of nuclear magnetic resonance in ferromagnetic metals shows the near dependence of ferromagnetic properties and unusual feature of this nuclear resonance. This results from a strong interaction between nuclei and magnetic electrons. They excite the nuclei, and, in Bloch walls, submit them to a RF field much stronger than those directly applied. The parameters of the resonance are determined from wall movement and depend consequently of ferromagnetic constants. The theory is enable to provide quantitatively some peculiar effects, specially those of a continuous magnetic field and of temperature. Experimental study was made on cobalt powders, and is in good agreement with theory. However one must take the skin-effect into consideration and accordingly adjust, the theory. This can explain some observed divergences, as well as the influence at particles size and magnetic field over the line shape. Original informations have been obtained about some typical ferromagnetic properties of cobalt, when studying magnetic field effect, and it has been able to apply this method to other ferromagnetic materials. In consideration of the peculiar characteristics of this nuclear resonance, which occurs without external magnetic field and whose line width is large, new models of spectrographs have been realized and have permitted accurate measures of the line shape. The weak intensity of the signals obtained in some cases, has induced the elaboration of an original method of extraction whose theory and practical uses are described here. The whole of this experiment reveals the nuclear resonance as a strong way for the study of ferromagnetism, which is able to detect microscopic phenomenons, not easily accessible by classical methods. (author) [French] L'etude theorique de la resonance magnetique nucleaire dans les metaux ferromagnetiques revele l'etroite liaison entre les proprietes ferromagnetiques et l'aspect inhabituel de cette resonance. Ceci

  3. Relationship between the nuclear resonance of cobalt metal and its ferromagnetic properties; Relations entre la resonance nucleaire du cobalt metallique et ses proprietes ferromagnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Aubrun, J N [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-05-15

    Theoretical study of nuclear magnetic resonance in ferromagnetic metals shows the near dependence of ferromagnetic properties and unusual feature of this nuclear resonance. This results from a strong interaction between nuclei and magnetic electrons. They excite the nuclei, and, in Bloch walls, submit them to a RF field much stronger than those directly applied. The parameters of the resonance are determined from wall movement and depend consequently of ferromagnetic constants. The theory is enable to provide quantitatively some peculiar effects, specially those of a continuous magnetic field and of temperature. Experimental study was made on cobalt powders, and is in good agreement with theory. However one must take the skin-effect into consideration and accordingly adjust, the theory. This can explain some observed divergences, as well as the influence at particles size and magnetic field over the line shape. Original informations have been obtained about some typical ferromagnetic properties of cobalt, when studying magnetic field effect, and it has been able to apply this method to other ferromagnetic materials. In consideration of the peculiar characteristics of this nuclear resonance, which occurs without external magnetic field and whose line width is large, new models of spectrographs have been realized and have permitted accurate measures of the line shape. The weak intensity of the signals obtained in some cases, has induced the elaboration of an original method of extraction whose theory and practical uses are described here. The whole of this experiment reveals the nuclear resonance as a strong way for the study of ferromagnetism, which is able to detect microscopic phenomenons, not easily accessible by classical methods. (author) [French] L'etude theorique de la resonance magnetique nucleaire dans les metaux ferromagnetiques revele l'etroite liaison entre les proprietes ferromagnetiques et l'aspect inhabituel de cette resonance. Ceci resulte du

  4. Frequency Selective Properties of Coaxial Transmission Lines Loaded with Combined Artificial Inclusions

    Directory of Open Access Journals (Sweden)

    Francisco Falcone

    2014-01-01

    Full Text Available The properties of a modified coaxial transmission line by periodic inclusions will be discussed. The introduction of split ring resonators, conductor stubs, air gaps, and combination of these gives rise to new frequency selective properties, such as stopband or passband behavior, observable in planar as well as volumetric metamaterial structures. These results envisage new potential applications and implementation of devices in coaxial transmission line technology.

  5. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    Science.gov (United States)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be

  6. Slots in dielectric image line as mode launchers and circuit elements

    Science.gov (United States)

    Solbach, K.

    1981-01-01

    A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values

  7. Rotational dependence of Fermi-type resonance interactions in molecules

    Science.gov (United States)

    Mikhailov, Vladimir M.; Smirnov, M. A.

    1997-03-01

    In Pasadena, (Milliken Lab., USA, 1930) F. Rossetti has observed in Raman spectrum of carbon-dioxide molecule the full symmetric vibration of carbon dioxide appeared as the group of four near lying lines instead of the waited single line. The true interpretation of this enigmatic effect (in that time) was given by E. Fermi -- accidental degeneration of the first excited state of the full symmetric vibration in carbon dioxide. It was the first example of the event observed later in various organic molecules. This event was named as resonance Fermi. The rotational dependence of Fermi type resonance interactions in quasirigid molecules in dominant approximation can be selected in an expansion of the effective vibration-rotation Hamiltonian Hvib- roteff by the operator H(g)(Fermi) equals H30 plus (Sigma) nH3n(g). Let us consider in detail the problem of the construction of the effective vibration-rotational Hamiltonian HVR yields Heff from the point of view of various ordering schemes (grouping) of the vibrational-rotational interactions with sequential analysis of the choice of the convenient grouping adequate to the spectroscopic problem.

  8. Nuclear magnetic resonance in ferromagnetic terbium metal

    International Nuclear Information System (INIS)

    Cha, C.L.T.

    1974-01-01

    The magnetic properties of terbium were studied by the method of zero field nuclear magnetic resonance at 1.5 to 4 and 85 to 160 0 K. Two unconventional experimental techniques have been employed: the swept frequency and the swept temperature technique. Near 4 0 K, triplet resonance line structures were found and interpreted in terms of the magnetic domain and wall structures of ferromagnetic terbium. In the higher temperature range, temperature dependence of the resonance frequency and the quadrupole splitting were measured. The former provides a measurement of the temperature dependence of the magnetization M, and it agrees with bulk M measurements as well as the latest spin wave theory of M(T) (Brooks 1968). The latter agrees well with a calculation using a very general single ion density matrix for collective excitations (Callen and Shtrikman 1965). In addition, the small temperature-independent contribution to the electric field gradient at the nucleus due to the lattice and conduction electrons was untangled from the P(T) data. Also an anomalous and unexplained relaxation phenomenon was also observed

  9. Next Day Building Load Predictions based on Limited Input Features Using an On-Line Laterally Primed Adaptive Resonance Theory Artificial Neural Network.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Grid Integration Group; Robinson, Matt [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Mechanical Engineering; Yasaei, Yasser [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering; Caudell, Thomas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering; Martinez-Ramon, Manel [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering; Mammoli, Andrea [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Mechanical Engineering

    2016-07-01

    Optimal integration of thermal energy storage within commercial building applications requires accurate load predictions. Several methods exist that provide an estimate of a buildings future needs. Methods include component-based models and data-driven algorithms. This work implemented a previously untested algorithm for this application that is called a Laterally Primed Adaptive Resonance Theory (LAPART) artificial neural network (ANN). The LAPART algorithm provided accurate results over a two month period where minimal historical data and a small amount of input types were available. These results are significant, because common practice has often overlooked the implementation of an ANN. ANN have often been perceived to be too complex and require large amounts of data to provide accurate results. The LAPART neural network was implemented in an on-line learning manner. On-line learning refers to the continuous updating of training data as time occurs. For this experiment, training began with a singe day and grew to two months of data. This approach provides a platform for immediate implementation that requires minimal time and effort. The results from the LAPART algorithm were compared with statistical regression and a component-based model. The comparison was based on the predictions linear relationship with the measured data, mean squared error, mean bias error, and cost savings achieved by the respective prediction techniques. The results show that the LAPART algorithm provided a reliable and cost effective means to predict the building load for the next day.

  10. Some observations of the pressure distribution in a tube bank for conditions of self generated acoustic resonance

    International Nuclear Information System (INIS)

    Fitzpatrick, J.A.; Donaldson, I.S.; McKnight, W.

    1979-01-01

    The results for mean and fluctuating pressure distributions around tubes in an in-line tube bank are presented for both non-resonant and self-excited acoustic standing wave resonant flow regimes. It is readily deduced that the nature of the flow in the bank is dramatically altered with the onset of acoustic resonance. The velocity gradients which appear across the bank with the onset of resonance would suggest regions of flow recirculation in the bank although no evidence of this was found. The spectra of fluctuating pressure on the duct roof in the bank and on tubes deep in the bank exhibited coherent peaks only during resonance. (author)

  11. Electron paramagnetic resonance (EPR) in characterization of rocks and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Valezi, D.F.; Mauro, E. di [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Lab. de Fluorescencia e Ressonaancia Paramagnetica Eletronica (LAFLURPE); Zaia, D.A.M.; Carneiro, C.E.A. [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Costa, A.C.S. da [Universidade Estadual de Maringa (UEM), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia

    2011-07-01

    Full text. his work is based on the study of several stones and minerals from the Parana state, Brazil. They were analyzed by the Electron Paramagnetic Resonance (EPR) technique. The measurements were made on a spectrometer JEOL (JES-PE-3X), operating on X-band and at room temperature, with the exception of the mineral Goethite, which was measured with temperature variation. In all the samples were determined spectroscopic factors (or g factor) and line widths of paramagnetic species. A great number of the samples showed in their spectra, the presence of iron complexes. Phyllite and shale showed a resonance signal with approximately g = 2, and line width with about 1000 Gauss, which indicates the presence of the hematite mineral hematite in these rocks. Shale and coal samples showed the presence of free radical, it was identified as a very intense signal, centered at about g = 2.003. Phyllite sample showed in its spectra a resonance signal between the third and fourth line of the g marker (Mg O:Mn{sup 2+}) used in the measurements, and also a signal at g = 4.3, these characteristics may indicate the presence of Kaolinite in the sample. Limestone showed a signal with line width of about 600 Gauss, centered around g = 2, this signal is probably due to a mixture of ferrihydrite and some other compound, besides the presence of manganese, displaying a spectra with its six peculiar lines, due to hyperfine splitting. The two different types of limestone presented a overlap of two distinct spectra lines for the manganese, in the first limestone sample, rich in calcite, the existence of these different spectra is a result of the manganese substitution in a single site with different orientations of the calcite; the other limestone sample, this one abundant in dolomite, the existence of these different spectra is the result of the manganese substitution in different dolomite sites, taking the place of calcium and or of the magnesium. Now, we are focusing our research in the

  12. The 77 K operation of a multi-resonant power converter

    Science.gov (United States)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The liquid-nitrogen temperature (77 K) operation of a 55 W, 200 kHz, 48/28 V zero-voltage switching multi-resonant dc/dc converter designed with commercially available components is reported. Upon dipping the complete converter (power and control circuits) into liquid-nitrogen, the converter performance improved as compared to the room-temperature operation. The switching frequency, resonant frequency, and the characteristic impedance did not change significantly. Accordingly, the zero-voltage switching was maintained from no-load to full-load for the specified line variations. Cryoelectronics can provide high density power converters, especially for high power applications.

  13. EUV lines observed with EIS/Hinode in a solar prominence

    Science.gov (United States)

    Labrosse, N.; Schmieder, B.; Heinzel, P.; Watanabe, T.

    2011-07-01

    Context. During a multi-wavelength observation campaign with Hinode and ground-based instruments, a solar prominence was observed for three consecutive days as it crossed the western limb of the Sun in April 2007. Aims: We report on observations obtained on 26 April 2007 using EIS (Extreme ultraviolet Imaging Spectrometer) on Hinode. They are analysed to provide a qualitative diagnostic of the plasma in different parts of the prominence. Methods: After correcting for instrumental effects, the rasters at different wavelengths are presented. Several regions within the same prominence are identified for further analysis. Selected profiles for lines with formation temperatures between log (T) = 4.7 and log (T) = 6.3, as well as their integrated intensities, are given. The profiles of coronal, transition region, and He ii lines are discussed. We pay special attention to the He ii line, which is blended with coronal lines. Results: Some quantitative results are obtained by analysing the line profiles. They confirm that depression in EUV lines can be interpreted in terms of two mechanisms: absorption of coronal radiation by the hydrogen and neutral helium resonance continua, and emissivity blocking. We present estimates of the He ii line integrated intensity in different parts of the prominence according to different scenarios for the relative contribution of absorption and emissivity blocking to the coronal lines blended with the He ii line. We estimate the contribution of the He ii 256.32 Å line to the He ii raster image to vary between ~44% and 70% of the raster's total intensity in the prominence according to the different models used to take into account the blending coronal lines. The inferred integrated intensities of the He ii 256 Å line are consistent with the theoretical intensities obtained with previous 1D non-LTE radiative transfer calculations, yielding a preliminary estimate of the central temperature of 8700 K, a central pressure of 0.33 dyn cm-2, and a

  14. Electron spin resonance studies of iron-group impurities in beryllium fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Griscom, D L; Stapelbroek, M [Naval Research Lab., Washington, DC (USA); Weber, M J [California Univ., Livermore (USA). Lawrence Livermore National Lab.

    1980-11-01

    Electron spin resonance investigations have been carried out on unirradiated BeF/sub 2/ glasses. Two relatively intense resonances were observed in a water-free distilled glass known to contain 49 ppM Ni, 13 ppM Mn, and < 20 ppM Fe. One of these was the paramagnetic resonance spectrum of Mn/sup 2 +/. Analysis of the observed /sup 19/F superhyperfine structure demonstrated this manganese to occupy distorted octahedral sites in the glass network. The second resonance was shown by temperature and frequency dependence studies, coupled with computer line shape analysis, to be a ferromagnetic resonance signal due to precipitated ferrite phases. The data suggest that these ferrites are somewhat heterogeneous and most likely comprize magnetite-like phases similar to NiFe/sub 2/O/sub 4/. An optical extinction curve rising into the ultraviolet with an approximate lambda/sup -4/ dependence is tentatively ascribed to light scattering by ferrite particles approximately 1000 Angstroems in diameter.

  15. Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators

    Science.gov (United States)

    Qin, Wei; Wang, Xin; Miranowicz, Adam; Zhong, Zhirong; Nori, Franco

    2017-07-01

    Heralded near-deterministic multiqubit controlled-phase gates with integrated error detection have recently been proposed by Borregaard et al. [Phys. Rev. Lett. 114, 110502 (2015), 10.1103/PhysRevLett.114.110502]. This protocol is based on a single four-level atom (a heralding quartit) and N three-level atoms (operational qutrits) coupled to a single-resonator mode acting as a cavity bus. Here we generalize this method for two distant resonators without the cavity bus between the heralding and operational atoms. Specifically, we analyze the two-qubit controlled-Z gate and its multiqubit-controlled generalization (i.e., a Toffoli-like gate) acting on the two-lowest levels of N qutrits inside one resonator, with their successful actions being heralded by an auxiliary microwave-driven quartit inside the other resonator. Moreover, we propose a circuit-quantum-electrodynamics realization of the protocol with flux and phase qudits in linearly coupled transmission-line resonators with dissipation. These methods offer a quadratic fidelity improvement compared to cavity-assisted deterministic gates.

  16. Concentration dependence of the wings of a dipole-broadened magnetic resonance line in magnetically diluted lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zobov, V. E., E-mail: rsa@iph.krasn.ru [Russian Academy of Sciences, Kirenskii Institute of Physics, Siberian Branch (Russian Federation); Kucherov, M. M. [Siberian Federal University, Institute of Space and Information Technologies (Russian Federation)

    2017-01-15

    The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components are described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different {sup 29}Si concentrations in magnetic fields directed along three crystallographic axes is considered.

  17. Construction of rigged Hilbert spaces to describe resonances and virtual states

    International Nuclear Information System (INIS)

    Gadella, M.

    1983-01-01

    In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t > 0 and the other for t < 0, hence showing the irreversibility of the decaying process

  18. Construction of rigged Hilbert spaces to describe resonances and virtual states

    International Nuclear Information System (INIS)

    Gadella, M.

    1984-01-01

    In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t>0 and the other for t<0, hence showing the irreversibility of the decaying process. (orig.)

  19. Quantum multiple scattering: Eigenmode expansion and its applications to proximity resonance

    International Nuclear Information System (INIS)

    Li Sheng; Heller, Eric J.

    2003-01-01

    We show that for a general system of N s-wave point scatterers, there are always N eigenmodes. These eigenmodes or eigenchannels play the same role as spherical harmonics for a spherically symmetric target--they give a phase shift only. In other words, the T matrix of the system is of rank N, and the eigenmodes are eigenvectors corresponding to nonzero eigenvalues of the T matrix. The eigenmode expansion approach can give insight to the total scattering cross section; the position, width, and superradiant or subradiant nature of resonance peaks; the unsymmetric Fano line shape of sharp proximity resonance peaks based on the high-energy tail of a broadband; and other properties. Off-resonant eigenmodes for identical proximate scatterers are approximately angular-momentum eigenstates

  20. A non-local thermodynamic equilibrium, line-blanketed synthetic spectrum of Iota Herculis - C, Al, and Si lines

    Science.gov (United States)

    Grigsby, James A.

    1991-01-01

    A non-LTE line-blanketed model stellar atmosphere is used to compute a model of I Herculis (B3 IV) with a Teff of 17,500 K and a log g of 3.75, following the conclusions of Peters and Polidan (1985). Detailed profiles of a number of lines of C, Al, and Si in the 1200-2000-A region are computed, including the resonance lines of C II, Al II, and Al III. These profiles are compared to observations obtained from the coaddition of eight IUE SWP images, using a technique developed by Leckrone and Adelman (1989). Comparison of carbon lines with a model that is underabundant in carbon by a factor of 2 relative to the sun indicates that the C abundance of Iota Her is at most one-half solar. Non-LTE effects are examined by comparing an LTE model possessing identical atmospheric parameters with the non-LTE model. Substantial differences in the populations of the model atomic states are found, but differences in the temperature structure of the two models often mask the non-LTE effects in the synthetic spectra.

  1. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    Science.gov (United States)

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  2. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  3. Cyclotron resonance in InAs/AlSb quantum wells in magnetic fields up to 45 T

    Energy Technology Data Exchange (ETDEWEB)

    Spirin, K. E., E-mail: spirink@ipmras.ru; Krishtopenko, S. S. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Sadofyev, Yu. G. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Drachenko, O. [Laboratoire National des Champs Magn’etiques Intenses (France); Helm, M. [Forschungszentrum Dresden–Rossendorf, Dresden High-Magnetic-Field Laboratory and Institute of Ion-Beam Physics and Materials Research (Germany); Teppe, F.; Knap, W. [GIS-TERALAB Universite Montpellier II, Laboratoire Charles Coulomb UMR CNRS 5221 (L2C) (France); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-12-15

    Electron cyclotron resonance in InAs/AlSb heterostructures with quantum wells of various widths in pulsed magnetic fields up to 45 T are investigated. Our experimental cyclotron energies are in satisfactory agreement with the results of theoretical calculations performed using the eight-band kp Hamiltonian. The shift of the cyclotron resonance (CR) line, which corresponds to the transition from the lowest Landau level to the low magnetic-field region, is found upon varying the electron concentration due to the negative persistent photoconductivity effect. It is shown that the observed shift of the CR lines is associated with the finite width of the density of states at the Landau levels.

  4. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    Science.gov (United States)

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  5. Magnetic resonance tracking of fluorescent nanodiamond fabrication

    Science.gov (United States)

    Shames, A. I.; Osipov, V. Yu; Boudou, J. P.; Panich, A. M.; von Bardeleben, H. J.; Treussart, F.; Vul', A. Ya

    2015-04-01

    Magnetic resonance techniques (electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR)) are used for tracking the multi-stage process of the fabrication of fluorescent nanodiamonds (NDs) produced by high-energy electron irradiation, annealing, and subsequent nano-milling. Pristine commercial high pressure and high temperature microdiamonds (MDs) with mean size 150 μm contain ~5  ×  1018 spins/g of singlet (S = 1/2) substitutional nitrogen defects P1, as well as sp3 C-C dangling bonds in the crystalline lattice. The half-field X-band EPR clearly shows (by the appearance of the intense ‘forbidden’ g = 4.26 line) that high-energy electron irradiation and annealing of MDs induce a large amount (~5  ×  1017 spins/g) of triplet (S = 1) magnetic centers, which are identified as negatively charged nitrogen vacancy defects (NV-). This is supported by EPR observations of the ‘allowed’ transitions between Zeeman sublevels of the triplet state. After progressive milling of the fluorescent MDs down to an ultrasubmicron scale (≤100 nm), the relative abundance of EPR active NV- defects in the resulting fluorescent NDs (FND) substantially decreases and, vice versa, the content of C-inherited singlet defects correlatively increases. In the fraction of the finest FNDs (mean particle size fingerprint of the presence of NV- centers in small ND systems. The same size reduction causes the disappearance of the characteristic hyperfine satellites in the spectra of the P1 centers. We discuss the mechanisms that cause both the strong reduction of the peak intensity of the ‘allowed’ lines in EPR spectra of triplet defects and the transformation of the P1 spectra.

  6. Thermal effects on the cyclotron line formation process in X-ray pulsars

    International Nuclear Information System (INIS)

    Kirk, J.G.; Meszaros, P.

    1980-01-01

    We derive expressions for the scattering and absorption cross sections in a hot plasma including the effects of vacuum polarisation. These expressions are then used in a radiative transfer calculation for frequencies in the neighbourhood of the cyclotron resonance using a simplified model atmosphere for accreting magnetised X-ray pulsars. Cyclotron emission and absorption line model fits are discussed, the conclusion being that an emission line interpretation appears at this stage more likely. (orig.)

  7. Heat dissipation due to ferromagnetic resonance in a ferromagnetic metal monitored by electrical resistance measurement

    International Nuclear Information System (INIS)

    Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi

    2015-01-01

    The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated

  8. Interband optical absorption in the Wannier-Stark ladder under the electron-LO-phonon resonance condition

    International Nuclear Information System (INIS)

    Govorov, A.O.

    1993-08-01

    Interband optical absorption in the Wannier-Stark ladder in the presence of the electron-LO-phonon resonance is investigated theoretically. The electron-LO-phonon resonance occurs when the energy spacing between adjacent Stark-ladder levels coincides with the LO-phonon energy. We propose a model describing the polaron effect in a superlattice. Calculations show that the absorption line shape is strongly modified due to the polaron effect under the electron-LO-phonon resonance condition. We consider optical phenomena in a normal magnetic field that leads to enhancement of polaron effects. (author). 17 refs, 5 figs

  9. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    Science.gov (United States)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  10. Higher order mode of a microstripline fed cylindrical dielectric resonator antenna

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. V. Praveen, E-mail: praveen.kumar@pilani.bits-pilani.ac.in [Department of Electrical and Electronics Engineering, BITS Pilani, Pilani, Rajasthan-333 031 (India)

    2016-03-09

    A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.

  11. Resonance as a Polyphonic Resource: An Analysis of Erdenklavier by Luciano Berio

    Directory of Open Access Journals (Sweden)

    Max Packer

    2012-12-01

    Full Text Available The objective of this article is to share a reading of a piece for solo piano, Erdenklavier (1969, that is part of a cycle of miniatures called 6 Encores written by Luciano Berio, which, in a condensed form, interrelates two recurring principles of composition from Berio’s poetics: implicit polyphony over a single melodic line and resonance for potential amplification and development of statements. Therefore, the first part of this article is dedicated to introducing examples where a suggestion of resonance appears in three of Berio’s works–Chemins IV (1975, Il Ritorno degli Snovidenia (1976 and Leaf (1990–to illustrate composing strategies related to the scope of this principle. Aswemovetowardspianopart,theanalysisgainsgreaterdetailinthattheelaborationof resonance for the instrument allows one to approach compositional aspects that lie precisely within the relationship between notions of resonance and latent polyphony.

  12. Resonance internal conversion as a way of accelerating nuclear processes

    International Nuclear Information System (INIS)

    Karpeshin, F.F.

    2006-01-01

    Theory of resonance conversion is presented. Being a natural extension of the traditional internal conversion into the subthreshold area, resonance conversion in a number of cases strongly affects the nuclear processes. Moreover, concentrating the transition strength on the narrow bands corresponding to the spectral atomic lines, it offers a unique tool capable of accelerating nuclear decay rates. Furthermore, along with the conventional nonradiative process of nuclear excitation through NEET and its reverse, TEEN, resonance conversion offers an appropriate mathematics for consideration of a number of cross-invariant processes involving both nuclei and electrons: excitation and deexcitation of the nuclei by hyperfine magnetic field, nuclear spin mixing, hyperfine interaction and magnetic anomalies in the atomic spectra, collisional nuclear excitation via ionization of the shells in the muon decay in the orbit, etc. The mechanisms of the optical pumping of the isomers are also considered, as well as triggering their energy in the resonance field of a laser. The effect is especially high in the hydrogen-like heavy ions due to practical absence of any damping of the resonance. The theory is also generalized to the case of the discrete Auger transitions [ru

  13. Nanodiamond graphitization: a magnetic resonance study

    International Nuclear Information System (INIS)

    Panich, A M; Shames, A I; Sergeev, N A; Olszewski, M; McDonough, J K; Mochalin, V N; Gogotsi, Y

    2013-01-01

    We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) study of the high-temperature nanodiamond-to-onion transformation. 1 H, 13 C NMR and EPR spectra of the initial nanodiamond samples and those annealed at 600, 700, 800 and 1800 ° C were measured. For the samples annealed at 600 to 800 ° C, our NMR data reveal the early stages of the surface modification, as well as a progressive increase in sp 2 carbon content with increased annealing temperature. Such quantitative experimental data were recorded for the first time. These findings correlate with EPR data on the sensitivity of the dangling bond EPR line width to air content, progressing with rising annealing temperature, that evidences consequent graphitization of the external layers of the diamond core. The sample annealed at 1800 ° C shows complete conversion of nanodiamond particles into carbon onions. (paper)

  14. Emission - line theoretical profiles for Wolf- Rayet stars with low-mass companions

    International Nuclear Information System (INIS)

    Antokhin, I.I.

    1986-01-01

    Profiles of the resonant line λ 765 A and the subordinate line λ 4058 of N4 have been calculated for a binary system medel consisting of the Wolf-Rayet star and the low-mass companion (possibly, a relativistic object) by means of Sobolev approximation. The equations of statistical equilibrium have been solved for the first 32 levels of N4. Two cases have been considered: 1) detached zone of N5 surrounding the Wolf-Rayet star and the companion; 2) common zone of N5. The criteria for detection of presence of a companion in line profile observations have been formulated

  15. Measurement of the central ion and electron temperature of tokamak plasmas from the x-ray line radiation of high-Z impurity ions

    International Nuclear Information System (INIS)

    Bitter, M.; von Goeler, S.; Goldman, M.; Hill, K.W.; Horton, R.; Roney, W.; Sauthoff, N.; Stodiek, W.

    1982-04-01

    This paper describes measurements of the central ion and electron temperature of tokamak plasmas from the observation of the 1s - 2p resonance lines, and the associated dielectronic (1s 2 nl - 1s2pnl, with n greater than or equal to 2) satellites, of helium-like iron (Fe XXV) and titanium (Ti XXI). The satellite to resonance line ratios are very sensitive to the electron temperature and are used as an electron temperature diagnostic. The ion temperature is deduced from the Doppler width of the 1s - 2p resonance lines. The measurements have been performed with high resolution Bragg crystal spectrometers on the PLT (Princeton Large Torus) and PDX (Poloidal Divertor Experiment) tokamaks. The details of the experimental arrangement and line evaluation are described, and the ion and electron temperature results are compared with those obtained from independent diagnostic techniques, such as the analysis of charge-exchange neutrals and measurements of the electron cyclotron radiation. The obtained experimental results permit a detailed comparison with theoretical predictions

  16. Magnetic resonance imaging of prostate cancer cell lines labled with manganese chloride in vitro

    International Nuclear Information System (INIS)

    Zhuang Wenquan; Fan Huishuang; Zhang Xiaoling; Xiang Xianhong; Tang Yubo; Mao Lijuan; Zou Xuenong

    2010-01-01

    Objective: To assess the feasibility and security of prostate cancer cell lines (PC-3) labeled with manganese chloride (MnCl 2 ) for magnetic resonance imaging (MRI) in vitro. Methods: The PC-3 that purchased from American Type Culture Collection (ATCC) were recovered, cultured and amplified. The PC-3 were cultured in F-12 HAM'S medium with different concentrations of MnCl 2 in cell incubator and collected for MRI after 1 hour. The labeled cells were also collected for MRI in different amount and different time after labeling. The labeled cells were incubated with verapamil for 4 hours and the changes of the labeled cellular signal intensities were recorded in different time. Cell Counting Kit-8 (CCK-8) was used to determine the activities of the labeled cells. Results: The PC-3 labeled with MnCl 2 were high signal intensities on T 1 -weighted MRI. There were statistically significant differences between labeled cells and unlabeled cells (P 2 . The signal intensity obviously decreased after 24 hours and became to normal signal intensity of unlabeled PC-3 after 72 hours. The PC-3 labeled with 1.0 mM MnCl 2 solution showed high signal intensity on T 1 -weighted MRI with the minimum cell amount of 5.0 x 10 5 and lasted to 72 hours after a 4 hours incubation with verapamil. After 4 hours labeling, except the concentration of 0.1 mM, the other concentrations of MnCl 2 (>0.1 mM) had a certain toxicity on PC-3 (P 0.05). Conclusion: The PC-3 could be labeled with MnCl 2 and appears high signal intensity on T 1 -weighted MRI. The PC-3 can be safety labeled with MnCl 2 in concentrations which were equal or less than 1.0 mM, but the duration of Mn +2 in PC-3 is shorter. Calcium channel blocker (verapamil) may be extend the duration of PC-3 labeled with MnCl 2 . (authors)

  17. Current developments with TRIUMF’s titanium-sapphire laser based resonance ionization laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, J., E-mail: LASSEN@triumf.ca; Li, R. [TRIUMF (Canada); Raeder, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Zhao, X.; Dekker, T. [TRIUMF (Canada); Heggen, H. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Kunz, P.; Levy, C. D. P.; Mostanmand, M.; Teigelhöfer, A.; Ames, F. [TRIUMF (Canada)

    2017-11-15

    Developments at TRIUMF’s isotope separator and accelerator (ISAC) resonance ionization laser ion source (RILIS) in the past years have concentrated on increased reliability for on-line beam delivery of radioactive isotopes to experiments, as well as increasing the number of elements available through resonance ionization and searching for ionization schemes with improved efficiency. The current status of these developments is given with a list of two step laser ionization schemes implemented recently.

  18. Theory of the effect of odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization

    International Nuclear Information System (INIS)

    Payne, M.G.; Deng, L.; Garrett, W.R.

    1998-01-01

    We present a theory for two- and three-photon excitation, optical shifting, and four-wave mixing when a first laser is tuned onto, or near, a two-photon resonance and a second much more intense laser is tuned near or on resonance between the two-photon resonance and a second excited state. When the second excited state has a dipole-allowed transition back to the ground state and the concentration is sufficiently high, a destructive interference is produced between three-photon coupling of the ground state and the second excited state and one-photon coupling between the same states by the internally generated four-wave mixing field. This interference leads to several striking effects. For instance, as the onset of the interference occurs, the optical shifts in the two-photon resonance excitation line shape become smaller in copropagating geometry so that the line shapes for multiphoton ionization enhanced by the two-photon resonance eventually become unaffected by the second laser. In the same range of concentrations the four-wave mixing field evolves to a concentration-independent intensity. With counterpropagating laser beams the line shape exhibits normal optical shifts like those observed for both copropagating and counterpropagating laser beams at very low concentrations. The theoretical work presented here extends our earlier works by including the effect of laser bandwidth and by removing the restriction of having the second laser be tuned far from three-photon resonance. In this way we have now included, as a special case, the effect of both laser bandwidth and interference on laser-induced transparency. Unlike other effects related to odd-photon destructive interference, the effect of a broad bandwidth is to bring about the predicted effects at much lower concentrations. Studies in rubidium show good agreement between theory and experiment for both ionization line shapes and four-wave mixing intensity as a function of concentration. copyright 1998 The

  19. Parametric resonances in the amplitude-modulated probe-field absorption spectrum of a two-level atom driven by a resonance amplitude- and phase-modulated pumping field

    International Nuclear Information System (INIS)

    Sushilov, N.V.; Kholodkevich, E.D.

    1995-01-01

    An analytical expression is derived for the polarization induced by a weak probe field with periodically modulated amplitude in a two-level medium saturated by a strong amplitude-and phase-modulated resonance field. It is shown that the absorption spectrum of the probe field includes parametric resonances, the maxima corresponding to the condition δ= 2nΓ-Ω w and the minima to that of δ= (2n + 1)Γ- w , where δ is the probe-field detuning front the resonance frequency, Ω w is the modulation frequency of the probe-field amplitude, and Γ is the transition line width, n = 1, 2, 3, hor-ellipsis. At the specific modulation parameters, a substantial region of negative values (i.e., the region of amplification without the population inversion) exists in the absorption spectrum of the probe field

  20. Fano resonance and persistent current of a quantum ring

    International Nuclear Information System (INIS)

    Xiong Yongjian; Liang Xianting

    2004-01-01

    We investigate electron transport and persistent current of a quantum ring weakly attached to current leads. Assuming there is direct coupling (weakly or strongly) between two leads, electrons can transmit by the inter-lead coupling or tunneling through the quantum ring. The interference between the two paths yields asymmetric Fano line shape for conductance. In presence of interior magnetic flux, there is persistent current along the ring with narrow resonance peaks. The positions of the conductance resonances and the persistent current peaks correspond to the quasibound levels of the closed ring. This feature is helpful to determine the energy spectrum of the quantum ring. Our results show that the proposed setup provides a tunable Fano system

  1. Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Kenneth Paul [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonance (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.

  2. Advances in gamma ray resonant scattering and absorption long-lived isomeric nuclear states

    CERN Document Server

    Davydov, Andrey V

    2015-01-01

    This book presents the basics and advanced topics of research of gamma ray physics. It describes measuring of  Fermi surfaces with gamma resonance spectroscopy and the theory of angular distributions of resonantly scattered gamma rays. The dependence of excited-nuclei average lifetime on the shape of the exciting-radiation spectrum and electron binding energies in the spectra of scattered gamma rays is described. Resonant excitation by gamma rays of nuclear isomeric states with long lifetime leads to the emission and absorption lines. In the book, a new gamma spectroscopic method, gravitational gamma spectrometry, is developed. It has a resolution hundred million times higher than the usual Mössbauer spectrometer. Another important topic of this book is resonant scattering of annihilation quanta by nuclei with excited states in connection with positron annihilation. The application of the methods described is to explain the phenomenon of Coulomb fragmentation of gamma-source molecules and resonant scatt...

  3. Laser resonance ionization for ultra-trace analysis on long-lived ...

    Indian Academy of Sciences (India)

    for producing pure beams of short-lived isotopes at on-line facilities. .... mental design is to develop a compact table-top RIS experiment which allows for. 1058 ... partial beams which are merged by dichroic mirrors and polarization beam splitter ... A quasi-cw 35 W CO2 laser is used for efficient non-resonant ionization of.

  4. On-chip plasmonic cavity-enhanced spontaneous emission rate at the zero-phonon line

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    Highly confined surface plasmon polariton (SPP) modes can be utilized to enhance light-matter interaction at the single emitter level of quantum optical systems [1-4]. Dielectric-loaded SPP waveguides (DLSPPWs) confine SPPs laterally with relatively low propagation loss, enabling to benefit both ...... and an up to 42-fold spontaneous emission rate enhancement at the zero-phonon line (a ∼7-fold resonance enhancement in addition to a ∼6-fold broadband enhancement) is achieved, revealing the potential of our approach for on-chip realization of quantum-optical networks....... from a large Purcell factor and from a large radiative efficiency (low quenching rates) [1, 2]. In this work, we present a DLSPPW-based Bragg cavity resonator to direct emission from a single diamond nitrogen vacancy (NV) center into the zero-phonon line (Fig. 1). A quality factor of ∼70 for the cavity...

  5. Neutron resonances in the compound nucleus: Parity nonconservation to dynamic temperature measurements

    International Nuclear Information System (INIS)

    Yuan, V.W.

    1997-08-01

    Experiments using epithermal neutrons that interact to form compound-nuclear resonances serve a wide range of scientific applications. Changes in transmission which are correlated to polarization reversal in incident neutrons have been used to study parity nonconservation in the compound nucleus for a wide range of targets. The ensemble of measured parity asymmetries provides statistical information for the extraction of the rms parity-violating mean-square matrix element as a function of mass. Parity nonconservation in neutron resonances can also be used to determine the polarization of neutron beams. Finally the motion of target atoms results in an observed temperature-dependent Doppler broadening of resonance line widths. This broadening can be used to determine temperatures on a fast time scale of one microsecond or less

  6. Fluctuations at the blue edge of saturated wind lines in IUE spectra of O-type stars

    Science.gov (United States)

    Owocki, Stanley P.; Fullerton, Alex

    1993-01-01

    We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-Lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles and then derived from formal solution integration using this source function. The more appropriate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10 percent or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.

  7. Nonlinear narrow Doppler-free resonances for optical transitions and annihilation radiation of a positronium atom

    International Nuclear Information System (INIS)

    Letokhov, V.S.; Minogin, V.G.

    1976-01-01

    The possibilities of obtaining narrow resonances without the Doppler broadening for transition between the fine structure levels of the ground and first excited states of a positronium atom are considered. An analysis is carried out of the conditions required for observation of the narrow resonances of saturation of single quantum absorption in the 1S-2P transitions and observation of narrow two-photon absorption resonances in the 1S-2S transitions. It is shown that narrow 2γ annihilation radiation lines of a positronium atom may be obtained with a width much smaller than the Doppler one

  8. Continuous vacuum processing system for quartz crystal resonators

    International Nuclear Information System (INIS)

    Ney, R.J.; Hafner, E.

    1979-01-01

    An ultrahigh vacuum continuous cycle quartz crystal fabrication facility has been developed that assures an essentially contamination-free environment throughout the final manufacturing steps of the crystal unit. The system consists of five essentially tubular vacuum chambers that are interconnected through gate valves. The unplated crystal resonators, mounted in ceramic flatback frames and loaded on carrier trays, enter the vacuum system through an entrance air lock, are UV/ozone cleaned, baked at 300 0 C, plated to frequency, thermocompression sealed, and exit as completed crystal units through an exit air lock, while the bake, plate and seal chambers remain under continuous vacuum permanently. In-line conveyor belts are used, in conjunction with balanced vacuum manipulators, to move the resonator components to the various work stations. Unique high density, highly directional nozzle beam evaporation sources, capable of long term operation without reloading, are used for electroding the resonators simultaneously on both sides. The design goal for the system is a production rate of 200 units per 8 hour day; it is adaptable to automatic operation

  9. Optical resonators for true-time-delay beam steering

    Science.gov (United States)

    Gesell, Leslie H.; Evanko, Stephen M.

    1996-06-01

    Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.

  10. Direct measurement of friction of a fluctuating contact line.

    Science.gov (United States)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-07-12

    We report a direct measurement of the friction coefficient of a fluctuating (and slipping) contact line using a thin vertical glass fiber of diameter d with one end glued onto a cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonant peak of the cantilever system with varying liquid viscosity η, we find the friction coefficient of the contact line has a universal form, ξ(c)≃0.8πdη, independent of the liquid-solid contact angle. The obtained scaling law is further supported by the numerical simulation based on the phase field model under the generalized Navier boundary conditions.

  11. Program for computing inhomogeneous coaxial resonators and accelerating systems of the U-400 and ITs-100 cyclotrons

    International Nuclear Information System (INIS)

    Gul'bekyan, G.G.; Ivanov, Eh.L.

    1987-01-01

    The ''Line'' computer code for computing inhomogeneous coaxial resonators is described. The results obtained for the resonators of the U-400 cyclotron made it possible to increase the energy of accelerated ions up to 27 MeV/nucl. The computations fot eh ITs-100 cyclic implantator gave the opportunity to build a compact design with a low value of consumed RF power

  12. Shape of the nuclear magnetic resonance line in anisotropic superconductors with an irregular vortex lattice

    International Nuclear Information System (INIS)

    Minkin, A.V.; Tsarevskij, S.L.

    2006-01-01

    For high-temperature superconductors the shape of a NMR spectrum line is built regarding for variation of inhomogeneity of irregular vortex lattice magnetic field near superconductor surface. It is shown that the shape of a NMR line is not simply widened but noticeably varies depending on the degree of irregularity of a superconductor vortex lattice. This variation is associated with a local symmetry decrease in an irregular vortex lattice of the superconductor. Taking into account these circumstances may considerably change conclusions about the type of a vortex lattice and superconductor parameters which are commonly gained from NMR line shape analysis [ru

  13. Resonant photoemission at the Ga 3p photothreshold in In xGa1-xN

    International Nuclear Information System (INIS)

    Colakerol, L.; Glans, P.-A.; Plucinski, L.; Zhang, Y.; Smith, K.E.; Zakharov, A.A.; Nyholm, R.; Cabalu, J.; Moustakas, T.D.

    2006-01-01

    Resonance effects at the Ga 3p photoabsorption threshold have been observed in photoemission spectra recorded from thin film In x Ga 1-x N alloys. The spectra display satellites of the main Ga 3d emission line, and the intensity of these satellites resonate at this threshold. The satellites are associated with a 3d 8 state, and have previously been observed for the semiconductors GaN, GaAs, and GaP. The resonance behavior has been studied for a variety of In x Ga 1-x N thin films with differing In concentration and band gap. The photon energy where the maximum resonance is observed varies with band gap within the alloy system, but does not follow the trend observed for binary Ga semiconducting compounds. We also observe that the threshold resonant energy increases slightly as the In content increases

  14. Nonlinear resonance ultrasonic vibrations in Czochralski-silicon wafers

    Science.gov (United States)

    Ostapenko, S.; Tarasov, I.

    2000-04-01

    A resonance effect of generation of subharmonic acoustic vibrations is observed in as-grown, oxidized, and epitaxial silicon wafers. Ultrasonic vibrations were generated into a standard 200 mm Czochralski-silicon (Cz-Si) wafer using a circular ultrasound transducer with major frequency of the radial vibrations at about 26 kHz. By tuning frequency (f) of the transducer within a resonance curve, we observed a generation of intense f/2 subharmonic acoustic mode assigned as a "whistle." The whistle mode has a threshold amplitude behavior and narrow frequency band. The whistle is attributed to a nonlinear acoustic vibration of a silicon plate. It is demonstrated that characteristics of the whistle mode are sensitive to internal stress and can be used for quality control and in-line diagnostics of oxidized and epitaxial Cz-Si wafers.

  15. Hopf Bifurcation Control of Subsynchronous Resonance Utilizing UPFC

    Directory of Open Access Journals (Sweden)

    Μ. Μ. Alomari

    2017-06-01

    Full Text Available The use of a unified power flow controller (UPFC to control the bifurcations of a subsynchronous resonance (SSR in a multi-machine power system is introduced in this study. UPFC is one of the flexible AC transmission systems (FACTS where a voltage source converter (VSC is used based on gate-turn-off (GTO thyristor valve technology. Furthermore, UPFC can be used as a stabilizer by means of a power system stabilizer (PSS. The considered system is a modified version of the second system of the IEEE second benchmark model of subsynchronous resonance where the UPFC is added to its transmission line. The dynamic effects of the machine components on SSR are considered. Time domain simulations based on the complete nonlinear dynamical mathematical model are used for numerical simulations. The results in case of including UPFC are compared to the case where the transmission line is conventionally compensated (without UPFC where two Hopf bifurcations are predicted with unstable operating point at wide range of compensation levels. For UPFC systems, it is worth to mention that the operating point of the system never loses stability at all realistic compensation degrees and therefore all power system bifurcations have been eliminated.

  16. Combined echo offset (Dixon) and line volume chemical shift imaging as a clinical imaging protocol

    International Nuclear Information System (INIS)

    Listerud, J.; Chan, T.; Lenkinski, R.E.; Kressel, H.Y.; Chao, P.W.

    1989-01-01

    The authors have studied the sensitivity and specificity of the line-volume chemical-shift imaging (CSI) method as compared with the Dixon method they have recently implemented on a Signa, which supports a variety of options. Potential sources or error for the Dixon method include line broadening due to susceptibility, field inhomogeneity, and errors form olefinic resonances associated with fat, which behave like water in the Dixon regime. The authors investigate whether a combined Dixon/line-volume CSI method could be used to improve the placement of the line volume and to provide higher sensitivity and specificity than does the Dixon method alone

  17. Tuning excitation laser wavelength for secondary resonance in low-intensity phase-selective laser-induced breakdown spectroscopy for in-situ analytical measurement of nanoaerosols

    Science.gov (United States)

    Xiong, Gang; Li, Shuiqing; Tse, Stephen D.

    2018-02-01

    In recent years, a novel low-intensity phase-selective laser-induced breakdown spectroscopy (PS-LIBS) technique has been developed for unique elemental-composition identification of aerosolized nanoparticles, where only the solid-phase nanoparticles break down, forming nanoplasmas, without any surrounding gas-phase breakdown. Additional work has demonstrated that PS-LIBS emissions can be greatly enhanced with secondary resonant excitation by matching the excitation laser wavelength with an atomic transition line in the formed nanoplasma, thereby achieving low limits of detection. In this work, a tunable dye laser is employed to investigate the effects of excitation wavelength and irradiance on in-situ PS-LIBS measurements of TiO2 nanoaerosols. The enhancement factor by resonant excitation can be 220 times greater than that for non-resonant cases under similar conditions. Moreover, the emitted spectra are unique for the selected resonant transition lines for a given element, suggesting the potential to make precise phase-selective and analyte-selective measurements of nanoparticles in a multicomponent multiphase system. The enhancement factor by resonant excitation is highly sensitive to excitation laser wavelength, with narrow excitation spectral windows, i.e., 0.012 to 0.023 nm (FWHM, full width at half maximum) for Ti (I) neutral atomic lines, and 0.051 to 0.139 nm (FWHM) for Ti (II) single-ionized atomic lines. Boltzmann analysis of the emission intensities, temporal response of emissions, and emission dependence on excitation irradiance are investigated to understand aspects of the generated nanoplasmas such as temperature, local thermodynamic equilibrium (LTE), and excitation mechanism.

  18. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  19. Resonances, resonance functions and spectral deformations

    International Nuclear Information System (INIS)

    Balslev, E.

    1984-01-01

    The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)

  20. Precision mass measurements using the Phase-Imaging Ion-Cyclotron-Resonance detection technique

    CERN Document Server

    Karthein, Jonas

    This thesis presents the implementation and improvement of the Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) detection technique at the ISOLTRAP experiment, located at the ISOLDE / CERN, with the purpose of on-line high-precision and high-resolution mass spectrometry. Extensive simulation studies were performed with the aim of improving the phase-imaging resolution and finding the optimal position for detector placement. Following the outcome of these simulations, the detector was moved out of a region of electric-field distortion and closer to the center of the Penning trap, showing a dramatic improvement in the quality and reproducibility of the phase-imaging measurements. A new image reconstitution and analysis software for the MCP-PS detector was written in Python and ROOT and introduced in the framework of PI-ICR mass measurements. The state of the art in the field of time-of-flight ion-cyclotron-resonance measurements is illustrated through an analysis of on-line measurements of the mirror nuclei $...

  1. Observation of Conducting Structures in Detonation Nanodiamond Powder by Electron Paramagnetic Resonance

    Science.gov (United States)

    Binh, Nguyen Thi Thanh; Dolmatov, V. Yu.; Lapchuk, N. M.

    2018-01-01

    We have used electron paramagnetic resonance (EPR) to study high-purity detonation nanodiamond (DND) powders at room temperature. In recording the EPR signal with g factor 2.00247 and line width 0.890 mT, with automatic frequency control locking the frequency of the microwave generator (klystron) to the frequency of the experimental cavity, we observed a change in the shape of the EPR signal from the DND powder due to formation of an anisotropic electrically conducting structure in the powder. The electrical conductivity of the DND sample is apparent in the Dysonian EPR lineshape (strongly asymmetric signal with g factor 2.00146 and line width 0.281 mT) together with an abrupt shift of the baseline at the time of resonant absorption, and in the decrease in the cavity Q due to nonresonant microwave absorption. The observed effect can be explained by transition of the DND powder from a dielectric state to a state with metallic conductivity, due to spin ordering in a preferred direction.

  2. Electron spin resonance identification of irradiated fruits

    International Nuclear Information System (INIS)

    Raffi, J.J.; Agnel, J.-P.L.

    1989-01-01

    The electron spin resonance spectrum of achenes, pips, stalks and stones from irradiated fruits (stawberry, raspberry, red currant, bilberry, apple, pear, fig, french prune, kiwi, water-melon and cherry) always displays, just after γ-treatment, a weak triplet (a H ∼30 G) due to a cellulose radical; its left line (lower field) can be used as an identification test of irradiation, at least for strawberries, raspberries, red currants or bilberries irradiated in order to improve their storage time. (author)

  3. Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum.

    Science.gov (United States)

    Sridhar, A; Kouznetsova, V G; Geers, M G D

    This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only.

  4. Co-sputtered Mo/Re superconducting coplanar resonators compatible with carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Blien, Stefan; Stiller, Peter L.; Goetz, Karl; Vavra, Ondrej; Huber, Thomas; Mayer, Thomas; Strunk, Christoph; Huettel, Andreas K. [Institute for Experimental and Applied Physics, University of Regensburg, 93040 Regensburg (Germany)

    2016-07-01

    Carbon nanotubes are simultaneously prototypical single electron tunneling devices and nano-electromechanical resonators. In particular for ''ultraclean'' devices, where the nanotube is grown in a last fabrication step over pre-existing chip structures, highly regular quantum spectra and high mechanical quality factors emerge. Targeting optomechanical experiments, a coupling of these devices to on-chip superconducting coplanar waveguide resonators is highly desirable. The conditions for in-situ growth of carbon nanotubes over metal contacts are quite detrimental to most superconductors: the CVD growth process takes place in a hydrogen/methane atmosphere heated up to 900 {sup circle} C. We present data on transmission line resonators fabricated of a co-sputtered molybdenum rhenium alloy that withstand CVD and remain superconducting with critical temperatures up to 8K after growth. Resonant operation at cryogenic temperatures is demonstrated, and the behaviour is highly consistent with a combination of Mattis-Bardeen theory and two-level systems in the substrate.

  5. A compact very wideband amplifying filter based on RTD loaded composite right/left-handed transmission lines.

    Science.gov (United States)

    Abu-Marasa, Mahmoud O Mahmoud; El-Khozondar, Hala Jarallah

    2015-01-01

    The composite right/left-handed (CRLH) transmission line (TL) is presented as a general TL possessing both left-handed (LH) and right-handed (RH) natures. RH materials have both positive permittivity and positive permeability, and LH materials have both negative permittivity and negative permeability. This paper aims to design and analyze nonlinear CRLH-TL transmission line loaded with resonant tunneling diode (RTD). The main application of this design is a very wideband and compact filter that amplifies the travelling signal. We used OrCAD and ADS software to analyze the proposed circuit. CRLH-TL consists of a microstrip line which is loaded with complementary split-rings resonators (CSRRs), series gaps, and shunt inductor connected parallel to the RTD. The designed structure possess a wide band that ranges from 5 to 10.5 GHz and amplifies signal up to 50 %. The proposed design is of interest to microwave compact component designers.

  6. Modeling of the He-like magnesium spectral lines radiation from the plasma created by XeCl and Nd-glass lasers

    International Nuclear Information System (INIS)

    Stepanov, A. E.; Starostin, A. N.; Roerich, V. C.; Makhrov, V. A.; Faenov, A. Ya.; Magunov, A. I.; Pikuz, T. A.; Skobelev, I. Yu.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Lisi, N.; Letardi, T.; Palladino, L.; Reale, A.; Batani, D.; Bossi, S.; Bornadinelo, A.; Scafati, A.; Reale, L.

    1997-01-01

    Resonant and intercombination spectral lines formation of He-like magnesium is analyzed both experimentally and numerically. It is shown that in plasma created by XeCl laser at flux density 8·10 12 W/cm 2 the peak of electron temperature is placed downstream from the critical surface at density significantly smaller than critical, and radiation in both resonant and recombination lines is also produced by the plasma region with density below critical. Simulations also show significant line radiation at large distances (1-2 mm) from the target as it was observed in experiments. This secondary peak is produced by a compression wave forming near the plasma front. As opposite, radiation in these lines in plasma created by Nd-glass laser at flux density 5·10 13 W/cm 2 comes from the plasma region placed deeper than the critical surface and has no tail at large distances

  7. Measurement of line overlap for resonant photopumping of transitions in neonlike ions by nickel-like ions

    International Nuclear Information System (INIS)

    Elliott, S.; Beiersdorfer, P.; Nilsen, J.

    1993-01-01

    A measurement is made of the 3d-4f transition energies in the Ni-like ions Re 47+ , Ir 49+ , Pt 50+ , Au 51+ , and Bi 55+ and the 2p-4d transition energies in the Ne-like ions Br 25+ , Kr 26+ , Rb 27+ , and Y 29+ using the Livermore electron-beam ion trap. The ions studied are candidates for an x-ray laser scheme based on resonant photopumping which predicts lasing among the 3p-3s transitions in a Ne-like ion. The results of the measurements are compared to multiconfiguration Dirac-Fock calculations and systematic differences are found. The best resonance is found for the Pt-Rb pair at 2512 eV, whose energies differ by 0.4±0.1 eV, that is, by only 160 ppm

  8. pH and temperature effects on the molecular conformation of the porcine pancreatic secretory trypsin inhibitor as detected by hydrogen-1 nuclear magnetic resonance

    International Nuclear Information System (INIS)

    De Marco, A.; Menegatti, E.; Guarneri, M.

    1982-01-01

    1 H NMR spectra of the porcine pancreatic secretory trypsin inhibitor (PSTI) have been recorded vs. pH and temperature. Of the two tyrosines, one titrates with a pK of 1.25, while the resonances from the other are pH insensitive in the investigated range 4.8 less than or equal to pH less than or equal to 12. This is consistent with PSTI having one Tyr solvent exposed (Try-20) and the other buried (Tyr-31). The resonances from the lysyl epsilon-CH 2 protons titrate with a pK of 10.95. The titration is accompanied by a pronounced line broadening, which starts near pH 8.5. Between pH 11.5 and pH 12 the epsilon-CH 2 resonances recover their low pH line width. Titration curves for the lysines and Tyr-20 reflect single proton ionization equilibria, suggesting that these residues do not interact among themselves. On the basis of double resonance experiments, combined with analysis of chemical shifts, spin-spin couplngs, and line widths, all methyl resonances are identified and followed as functions of pH and temperature. The γ-CH 3 doublet from the N-terminal Thr-1 is assigned by comparison between spectra of forms I and II of the inhibitor, the latter lacking the first four residues of form I. The β-CH 3 resonance from Ala-7 is also assigned. Proton resonance parameters of methyl groups are shown to afford useful NMR probes for the characterization of local nonbonded interactions, microenvironments, and mobilities

  9. Detection of napropamide by microwave resonator sensor using carbon nanotube – polypyrrole- chitosan layer

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammadi

    2017-10-01

    Full Text Available This paper presents the design and fabrication of proximity coupled feed disk resonator coated with Multi Walled Carbon Nanotubes (MWCNTs and Polypyrrole-Chitosan (PPy-CHI layers as a napropamide sensor. Computer Simulation Technology (CST microwave studio was used to obtain the best design of disk resonator and feed line position in 5 GHz resonant frequency. Also, MWCNTs - PPy-CHI layers were coated on the disk resonator using electric field deposition and chemical interaction between sensing layer and napropamide was investigated by Fourier Transform Infrared Spectroscopy (FT-IR. The evaluation of the system was performed using different concentrations of commercial napropamide and pure napropamide at room temperature (25 0C. Experimental results prove that proximity coupled feed disk resonator coated with MWCNTs-PPy-CHI layers is a simple, fast (Measurement- time=5 seconds, accurate (as low as 0.1 ppm, low cost and it has the potential of fabrication as a portable instrumentation system for detecting pesticides in water and soil.

  10. Stark broadening of isolated lines from high-Z emitters in dense plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.; Pollock, E.L.

    1980-09-01

    The joint distribution of the electric microfield and its longitudinal derivative is required for the calculation of line profiles for the He-like ions in very dense plasmas. We used a molecular dynamics code to compute exact distributions in single- and multi-component plasmas, and then we investigated various analytical approximations to these results. We found that a simplified, two-nearest-neighbor scheme leads to surprisingly accurate distribution functions. Our results are illustrated by sample profiles for Ne +8 and Ar +16 resonance lines

  11. Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

    Science.gov (United States)

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-03-22

    The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due to HSE and DD have been derived. By employing nonlinear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items 1-3 may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions; however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce whether this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A new key aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items 1-3 due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to

  12. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan, E-mail: liyan@mail.tsinghua.edu.cn [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China)

    2016-09-15

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  13. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    International Nuclear Information System (INIS)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2016-01-01

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  14. Hadronic atoms and ticklish nuclei: the E2 nuclear resonance effect

    International Nuclear Information System (INIS)

    Leon, M.

    1975-06-01

    The E2 nuclear resonance effect in hadronic atoms offers a way to increase the hadronic information that can be obtained from hadronic x-ray experiments. The effect occurs when an atomic deexcitation energy closely matches a nuclear excitation energy, so that some configuration mixing occurs. It shows up as an attenuation of some of the hadronic x-ray lines from a resonant versus a normal isotope target. The effect was observed very clearly in pionic cadmium in a recent LAMPF experiment. A planned LAMPF experiment will use the nuclear resonance effect to determine whether the p-wave π-nucleus interaction does indeed become repulsive for Z greater than or equal to 35 as predicted. The effect also appears in the kaonic molybdenum data taken at LBL because several of the stable molybdenum isotopes are resonant. A number of promising cases for π - , K - , anti p, and Σ - atoms are discussed and a spectacular and potentially very informative experiment on anti p- 100 Mo is proposed. (9 figures, 9 tables) (U.S.)

  15. Ultra slow muon microscopy by laser resonant ionization at J-PARC, MUSE

    Science.gov (United States)

    Miyake, Y.; Ikedo, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Koda, A.; Fujimori, H.; Makimura, S.; Nakamura, J.; Nagatomo, T.; Kadono, R.; Torikai, E.; Iwasaki, M.; Wada, S.; Saito, N.; Okamura, K.; Yokoyama, K.; Ito, T.; Higemoto, W.

    2013-04-01

    As one of the principal muon beam line at the J-PARC muon facility (MUSE), we are now constructing a Muon beam line (U-Line), which consists of a large acceptance solenoid made of mineral insulation cables (MIC), a superconducting curved transport solenoid and superconducting axial focusing magnets. There, we can extract 2 × 108/s surface muons towards a hot tungsten target. At the U-Line, we are now establishing a new type of muon microscopy; a new technique with use of the intense ultra-slow muon source generated by resonant ionization of thermal Muonium (designated as Mu; consisting of a μ + and an e - ) atoms generated from the surface of the tungsten target. In this contribution, the latest status of the Ultra Slow Muon Microscopy project, fully funded, is reported.

  16. Diffusion effects on the line intensities of He I and He II in the solar transition region

    International Nuclear Information System (INIS)

    Shine, R.; Gerola, H.; Linsky, J.L.

    1975-01-01

    A heuristic treatment of diffusion in the solar chromosphere-corona transition region is developed. Diffusion becomes increasingly important with steeper temperature gradients, in active and quiet regions relative to coronal holes, and with increasing excitation potential. Numerical calculations are made for the resonance lines of He i and He ii and show that diffusion can enhance these lines. Thus the helium lines may appear relatively weak in coronal holes due to a weakening of the enhancement mechanism. Most transition region lines will be less affected by diffusion than He i or He ii

  17. Calculated Resonance Line Profiles of [Mg II], [C II], and [Si IV] in the Solar Atmosphere

    Science.gov (United States)

    Avrett, E.; Landi, E.; McKillop, S.

    2013-12-01

    NASA's Interface Region Imaging Spectrograph space mission, launched 2013 June 27, is intended to study the structure of the solar chromosphere and the transition region between the chromosphere and corona. The spectral lines to be observed include the Mg II k line at 2796.5 Å, the C II 1334.5 Å line, and the Si IV line at 1393.8 Å, which are formed in the middle chromosphere, the upper chromosphere, and the lower transition region, respectively. Here we calculate the profiles of these lines from four models of the solar atmosphere, intended to represent the faint and mean internetwork, a network lane, and bright network. We show how the profiles change from the center of the solar disk toward the limb of the Sun and in response to outflows and inflows. These results are intended to cover the range of expected quiet-Sun observations and assist in their interpretation. We expect that the observations will lead to improvements in the models, which can then be used to estimate the required non-radiative heating in the different regions.

  18. Calculated resonance line profiles of [Mg II], [C II], and [Si IV] in the solar atmosphere

    International Nuclear Information System (INIS)

    Avrett, E.; McKillop, S.; Landi, E.

    2013-01-01

    NASA's Interface Region Imaging Spectrograph space mission, launched 2013 June 27, is intended to study the structure of the solar chromosphere and the transition region between the chromosphere and corona. The spectral lines to be observed include the Mg II k line at 2796.5 Å, the C II 1334.5 Å line, and the Si IV line at 1393.8 Å, which are formed in the middle chromosphere, the upper chromosphere, and the lower transition region, respectively. Here we calculate the profiles of these lines from four models of the solar atmosphere, intended to represent the faint and mean internetwork, a network lane, and bright network. We show how the profiles change from the center of the solar disk toward the limb of the Sun and in response to outflows and inflows. These results are intended to cover the range of expected quiet-Sun observations and assist in their interpretation. We expect that the observations will lead to improvements in the models, which can then be used to estimate the required non-radiative heating in the different regions.

  19. In situ nuclear magnetic resonance study of defect dynamics during deformation of materials

    NARCIS (Netherlands)

    Murty, K.L.; Detemple, K.; Kanert, O.; Peters, G; de Hosson, J.T.M.

    1996-01-01

    Nuclear magnetic resonance techniques can be used to monitor in situ the dynamical behaviour of point and line defects in materials during deformation. These techniques are non-destructive and non-invasive. We report here the atomic transport, in particular the enhanced diffusion during deformation

  20. Resistively detected NMR line shapes in a quasi-one-dimensional electron system

    Science.gov (United States)

    Fauzi, M. H.; Singha, A.; Sahdan, M. F.; Takahashi, M.; Sato, K.; Nagase, K.; Muralidharan, B.; Hirayama, Y.

    2017-06-01

    We observe variation in the resistively detected nuclear magnetic resonance (RDNMR) line shapes in quantum Hall breakdown. The breakdown occurs locally in a gate-defined quantum point contact (QPC) region. Of particular interest is the observation of a dispersive line shape occurring when the bulk two-dimensional electron gas (2DEG) set to νb=2 and the QPC filling factor to the vicinity of νQPC=1 , strikingly resemble the dispersive line shape observed on a 2D quantum Hall state. This previously unobserved line shape in a QPC points to a simultaneous occurrence of two hyperfine-mediated spin flip-flop processes within the QPC. Those events give rise to two different sets of nuclei polarized in the opposite direction and positioned at a separate region with different degrees of electronic spin polarization.

  1. Magnetic resonance tomography in syringomyelia

    International Nuclear Information System (INIS)

    Koehler, D.; Treisch, J.; Hertel, G.; Schoerner, W.; Fiegler, W.; Staedtisches Rudolf-Virchow Krankenhaus, Berlin

    1985-01-01

    Thirteen patients with a clinical diagnosis of syringomyelia were examined by nuclear tomography (0.35 T magnet) in the spin-echo mode. In all thirteen patients, the T1 images (Se 400/35) showed a longitudinal cavity with a signal intensity of CSF. The shape and extent of the syrinx could be adequately demonstrated in 12 of the 13 examinations. Downward displacement of the cerebellar tonsils was seen in eight cases. The examination took between half and one hour. Advantages of magnetic resonance tomography (nuclear tomography) include the absence of artifacts, images in the line of the lesion and its non-invasiveness. (orig.) [de

  2. Beam-line considerations for experiments with highly-charged ions

    International Nuclear Information System (INIS)

    Johnson, B.M.

    1990-01-01

    The APS offers exciting possibilities for a bright future in x-ray research. For example, measurements on the inner-shell photoionization of ions will be feasible using stored ions in ions traps or ion beams from an electron-cyclotron-resonance ion source, or perhaps even a heavy-ion storage ring. Such experiments with ionic targets are the focus for the discussion given here on the optimization of photon flux on a generic beamline at the APS. The performance of beam lines X26C, X26A, and X17 on the x-ray ring of the National Synchrotron Light Source will be discussed as specific examples of beam-line design considerations

  3. Beam-line considerations for experiments with highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.M.

    1990-01-01

    The APS offers exciting possibilities for a bright future in x-ray research. For example, measurements on the inner-shell photoionization of ions will be feasible using stored ions in ions traps or ion beams from an electron-cyclotron-resonance ion source, or perhaps even a heavy-ion storage ring. Such experiments with ionic targets are the focus for the discussion given here on the optimization of photon flux on a generic beamline at the APS. The performance of beam lines X26C, X26A, and X17 on the x-ray ring of the National Synchrotron Light Source will be discussed as specific examples of beam-line design considerations.

  4. Precision angle-resolved autoionization resonances in Ar and Ne

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, N.; Langer, B.; Gorczyca, T.W. [Western Michigan Univ., Kalamazoo, MI (United States)] [and others

    1997-04-01

    Theoretical work has shown that the electron angular distribution and the shape of the autoionization resonances are crucial to the understanding of certain types of electron-electron correlation. Autoionization resonances in Ne (Ar) result from the decay of the excited discrete state Ne{sup *} 2s2p{sup 6} np (Ar{sup *} 3s3p{sup 6} np) into the continuum state Ne{sup +} 2s{sup 2}2p{sup 5} + e{sup {minus}} (ks,kd) (Ar{sup +} 3s{sup 2}3p{sup 5} + e{sup {minus}} (ks,kd)). Since the continuum can also be reached by direct photoionization, both paths add coherently, giving rise to interferences that produce the characteristic Beutler-Fano line shape. In this work, the authors report on quantitative angle-resolved electron spectrometry studies of (a) the Ne 2s{sup 2}2p{sup 6} {r_arrow} 2s2p{sup 6} np (n=3-5) autoionizing resonances and the 2s{sup 2}2p{sup 6} {r_arrow} 2p{sup 4}3s3p doubly excited resonance, (b) the Ar 3s{sup 2}3p{sup 6} {r_arrow} 3s3p{sup 6} np (n=4-9) autoionization resonances and extended R-matrix calculations of the angular-distribution parameters for both Ne and Ar measurements. Their results are compared with previous theoretical work by Taylor.

  5. Heliospheric MeV energization due to resonant interaction

    International Nuclear Information System (INIS)

    Roth, Ilan

    2001-01-01

    The prompt enhancement of relativistic electron flux during active geomagnetic periods, and the impulsive increase in the flux of the heliospheric energetic heavy ions during active solar periods are of major importance with respect to the proper operation of electronics on space-borne spacecraft and the safety of interplanetary human travel, respectively. Both enhancements may be caused by resonant wave-particle interaction with oblique electromagnetic waves on the terrestrial and coronal field lines. Whistler waves, which are enhanced significantly during substorms and which propagate obliquely to the magnetic field, can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative) integer multiple of the local relativistic gyrofrequency. This interaction occurs over a broad spatial region when a relativistic electron is bouncing in the terrestrial magnetic field. Coronal ions interact selectively with electromagnetic ion-cyclotron (emic) waves which are correlated with impulsive flares. This interaction occurs over a small spatial region when the Doppler-shifted frequency matches the first or higher harmonic of the ion gyrofrequency. Recent new observations of terrestrial MeV X-rays are interpreted as a resonant loss of the radiation belt electrons

  6. Anomaly in shape of resonance absorption lines of atoms with large fine-structure splitting of levels

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; yachev, S.P."" >Podyachev, S.P.; Privalov, T.I.; Shalagin, A.M.

    1997-01-01

    Absorption line of monochromatic radiation by atoms nonselective excitation by velocities under conditions of optical excitation of components of superfine structure of the basic electron state is considered. It is shown that the absorption line has unusual substructures for certain values of the basic state superfine desintegration. These substructures in the absorption spectrum may be pointed out by accounting the superfine structure of the electron excited state. The absorption spectra of monochromatic radiation close tot he D 1 - and D 2 -lines of the atomic rubidium are calculated

  7. Identification of resonant x-ray Raman scattering using SR- and conventional TXRF

    International Nuclear Information System (INIS)

    Zhu, Q.; Burrow, B.; Baur, K.; Brennan, S.; Pianetta, P.

    2000-01-01

    Analyzing and control the surface contamination are important steps in the processing of integrated circuits. The need for using non-destructive analysis techniques either as laboratory or in-line inspection tools has increased dramatically in the past. Total reflection x-ray fluorescence (TXRF) spectroscopy is one of the best choices to fill such needs. Earlier works have established the phenomenon of resonant x-ray Raman scattering with excitation energy very close to the Si-K absorption edge (1.74 keV). In this work, similar phenomena are identified in W-silicide and GaAs substrate with the excitation of W-Lβ 9.67 keV) line, a choice of x-ray source for almost all the conventional TXRF systems nowadays. The observation of the resonant Raman peak is clearly the result of close proximity of W-L and As-K absorption edges to the excitation energy. Synchrotron TXRF measurements are performed by tuning the excitation energy. The resonant Raman peak shifts accordingly with the excitation energy, along with the drastic change of its intensity below and above the absorption edge of W-L or As-K in the respective samples. The current analysis provides new perspective for analyzing W- and As-containing samples, which suggests Raman background correction in conventional TXRF with W-Lβ excitation. (author)

  8. Photoionization Modeling and the K Lines of Iron

    Science.gov (United States)

    Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.

    2004-01-01

    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.

  9. A flexible coil array for high resolution magnetic resonance imaging at 7 Tesla

    International Nuclear Information System (INIS)

    Kriegl, R.

    2015-01-01

    Magnetic resonance imaging (MRI), among other imaging techniques, has become a major backbone of modern medical diagnostics. MRI enables the non-invasive combined, identification of anatomical structures, functional and chemical properties, especially in soft tissues. Nonetheless, applications requiring very high spatial and/or temporal resolution are often limited by the available signal-to-noise ratio (SNR) in MR experiments. Since first clinical applications, image quality in MRI has been constantly improved by applying one or several of the following strategies: increasing the static magnetic field strength, improvement of the radiofrequency (RF) detection system, development of specialized acquisition sequences and optimization of image reconstruction techniques. This work is concerned with the development of highly sensitive RF detection systems for biomedical ultra-high field MRI. In particular, auto-resonant RF coils based on transmission line technology are investigated. These resonators may be fabricated on flexible substrate which enables form-fitting of the RF detector to the target anatomy, leading to a significant SNR gain. The main objective of this work is the development of a flexible RF coil array for high-resolution MRI on a human whole-body 7 T MR scanner. With coil arrays, the intrinsically high SNR of small surface coils may be exploited for an extended field of view. Further, parallel imaging techniques are accessible with RF array technology, allowing acceleration of the image acquisition. Secondly, in this PhD project a novel design for transmission line resonators is developed, that brings an additional degree of freedom in geometric design and enables the fabrication of large multi-turn resonators for high field MR applications. This thesis describes the development, successful implementation and evaluation of novel, mechanically flexible RF devices by analytical and 3D electromagnetic simulations, in bench measurements and in MRI

  10. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Science.gov (United States)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  11. Planar quadrature RF transceiver design using common-mode differential-mode (CMDM transmission line method for 7T MR imaging.

    Directory of Open Access Journals (Sweden)

    Ye Li

    Full Text Available The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR in magnetic resonance (MR imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM and the differential mode (DM of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.

  12. The effect of compressibility on the Alfven spatial resonance heating

    International Nuclear Information System (INIS)

    Azevedo, C.A.

    1984-01-01

    The effect of compressibility of magnetic field line on the damping rate of Alfven spatial resonance heating for a high beta plasma (Kinetic pressure/magnetic pressure) was analysed, using the ideal MHD (Magnetohydrodynamic) model in cylindrical geometry for a diffuse θ-pinch with conducting wall. The dispersion relation was obtained solving the equation of motion in the plasma and vacuum regions together with boundary conditions. (Author) [pt

  13. Electronic paramagnetic resonance in the Mn In X (X:Te,S) diluted magnetic semiconductor system

    International Nuclear Information System (INIS)

    Vincent, Bernardo; Betancourt, Luis; Sagredo, Vicente; Alcala, Rafael

    1996-01-01

    Semiconductor compounds wit the II-III-VI stoichiometry are very interesting materials since they present very good semiconducting characteristics and, along with strong magnetic properties, these II Mn In VI compounds have a great potential as opt and magneto-electronic devices. Among the possible magnetic properties of the materials is the presence of the spin-glass phase. Electron paramagnetic resonance is one of the techniques used to confirm this phase. The chosen crystals were chosen by chemical vapor transport. The absorption lines of these two families with 0.1 x 1 were all Lorentzian in shape and centred at g=2. A large broadening of the resonance line width was observed when lowering the temperature to below 80 K. This behaviour was fitted to the known existing models, and good values of the calculated parameters were obtained (author)

  14. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  15. Resonance enhanced laser mass spectrometry for process- and environmental-analysis: Applications and perspectives

    International Nuclear Information System (INIS)

    Zimmermann, Ralf; Dorfner, Ralph; Kettrup, Antonius; Heger, Hans Joerg; Boesl, Ulrich

    1998-01-01

    Laser induced Resonance-Enhanced Multi-Photon Ionization Time-Of-Flight Mass Spectrometry (REMPI TOFMS) is a highly selective as well as sensitive analytical technique, well suited for species selective, on-line monitoring of trace-substances. In this contribution some analytical applications of a mobile REMPI-TOFMS are presented. This includes REMPI-TOMS on-line analysis of coffee roasting gas and waste incineration flue gas as well as headspace measurements of pulp processing lye or rapid analysis of polycyclic aromatic hydrocarbons from soil samples via thermal desorption

  16. Evidence of dithionite contribution to the low-frequency resonance Raman spectrum of reduced and mixed-valence cytochrome c oxidase.

    Science.gov (United States)

    Centeno, J A

    1992-02-01

    The resonance Raman spectra of deoxygenated solutions of mixed-valence cyanide-bound and fully reduced cytochrome oxidase derivatives that have been reduced in the presence of aqueous or solid sodium dithionite exhibit two new low-frequency lines centered at 474 and 590 cm-1. These lines were not observed when the reductant system was changed to a solution containing ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Under enzyme turnover conditions, the addition of dithionite to the reoxidized protein (the 428-nm or "oxygenated" form) increases the intensity of these lines, while reoxidation and rereduction of the enzyme in the presence of ascorbate/TMPD resulted in the absence of both lines. Our data suggest that both lines must have contributions from species formed from aqueous dithionite, presumably the SO2 species, since these two lines are also observed in the Raman spectrum of a solution of aqueous dithionite, but not in the spectrum of an ascorbate/TMPD solution. Since heme metal-ligand stretch vibrations are expected to appear in the low-frequency region from 215 to 670 cm-1, our results indicate that special care should be exercised during the interpretation of the cytochrome a3 resonance Raman spectrum.

  17. Microwave photonics systems based on whispering-gallery-mode resonators.

    Science.gov (United States)

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K

    2013-08-05

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.

  18. Ultra slow muon microscopy by laser resonant ionization at J-PARC, MUSE

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Y., E-mail: yasuhiro.miyake@kek.jp; Ikedo, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Koda, A.; Fujimori, H.; Makimura, S.; Nakamura, J.; Nagatomo, T.; Kadono, R. [High Energy Accelerator Research Organization (KEK), Muon Science Laboratory (Japan); Torikai, E. [Yamanashi University, Faculty of Engineering (Japan); Iwasaki, M. [RIKEN Nishina Center, Advanced Meson Science Laboratory (Japan); Wada, S.; Saito, N. [RIKEN, Advanced Science Institute (Japan); Okamura, K. [RIKEN-WAKO Incubation Plaza 301, Megaopto Co., Ltd. (Japan); Yokoyama, K. [RIKEN Nishina Center, Advanced Meson Science Laboratory (Japan); Ito, T.; Higemoto, W. [J-PARC Center, Muon Section, Materials and Life Science Division (Japan)

    2013-04-15

    As one of the principal muon beam line at the J-PARC muon facility (MUSE), we are now constructing a Muon beam line (U-Line), which consists of a large acceptance solenoid made of mineral insulation cables (MIC), a superconducting curved transport solenoid and superconducting axial focusing magnets. There, we can extract 2 Multiplication-Sign 10{sup 8}/s surface muons towards a hot tungsten target. At the U-Line, we are now establishing a new type of muon microscopy; a new technique with use of the intense ultra-slow muon source generated by resonant ionization of thermal Muonium (designated as Mu; consisting of a {mu}{sup + } and an e{sup - }) atoms generated from the surface of the tungsten target. In this contribution, the latest status of the Ultra Slow Muon Microscopy project, fully funded, is reported.

  19. Resonant Raman scattering in ion-beam-synthesized Mg2Si in a silicon matrix

    International Nuclear Information System (INIS)

    Baleva, M.; Zlateva, G.; Atanassov, A.; Abrashev, M.; Goranova, E.

    2005-01-01

    Resonant Raman scattering by ion beam synthesized in silicon matrix Mg 2 Si phase is studied. The samples are prepared with the implantation of 24 Mg + ions with dose 4x10 17 cm -2 and with two different energies 40 and 60 keV into (100)Si substrates. The far infrared spectra are used as criteria for the formation of the Mg 2 Si phase. The Raman spectra are excited with different lines of Ar + laser, with energies of the lines lying in the interval from 2.40 to 2.75 eV. The resonant scattering can be investigated using these laser lines, as far as according to the Mg 2 Si band structure, there are direct gaps with energies in the same region. The energy dependences of the scattered intensities in the case of the scattering by the allowed F 2g and the forbidden LO-type modes are experimentally obtained and theoretically interpreted. On the base of the investigation energies of the interband transitions in the Mg 2 Si are determined. It is found also that the resonant Raman scattering appears to be a powerful tool for characterization of a material with inclusions in it. In the particular case it is concluded that the Mg 2 Si phase is present in the form of a surface layer in the sample, prepared with implantation energy 40 keV and as low-dimensional precipitates, embedded in the silicon matrix, in the sample, prepared with the higher implantation energy

  20. THz spectroscopy of the 29 cm{sup -1} oxygen vibrational line in natural silicon and isotopically enriched {sup 28}Si

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, Kurt; Dressel, Martin [1. Physikalisches Inst., Univ. Stuttgart (Germany); Gorshunov, Boris; Zhukova, E.S. [1. Physikalisches Inst., Univ. Stuttgart (Germany); A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Moscow Inst. Physics and Technology (Russian Federation); Korolev, P.S. [A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Lomonosov Moscow State Univ. (Russian Federation); Kalinsuhkin, V.P. [A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Abrosimov, N.V. [Leibniz Inst. Kristallzuechtung, Berlin (Germany); Sennikov, P.G. [Inst. Chem. High-Purity Substances, Nizhny Novgorod (Russian Federation); Pohl, H.J. [PTB, Braunschweig (Germany); Zakel, S. [VITCON-Projektconsult, Jena (Germany)

    2012-07-01

    Looking for a possible host-isotope effect on the low-energy two-dimensional motion of interstitial oxygen in silicon we have measured the resonance parameters of the lowest transition of the 30 cm{sup -1} band of the Si-O-Si complex in natural Si and in isotopically enriched {sup 28}Si at temperatures between 5 K and 22 K by means of coherent-source terahertz spectroscopy. At 5.5 K we obtain for the resonance maxima 29.24 {+-} 0.003 cm{sup -1} and 29.22 {+-} 0.003 cm{sup -1} and for the line widths 0.09 {+-} 0.01 cm{sup -1} and 0.11 {+-} 0.01 cm{sup -1} for {sup 28}Si and {sup nat}Si, respectively. Both lines can be fitted by single Lorentzians, so, no obvious isotopic structure or asymmetry of the line in {sup nat}Si due to the Si neighbors in the Si-O-Si complex is detected. We therefore conclude that down-shift and broadening of the {sup nat}Si-resonance is not due to the Si isotopes in the isolated Si-O-Si complex but to an average effect of the isotopically inhomogeneous lattice.

  1. Nuclear structure far above the yrast line

    International Nuclear Information System (INIS)

    Gaardhoeje, J.J.

    1985-01-01

    The phase space available for gamma ray spectroscopic studies has recently been extended significantly with the observation of gamma radiation produced in the decay of highly collective (isovector) giant dipole resonances (GDR), built on excited states of high spin, in nuclei produced in heavy ion induced fusion reactions. These gamma rays are predominantly emitted in competition with particles in the first few steps of the decay of compound systems and constitute an entirely new tool to study nuclei at excitation energies far above the yrast line. Some problems of current central interest are addressed. (Auth.)

  2. Analyais of solar X-ray emission line profiles

    International Nuclear Information System (INIS)

    Burek, A.J.; Marrus, D.M.; Blake, R.L.; Fenimore, E.E.

    1981-01-01

    We report results of the analysis of the X-ray emission line profiles for the Ne X La and Fe XVII 4d 1 P 1 lines produced in an active region that was undergoing a radio and X-ray gradual rise and fall (GRF) in intensity. The spectra were obtained with collimated Bragg spectrometers launched on a rocket from White Sands Missile Range on 1976 March 26. Using a crystal of ammonium acid phthalate, we have fully resolved the Ne X La and Fe XVII 4d 1 P 1 lines, permitting an accurate determinination of the Ne X La intensity and allowing Doppler broadened profiles for lines formed from ions having greatly different atomic mass and charge to be measured. An isothermal model derived from the Ne IX/Ne X resonance line intensity ratio gives an electron temperature of 3.4 x 10 6 K. An isothermal model, however, fails to account for the intensities of all lines and continuum observed. All multitemperature models that do reproduce the observed relative line intensities require the presence of a hot plasma component with an electron temperature in excess of 5 x 10 6 K. The presence of a high temperature component is also suggested by the measured line to continuum ratio of 3.6 in the 12--15 A wavelength interval. Interpretation of the line profiles in terms of a multitemperature model requires an rms turbulence velocity of 48 +- 15 km s -1 for Fe XVII 1 P 1 and 74 +- 54 km s - 2exclamation for Ne X La at the 95% confidence level. Collimated scans across the active region show the presence of a compact source of intense X-ray emission close to the magnetic neutral line, which is very probably the GRF plasma

  3. Three-stub quarter wave superconducting resonator design

    Directory of Open Access Journals (Sweden)

    N. R. Lobanov

    2006-11-01

    Full Text Available This paper describes a concept for superconducting resonators for the acceleration of ions in the velocity range β=v/c=0.015–0.04. Such a resonator operates in λ/4 mode with three loading elements and so can be thought of as a triple quarter wave resonator (3-QWR providing 4 accelerating gaps. The use of a column to support the three stubs provides a benefit beyond those of the two-stub design (2-QWR. In the 3-QWR, the rf mirror currents in the walls surrounding the stubs need only travel through 45° instead of the 90° in the 2-QWR thus further reducing the current in the demountable joints. As in the 2-QWR, the shape of the column allows control of the frequency splitting between the accelerating and other modes. The copper structure is designed to be coated by a thin superconducting film of niobium or lead for operation at 4.3 K. The particular device reported here operates at 150 MHz with an optimum β of 0.04. Its outer cylinder is the same size and shape as for the 2-QWR structure reported previously, in order to minimize construction and cryostat costs. A simple transmission line model is presented and the results of microwave studio and other numerical analyses are discussed. The 3-QWR resonators are appropriate for the upgrade of the low-velocity sections of the ANU Heavy Ion Accelerator Facility and other heavy ion accelerator boosters.

  4. Efficient primary and parametric resonance excitation of bistable resonators

    KAUST Repository

    Ramini, Abdallah

    2016-09-12

    We experimentally demonstrate an efficient approach to excite primary and parametric (up to the 4th) resonance of Microelectromechanical system MEMS arch resonators with large vibrational amplitudes. A single crystal silicon in-plane arch microbeam is fabricated such that it can be excited axially from one of its ends by a parallel-plate electrode. Its micro/nano scale vibrations are transduced using a high speed camera. Through the parallel-plate electrode, a time varying electrostatic force is applied, which is converted into a time varying axial force that modulates dynamically the stiffness of the arch resonator. Due to the initial curvature of the structure, not only parametric excitation is induced, but also primary resonance. Experimental investigation is conducted comparing the response of the arch near primary resonance using the axial excitation to that of a classical parallel-plate actuation where the arch itself forms an electrode. The results show that the axial excitation can be more efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting the structure from pull-in. In addition to primary resonance, parametrical resonances are demonstrated at twice, one-half, and two-thirds the primary resonance frequency. The ability to actuate primary and/or parametric resonances can serve various applications, such as for resonator based logic and memory devices. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

  5. A new in-gas-laser ionization and spectroscopy laboratory for off-line studies at KU Leuven

    International Nuclear Information System (INIS)

    Kudryavtsev, Yu.; Creemers, P.; Ferrer, R.; Granados, C.; Gaffney, L.P.; Huyse, M.; Mogilevskiy, E.; Raeder, S.; Sels, S.; Van den Bergh, P.; Van Duppen, P.; Zadvornaya, A.

    2016-01-01

    The in-gas laser ionization and spectroscopy (IGLIS) technique is used to produce and to investigate short-lived radioactive isotopes at on-line ion beam facilities. In this technique, the nuclear reaction products recoiling out of a thin target are thermalized and neutralized in a high-pressure noble gas, resonantly ionized by the laser beams in a two-step process, and then extracted from the ion source to be finally accelerated and mass separated. Resonant ionization of radioactive species in the supersonic gas jet ensures very high spectral resolution because of essential reduction of broadening mechanisms. To obtain the maximum efficiency and the best spectral resolution, properties of the supersonic jet and the laser beams must be optimized. To perform these studies a new off-line IGLIS laboratory, including a new high-repetition-rate laser system and a dedicated off-line mass separator, has been commissioned. In this article, the specifications of the different components necessary to achieve optimum conditions in laser-spectroscopy studies of radioactive beams using IGLIS are discussed and the results of simulations are presented.

  6. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  7. A dye laser with a partial-selective resonator

    Energy Technology Data Exchange (ETDEWEB)

    Makogon, M M; Sukhanov, V B

    1977-04-01

    The possibility of controlling the width and spectral position of the generation line of an organic dye laser (Rhodamine 6Zh) whose resonator represents a combination of selective and non-selective channels is demonstrated. The selective channel entails an unsymmetrically mounted prism with whose angular displacement the spectral width can be changed within broad ranges; the non-selective channel maintains the resonator's quality at a sufficiently high level. An expression is given which makes it possible to determine the generation's spectral width when fixing the prism's angular position. The change in the rearrangement band was studied in relation to the qualities of the selective and non-selective channels as determined by the form of the active medium's amplification contour (a narrowing of the spectrum from 0.15 to 0.0019 nm led to a reduction of the rearrangement area from 38.4 to 28.3 nm).

  8. Study of the unbound proton-rich nucleus $^{21}$Al with resonance elastic and inelastic scattering using an active target

    CERN Multimedia

    We intend to measure the structure of the unbound nucleus $^{21}$Al via resonance elastic and inelastic scattering with an active target. There are many goals: \\\\ a) to locate the 1/2$^{+}$ level in $^{21}$Al that brings information on the Thomas-Ehrman shift, \\\\ b) to measure the energy spectrum of $^{21}$Al which is a N=8 isotone with the resonance elastic scattering reaction, \\\\ c) to investigate via inelastic scattering the strength of core excitations in the existence of narrow unbound resonances beyond the proton drip-line.

  9. Cyclotron resonance for electrons over helium in resonator

    CERN Document Server

    Shikin, V B

    2002-01-01

    The problem on the cyclotron resonance (CR) for electrons on the helium film, positioned in the resonator lower part, is solved. It is shown, that it relates to one of the examples of the known problem on the oscillations of the coupled oscillators system. The coupling constant between these oscillators constituting the variable function of the problem parameters. It is minimal in the zero magnetic field and reaches its maximum under the resonance conditions, when the cyclotron frequency coincides with one of the resonator modes. The CR details of the Uhf CR-energy absorption coupled by the electrons + resonator system, are calculated. The applications of the obtained results to the available CR experiments for electrons over helium

  10. Microstrip resonators for electron paramagnetic resonance experiments

    Science.gov (United States)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  11. Microstrip resonators for electron paramagnetic resonance experiments.

    Science.gov (United States)

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  12. Direct measurement of the quantum state of the electromagnetic field in a superconducting transmission line

    International Nuclear Information System (INIS)

    Melo, F. de; Aolita, L.; Davidovich, L.; Toscano, F.

    2006-01-01

    We propose an experimental procedure to directly measure the state of an electromagnetic field inside a resonator, corresponding to a superconducting transmission line, coupled to a Cooper-pair box (CPB). The measurement protocol is based on the use of a dispersive interaction between the field and the CPB, and the coupling to an external classical field that is tuned to resonance with either the field or the CPB. We present a numerical simulation that demonstrates the feasibility of this protocol, which is within reach of present technology

  13. Unshifted Metastable He I* Mini-broad Absorption Line System in the Narrow-line Type 1 Quasar SDSS J080248.18+551328.9

    Science.gov (United States)

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Ge, Jian; Wang, Huiyuan; Komossa, S.; Hamann, Fred; Zuther, Jens; Liu, Wenjuan; Lu, Honglin; Zuo, Wenwen; Yang, Chenwei; Yuan, Weimin

    2015-02-01

    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ~ 1500 km s-1 centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n H ~ (1.0-2.5) × 105 cm-3 and a column density of N H ~ (1.0-3.2) × 1021 cm-2 and is located at R ~100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  14. 1 to 2 GeV/c beam line for hypernuclear and kaon research

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1985-01-01

    A kaon beam line operating in the range from 1.0 to 2.0 GeV/c is proposed. The line is meant for kaon and pion research in a region hitherto inaccessible to experimenters. Topics in hypernuclear and kaon physics of high current interest include the investigation of doubly strange nuclear systems with the K - ,K + reaction, searching for dibaryon resonances, hyperon-nucleon interactions, hypernuclear γ rays, and associated production of excited hypernuclei. The beam line would provide separated beams of momentum analyzed kaons at intensities greater than 10 6 particles per spill with a momentum determined to one part in a thousand. This intensity is an order of magnitude greater than that currently available. 63 references

  15. Analytical studies on pump-induced optical resonances in an M-type six-level system

    International Nuclear Information System (INIS)

    Ghosh, Saswata; Mandal, Swapan

    2010-01-01

    In the domain of semiclassical formulation and for the Doppler-free atom-field interaction, we construct the optical Bloch equations involving an M-type six-level system coupled to two pump fields and a probe field. The response of the system is probed for different pump-induced transitions in double and triple-resonance situations. In order to obtain the coherent lineshapes (absorptive and dispersive), we use the usual perturbation method for obtaining the approximate analytical solutions to these coupled optical Bloch equations for the density matrix elements. The interferences between the probability amplitudes for different energy levels (dipole allowed and dipole forbidden) are taken care of. For off-resonance pump positions, the linewidths of the three probe transitions are insensitive to the pump Rabi frequencies. On the other hand, the shifts of the three resonance peaks are extremely sensitive to the pump Rabi frequencies. However, for on-resonance pump conditions, the sensitivities of pump Rabi frequencies on the linewidths of the resonance peaks and on the shifts of the resonance peak positions are opposite to those of their off-resonance counterparts. In particular, we have shown the asymmetric and symmetric Rabi splittings under different physical conditions, for non-zero and near-zero probe detuning, respectively. The Rabi splitting under triple-resonance conditions, significantly, modifies the dispersive lineshape at the centre of the absorption line. The two- and three-photon absorptions are also reported for different off-resonant pump positions.

  16. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  17. Radiative decays of the upsilon (2S) resonance

    International Nuclear Information System (INIS)

    Irion, J.

    1984-04-01

    The Crystal Ball Detector at DORIS II was used to study radiative decays of the upsilon (2S) resonance with more than twice the previously available data. The inclusive photon spectrum of hadronic upsilon (2S) decays and the exclusive channel upsilon (2S) → γγ upsilon (1S) → γγ l + l - were analyzed. In the inclusive spectrum three significant photon lines at energies of Eγ 1 = (108.2 +- 0.7 +- 4) MeV, Eγ 1 = (127.1 +- 0.8 +- 4) MeV and Eγ 3 = (160.0 +- 2.4 +- 4) MeV with branching fractions of (6.0 +- 0.7 +- 0.9)%, (6.6 +- 0.8 +- 1.0)%, (2.6 +- 0.7 +- 0.8)% respectively were measured. The lines are consistent with being transitions from the upsilon (2S) to the 3 P 2 , 3 P 1 and 3 P 0 states. In addition a line at Eγ approx. 427 MeV was observed which is interpreted as transitions from the 3 P 2 1 states to the upsilon (1S). 17 references

  18. Ted Madden's Network Methods: Applications to the Earth's Schumann Resonances

    Science.gov (United States)

    Williams, E. R.; Yu, H.

    2014-12-01

    Ted Madden made clever use of electrical circuit concepts throughout his long career in geophysical research: induced polarization, DC resistivity, magnetotellurics, Schumann resonances, the transport properties of rocks and even elasticity and the brittle failure of stressed rocks. The general methods on network analogies were presented in a terse monograph (Madden, 1972) which came to be called "The Grey Peril" by his students, named more for the challenge of deciphering the material as for the color of its cover. This talk will focus on Ted's first major use of the transmission line analogy in treating the Earth's Schumann resonances. This approach in Madden and Thompson (1965) provided a greatly simplified two-dimensional treatment of an electromagnetic problem with a notable three-dimensional structure. This skillful treatment that included the role of the Earth's magnetic field also led to predictions that the Schumann resonance energy would leak into space, predictions that have been verified nearly 50 years later in satellite observations. An extension of the network analogy by Nelson (1967) using Green's function methods provides a means to treat the inverse problem for the background Schumann resonances for the global lightning activity. The development of Madden's methods will be discussed along with concrete results based on them for the monitoring of global lightning.

  19. In Vivo Application of Proton-Electron Double-Resonance Imaging

    Science.gov (United States)

    Kishimoto, Shun; Krishna, Murali C.; Khramtsov, Valery V.; Utsumi, Hideo

    2018-01-01

    Abstract Significance: Proton-electron double-resonance imaging (PEDRI) employs electron paramagnetic resonance irradiation with low-field magnetic resonance imaging so that the electron spin polarization is transferred to nearby protons, resulting in higher signals. PEDRI provides information about free radical distribution and, indirectly, about the local microenvironment such as partial pressure of oxygen (pO2), tissue permeability, redox status, and acid-base balance. Recent Advances: Local acid-base balance can be imaged by exploiting the different resonance frequency of radical probes between R and RH+ forms. Redox status can also be imaged by using the loss of radical-related signal after reduction. These methods require optimized radical probes and pulse sequences. Critical Issues: High-power radio frequency irradiation is needed for optimum signal enhancement, which may be harmful to living tissue by unwanted heat deposition. Free radical probes differ depending on the purpose of PEDRI. Some probes are less effective for enhancing signal than others, which can reduce image quality. It is so far not possible to image endogenous radicals by PEDRI because low concentrations and broad line widths of the radicals lead to negligible signal enhancement. Future Directions: PEDRI has similarities with electron paramagnetic resonance imaging (EPRI) because both techniques observe the EPR signal, directly in the case of EPRI and indirectly with PEDRI. PEDRI provides information that is vital to research on homeostasis, development of diseases, or treatment responses in vivo. It is expected that the development of new EPR techniques will give insights into novel PEDRI applications and vice versa. Antioxid. Redox Signal. 28, 1345–1364. PMID:28990406

  20. Resonance-enhanced electron-impact excitation of Cu-like gold

    Science.gov (United States)

    Xia, L.; Zhang, C. Y.; Si, R.; Guo, X. L.; Chen, Z. B.; Yan, J.; Li, S.; Chen, C. Y.; Wang, K.

    2017-09-01

    Employing the independent-process and isolated-resonance approximations using distorted-waves (IPIRDW), we have performed a series of calculations of the resonance-enhanced electron-impact excitations (EIE) among 27 singly excited levels from the n ≤ 6 configurations of Cu-like gold (Au, Z = 79). Resonance excitation (RE) contributions from both the n = 4 → 4 - 7 and n = 3 → 4 core excitations have been considered. Our results demonstrate that RE contributions are significant and enhance the effective collision strengths (ϒ) of certain excitations by up to an order of magnitude at low temperature (106.1 K), and are still important at relatively high temperature (107.5 K). Results from test calculations of the resonance-enhanced EIE processes among 16 levels from the n ≤ 5 configurations using both the Dirac R-matrix (DRM) and IPIRDW approaches agree very well with each other. This means that the close-coupling effects are not important for this ion, and thus warrants the reliability of present resonance-enhanced EIE data among the 27 levels. The results from the collisional-radiative model (CRM) show that, at 3000 eV, near where Cu-like Au is most abundant, RE contributions have important effects (up to 25%) on the density diagnostic line intensity ratios, which are sensitive near 1020 cm-3. The present work is the first EIE research including RE contributions for Cu-like Au. Our EIE data are more accurate than previous results due to our consideration of RE contributions, and the data should be helpful for modeling and diagnosing a variety of plasmas.

  1. Frequency and magnetic field mapping of magnetoelastic spin pumping in high overtone bulk acoustic wave resonator

    Science.gov (United States)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Luzanov, V. A.; Raevskiy, A. O.; Kotov, V. A.

    2018-05-01

    We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE) dc voltage driven by an acoustic spin pumping (ASP) in a bulk acoustic wave (BAW) resonator formed by a Al-ZnO-Al-YIG(1)-GGG-YIG(2)-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ˜ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2) to Pt in the area ˜ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H) together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H) on the (f, H) plane. At the same time a significant asymmetry of the VISHE(fn(H)) value in reference to the magnetoelastic resonance (MER) line fMER(H) position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.

  2. Magnetic resonance annual 1986

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  3. Electron Cyclotron Resonance Heating of a High-Density Plasma

    DEFF Research Database (Denmark)

    Hansen, F. Ramskov

    1986-01-01

    Various schemes for electron cyclotron resonance heating of tokamak plasmas with the ratio of electron plasma frequency to electron cyclotron frequency, "»pe/^ce* larger than 1 on axis, are investigated. In particular, a mode conversion scheme is investigated using ordinary waves at the fundamental...... of the electron cyclotron frequency. These are injected obliquely from the outside of the tokamak near an optimal angle to the magnetic field lines. This method involves two mode conversions. The ordinary waves are converted into extraordinary waves near the plasma cut-off layer. The extraordinary waves...... are subsequently converted into electrostatic electron Bernstein waves at the upper hybrid resonance layer, and the Bernstein waves are completely absorbed close to the plasma centre. Results are presented from ray-tracinq calculations in full three-dimensional geometry using the dispersion function for a hot non...

  4. Half bridge resonant converter for ignition of thermal plasmas

    International Nuclear Information System (INIS)

    Pena E, L.

    1997-01-01

    In this work the background, design, implementation and performance of a half bridge resonant converter (HBRC) used as an electronic ignition system for arc plasma torch generation is presented. The significance of the design lies in its simplicity, versatility and low cost. The system operates like a high voltage supply attached to electrodes before gaseous breakdown and like open circuit when electric arc is established. Resonant converter is implemented with a high voltage and high speed power driver intended for control the power MOSFET transistors connected in half bridge topology with L C load. The HBRC operates besides interference into domestic electric supply line (120 V, 60 Hz) as well electric measurement devices. Advantages and limitations of the converter are reviewed. Experimental impedance variation in the medium as a function of frequency operation and some experiences in striking arcs are also presented. (Author)

  5. Ferromagnetic resonance in gigahertz magneto-impedance of multilayer systems

    International Nuclear Information System (INIS)

    Cos, D. de; Garcia-Arribas, A.; Barandiaran, J.M.

    2006-01-01

    The effect of ferromagnetic resonance (FMR) on magneto-impedance (MI) of multilayer thin films is investigated. We present impedance measurements of an insulated multilayer film as a function of the applied magnetic field both in the plane of the sample and perpendicular to it, for frequencies from 300 kHz to 3 GHz. These measurements have been made using RF techniques, and the data have been treated using high-frequency models in order to minimize the contribution to the impedance of the test fixture. The results confirm that the FMR dominates the MI behavior at high frequency, allowing to reach higher MI ratios than those achieved at the quasistatic regime. However, the broad resonance lines cause a considerable drop of the sensitivity of the curves, and therefore the optimum operation frequency of GMI devices lays in the sub-GHz range

  6. Genetic Analysis of Health-Related Secondary Metabolites in a Brassica rapa Recombinant Inbred Line Population

    NARCIS (Netherlands)

    Bagheri, H.; Soda, El M.; Kim, H.K.; Fritsche, S.; Jung, C.; Aarts, M.G.M.

    2013-01-01

    The genetic basis of the wide variation for nutritional traits in Brassica rapa is largely unknown. A new Recombinant Inbred Line (RIL) population was profiled using High Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) analysis to detect quantitative trait loci (QTLs)

  7. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Science.gov (United States)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  8. Advanced materials for the optical delay line of frequency pulse modulator on the basis of semiconductor laser

    International Nuclear Information System (INIS)

    Abrarov, S.M.

    1999-01-01

    In the paper some materials which can be sued as an optical delay line of the pulse frequency modulator are considered. The structure and the principle are described as a modulator consisting of a laser diode with two Fabry Perot resonators and an optical wave guide providing a feedback loop. The optical wave guide fulfills the function of delay line and links the two resonators. The pulse sequence of the radiation of the semiconductor laser arises due to failure and recovery of optical generation. The pulse frequency modulation can be carried out by the action of electrical tension field on the electro optic martial of the wave guide. The selection of three electro-optic crystals for making of the optical wave guide of the considered modulator is justified. (author)

  9. Measurement of contact-line dissipation in a nanometer-thin soap film.

    Science.gov (United States)

    Guo, Shuo; Lee, Chun Huen; Sheng, Ping; Tong, Penger

    2015-01-01

    We report a direct measurement of the friction coefficient ξ(c) of two fluctuating contact lines formed on a fiber surface when a long glass fiber intersects the two water-air interfaces of a thin soap film. The glass fiber of diameter d in the range of 0.4-4 μm and length 100-300 μm is glued onto the front end of a rectangular cantilever used for atomic force microscopy. As a sensitive mechanical resonator, the hanging fiber probe can accurately measure a minute change of its viscous damping caused by the soap film. By measuring the broadening of the resonant peak of the hanging fiber probe with varying viscosity η of the soap film and different surface treatments of the glass fiber, we confirm that the contact line dissipation obeys a universal scaling law, ξ(c)=απdη, where the coefficient α=1.1±0.3 is insensitive to the change of liquid-solid contact angle. The experimental result is in good agreement with the numerical result based on the phase field model under the generalized Navier boundary conditions.

  10. Resonance zones and quasi-linear diffusion coefficients for radiation belt energetic electron interaction with oblique chorus waves in the Dungey magnetosphere

    International Nuclear Information System (INIS)

    Shi Run; Ni, Binbin; Gu Xudong; Zhao Zhengyu; Zhou Chen

    2012-01-01

    The resonance regions for resonant interactions of radiation belt electrons with obliquely propagating whistler-mode chorus waves are investigated in detail in the Dungey magnetic fields that are parameterized by the intensity of uniform southward interplanetary magnetic field (IMF) Bz or, equivalently, by the values of D=(M/B z,0 ) 1/3 (where M is the magnetic moment of the dipole and B z,0 is the uniform southward IMF normal to the dipole’s equatorial plane). Adoption of background magnetic field model can considerably modify the determination of resonance regions. Compared to the results for the case of D = 50 (very close to the dipole field), the latitudinal coverage of resonance regions for 200 keV electrons interacting with chorus waves tends to become narrower for smaller D-values, regardless of equatorial pitch angle, resonance harmonics, and wave normal angle. In contrast, resonance regions for 1 MeV electrons tend to have very similar spatial lengths along the field line for various Dungey magnetic field models but cover different magnetic field intervals, indicative of a strong dependence on electron energy. For any given magnetic field line, the resonance regions where chorus-electron resonant interactions can take place rely closely on equatorial pitch angle, resonance harmonics, and kinetic energy. The resonance regions tend to cover broader latitudinal ranges for smaller equatorial pitch angles, higher resonance harmonics, and lower electron energies, consistent with the results in Ni and Summers [Phys. Plasmas 17, 042902, 042903 (2010)]. Calculations of quasi-linear bounce-averaged diffusion coefficients for radiation belt electrons due to nightside chorus waves indicate that the resultant scattering rates differ from using different Dungey magnetic field models, demonstrating a strong dependence of wave-induced electron scattering effect on the adoption of magnetic field model. Our results suggest that resonant wave-particle interaction processes

  11. E-Textile Embroidered Metamaterial Transmission Line for Signal Propagation Control

    Directory of Open Access Journals (Sweden)

    Bahareh Moradi

    2018-06-01

    Full Text Available In this paper, the utilization of common fabrics for the manufacturing of e-textile metamaterial transmission lines is investigated. In order to filter and control the signal propagation in the ultra-high frequency (UHF range along the e-textile, a conventional metamaterial transmission line was compared with embroidered metamaterial particles. The proposed design was based on a transmission line loaded with one or several split-ring resonators (SRR on a felt substrate. To explore the relations between physical parameters and filter performance characteristics, theoretical models based on transmission matrices’ description of the filter constituent components were proposed. Excellent agreement between theoretical prediction, electromagnetic simulations, and measurement were found. Experimental results showed stop-band levels higher than −30 dB for compact embroidered metamaterial e-textiles. The validated results confirmed embroidery as a useful technique to obtain customized electromagnetic properties, such as filtering, on wearable applications.

  12. E-Textile Embroidered Metamaterial Transmission Line for Signal Propagation Control.

    Science.gov (United States)

    Moradi, Bahareh; Fernández-García, Raul; Gil, Ignacio

    2018-06-05

    In this paper, the utilization of common fabrics for the manufacturing of e-textile metamaterial transmission lines is investigated. In order to filter and control the signal propagation in the ultra-high frequency (UHF) range along the e-textile, a conventional metamaterial transmission line was compared with embroidered metamaterial particles. The proposed design was based on a transmission line loaded with one or several split-ring resonators (SRR) on a felt substrate. To explore the relations between physical parameters and filter performance characteristics, theoretical models based on transmission matrices' description of the filter constituent components were proposed. Excellent agreement between theoretical prediction, electromagnetic simulations, and measurement were found. Experimental results showed stop-band levels higher than -30 dB for compact embroidered metamaterial e-textiles. The validated results confirmed embroidery as a useful technique to obtain customized electromagnetic properties, such as filtering, on wearable applications.

  13. Quantitative determination of Quarternary alicyclic carbon atoms in coal and oil using nuclear magnetic resonance /sup 13/C method

    Energy Technology Data Exchange (ETDEWEB)

    Afonina, T.V.; Kushnarev, D.F.; Randin, O.I.; Shishkov, V.F.; Kalabin, G.A.

    1986-09-01

    Possibility is indicated for utilizing nuclear magnetic resonance spectroscopy for quantitative determination of Quarternary aliphatic carbon atoms in heavy hydrocarbon fractions of oil and coal extracts. C/sub n/, CH, CH/sub 2/ and CH/sub 3/ content in coal and oil samples are determined and corresponding resonance lines are referred to individual structural fragments (on the basis of nuclear magnetic resonance /sup 13/C spectra) of known saturated hydrocarbons. Tests were carried out on chloroform extracts of Irsha-Borodinsk coal, Mungunsk coal and paraffin and cycloparaffin of Sivinsk oil (b.p. over 550 C) fractions. Nuclear magnetic resonance spectra were obtained using Burker WP 200 spectrometer (50.13 MHz frequency). Results of the tests are given. 11 references.

  14. First observation of the Λ(1405) line shape in electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Y.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D’Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.

    2013-10-01

    We report the first observation of the line shape of the Λ ( 1405 ) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K + Λ ( 1405 ) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0 < Q 2 < 3.0 (GeV/ c ) 2 . The analysis utilized the decay channels Σ + π - of the Λ ( 1405 ) and p π 0 of the Σ + . Neither the standard Particle Data Group resonance parameters, nor free parameters fitting to a single Breit-Wigner resonance represent the line shape. In our fits, the line shape corresponds approximately to predictions of a two-pole meson-baryon picture of the Λ ( 1405 ) , with a lower mass pole near 1368 MeV/ c 2 and a higher mass pole near 1423 MeV/ c 2 . Furthermore, with increasing photon virtuality the mass distribution shifts toward the higher mass pole.

  15. The effect of family therapy on the changes in the severity of on-line game play and brain activity in adolescents with on-line game addiction

    Science.gov (United States)

    Han, Doug Hyun; Kim, Sun Mi; Lee, Young Sik; Renshaw, Perry F.

    2015-01-01

    We evaluated whether a brief 3-week family therapy intervention would change patterns of brain activation in response to affection and gaming cues in adolescents from dysfunctional families who met criteria for on-line game addiction. Fifteen adolescents with on-line game addiction and fifteen adolescents without problematic on-line game play and an intact family structure were recruited. Over 3 weeks, families were asked to carry out homework assignments focused on increasing family cohesion for more than 1 hour/day and 4 days/week. Before therapy, adolescents with on-line game addiction demonstrated decreased activity as measured by functional magnetic resonance imaging (fMRI) within the caudate, middle temporal gyrus, and occipital lobe in response to images depicting parental affection and increased activity of the middle frontal and inferior parietal in response scenes from on-line games, relative to healthy comparison subjects. Improvement in perceived family cohesion following 3 weeks of treatment was associated with an increase in the activity of the caudate nucleus in response to affection stimuli and was inversely correlated with changes in on-line game playing time. With evidence of brain activation changes in response to on-line game playing cues and images depicting parental love, the present findings suggest that family cohesion may be an important factor in the treatment of problematic on-line game playing. PMID:22698763

  16. Attenuation of spin resonance signals in media with the multi-component system of collectivized electrons

    International Nuclear Information System (INIS)

    Vojtenko, V.A.

    1995-01-01

    Universal relaxation theory of spectral line form at electron scattering light with spin flip at scattering of neutrons and at electron paramagnetic resonance, is plotted. Signals of spin resonances are shown to be subjected to strong attenuation caused by mutual transformations of various current carriers in multicomponent spin systems contained in intermetallic actinides with heavy fermions, in HTSC-crystals, in indirect highly alloyed semiconductors, solid solutions and superlattices. Physical reasons of observation of light strong scattering with spin flip in intermetallic actinides with semi-width independent of the wave vector are discussed. 19 refs

  17. Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion

    International Nuclear Information System (INIS)

    Borg, G.G.

    1994-01-01

    Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs

  18. 996 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...

  19. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    Science.gov (United States)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  20. Usefulness of magnetic resonance imaging (MRI) for patients with unilateral tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Katsura, Motoyasu [Sasebo Central Hospital, Nagasaki (Japan); Yoshida, Haruo; Kumagami, Hidetaka; Takahashi, Haruo [Nagasaki Univ. (Japan). Graduate School of Biomedical Sciences; Oosato, Yasuo [Sasebo City Hospital, Nagasaki (Japan); Dotsu, Mitsuru [National Nagasaki Medical Center, Omura (Japan)

    2004-06-01

    Audiography, X-ray (Stenvers view) and Magnetic Resonance Imaging (MRI) were performed on 88 patients exhibiting unilateral tinnitus. We diagnosed 4 cases (4.5%) of vestibular schwannoma and 41 cases (46.6%) of other abnormalities, including 2 cases of meningioma, 24 cases of old cerebral infarction, and 5 cases of mastoiditis. MRI was considered to be a first-line clinical examination for patients with unilateral tinnitus. (author)

  1. Usefulness of magnetic resonance imaging (MRI) for patients with unilateral tinnitus

    International Nuclear Information System (INIS)

    Katsura, Motoyasu; Yoshida, Haruo; Kumagami, Hidetaka; Takahashi, Haruo; Dotsu, Mitsuru

    2004-01-01

    Audiography, X-ray (Stenvers view) and Magnetic Resonance Imaging (MRI) were performed on 88 patients exhibiting unilateral tinnitus. We diagnosed 4 cases (4.5%) of vestibular schwannoma and 41 cases (46.6%) of other abnormalities, including 2 cases of meningioma, 24 cases of old cerebral infarction, and 5 cases of mastoiditis. MRI was considered to be a first-line clinical examination for patients with unilateral tinnitus. (author)

  2. Equilibrium and stochastic resonance in finite chains of noisy bistable elements

    International Nuclear Information System (INIS)

    Morillo, Manuel; Gomez-Ordonez, Jose; Casado, Jose Manuel

    2010-01-01

    Graphical abstract: We analyze the dependence of the equilibrium distribution of a collective variable of a chain on relevant parameters including the chain size and its connectivity. We also analyze the stochastic resonance effect of the same variable. - Abstract: Using numerical simulations, we analyze equilibrium properties of finite chains of coupled noisy bistable units and their response to weak time periodic forces. Finite chains with global as well as local (nearest neighbors) coupling are considered. We focus on the study of a collective variable defined as the arithmetic mean of the variables characterizing each element of the chain. By contrast with the case of infinite size chains, where the coexistence of several equilibrium distributions for the same values of parameters is possible, for finite chains just a single equilibrium distribution exists for given values of the parameters. We demonstrate that, regardless of the chain connectivity, there exist transition lines separating regions in parameter space where the equilibrium distribution function is either monomodal or multimodal. The location of the transition line depends on the chain connectivity and the size of the system. For driven chains, the response of the system shows stochastic resonant effects. For the two types of chains considered, both the power spectral amplification and the signal-to-noise ratio of the collective variable are analyzed as the noise strength, the coupling parameter and the number of bistable units in the system are varied. Compared with the effects observed in single unit systems, the collective variable shows a strong enhancement of the stochastic resonance effects.

  3. Parametric amplifications in the nonlinear transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, T; Sakai, J; Inoue, H [Toyama Univ., Takaoka (Japan). Faculty of Engineering

    1980-03-01

    The parametric amplification in a transmission line with nonlinear capacitors is analysed theoretically using the equations of three wave interactions. Since this line has two modes, high frequency and low frequency modes, there may occur some mode coupling phenomena through the resonant interactions. We consider three waves with wave number k sub(j) and frequency ..omega..sub(j) in resonance with each other, that is, ..omega../sub 1/ + ..omega../sub 2/ = ..omega../sub 3/ and k/sub 1/ + k/sub 2/ = k/sub 3/, where 0 <= ..omega../sub 1/ <= ..omega../sub 2/ <= ..omega../sub 3/ and k/sub 3/ >= 0. Such conditions are realized in our network and there exist two states: ''forward state'' (each group velocity is positive) and ''backward state'' (one of the group velocities is negative). The coupled equations of three waves has two constant pumps: high frequency (HF) pump and low frequency (LF) pump. Using linear approximations, we examine the possible types of parametric amplification and obtain the power gains depending on the frequency deviation. For only the case of HF pump we get the gain between signals with seme frequency and also get the gain from the low frequency signal to the high frequency signal (''up-conversion'') for the LF pump. The nonlinear analysis gives the exact relation between input and output signals. For the forward state the gain is absolutely suppressed by the ratio of pumping power to input power, while the gain of backward state has no finite maximum and there may appear an ''oscillating state'' if the pumping power is comparatively small.

  4. Self-induced steps in a small Josephson junction strongly coupled to a multimode resonator

    DEFF Research Database (Denmark)

    Larsen, A.; Jensen, H. Dalsgaard; Mygind, Jesper

    1991-01-01

    An equally spaced series of very large and nearly constant-voltage self-induced singularities has been observed in the dc I-V characteristics of a small Josephson tunnel junction strongly coupled to a resonant section of a superconducting transmission line. The system allows extremely high values...... of the coupling parameter. The current steps are due to subharmonic parametric excitation of the fundamental mode of the resonator loaded by the junction admittance. Using an applied magnetic field to vary the coupling parameter, we traced out half-integer steps as well as the mode steps known from more weakly...

  5. THE Lyα LINE PROFILES OF ULTRALUMINOUS INFRARED GALAXIES: FAST WINDS AND LYMAN CONTINUUM LEAKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Crystal L.; Wong, Joseph [Department of Physics, University of California, Santa Barbara, CA, 93106 (United States); Dijkstra, Mark [Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029, 0858 Oslo (Norway); Henry, Alaina [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Soto, Kurt T. [Institute for Astronomy, Department of Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Danforth, Charles W., E-mail: cmartin@physics.ucsb.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO, 80309 (United States)

    2015-04-10

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Lyα emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Lyα profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding −1000 km s{sup −1} in three H ii-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Lyα line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Lyα attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Lyα photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Lyα and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Lyα emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1–1% of the radiative cooling from the hot winds in the H ii-dominated ULIRGs.

  6. 817 RESONANCE September 2013

    Indian Academy of Sciences (India)

    IAS Admin

    817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...

  7. 369 RESONANCE April 2016

    Indian Academy of Sciences (India)

    IAS Admin

    369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.

  8. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  9. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-01-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state

  10. Resonance Fluorescence of a Trapped Four-Level Atom with Bichromatic Driving

    International Nuclear Information System (INIS)

    Bergou, J.; Jakob, M.; Abranyos, Y.

    1999-01-01

    The resonance fluorescence spectrum of a bichromatically driven four-level atom is polarization dependent. Very narrow lines occur in the incoherent parts of the spectrum for polarization directions which are different from that of the driving fields. The degree of squeezing has a maximum of 56% which should make it easily observable. The second-order correlation function exhibits anti bunching for zero time delay and strong super bunching for certain values of the interaction parameter and time delay. For these parameters resonant two-photon emission takes place in the form of polarization entangled photon pairs. The system can be a novel source of photons in the EPR and/or Bell states. Some experiments will be proposed which make use of this unique source. (Authors)

  11. Non-conventional ordering studied by magnetic resonance in Fe-doped manganites

    International Nuclear Information System (INIS)

    Gutierrez, J.; Siruguri, V.; Barandiaran, J.M.; Pena, A.; Lezama, L.; Rojo, T.

    2006-01-01

    Coexistence of ferromagnetic (FM) and paramagnetic (PM) phases in La 0.7 Pb 0.3 (Mn 1-x Fe x )O 3 (0.1=< x=<0.3) manganites is studied by the electron spin resonance (ESR) technique. Doping with Fe gives rise to a progressive decrease both in the low-temperature magnetic moment and magnetic order temperature values. Obtained spectra show narrow resonance signals above Curie temperature that transform to asymmetric Dyson-like signals as temperature decreases. The evolution of line width with temperature shows minima that correlate directly with the obtained paramagnetic Curie temperatures. Analysis of spectra above and below magnetic order temperatures reveals features of complex PM to FM transitions and coexistence of both type of phases in a wide range of temperatures

  12. Extended abstract: ergodic magnetic limiter experiments on TEXT with a 7/3 resonance

    International Nuclear Information System (INIS)

    deGrassie, J.S.; Ohyabu, N.; Brooks, N.H.

    1984-05-01

    The ergodic magnetic limiter coils on TEXT have been reconfigured to produce the primary helical perturbation resonance at m = 7 / n = 3. The experiments continue to demonstrate that the weak resonant perturbations modify the edge conditions in keeping with model predictions. We observe a reduction in the intrinsic impurity levels accompanying the helical current pulse, presumably the result of a reduction in the electron temperature in the edge. Heat follows the perturbed field lines to the limiter, generating heat load patterns which reflect the geometry of a magnetic island - limiter intersection. A strong spatial modulation of the electron density in the scrape-off-layer also reflects the helical mode structure

  13. Axisymmetric Alfvén resonances in a multi-component plasma at finite ion gyrofrequency

    Directory of Open Access Journals (Sweden)

    D. Yu. Klimushkin

    2006-05-01

    Full Text Available This paper deals with the spatial structure of zero azimuthal wave number ULF oscillations in a 1-D inhomogeneous multi-component plasma when a finite ion gyrofrequency is taken into account. Such oscillations may occur in the terrestrial magnetosphere as Pc1-3 waves or in the magnetosphere of the planet Mercury. The wave field was found to have a sharp peak on some magnetic surfaces, an analogy of the Alfvén (field line resonance in one-fluid MHD theory. The resonance can only take place for waves with frequencies in the intervals ω<ωch or Ω0<ω< ωcp, where ωch and ωcp are heavy and light ions gyrofrequencies, and Ω0 is a kind of hybrid frequency. Contrary to ordinary Alfvén resonance, the wave resonance under consideration takes place even at the zero azimuthal wave number. The radial component of the wave electric field has a pole-type singularity, while the azimuthal component is finite but has a branching point singularity on the resonance surface. The later singularity can disappear at some frequencies. In the region adjacent to the resonant surface the mode is standing across the magnetic shells.

  14. Magnetic resonance: safety measures and biological effects

    International Nuclear Information System (INIS)

    Gordillo, I.; Lafuente, J.; Fernandez, C.; Barbero, M.J.; Cascon, E.

    1997-01-01

    The biological effects of electromagnetic fields is currently a subject of great controversy. For this reason, magnetic resonance imaging (MRI) and spectroscopy are constantly under investigation. The source of the risk in MRI is associated with the three types of electromagnetic radiation to which the patient is exposed: the static magnetic field, variable (gradient) magnetic fields and radiofrequency fields. Each is capable of producing significant biological effects when employed at sufficient intensity. Patients exposed to risk sources are those situated within the lines of force of the magnetic field, ellipsoid lines that are arranged around the magnet, representing the strength of the surrounding field. To date, at the intensity normally utilized in MRI(<2T) and respecting the field limit recommendations established by the US Food and Drug Administration (FDA) for clinical use of this technique no adverse secondary biological effects have been reported. The known biological effects and other possible secondary effects are reviewed, and the recommended safety measures are discussed. (Author)

  15. The effect of the negative binomial distribution on the line-width of the micromaser cavity field

    International Nuclear Information System (INIS)

    Kremid, A. M.

    2009-01-01

    The influence of negative binomial distribution (NBD) on the line-width of the negative binomial distribution (NBD) on the line-width of the micromaser is considered. The threshold of the micromaser is shifted towards higher values of the pumping parameter q. Moreover the line-width exhibits sharp dips 'resonances' when the cavity temperature reduces to a very low value. These dips are very clear evidence for the occurrence of the so-called trapping states regime in the micromaser. This statistics prevents the appearance of these trapping states, namely by increasing the negative binomial parameter q these dips wash out and the line-width becomes more broadening. For small values of the parameter q the line-width at large values of q randomly oscillates around its transition line. As q becomes large this oscillatory behavior occurs at rarely values of q. (author)

  16. Influence of layer eccentricity on the resonant properties of cylindrical active coated nano-particles

    DEFF Research Database (Denmark)

    Thorsen, R. O.; Arslanagic, Samel

    2015-01-01

    We report on the influence of the layer eccentricity on the resonant properties of active coated nano-particles made of a silver core and gain impregnated silica shell illuminated by a near-by magnetic line source. For a fixed over-all size of the particle, designs with small and large cores...

  17. Observation of ESR spin flip satellite lines of trapped hydrogen atoms in solid H2 at 4.2 K

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo; Iwata, Nobuchika; Fueki, Kenji; Hase, Hirotomo

    1990-01-01

    ESR spectra of H atoms, produced in γ-irradiated solid H 2 , were studied at 4.2 K. Two main lines of the ESR spectra of H atoms that are separated by about 500 G accompanied two weak satellite lines. Both satellite lines and main lines decrease with the same decay rate. In the D 2 -H 2 mixtures, the satellite-line intensity depends upon the number of matrix protons. The spacing of the satellites from the main lines is equal to that of the NMR proton resonance frequency. It was concluded that the satellite lines were not ascribable to paired atoms but to spin flip lines due to an interaction of H atoms with matrix protons. The analysis of the spin flip lines and the main lines suggests that H atoms in solid H 2 are trapped in the substitutional site

  18. Line broadening analysis of implosion core conditions at Z using argon K-shell spectroscopy

    International Nuclear Information System (INIS)

    Burris-Mog, T.J.; Mancini, R.C.; Bailey, J.E.; Chandler, G.A.; Rochau, G.; Dunham, G.; Lake, P.W.; Peterson, K.; Slutz, S.A.; Mehlhorn, T.A.; Golovkin, I.E.; MacFarlane, J.J.

    2006-01-01

    We report on spectral line broadening analysis of Ar K-shell lines from argon-doped implosion cores driven by a dynamic hohlraum z-pinch. The observed Ar spectra include emissions from the resonance series in H- and He-like Ar ions, i.e., Lyα, Lyβ and Lyγ, and Heα, Heβ, Heγ and Heδ lines, respectively. The analysis accounts for opacity and Stark broadening to determine electron density, N e , and areal-density, NΔR, values for the ground state populations of H- and He-like Ar ions. Furthermore, these results are combined with the ratio of H- and He-like ground state populations to extract the electron temperature, T e

  19. Measurement and modeling of nitrogen resonance line profiles from an electrodeless discharge lamp

    International Nuclear Information System (INIS)

    Wood, D.R.; Skinner, G.B.; Lifshitz, A.

    1987-01-01

    Experimental profiles of the 1200 A resonance triplet of atomic nitrogen were measured for a variety of operating conditions of an end-on electrodeless lamp, and corresponding absorption curves were calculated. Each source profile was determined by fitting parameters to an empirical two-layer model, then convoluting with the instrumental function for comparison with experimental data. Each three-component profile was fitted with three adjustable parameters: an absorption parameter for each of the two layers and a third absorption parameter to adjust for radiation trapping. Curves of absorption as a function of atom concentration, calculated from these profiles, are very similar to the shock tube calibrations of Thielen and Roth in which a source of similar design has been used

  20. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    Science.gov (United States)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  1. Autoionization resonances in the photoabsorption spectra of Fe{sup n+} iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Konovalov, A. V., E-mail: alkonvit@yandex.ru; Ipatov, A. N., E-mail: andrei-ipatov@mail.ru [Peter the Great St. Petersburg State Polytechnic University (Russian Federation)

    2016-11-15

    The photoabsorption cross sections of a neutral iron atom, as well as positive Fe{sup +} and Fe{sup 2+} ions, are calculated in the relativistic random-phase approximation with exchange in the energy range 20–160 eV. The wavefunctions of the ground and excited states are calculated in the single-configuration Hartree–Fock–Dirac approximation. The resultant photoabsorption spectra are compared with experimental data and with the results of calculations based on the nonrelativistic spin-polarized version of the random-phase approximation with exchange. Series of autoionization resonance peaks, as well as giant autoionization resonance lines corresponding to discrete transitions 3p → 3d, are clearly observed in the photoabsorption cross sections. The conformity of the positions of calculated peaks of giant autoionization resonances with experimental data is substantially improved by taking into account additionally the correlation electron–electron interaction based on the model of the dynamic polarization potential.

  2. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  3. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis.

    Science.gov (United States)

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of 'Yangdao 6' was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments.

  4. Tumor microvascular changes in antiangiogenic treatment : Assessment by magnetic resonance contrast media of different molecular weights

    NARCIS (Netherlands)

    Turetschek, K; Preda, A; Novikov, [No Value; Brasch, RC; Weinmann, HJ; Wunderbaldinger, P; Roberts, TPL

    Purpose: To test magnetic resonance (MR) contrast media of different molecular weights (MWs) for their potential to characterize noninvasively microvascular changes in an experimental tumor treatment model. Materials and Methods: MD-MBA-435, a poorly differentiated human breast cancer cell line, was

  5. Use of Al XII and Mg XI lines as solar plasma diagnostics

    International Nuclear Information System (INIS)

    Bromage, B.J.I.; Phillips, K.J.H.; Keenan, F.P.; McCann, S.M.

    1989-09-01

    We present three sets of observations of n=1 to n=2 lines due to helium-like aluminium (Al XII), made during two solar flares (25 August, 1980 and 19 October, 1986), using the X-ray Polychromator on satellite. The observed temperature-sensitive line ratio G is shown to be consistent with previously observed close-coupling calculations, although the ratio R, which is both temperature and density-sensitive for lower-Z elements, is not sufficiently well determined from these data to say more than that the observed values of R are not inconsistent with the theoretical calculations. This region of the spectrum also includes the helium-like magnesium (Mg XI) 1 1 S-3 1 P line, and it is shown that the ratio of this line to the Al XII resonance (1 1 S-2 1 P) line is a more sensitive indicator of electron temperature than are the Al XII G and R ratios. We demonstrate that the three ratios may be used together in order to derive values of emission measure, electron temperature and electron density during these flares. (author)

  6. Detection of Moving Targets Using Soliton Resonance Effect

    Science.gov (United States)

    Kulikov, Igor K.; Zak, Michail

    2013-01-01

    The objective of this research was to develop a fundamentally new method for detecting hidden moving targets within noisy and cluttered data-streams using a novel "soliton resonance" effect in nonlinear dynamical systems. The technique uses an inhomogeneous Korteweg de Vries (KdV) equation containing moving-target information. Solution of the KdV equation will describe a soliton propagating with the same kinematic characteristics as the target. The approach uses the time-dependent data stream obtained with a sensor in form of the "forcing function," which is incorporated in an inhomogeneous KdV equation. When a hidden moving target (which in many ways resembles a soliton) encounters the natural "probe" soliton solution of the KdV equation, a strong resonance phenomenon results that makes the location and motion of the target apparent. Soliton resonance method will amplify the moving target signal, suppressing the noise. The method will be a very effective tool for locating and identifying diverse, highly dynamic targets with ill-defined characteristics in a noisy environment. The soliton resonance method for the detection of moving targets was developed in one and two dimensions. Computer simulations proved that the method could be used for detection of singe point-like targets moving with constant velocities and accelerations in 1D and along straight lines or curved trajectories in 2D. The method also allows estimation of the kinematic characteristics of moving targets, and reconstruction of target trajectories in 2D. The method could be very effective for target detection in the presence of clutter and for the case of target obscurations.

  7. Finite gratings of many thin silver nanostrips: Optical resonances and role of periodicity

    Directory of Open Access Journals (Sweden)

    Olga V. Shapoval

    2013-04-01

    Full Text Available We study numerically the optical properties of the periodic in one dimension flat gratings made of multiple thin silver nanostrips suspended in free space. Unlike other publications, we consider the gratings that are finite however made of many strips that are well thinner than the wavelength. Our analysis is based on the combined use of two techniques earlier verified by us in the scattering by a single thin strip of conventional dielectric: the generalized (effective boundary conditions (GBCs imposed on the strip median lines and the Nystrom-type discretization of the associated singular and hyper-singular integral equations (IEs. The first point means that in the case of the metal strip thickness being only a small fraction of the free-space wavelength (typically 5 nm to 50 nm versus 300 nm to 1 μm we can neglect the internal field and consider only the field limit values. In its turn, this enables reduction of the integration contour in the associated IEs to the strip median lines. This brings significant simplification of the scattering analysis while preserving a reasonably adequate modeling. The second point guarantees fast convergence and controlled accuracy of computations that enables us to compute the gratings consisting of hundreds of thin strips, with total size in hundreds of wavelengths. Thanks to this, in the H-polarization case we demonstrate the build-up of sharp grating resonances (a.k.a. as collective or lattice resonances in the scattering and absorption cross-sections of sparse multi-strip gratings, in addition to better known localized surface-plasmon resonances on each strip. The grating modes, which are responsible for these resonances, have characteristic near-field patterns that are distinctively different from the plasmons as can be seen if the strip number gets larger. In the E-polarization case, no such resonances are detectable however the build-up of Rayleigh anomalies is observed, accompanied by the reduced

  8. 1004 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    1004. RESONANCE │ November 2013. Page 2. 1005. RESONANCE │ November 2013. Page 3. 1006. RESONANCE │ November 2013. Page 4. 1007. RESONANCE │ November 2013. Page 5. 1008. RESONANCE │ November 2013. Page 6. 1009. RESONANCE │ November 2013. Page 7. 1010. RESONANCE ...

  9. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  10. Electron spin resonance (ESR), electron nuclear double resonance (ENDOR) and general triple resonance of irradiated biocarbonates

    International Nuclear Information System (INIS)

    Schramm, D.U.; Rossi, A.M.

    1996-01-01

    Several irradiated bicarbonates were studied by magnetic resonance techniques. Seven paramagnetic species, attributed to CO 2 - , SO 2 - and SO 3 - were identified. Comparison between radiation induced defects in bioaragonites and aragonite single-crystals show that isotropic and orthorhombic CO 2 - centers with broad line spectra are not produced in the latter samples. Vibrational and rotational properties of isotropic CO 2 - centers were studied from low temperature Q-band spectras. Vibrational frequency is determined from the 13 CO 2 - hyperfine spectrum and yielded ν 1.54 x 10 13 s -1 . The correlation time for isotropic CO 2 - , τc) = 1.2 x 10 -11 s (T = 300 K0, is typical of radicals rotating in liquids. ENDOR and General Triple spectroscopy show that orthorhombic CO 2 - centres are surrounded by water molecules located in the second nearest CO 2 2- sites at 5.14, 5.35 and 6.02 A. Water molecules replacing carbonates or as liquid inclusion of growth solution in local crystal imperfections may be responsible for the variety of orthorhombic and isotropic CO 2 - species, respectively. (author)

  11. Power line emission 50/60 Hz and Schumann resonances observed by microsatellite Chibis-M in the Earth's ionosphere

    Science.gov (United States)

    Dudkin, Denys; Pilipenko, Vyacheslav; Dudkin, Fedir; Pronenko, Vira; Klimov, Stanislav

    2015-04-01

    The overhead power lines are the sources of intense wideband electromagnetic (EM) emission, especially in ELF-VLF range, because of significant length (up to a few thousand kilometers) and strong 50/60 Hz currents with noticeable distortion. The radiation efficiency of the power line emission (PLE) increases with the harmonic order, so they are well observed by ground-based EM sensors. However their observations by low orbiting satellites (LEO) are very rare, particularly at basic harmonic 50/60 Hz, because of the ionospheric plasma opacity in ELF band. The Schumann resonance (SR) is the narrow-band EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity. The first five eigenmodes of the SR are 7.8, 14.3, 20.8, 27.3 and 33.8 Hz and, thus, SR harmonics are also strongly absorbed by the Earth ionosphere. The published numerical simulations show that the penetration depth of such an ELF emission into the Earth's ionosphere is limited to 50-70 km for electric field and 120-240 km for magnetic field. From this follows, that PLE and SR can hardly ever be detected by LEO satellites, i.e. above the F-layer of ionosphere. In spite of this fact, these emissions were recently observed with use of the electric field antennas placed on the satellites C/NOFS (USA) and Chibis-M (Russia). Microsatellite Chibis-M was launched on January 24, 2012, at 23:18:30 UTC from the cargo ship "Progress M-13M" to circular orbit with altitude ~500 km and inclination ~52° . Chibis-M mass is about 40 kg where one third is a scientific instrumentation. The dimensions of the microsatellite case are 0.26x0.26x0.54 m with the outside mounted solar panels, service and scientific instrumentation. The main scientific objective of Chibis-M is the theoretical model verification for the atmospheric gamma-ray bursts. It requires the study of the accompanying EM processes such as the plasma waves produced by the lightning discharges in the VLF band. Chibis-M decayed on 15

  12. Resonance vibrations in intake and exhaust pipes of in-line engines III : the inlet process of a four-stroke-cycle engine

    Science.gov (United States)

    Lutz, O

    1940-01-01

    Using a previously developed method, the boundary process of four-stroke-cycle engines are set up. The results deviate considerably from those obtained under the assumption that the velocity fluctuation is proportional to the cylinder piston motion. The deviation is less at the position of resonance frequencies. By the method developed, the effect of the resonance vibrations on the volumetric efficiency can be demonstrated.

  13. An Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator for Dielectric Sensing Applications

    Directory of Open Access Journals (Sweden)

    Izyani Mat Rusni

    2014-07-01

    Full Text Available This paper presents the design and development of a planar Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator (SRR for microwave sensors that operates at a resonance frequency around 5 GHz. The sensor consists of a microstrip transmission line loaded with two elements of rectangular SRR on both sides. The proposed metamaterial sensors were designed and fabricated on Rogers RT5880 substrate having dielectric constant of 2.2 and thickness of 0.787 mm. The final dimension of the proposed sensor was measured at 35 × 14 mm2. Measured results show good agreement with simulated ones as well as exhibiting high Q-factor for use in sensing application. A remarkably shift of resonance frequency is observed upon introduction of several sample with different dielectric value.

  14. 31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation.

    Science.gov (United States)

    Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K

    1995-04-01

    The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Time Resolved Spectrometry on the Test Beam Line at CTF3

    CERN Document Server

    Olvegård, M; Lefèvre, T; Döbert, S; Adli, E

    2009-01-01

    The CTF3 provides a high current (28 A) high frequency (12 GHz) electron beam, which is used to generate high power radiofrequency pulses at 12 GHz by decelerating the electrons in resonant structures. A Test Beam Line (TBL) is currently being built in order to prove the efficiency and the reliability of the RF power production with the lowest level of particle losses. As the beam propagates along the line, its energy spread grows up to 60%. For instrumentation, this unusual characteristic implies the development of new and innovative techniques. One of the most important tasks is to measure the beam energy spread with a fast time resolution. The detector must be able to detect the energy transient due to beam loading in the decelerating structures (nanosecond) but should also be capable to measure bunch-to-bunch fluctuations (12 GHz). This paper presents the design of the spectrometer line detectors.

  16. Even order snake resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1993-01-01

    We found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune shift of imperfection resonances, each snake resonance splits into two

  17. Frequency and magnetic field mapping of magnetoelastic spin pumping in high overtone bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2018-05-01

    Full Text Available We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE dc voltage driven by an acoustic spin pumping (ASP in a bulk acoustic wave (BAW resonator formed by a Al-ZnO-Al-YIG(1-GGG-YIG(2-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ∼ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2 to Pt in the area ∼ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H on the (f, H plane. At the same time a significant asymmetry of the VISHE(fn(H value in reference to the magnetoelastic resonance (MER line fMER(H position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.

  18. Sample-size resonance, ferromagnetic resonance and magneto-permittivity resonance in multiferroic nano-BiFeO3/paraffin composites at room temperature

    International Nuclear Information System (INIS)

    Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan

    2017-01-01

    In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO 3 /paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO 3 . The observed magneto-permittivity resonance in multiferroic nano-BiFeO 3 is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO 3 /paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO 3 /paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO 3 /paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO 3 is a sample-size resonance. • Nano-BiFeO 3 /paraffin composite with large thickness shows a sample-size resonance.

  19. Zeroth order resonator (ZOR) based RFID antenna design

    Science.gov (United States)

    Masud, Muhammad Mubeen

    Meander-line and multi-layer antennas have been used extensively to design compact UHF radio frequency identification (RFID) tags; however the overall size reduction of meander-line antennas is limited by the amount of parasitic inductance that can be introduced by each meander-line segment, and multi-layer antennas can be too costly. In this study, a new compact antenna topology for passive UHF RFID tags based on zeroth order resonant (ZOR) design techniques is presented. The antenna consists of lossy coplanar conductors and either inter-connected inter-digital capacitor (IDC) or shunt inductor unit-cells with a ZOR frequency near the operating frequency of the antenna. Setting the ZOR frequency near the operating frequency is a key component in the design process because the unit-cells chosen for the design are inductive at the operating frequency. This makes the unit-cells very useful for antenna miniaturization. These new designs in this work have several benefits: the coplanar layout can be printed on a single layer, matching inductive loops that reduce antenna efficiency are not required and ZOR analysis can be used for the design. Finally, for validation, prototype antennas are designed, fabricated and tested.

  20. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    International Nuclear Information System (INIS)

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M; Van der Hout, R; Hulshof, J; Fey, R H B

    2010-01-01

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators