WorldWideScience

Sample records for lightning warning system

  1. LDAR, A Three-Dimensional Lightning Warning System: Its Development and Use by the Government, and Transition to Public Availability

    Science.gov (United States)

    Starr, Stan; Sharp, David; Merceret, Francis; Madura, John; Murphy, Martin

    1998-01-01

    NASA, at the John F. Kennedy Space Center (KSC), developed and operates a unique high precision lightning location system to provide lightning related weather warnings. These warnings are used to stop lightning-sensitive operations such as space vehicle launches and ground operations where equipment and personnel are at risk. The data is provided to the Range Weather Operations [45th Weather Squadron, U. S. Air Force (USAF)] where it is used with other meteorological data to issue weather advisories and warnings for Cape Canaveral Air Station (CCAS) and KSC operations. This system, called Lightning Detection and Ranging (LDAR), provides users with a graphical display in three dimensions of 66 MHz radio frequency events generated by lightning processes. The locations of these events provide a sound basis for the prediction of lightning hazards. NASA and Global Atmospherics, Inc. are developing a new system that will replace the unique LDAR components with commercially available and maintainable components having improved capabilities. These components will be phased in to ensure full continuity and access to this important warning technology. These LDAR systems are expected to eventually be available for installation and use by the public at specialized facilities, such as airports, and for general weather warnings via the National Weather Service (NWS) or television broadcast. The NWS in Melbourne has had access to real-time LDAR data since 1993 on an experimental basis. This use of LDAR has shown promise for the improvement of aviation forecasts and severe weather warnings. More so, it has opened the door to investigate the feasibility of issuing lightning-related public advisories. The success of its early use suggests that this technology may improve safety and potentially save lives, therefore constituting a significant benefit to the public. This paper describes the LDR system, the plans and progress of these upgrades, and the potential benefits of its use.

  2. Lightning risk warnings based on atmospheric electric field measurements in Brazil

    Directory of Open Access Journals (Sweden)

    Marco Antonio da Silva Ferro*

    2011-09-01

    Full Text Available This paper presents a methodology that employs the electrostatic field variations caused by thundercloud formation or displacement to generate lightning warnings over a region of interest in Southeastern Brazil. These warnings can be used to prevent accidents during hazardous operations, such as the manufacturing, loading, and test of motor-rockets. In these cases, certain equipment may be moved into covered facilities and personnel are required to take shelter. It is also possible to avoid the threat of natural and triggered lightning to launches. The atmospheric electric field database, including the summer seasons of 2007/2008 and 2008/2009 (from November to February, and, for the same period and region, the cloud-to-ground lightning data provided by the Brazilian lightning detection network – BrasilDAT – were used in order to perform a comparative analysis between the lightning warnings and the cloud-to- ground lightning strikes that effectively occurred inside the area of concern. The analysis was done for three areas surrounding the sensor installation defined as circles with 5, 10 and 15 km of radius to determine the most effective detection range. For each area it was done using several critical electric field thresholds: +/- 0.5; +/- 0.8; +/- 0.9; +/- 1.0; +/- 1.2; and +/- 1.5 kV/m. As a result of the reduction of atmospheric electric field data provided by the sensor installed in area of concern and lightning provided by BrasilDAT, it was possible, for each of the areas of alert proposals, to obtain the following parameters: the number of effective alarms; the number of false alarms; and the number of failure to warning. From the analysis of these parameters, it was possible to conclude that, apparently, the most interesting critical electric field threshold to be used is the level of 0.9 kV/m in association with a distance range of 10 km around the point where the sensor is installed.

  3. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    Science.gov (United States)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey

    2015-01-01

    . 2011) to monitor lightning trends and to anticipate/forecast severe weather (hail > or =2.5 cm, winds > or =25 m/s, tornadoes). The result will be a time-continuous algorithm that uses GOES satellite, radar fields, and HRRR model fields to nowcast first-flash LI and QL, and subsequently monitors lightning trends on a perstorm basis within the LJ algorithm for possible severe weather occurrence out to > or =3 hours. The LI-QL-LJ product will also help prepare the operational forecast community for Geostationary Lightning Mapper (GLM) data expected in late 2015, as these data are monitored for ongoing convective storms. The LI-QL-LJ product will first predict where new lightning is highly probable using GOES imagery of developing cumulus clouds, followed by n analysis of NWS (dual-polarization) radar indicators (reflectivity at the -10 C altitude) of lightning occurrence, to increase confidence that LI is immanent. Once lightning is observed, time-continuous lightning mapping array and Pseudo-GLM observations will be analyzed to assess trends and the severe weather threat as identified by trends in lightning (i.e. LJs). Additionally, 5- and 15-min GOES imagery will then be evaluated on a per-storm basis for overshooting and other cloud-top features known to be associated with severe storms. For the processing framework, the GOES-R 0-1 hour convective initiation algorithm's output will be developed within the Warning Decision Support System - Integrated Information (WDSS-II) tracking tool, and merged with radar and lightning (LMA/Psuedo-GLM) datasets for active storms. The initial focus of system development will be over North Alabama for select lightning-active days in summer 2014, yet will be formed in an expandable manner. The lightning alert tool will also be developed in concert with National Weather Service (NWS) forecasters to meet their needs for real-time, accurate first-flash LI and timing, as well as anticipated lightning trends, amounts, continuation and

  4. The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning

    Science.gov (United States)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.; hide

    2014-01-01

    for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.

  5. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    Science.gov (United States)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey; Chronis, Themis

    2015-01-01

    Using satellite-based methods that provide accurate 0-1 hour convective initiation (CI) nowcasts, and rely on proven success coupling satellite and radar fields in the Corridor Integrated Weather System (CIWS; operated and developed at MIT-Lincoln Laboratory), to subsequently monitor for first-flash lightning initiation (LI) and later period lightning trends as storms evolve. Enhance IR-based methods within the GOES-R CI Algorithm (that must meet specific thresholds for a given cumulus cloud before the cloud is considered to have an increased likelihood of producing lightning next 90 min) that forecast LI. Integrate GOES-R CI and LI fields with radar thresholds (e.g., first greater than or equal to 40 dBZ echo at the -10 C altitude) and NWP model data within the WDSS-II system for LI-events from new convective storms. Track ongoing lightning using Lightning Mapping Array (LMA) and pseudo-Geostationary Lightning Mapper (GLM) data to assess per-storm lightning trends (e.g., as tied to lightning jumps) and outline threat regions. Evaluate the ability to produce LI nowcasts through a "lightning threat" product, and obtain feedback from National Weather Service forecasters on its value as a decision support tool.

  6. Assessments of Total Lightning Data Utility in Weather Forecasting

    Science.gov (United States)

    Buechler, Dennis E.; Goodman, Steve; LaCasse, Katherine; Blakeslee, Richard; Darden, Chris

    2005-01-01

    National Weather Service forecasters in Huntsville, Alabama have had access to total lightning data from the North Alabama Lightning Mapping Array (LMA) since 2003. Forecasters can monitor real-time total lightning observations on their AWIPS (Advanced Weather Interactive Processing System (AWIPS) workstations. The lightning data is used to supplement other observations such as radar and satellite data. The lightning data is updated every 2 min, providing more timely evidence of storm growth or decay than is available from 5 min radar scans. Total lightning observations have been used to positively impact warning decisions in a number of instances. A number of approaches are being pursued to assess the usefulness of total lightning measurements to the operational forecasting community in the warning decision process. These approaches, which include both qualitative and quantitative assessment methods, will be discussed. submitted to the American Meteorological Society (AMS) Conference on Meteorological Applications of Lightning Data to be held in San Diego, CA January 9-13,2005. This will be a presentation and an extended abstract will be published on a CD available from the AMS.

  7. Situational Lightning Climatologies

    Science.gov (United States)

    Bauman, William; Crawford, Winifred

    2010-01-01

    Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. It was believed there were two flow systems, but it has been discovered that actually there are seven distinct flow regimes. The Applied Meteorology Unit (AMU) has recalculated the lightning climatologies for the Shuttle Landing Facility (SLF), and the eight airfields in the National Weather Service in Melbourne (NWS MLB) County Warning Area (CWA) using individual lightning strike data to improve the accuracy of the climatologies. The software determines the location of each CG lightning strike with 5-, 10-, 20-, and 30-nmi (.9.3-, 18.5-, 37-, 55.6-km) radii from each airfield. Each CG lightning strike is binned at 1-, 3-, and 6-hour intervals at each specified radius. The software merges the CG lightning strike time intervals and distance with each wind flow regime and creates probability statistics for each time interval, radii, and flow regime, and stratifies them by month and warm season. The AMU also updated the graphical user interface (GUI) with the new data.

  8. Using Total Lightning Observations to Enhance Lightning Safety

    Science.gov (United States)

    Stano, Geoffrey T.

    2012-01-01

    Lightning is often the underrated threat faced by the public when it comes to dangerous weather phenomena. Typically, larger scale events such as floods, hurricanes, and tornadoes receive the vast majority of attention by both the general population and the media. This comes from the fact that these phenomena are large, longer lasting, can impact a large swath of society at one time, and are dangerous events. The threat of lightning is far more isolated on a case by case basis, although millions of cloud-to-ground lightning strikes hit this United States each year. While attention is given to larger meteorological events, lightning is the second leading cause of weather related deaths in the United States. This information raises the question of what steps can be taken to improve lightning safety. Already, the meteorological community s understanding of lightning has increased over the last 20 years. Lightning safety is now better addressed with the National Weather Service s access to the National Lightning Detection Network data and enhanced wording in their severe weather warnings. Also, local groups and organizations are working to improve public awareness of lightning safety with easy phrases to remember, such as "When Thunder Roars, Go Indoors." The impacts can be seen in the greater array of contingency plans, from airports to sports stadiums, addressing the threat of lightning. Improvements can still be made and newer technologies may offer new tools as we look towards the future. One of these tools is a network of sensors called a lightning mapping array (LMA). Several of these networks exist across the United States. NASA s Short-term Prediction Research and Transition Center (SPoRT), part of the Marshall Spaceflight Center, has access to three of these networks from Huntsville, Alabama, the Kennedy Space Center, and Washington D.C. The SPoRT program s mission is to help transition unique products and observations into the operational forecast environment

  9. Nowcasting of Lightning-Related Accidents in Africa

    Science.gov (United States)

    Ihrlich, Laura; Price, Colin

    2016-04-01

    Tropical Africa is the world capital of thunderstorm activity with the highest density of strikes per square kilometer per year. As a result it is also the continent with perhaps the highest casualties and injuries from direct lightning strikes. This region of the globe also has little lightning protection of rural homes and schools, while many casualties occur during outdoor activities (e.g. farming, fishing, sports, etc.) In this study we investigated two lightning-caused accidents that got wide press coverage: A lightning strike to a Cheetah Center in Namibia which caused a huge fire and great destruction (16 October 2013), and a plane crash in Mali where 116 people died (24 July 2014). Using data from the World Wide Lightning Location Network (WWLLN) we show that the lightning data alone can provide important early warning information that can be used to reduce risks and damages and loss of life from lightning strikes. We have developed a now-casting scheme that allows for early warnings across Africa with a relatively low false alarm rate. To verify the accuracy of our now-cast, we have performed some statistical analysis showing relatively high skill at providing early warnings (lead time of a few hours) based on lightning alone. Furthermore, our analysis can be used in forensic meteorology for determining if such accidents are caused by lightning strikes.

  10. Lightning - Understanding It and Protecting Systems from Its Effects, UCRL-53925

    Energy Technology Data Exchange (ETDEWEB)

    Hasbrouck, R. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1989-04-10

    This tutorial will raise the reader's level of lighting consciousness by providing an overview of the atmospheric electrification process and by discussing the development and characteristics of a lightning discharge. Next, techniques and instrumentation for lightning threat warning, detection and tracking will be presented. Finally, the principles of protection will be discussed along with several methods for testing that protection.

  11. Emergency Preparedness and Response - Lightning

    Science.gov (United States)

    ... for Pet Owners Frequently Asked Questions Additional Information Lightning Language: English Español (Spanish) Recommend on Facebook Tweet ... you know what to do when you see lightning or when you hear thunder as a warning. ...

  12. Lightning Applications in Weather and Climate Research

    Science.gov (United States)

    Price, Colin G.

    2013-11-01

    Thunderstorms, and lightning in particular, are a major natural hazard to the public, aviation, power companies, and wildfire managers. Lightning causes great damage and death every year but also tells us about the inner working of storms. Since lightning can be monitored from great distances from the storms themselves, lightning may allow us to provide early warnings for severe weather phenomena such as hail storms, flash floods, tornadoes, and even hurricanes. Lightning itself may impact the climate of the Earth by producing nitrogen oxides (NOx), a precursor of tropospheric ozone, which is a powerful greenhouse gas. Thunderstorms themselves influence the climate system by the redistribution of heat, moisture, and momentum in the atmosphere. What about future changes in lightning and thunderstorm activity? Many studies show that higher surface temperatures produce more lightning, but future changes will depend on what happens to the vertical temperature profile in the troposphere, as well as changes in water balance, and even aerosol loading of the atmosphere. Finally, lightning itself may provide a useful tool for tracking climate change in the future, due to the nonlinear link between lightning, temperature, upper tropospheric water vapor, and cloud cover.

  13. Lightning Attachment Estimation to Wind Turbines by Utilizing Lightning Location Systems

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim; Lopez, Javier

    2016-01-01

    three different wind power plant locations are analyzed and the impact of varying data qualities is evaluated regarding the ability to detect upward lightning. This work provides a variety of background information which is relevant to the exposure assessment of wind turbine and includes practical......The goal of a lightning exposure assessment is to identify the number, type and characteristics of lightning discharges to a certain structure. There are various Lightning Location System (LLS) technologies available, each of them are characterized by individual performance characteristics....... In this work, these technologies are reviewed and evaluated in order to obtain an estimation of which technologies are eligible to perform a lightning assessment to wind turbines. The results indicate that ground-based mid-range low frequency (LF) LLS systems are most qualified since they combine a wide...

  14. Exploring radar and lightning variables associated with the Lightning Jump. Can we predict the size of the hail?

    Science.gov (United States)

    Farnell, C.; Rigo, T.; Pineda, N.

    2018-04-01

    Severe weather regularly hits the Lleida Plain (western part of Catalonia, NE of Iberian Peninsula), causing important damage to the local agriculture. In order to help severe weather surveillance tasks, the Meteorological Service of Catalonia (SMC) implemented in 2016 the Lightning Jump (LJ) algorithm as operative warning tool after an exhaustive validation phase of several months. The present study delves into the analysis of the relationship between Lightning Jump alerts and hail occurrence, through the analysis of lightning and radar variables in the moment when the warning is issued. Overall, the study has consisted of the analysis of 149 cases, grouping them into two categories according to hail size: small and large hail, with a threshold of 2 cm of diameter. The thunderstorms related to big sized hail presented remarkable differences in some of the variables analysed that could help forecast the size of hail when the LJ alert is triggered. Moreover, other variables have been allowed to observe and to corroborate how the LJ algorithm works during the 13 min before the warning is triggered.

  15. Wind turbine with lightning protection system

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  16. A lightning prevention system for nuclear operations

    International Nuclear Information System (INIS)

    Lanzoni, J.A.; Carpenter, R.B.; Tinsley, R.H.

    1994-01-01

    Lightning presents a significant threat to the uninterrupted operation of nuclear power generation facilities. There exists two categories of lightning protection systems-collectors and preventors. Collectors are air terminals, overhead shield wires and other devices designed to collect incoming lightning strikes. Preventors, on the other hand, lower the electrical potential between a thundercloud and ground to a level lower than that required to collect a strike. The Dissipation Array reg-sign Systems prevents lightning strikes from terminating in the protected area, consequently eliminating both the direct hazard and indirect effects of lightning. Over 1,600 Dissipation Array reg-sign Systems are currently in service, with more than 10,500 system-years of operating experience and a historical success rate of over ninety-nine percent. Lightning Eliminators ampersand Consultants has fulfilled 24 contracts for Dissipation Array reg-sign Systems at nuclear power generation facilities

  17. 14 CFR 25.1316 - System lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false System lightning protection. 25.1316... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1316 System lightning... systems to perform these functions are not adversely affected when the airplane is exposed to lightning...

  18. Protection of LV system against lightning

    OpenAIRE

    Yordanova Nedyalkova, Greta

    2010-01-01

    Lightning is a natural hazard and one of the greatest local mysteries. Scientists have not fully understood the mechanism of lightning. It is one of the most beautiful displays in nature and one of the nature's most dangerous phenomenon known to man. Overvoltage due to lightning is a very important problem of LV systems. Some lightning flashes damage buildings and a few kill or injure people and animals, either directly or indirectly, by causing fire and explosions. The need for protect...

  19. 14 CFR 23.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...

  20. Tropic lightning: myth or menace?

    Science.gov (United States)

    McCarthy, John

    2014-11-01

    Lightning is one of the leading causes of death related to environmental disaster. Of all lightning fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai'i has had zero documented lightning fatalities since weather data tracking was initiated in 1959. There is a common misconception that lightning does not strike the ground in Hawai'i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. Lightning damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on "reverse triage" and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications.

  1. Pre-Launch GOES-R Risk Reduction Activities for the Geostationary Lightning Mapper

    Science.gov (United States)

    Goodman, S. J.; Blakeslee, R. J.; Boccippio, D. J.; Christian, H. J.; Koshak, W. J.; Petersen, W. A.

    2005-01-01

    The GOES-R Geostationary Lightning Mapper (GLM) is a new instrument planned for GOES-R that will greatly improve storm hazard nowcasting and increase warning lead time day and night. Daytime detection of lightning is a particularly significant technological advance given the fact that the solar illuminated cloud-top signal can exceed the intensity of the lightning signal by a factor of one hundred. Our approach is detailed across three broad themes which include: Data Processing Algorithm Readiness, Forecast Applications, and Radiance Data Mining. These themes address how the data will be processed and distributed, and the algorithms and models for developing, producing, and using the data products. These pre-launch risk reduction activities will accelerate the operational and research use of the GLM data once GOES-R begins on-orbit operations. The GLM will provide unprecedented capabilities for tracking thunderstorms and earlier warning of impending severe and hazardous weather threats. By providing direct information on lightning initiation, propagation, extent, and rate, the GLM will also capture the updraft dynamics and life cycle of convective storms, as well as internal ice precipitation processes. The GLM provides information directly from the heart of the thunderstorm as opposed to cloud-top only. Nowcasting applications enabled by the GLM data will expedite the warning and response time of emergency management systems, improve the dispatch of electric power utility repair crews, and improve airline routing around thunderstorms thereby improving safety and efficiency, saving fuel and reducing delays. The use of GLM data will assist the Bureau of Land Management (BLM) and the Forest Service in quickly detecting lightning ground strikes that have a high probability of causing fires. Finally, GLM data will help assess the role of thunderstorms and deep convection in global climate, and will improve regional air quality and global chemistry/climate modeling

  2. Risk Analysis Method Based on FMEA for Transmission Line in Lightning Hazards

    Directory of Open Access Journals (Sweden)

    You-Yuan WANG

    2014-05-01

    Full Text Available Failure rate of transmission line and reliability of power system are significantly affected by Lightning meteorological factor. In view of the complexity and variability of Lightning meteorological factors, this paper presents lightning trip-out rate model of transmission line in considering distribution of ground flash density and lightning day hours. Meanwhile, presents a failure rate model of transmission line in different condition, and a risk analysis method for transmission line considering multiple risk factors based on risk quantification. This method takes Lightning meteorological factor as the main evaluation standard, and establishes risk degree evaluation system for transmission line including another five evaluation standard. Put forward the risk indicators by quantify the risk factors based on experience date of transmission line in service. Based on the risk indexes comprehensive evaluation is conducted, and the evaluation result closer to practice is achieved, providing basis for transmission line risk warning and maintenance strategy. Through the risk analysis for 220 kV transmission line in a certain power supply bureau, the effectiveness of the proposed method is validated.

  3. Expanding the Operational Use of Total Lightning Ahead of GOES-R

    Science.gov (United States)

    Stano, Geoffrey T.; Wood, Lance; Garner, Tim; Nunez, Roland; Kann, Deirdre; Reynolds, James; Rydell, Nezette; Cox, Rob; Bobb, William R.

    2015-01-01

    NASA's Short-term Prediction Research and Transition Center (SPoRT) has been transitioning real-time total lightning observations from ground-based lightning mapping arrays since 2003. This initial effort was with the local Weather Forecast Offices (WFO) that could use the North Alabama Lightning Mapping Array (NALMA). These early collaborations established a strong interest in the use of total lightning for WFO operations. In particular the focus started with warning decision support, but has since expanded to include impact-based decision support and lightning safety. SPoRT has used its experience to establish connections with new lightning mapping arrays as they become available. The GOES-R / JPSS Visiting Scientist Program has enabled SPoRT to conduct visits to new partners and expand the number of operational users with access to total lightning observations. In early 2014, SPoRT conducted the most recent visiting scientist trips to meet with forecast offices that will used the Colorado, Houston, and Langmuir Lab (New Mexico) lightning mapping arrays. In addition, SPoRT met with the corresponding Center Weather Service Units (CWSUs) to expand collaborations with the aviation community. These visits were an opportunity to learn about the forecast needs of each office visited as well as to provide on-site training for the use of total lightning, setting the stage for a real-time assessment during May-July 2014. With five lightning mapping arrays covering multiple geographic locations, the 2014 assessment has demonstrated numerous uses of total lightning in varying situations. Several highlights include a much broader use of total lightning for impact-based decision support ranging from airport weather warnings, supporting fire crews, and protecting large outdoor events. The inclusion of the CWSUs has broadened the operational scope of total lightning, demonstrating how these data can support air traffic management, particularly in the Terminal Radar Approach

  4. Lightning magnetic field measuring system in Bogota

    OpenAIRE

    Escobar Alvarado, Oscar Fernardo

    2013-01-01

    This thesis presents the configuration and performance of a lightning radiated electromagnetic field measuring system in Bogotá Colombia. The system is composed by both magnetic and electric field measuring systems working as separated sensors. The aim of the thesis is the design and construction of a Magnetic Field Measuring System and the implementation of a whole lightning measuring system in Bogotá. The theoretical background, design process, construction and implementation of the system ...

  5. 14 CFR 25.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 25.954...

  6. 14 CFR 27.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 27.954...

  7. 14 CFR 29.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 29.954...

  8. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    Science.gov (United States)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  9. Lightning characteristics of derecho producing mesoscale convective systems

    Science.gov (United States)

    Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.

    2016-06-01

    Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.

  10. Lightning protection of oil and gas industrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Bouquegneau, Christian [Polytechnical University of Mons (Belgium)

    2007-07-01

    The paper brings some cases and presents the general principles, what the IEC 62305 international standard says, the warning and avoidance and the conclusion about lightning protection of oil and gas industrial plants.

  11. Cloud-to-ground lightning activity in Colombia: A 14-year study using lightning location system data

    Science.gov (United States)

    Herrera, J.; Younes, C.; Porras, L.

    2018-05-01

    This paper presents the analysis of 14 years of cloud-to-ground lightning activity observation in Colombia using lightning location systems (LLS) data. The first Colombian LLS operated from 1997 to 2001. After a few years, this system was upgraded and a new LLS has been operating since 2007. Data obtained from these two systems was analyzed in order to obtain lightning parameters used in designing lightning protection systems. The flash detection efficiency was estimated using average peak current maps and some theoretical results previously published. Lightning flash multiplicity was evaluated using a stroke grouping algorithm resulting in average values of about 1.0 and 1.6 for positive and negative flashes respectively and for both LLS. The time variation of this parameter changes slightly for the years considered in this study. The first stroke peak current for negative and positive flashes shows median values close to 29 kA and 17 kA respectively for both networks showing a great dependence on the flash detection efficiency. The average percentage of negative and positive flashes shows a 74.04% and 25.95% of occurrence respectively. The daily variation shows a peak between 23 and 02 h. The monthly variation of this parameter exhibits a bimodal behavior typical of the regions located near The Equator. The lightning flash density was obtained dividing the study area in 3 × 3 km cells and resulting in maximum average values of 25 and 35 flashes km- 2 year- 1 for each network respectively. A comparison of these results with global lightning activity hotspots was performed showing good correlation. Besides, the lightning flash density variation with altitude shows an inverse relation between these two variables.

  12. Performance Study of Earth Networks Total Lightning Network using Rocket-Triggered Lightning Data in 2014

    Science.gov (United States)

    Heckman, S.

    2015-12-01

    Modern lightning locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in lightning research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total Lightning Network (ENTLN) is studied using rocket-triggered lightning data acquired atthe International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground lightning.Earth Networks has developed a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.

  13. Magnetic field generated by lightning protection system

    Science.gov (United States)

    Geri, A.; Veca, G. M.

    1988-04-01

    A lightning protection system for today's civil buildings must be electromagnetically compatible with the electronic equipment present in the building. This paper highlights a mathematic model which analyzes the electromagnetic effects in the environment in which the lightning protection system is. This model is developed by means of finite elements of an electrical circuit where each element is represented by a double pole circuit according to the trapezoidal algorithm developed using the finite difference method. It is thus possible to analyze the electromagnetic phenomena associated with the transient effects created by the lightning stroke even for a high-intensity current. Referring to an elementary system comprised of an air terminal, a down conductor, and a ground terminal, numerical results are here laid out.

  14. Lightning protecting materials used on radar system

    NARCIS (Netherlands)

    Blaj, M.A.; Damstra, Geert C.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2009-01-01

    Because of the extensive use in modern systems of very sensitive electronic components, lightning strikes does not represent only a threat, but something that cannot be neglected anymore and safety hazards caused by direct and indirect lightning to the aircraft or naval industry. Everyday new

  15. Lightning Overvoltage on Low-Voltage Distribution System

    Science.gov (United States)

    Michishita, Koji

    The portion of the faults of a medium-voltage line, cause by lightning, tends to increase with often reaching beyond 30%. However, due to the recent progress of the lightning protection design, the number of faults has decreased to 1/3 of that at 30 years ago. As for the low-voltage distribution line, the fault rate has been estimated primarily, although the details of the overvoltages have not been studied yet. For the further development of highly information-oriented society, improvement of reliability of electric power supply to the appliance in a low-voltage customer will be socially expected. Therefore, it is important to establish effective lightning protection design of the low-voltage distribution system, defined to be composed of lines having mutual interaction on the customers' electric circuits, such as a low-voltage distribution line, an antenna line and a telecommunication line. In this report, the author interprets the recent research on the lightning overvoltage on a low-voltage distribution system.

  16. LOFAR Lightning Imaging: Mapping Lightning With Nanosecond Precision

    Science.gov (United States)

    Hare, B. M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J. R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T. N. G.; ter Veen, S.; Winchen, T.

    2018-03-01

    Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (˜3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.

  17. The start of lightning: Evidence of bidirectional lightning initiation

    OpenAIRE

    van der Velde, Oscar; Williams, Earle R.; Montanya, Joan

    2015-01-01

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leader...

  18. Lightning Protection and Detection System

    Science.gov (United States)

    Dudley, Kenneth L. (Inventor); Szatkowski, George N. (Inventor); Woodard, Marie (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor); Wang, Chuantong (Inventor); Mielnik, John J. (Inventor); Koppen, Sandra V. (Inventor); Smith, Laura J. (Inventor)

    2017-01-01

    A lightning protection and detection system includes a non-conductive substrate material of an apparatus; a sensor formed of a conductive material and deposited on the non-conductive substrate material of the apparatus. The sensor includes a conductive trace formed in a continuous spiral winding starting at a first end at a center region of the sensor and ending at a second end at an outer corner region of the sensor, the first and second ends being open and unconnected. An electrical measurement system is in communication with the sensor and receives a resonant response from the sensor, to perform detection, in real-time, of lightning strike occurrences and damage therefrom to the sensor and the non-conductive substrate material.

  19. Simulating lightning tests to radar system

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2010-01-01

    The risk of destruction due to lightning makes simulating the effects of lightning strikes a necessity. We modeled a radar enclosure and simulated the effect of a lightning strike. The results have been validated using full threat lightning current tests.

  20. The start of lightning: Evidence of bidirectional lightning initiation.

    Science.gov (United States)

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R

    2015-10-16

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.

  1. Situational Lightning Climatologies for Central Florida: Phase IV: Central Florida Flow Regime Based Climatologies of Lightning Probabilities

    Science.gov (United States)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-, 20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  2. Lightning vulnerability of nuclear explosive test systems at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.

    1985-01-01

    A task force chartered to evaluate the effects of lightning on nuclear explosives at the Nevada Test Site has made several recommendations intended to provide lightning-invulnerable test device systems. When these recommendations have been implemented, the systems will be tested using full-threat-level simulated lightning

  3. Packaging Waste and Hitting Home Runs: How Education and Lightning Strike Detection Technology Supports Company and Community Activities

    International Nuclear Information System (INIS)

    Deecke, T.A.; Hyde, J.V.; Hylko, J.M.

    2006-01-01

    The weather is the most significant and unmanageable variable when performing environmental remediation activities. This variable can contribute to the failure of a project in two ways: 1) severe injury to an employee or employees following a cloud-to-ground lightning strike without prior visual or audible warnings; and 2) excessive 'down time' associated with mobilization and demobilization activities after a false alarm (e.g., lightning was seen in the distance but was actually moving away from the site). Therefore, in order for a project to be successful from both safety and financial viewpoints, the uncertainties associated with inclement weather, specifically lightning, need to be understood to eliminate the element of surprise. This paper discusses educational information related to the history and research of lightning, how lightning storms develop, types of lightning, the mechanisms of lightning injuries and fatalities, and follow-up medical treatment. Fortunately, lightning storm monitoring does not have to be either costly or elaborate. WESKEM, LLC selected the Boltek StormTracker Lightning Detection System with the Aninoquisi Lightning 2000 TM software. This fixed system, used in combination with online weather web pages, monitors and alarms WESKEM, LLC field personnel in the event of an approaching lightning storm. This application was expanded to justify the purchase of the hand-held Sky Scan Lightning/Storm Detector Model P5 used by the Heath Youth Athletic Association (HYAA) which is a non-profit, charitable organization offering sports programs for the youth and young adults in the local community. Fortunately, a lightning injury or fatality has never occurred on a WESKEM Paducah project or an HYAA-sponsored event. Using these fixed and hand-held systems will continue to prevent such injuries from occurring in the foreseeable future. (authors)

  4. Lightning protection system for a wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  5. Electric systems failures produced by CG lightning in Eastern Amazonia

    Directory of Open Access Journals (Sweden)

    Ana Paula Paes dos Santos

    2014-12-01

    Full Text Available Operational records of power outages of the electric energy distribution systems in eastern Amazonia presented a large number of events attributed to lightning strikes, during the 2006 to 2009 period. The regional electricity concessionary data were compared to actual lightning observations made by SIPAM's LDN system, over two areas where operational sub systems of transmission lines are installed. Statistical relations were drawn between the monthly lightning occurrence density and the number of power outages of the electric systems for both areas studied. The results showed that, although with some delays between these variables peaks, the number of power disruptions has a tendency to follow the behavior of the lightning occurrence densities variations. The numerical correlations were positive and may be useful to the transmission lines maintenance crews at least for the Belém-Castanhal electricity distribution sub system. Evidence was found, that the SST's over certain areas of the Pacific and Atlantic Oceans, influence convection over the area of interest, and may help to prognosticate the periods of intense electric storms, requiring repair readiness for the regional electric systems.

  6. The North Alabama Lightning Mapping Array (LMA): A Network Overview

    Science.gov (United States)

    Blakeslee, R. J.; Bailey, J.; Buechler, D.; Goodman, S. J.; McCaul, E. W., Jr.; Hall, J.

    2005-01-01

    The North Alabama Lightning Mapping Array (LMA) is s a 3-D VHF regional lightning detection system that provides on-orbit algorithm validation and instrument performance assessments for the NASA Lightning Imaging Sensor, as well as information on storm kinematics and updraft evolution that offers the potential to improve severe storm warning lead time by up t o 50% and decrease te false alarm r a t e ( for non-tornado producing storms). In support of this latter function, the LMA serves as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. The LMA, which became operational i n November 2001, consists of VHF receivers deployed across northern Alabama and a base station located at the National Space Science and Technology Center (NSSTC), which is on t h e campus of the University of Alabama in Huntsville. The LMA system locates the sources of impulsive VHF radio signals s from lightning by accurately measuring the time that the signals aririve at the different receiving stations. Each station's records the magnitude and time of the peak lightning radiation signal in successive 80 ms intervals within a local unused television channel (channel 5, 76-82 MHz in our case ) . Typically hundreds of sources per flash can be reconstructed, which i n t u r n produces accurate 3-dimensional lightning image maps (nominally network topology and the links have an effective data throughput rate ranging from 600 kbits s -1 t o 1.5 %its s -1. This presentation provides an overview of t h e North Alabama network, the data processing (both real-time and post processing) and network statistics.

  7. Thunderstorm nowcasting by means of lightning and radar data: algorithms and applications in northern Italy

    Directory of Open Access Journals (Sweden)

    P. Bonelli

    2008-10-01

    Full Text Available Thunderstorms and their ground effects, such as flash floods, hail, lightning, strong winds, and tornadoes, are responsible for most weather damages in northern Italy, especially in the warm season from May to September. A nowcasting and warning system focused on severe thunderstorm events would be useful to reduce risks for people involved in outside activities and for electric, telecommunication, and sensitive industrial business. C-band radar and Lighting Location Systems provide useful, fast and high resolution data for the detection of convective systems and for following their dynamics. The whole of northern Italy is covered by radar with a resolution of 1 km and by a lightning network with a mean accuracy of 0.5 km on the single point of impact. The authors present an algorithm developed for tracking high intensity storm cells by means of radar and lightning data. Application to northern Italy reveals that tracking thunderstorm cells can be used as an alert system that may help prevent damages from extreme weather, as well as allowing for studying the correlation among lightning, rainfall and tornado occurrence. Assessing the algorithm skill is also discussed, and a forecast verification method is described and applied for the duration of a thunderstorm season.

  8. The Italian Lightning Detection System of CESI and its applications

    International Nuclear Information System (INIS)

    Iorio, R.

    1998-01-01

    Aim of the paper is to give a description of the CESI lightning detection system SIRF. The system allows the real time localization (latitude, longitude) of the striking point of a cloud-to-ground lightning flash. Electrical parameters of the impulsive currents related to the flash strokes are calculated as well. Based on sensors covering the whole Italian territory, SIRF configuration and of the basic calculation criteria for passing from the sensor raw data to the final flash data is given together with the evaluation of the system expected performance parameters (accuracy, detection efficiently, signal/noise ratio). Main uses of lightning data in several fields are then reported, with special reference to electrical applications. Mention is done about the different modalities adopted for data distribution, according to that either real time or passed time applications have to be carried out. In this latter case (e.g. statistics), a huge amount of data archived within the Lightning Data Base of SIRF is available [it

  9. Lightning-Effects to the electronic devices and its support systems

    International Nuclear Information System (INIS)

    Mohd Said Yusof; Mohd Hanafiah Chik; Mohd Nor Hasli Mat Jusoh

    2011-01-01

    In Malaysia, lightning can happen mostly during the inter-change season. Lightning can happen in hill area including Nuclear Malaysia because its coordinate. Effects from these situation, many devices were damaged and it can bring the big losses to the Nuclear Malaysia where it can costed in replacing or repairing them. To avoid from happen, the placing of lightning protective system must be do in good manner and effectively. Besides that, knowledge about the system can be an advantage in order for those person in-charge to repairing or avoiding the same cases from re-happen in future. (author)

  10. Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2014-01-01

    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric

  11. Situational Lightning Climatologies for Central Florida: Phase IV

    Science.gov (United States)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-,20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  12. A LIGHTNING CONDUCTOR MONITORING SYSTEM BASED ON A WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Jan Mikeš

    2013-12-01

    Full Text Available Automated heating, lighting and irrigation systems are nowadays standard features of industrial and commercial buildings, and are also increasingly found in ordinary housing. In addition to the benefits of user comfort, automated technology for buildings saves energy and, above all, it provides enhanced protection against leakage of water and hazardous gases, and against fire hazards. Lightning strikes are a natural phenomenon that poses a significant threat to the safety of buildings. The statistics of the Fire and Rescue Service of the Czech Republic show that buildings are in many cases inadequately protected against lightning strikes, or that systems have been damaged by previous strikes. A subsequent strike can occur within the period between regular inspections, which are normally made at intervals of 2–4 years. Over the whole of Europe, thousands of buildings are subjected to the effects of direct lightning strikes each year. This paper presents ways to carry out wireless monitoring of lightning strikes on buildings and to deal with their impact on lightning conductors. By intervening promptly (disconnecting the power supply, disconnecting the gas supply, sending an engineer to inspect the structure, submitting a report to ARC, etc. we can prevent many downstream effects of direct lightning strikes on buildings (fires, electric shocks, etc. This paper introduces a way to enhance contemporary home automation systems for monitoring lightning strikes based on wireless sensor networks technology.

  13. Practical Approach on Lightning and Grounding Protection System

    OpenAIRE

    Shan Jose Varghese

    2015-01-01

    Lightning Protection and Grounding of Electrical and Mechanical equipment’s for the Protection of the Human Beings, Structure of the building and equipment protection, safe working of the Worker at Industry as per my latest practical knowledge in the site environment in extreme climatic condition of low lying areas of the Gulf Region in the challenging projects. All the conductor calculation, Lightning Risk Factor calculations, all the system information regarding the ...

  14. Lightning protection scheme for the CPRF/ZTH system complex

    International Nuclear Information System (INIS)

    Konkel, H.

    1987-01-01

    This paper describes some of the background in the design and the lightning protection and grounding scheme recommended for the CPRF/ZTH system at the Los Alamos Laboratory. Standard power industry practices were applied to minimize the effect on both the system and personnel of a high magnitude, direct lightning discharge in the CPRF/ZTH area. The recommended scheme is in compliance with existing local and national electric and safety codes. 7 refs., 3 figs

  15. Lightning protection of flap system for wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Madsen, Søren Find

    of insulating, semi-conductive and conductive materials in their structure. For this reason, the installation of a CRTEF in a blade requires a careful assessment of risks related to lightning strikes. The study of the lightning effects in the CRTEF system comprised the analysis of the discharge attachment......, the current transmission, including the study of the induced electromagnetic fields, and the effects of degradation of the flap material due to the exposure to the lightning high electric fields. The main tools for this analysis were the simulation by the finite elements method and testing in the high voltage...

  16. Early Warning System Ghana: how to successfully implement a disaster early warning system in a data scarce region

    Science.gov (United States)

    Udo, Job; Jungermann, Nicole

    2016-04-01

    Ghana is a country frequently struck by natural disasters like floods and droughts. Timely warning or detection of such disasters will mitigate the negative impact on lives and property. However, local data and monitoring systems necessary to provide such a warning are hardly available. The availability and improvement of internet, mobile phones and satellites has provided new possibilities for disaster warning systems in data scarce regions such as Ghana. Our presentation describes the development of an early warning system (EWS) in Ghana completely based on satellite based open data. The EWS provides a flood or drought hazard warning on sub-catchment level and links the warning to a more detailed flood or drought risk map, to enable the disaster coordinator to send warnings or relieve more efficiently to areas that have the highest risk. This is especially relevant because some areas for which the system is implemented are very remote. The system is developed and tested to be robust and operational especially in remote areas. This means that the necessary information is also available under limited internet conditions and not dependent on local computer facilities. In many rural areas in Ghana communities rely on indigenous knowledge when it comes to flood or drought disaster forecasting. The EWS has a feature that allows indigenous knowledge indicators to be taken into account in the warning and makes easy comparison possible with the satellite based warnings.

  17. Environment Agency England flood warning systems

    Science.gov (United States)

    Strong, Chris; Walters, Mark; Haynes, Elizabeth; Dobson, Peter

    2015-04-01

    Context In England around 5 million homes are at risk of flooding. We invest significantly in flood prevention and management schemes but we can never prevent all flooding. Early alerting systems are fundamental to helping us reduce the impacts of flooding. The Environment Agency has had the responsibility for flood warning since 1996. In 2006 we invested in a new dissemination system that would send direct messages to pre-identified recipients via a range of channels. Since then we have continuously improved the system and service we offer. In 2010 we introduced an 'opt-out' service where we pre-registered landline numbers in flood risk areas, significantly increasing the customer base. The service has performed exceptionally well under intense flood conditions. Over a period of 3 days in December 2013, when England was experiencing an east coast storm surge, the system sent nearly 350,000 telephone messages, 85,000 emails and 70,000 text messages, with a peak call rate of around 37,000 per hour and 100% availability. The Floodline Warnings Direct (FWD) System FWD provides warnings in advance of flooding so that people at risk and responders can take action to minimise the impact of the flood. Warnings are sent via telephone, fax, text message, pager or e-mail to over 1.1 million properties located within flood risk areas in England. Triggers for issuing alerts and warnings include attained and forecast river levels and rainfall in some rapidly responding locations. There are three levels of warning: Flood Alert, Flood Warning and Severe Flood Warning, and a stand down message. The warnings can be updated to include relevant information to help inform those at risk. Working with our current provider Fujitsu, the system is under a programme of continuous improvement including expanding the 'opt-out' service to mobile phone numbers registered to at risk addresses, allowing mobile registration to the system for people 'on the move' and providing access to

  18. Thunderstorm and Lightning Studies using the FORTE Optical Lightning System (FORTE/OLS)

    International Nuclear Information System (INIS)

    Argo, P.; Franz, R.; Green, J.; Guillen, J.L.; Jacobson, A.R.; Kirkland, M.; Knox, S.; Spalding, R.; Suszcynsky, D.M.

    1999-01-01

    Preliminary observations of simultaneous RF and optical emissions from lightning as seen by the FORTE spacecraft are presented. RF/optical pairs of waveforms are routinely collected both as individual lightning events and as sequences of events associated with cloud-to-ground (CG) and intra-cloud (IC) flashes. CG pulses can be distinguished from IC pulses based on the properties of the RF and optical waveforms, but mostly based on the associated RF spectrograms. The RF spectrograms are very similar to previous ground-based VHF observations of lightning and show signatures associated with return strokes, stepped and dart leaders, and attachment processes,. RF emissions are observed to precede the arrival of optical emissions at the satellite by a mean value of 280 microseconds. The dual phenomenology nature of these observations are discussed in terms of their ability to contribute to a satellite-based lightning monitoring mission

  19. Thunderstorm and Lightning Studies using the FORTE Optical Lightning System (FORTE/OLS)

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.; Franz, R.; Green, J.; Guillen, J.L.; Jacobson, A.R.; Kirkland, M.; Knox, S.; Spalding, R.; Suszcynsky, D.M.

    1999-02-01

    Preliminary observations of simultaneous RF and optical emissions from lightning as seen by the FORTE spacecraft are presented. RF/optical pairs of waveforms are routinely collected both as individual lightning events and as sequences of events associated with cloud-to-ground (CG) and intra-cloud (IC) flashes. CG pulses can be distinguished from IC pulses based on the properties of the RF and optical waveforms, but mostly based on the associated RF spectrograms. The RF spectrograms are very similar to previous ground-based VHF observations of lightning and show signatures associated with return strokes, stepped and dart leaders, and attachment processes,. RF emissions are observed to precede the arrival of optical emissions at the satellite by a mean value of 280 microseconds. The dual phenomenology nature of these observations are discussed in terms of their ability to contribute to a satellite-based lightning monitoring mission.

  20. What distinguishes the small fraction of tropical ocean storms with lightning? An examination of the environment, organization, and evolution of radar features over Kwajalein

    Science.gov (United States)

    Bang, S. D.; Zipser, E. J.

    2017-12-01

    Lightning over the tropical ocean, though much rarer than over land, is predominantly observed in large, mostly mature convective systems. The implication is that these may require external forcing or organization in order to develop updrafts sufficiently strong to loft and sustain graupel and supercooled water above the freezing level and thereby produce lightning. We examine three years of radar data from the Kwajalein Atoll in the Marshall Islands in the tropical Pacific Ocean, which we subject to the Warning Decisions Support System - Integrated Information (WDSS-II) tracking algorithm in order to create an evolutionary radar feature dataset. In conjunction with ERA-interim reanalysis environmental data and World Wide Lightning Location Network (WWLLN) lightning data, we are able to observe the lifecycles of electrified convection over Kwajalein and examine the characteristics leading up to a lightning flash for radar features throughout the intensity spectrum. We find that lightning over Kwajalein exhibits the same tendency to occur in large, mature radar features, and the probability of lightning increases with increasing size and, to a certain extent, age. However, there is little evidence to support the role of singular environmental parameters in the development into large features. We continue to struggle to find the reasons that may influence or control the evolution of small features into large, organized convective systems, a major issue that has importance well beyond whether the feature is electrified.

  1. Communication architecture of an early warning system

    Directory of Open Access Journals (Sweden)

    M. Angermann

    2010-11-01

    Full Text Available This article discusses aspects of communication architecture for early warning systems (EWS in general and gives details of the specific communication architecture of an early warning system against tsunamis. While its sensors are the "eyes and ears" of a warning system and enable the system to sense physical effects, its communication links and terminals are its "nerves and mouth" which transport measurements and estimates within the system and eventually warnings towards the affected population. Designing the communication architecture of an EWS against tsunamis is particularly challenging. Its sensors are typically very heterogeneous and spread several thousand kilometers apart. They are often located in remote areas and belong to different organizations. Similarly, the geographic spread of the potentially affected population is wide. Moreover, a failure to deliver a warning has fatal consequences. Yet, the communication infrastructure is likely to be affected by the disaster itself. Based on an analysis of the criticality, vulnerability and availability of communication means, we describe the design and implementation of a communication system that employs both terrestrial and satellite communication links. We believe that many of the issues we encountered during our work in the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009 on the design and implementation communication architecture are also relevant for other types of warning systems. With this article, we intend to share our insights and lessons learned.

  2. Lightning Physics and Effects

    Science.gov (United States)

    Orville, Richard E.

    2004-03-01

    Lightning Physics and Effects is not a lightning book; it is a lightning encyclopedia. Rarely in the history of science has one contribution covered a subject with such depth and thoroughness as to set the enduring standard for years, perhaps even decades, to come. This contribution covers all aspects of lightning, including lightning physics, lightning protection, and the interaction of lightning with a variety of objects and systems as well as the environment. The style of writing is well within the ability of the technical non-expert and anyone interested in lightning and its effects. Potential readers will include physicists; engineers working in the power industry, communications, computer, and aviation industries; atmospheric scientists; geophysicists; meteorologists; atmospheric chemists; foresters; ecologists; physicians working in the area of electrical trauma; and, lastly, architects. This comprehensive reference volume contains over 300 illustrations, 70 tables with quantitative information, and over 6000 reference and bibliography entries.

  3. Location accuracy evaluation of lightning location systems using natural lightning flashes recorded by a network of high-speed cameras

    Science.gov (United States)

    Alves, J.; Saraiva, A. C. V.; Campos, L. Z. D. S.; Pinto, O., Jr.; Antunes, L.

    2014-12-01

    This work presents a method for the evaluation of location accuracy of all Lightning Location System (LLS) in operation in southeastern Brazil, using natural cloud-to-ground (CG) lightning flashes. This can be done through a multiple high-speed cameras network (RAMMER network) installed in the Paraiba Valley region - SP - Brazil. The RAMMER network (Automated Multi-camera Network for Monitoring and Study of Lightning) is composed by four high-speed cameras operating at 2,500 frames per second. Three stationary black-and-white (B&W) cameras were situated in the cities of São José dos Campos and Caçapava. A fourth color camera was mobile (installed in a car), but operated in a fixed location during the observation period, within the city of São José dos Campos. The average distance among cameras was 13 kilometers. Each RAMMER sensor position was determined so that the network can observe the same lightning flash from different angles and all recorded videos were GPS (Global Position System) time stamped, allowing comparisons of events between cameras and the LLS. The RAMMER sensor is basically composed by a computer, a Phantom high-speed camera version 9.1 and a GPS unit. The lightning cases analyzed in the present work were observed by at least two cameras, their position was visually triangulated and the results compared with BrasilDAT network, during the summer seasons of 2011/2012 and 2012/2013. The visual triangulation method is presented in details. The calibration procedure showed an accuracy of 9 meters between the accurate GPS position of the object triangulated and the result from the visual triangulation method. Lightning return stroke positions, estimated with the visual triangulation method, were compared with LLS locations. Differences between solutions were not greater than 1.8 km.

  4. A review of studies on community based early warning systems

    Directory of Open Access Journals (Sweden)

    Margaret Macherera

    2016-04-01

    Full Text Available Community-based early warning systems involve community driven collection and analysis of information that enable warning messages to help a community to react to a hazard and reduce the resulting loss or harm. Most early warning systems are designed at the national or global level. Local communities’ capacity to predict weather conditions using indigenous knowledge has been demonstrated in studies focusing on climate change and agriculture in some African countries. This review was motivated by successes made in non-disease specific community-based early warning systems with a view to identify opportunities for developing similar systems for malaria. This article reviewed the existing community-based early warning systems documented in literature. The types of disasters that are addressed by these systems and the methodologies utilised in the development of the systems were identified. The review showed that most of the documented community-based early warning systems focus on natural disasters such as floods, drought, and landslides. Community-based early warning systems for human diseases are very few, even though such systems exist at national and regional and global levels. There is a clear gap in terms of community-based malaria early warning systems. The methodologies for the development of the community-based early warning systems reviewed mainly derive from the four elements of early warning systems; namely risk knowledge, monitoring, warning communication and response capability. The review indicated the need for the development of community based early warning systems for human diseases. Keywords: community; early warning; disaster; hazards

  5. Frequency domain analysis of lightning protection using four lightning protection rods

    Directory of Open Access Journals (Sweden)

    Javor Vesna

    2008-01-01

    Full Text Available In this paper the lightning discharge channel is modeled as a vertical monopole antenna excited by a pulse generator at its base. The lightning electromagnetic field of a nearby lightning discharge in the case of lightning protection using four vertical lightning protection rods was determined in the frequency domain. Unknown current distributions were determined by numerical solving of a system of integral equations of two potentials using the Point Matching Method and polynomial approximation of the current distributions. The influence of the real ground, treated as homogeneous loss half-space of known electrical parameters, expressed through a Sommerfeld integral kernel, was modeled using a new Two-image approximation which gives good results in both near and far fields.

  6. Lightning-induced overvoltages in low-voltage systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoeidalen, Hans Kristian

    1997-12-31

    Lightning-induced overvoltages (LIOs) are a main source of failures in low-voltage overhead line systems. This thesis deals mainly with calculations of LIOs aiming to enable the design of a proper voltage protection. Models for calculation of LIOs are adapted from the literature or developed based on measurements. The models used are believed to be fairly accurate for the first few microseconds, which is usually sufficient for predicting the maximum induced voltage in the system. The lightning channel is modelled by the Modified Transmission Line (MTL) model with the Transmission Line (TL) model as a special case. The coupling between the electrical fields from a lightning channel and an overhead line is modelled by Agrawal`s model. The attenuation of electrical fields over a lossy ground is modelled by Norton`s- or the Surface Impedance methods. The validity of all the applied models is analysed. In addition, measurements have been performed in order to develop models of distribution transformers and low-voltage power installation (LVPI) networks. Simple models of typical transformers and LVPIs are developed for calculations when specific data are unavailable. The practical range of values and its influence on the LIOs in a system is investigated. The main frequency range of interest related to LIOs is 10 kHz - 1 MHz in which all the models are accurate. The adapted or developed models are used to calculate LIOs in low-voltage systems. The influence of various key parameters in the system is investigated. Most important are the return stroke amplitude and rise time, the overhead line height and location, the termination of overhead line segments, neutral grounding, and the ground conductivity. 135 refs., 136 figs., 12 tabs.

  7. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    Science.gov (United States)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  8. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  9. Using Flow Regime Lightning and Sounding Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    Science.gov (United States)

    Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott

    2007-01-01

    Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (httl://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the

  10. Managing Risks? Early Warning Systems for Climate Change

    Science.gov (United States)

    Sitati, A. M.; Zommers, Z. A.; Habilov, M.

    2014-12-01

    Early warning systems are a tool with which to minimize risks posed by climate related hazards. Although great strides have been made in developing early warning systems most deal with one hazard, only provide short-term warnings and do not reach the most vulnerable. This presentation will review research results of the United Nations Environment Programme's CLIM-WARN project. The project seeks to identify how governments can better communicate risks by designing multi-hazard early warning systems that deliver actionable warnings across timescales. Household surveys and focus group discussions were conducted in 36 communities in Kenya, Ghana and Burkina Faso in order to identify relevant climate related hazards, current response strategies and early warning needs. Preliminary results show significant variability in both risks and needs within and between countries. For instance, floods are more frequent in rural western parts of Kenya. Droughts are frequent in the north while populations in urban areas face a range of hazards - floods, droughts, disease outbreaks - that sometimes occur simultaneously. The majority of the rural population, especially women, the disabled and the elderly, do not have access to modern media such as radio, television, or internet. While 55% of rural populace never watches television, 64% of urban respondents watch television on a daily basis. Communities have different concepts of how to design warning systems. It will be a challenge for national governments to create systems that accommodate such diversity yet provide standard quality of service to all. There is a need for flexible and forward-looking early warning systems that deliver broader information about risks. Information disseminated through the system could not only include details of hazards, but also long-term adaptation options, general education, and health information, thus increasingly both capabilities and response options.

  11. Evolution of tsunami warning systems and products.

    Science.gov (United States)

    Bernard, Eddie; Titov, Vasily

    2015-10-28

    Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. © 2015 The Authors.

  12. Evolution of tsunami warning systems and products

    Science.gov (United States)

    Bernard, Eddie; Titov, Vasily

    2015-01-01

    Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. PMID:26392620

  13. Lightning Often Strikes Twice

    Science.gov (United States)

    2005-01-01

    Contrary to popular misconception, lightning often strikes the same place twice. Certain conditions are just ripe for a bolt of electricity to come zapping down; and a lightning strike is powerful enough to do a lot of damage wherever it hits. NASA created the Accurate Location of Lightning Strikes technology to determine the ground strike point of lightning and prevent electrical damage in the immediate vicinity of the Space Shuttle launch pads at Kennedy Space Center. The area surrounding the launch pads is enmeshed in a network of electrical wires and components, and electronic equipment is highly susceptible to lightning strike damage. The accurate knowledge of the striking point is important so that crews can determine which equipment or system needs to be retested following a strike. Accurate to within a few yards, this technology can locate a lightning strike in the perimeter of the launch pad. As an added bonus, the engineers, then knowing where the lightning struck, can adjust the variables that may be attracting the lightning, to create a zone that will be less susceptible to future strikes.

  14. Electromagnetic Methods of Lightning Detection

    Science.gov (United States)

    Rakov, V. A.

    2013-11-01

    Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

  15. Reliability and effectiveness of early warning systems for natural hazards: Concept and application to debris flow warning

    International Nuclear Information System (INIS)

    Sättele, Martina; Bründl, Michael; Straub, Daniel

    2015-01-01

    Early Warning Systems (EWS) are increasingly applied to mitigate the risks posed by natural hazards. To compare the effect of EWS with alternative risk reduction measures and to optimize their design and operation, their reliability and effectiveness must be quantified. In the present contribution, a framework approach to the evaluation of threshold-based EWS for natural hazards is presented. The system reliability is classically represented by the Probability of Detection (POD) and Probability of False Alarms (PFA). We demonstrate how the EWS effectiveness, which is a measure of risk reduction, can be formulated as a function of POD and PFA. To model the EWS and compute the reliability, we develop a framework based on Bayesian Networks, which is further extended to a decision graph, facilitating the optimization of the warning system. In a case study, the framework is applied to the assessment of an existing debris flow EWS. The application demonstrates the potential of the framework for identifying the important factors influencing the effectiveness of the EWS and determining optimal warning strategies and system configurations. - Highlights: • Warning systems are increasingly applied measures to reduce natural hazard risks. • Bayesian Networks (BN) are powerful tools to quantify warning system's reliability. • The effectiveness is defined to assess the optimality of warning systems. • By extending BNs to decision graphs, the optimal warning strategy is identified. • Sensors positioning significantly influence the effectiveness of warning systems

  16. Using Cloud-to-Ground Lightning Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    Science.gov (United States)

    Lambert, Winnie; Sharp, David; Spratt, Scott; Volkmer, Matthew

    2005-01-01

    Each morning, the forecasters at the National Weather Service in Melbourn, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in central Florida, especially during the warm season months of May-September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC (0700 AM EST) each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to increase consistency between forecasters while enabling them to focus on

  17. Future Expansion of the Lightning Surveillance System at the Kennedy Space Center and the Cape Canaveral Air Force Station, Florida, USA

    Science.gov (United States)

    Mata, C. T.; Wilson, J. G.

    2012-01-01

    The NASA Kennedy Space Center (KSC) and the Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the U.S. National Lightning Detection Network (NLDN), and a volumetric mapping array, the lightning detection and ranging II (LDAR II) system: These systems are used to monitor and characterize lightning that is potentially hazardous to launch or ground operations and hardware. These systems are not perfect and both have documented missed lightning events when compared to the existing lightning surveillance system at Launch Complex 39B (LC39B). Because of this finding it is NASA's plan to install a lightning surveillance system around each of the active launch pads sharing site locations and triggering capabilities when possible. This paper shows how the existing lightning surveillance system at LC39B has performed in 2011 as well as the plan for the expansion around all active pads.

  18. Lightning Protection for Composite Aircraft Structures

    Science.gov (United States)

    Olson, G. O.

    1985-01-01

    Lightning protection system consisting of two layers of aluminum foil separated by layer of dielectric material protects graphite/epoxy composite structures on aircraft. Protective layer is secondarily applied lightning protection system, prime advantage of which is nullification of thermal and right angle effect of lightning arc attachment to graphite/epoxy laminate.

  19. Storm on lightning conductors

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    Radioactive lightning conductors using radium or americium 241 sources are compared to Faraday cage and lightning rod. Americium source preparation is shortly described. Efficiency of the different systems is still controversed [fr

  20. Design of vehicle intelligent anti-collision warning system

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    This paper mainly designs a low cost, high-accuracy, micro-miniaturization, and digital display and acousto-optic alarm features of the vehicle intelligent anti-collision warning system that based on MCU AT89C51. The vehicle intelligent anti-collision warning system includes forward anti-collision warning system, auto parking systems and reversing anti-collision radar system. It mainly develops on the basis of ultrasonic distance measurement, its performance is reliable, thus the driving safety is greatly improved and the parking security and efficiency enhance enormously.

  1. Structure health assessment and warning system (SHAWS)

    Science.gov (United States)

    Bock, Daniel M.; Kim, Keehoon; Mapar, Jalal

    2008-03-01

    We are developing a Structure Health Assessment and Warning System (SHAWS) based on building displacement measurements and wireless communication. SHAWS will measure and predict the stability/instability of a building, determine whether it is safe for emergency responders to enter during an emergency, and provide individual warnings on the condition of the structure. SHAWS incorporates remote sensing nodes (RSNs) installed on the exterior frame of a building. Each RSN includes a temperature sensor, a three-axis accelerometer making static-acceleration measurements, and a ZigBee wireless system (IEEE 802.15.4). The RSNs will be deployed remotely using an air cannon delivery system, with each RSN having an innovative adhesive structure for fast (<10 min) and strong installation under emergency conditions. Once the building has moved past a threshold (~0.25 in./building story), a warning will be issued to emergency responders. In addition to the RSNs, SHAWS will include a base station located on an emergency responder's primary vehicle, a PDA for mobile data display to guide responders, and individual warning modules that can be worn by each responder. The individual warning modules will include visual and audio indicators with a ZigBee receiver to provide the proper degree of warning to each responder.

  2. Lightning protection system analysis at Multipurpose Reactor G A. Siwabessy building

    International Nuclear Information System (INIS)

    Teguh-Sulistyo

    2003-01-01

    Analysis to the part of lightning protection system at Multi Purpose Reactor GA Siwabessy (RSG-GAS) have been done. Observation examined the damage of some part of the earthing system caused by human error of chemically system. The analysis performed some assumptions and simulations to the points of lightning stroke. From this analysis obtained that the reactor building do not have vertical finial which can protect effectively to the whole reactor building and auxiliary building. Installing some new finials at some places are needed to protect building therefore the reactor building and auxiliary building well safe from lighting stroke

  3. Development of tsunami early warning systems and future challenges

    Directory of Open Access Journals (Sweden)

    J. Wächter

    2012-06-01

    Full Text Available Fostered by and embedded in the general development of information and communications technology (ICT, the evolution of tsunami warning systems (TWS shows a significant development from seismic-centred to multi-sensor system architectures using additional sensors (e.g. tide gauges and buoys for the detection of tsunami waves in the ocean.

    Currently, the beginning implementation of regional tsunami warning infrastructures indicates a new phase in the development of TWS. A new generation of TWS should not only be able to realise multi-sensor monitoring for tsunami detection. Moreover, these systems have to be capable to form a collaborative communication infrastructure of distributed tsunami warning systems in order to implement regional, ocean-wide monitoring and warning strategies.

    In the context of the development of the German Indonesian Tsunami Early Warning System (GITEWS and in the EU-funded FP6 project Distant Early Warning System (DEWS, a service platform for both sensor integration and warning dissemination has been newly developed and demonstrated. In particular, standards of the Open Geospatial Consortium (OGC and the Organization for the Advancement of Structured Information Standards (OASIS have been successfully incorporated.

    In the FP7 project Collaborative, Complex and Critical Decision-Support in Evolving Crises (TRIDEC, new developments in ICT (e.g. complex event processing (CEP and event-driven architecture (EDA are used to extend the existing platform to realise a component-based technology framework for building distributed tsunami warning systems.

  4. Quantitative assessment of the effectiveness of a rockfall warning system

    Science.gov (United States)

    Bründl, Michael; Sättele, Martina; Krautblatter, Michael; Straub, Daniel

    2016-04-01

    Rockslides and rockfalls can pose high risk to human settlements and traffic infrastructure. In addition to structural mitigation measures like rockfall nets, warning systems are increasingly installed to reduce rockfall risks. Whereas for structural mitigation measures with reducing effects on the spatial extent a structured evaluation method is existing, no or only few approaches to assess the effectiveness for warning systems are known. Especially for higher magnitude rockfalls structural mitigation measures are not effective, and reliable early warning systems will be essential in future. In response to that, we developed a classification and a framework to assess the reliability and effectiveness of early warning systems (Sättele et al, 2015a; 2016). Here, we demonstrate an application for the rockfall warning system installed in Preonzo prior to a major rockfall in May 2012 (Sättele et al., 2015b). We show that it is necessary to design such a warning system as fail-safe construction, which has to incorporate components with low failure probabilities, high redundancy, low warning thresholds, and additional control systems. With a hypothetical probabilistic analysis, we investigate the effect of the risk attitude of decision makers and of the number of sensors on the probability of detecting an event and on initiating a timely evacuation, as well as on related intervention cost. We conclude that it is possible to quantitatively assess the effectiveness of warning systems, which helps to optimize mitigation strategies against rockfall events. References Sättele, M., Bründl, M., and Straub, D.: Reliability and effectiveness of warning systems for natural hazards: concept and application to debris flow warning, Rel. Eng. Syst. Safety, 142, 192-202, 2015a. Sättele, M., Krautblatter, M., Bründl, M., and Straub, D.: Forecasting rock slope failure: How reliable and effective are warning systems?, Landslides, 605, 1-14, 2015b. Sättele, M., Bründl, M., and

  5. Analysis of Transient Phenomena Due to a Direct Lightning Strike on a Wind Energy System

    Directory of Open Access Journals (Sweden)

    João P. S. Catalão

    2012-07-01

    Full Text Available This paper is concerned with the protection of wind energy systems against the direct effects of lightning. As wind power generation undergoes rapid growth, lightning damages involving wind turbines have come to be regarded as a serious problem. Nevertheless, very few studies exist yet in Portugal regarding lightning protection of wind energy systems using numerical codes. A new case study is presented in this paper, based on a wind turbine with an interconnecting transformer, for the analysis of transient phenomena due to a direct lightning strike to the blade. Comprehensive simulation results are provided by using models of the Restructured Version of the Electro-Magnetic Transients Program (EMTP, and conclusions are duly drawn.

  6. Radiation warning system in Slovenia (ROSS)

    International Nuclear Information System (INIS)

    Arh, S.

    1996-01-01

    Recognizing that a radiological accident may have a widespread effect, the Slovenian government has decided to establish an early warning system. The aim of it is to detect any incident (domestic or foreign) involving radioactivity as fast as possible, to initiate appropriate measures, and to give immediate warning to the population

  7. Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array

    Science.gov (United States)

    Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo

    2010-01-01

    The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of lightning nitrogen oxides, NOx = NO + NO2. Data from the National Lightning Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the NALMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting lightning NOx source profiles are discussed.

  8. Volcano warning systems: Chapter 67

    Science.gov (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Ewert, John W.

    2015-01-01

    Messages conveying volcano alert level such as Watches and Warnings are designed to provide people with risk information before, during, and after eruptions. Information is communicated to people from volcano observatories and emergency management agencies and from informal sources and social and environmental cues. Any individual or agency can be both a message sender and a recipient and multiple messages received from multiple sources is the norm in a volcanic crisis. Significant challenges to developing effective warning systems for volcanic hazards stem from the great diversity in unrest, eruption, and post-eruption processes and the rapidly advancing digital technologies that people use to seek real-time risk information. Challenges also involve the need to invest resources before unrest to help people develop shared mental models of important risk factors. Two populations of people are the target of volcano notifications–ground- and aviation-based populations, and volcano warning systems must address both distinctly different populations.

  9. Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array

    Science.gov (United States)

    López, Jesús A.; Pineda, Nicolau; Montanyà, Joan; Velde, Oscar van der; Fabró, Ferran; Romero, David

    2017-11-01

    3D mapping system like the LMA - Lightning Mapping Array - are a leap forward in lightning observation. LMA measurements has lead to an improvement on the analysis of the fine structure of lightning, allowing to characterize the duration and maximum extension of the cloud fraction of a lightning flash. During several years of operation, the first LMA deployed in Europe has been providing a large amount of data which now allows a statistical approach to compute the full duration and horizontal extension of the in-cloud phase of a lightning flash. The "Ebro Lightning Mapping Array" (ELMA) is used in the present study. Summer and winter lighting were analyzed for seasonal periods (Dec-Feb and Jun-Aug). A simple method based on an ellipse fitting technique (EFT) has been used to characterize the spatio-temporal dimensions from a set of about 29,000 lightning flashes including both summer and winter events. Results show an average lightning flash duration of 440 ms (450 ms in winter) and a horizontal maximum length of 15.0 km (18.4 km in winter). The uncertainties for summer lightning lengths were about ± 1.2 km and ± 0.7 km for the mean and median values respectively. In case of winter lightning, the level of uncertainty reaches up to 1 km and 0.7 km of mean and median value. The results of the successful correlation of CG discharges with the EFT method, represent 6.9% and 35.5% of the total LMA flashes detected in summer and winter respectively. Additionally, the median value of lightning lengths calculated through this correlative method was approximately 17 km for both seasons. On the other hand, the highest median ratios of lightning length to CG discharges in both summer and winter were reported for positive CG discharges.

  10. Evaluation of the brightness of lightning channels and branches using the magnitude system: Application of astronomical photometry

    Directory of Open Access Journals (Sweden)

    Nobuaki Shimoji

    Full Text Available In this paper, we have evaluated the brightness of lightning leaders shown in a digital still image by applying the astronomical magnitude system. In order to analyze the only lightning leaders, these were extracted from the digital still image. For photometry of the lightning leaders, there is no a standard reference source such as Vega in astronomical photometry. Therefore, assuming the maximum pixel value 255 (in 256 levels as the brightness of a standard reference source, the magnitude of the lightning leaders was obtained. The result showed that the magnitude of the lightning leaders vary spatially (i.e. 2D spatial variability. Furthermore, the result suggested that a low current channel is high magnitude and a high current channel is low magnitude. Keywords: Lightning, Fechner’s law, Magnitude system, Astronomical photometry, Image analysis

  11. Comparison Study of Lightning observations from VHF interferometer and Geostationary Lightning Mapper

    Science.gov (United States)

    Kudo, A.; Stock, M.; Ushio, T.

    2017-12-01

    We compared the optical observation from Geostationary Lightning Mapper (GLM) which is mounted on the geostationary meteorological satellite GOES-16 launched last year, and the radio observations from the ground-based VHF broad band interferometer. GLM detects 777.4 nm wavelength infrared optical signals from thunderstorm cells which are illuminated by the heated path during lightning discharge, and was developed mainly for the purpose of increasing the lead time for warning of severe weather and clarifying the discharge mechanism. Its detection has 2 ms frame rate, and 8 km square of space resolution at nadir. The VHF broad band interferometer is able to capture the electromagnetic waves from 20 MHz to 75 MHz and estimate the direction of arrival of the radiation sources using the interferometry technique. This system also has capability of observing the fast discharge process which cannot be captured by other systems, so it is expected to able to make detailed comparison. The recording duration of the system is 1 second. We installed the VHF broad band interferometer which consists of three VHF antenna and one fast antenna at Huntsville, Alabama from April 22nd to May 15th and in this total observation period, 720 triggers of data were observed by the interferometer. For comparison, we adopted the data from April 27th , April 30th. Most April 27th data has GLM "event" detection which is coincident time period. In time-elevation plot comparison, we found GLM detection timing was well coincide with interferometer during K-changes or return strokes and few detection during breakdown process. On the other hand, no GLM detection near the site for all data in April 30th and we are triyng to figure out the reason. We would like to thank University of Alabama Huntsville, New Mexico Institute of Mining and Technology, and RAIRAN Pte. Ltd for the help during the campaign.

  12. Lightning effects on electrical and nuclear equipment

    International Nuclear Information System (INIS)

    Gary, C.

    1986-01-01

    This paper gives the physical bases on which lightning protection of buildings and other erections such as nuclear power stations depend. To this end it first examines the impact phenomena of lightning, the operating systems of lightning conductors and methods of protection using metal mesh. It then describes various secondary effects of lightning, particularly those which occur inside buildings as a result of the potential rise in earthing systems and electromagnetic induction phenomena. 18 refs [fr

  13. Time-to-impact estimation in passive missile warning systems

    Science.gov (United States)

    Şahıngıl, Mehmet Cihan

    2017-05-01

    A missile warning system can detect the incoming missile threat(s) and automatically cue the other Electronic Attack (EA) systems in the suit, such as Directed Infrared Counter Measure (DIRCM) system and/or Counter Measure Dispensing System (CMDS). Most missile warning systems are currently based on passive sensor technology operating in either Solar Blind Ultraviolet (SBUV) or Midwave Infrared (MWIR) bands on which there is an intensive emission from the exhaust plume of the threatening missile. Although passive missile warning systems have some clear advantages over pulse-Doppler radar (PDR) based active missile warning systems, they show poorer performance in terms of time-to-impact (TTI) estimation which is critical for optimizing the countermeasures and also "passive kill assessment". In this paper, we consider this problem, namely, TTI estimation from passive measurements and present a TTI estimation scheme which can be used in passive missile warning systems. Our problem formulation is based on Extended Kalman Filter (EKF). The algorithm uses the area parameter of the threat plume which is derived from the used image frame.

  14. Lightning prediction using radiosonde data

    Energy Technology Data Exchange (ETDEWEB)

    Weng, L.Y.; Bin Omar, J.; Siah, Y.K.; Bin Zainal Abidin, I.; Ahmad, S.K. [Univ. Tenaga, Darul Ehsan (Malaysia). College of Engineering

    2008-07-01

    Lightning is a natural phenomenon in tropical regions. Malaysia experiences very high cloud-to-ground lightning density, posing both health and economic concerns to individuals and industries. In the commercial sector, power lines, telecommunication towers and buildings are most frequently hit by lightning. In the event that a power line is hit and the protection system fails, industries which rely on that power line would cease operations temporarily, resulting in significant monetary loss. Current technology is unable to prevent lightning occurrences. However, the ability to predict lightning would significantly reduce damages from direct and indirect lightning strikes. For that reason, this study focused on developing a method to predict lightning with radiosonde data using only a simple back propagation neural network model written in C code. The study was performed at the Kuala Lumpur International Airport (KLIA). In this model, the parameters related to wind were disregarded. Preliminary results indicate that this method shows some positive results in predicting lighting. However, a larger dataset is needed in order to obtain more accurate predictions. It was concluded that future work should include wind parameters to fully capture all properties for lightning formation, subsequently its prediction. 8 refs., 5 figs.

  15. An Analysis of Operational Total Lightning Data During Long-Track Tornadoes

    Science.gov (United States)

    Carcione, Brian C.; Stano, Geoffrey T.

    2012-01-01

    The 27 April 2011 tornado outbreak brought three distinct waves of tornadic thunderstorms to portions of Mississippi, Alabama, Tennessee, and Georgia, striking the Tennessee Valley of north Alabama and southern Tennessee particularly hard. A total of 42 tornado paths were surveyed across the fourteen county area covered by the National Weather Service (NWS) forecast office in Huntsville, Alabama. Ten of these tornadoes were on the ground for at least 20 miles, two had total path lengths over 130 miles, and six tornadoes were classified as violent (EF-4 or EF-5 on the Enhanced Fujita Scale). Many of these tornadoes occurred within the domain of the North Alabama Lightning Mapping Array (NALMA), a ground-based total lightning detection network owned and operated by the NASA Marshall Space Flight Center. Since 2003, the NASA Short-term Prediction Research and Transition Center has supplied data from NALMA in real time to NWS forecast offices in Huntsville, Knoxville/Tri-Cities, Birmingham, and Nashville. Previous research has documented the utility of total lightning information in predicting tornadogenesis, particularly when combined with other remote sensing tools. Basic warning decision-making during events such as 27 April is not the most difficult part of the process; instead, the focus of warning meteorologists shifts to looking for changes in intensity or possible particularly dangerous situations, since doppler radar velocity data often cannot distinguish between weak and strong tornadoes. To that end, this research attempts to determine if any correlation exists between flash densities of the longest-tracked tornadoes over time, and the surveyed wind speeds of the tornadoes. The long-track EF-5 tornado which struck the Hackleburg, Phil Campbell, and Tanner communities in north Alabama was the primary focus of this research due to its intensity and extended life cycle. However, not all tornadoes were available for total lightning analysis due to widespread

  16. 14 CFR 420.71 - Lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Lightning protection. 420.71 Section 420.71... protection. (a) Lightning protection. A licensee shall ensure that the public is not exposed to hazards due to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an...

  17. Lightning Surge Analysis on a Large Scale Grid-Connected Solar Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Nur Hazirah Zaini

    2017-12-01

    Full Text Available Solar photovoltaic (PV farms currently play a vital role in the generation of electrical power in different countries, such as Malaysia, which is moving toward the use of renewable energy. Malaysia is one of the countries with abundant sunlight and thus can use solar PV farms as alternative sources for electricity generation. However, lightning strikes frequently occur in the country. Being installed in open and flat areas, solar PV farms, especially their electronic components, are at great risk of damage caused by lightning. In this paper, the effects of lightning currents with different peak currents and waveshapes on grid-connected solar PV farms were determined to approximate the level of transient effect that can damage solar PV modules, inverters and transformers. Depending on the location of the solar PV farm, engineer can obtain information on the peak current and median current of the site from the lightning location system (LLS and utilise the results obtained in this study to appropriately assign an SPD to protect the solar panel, inverter and the main panel that connected to the grid. Therefore, the simulation results serve as the basis for controlling the effects of lightning strikes on electrical equipment and power grids where it provides proper justification on the ‘where to be installed’ and ‘what is the rating’ of the SPD. This judgment and decision will surely reduce the expensive cost of repair and replacement of electrical equipment damages due to the lightning.

  18. The new Euskalmet coastal-maritime warning system

    Science.gov (United States)

    Gaztelumendi, Santiago; Egaña, Joseba; Liria, Pedro; Gonzalez, Manuel; Aranda, José Antonio; Anitua, Pedro

    2016-06-01

    This work presents the main characteristics of the Basque Meteorology Agency (Euskalmet) maritime-coastal risk warning system, with special emphasis on the latest updates, including a clear differentiation on specific warning messages addressing sea conditions for navigation purposes in the first 2 nautical miles, and expected coastal impacts. Some details of the warning bulletin for maritime and coastal risk situations are also presented, together with other communication products and strategies used in coastal and maritime severe episodes at the Basque coast. Today, three different aspects are included in the coastal-maritime risk warning system in Basque Country, related to the main potential severe events that affecting coastal activities. - "Galerna" risk relates to a sudden wind reversal that can severely affect coastal navigation and recreational activities. - "Navigation" risk relates to severe sea state conditions for 0-2 miles, affecting different navigation activities. - "Coastal impact" risk relates to adverse wave characteristics and tidal surges that induce flooding events and different impacts in littoral areas.

  19. Quantification and identification of lightning damage in tropical forests.

    Science.gov (United States)

    Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo

    2017-07-01

    Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the

  20. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    Science.gov (United States)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; hide

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  1. Industrial accidents triggered by lightning.

    Science.gov (United States)

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Periodic inspections of lightning protection systems in intermediate storage facilities of nuclear technological plants

    International Nuclear Information System (INIS)

    Witzel, Andre; Schulz, Olav

    2013-01-01

    Especially for nuclear technological plants, periodic inspections of lightning protection systems are of great importance. This article shows the sequence of maintenance programs using the examples of the intermediate storage facilities of the nuclear technological plants Grohnde and Unterweser as well as the central intermediate storage facility in Gorleben and gives a description of the extensive measures of inspecting the external and internal lightning protection and the global earth termination system.

  3. Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes

    Science.gov (United States)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-06-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  4. 49 CFR 234.211 - Security of warning system apparatus.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Security of warning system apparatus. 234.211... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY AND STATE ACTION PLANS Maintenance, Inspection, and Testing Maintenance Standards § 234.211 Security of warning system apparatus...

  5. An organizational early-warning system for safety, health, and environmental crises

    International Nuclear Information System (INIS)

    Shrivastava, P.

    1992-01-01

    Early-warning systems have played an important role in preventing major industrial accidents and technological disasters. These systems record critical operating and performance parameters and raise warnings or alarms if these parameters cross acceptable limits. Most early-warning systems used in hazardous industries focus on the technological system and to a lesser extent on their human operators. However, industrial disasters are caused not only by technological and human failure, but also by organizational, regulatory, infrastructural, and community preparedness failures. Hazardous industries can benefit from the development of early-warning systems that have a broader scope than the core technology. These systems could cover financial, human resource, organizational policies, regulatory, infrastructural, and community-related variables. This paper develops some basic concepts that can help build managerially useful early-warning systems for safety, health, and environmental (SHE) incidents. It identifies variables that should be tracked, the threshold levels for these variables, and possible managerial reactions to warnings

  6. Towards a certification process for tsunami early warning systems

    Science.gov (United States)

    Löwe, Peter; Wächter, Jochen; Hammitzsch, Martin

    2013-04-01

    The natural disaster of the Boxing Day Tsunami of 2004 was followed by an information catastrophe. Crucial early warning information could not be delivered to the communities under imminent threat, resulting in over 240,000 casualties in 14 countries. This tragedy sparked the development of a new generation of integrated modular Tsunami Early Warning Systems (TEWS). While significant advances were accomplished in the past years, recent events, like the Chile 2010 and the Tohoku 2011 tsunami demonstrate that the key technical challenge for Tsunami Early Warning research on the supranational scale still lies in the timely issuing of status information and reliable early warning messages in a proven workflow. A second challenge stems from the main objective of the Intergovernmental Oceanographic Commission of UNESCO (IOC) Tsunami Programme, the integration of national TEWS towards ocean-wide networks: Each of the increasing number of integrated Tsunami Early Warning Centres has to cope with the continuing evolution of sensors, hardware and software while having to maintain reliable inter-center information exchange services. To avoid future information catastrophes, the performance of all components, ranging from individual sensors, to Warning Centers within their particular end-to-end Warning System Environments, and up to federated Systems of Tsunami Warning Systems has to be regularly validated against defined criteria. Since 2004, GFZ German Research Centre for Geosciences (GFZ) has built up expertise in the field of TEWS. Within GFZ, the Centre for GeoInformation Technology (CeGIT) has focused its work on the geoinformatics aspects of TEWS in two projects already, being the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS). This activity is continued in the TRIDEC project (Collaborative, Complex, and Critical Decision Processes in Evolving Crises) funded under the European Union's seventh Framework Programme (FP7

  7. Global lightning and severe storm monitoring from GPS orbit

    Energy Technology Data Exchange (ETDEWEB)

    Suszcynsky, D. M. (David M.); Jacobson, A. R.; Linford, J (Justin); Pongratz, M. B. (Morris B.); Light, T. (Tracy E.); Shao, X. (Xuan-Min)

    2004-01-01

    Over the last few decades, there has been a growing interest to develop and deploy an automated and continuously operating satellite-based global lightning mapper [e.g. Christian et al., 1989; Weber et al., 1998; Suszcynsky et al., 2000]. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. Satellite-based lightning mappers are designed to exploit this relationship by using lightning detection as a proxy for remotely identifying, locating and characterizing strong convective activity on a global basis. Global lightning and convection mapping promises to provide users with (1) an enhanced global severe weather monitoring and early warning capability [e.g. Weber et al., 1998] (2) improved ability to optimize aviation flight paths around convective cells, particularly over oceanic and remote regions that are not sufficiently serviced by existing weather radar [e.g. Weber et al., 1998], and (3) access to regional and global proxy data sets that can be used for scientific studies and as input into meteorological forecast and global climatology models. The physical foundation for satellite-based remote sensing of convection by way of lightning detection is provided by the basic interplay between the electrical and convective states of a thundercloud. It is widely believed that convection is a driving mechanism behind the hydrometeor charging and transport that produces charge separation and lightning discharges within thunderclouds [e.g. see chapter 3 in MacGorman and Rust, 1998]. Although cloud electrification and discharge processes are a complex function of the convective dynamics and microphysics of the cloud, the fundamental relationship between convection and electrification is easy to observe. For example, studies have shown that the strength of the convective process within a thundercell can be loosely parameterized (with large variance) by the intensity of the

  8. Ground Optical Lightning Detector (GOLD)

    Science.gov (United States)

    Jackson, John, Jr.; Simmons, David

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  9. The Global Emergency Observation and Warning System

    Science.gov (United States)

    Bukley, Angelia P.; Mulqueen, John A.

    1994-01-01

    Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.

  10. Objective Lightning Forecasting at Kennedy Space Center and Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data

    Science.gov (United States)

    Lambert, Winfred; Wheeler, Mark; Roeder, William

    2005-01-01

    The 45th Weather Squadron (45 WS) at Cape Canaveral Air-Force Station (CCAFS)ln Florida issues a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts. This information is used for general planning of operations at CCAFS and Kennedy Space Center (KSC). These facilities are located in east-central Florida at the east end of a corridor known as 'Lightning Alley', an indication that lightning has a large impact on space-lift operations. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data and an objective forecast tool developed over 30 years ago. The 45 WS requested that a new lightning probability forecast tool based on statistical analysis of more recent historical warm season (May-September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The resulting tool is a set of statistical lightning forecast equations, one for each month of the warm season, that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season.

  11. Design and evaluation of warning systems: application to nuclear power plants

    International Nuclear Information System (INIS)

    Pe Benito-Claudio, C.

    1986-01-01

    This study starts by defining and explaining key concepts about warning, both as a process and a system. Thereafter, it presents a quantitative, probabilistic, and decision-oriented methodology for designing and evaluating a warning system. It illustrates the methodology for the case of rare, controllable, and potentially disastrous technological events, such as accidents in nuclear power plants. The methodology covers and links the three principal components of a warning system - signal (which is mainly technical), warning dissemination, and warning response (which are mainly social) - thereby allowing the relative evaluation of technological and social measures for reducing risks. Analytical principles and techniques of risk and decision analyses are applied. It defines a probabilistic performance measure to characterize each component of a warning system, and a value measure to assess the overall effectiveness of the system. An important aspect of this work is the integration, into one analytical model, of the results of engineering studies, such as probabilistic risk assessments of nuclear power plants, and of empirical findings on human response to warning in sociological research. The models, calculations, and sensitivity analyses are done with influence diagrams that are both intuitive and mathematical. This work puts particular emphasis on the study of behavioral response of individuals to warning

  12. LOFAR lightning imaging : mapping lightning with nanosecond precision

    NARCIS (Netherlands)

    Hare, B.M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J.R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T.N.G.; ter Veen, S.; Winchen, T.

    2018-01-01

    Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of

  13. A study of the relationship between cloud-to-ground lightning and precipitation in the convective weather system in China

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    Full Text Available In this paper, the correlation between cloud-to-ground (CG lightning and precipitation has been studied by making use of the data from weather radar, meteorological soundings, and a lightning location system that includes three direction finders about 40 km apart from each other in the Pingliang area of east Gansu province in P. R. China. We have studied the convective systems that developed during two cold front processes passing over the observation area, and found that the CG lightning can be an important factor in the precipitation estimation. The regression equation between the average precipitation intensity (R and the number of CG lightning flashes (L in the main precipitation period is R = 1.69 ln (L - 0.27, and the correlation coefficient r is 0.86. The CG lightning flash rate can be used as an indicator of the formation and development of the convective weather system. Another more exhaustive precipitation estimation method has been developed by analyzing the temporal and spatial distributions of the precipitation relative to the location of the CG lightning flashes. Precipitation calculated from the CG lightning flashes is very useful, especially in regions with inadequate radar cover.

    Key words. Meteorology and atmospheric dynamics (atmospheric electricity; lightning; precipitation

  14. Sensors for lightning measurements on aircraft

    NARCIS (Netherlands)

    Stelmashuk, V.; Deursen, van A.P.J.

    2008-01-01

    Lightning strikes a commercial airliner on the average once a year. The European project ldquoIn-flight Lightning Strike Damage Assessment System (ILDAS)rdquo [1] aims to develop and validate a prototype of a system capable to 1) reconstruct the current intensity and wave form, 2) determine of the

  15. 49 CFR 234.205 - Operating characteristics of warning system apparatus.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operating characteristics of warning system... characteristics of warning system apparatus. Operating characteristics of electromagnetic, electronic, or... limits within which the system is designed to operate. ...

  16. A scheme for evaluating a local queue warning system.

    NARCIS (Netherlands)

    Botma, H. & Oei, H.-L.

    2018-01-01

    This article outlines a method of evaluating a 'local queue warning system', in principle intended only to warn drivers of unexpected congestion at known discontinuities of the road geomctry (bottleneck) and give them advisory speed indications. A prerequisite for installing this system is therefore

  17. Lightning attachment process to common buildings

    Science.gov (United States)

    Saba, M. M. F.; Paiva, A. R.; Schumann, C.; Ferro, M. A. S.; Naccarato, K. P.; Silva, J. C. O.; Siqueira, F. V. C.; Custódio, D. M.

    2017-05-01

    The physical mechanism of lightning attachment to grounded structures is one of the most important issues in lightning physics research, and it is the basis for the design of the lightning protection systems. Most of what is known about the attachment process comes from leader propagation models that are mostly based on laboratory observations of long electrical discharges or from observations of lightning attachment to tall structures. In this paper we use high-speed videos to analyze the attachment process of downward lightning flashes to an ordinary residential building. For the first time, we present characteristics of the attachment process to common structures that are present in almost every city (in this case, two buildings under 60 m in São Paulo City, Brazil). Parameters like striking distance and connecting leaders speed, largely used in lightning attachment models and in lightning protection standards, are revealed in this work.Plain Language SummarySince the time of Benjamin Franklin, no one has ever recorded high-speed video images of a lightning connection to a common building. It is very difficult to do it. Cameras need to be very close to the structure chosen to be observed, and long observation time is required to register one lightning strike to that particular structure. Models and theories used to determine the zone of protection of a lightning rod have been developed, but they all suffer from the lack of field data. The submitted manuscript provides results from high-speed video observations of lightning attachment to low buildings that are commonly found in almost every populated area around the world. The proximity of the camera and the high frame rate allowed us to see interesting details that will improve the understanding of the attachment process and, consequently, the models and theories used by lightning protection standards. This paper also presents spectacular images and videos of lightning flashes connecting lightning rods that

  18. Lightning transient analysis in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...... waveforms. The aim of the PSCAD simulations is to study the voltages induced by the lightning current in the blade that may cause internal arcing. With this purpose, the phenomenon of current reflections in the lightning down conductor of the blade and the electromagnetic coupling between the down conductor...... and other internal conductive elements of the blade is studied. Finally, several methods to prevent internal arcing are discussed in order to improve the lightning protection of the blade....

  19. The Trend of Voluntary Warnings in Electronic Nicotine Delivery System Magazine Advertisements

    OpenAIRE

    Shang, Ce; Chaloupka, Frank J.

    2017-01-01

    Some manufacturers of electronic nicotine delivery systems (ENDS) voluntarily carried health warnings in their advertisements. This study examined these voluntary warnings in magazine ads and plotted their trends between 2012 and early 2015. ENDS magazine ads were obtained through Kantar media and warnings were collected from the Chicago Public Library or the Trinkets and Trash surveillance system. The prevalence of voluntary warnings, warnings with the specific capitalized word “WARNING”, an...

  20. Lightning Performance on Overhead Distribution Lines : After Improvement Field Observation

    Directory of Open Access Journals (Sweden)

    Reynaldo Zoro

    2009-11-01

    Full Text Available Two feeders of 20 kV overhead distribution lines which are located in a high lightning density area are chosen to be observed as a field study due to their good lightning performance after improvement of lightning protection system. These two feeders used the new overhead ground wire and new line arrester equipped with lightning counter on the main lines. The significant reduced of lines outages are reported. Study was carried out to observe these improvements by comparing to the other two feeders line which are not improved and not equipped yet with the ground wire and line arrester. These two feeders located in the nearby area. Two cameras were installed to record the trajectory of the lightning strikes on the improved lines. Lightning peak currents are measured using magnetic tape measurement system installed on the grounding lead of lightning arrester. Lightning overvoltage calculations are carried out by using several scenarios based on observation results and historical lightning data derived from lightning detection network. Lightning overvoltages caused by indirect or direct strikes are analyzed to get the lightning performance of the lines. The best scenario was chosen and performance of the lines were improved significantly by installing overhead ground wire and improvement of lightning arrester installation.

  1. Impact of social preparedness on flood early warning systems

    Science.gov (United States)

    Girons Lopez, M.; Di Baldassarre, G.; Seibert, J.

    2017-01-01

    Flood early warning systems play a major role in the disaster risk reduction paradigm as cost-effective methods to mitigate flood disaster damage. The connections and feedbacks between the hydrological and social spheres of early warning systems are increasingly being considered as key aspects for successful flood mitigation. The behavior of the public and first responders during flood situations, determined by their preparedness, is heavily influenced by many behavioral traits such as perceived benefits, risk awareness, or even denial. In this study, we use the recency of flood experiences as a proxy for social preparedness to assess its impact on the efficiency of flood early warning systems through a simple stylized model and implemented this model using a simple mathematical description. The main findings, which are based on synthetic data, point to the importance of social preparedness for flood loss mitigation, especially in circumstances where the technical forecasting and warning capabilities are limited. Furthermore, we found that efforts to promote and preserve social preparedness may help to reduce disaster-induced losses by almost one half. The findings provide important insights into the role of social preparedness that may help guide decision-making in the field of flood early warning systems.

  2. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kisner, Roger A.; Wilgen, John B.; Ewing, Paul D.; Korsah, Kofi; Antonescu, Christina E.

    2006-01-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  3. Characteristics of Lightning Within Electrified Snowfall Events Using Lightning Mapping Arrays

    Science.gov (United States)

    Schultz, Christopher J.; Lang, Timothy J.; Bruning, Eric C.; Calhoun, Kristin M.; Harkema, Sebastian; Curtis, Nathan

    2018-02-01

    This study examined 34 lightning flashes within four separate thundersnow events derived from lightning mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each lightning flash, as well as the correspondence between the LMA observations and lightning data taken from national lightning networks like the National Lightning Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the data set. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km2, with a maximum flash extent of 2,300 km2, a minimum of 3 km2, and a median of 128 km2. An average of 2.29 NLDN flashes were recorded per LMA-derived lightning flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN-identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six lightning flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses lightning's interaction with the human-built environment and provides an example of lightning within heavy snowfall observed by Geostationary Operational Environmental Satellite-16's Geostationary Lightning Mapper.

  4. A review of studies on community based early warning systems

    OpenAIRE

    Margaret Macherera; Moses J. Chimbari

    2016-01-01

    Community-based early warning systems involve community driven collection and analysis of information that enable warning messages to help a community to react to a hazard and reduce the resulting loss or harm. Most early warning systems are designed at the national or global level. Local communities’ capacity to predict weather conditions using indigenous knowledge has been demonstrated in studies focusing on climate change and agriculture in some African countries. This review was motivated...

  5. Designing Fatigue Warning Systems: The perspective of professional drivers.

    Science.gov (United States)

    Meng, Fanxing; Li, Shuling; Cao, Lingzhi; Peng, Qijia; Li, Musen; Wang, Chunhui; Zhang, Wei

    2016-03-01

    Professional drivers have been characterized as experiencing heavy fatigue resulting from long driving time in their daily work. This study aimed to explore the potential demand of Fatigue Warning Systems (FWSs) among professional drivers as a means of reducing the danger of fatigue driving and to examine their opinions regarding the design of FWSs. Six focus groups with 35 participants and a questionnaire survey with 600 respondents were conducted among Chinese truck and taxi drivers to collect qualitative and quantitative data concerning the current situation of fatigue driving and opinions regarding the design of FWSs. The results revealed that both truck and taxi drivers had a positive attitude toward FWSs, and they hoped this system could not only monitor and warn them regarding their fatigue but also somewhat relieve their fatigue before they could stop and rest. As for warning signals, participants preferred auditory warnings, as opposed to visual, vibrotactile or electric stimuli. Interestingly, it was proposed that verbal warnings involving the information regarding consequences of fatigue driving or the wishes of drivers' family members would be more effective. Additionally, different warning patterns, including graded, single and continuous warnings, were discussed in the focus group. Finally, the participants proposed many other suggestions, as well as their concerns regarding FWSs, which will provide valuable information for companies who wish to develop FWSs for professional drivers. Copyright © 2015. Published by Elsevier Ltd.

  6. People-centred landslide early warning systems in the context of risk management

    Science.gov (United States)

    Haß, S.; Asch, K.; Fernandez-Steeger, T.; Arnhardt, C.

    2009-04-01

    In the current hazard research people-centred warning becomes more and more important, because different types of organizations and groups have to be involved in the warning process. This fact has to be taken into account when developing early warning systems. The effectiveness of early warning depends not only on technical capabilities but also on the preparedness of decision makers and their immediate response on how to act in case of emergency. Hence early warning systems have to be regarded in the context of an integrated and holistic risk management. Disaster Risk Reduction (DRR) measures include people-centred, timely and understandable warning. Further responsible authorities have to be identified in advance and standards for risk communication have to be established. Up to now, hazard and risk assessment for geohazards focuses on the development of inventory, susceptibility, hazard and risk maps. But often, especially in Europe, there are no institutional structures for managing geohazards and in addition there is a lack of an authority that is legally obliged to alarm on landslides at national or regional level. One of the main characteristics within the warning process for natural hazards e.g. in Germany is the split of responsibility between scientific authorities (wissenschaftliche Fachbehörde) and enforcement authorities (Vollzugsbehörde). The scientific authority provides the experts who define the methods and measures for monitoring and evaluate the hazard level. The main focus is the acquisition and evaluation of data and subsequently the distribution of information. The enforcement authority issues official warnings about dangerous natural phenomena. Hence the information chain in the context of early warning ranges over two different institutions, the forecast service and the warning service. But there doesn't exist a framework for warning processes in terms of landslides as yet. The concept for managing natural disasters is often reduced to

  7. Scientific Lightning Detection Network for Kazakhstan

    Science.gov (United States)

    Streltsov, A. V.; Lozbin, A.; Inchin, A.; Shpadi, Y.; Inchin, P.; Shpadi, M.; Ayazbayev, G.; Bykayev, R.; Mailibayeva, L.

    2015-12-01

    In the frame of grant financing of the scientific research in 2015-2017 the project "To Develop Electromagnetic System for lightning location and atmosphere-lithosphere coupling research" was found. The project was start in January, 2015 and should be done during 3 years. The purpose is to create a system of electromagnetic measurements for lightning location and atmosphere-lithosphere coupling research consisting of a network of electric and magnetic sensors and the dedicated complex for data processing and transfer to the end user. The main tasks are to set several points for electromagnetic measurements with 100-200 km distance between them, to develop equipment for these points, to develop the techniques and software for lightning location (Time-of-arrival and Direction Finding (TOA+DF)) and provide a lightning activity research in North Tien-Shan region with respect to seismicity and other natural and manmade activities. Also, it is planned to use lightning data for Global Electric Circuit (GEC) investigation. Currently, there are lightning detection networks in many countries. In Kazakhstan we have only separate units in airports. So, we don't have full lightning information for our region. It is planned, to setup 8-10 measurement points with magnetic and electric filed antennas for VLF range. The final data set should be including each stroke location, time, type (CG+, CG-, CC+ or CC-) and waveform from each station. As the magnetic field lightning antenna the ferrite rod VLF antenna will be used. As the electric field antenna the wide range antenna with specific frequencies filters will be used. For true event detection TOA and DF methods needs detected stroke from minimum 4 stations. In this case we can get location accuracy about 2-3 km and better.

  8. Central hyperadrenergic state after lightning strike.

    Science.gov (United States)

    Parsaik, Ajay K; Ahlskog, J Eric; Singer, Wolfgang; Gelfman, Russell; Sheldon, Seth H; Seime, Richard J; Craft, Jennifer M; Staab, Jeffrey P; Kantor, Birgit; Low, Phillip A

    2013-08-01

    To describe and review autonomic complications of lightning strike. Case report and laboratory data including autonomic function tests in a subject who was struck by lightning. A 24-year-old man was struck by lightning. Following that, he developed dysautonomia, with persistent inappropriate sinus tachycardia and autonomic storms, as well as posttraumatic stress disorder (PTSD) and functional neurologic problems. The combination of persistent sinus tachycardia and episodic exacerbations associated with hypertension, diaphoresis, and agitation was highly suggestive of a central hyperadrenergic state with superimposed autonomic storms. Whether the additional PTSD and functional neurologic deficits were due to a direct effect of the lightning strike on the central nervous system or a secondary response is open to speculation.

  9. Lightning protection: challenges, solutions and questionable steps in the 21st century

    International Nuclear Information System (INIS)

    BERTA, Istvan

    2011-01-01

    Besides the special primary lightning protection of extremely high towers, huge office and governmental buildings, large industrial plants and resident parks most of the challenges were connected to the secondary lightning protection of sensitive devices in Information and Communication Technology. The 70 year history of Budapest School of Lightning Protection plays an important role in the research and education of lightning and development of lightning protection. Among results and solutions the Rolling Sphere designing method (RS) and the Probability Modulated Attraction Space (PMAS) theory are detailed. As a new field Preventive Lightning Protection (PLP) has been introduced. The PLP method means the use of special preventive actions only for the duration of the thunderstorm. Recently several non-conventional lightning protection techniques have appeared as competitors of the air termination systems formed of conventional Franklin rods. The questionable steps, non-conventional lightning protection systems reported in the literature are the radioactive lightning rods, Early Streamer Emission (ESE) rods and Dissipation Arrays (sometimes called Charge Transfer Systems).

  10. Lightning protection: challenges, solutions and questionable steps in the 21st century

    Science.gov (United States)

    Berta, István

    2011-06-01

    Besides the special primary lightning protection of extremely high towers, huge office and governmental buildings, large industrial plants and resident parks most of the challenges were connected to the secondary lightning protection of sensitive devices in Information and Communication Technology. The 70 year history of Budapest School of Lightning Protection plays an important role in the research and education of lightning and development of lightning protection. Among results and solutions the Rolling Sphere designing method (RS) and the Probability Modulated Attraction Space (PMAS) theory are detailed. As a new field Preventive Lightning Protection (PLP) has been introduced. The PLP method means the use of special preventive actions only for the duration of the thunderstorm. Recently several non-conventional lightning protection techniques have appeared as competitors of the air termination systems formed of conventional Franklin rods. The questionable steps, non-conventional lightning protection systems reported in the literature are the radioactive lightning rods, Early Streamer Emission (ESE) rods and Dissipation Arrays (sometimes called Charge Transfer Systems).

  11. Analysis and design of the ultraviolet warning optical system based on interference imaging

    Science.gov (United States)

    Wang, Wen-cong; Hu, Hui-jun; Jin, Dong-dong; Chu, Xin-bo; Shi, Yu-feng; Song, Juan; Liu, Jin-sheng; Xiao, Ting; Shao, Si-pei

    2017-10-01

    Ultraviolet warning technology is one of the important methods for missile warning. It provides a very effective way to detect the target for missile approaching alarm. With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. Compared to infrared warning, the ultraviolet warning has high efficiency and low false alarm rate. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge of missile warning technology. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. For the ultraviolet warning system, the optimal working waveband is 250 nm 280 nm (Solar Blind UV) due to the strong absorption of ozone layer. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes ultraviolet warning optical system based on interference imaging, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure includes a primary optical system, an ultraviolet reflector array, an ultraviolet imaging system and an ultraviolet interference imaging system. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm.A single pixel energy concentration is greater than 80%.

  12. The Trend of Voluntary Warnings in Electronic Nicotine Delivery System Magazine Advertisements.

    Science.gov (United States)

    Shang, Ce; Chaloupka, Frank J

    2017-01-10

    Some manufacturers of electronic nicotine delivery systems (ENDS) voluntarily carried health warnings in their advertisements. This study examined these voluntary warnings in magazine ads and plotted their trends between 2012 and early 2015. ENDS magazine ads were obtained through Kantar media and warnings were collected from the Chicago Public Library or the Trinkets and Trash surveillance system. The prevalence of voluntary warnings, warnings with the specific capitalized word "WARNING", and MarkTen warnings were examined after being weighted using factors related to exposure between January 2012 and March 2015. Five brands (MarkTen, NJOY, MISTIC, and some Blu) carried warnings during the study period. The prevalence of warnings post 2012 that contained a description of nicotine did not significantly increase until the launch of MarkTen, which also happened several months before April 2014 when the U.S. food and drug administration (FDA) published its proposed deeming rule. In addition, none of these warnings met the criteria required by the FDA in the final rules. Voluntary warnings, particularly MarkTen warnings, significantly increased in ENDS magazine ads between 2014 and 2015. It is important to monitor how ENDS manufacturers will comply with the FDA regulation related to warnings and how this regulation will ultimately impact ENDS risk perceptions and use.

  13. Progress towards a lightning ignition model for the Northern Rockies

    Science.gov (United States)

    Paul Sopko; Don Latham

    2010-01-01

    We are in the process of constructing a lightning ignition model specific to the Northern Rockies using fire occurrence, lightning strike, ecoregion, and historical weather, NFDRS (National Fire Danger Rating System), lightning efficiency and lightning "possibility" data. Daily grids for each of these categories were reconstructed for the 2003 fire season (...

  14. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T; Brask, M H [DEFU (Denmark); Jensen, F V; Raben, N [SEAS (Denmark); Saxov, J [Nordjyllandsvaerket (Denmark); Nielsen, L [Vestkraft (Denmark); Soerensen, P E [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  15. ATTACK WARNING: Costs to Modernize NORAD's Computer System Significantly Understated

    National Research Council Canada - National Science Library

    Cross, F

    1991-01-01

    ...) Integrated Tactical Warning and Attack Assessment (ITW/AA) system. These subsystems provide critical strategic surveillance and attack warning and assessment information to United States and Canadian leaders...

  16. A Walk through TRIDEC's intermediate Tsunami Early Warning System

    Science.gov (United States)

    Hammitzsch, M.; Reißland, S.; Lendholt, M.

    2012-04-01

    The management of natural crises is an important application field of the technology developed in the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme. TRIDEC is based on the development of the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS) providing a service platform for both sensor integration and warning dissemination. In TRIDEC new developments in Information and Communication Technology (ICT) are used to extend the existing platform realising a component-based technology framework for building distributed tsunami warning systems for deployment, e.g. in the North-eastern Atlantic, the Mediterranean and Connected Seas (NEAM) region. The TRIDEC system will be implemented in three phases, each with a demonstrator. Successively, the demonstrators are addressing challenges, such as the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources with accelerated generation of large volumes of data. These include sensor systems, geo-information repositories, simulation tools and data fusion tools. In addition to conventional sensors also unconventional sensors and sensor networks play an important role in TRIDEC. The system version presented is based on service-oriented architecture (SOA) concepts and on relevant standards of the Open Geospatial Consortium (OGC), the World Wide Web Consortium (W3C) and the Organization for the Advancement of Structured Information Standards (OASIS). In this way the system continuously gathers, processes and displays events and data coming from open sensor platforms to enable operators to quickly decide whether an early warning is necessary and to send personalized warning messages to the authorities and the population at large through a wide range of communication channels. The system

  17. Developing effective warning systems: Ongoing research at Ruapehu volcano, New Zealand

    Science.gov (United States)

    Leonard, Graham S.; Johnston, David M.; Paton, Douglas; Christianson, Amy; Becker, Julia; Keys, Harry

    2008-05-01

    PurposeThis paper examines the unique challenges to volcanic risk management associated with having a ski area on an active volcano. Using a series of simulated eruption/lahar events at Ruapehu volcano, New Zealand, as a context, a model of risk management that integrates warning system design and technology, risk perceptions and the human response is explored. Principal resultsDespite increases in the observed audibility and comprehension of the warning message, recall of public education content, and people's awareness of volcanic risk, a persistent minority of the public continued to demonstrate only moderate awareness of the correct actions to take during a warning and failed to respond effectively. A relationship between level of staff competence and correct public response allowed the level of public response to be used to identify residual risk and additional staff training needs. The quality of staff awareness, action and decision-making has emerged as a critical factor, from detailed staff and public interviews and from exercise observations. Staff actions are especially important for mobilising correct public response at Ruapehu ski areas due to the transient nature of the visitor population. Introduction of education material and staff training strategies that included the development of emergency decision-making competencies improved knowledge of correct actions, and increased the proportion of people moving out of harm's way during blind tests. Major conclusionsWarning effectiveness is a function of more than good hazard knowledge and the generation and notification of an early warning message. For warning systems to be effective, these factors must be complemented by accurate knowledge of risk and risk management actions. By combining the Ruapehu findings with those of other warning system studies in New Zealand, and internationally, a practical five-step model for effective early warning systems is discussed. These steps must be based upon sound and

  18. The Trend of Voluntary Warnings in Electronic Nicotine Delivery System Magazine Advertisements

    Directory of Open Access Journals (Sweden)

    Ce Shang

    2017-01-01

    Full Text Available Some manufacturers of electronic nicotine delivery systems (ENDS voluntarily carried health warnings in their advertisements. This study examined these voluntary warnings in magazine ads and plotted their trends between 2012 and early 2015. ENDS magazine ads were obtained through Kantar media and warnings were collected from the Chicago Public Library or the Trinkets and Trash surveillance system. The prevalence of voluntary warnings, warnings with the specific capitalized word “WARNING”, and MarkTen warnings were examined after being weighted using factors related to exposure between January 2012 and March 2015. Five brands (MarkTen, NJOY, MISTIC, and some Blu carried warnings during the study period. The prevalence of warnings post 2012 that contained a description of nicotine did not significantly increase until the launch of MarkTen, which also happened several months before April 2014 when the U.S. food and drug administration (FDA published its proposed deeming rule. In addition, none of these warnings met the criteria required by the FDA in the final rules. Voluntary warnings, particularly MarkTen warnings, significantly increased in ENDS magazine ads between 2014 and 2015. It is important to monitor how ENDS manufacturers will comply with the FDA regulation related to warnings and how this regulation will ultimately impact ENDS risk perceptions and use.

  19. Utilizing ISS Camera Systems for Scientific Analysis of Lightning Characteristics and comparison with ISS-LIS and GLM

    Science.gov (United States)

    Schultz, C. J.; Lang, T. J.; Leake, S.; Runco, M.; Blakeslee, R. J.

    2017-12-01

    Video and still frame images from cameras aboard the International Space Station (ISS) are used to inspire, educate, and provide a unique vantage point from low-Earth orbit that is second to none; however, these cameras have overlooked capabilities for contributing to scientific analysis of the Earth and near-space environment. The goal of this project is to study how georeferenced video/images from available ISS camera systems can be useful for scientific analysis, using lightning properties as a demonstration. Camera images from the crew cameras and high definition video from the Chiba University Meteor Camera were combined with lightning data from the National Lightning Detection Network (NLDN), ISS-Lightning Imaging Sensor (ISS-LIS), the Geostationary Lightning Mapper (GLM) and lightning mapping arrays. These cameras provide significant spatial resolution advantages ( 10 times or better) over ISS-LIS and GLM, but with lower temporal resolution. Therefore, they can serve as a complementarity analysis tool for studying lightning and thunderstorm processes from space. Lightning sensor data, Visible Infrared Imaging Radiometer Suite (VIIRS) derived city light maps, and other geographic databases were combined with the ISS attitude and position data to reverse geolocate each image or frame. An open-source Python toolkit has been developed to assist with this effort. Next, the locations and sizes of all flashes in each frame or image were computed and compared with flash characteristics from all available lightning datasets. This allowed for characterization of cloud features that are below the 4-km and 8-km resolution of ISS-LIS and GLM which may reduce the light that reaches the ISS-LIS or GLM sensor. In the case of video, consecutive frames were overlaid to determine the rate of change of the light escaping cloud top. Characterization of the rate of change in geometry, more generally the radius, of light escaping cloud top was integrated with the NLDN, ISS-LIS and

  20. Advanced driver assistance systems: Using multimodal redundant warnings to enhance road safety.

    Science.gov (United States)

    Biondi, Francesco; Strayer, David L; Rossi, Riccardo; Gastaldi, Massimiliano; Mulatti, Claudio

    2017-01-01

    This study investigated whether multimodal redundant warnings presented by advanced assistance systems reduce brake response times. Warnings presented by assistance systems are designed to assist drivers by informing them that evasive driving maneuvers are needed in order to avoid a potential accident. If these warnings are poorly designed, they may distract drivers, slow their responses, and reduce road safety. In two experiments, participants drove a simulated vehicle equipped with a forward collision avoidance system. Auditory, vibrotactile, and multimodal warnings were presented when the time to collision was shorter than five seconds. The effects of these warnings were investigated with participants performing a concurrent cell phone conversation (Exp. 1) or driving in high-density traffic (Exp. 2). Braking times and subjective workload were measured. Multimodal redundant warnings elicited faster braking reaction times. These warnings were found to be effective even when talking on a cell phone (Exp. 1) or driving in dense traffic (Exp. 2). Multimodal warnings produced higher ratings of urgency, but ratings of frustration did not increase compared to other warnings. Findings obtained in these two experiments are important given that faster braking responses may reduce the potential for a collision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. LED-Based High-Voltage Lines Warning System

    Directory of Open Access Journals (Sweden)

    Eldar MUSA

    2013-04-01

    Full Text Available LED-based system, running with the current of high-voltage lines and converting the current flowing through the line into the light by using a toroid transformer, has been developed. The transformer’s primary winding is constituted by the high voltage power line. Toroidal core consists of two equal parts and the secondary windings are evenly placed on these two parts. The system is mounted on the high-voltage lines as a clamp. The secondary winding ends are connected in series by the connector on the clamp. LEDs are supplied by the voltage at the ends of secondary. Current flowing through highvoltage transmission lines is converted to voltage by the toroidal transformer and the light emitting LEDs are supplied with this voltage. The theory of the conversion of the current flowing through the line into the light is given. The system, running with the current of the line and converting the current into the light, has been developed. System has many application areas such as warning high voltage lines (warning winches to not hinder the high-voltage lines when working under the lines, warning planes to not touch the high-voltage lines, remote measurement of high-voltage line currents, and local illumination of the line area

  2. Real-Time Target Motion Animation for Missile Warning System Testing

    Science.gov (United States)

    2006-04-01

    T. Perkins, R. Sundberg, J. Cordell, Z. Tun , and M. Owen, Real-time Target Motion Animation for Missile Warning System Testing, Proc. SPIE Vol 6208...Z39-18 Real-time target motion animation for missile warning system testing Timothy Perkins*a, Robert Sundberga, John Cordellb, Zaw Tunb, Mark

  3. An Infrastructure for a Traffic Warning System

    DEFF Research Database (Denmark)

    Brønsted, Jeppe; Hansen, Klaus Marius; Kristensen, Lars Michael

    2005-01-01

    The LIWAS Trafc Warning System aims at providingearly warning to vehicles about road conditions, such aswhether the road is slippery. The LIWAS system is currentlybeing developed and consists of two main parts:sensors for determining the state of the road and a communicationinfrastructure...... supporting inter-vehicle communication.This paper presents our results on requirementsidentication, design, and prototyping of the infrastructure.The infrastructure combines communication via mobilephones with communication based on the principles ofad-hoc networking, and it supports units in being...... updatedduring operation. The presented prototypes and associatedexperimental results demonstrate the main functionalitiesof the communication infrastructure, and have led to theinitial deployment of LIWAS units....

  4. The Lightning Nitrogen Oxides Model (LNOM): Status and Recent Applications

    Science.gov (United States)

    Koshak, William; Khan, Maudood; Peterson, Harold

    2011-01-01

    Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) are discussed. Recent results from an August 2006 run of the Community Multiscale Air Quality (CMAQ) modeling system that employs LNOM lightning NOx (= NO + NO2) estimates are provided. The LNOM analyzes Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx. The latest LNOM estimates of (a) lightning channel length distributions, (b) lightning 1-m segment altitude distributions, and (c) the vertical profile of NOx are presented. The impact of including LNOM-estimates of lightning NOx on CMAQ output is discussed.

  5. Development of structural health monitoring and early warning system for reinforced concrete system

    International Nuclear Information System (INIS)

    Iranata, Data; Wahyuni, Endah; Murtiadi, Suryawan; Widodo, Amien; Riksakomara, Edwin; Sani, Nisfu Asrul

    2015-01-01

    Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limit value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results

  6. The lightning flash

    CERN Document Server

    Cooray, Vernon

    2014-01-01

    With contributions from today's leading lightning engineers and researchers, this updated 2nd edition of Vernon Cooray's classic text, The Lightning Flash provides the reader with an essential introduction to lightning and its impact on electrical and electronic equipment. Providing the reader with a thorough background into almost every aspect of lightning and its impact on electrical and electronic equipment, this new edition is updated throughout and features eight new chapters that bring the science up to date.

  7. Automatic early warning systems for the environment

    Directory of Open Access Journals (Sweden)

    Lesjak Martin

    2003-01-01

    Full Text Available Computerized, continuous monitoring environmental early warning systems are complex networks that merge measurements with the information technology. Accuracy, consistency, reliability and data quality are their most important features. Several effects may disturb their characteristics: hostile environment, unreliable communications, poor quality of equipment nonqualified users or service personnel. According to our experiences, a number of measures should be taken to enhance system performances and to maintain them at the desired level. In the paper, we are presenting an analysis of system requirements, possible disturbances and corrective measures that give the main directives for the design, construction and exploitation of the environmental early warning systems. Procedures which ensure data integrity and quality are mentioned. Finally, the contemporary system approach based on the LAN/WAN network topology with Intranet/Internet software is proposed, together with case descriptions of two already operating systems, based on computer-network principle.

  8. CONCEPTUAL DIFFERENCES BETWEEN THE PACIFIC, ATLANTIC AND ARCTIC TSUNAMI WARNING SYSTEMS FOR CANADA

    Directory of Open Access Journals (Sweden)

    T.S. Murty

    2005-01-01

    Full Text Available Canada has coastlines on three of the four oceans on the globe, namely, the Pacific, Atlantic and Arctic oceans. The Pacific and Atlantic oceans are connected to the Arctic Ocean in the north, but still they are three distinct oceans, and need three individual tsunami warning systems. Tsunamis in the Arctic Ocean are not as well documented as in the Pacific and Atlantic oceans. From what is known, tsunamis in the Arctic Ocean are rare and probably are small in amplitude. Because of very low population density, around the Canadian Arctic, at present, there is no priority for a tsunami warning system for Arctic Canada. For the Pacific Ocean, a tsunami warning system is in existence since 1948. In at least one sense, the warning aspects of the tsunami warning system for the Pacific coast of Canada, is relatively simple and straight forward, because it involves only the federal government (PSEPC and the provincial government of British Columbia (PEP. For the Atlantic Ocean, A tsunami warning system is now being established. The warning aspects will be some what more complex for eastern Canada, since it not only involves the federal government, but also five provinces, namely, Newfoundland and Labrador, Nova Scotia, New Brunswick, Prince Edward Island and Quebec. The Alaska tsunami warning center (ATWC in Palmer, Alaska, provides tsunami warnings for both Pacific and Atlantic Canada.

  9. Identification of lightning vulnerability points on complex grounded structures

    OpenAIRE

    Becerra Garcia, Marley; Cooray, Vernon; Hartono, Z.A

    2007-01-01

    The identification of the most vulnerable points on a given structure to be struck by lightning is an important issue on the design of areliable lightning protection system. Traditionally, these lightning strike points are identified using the rolling sphere method, through anempirical correlation with the prospective peak return stroke current. However, field observations in Kuala Lumpur and Singapore haveshown that the points where lightning flashes strike buildings also depend on the heigh...

  10. How to verify lightning protection efficiency for electrical systems? Testing procedures and practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Birkl, Josef; Zahlmann, Peter [DEHN and SOEHNE, Neumarkt (Germany)], Emails: Josef.Birkl@technik.dehn.de, Peter.Zahlmann@technik.dehn.de

    2007-07-01

    There are increasing numbers of applications, installing Surge Protective Devices (SPDs), through which partial lightning currents flow, and highly sensitive, electronic devices to be protected closely next to each other due to the design of electric distribution systems and switchgear installations which is getting more and more compact. In these cases, the protective function of the SPDs has to be co-ordinated with the individual immunity of the equipment against energetic, conductive impulse voltages and impulse currents. In order to verify the immunity against partial lightning currents of the complete system laboratory tests on a system level are a suitable approach. The proposed test schemes for complete systems have been successfully performed on various applications. Examples will be presented. (author)

  11. Lightning Burns and Electrical Trauma in a Couple Simultaneously Struck by Lightning

    Directory of Open Access Journals (Sweden)

    Stephanie A. Eyerly-Webb

    2017-07-01

    Full Text Available More people are struck and killed by lightning each year in Florida than any other state in the United States. This report discusses a couple that was simultaneously struck by lightning while walking arm-in-arm. Both patients presented with characteristic lightning burns and were admitted for hemodynamic monitoring, serum labs, and observation and were subsequently discharged home. Despite the superficial appearance of lightning burns, serious internal electrical injuries are common. Therefore, lightning strike victims should be admitted and evaluated for cardiac arrhythmias, renal injury, and neurological sequelae.

  12. Caltrans fog detection and warning system.

    Science.gov (United States)

    2009-01-01

    The California Department of Transportation (Caltrans) has implemented a fog detection and warning system on Highway 99 near Fresno. The entire central valley region is susceptible to Tule fog, which can reduce visibility tremendously, sometimes to n...

  13. Sensors for in-flight lightning detection on aircraft

    NARCIS (Netherlands)

    Stelmashuk, V.; Deursen, van A.P.J.; Webster, M.

    2008-01-01

    Commercial passenger aircraft are on average struck by lightning once a year. The In-flight Lightning Strike Damage Assessment System (ILDAS) project is to develop and validate a prototype of a system capable of in-flight measurement of the current waveform and reconstruction of the path of

  14. How Lightning Works Inside Thunderstorms: A Half-Century of Lightning Studies

    Science.gov (United States)

    Krehbiel, P. R.

    2015-12-01

    Lightning is a fascinating and intriguing natural phenomenon, but the most interesting parts of lightning discharges are inside storms where they are obscured from view by the storm cloud. Although clouds are essentially opaque at optical frequencies, they are fully transparent at radio frequencies (RF). This, coupled with the fact that lightning produces prodigious RF emissions, has allowed us to image and study lightning inside storms using various RF and lower-frequency remote sensing techniques. As in all other scientific disciplines, the technology for conducting the studies has evolved to an incredible extent over the past 50 years. During this time, we have gone from having very little or no knowledge of how lightning operates inside storms, to being able to 'see' its detailed structure and development with an increasing degree of spatial and temporal resolution. In addition to studying the discharge processes themselves, lightning mapping observations provide valuable information on the electrical charge structure of storms, and on the mechanisms by which storms become strongly electrified. In this presentation we briefly review highlights of previous observations, focussing primarily on the long string of remote-sensing studies I have been involved in. We begin with the study of lightning charge centers of cloud-to-ground discharges in central New Mexico in the late 1960s and continue up to the present day with interferometric and 3-dimensional time-of-arrival VHF mapping observations of lightning in normally- and anomalously electrified storms. A particularly important aspect of the investigations has been comparative studies of lightning in different climatological regimes. We conclude with observations being obtained by a high-speed broadband VHF interferometer, which show in unprecedented detail how individual lightning discharges develop inside storms. From combined interferometer and 3-D mapping data, we are beginning to unlock nature's secrets

  15. Artificial Neural Network applied to lightning flashes

    Science.gov (United States)

    Gin, R. B.; Guedes, D.; Bianchi, R.

    2013-05-01

    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  16. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.

    2017-12-01

    Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical lightning for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was robotically installed in an Earth-viewing position on the outside of the ISS, providing a great opportunity to not only extend the 17-year TRMM LIS record of tropical lightning measurements but also to expand that coverage to higher latitudes missed by the TRMM mission. Since its activation, LIS has continuously observed the amount, rate, and radiant energy lightning within its field-of-view as it orbits the Earth. A major focus of this mission is to better understand the processes which cause lightning, as well as the connections between lightning and subsequent severe weather events. This understanding is a key to improving weather predictions and saving lives and property here in the United States and around the world. The LIS measurements will also help cross-validate observations from the new Geostationary Lightning Mapper (GLM) operating on NOAA's newest weather satellite GOES-16. An especially unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational forecasting and warning applications over data sparse regions such

  17. Earthquake early warning system using real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R.R. Jr.; Dowla, F.U.

    1996-02-01

    An earthquake warning system has been developed to provide a time series profile from which vital parameters such as the time until strong shaking begins, the intensity of the shaking, and the duration of the shaking, can be derived. Interaction of different types of ground motion and changes in the elastic properties of geological media throughout the propagation path result in a highly nonlinear function. We use neural networks to model these nonlinearities and develop learning techniques for the analysis of temporal precursors occurring in the emerging earthquake seismic signal. The warning system is designed to analyze the first-arrival from the three components of an earthquake signal and instantaneously provide a profile of impending ground motion, in as little as 0.3 sec after first ground motion is felt at the sensors. For each new data sample, at a rate of 25 samples per second, the complete profile of the earthquake is updated. The profile consists of a magnitude-related estimate as well as an estimate of the envelope of the complete earthquake signal. The envelope provides estimates of damage parameters, such as time until peak ground acceleration (PGA) and duration. The neural network based system is trained using seismogram data from more than 400 earthquakes recorded in southern California. The system has been implemented in hardware using silicon accelerometers and a standard microprocessor. The proposed warning units can be used for site-specific applications, distributed networks, or to enhance existing distributed networks. By producing accurate, and informative warnings, the system has the potential to significantly minimize the hazards of catastrophic ground motion. Detailed system design and performance issues, including error measurement in a simple warning scenario are discussed in detail.

  18. 14 CFR 91.223 - Terrain awareness and warning system.

    Science.gov (United States)

    2010-01-01

    ... to the terrain awareness and warning system audio and visual warnings. (d) Exceptions. Paragraphs (a... after March 29, 2002. Except as provided in paragraph (d) of this section, no person may operate a... minimum meets the requirements for Class B equipment in Technical Standard Order (TSO)-C151. (b) Airplanes...

  19. Lightning Safety Tips and Resources

    Science.gov (United States)

    ... Services Careers Contact Us Glossary Safety National Program Lightning Safety Tips and Resources Weather.gov > Safety > Lightning Safety Tips and Resources Lightning Resources Lightning strikes ...

  20. Developing Lightning Prediction Tools for the CCAFS Dual-Polarimetric Radar

    Science.gov (United States)

    Petersen, W. A.; Carey, L. D.; Deierling, W.; Johnson, E.; Bateman, M.

    2009-01-01

    ensuing lightning in the sub-tropical/tropical convection typical of the southeastern U.S., Maritime Continent, and southwestern Amazon. The polarimetric signatures detected in this setting provide a basis for automated 3-D detection of hydrometeor types in fuzzy logic hydrometeor identification algorithms (HID). Our working hypothesis is that improvement in lightning onset warning lead time and specificity for a given storm, relative to application of a Z-threshold algorithm, should arise as a consequence of the ability of dual-polarimetric radar to unambiguously detect and identify (through HID algorithms) the updraft elevation of rain-water cores above the freezing level and subsequent onset of drop freezing, riming, and robust mixed phase processes leading to significant charge separation and lightning. This type of algorithm, though dependent on the quality of the polarimetric data should be less susceptible to variable Z-calibration that can impact a given Z-threshold approach. To facilitate development of the algorithm while the 45WS dual-pol radar is in its current test stages and to evaluate the impact of polarimetric data quality (e.g., modified scan parameters and sampling) on the ensuing algorithms, we are using the ARMOR C-band dual-pol radar in Huntsville combined with N. Alabama LMA data and ARMOR HID algorithms [NCAR algorithm modified for application at C-band] in a testbed fashion. For lightning cessation we are revisiting the application of differential propagation phase variables for the monitoring of ice crystal alignment driven by in-cloud electric fields combined with metrics of ice water path (i.e., vertically integrated reflectivity). Importantly it should be noted that this approach is still very much a research topic and as such, we will explore operational applications that involve radar frequencies other than C-Band by using the UAH MAX X-band dual-pol radar in slow staring modes.

  1. The physics of lightning

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Joseph R., E-mail: jdwyer@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Uman, Martin A. [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2014-01-30

    Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field.

  2. Full scale lightning surge tests of distribution transformers and secondary systems

    International Nuclear Information System (INIS)

    Goedde, G.L.; Dugan, R.C. Sr.; Rowe, L.D.

    1992-01-01

    This paper reports that low-side surges are known to cause failures of distribution transformers. They also subject load devices to overvoltages. A full-scale model of a residential service has been set up in a laboratory and subjected to impulses approximating lightning strokes. The tests were made to determine the impulse characteristics of the secondary system and to test the validity of previous analyses. Among the variables investigated were stroke location, the balance of the surges in the service cable, and the effectiveness of arrester protection. Low-side surges were found to consist of two basic components: the natural frequency of the system and the inductive response of the system to the stoke current. The latter component is responsible for transformer failures while the former may be responsible for discharge spots often found around secondary bushings. Arresters at the service entrance are effective in diverting most of the energy from a lightning strike, but may not protect sensitive loads. Additional local protection is also needed. The tests affirmed previous simulations and uncovered additional phenomena as well

  3. Early warning signal for interior crises in excitable systems.

    Science.gov (United States)

    Karnatak, Rajat; Kantz, Holger; Bialonski, Stephan

    2017-10-01

    The ability to reliably predict critical transitions in dynamical systems is a long-standing goal of diverse scientific communities. Previous work focused on early warning signals related to local bifurcations (critical slowing down) and nonbifurcation-type transitions. We extend this toolbox and report on a characteristic scaling behavior (critical attractor growth) which is indicative of an impending global bifurcation, an interior crisis in excitable systems. We demonstrate our early warning signal in a conceptual climate model as well as in a model of coupled neurons known to exhibit extreme events. We observed critical attractor growth prior to interior crises of chaotic as well as strange-nonchaotic attractors. These observations promise to extend the classes of transitions that can be predicted via early warning signals.

  4. Lightning and 85-GHz MCSs in the Global Tropics

    Science.gov (United States)

    Toracinta, E. Richard; Zipser, E. J.

    1999-01-01

    Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.

  5. Criteria for evaluating the condition of a tropical cyclone warning system.

    Science.gov (United States)

    Parker, D

    1999-09-01

    This paper evaluates the condition (i.e. health) of a tropical cyclone warning system (TCWS) during a 'quiet period' between infrequent intense cyclones. Capacity to make pre-disaster evaluations is important--disaster warning systems need to be in sound condition before, not after, disaster. The research--part of the UK's International Decade of Natural Disaster Reduction Flagship Programme--focuses upon an evaluatory method first used on flood warning systems. The Criteria-development Matrix comprises social, organisational and institutional criteria by which a TCWS may be assessed using a five-stage development scale. This method is used to evaluate Mauritius's TCWS using in-depth interview data. Ways to enhance the method and apply it to other disaster warning systems are discussed. The TCWS in Mauritius is a relatively sound one from which others can learn. Weaknesses requiring attention for Mauritius's TCWS to progress to an advanced level of development are identified.

  6. Lightning strikes

    International Nuclear Information System (INIS)

    Dance, B.

    1982-01-01

    If a nuclear weapon were struck by a powerful lightning flash, what would happen Scientists have assembled a simulator to produce exceptionally powerful discharges to try to find the answer to this question by practical test. The Sandia facility enables the extremely powerful lightning discharges which occur only once in every hundred lightning strokes to be duplicated. A bolt is composed of a series of strokes between two clouds or between one cloud and the earth. The simulator consists of four circuits, an inductor, a resistor and a special crowbar-switch developed at Sandia. The crowbar is for accuracy in the simulation of a lightning stroke. The test data is conveyed to computers for analysis by means of fibre-optic links. The first series of tests involve the warhead for the Air-Launched Cruise Missile

  7. Incorporating Lightning Flash Data into the WRF-CMAQ Modeling System: Algorithms and Evaluations

    Science.gov (United States)

    We describe the use of lightning flash data from the National Lightning Detection Network (NLDN) to constrain and improve the performance of coupled meteorology-chemistry models. We recently implemented a scheme in which lightning data is used to control the triggering of conve...

  8. Irregularities of ionospheric VTEC during lightning activity over Antarctic Peninsula

    International Nuclear Information System (INIS)

    Suparta, W; Wan Mohd Nor, W N A

    2017-01-01

    This paper investigates the irregularities of vertical total electron content (VTEC) during lightning activity and geomagnetic quiet days over Antarctic Peninsula in year 2014. During the lightning event, the ionosphere may be disturbed which may cause disruption in the radio signal. Thus, it is important to understand the influence of lightning on VTEC in the study of upper-lower interaction. The lightning data is obtained from World Wide Lightning Location Network (WWLLN) and the VTEC data has analyzed from Global Positioning System (GPS) for O’Higgins (OHI3), Palmer (PALV), and Rothera (ROTH). The results demonstrate the VTEC variation of ∼0.2 TECU during low lightning activity which could be caused by energy dissipation through lightning discharges from troposphere into the thermosphere. (paper)

  9. Research on Vegetable Pest Warning System Based on Multidimensional Big Data

    Directory of Open Access Journals (Sweden)

    Changzhen Zhang

    2018-06-01

    Full Text Available Pest early warning technology is part of the prerequisite for the timely and effective control of pest outbreaks. Traditional pest warning system with artificial mathematical statistics, radar, and remote sensing has some deficiency in many aspects, such as higher cost, weakness of accuracy, low efficiency, and so on. In this study, Pest image data was collected and information about four major vegetable pests (Bemisia tabaci (Gennadius, Phyllotreta striolata (Fabricius, Plutella xylostella (Linnaeus, and Frankliniella occidentalis (Pergande (Thysanoptera, Thripidae in southern China was extracted. A multi-sensor network system was constructed to collect small-scale environmental data on vegetable production sites. The key factors affecting the distribution of pests were discovered by multi-dimensional information, such as soil, environment, eco-climate, and meteorology of vegetable fields, and finally, the vegetable pest warning system that is based on multidimensional big data (VPWS-MBD was implemented. Pest and environmental data from Guangzhou Dongsheng Bio-Park were collected from June 2017 to February 2018. The number of pests is classified as level I (0–56, level II (57–131, level III (132–299, and level IV (above 300 by K-Means algorithm. The Pearson correlation coefficient and the grey relational analysis algorithm were used to calculate the five key influence factors of rainfall, soil temperature, air temperature, leaf surface humidity, and soil moisture. Finally, Back Propagation (BP Neural Network was used for classification prediction. The result shows: I-level warning accuracy was 96.14%, recall rate was 97.56%; II-level pest warning accuracy was 95.34%, the recall rate was 96.45%; III-level pest warning accuracy of 100%, the recall rate was 96.28%; IV-level pest warning accuracy of 100%, recall rate was 100%. It proves that the early warning system can effectively predict vegetable pests and achieve the early warning of

  10. Exploring Lightning Jump Characteristics

    Science.gov (United States)

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.

    2014-01-01

    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  11. On the Distribution of Lightning Current among Interconnected Grounding Systems in Medium Voltage Grids

    Directory of Open Access Journals (Sweden)

    Guido Ala

    2018-03-01

    Full Text Available This paper presents the results of a first investigation on the effects of lightning stroke on medium voltage installations’ grounding systems, interconnected with the metal shields of the Medium Voltage (MV distribution grid cables or with bare buried copper ropes. The study enables us to evaluate the distribution of the lightning current among interconnected ground electrodes in order to estimate if the interconnection, usually created to reduce ground potential rise during a single-line-to-ground fault, can give place to dangerous situations far from the installation hit by the lightning stroke. Four different case studies of direct lightning stroke are presented and discussed: (1 two secondary substations interconnected by the cables’ shields; (2 two secondary substations interconnected by a bare buried conductor; (3 a high voltage/medium voltage station connected with a secondary substation by the medium voltage cables’ shields; (4 a high voltage/medium voltage station connected with a secondary substation by a bare buried conductor. The results of the simulations show that a higher peak-lowering action on the lighting-stroke current occurs due to the use of bare conductors as interconnection elements in comparison to the cables’ shields.

  12. Practical Application of Site-Specific Earthquake Early Warning (EEW) System

    International Nuclear Information System (INIS)

    Kanda, Katsuhisa

    2014-01-01

    The development of an on-site warning system was reported. This system improves the timing of warnings and reduces the number of false alarms by improving the method of estimating the JMA seismic intensity using earthquake early warning system information based on site-specific data. Moreover, the development of an application for practical use in a construction company and an integrated system for realizing system shutdown was also reported. The concept of this system is based on the following. Seismic intensity is not distributed concentrically, and the attenuation relationship cannot explain the distribution of seismic intensity precisely. The standard method of seismic intensity prediction is construed as 'attenuation relationship + soil amplification factor', but this may be improved in the reformulation 'original attenuation relationship for each site + correction factors dependent on the epicenter location and depth' using a seismic intensity database that includes data on recent and historical earthquakes. (authors)

  13. Toward a cross-border early-warning system for Central Asia

    Directory of Open Access Journals (Sweden)

    Jacek Stankiewicz

    2015-04-01

    Full Text Available Rapidly expanding urban areas in Central Asia are increasingly vulnerable to seismic risk; but at present, no earthquake early warning (EEW systems exist in the region despite their successful implementation in other earthquake-prone areas. Such systems aim to provide short (seconds to tens of seconds warnings of impending disaster, enabling the first risk mitigation and damage control steps to be taken. This study presents the feasibility of a large scale cross-border regional system for Central Asian countries. Genetic algorithms are used to design efficient EEW networks, computing optimal station locations and trigger thresholds in recorded ground acceleration. Installation of such systems within 3 years aims to both reducing the endemic lack of strong motion data in Central Asia that is limiting the possibility of improving seismic hazard assessment, and at providing the first regional earthquake early warning system in the area.

  14. Information systems in a changing climate: Early warnings and drought risk management

    Directory of Open Access Journals (Sweden)

    Roger S. Pulwarty

    2014-06-01

    Full Text Available Drought is among the most damaging, and least understood, of all “natural” hazards. Although some droughts last a single season and affect only small areas, the instrumental and paleoclimate records show that droughts have sometimes continued for decades and have impacted millions of square kilometers in North America, West Africa, and East Asia. To cross the spectrum of potential drivers and impacts, drought information systems have multiple sub-systems which include an integrated risk assessment, communication and decision support system of which early warning is a central component and output. An early warning system is much more than a forecast – it is a linked risk information (including people׳s perception of risk and communication system that actively engages communities involved in preparedness. There are numerous drought systems warning systems being implemented at different scales of governance. We draw on the lessons of over 21 drought early warning systems around the world, in both developing and developed countries and at regional, national and community levels. The successes illustrate that effective early warning depends upon a multi-sectoral and interdisciplinary collaboration among all concerned actors at each stage in the warning process from monitoring to response and evaluation. However, the links between the community-based approach and the national and global EWSs are relatively weak. Using the rich experience of information systems across the globe, this paper identifies pathways for knowledge management and action at the relevant scales for decision-making in response to a changing climate.

  15. Main components and characteristics of landslide early warning systems operational worldwide

    Science.gov (United States)

    Piciullo, Luca; Cepeda, José

    2017-04-01

    During the last decades the number of victims and economic losses due to natural hazards are dramatically increased worldwide. The reason can be mainly ascribed to climate changes and urbanization in areas exposed at high level of risk. Among the many mitigation measures available for reducing the risk to life related to natural hazards, early warning systems certainly constitute a significant cost-effective option available to the authorities in charge of risk management and governance. The aim is to help and protect populations exposed to natural hazards, reducing fatalities when major events occur. Landslide is one of the natural hazards addressed by early warning systems. Landslide early warning systems (LEWSs) are mainly composed by the following four components: set-up, correlation laws, decisional algorithm and warning management. Within this framework, the set-up includes all the preliminary actions and choices necessary for designing a LEWS, such as: the area covered by the system, the types of landslides and the monitoring instruments. The monitoring phase provides a series of important information on different variables, considered as triggering factors for landslides, in order to define correlation laws and thresholds. Then, a decisional algorithm is necessary for defining the: number of warning levels to be employed in the system, decision making procedures, and everything else system managers may need for issuing warnings in different warning zones. Finally the warning management is composed by: monitoring and warning strategy; communication strategy; emergency plan and, everything connected to the social sphere. Among LEWSs operational worldwide, two categories can be defined as a function of the scale of analysis: "local" and "territorial" systems. The scale of analysis influences several actions and aspects connected to the design and employment of the system, such as: the actors involved, the monitoring systems, type of landslide phenomena

  16. Image navigation and registration for the geostationary lightning mapper (GLM)

    Science.gov (United States)

    van Bezooijen, Roel W. H.; Demroff, Howard; Burton, Gregory; Chu, Donald; Yang, Shu S.

    2016-10-01

    The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite (GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.

  17. Early Warning Models for Systemic Banking Crises in Montenegro

    Directory of Open Access Journals (Sweden)

    Željka Asanović

    2013-06-01

    Full Text Available The purpose of this research is to create an adequate early warning model for systemic banking crises in Montenegro. The probability of banking crisis occurrence is calculated using discrete dependent variable models, more precisely, estimating logit regression. Afterwards, seven simple logit regressions that individually have two explanatory variables are estimated. Adequate weights have been assigned to all seven regressions using the technique of Bayesian model averaging. The advantage of this technique is that it takes into account the model uncertainty by considering various combinations of models in order to minimize the author’s subjective judgment when determining reliable early warning indicators. The results of Bayesian model averaging largely coincide with the results of a previously estimated dynamic logit model. Indicators of credit expansion, thanks to their performances, have a dominant role in early warning models for systemic banking crises in Montenegro. The results have also shown that the Montenegrin banking system is significantly exposed to trends on the global level.

  18. Electrostatic protection of the solar power satellite and rectenna. Part 2: Lightning protection of the rectenna

    Science.gov (United States)

    1980-01-01

    Computer simulations and laboratory tests were used to evaluate the hazard posed by lightning flashes to ground on the Solar Power Satellite rectenna and to make recommendations on a lightning protection system for the rectenna. The distribution of lightning over the lower 48 of the continental United States was determined, as were the interactions of lightning with the rectenna and the modes in which those interactions could damage the rectenna. Lightning protection was both required and feasible. Several systems of lightning protection were considered and evaluated. These included two systems that employed lightning rods of different lengths and placed on top of the rectenna's billboards and a third, distribution companies; it consists of short lightning rods all along the length of each billboard that are connected by a horizontal wire above the billboard. The distributed lightning protection system afforded greater protection than the other systems considered and was easier to integrate into the rectenna's structural design.

  19. Brake reactions of distracted drivers to pedestrian Forward Collision Warning systems.

    Science.gov (United States)

    Lubbe, Nils

    2017-06-01

    Forward Collision Warning (FCW) can be effective in directing driver attention towards a conflict and thereby aid in preventing or mitigating collisions. FCW systems aiming at pedestrian protection have been introduced onto the market, yet an assessment of their safety benefits depends on the accurate modeling of driver reactions when the system is activated. This study contributes by quantifying brake reaction time and brake behavior (deceleration levels and jerk) to compare the effectiveness of an audio-visual warning only, an added haptic brake pulse warning, and an added Head-Up Display in reducing the frequency of collisions with pedestrians. Further, this study provides a detailed data set suited for the design of assessment methods for car-to-pedestrian FCW systems. Brake response characteristics were measured for heavily distracted drivers who were subjected to a single FCW event in a high-fidelity driving simulator. The drivers maintained a self-regulated speed of 30km/h in an urban area, with gaze direction diverted from the forward roadway by a secondary task. Collision rates and brake reaction times differed significantly across FCW settings. Brake pulse warnings resulted in the lowest number of collisions and the shortest brake reaction times (mean 0.8s, SD 0.29s). Brake jerk and deceleration were independent of warning type. Ninety percent of drivers exceeded a maximum deceleration of 3.6m/s 2 and a jerk of 5.3m/s 3 . Brake pulse warning was the most effective FCW interface for preventing collisions. In addition, this study presents the data required for driver modeling for car-to-pedestrian FCW similar to Euro NCAP's 2015 car-to-car FCW assessment. Practical applications: Vehicle manufacturers should consider the introduction of brake pulse warnings to their FCW systems. Euro NCAP could introduce an assessment that quantifies the safety benefits of pedestrian FCW systems and thereby aid the proliferation of effective systems. Copyright © 2017

  20. Lightning in aeronautics

    International Nuclear Information System (INIS)

    Lago, F

    2014-01-01

    It is generally accepted that a civilian aircraft is struck, on average, once or twice per year. This number tends to indicate that a lightning strike risk is far from being marginal and so requires that aircraft manufacturers have to demonstrate that their aircraft is protected against lightning. The first generation of aircrafts, which were manufactured mainly in aluminium alloy and had electromechanical and pneumatic controls, had a natural immunity to the effects of lightning. Nowadays, aircraft structures are made primarily with composite materials and flight controls are mostly electronic. This aspect of the ''more composite and more electric'' aircraft demands to aircraft manufacturers to pay a particular attention to the lightning protection and to its certification by testing and/or analysis. It is therefore essential to take this risk into account when designing the aircraft. Nevertheless, it is currently impossible to reproduce the entire lightning phenomenon in testing laboratories and the best way to analyse the lightning protection is to reproduce its effects. In this context, a number of standards and guides are produced by standards committees to help laboratories and aircraft manufacturers to perform realistic tests. Although the environment of a laboratory is quite different from those of a storm cloud, the rules of aircraft design, the know-how of aircraft manufacturers, the existence of international work leading to a better understanding of the lightning phenomenon and standards more precise, permit, today, to consider the risk as properly controlled

  1. Experiences integrating autonomous components and legacy systems into tsunami early warning systems

    Science.gov (United States)

    Reißland, S.; Herrnkind, S.; Guenther, M.; Babeyko, A.; Comoglu, M.; Hammitzsch, M.

    2012-04-01

    Fostered by and embedded in the general development of Information and Communication Technology (ICT) the evolution of Tsunami Early Warning Systems (TEWS) shows a significant development from seismic-centred to multi-sensor system architectures using additional sensors, e.g. sea level stations for the detection of tsunami waves and GPS stations for the detection of ground displacements. Furthermore, the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources serving near real-time data not only includes sensors but also other components and systems offering services such as the delivery of feasible simulations used for forecasting in an imminent tsunami threat. In the context of the development of the German Indonesian Tsunami Early Warning System (GITEWS) and the project Distant Early Warning System (DEWS) a service platform for both sensor integration and warning dissemination has been newly developed and demonstrated. In particular, standards of the Open Geospatial Consortium (OGC) and the Organization for the Advancement of Structured Information Standards (OASIS) have been successfully incorporated. In the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC) new developments are used to extend the existing platform to realise a component-based technology framework for building distributed TEWS. This talk will describe experiences made in GITEWS, DEWS and TRIDEC while integrating legacy stand-alone systems and newly developed special-purpose software components into TEWS using different software adapters and communication strategies to make the systems work together in a corporate infrastructure. The talk will also cover task management and data conversion between the different systems. Practical approaches and software solutions for the integration of sensors, e.g. providing seismic and sea level data, and utilisation of special

  2. False alarms and missed events: the impact and origins of perceived inaccuracy in tornado warning systems.

    Science.gov (United States)

    Ripberger, Joseph T; Silva, Carol L; Jenkins-Smith, Hank C; Carlson, Deven E; James, Mark; Herron, Kerry G

    2015-01-01

    Theory and conventional wisdom suggest that errors undermine the credibility of tornado warning systems and thus decrease the probability that individuals will comply (i.e., engage in protective action) when future warnings are issued. Unfortunately, empirical research on the influence of warning system accuracy on public responses to tornado warnings is incomplete and inconclusive. This study adds to existing research by analyzing two sets of relationships. First, we assess the relationship between perceptions of accuracy, credibility, and warning response. Using data collected via a large regional survey, we find that trust in the National Weather Service (NWS; the agency responsible for issuing tornado warnings) increases the likelihood that an individual will opt for protective action when responding to a hypothetical warning. More importantly, we find that subjective perceptions of warning system accuracy are, as theory suggests, systematically related to trust in the NWS and (by extension) stated responses to future warnings. The second half of the study matches survey data against NWS warning and event archives to investigate a critical follow-up question--Why do some people perceive that their warning system is accurate, whereas others perceive that their system is error prone? We find that subjective perceptions are--in part-a function of objective experience, knowledge, and demographic characteristics. When considered in tandem, these findings support the proposition that errors influence perceptions about the accuracy of warning systems, which in turn impact the credibility that people assign to information provided by systems and, ultimately, public decisions about how to respond when warnings are issued. © 2014 Society for Risk Analysis.

  3. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    Science.gov (United States)

    Boccippio, Dennis

    2004-01-01

    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  4. Preliminary Assessment of Detection Efficiency for the Geostationary Lightning Mapper Using Intercomparisons with Ground-Based Systems

    Science.gov (United States)

    Bateman, Monte; Mach, Douglas; Blakeslee, Richard J.; Koshak, William

    2018-01-01

    As part of the calibration/validation (cal/val) effort for the Geostationary Lightning Mapper (GLM) on GOES-16, we need to assess instrument performance (detection efficiency and accuracy). One major effort is to calculate the detection efficiency of GLM by comparing to multiple ground-based systems. These comparisons will be done pair-wise between GLM and each other source. A complication in this process is that the ground-based systems sense different properties of the lightning signal than does GLM (e.g., RF vs. optical). Also, each system has a different time and space resolution and accuracy. Preliminary results indicate that GLM is performing at or above its specification.

  5. Is More Better? - Night Vision Enhancement System's Pedestrian Warning Modes and Older Drivers.

    Science.gov (United States)

    Brown, Timothy; He, Yefei; Roe, Cheryl; Schnell, Thomas

    2010-01-01

    Pedestrian fatalities as a result of vehicle collisions are much more likely to happen at night than during day time. Poor visibility due to darkness is believed to be one of the causes for the higher vehicle collision rate at night. Existing studies have shown that night vision enhancement systems (NVES) may improve recognition distance, but may increase drivers' workload. The use of automatic warnings (AW) may help minimize workload, improve performance, and increase safety. In this study, we used a driving simulator to examine performance differences of a NVES with six different configurations of warning cues, including: visual, auditory, tactile, auditory and visual, tactile and visual, and no warning. Older drivers between the ages of 65 and 74 participated in the study. An analysis based on the distance to pedestrian threat at the onset of braking response revealed that tactile and auditory warnings performed the best, while visual warnings performed the worst. When tactile or auditory warnings were presented in combination with visual warning, their effectiveness decreased. This result demonstrated that, contrary to general sense regarding warning systems, multi-modal warnings involving visual cues degraded the effectiveness of NVES for older drivers.

  6. The spatio-temporal distribution of lightning over Israel and the neighboring area and its relation to regional synoptic systems

    Directory of Open Access Journals (Sweden)

    S. Shalev

    2011-08-01

    Full Text Available The spatio-temporal distribution of lightning flashes over Israel and the neighboring area and its relation to the regional synoptic systems has been studied, based on data obtained from the Israel Lightning Location System (ILLS operated by the Israel Electric Corporation (IEC. The system detects cloud-to-ground lightning discharges in a range of ~500 km around central Israel (32.5° N, 35° E. The study period was defined for annual activity from August through July, for 5 seasons in the period 2004–2010.

    The spatial distribution of lightning flash density indicates the highest concentration over the Mediterranean Sea, attributed to the contribution of moisture as well as sensible and latent heat fluxes from the sea surface. Other centers of high density appear along the coastal plain, orographic barriers, especially in northern Israel, and downwind from the metropolitan area of Tel Aviv, Israel. The intra-annual distribution shows an absence of lightning during the summer months (JJA due to the persistent subsidence over the region. The vast majority of lightning activity occurs during 7 months, October to April. Although over 65 % of the rainfall in Israel is obtained during the winter months (DJF, only 35 % of lightning flashes occur in these months. October is the richest month, with 40 % of total annual flashes. This is attributed both to tropical intrusions, i.e., Red Sea Troughs (RST, which are characterized by intense static instability and convection, and to Cyprus Lows (CLs arriving from the west.

    Based on daily study of the spatial distribution of lightning, three patterns have been defined; "land", "maritime" and "hybrid". CLs cause high flash density over the Mediterranean Sea, whereas some of the RST days are typified by flashes over land. The pattern defined "hybrid" is a combination of the other 2 patterns. On CL days, only the maritime pattern was noted, whereas in RST days all 3 patterns were found

  7. On the importance of risk knowledge for an end-to-end tsunami early warning system

    Science.gov (United States)

    Post, Joachim; Strunz, Günter; Riedlinger, Torsten; Mück, Matthias; Wegscheider, Stephanie; Zosseder, Kai; Steinmetz, Tilmann; Gebert, Niklas; Anwar, Herryal

    2010-05-01

    Warning systems commonly use information provided by networks of sensors able to monitor and detect impending disasters, aggregate and condense these information to provide reliable information to a decision maker whether to warn or not, disseminates the warning message and provide this information to people at risk. Ultimate aim is to enable those in danger to make decisions (e.g. initiate protective actions for buildings) and to take action to safe their lives. This involves very complex issues when considering all four elements of early warning systems (UNISDR-PPEW), namely (1) risk knowledge, (2) monitoring and warning service, (3) dissemination and communication, (4) response capability with the ultimate aim to gain as much time as possible to empower individuals and communities to act in an appropriate manner to reduce injury, loss of life, damage to property and the environment and loss of livelihoods. Commonly most warning systems feature strengths and main attention on the technical/structural dimension (monitoring & warning service, dissemination tools) with weaknesses and less attention on social/cultural dimension (e.g. human response capabilities, defined warning chain to and knowing what to do by the people). Also, the use of risk knowledge in early warning most often is treated in a theoretical manner (knowing that it is somehow important), yet less in an operational, practical sense. Risk assessments and risk maps help to motivate people, prioritise early warning system needs and guide preparations for response and disaster prevention activities. Beyond this risk knowledge can be seen as a tie between national level early warning and community level reaction schemes. This presentation focuses on results, key findings and lessons-learnt related to tsunami risk assessment in the context of early warning within the GITEWS (German-Indonesian Tsunami Early Warning) project. Here a novel methodology reflecting risk information needs in the early warning

  8. Forests and Phenology: Designing the Early Warning System to Understand Forest Change

    Science.gov (United States)

    Pierce, T.; Phillips, M. B.; Hargrove, W. W.; Dobson, G.; Hicks, J.; Hutchins, M.; Lichtenstein, K.

    2010-12-01

    Vegetative phenology is the study of plant development and changes with the seasons, such as the greening-up and browning-down of forests, and how these events are influenced by variations in climate. A National Phenology Data Set, based on Moderate Resolution Imaging Spectroradiometer satellite images covering 2002 through 2009, is now available from work by NASA, the US Forest Service, and Oak Ridge National Laboratory. This new data set provides an easily interpretable product useful for detecting changes to the landscape due to long-term factors such as climate change, as well as finding areas affected by short-term forest threats such as insects or disease. The Early Warning System (EWS) is a toolset being developed by the US Forest Service and the University of North Carolina-Asheville to support distribution and use of the National Phenology Data Set. The Early Warning System will help research scientists, US Forest Service personnel, forest and natural resources managers, decision makers, and the public in the use of phenology data to better understand unexpected change within our nation’s forests. These changes could have multiple natural sources such as insects, disease, or storm damage, or may be due to human-induced events, like thinning, harvest, forest conversion to agriculture, or residential and commercial use. The primary goal of the Early Warning System is to provide a seamless integration between monitoring, detection, early warning and prediction of these forest disturbances as observed through phenological data. The system consists of PC and web-based components that are structured to support four user stages of increasing knowledge and data sophistication. Building Literacy: This stage of the Early Warning System educates potential users about the system, why the system should be used, and the fundamentals about the data the system uses. The channels for this education include a website, interactive tutorials, pamphlets, and other technology

  9. Lightning safety of animals.

    Science.gov (United States)

    Gomes, Chandima

    2012-11-01

    This paper addresses a concurrent multidisciplinary problem: animal safety against lightning hazards. In regions where lightning is prevalent, either seasonally or throughout the year, a considerable number of wild, captive and tame animals are injured due to lightning generated effects. The paper discusses all possible injury mechanisms, focusing mainly on animals with commercial value. A large number of cases from several countries have been analyzed. Economically and practically viable engineering solutions are proposed to address the issues related to the lightning threats discussed.

  10. [Lightning strikes and lightning injuries in prehospital emergency medicine. Relevance, results, and practical implications].

    Science.gov (United States)

    Hinkelbein, J; Spelten, O; Wetsch, W A

    2013-01-01

    Up to 32.2% of patients in a burn center suffer from electrical injuries. Of these patients, 2-4% present with lightning injuries. In Germany, approximately 50 people per year are injured by a lightning strike and 3-7 fatally. Typically, people involved in outdoor activities are endangered and affected. A lightning strike usually produces significantly higher energy doses as compared to those in common electrical injuries. Therefore, injury patterns vary significantly. Especially in high voltage injuries and lightning injuries, internal injuries are of special importance. Mortality ranges between 10 and 30% after a lightning strike. Emergency medical treatment is similar to common electrical injuries. Patients with lightning injuries should be transported to a regional or supraregional trauma center. In 15% of all cases multiple people may be injured. Therefore, it is of outstanding importance to create emergency plans and evacuation plans in good time for mass gatherings endangered by possible lightning.

  11. Flood and landslide warning based on rainfall thresholds and soil moisture indexes: the HEWS (Hydrohazards Early Warning System) for Sicily

    Science.gov (United States)

    Brigandì, Giuseppina; Tito Aronica, Giuseppe; Bonaccorso, Brunella; Gueli, Roberto; Basile, Giuseppe

    2017-09-01

    The main focus of the paper is to present a flood and landslide early warning system, named HEWS (Hydrohazards Early Warning System), specifically developed for the Civil Protection Department of Sicily, based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF). The warning system is referred to 9 different Alert Zones in which Sicily has been divided into and based on a threshold system of three different increasing critical levels: ordinary, moderate and high. In this system, for early flood warning, a Soil Moisture Accounting (SMA) model provides daily soil moisture conditions, which allow to select a specific set of three rainfall thresholds, one for each critical level considered, to be used for issue the alert bulletin. Wetness indexes, representative of the soil moisture conditions of a catchment, are calculated using a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method, and on the unit hydrograph approach, that require daily observed and/or predicted rainfall, and temperature data as input. For the calibration of this model daily continuous time series of rainfall, streamflow and air temperature data are used. An event based lumped rainfall-runoff model has been, instead, used for the derivation of the rainfall thresholds for each catchment in Sicily characterised by an area larger than 50 km2. In particular, a Kinematic Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall was developed for this purpose. For rainfall-induced shallow landslide warning, empirical rainfall thresholds provided by Gariano et al. (2015) have been included in the system. They were derived on an empirical basis starting from a catalogue of 265 shallow landslides in Sicily in the period 2002-2012. Finally, Delft-FEWS operational forecasting platform has been applied to link input data, SMA model and rainfall threshold models to produce

  12. Flood and landslide warning based on rainfall thresholds and soil moisture indexes: the HEWS (Hydrohazards Early Warning System for Sicily

    Directory of Open Access Journals (Sweden)

    G. Brigandì

    2017-09-01

    Full Text Available The main focus of the paper is to present a flood and landslide early warning system, named HEWS (Hydrohazards Early Warning System, specifically developed for the Civil Protection Department of Sicily, based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF. The warning system is referred to 9 different Alert Zones in which Sicily has been divided into and based on a threshold system of three different increasing critical levels: ordinary, moderate and high. In this system, for early flood warning, a Soil Moisture Accounting (SMA model provides daily soil moisture conditions, which allow to select a specific set of three rainfall thresholds, one for each critical level considered, to be used for issue the alert bulletin. Wetness indexes, representative of the soil moisture conditions of a catchment, are calculated using a simple, spatially-lumped rainfall–streamflow model, based on the SCS-CN method, and on the unit hydrograph approach, that require daily observed and/or predicted rainfall, and temperature data as input. For the calibration of this model daily continuous time series of rainfall, streamflow and air temperature data are used. An event based lumped rainfall–runoff model has been, instead, used for the derivation of the rainfall thresholds for each catchment in Sicily characterised by an area larger than 50 km2. In particular, a Kinematic Instantaneous Unit Hydrograph based lumped rainfall–runoff model with the SCS-CN routine for net rainfall was developed for this purpose. For rainfall-induced shallow landslide warning, empirical rainfall thresholds provided by Gariano et al. (2015 have been included in the system. They were derived on an empirical basis starting from a catalogue of 265 shallow landslides in Sicily in the period 2002–2012. Finally, Delft-FEWS operational forecasting platform has been applied to link input data, SMA model and rainfall

  13. Neutron generation in lightning bolts

    International Nuclear Information System (INIS)

    Shah, G.N.; Razdan, H.; Bhat, C.L.; Ali, Q.M.

    1985-01-01

    To ascertain neutron generation in lightning bolts, the authors have searched for neutrons from individual lightning strokes, for a time-interval comparable with the duration of the lightning stroke. 10 7 -10 10 neutrons per stroke were found, thus providing the first experimental evidence that neutrons are generated in lightning discharges. (U.K.)

  14. An Experimental Seismic Data and Parameter Exchange System for Tsunami Warning Systems

    Science.gov (United States)

    Hoffmann, T. L.; Hanka, W.; Saul, J.; Weber, B.; Becker, J.; Heinloo, A.; Hoffmann, M.

    2009-12-01

    For several years GFZ Potsdam is operating a global earthquake monitoring system. Since the beginning of 2008, this system is also used as an experimental seismic background data center for two different regional Tsunami Warning Systems (TWS), the IOTWS (Indian Ocean) and the interim NEAMTWS (NE Atlantic and Mediterranean). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project, capable to acquire, archive and process real-time data feeds, was extended for export and import of individual processing results within the two clusters of connected SC3 systems. Therefore not only real-time waveform data are routed to the attached warning centers through GFZ but also processing results. While the current experimental NEAMTWS cluster consists of SC3 systems in six designated national warning centers in Europe, the IOTWS cluster presently includes seven centers, with another three likely to join in 2009/10. For NEAMTWS purposes, the GFZ virtual real-time seismic network (GEOFON Extended Virtual Network -GEVN) in Europe was substantially extended by adding many stations from Western European countries optimizing the station distribution. In parallel to the data collection over the Internet, a GFZ VSAT hub for secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and first data links were established through this backbone. For the Southeast Asia region, a VSAT hub has been established in Jakarta already in 2006, with some other partner networks connecting to this backbone via the Internet. Since its establishment, the experimental system has had the opportunity to prove its performance in a number of relevant earthquakes. Reliable solutions derived from a minimum of 25 stations were very promising in terms of speed. For important events, automatic alerts were released and disseminated by emails and SMS. Manually verified solutions are added as soon as they become

  15. Infrasound from lightning measured in Ivory Coast

    Science.gov (United States)

    Farges, T.; Millet, C.; Matoza, R. S.

    2012-04-01

    It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes, …). Some of the IMS stations are located where worldwide lightning detection networks (e.g. WWLLN) have a weak detection capability but lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of lightning flashes can be detected with this technique, giving better results locally than worldwide lightning detection networks. An IMS infrasound station has been installed in Ivory Coast for 9 years. The lightning rate of this region is 10-20 flashes/km2/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 4 years of data (2005-2009). For short lightning distances (less than 20 km), up to 60 % of lightning detected by WWLLN has been one-to-one correlated

  16. Radar-based Flood Warning System for Houston, Texas and Its Performance Evaluation

    Science.gov (United States)

    Fang, N.; Bedient, P.

    2009-12-01

    Houston has a long history of flooding problems as a serious nature. For instance, Houstonians suffered from severe flood inundation during Tropical Storm Allison in 2001 and Hurricane Ike in 2008. Radar-based flood warning systems as non-structural tools to provide accurate and timely warnings to the public and private entities are greatly needed for urban areas prone to flash floods. Fortunately, the advent of GIS, radar-based rainfall estimation using NEXRAD, and real-time delivery systems on the internet have allowed flood alert systems to provide important advanced warning of impending flood conditions. Thus, emergency personnel can take proper steps to mitigate against catastrophic losses. The Rice and Texas Medical Center (TMC) Flood Alert System (FAS2) has been delivering warning information with 2 to 3 hours of lead time to facility personnel in a readily understood format for more than 40 events since 1997. The system performed well during these major rainfall events with R square value of 93%. The current system has been improved by incorporating a new hydraulic prediction tool - FloodPlain Map Library (FPML). The FPML module aims to provide visualized information such as floodplain maps and water surface elevations instead of just showing hydrographs in real time based on NEXRAD radar rainfall data. During Hurricane Ike (September, 2008), FAS2 successfully provided precise and timely flood warning information to TMC with the peak flow difference of 3.6% and the volume difference of 5.6%; timing was excellent for this double-peaked event. With the funding from the Texas Department of Transportation, a similar flood warning system has been developed at a critical transportation pass along Highway 288 in Houston, Texas. In order to enable emergency personnel to begin flood preparation with as much lead time as possible, FAS2 is being used as a prototype to develop warning system for other flood-prone areas such as City of Sugar Land.

  17. Comparing distinct ground-based lightning location networks covering the Netherlands

    Science.gov (United States)

    de Vos, Lotte; Leijnse, Hidde; Schmeits, Maurice; Beekhuis, Hans; Poelman, Dieter; Evers, Läslo; Smets, Pieter

    2015-04-01

    Lightning can be detected using a ground-based sensor network. The Royal Netherlands Meteorological Institute (KNMI) monitors lightning activity in the Netherlands with the so-called FLITS-system; a network combining SAFIR-type sensors. This makes use of Very High Frequency (VHF) as well as Low Frequency (LF) sensors. KNMI has recently decided to replace FLITS by data from a sub-continental network operated by Météorage which makes use of LF sensors only (KNMI Lightning Detection Network, or KLDN). KLDN is compared to the FLITS system, as well as Met Office's long-range Arrival Time Difference (ATDnet), which measures Very Low Frequency (VLF). Special focus lies on the ability to detect Cloud to Ground (CG) and Cloud to Cloud (CC) lightning in the Netherlands. Relative detection efficiency of individual flashes and lightning activity in a more general sense are calculated over a period of almost 5 years. Additionally, the detection efficiency of each system is compared to a ground-truth that is constructed from flashes that are detected by both of the other datasets. Finally, infrasound data is used as a fourth lightning data source for several case studies. Relative performance is found to vary strongly with location and time. As expected, it is found that FLITS detects significantly more CC lightning (because of the strong aptitude of VHF antennas to detect CC), though KLDN and ATDnet detect more CG lightning. We analyze statistics computed over the entire 5-year period, where we look at CG as well as total lightning (CC and CG combined). Statistics that are considered are the Probability of Detection (POD) and the so-called Lightning Activity Detection (LAD). POD is defined as the percentage of reference flashes the system detects compared to the total detections in the reference. LAD is defined as the fraction of system recordings of one or more flashes in predefined area boxes over a certain time period given the fact that the reference detects at least one

  18. Development of a Global Agricultural Hotspot Detection and Early Warning System

    Science.gov (United States)

    Lemoine, G.; Rembold, F.; Urbano, F.; Csak, G.

    2015-12-01

    The number of web based platforms for crop monitoring has grown rapidly over the last years and anomaly maps and time profiles of remote sensing derived indicators can be accessed online thanks to a number of web based portals. However, while these systems make available a large amount of crop monitoring data to the agriculture and food security analysts, there is no global platform which provides agricultural production hotspot warning in a highly automatic and timely manner. Therefore a web based system providing timely warning evidence as maps and short narratives is currently under development by the Joint Research Centre. The system (called "HotSpot Detection System of Agriculture Production Anomalies", HSDS) will focus on water limited agricultural systems worldwide. The automatic analysis of relevant meteorological and vegetation indicators at selected administrative units (Gaul 1 level) will trigger warning messages for the areas where anomalous conditions are observed. The level of warning (ranging from "watch" to "alert") will depend on the nature and number of indicators for which an anomaly is detected. Information regarding the extent of the agricultural areas concerned by the anomaly and the progress of the agricultural season will complement the warning label. In addition, we are testing supplementary detailed information from other sources for the areas triggering a warning. These regard the automatic web-based and food security-tailored analysis of media (using the JRC Media Monitor semantic search engine) and the automatic detection of active crop area using Sentinel 1, upcoming Sentinel-2 and Landsat 8 imagery processed in Google Earth Engine. The basic processing will be fully automated and updated every 10 days exploiting low resolution rainfall estimates and satellite vegetation indices. Maps, trend graphs and statistics accompanied by short narratives edited by a team of crop monitoring experts, will be made available on the website on a

  19. An automatic tsunami warning system: TREMORS application in Europe

    Science.gov (United States)

    Reymond, D.; Robert, S.; Thomas, Y.; Schindelé, F.

    1996-03-01

    An integrated system named TREMORS (Tsunami Risk Evaluation through seismic Moment of a Real-time System) has been installed in EVORA station, in Portugal which has been affected by historical tsunamis. The system is based on a three component long period seismic station linked to a compatible IBM_PC with a specific software. The goals of this system are the followings: detect earthquake, locate them, compute their seismic moment, give a seismic warning. The warnings are based on the seismic moment estimation and all the processing are made automatically. The finality of this study is to check the quality of estimation of the main parameters of interest in a goal of tsunami warning: the location which depends of azimuth and distance, and at last the seismic moment, M 0, which controls the earthquake size. The sine qua non condition for obtaining an automatic location is that the 3 main seismic phases P, S, R must be visible. This study gives satisfying results (automatic analysis): ± 5° errors in azimuth and epicentral distance, and a standard deviation of less than a factor 2 for the seismic moment M 0.

  20. Near real-time GPS applications for tsunami early warning systems

    Directory of Open Access Journals (Sweden)

    C. Falck

    2010-02-01

    Full Text Available GPS (Global Positioning System technology is widely used for positioning applications. Many of them have high requirements with respect to precision, reliability or fast product delivery, but usually not all at the same time as it is the case for early warning applications. The tasks for the GPS-based components within the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009 are to support the determination of sea levels (measured onshore and offshore and to detect co-seismic land mass displacements with the lowest possible latency (design goal: first reliable results after 5 min. The completed system was designed to fulfil these tasks in near real-time, rather than for scientific research requirements. The obtained data products (movements of GPS antennas are supporting the warning process in different ways. The measurements from GPS instruments on buoys allow the earliest possible detection or confirmation of tsunami waves on the ocean. Onshore GPS measurements are made collocated with tide gauges or seismological stations and give information about co-seismic land mass movements as recorded, e.g., during the great Sumatra-Andaman earthquake of 2004 (Subarya et al., 2006. This information is important to separate tsunami-caused sea height movements from apparent sea height changes at tide gauge locations (sensor station movement and also as additional information about earthquakes' mechanisms, as this is an essential information to predict a tsunami (Sobolev et al., 2007.

    This article gives an end-to-end overview of the GITEWS GPS-component system, from the GPS sensors (GPS receiver with GPS antenna and auxiliary systems, either onshore or offshore to the early warning centre displays. We describe how the GPS sensors have been installed, how they are operated and the methods used to collect, transfer and process the GPS data in near real-time. This includes the sensor system design, the communication

  1. ShakeAlert—An earthquake early warning system for the United States west coast

    Science.gov (United States)

    Burkett, Erin R.; Given, Douglas D.; Jones, Lucile M.

    2014-08-29

    Earthquake early warning systems use earthquake science and the technology of monitoring systems to alert devices and people when shaking waves generated by an earthquake are expected to arrive at their location. The seconds to minutes of advance warning can allow people and systems to take actions to protect life and property from destructive shaking. The U.S. Geological Survey (USGS), in collaboration with several partners, has been working to develop an early warning system for the United States. ShakeAlert, a system currently under development, is designed to cover the West Coast States of California, Oregon, and Washington.

  2. Drunk driving warning system (DDWS). Volume 1, System concept and description

    Science.gov (United States)

    1983-11-01

    The Drunk Driving Warning System (DDWS) is a vehicle-mounted device for testing driver impairment and activating alarms. The driver must pass a steering competency test in order to drive the car in a normal manner. The emergency flasher system operat...

  3. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-09-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  4. An Envelope Based Feedback Control System for Earthquake Early Warning: Reality Check Algorithm

    Science.gov (United States)

    Heaton, T. H.; Karakus, G.; Beck, J. L.

    2016-12-01

    Earthquake early warning systems are, in general, designed to be open loop control systems in such a way that the output, i.e., the warning messages, only depend on the input, i.e., recorded ground motions, up to the moment when the message is issued in real-time. We propose an algorithm, which is called Reality Check Algorithm (RCA), which would assess the accuracy of issued warning messages, and then feed the outcome of the assessment back into the system. Then, the system would modify its messages if necessary. That is, we are proposing to convert earthquake early warning systems into feedback control systems by integrating them with RCA. RCA works by continuously monitoring and comparing the observed ground motions' envelopes to the predicted envelopes of Virtual Seismologist (Cua 2005). Accuracy of magnitude and location (both spatial and temporal) estimations of the system are assessed separately by probabilistic classification models, which are trained by a Sparse Bayesian Learning technique called Automatic Relevance Determination prior.

  5. EARLY WARNING SYSTEM DAN PERTUMBUHAN PENDAPATAN KONTRIBUSI PADA PERUSAHAAN ASURANSI JIWA SYARIAH DI INDONESIA

    Directory of Open Access Journals (Sweden)

    Maria Oktaviani

    2017-03-01

    Full Text Available The background of this study was the lack of awareness Indonesian society toward syariah life insurance andit needed to be investigated whether there was a problem on its financial instruments by using Early WarningSystem ratio. The purpose of this study was to prove the influence of Early Warning System ratio for contributionrevenue growth syariah life insurance companies in Indonesia period 2010-2013. The sampling techniqueused was purposive sampling. Samples that acquired the criteria were 10 companies. Data were analyzedusing multiple linear regression. The ratio of the Early Warning System consisted of 6 solvencies: solvencymargin ratio, change in surplus ratio, return on investment ratio, liquidity ratio, agent’s balance to surplusratio and technical ratio. The result of this study was Early Warning System ratio influenced simultaneouslyon contribution revenue growth ratio and partial contribution of technical ratio influenced positively tocontribution revenue growth ratio. So, Early Warning System ratio could be applied in order to increasecontribution revenue growth of life insurance syariah units companies.

  6. Catching lightning for alternative energy

    Energy Technology Data Exchange (ETDEWEB)

    Helman, D.S. [California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840 (United States)

    2011-05-15

    The article reviews the current literature related to lightning and makes a case for using lightning as an alternative source of energy. Objections to using lightning as an alternative source of energy are listed. Current literature is reviewed and articles are suggested as useful for building a tower, or using rockets or lasers to target a strike, or for quantifying a lightning strike. (author)

  7. Lightning hazard reduction at wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Kithil, R. [National Lightning Safety Institute, Louisville, CO (United States)

    1997-12-31

    The USA wind farm industry (WFI) largely is centered in low-lightning areas of the State of California. While some evidence of lightning incidents is reported here, the problem is not regarded as serious by most participants. The USA WFI now is moving eastward, into higher areas of lightning activity. The European WFI has had many years experience with lightning problems. One 1995 German study estimated that 80% of wind turbine insurance claims paid for damage compensation were caused by lightning strikes. The European and USA WFI have not adopted site criteria, design fundamentals, or certification techniques aimed at lightning safety. Sufficient evidence about lightning at wind farms is available to confirm that serious potential problems exist.

  8. Lightning-resistant, low-inductance detonator cables

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Lee, R.S.; Moua, K.

    1994-04-01

    A lightning strike on a flat detonator cable in close proximity to a high explosive (HE) main charge poses a possible detonation hazard if the electrical explosion of the cable launches the dielectric cover coat of the cable at a high enough velocity to shock-initiate the HE. The detonator cable for the W87 system has been demonstrated to be incapable of initiating LX-17 main-charge explosive even for a 99 percentile negative lightning strike (1). The W87 cable is a relatively high inductance cable, unsuitable for use with low-inductance firesets. We have performed tests on a low-inductance cable designed for the W89 program, which show it to be marginal in its ability to withstand a lightning strike without the possibility of initiating a heated LX-17 main charge HE. A new cable design, proposed by R.E. Lee of LLNL has been tested and shown to be capable of withstanding a 99 percentile negative lightning strike without initiating LX-17 heated to 250{degree}C.

  9. Earthquake Early Warning ShakeAlert System: Testing and certification platform

    Science.gov (United States)

    Cochran, Elizabeth S.; Kohler, Monica D.; Given, Douglas; Guiwits, Stephen; Andrews, Jennifer; Meier, Men-Andrin; Ahmad, Mohammad; Henson, Ivan; Hartog, Renate; Smith, Deborah

    2017-01-01

    Earthquake early warning systems provide warnings to end users of incoming moderate to strong ground shaking from earthquakes. An earthquake early warning system, ShakeAlert, is providing alerts to beta end users in the western United States, specifically California, Oregon, and Washington. An essential aspect of the earthquake early warning system is the development of a framework to test modifications to code to ensure functionality and assess performance. In 2016, a Testing and Certification Platform (TCP) was included in the development of the Production Prototype version of ShakeAlert. The purpose of the TCP is to evaluate the robustness of candidate code that is proposed for deployment on ShakeAlert Production Prototype servers. TCP consists of two main components: a real‐time in situ test that replicates the real‐time production system and an offline playback system to replay test suites. The real‐time tests of system performance assess code optimization and stability. The offline tests comprise a stress test of candidate code to assess if the code is production ready. The test suite includes over 120 events including local, regional, and teleseismic historic earthquakes, recentering and calibration events, and other anomalous and potentially problematic signals. Two assessments of alert performance are conducted. First, point‐source assessments are undertaken to compare magnitude, epicentral location, and origin time with the Advanced National Seismic System Comprehensive Catalog, as well as to evaluate alert latency. Second, we describe assessment of the quality of ground‐motion predictions at end‐user sites by comparing predicted shaking intensities to ShakeMaps for historic events and implement a threshold‐based approach that assesses how often end users initiate the appropriate action, based on their ground‐shaking threshold. TCP has been developed to be a convenient streamlined procedure for objectively testing algorithms, and it has

  10. ENSO Related Interannual Lightning Variability from the Full TRMM LIS Lightning Climatology

    Science.gov (United States)

    Clark, Austin; Cecil, Daniel J.

    2018-01-01

    It has been shown that the El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production in the tropics and subtropics more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics. Using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) and the Oceanic Nino Index (ONI) for ENSO phase, lightning data were averaged into corresponding mean annual warm, cold, and neutral 'years' for analysis of the different phases. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases. These processes were then studied for inter-annual variance and subsequent correlation to ENSO during the study period to best describe the observed lightning deviations from year to year at each location.

  11. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight

  12. Awareness of the Installation the Lightning Protection System (LPS by Using Structural Bonding Method in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdul Rahim Mustaqqim

    2017-01-01

    Full Text Available Structural Bonding Method (SBM is one type of Lightning Protection System (LPS, design to protect human, structures, contents inside structures, electrical equipment, transmission lines and other from the lightning flash. Besides, SBM is a standard LPS that comply with technical standards or codes of practice or called as conventional Lightning Protection System. In order to know the level of the Awareness of the Installation LPS by using SBM in the building among Civil Engineering Consultants, conducting survey need to be done. This paper presents the Research Design and Research Strategy in conducting the survey. It is explaining about the way before conducting the survey which are determine the population of sample (Consultant Company at Northern Region Area, samples of respondents (Civil Engineer at Consultant Office with the number of sample is 40, data collecting process, structure of the questionnaire form and the way in analysis the data. After the analysis the data, the result of the level of awareness in the Installation of LPS by using SBM are consider as moderate level.

  13. A fiber-optic current sensor for lightning measurement applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-05-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  14. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  15. The Sandia transportable triggered lightning instrumentation facility

    Science.gov (United States)

    Schnetzer, George H.; Fisher, Richard J.

    1991-01-01

    Development of the Sandia Transportable Triggered Lightning Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of a munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a lightning response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered lightning test site. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck of by aircraft, and its instrumentation for measuring incident lightning channel currents and the responses of the systems under test. Measurements of return-stroke current peaks obtained with the SATTLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within approximately 7 percent. Continuing currents were measured with a resolution of approximately 2.5 A. This field trial demonstrated the practicality of using a transportable triggered lightning facility for specialized test applications.

  16. Flood early warning system: sensors and internet

    NARCIS (Netherlands)

    Pengel, B.E.; Krzhizhanovskaya, V.V.; Melnikova, N.B.; Shirshov, G.S.; Koelewijn, A.R.; Pyayt, A.L.; Mokhov, I.I.; Chavoshian, A.; Takeuchi, K.

    2013-01-01

    The UrbanFlood early warning system (EWS) is designed to monitor data from very large sensornetworks in flood defences such as embankments, dikes, levees, and dams. The EWS, based on the internet, uses real-time sensor information and Artificial Intelligence (AI) to immediately calculate the

  17. The mechanism of lightning attraction and the problem of lightning initiation by lasers

    International Nuclear Information System (INIS)

    Bazelyan, E M; Raizer, Yurii P

    2000-01-01

    Physical processes determining the ability of lightning to change its trajectory by choosing high constructions to strike are discussed. The leader mechanism of lightning propagation is explained. The criterion for a viable ascending (upward) leader to originate from a construction is established. The mechanism of the weak long-distance interaction between the ascending counter leader originating from a grounded construction and the descending (downward) leader from a cloud is analyzed. Current problems concerning lightning protection and lightning triggering by a laser spark are discussed, the latter being of special interest owing to a recent successful experiment along this line. (physics of our days)

  18. Multiple Lightning Discharges in Wind Turbines Associated with Nearby Cloud-to-Ground Lightning

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Cummins, Kenneth L.; Madsen, Søren Find

    2015-01-01

    This paper presents the analysis of five events where simultaneous lightning currents were registered in different wind turbines of a wind farm with lightning monitoring equipment installed. Measurements from current monitoring devices installed at the wind turbines and observations from auto......-triggering video cameras were correlated with data from the U.S. National Lighting Detection Network. In all five events, the correlation showed that a cloud-to-ground (CG) lightning stroke with high peak current struck the ground within 10 km of the affected turbines at the time of the currents in the wind...... by the nearby CG strokes, involving mechanisms that vary depending on the polarity of the associated CG stroke. The analysis also suggests that the event of upward lightning from wind turbines triggered by nearby lightning activity occurs very often and therefore it should be considered carefully...

  19. Concept for backfitting of earth connections and lightning arresters in accordance with KTA 2206

    International Nuclear Information System (INIS)

    Kronauer, P.

    1991-01-01

    Instrumentation and control systems are particularly endangered by overvoltage caused by lightning. Protective aim and scope of the measures to be taken are laid down in the draft regulation KTA 2206 'Design of nuclear power plants against lightning impacts'. In the following a concept is presented which, if implemented, helps to avoid, to a large extent, inadmissible lightning effects on instrumentation and control systems of NPPs, by means of graduated measures of external and internal lightning protection. In the past, this concept was used successfully, in particular with regard to the backfitting of earth connections and lightning arresters of NPPs. (orig./DG) [de

  20. Cochlear implantation for severe sensorineural hearing loss caused by lightning.

    Science.gov (United States)

    Myung, Nam-Suk; Lee, Il-Woo; Goh, Eui-Kyung; Kong, Soo-Keun

    2012-01-01

    Lightning strike can produce an array of clinical symptoms and injuries. It may damage multiple organs and cause auditory injuries ranging from transient hearing loss and vertigo to complete disruption of the auditory system. Tympanic-membrane rupture is relatively common in patients with lightning injury. The exact pathogenetic mechanisms of auditory lesions in lightning survivors have not been fully elucidated. We report the case of a 45-year-old woman with bilateral profound sensorineural hearing loss caused by a lightning strike, who was successfully rehabilitated after a cochlear implantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. A case study on lightning protection, building resonances considered

    OpenAIRE

    Deursen, van, A.P.J.; Geers - Bargboer, G.

    2011-01-01

    In a recent paper (G. Bargboer and A. P. J. van Deursen, IEEE Trans. Electromagn. Compat., vol. 52, no. 3, pp. 684-90, Aug. 2010) we dealt with current injection measurements to test the lightning protection system of a newly built pharmaceutical plant. In a tentative extrapolation, the measurements were extrapolated to actual lightning. Here, we extend the model and calculate the response of the installation on lightning currents and include resonances in the cable trays and test cables cont...

  2. Statistical analysis of lightning electric field measured under Malaysian condition

    Science.gov (United States)

    Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain

    2014-02-01

    Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.

  3. Seasonal and Local Characteristics of Lightning Outages of Power Distribution Lines in Hokuriku Area

    Science.gov (United States)

    Sugimoto, Hitoshi; Shimasaki, Katsuhiko

    The proportion of the lightning outages in all outages on Japanese 6.6kV distribution lines is high with approximately 20 percent, and then lightning protections are very important for supply reliability of 6.6kV lines. It is effective for the lightning performance to apply countermeasures in order of the area where a large number of the lightning outages occur. Winter lightning occurs in Hokuriku area, therefore it is also important to understand the seasonal characteristics of the lightning outages. In summer 70 percent of the lightning outages on distribution lines in Hokuriku area were due to sparkover, such as power wire breakings and failures of pole-mounted transformers. However, in winter almost half of lightning-damaged equipments were surge arrester failures. The number of the lightning outages per lightning strokes detected by the lightning location system (LLS) in winter was 4.4 times larger than that in summer. The authors have presumed the occurrence of lightning outages from lightning stroke density, 50% value of lightning current and installation rate of lightning protection equipments and overhead ground wire by multiple regression analysis. The presumed results suggest the local difference in the lightning outages.

  4. Evaluating the effectiveness of warning systems for nuclear power plant emergencies: criteria and application

    International Nuclear Information System (INIS)

    Sorensen, J.H.

    1984-01-01

    The accident at Three Mile Island Nuclear Power Plant in 1979 was an emergency management disaster. Chief among the problems was ineffective public warning and communications. While it is difficult to assign blame for that condition to any given party or determine if it was due to unique situational factors, the failure led to fairly significant regulatory changes in the arena of public warning and notification. These changes are intended to avoid the problems that arose during the TMI accident. This chapter reviews these regulations and suggests an alternative set of criteria for evaluating warning systems. The criteria are used to assess the effectiveness of the warning system at the Ft. St. Vrain nuclear power plant in Colorado. The paper concludes with some discussion of the lessons learned from the TMI experience as they apply to warning systems for all nuclear generating stations

  5. 49 CFR 234.259 - Warning time.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Warning time. 234.259 Section 234.259..., Inspection, and Testing Inspections and Tests § 234.259 Warning time. Each crossing warning system shall be tested for the prescribed warning time at least once every 12 months and when the warning system is...

  6. VHF lightning mapping observations of a triggered lightning flash

    Science.gov (United States)

    Edens, H. E.; Eack, K. B.; Eastvedt, E. M.; Trueblood, J. J.; Winn, W. P.; Krehbiel, P. R.; Aulich, G. D.; Hunyady, S. J.; Murray, W. C.; Rison, W.; Behnke, S. A.; Thomas, R. J.

    2012-10-01

    On 3 August 2010 an extensive lightning flash was triggered over Langmuir Laboratory in New Mexico. The upward positive leader propagated into the storm's midlevel negative charge region, extending over a horizontal area of 13 × 13 km and 7.5 km altitude. The storm had a normal-polarity tripolar charge structure with upper positive charge over midlevel negative charge. Lightning Mapping Array (LMA) observations were used to estimate positive leader velocities along various branches, which were in the range of 1-3 × 104 m s-1, slower than in other studies. The upward positive leader initiated at 3.4 km altitude, but was mapped only above 4.0 km altitude after the onset of retrograde negative breakdown, indicating a change in leader propagation and VHF emissions. The observations suggest that both positive and negative breakdown produce VHF emissions that can be located by time-of-arrival systems, and that not all VHF emissions occurring along positive leader channels are associated with retrograde negative breakdown.

  7. Warning systems in a computerized nursing process for Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Daniela Couto Carvalho Barra

    2014-02-01

    Full Text Available A hybrid study combining technological production and methodological research aiming to establish associations between the data and information that are part of a Computerized Nursing Process according to the ICNP® Version 1.0, indicators of patient safety and quality of care. Based on the guidelines of the Agency for Healthcare Research and Quality and the American Association of Critical Care Nurses for the expansion of warning systems, five warning systems were developed: potential for iatrogenic pneumothorax, potential for care-related infections, potential for suture dehiscence in patients after abdominal or pelvic surgery, potential for loss of vascular access, and potential for endotracheal extubation. The warning systems are a continuous computerized resource of essential situations that promote patient safety and enable the construction of a way to stimulate clinical reasoning and support clinical decision making of nurses in intensive care.

  8. Meteotsunamis, destructive tsunami-like waves: from observations and simulations towards a warning system (MESSI)

    Science.gov (United States)

    Sepic, Jadranka; Vilibic, Ivica

    2016-04-01

    Atmospherically-generated tsunami-like waves, also known as meteotsunamis, pose a severe threat for exposed coastlines. Although not as destructive as ordinary tsunamis, several meters high meteotsunami waves can bring destruction, cause loss of human lives and raise panic. For that reason, MESSI, an integrative meteotsunami research & warning project, has been developed and will be presented herein. The project has a threefold base: (1) research of atmosphere-ocean interaction with focus on (i) source processes in the atmosphere, (ii) energy transfer to the ocean and (iii) along-propagation growth of meteotsunami waves; (2) estimation of meteotsunami occurrence rates in past, present and future climate, and mapping of meteotsunami hazard; (3) construction of a meteotsunami warning system prototype, with the latter being the main objective of the project. Due to a great frequency of meteotsunamis and its complex bathymetry which varies from the shallow shelf in the north towards deep pits in the south, with a number of funnel-shaped bays and harbours substantially amplifying incoming tsunami-like waves, the Adriatic, northernmost of the Mediterranean seas, has been chosen as an ideal area for realization of the MESSI project and implementation of the warning system. This warning system will however be designed to allow for a wider applicability and easy-to-accomplish transfer to other endangered locations. The architecture of the warning system will integrate several components: (1) real-time measurements of key oceanographic and atmospheric parameters, (2) coupled atmospheric-ocean models run in real time (warning) mode, and (3) semi-automatic procedures and protocols for warning of civil protection, local authorities and public. The effectiveness of the warning system will be tested over the historic events.

  9. The Evolution and Structure of Extreme Optical Lightning Flashes.

    Science.gov (United States)

    Peterson, Michael; Rudlosky, Scott; Deierling, Wiebke

    2017-12-27

    This study documents the composition, morphology, and motion of extreme optical lightning flashes observed by the Lightning Imaging Sensor (LIS). The furthest separation of LIS events (groups) in any flash is 135 km (89 km), the flash with the largest footprint had an illuminated area of 10,604 km 2 , and the most dendritic flash has 234 visible branches. The longest-duration convective LIS flash lasted 28 s and is overgrouped and not physical. The longest-duration convective-to-stratiform propagating flash lasted 7.4 s, while the longest-duration entirely stratiform flash lasted 4.3 s. The longest series of nearly consecutive groups in time lasted 242 ms. The most radiant recorded LIS group (i.e., "superbolt") is 735 times more radiant than the average group. Factors that impact these optical measures of flash morphology and evolution are discussed. While it is apparent that LIS can record the horizontal development of the lightning channel in some cases, radiative transfer within the cloud limits the flash extent and level of detail measured from orbit. These analyses nonetheless suggest that lightning imagers such as LIS and Geostationary Lightning Mapper can complement ground-based lightning locating systems for studying physical lightning phenomena across large geospatial domains.

  10. Aerosol indirect effect on tropospheric ozone via lightning

    Science.gov (United States)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  11. ENSO Related Inter-Annual Lightning Variability from the Full TRMM LIS Lightning Climatology

    Science.gov (United States)

    Clark, Austin; Cecil, Daniel

    2018-01-01

    The El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS). Lightning data were averaged into mean annual warm, cold, and neutral 'years' for analysis of the different phases and compared to model reanalysis data. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases

  12. Implementing drought early warning systems: policy lessons and future needs

    Science.gov (United States)

    Iglesias, Ana; Werner, Micha; Maia, Rodrigo; Garrote, Luis; Nyabeze, Washington

    2014-05-01

    Drought forecasting and Warning provides the potential of reducing impacts to society due to drought events. The implementation of effective drought forecasting and warning, however, requires not only science to support reliable forecasting, but also adequate policy and societal response. Here we propose a protocol to develop drought forecasting and early warning based in the international cooperation of African and European institutions in the DEWFORA project (EC, 7th Framework Programme). The protocol includes four major phases that address the scientific knowledge and the social capacity to use the knowledge: (a) What is the science available? Evaluating how signs of impending drought can be detected and predicted, defining risk levels, and analysing of the signs of drought in an integrated vulnerability approach. (b) What are the societal capacities? In this the institutional framework that enables policy development is evaluated. The protocol gathers information on vulnerability and pending hazard in advance so that early warnings can be declared at sufficient lead time and drought mitigation planning can be implemented at an early stage. (c) How can science be translated into policy? Linking science indicators into the actions/interventions that society needs to implement, and evaluating how policy is implemented. Key limitations to planning for drought are the social capacities to implement early warning systems. Vulnerability assessment contributes to identify these limitations and therefore provides crucial information to policy development. Based on the assessment of vulnerability we suggest thresholds for management actions to respond to drought forecasts and link predictive indicators to relevant potential mitigation strategies. Vulnerability assessment is crucial to identify relief, coping and management responses that contribute to a more resilient society. (d) How can society benefit from the forecast? Evaluating how information is provided to

  13. An Optical Lightning Simulator in an Electrified Cloud-Resolving Model to Prepare the Future Space Lightning Missions

    Science.gov (United States)

    Bovalo, Christophe; Defer, Eric; Pinty, Jean-Pierre

    2016-04-01

    The future decade will see the launch of several space missions designed to monitor the total lightning activity. Among these missions, the American (Geostationary Lightning Mapper - GLM) and European (Lightning Imager - LI) optical detectors will be onboard geostationary satellites (GOES-R and MTG, respectively). For the first time, the total lightning activity will be monitored over the full Earth disk and at a very high temporal resolution (2 and 1 ms, respectively). Missions like the French Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) and ISS-LIS will bring complementary information in order to better understand the lightning physics and to improve the weather prediction (nowcasting and forecasting). Such missions will generate a huge volume of new and original observations for the scientific community and weather prediction centers that have to be prepared. Moreover, before the launch of these missions, fundamental questions regarding the interpretation of the optical signal property and its relation to cloud optical thickness and lightning discharge processes need to be further investigated. An innovative approach proposed here is to use the synergy existing in the French MesoNH Cloud-Resolving Model (CRM). Indeed, MesoNH is one of the only CRM able to simulate the lifecycle of electrical charges generated within clouds through non-inductive charging process (dependent of the 1-moment microphysical scheme). The lightning flash geometry is based on a fractal law while the electrical field is diagnosed thanks to the Gauss' law. The lightning optical simulator is linked to the electrical scheme as the lightning radiance at 777.4 nm is a function of the lightning current, approximated by the charges neutralized along the lightning path. Another important part is the scattering of this signal by the hydrometeors (mainly ice particles) that is taken into account. Simulations at 1-km resolution are done over the Langmuir Laboratory (New

  14. Attempts to Create Ball Lightning with Triggered Lightning

    Science.gov (United States)

    2009-10-01

    mechanisms by which ball lightning is generated. The most commonly reported observation is of an orange-to- grapefruit -size sphere (the range for the vast...Figure 5 shows a sequence of ten cropped frames extracted from the Phantom video at 48 ms intervals during the ICC process spanning the total 432 ms...strike the ground between 0.75-1.25 s after being emitted from the lightning-struck silicon wafers. A picture showing ten extracted frames at 280 ms

  15. Lightning Pin Injection Testing on MOSFETS

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita

    2009-01-01

    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  16. The protection of photovoltaic power systems from lightning

    Science.gov (United States)

    Rogers, C. B.

    Lightning protection techniques at nine prototype photovoltaic power system sites with outputs from 18-225 kW are described. Noting that protection schemes are devised to fit isokeraunic data for specific sites, grounding is cited as a common feature for all systems. The grounds are, in separate instances, connected to junction boxes, frames of the solar cell panels, lead from the dc center, from the dc negative terminal, from the frames and equipment, at the array turntable, or from the building rebar frames. The dc power cables are protected by either metal conduit, metal conduit ground wire, direct burial, by rigid metal conduit, ground conductors, or by ground conductors at the ends of the conduit run. Costs run from 0.01-0.28$/W, with all the systems outfitted with bypass and blocking diodes. Direct stroke protection is viewed as less important than isokeraunic data.

  17. Faraday Cage Protects Against Lightning

    Science.gov (United States)

    Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.

    1992-01-01

    Faraday cage protects electronic and electronically actuated equipment from lightning. Follows standard lightning-protection principles. Whether lightning strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.

  18. Lightning current distribution and hard radiation in aircraft, measured in-flight

    NARCIS (Netherlands)

    van Deursen, A.P.J.; Kochkin, P.; de Boer, A.; Bardet, M.; Allasia, C.; Boissin, J.F.; Flourens, F.

    2017-01-01

    The In-flight Lightning Damage Assessment System ILDAS has been presented in EMC Europe in 2012. ILDAS can determine the lightning current distribution on an aircraft with high resolution in time and amplitude. Later the system was extended and included two x-ray detectors to measure the high-energy

  19. Lightning x-rays inside thunderclouds, in-flight measurements on-board an A350

    Science.gov (United States)

    van Deursen, Alexander; Kochkin, Pavlo; de Boer, Alte; Bardet, Michiel; Boissin, Jean-François

    2015-04-01

    Thunderstorms emit bursts of energetic radiation. Moreover, lightning stepped leader produces x-ray pulses. The phenomena, their interrelation and impact on Earth's atmosphere and near space are not fully understood yet. The In-flight Lightning Strike Damage Assessment System ILDAS was developed in an EU FP6 project ( http://ildas.nlr.nl/ ) to provide information on threat that lightning poses to aircraft. It is intended to localize the lightning attachment points in order to reduce maintenance time and to build statics on lightning current. The system consists of 2 E-field sensors and a varying number of H-field sensors. It has recently been enhanced by two LaBr3 scintillation detectors inside the aircraft. The scintillation detectors are sensitive to x- and gamma-rays above 30 keV. The entire system is installed on-board of an A-350 aircraft and digitizes data with 100Msamples/sec rate when triggered by lightning. A continuously monitoring channel counts the number of occurrences that the x-ray signal exceeds a set of trigger levels. In the beginning of 2014 the aircraft flew through thunderstorm cells collecting the data from the sensors. The x-rays generated by the lightning flash are measured in synchronization better than 40 ns with the lightning current information during a period of 1 second around the strike. The continuous channel stores x-ray information with very limited time and amplitude resolution during the whole flight. That channel would allow x-rays from cosmic ray background, TGFs and continuous gamma-ray glow of thundercloud outside the 1 s time window. In the EGU2014 we presented the ILDAS system and showed that the x-ray detection works as intended. Fast x-ray bursts have been detected during stepped/dart stepped leaders and during interception of lightning. Data analysis of continuous channel recordings will be presented as well.

  20. Impact of a warning CPOE system on the inappropriate pill splitting of prescribed medications in outpatients.

    Directory of Open Access Journals (Sweden)

    Chia-Chen Hsu

    Full Text Available Prescribing inappropriate pill splitting is not rare in clinical practice. To reduce inappropriate pill splitting, we developed an automatic warning system linked to a computerized physician order entry (CPOE system for special oral formulation drugs in outpatient settings. We examined the impact of the warning system on inappropriate prescribing of pill splitting and assess prescribers' responses to the warnings.Drugs with extended-release or enteric-coated formulations that were not originally intended to be split were recognized as "special oral formulations". A hard-stop system which could examine non-integer doses of drugs with special oral formulations, provide warnings to interrupt inappropriate prescriptions was integrated in CPOE in a medical center since June 2010. We designed an intervention study to compare the inappropriate splitting before and after the implementation of the warning system (baseline period 2010 January to May vs. intervention period 2010 June to 2011 August. During the intervention period, prescription changes in response to a warning were logged and analyzed.A total of 470,611 prescribed drug items with 34 different drugs with special oral formulations were prescribed in the study period. During the 15-month intervention period, 909 warnings for 26 different drugs were triggered among 354,523 prescribed drug items with special oral formulations. The warning rate of inappropriate splitting in the late intervention period was lower than those in baseline period (0.16% vs. 0.61%, incidence rate ratio 0.27, 95% CI 0.23-0.31, P<0.001. In respond to warnings, physicians had to make adjustments, of which the majority was changing to an unsplit pill (72.9%.The interruptive warning system could avoid the prescriptions with inappropriate pill splitting. Accordingly, physicians changed their behavior of prescribing special oral formulations regarding inappropriate pill splitting. We suggest the establishment of such system

  1. Evolution of an Early Illness Warning System to Monitor Frail Elders in Independent Living

    Directory of Open Access Journals (Sweden)

    Gregory L. Alexander

    2011-01-01

    Full Text Available This paper describes the evolution of an early illness warning system used by an interdisciplinary team composed of clinicians and engineers in an independent living facility. The early illness warning system consists of algorithms which analyze resident activity patterns obtained from sensors embedded in residents' apartments. The engineers designed an automated reasoning system to generate clinically relevant alerts which are sent to clinicians when significant changes occur in the sensor data, for example declining activity levels. During January 2010 through July 2010, clinicians and engineers conducted weekly iterative review cycles of the early illness warning system to discuss concerns about the functionality of the warning system, to recommend solutions for the concerns, and to evaluate the implementation of the solutions. A total of 45 concerns were reviewed during this period. Iterative reviews resulted in greater efficiencies and satisfaction for clinician users who were monitoring elder activity patterns.

  2. The real performance of radioactive lightning arrester

    International Nuclear Information System (INIS)

    Leite, D.M.

    1985-01-01

    The study of the performance of radioactive lightning arrester comparing to the performance of conventional one are presented. Measurements of currents between lightning arrester and an energyzed plate with wind simulation were done for radioactive and conventional lightning arresters, separately. The attraction range of radioactive and conventional lightning arresters using atmospheric pulses produced by a generator of 3MV were verified, separately and simultaneously. The influence of ionization produced by radioactive lightning arrester on critical disruptive tension of a spark plate, testing two lightning arresters for differents nominal attraction distances with applications of atmospheric pulses (positive and negative polarity) and tensions of 60 Hz was verified. The radiation emitted by a radioactive lightning had used in a building was retired and handled without special carefullness by a personnel without worthy of credence to evaluate the hazard in handling radioactive lightning arrester was measured. Critical disruptive tensions of radioactive and conventional lightning arrester using a suspensed electrode and external pulse generator of 6MV was measured. The effect of attraction of a radioactive and conventional lightning arresters disposed symmetrically regarding the same suspensed electrode was verified simultaneously. Seven cases on faults of radioactive lightning arrester in external areas are present. (M.C.K.) [pt

  3. DISTANT EARLY WARNING SYSTEM for Tsunamis - A wide-area and multi-hazard approach

    Science.gov (United States)

    Hammitzsch, Martin; Lendholt, Matthias; Wächter, Joachim

    2010-05-01

    The DEWS (Distant Early Warning System) [1] project, funded under the 6th Framework Programme of the European Union, has the objective to create a new generation of interoperable early warning systems based on an open sensor platform. This platform integrates OGC [2] SWE [3] compliant sensor systems for the rapid detection of hazardous events, like earthquakes, sea level anomalies, ocean floor occurrences, and ground displacements in the case of tsunami early warning. Based on the upstream information flow DEWS focuses on the improvement of downstream capacities of warning centres especially by improving information logistics for effective and targeted warning message aggregation for a multilingual environment. Multiple telecommunication channels will be used for the dissemination of warning messages. Wherever possible, existing standards have been integrated. The Command and Control User Interface (CCUI), a rich client application based on Eclipse RCP (Rich Client Platform) [4] and the open source GIS uDig [5], integrates various OGC services. Using WMS (Web Map Service) [6] and WFS (Web Feature Service) [7] spatial data are utilized to depict the situation picture and to integrate a simulation system via WPS (Web Processing Service) [8] to identify affected areas. Warning messages are compiled and transmitted in the OASIS [9] CAP (Common Alerting Protocol) [10] standard together with addressing information defined via EDXL-DE (Emergency Data Exchange Language - Distribution Element) [11]. Internal interfaces are realized with SOAP [12] web services. Based on results of GITEWS [13] - in particular the GITEWS Tsunami Service Bus [14] - the DEWS approach provides an implementation for tsunami early warning systems but other geological paradigms are going to follow, e.g. volcanic eruptions or landslides. Therefore in future also multi-hazard functionality is conceivable. The specific software architecture of DEWS makes it possible to dock varying sensors to the

  4. Flood early warning system : Design, implementation and computational modules

    NARCIS (Netherlands)

    Krzhizhanovskaya, V.V.; Shirshov, G.S.; Melnikova, N.B.; Belleman, R.G.; Rusadi, F.I.; Broekhuijsen, B.J.; Gouldby, B.P.; Lhomme, J.; Balis, B.; Bubak, M.; Pyayt, A.L.; Mokhov, I.I.; Ozhigin, A.V.; Lang, B.; Meijer, R.J.

    2011-01-01

    We present a prototype of the flood early warning system (EWS) developed within the UrbanFlood FP7 project. The system monitors sensor networks installed in flood defenses (dikes, dams, embankments, etc.), detects sensor signal abnormalities, calculates dike failure probability, and simulates

  5. TRMM-Based Lightning Climatology

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2011-01-01

    Gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) have been updated. OTD collected data from May 1995 to March 2000. LIS data (equatorward of about 38 deg) has been added for 1998-2010. Flash counts from each instrument are scaled by the best available estimates of detection efficiency. The long LIS record makes the merged climatology most robust in the tropics and subtropics, while the high latitude data is entirely from OTD. The mean global flash rate from the merged climatology is 46 flashes per second. The peak annual flash rate at 0.5 deg scale is 160 fl/square km/yr in eastern Congo. The peak monthly average flash rate at 2.5 scale is 18 fl/square km/mo, from early April to early May in the Brahmaputra Valley of far eastern India. Lightning decreases in this region during the monsoon season, but increases further north and west. A monthly average peak from early August to early September in northern Pakistan also exceeds any monthly averages from Africa, despite central Africa having the greatest yearly average. Most continental regions away from the equator have an annual cycle with lightning flash rates peaking in late spring or summer. The main exceptions are India and southeast Asia, with springtime peaks in April and May. For landmasses near the equator, flash rates peak near the equinoxes. For many oceanic regions, the peak flash rates occur in autumn. This is particularly noticeable for the Mediterranean and North Atlantic. Landmasses have a strong diurnal cycle of lightning, with flash rates generally peaking between 3-5 pm local solar time. The central United States flash rates peak later, in late evening or early night. Flash rates peak after midnight in northern Argentina. These regions are known for large, intense, long-lived mesoscale convective systems.

  6. Performance Analysis of a Citywide Real-time Landslide Early Warning System in Korea

    Science.gov (United States)

    Park, Joon-Young; Lee, Seung-Rae; Kang, Sinhang; Lee, Deuk-hwan; Nedumpallile Vasu, Nikhil

    2017-04-01

    Rainfall-induced landslide has been one of the major disasters in Korea since the beginning of 21st century when the global climate change started to give rise to the growth of the magnitude and frequency of extreme precipitation events. In order to mitigate the increasing damage to properties and loss of lives and to provide an effective tool for public officials to manage the landslide disasters, a real-time landslide early warning system with an advanced concept has been developed by taking into account for Busan, the second largest metropolitan city in Korea, as an operational test-bed. The system provides with warning information based on a five-level alert scheme (Normal, Attention, Watch, Alert, and Emergency) using the forecasted/observed rainfall data or the data obtained from ground monitoring (volumetric water content and matric suction). The alert levels are determined by applying seven different thresholds in a step-wise manner following a decision tree. In the pursuit of improved reliability of an early warning level assigned to a specific area, the system makes assessments repetitively using the thresholds of different theoretical backgrounds including statistical(empirical), physically-based, and mathematical analyses as well as direct measurement-based approaches. By mapping the distribution of the five early warning levels determined independently for each of tens of millions grids covering the entire mountainous area of Busan, the regional-scale system can also provide with the early warning information for a specific local area. The fact that the highest warning level is determined by using a concept of a numerically-modelled potential debris-flow risk is another distinctive feature of the system. This study tested the system performance by applying it for four previous rainy seasons in order to validate the operational applicability. During the rainy seasons of 2009, 2011, and 2014, the number of landslides recorded throughout Busan's territory

  7. OLS ANALOG DERIVED LIGHTNING V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Global lightning signatures from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) have been analyzed from the filmstrip imagery....

  8. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-01-01

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence

  9. A LIGHTNING CONDUCTOR MONITORING SYSTEM BASED ON A WIRELESS SENSOR NETWORK

    OpenAIRE

    Jan Mikeš; Ondrej Kreibich; Jan Neužil

    2013-01-01

    Automated heating, lighting and irrigation systems are nowadays standard features of industrial and commercial buildings, and are also increasingly found in ordinary housing. In addition to the benefits of user comfort, automated technology for buildings saves energy and, above all, it provides enhanced protection against leakage of water and hazardous gases, and against fire hazards. Lightning strikes are a natural phenomenon that poses a significant threat to the safety of buildings. The st...

  10. Developments in real-time monitoring for geologic hazard warnings (Invited)

    Science.gov (United States)

    Leith, W. S.; Mandeville, C. W.; Earle, P. S.

    2013-12-01

    Real-time data from global, national and local sensor networks enable prompt alerts and warnings of earthquakes, tsunami, volcanic eruptions, geomagnetic storms , broad-scale crustal deformation and landslides. State-of-the-art seismic systems can locate and evaluate earthquake sources in seconds, enabling 'earthquake early warnings' to be broadcast ahead of the damaging surface waves so that protective actions can be taken. Strong motion monitoring systems in buildings now support near-real-time structural damage detection systems, and in quiet times can be used for state-of-health monitoring. High-rate GPS data are being integrated with seismic strong motion data, allowing accurate determination of earthquake displacements in near-real time. GPS data, combined with rainfall, groundwater and geophone data, are now used for near-real-time landslide monitoring and warnings. Real-time sea-floor water pressure data are key for assessing tsunami generation by large earthquakes. For monitoring remote volcanoes that lack local ground-based instrumentation, the USGS uses new technologies such as infrasound arrays and the worldwide lightning detection array to detect eruptions in progress. A new real-time UV-camera system for measuring the two dimensional SO2 flux from volcanic plumes will allow correlations with other volcano monitoring data streams to yield fundamental data on changes in gas flux as an eruption precursor, and how magmas de-gas prior to and during eruptions. Precision magnetic field data support the generation of real-time indices of geomagnetic disturbances (Dst, K and others), and can be used to model electrical currents in the crust and bulk power system. Ground-induced electrical current monitors are used to track those currents so that power grids can be effectively managed during geomagnetic storms. Beyond geophysical sensor data, USGS is using social media to rapidly detect possible earthquakes and to collect firsthand accounts of the impacts of

  11. Impact of lightning strikes on hospital functions.

    Science.gov (United States)

    Mortelmans, Luc J M; Van Springel, Gert L J; Van Boxstael, Sam; Herrijgers, Jan; Hoflacks, Stefaan

    2009-01-01

    Two regional hospitals were struck by lightning during a one-month period. The first hospital, which had 236 beds, suffered a direct strike to the building. This resulted in a direct spread of the power peak and temporary failure of the standard power supply. The principle problems, after restoring standard power supply, were with the fire alarm system and peripheral network connections in the digital radiology systems. No direct impact on the hardware could be found. Restarting the servers resolved all problems. The second hospital, which had 436 beds, had a lightning strike on the premises and mainly experienced problems due to induction. All affected installations had a cable connection from outside in one way or another. The power supplies never were endangered. The main problem was the failure of different communication systems (telephone, radio, intercom, fire alarm system). Also, the electronic entrance control went out. During the days after the lightening strike, multiple software problems became apparent, as well as failures of the network connections controlling the technical support systems. There are very few ways to prepare for induction problems. The use of fiber-optic networks can limit damage. To the knowledge of the authors, these are the first cases of lightning striking hospitals in medical literature.

  12. Design of flood early warning system with wifi network based on smartphone

    Science.gov (United States)

    Supani, Ahyar; Andriani, Yuli; Taqwa, Ahmad

    2017-11-01

    Today, the development using internet of things enables activities surrounding us to be monitored, controlled, predicted and calculated remotely through connections to the internet network such as monitoring activities of long-distance flood warning with information technology. Applying an information technology in the field of flood early warning has been developed in the world, either connected to internet network or not. The internet network that has been done in this paper is the design of WiFi network to access data of rainfall, water level and flood status at any time with a smartphone coming from flood early warning system. The results obtained when test of data accessing with smartphone are in form of rainfall and water level graphs against time and flood status indicators consisting of 3 flood states: Standby 2, Standby 1 and Flood. It is concluded that data are from flood early warning system has been able to accessed and displayed on smartphone via WiFi network in any time and real time.

  13. Fifty Years of Lightning Observations from Space

    Science.gov (United States)

    Christian, H. J., Jr.

    2017-12-01

    Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected lightning using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect lightning was the PBE (1977). The use of space to study lightning activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to develop high performance optical lightning sensors. Prior to the use of charged-coupled devices (CCD), most space-based lightning sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the lightning produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first lightning sensors to utilize focal-plane arrays. Together they detected global lightning activity for more than twenty years, providing the first detailed information on the distribution of global lightning and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical lightning emissions. It too used a CCD focal plane to detect and locate lightning. In November 2016, the GLM became the first lightning instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. Lightning sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, lightning activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard lightning, a number of sensors have been placed in orbit to detect transient luminous events and

  14. Cardiac Arrest Secondary to Lightning Strike: Case Report and Review of the Literature.

    Science.gov (United States)

    Rotariu, Elena L; Manole, Mioara D

    2017-08-01

    Lightning strike injuries, although less common than electrical injuries, have a higher morbidity rate because of critical alterations of the circulatory system, respiratory system, and central nervous system. Most lightning-related deaths occur immediately after injury because of arrhythmia or respiratory failure. We describe the case of a pediatric patient who experienced cardiorespiratory arrest secondary to a lightning strike, where the Advanced Cardiac Life Support and Basic Life Support chain of survival was well executed, leading to return of spontaneous circulation and intact neurological survival. We review the pathophysiology of lightning injuries, prognostic factors of favorable outcome after cardiac arrest, including bystander cardiopulmonary resuscitation, shockable rhythm, and automatic external defibrillator use, and the importance of temperature management after cardiac arrest.

  15. REWSET: A prototype seismic and tsunami early warning system in Rhodes island, Greece

    Science.gov (United States)

    Papadopoulos, Gerasimos; Argyris, Ilias; Aggelou, Savvas; Karastathis, Vasilis

    2014-05-01

    Tsunami warning in near-field conditions is a critical issue in the Mediterranean Sea since the most important tsunami sources are situated within tsunami wave travel times starting from about five minutes. The project NEARTOWARN (2012-2013) supported by the EU-DG ECHO contributed substantially to the development of new tools for the near-field tsunami early warning in the Mediterranean. One of the main achievements is the development of a local warning system in the test-site of Rhodes island (Rhodes Early Warning System for Earthquakes and Tsunamis - REWSET). The system is composed by three main subsystems: (1) a network of eight seismic early warning devices installed in four different localities of the island, one in the civil protection, another in the Fire Brigade and another two in municipality buildings; (2) two radar-type (ultrasonic) tide-gauges installed in the eastern coastal zine of the island which was selected since research on the historical earthquake and tsunami activity has indicated that the most important, near-field tsunami sources are situated offshore to the east of Rhodes; (3) a crisis Geographic Management System (GMS), which is a web-based and GIS-based application incorporating a variety of thematic maps and other information types. The seismic early warning devices activate by strong (magnitude around 6 or more) earthquakes occurring at distances up to about 100 km from Rhodes, thus providing immediate mobilization of the civil protection. The tide-gauges transmit sea level data, while during the crisis the GMS supports decisions to be made by civil protection. In the near future it is planned the REWSET system to be integrated with national and international systems. REWSET is a prototype which certainly could be developed in other coastal areas of the Mediterranean and beyond.

  16. Addressing the Safety of Transportation Cyber-Physical Systems: Development and Validation of a Verbal Warning Utility Scale for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Yiqi Zhang

    2015-01-01

    Full Text Available As an important application of Cyber-Physical Systems (CPS, advances in intelligent transportation systems (ITS improve driving safety by informing drivers of hazards with warnings in advance. The evaluation of the warning effectiveness is an important issue in facilitating communication of ITS. The goal of the present study was to develop a scale to evaluate the warning utility, namely, the effectiveness of a warning in preventing accidents in general. A driving simulator study was conducted to validate the Verbal Warning Utility Scale (VWUS in a simulated driving environment. The reliability analysis indicated a good split-half reliability for the VWUS with a Spearman-Brown Coefficient of 0.873. The predictive validity of VWUS in measuring the effectiveness of the verbal warnings was verified by the significant prediction of safety benefits indicated by variables, including reduced kinetic energy and collision rate. Compared to conducting experimental studies, this scale provides a simpler way to evaluate overall utility of verbal warnings in communicating associated hazards in intelligent transportation systems. This scale can be further applied to improve the design of warnings of ITS in order to improve transportation safety. The applications of the scale in nonverbal warning situations and limitations of the current scale are also discussed.

  17. Lightning Damage to Wind Turbine Blades From Wind Farms in the U.S

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Madsen, Søren Find; Nissim, Maya

    2016-01-01

    , laminate structure, and lightning protection systems. The statistics consist of the distribution of lightning damage along the blade and classify the damage by severity. In addition, the frequency of lightning damage to more than one blade of a wind turbine after a thunderstorm is assessed. The results......This paper presents statistical data about lightning damage on wind turbine blades reported at different wind farms in the U.S. The analysis is based on 304 cases of damage due to direct lightning attachment on the blade surface. This study includes a large variety of blades with different lengths...

  18. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    Science.gov (United States)

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  19. Lightning hazard region over the maritime continent observed from satellite and climate change threat

    Science.gov (United States)

    Ilhamsyah, Y.; Koesmaryono, Y.; Hidayat, R.; Murjaya, J.; Nurjaya, I. W.; Rizwan

    2017-02-01

    Climate change would lead to such hydrometeorological disaster as: flash-flood, landslide, hailstone, lightning, and twister become more likely to happen in the future. In terms of lightning event, one research question arise of where lightning would be mostly to strike over the Maritime Continent (MC)?. The objective of the research is to investigate region with high-density of lightning activity over MC by mapping climatological features of lightning flashes derived from onboard NASA-TRMM Satellite, i.e. Optical Transient Detector/Lightning Imaging Sensor (OTD/LIS). Based on data retrieved since 1995-2013, it is seasonally observed that during transition season March to May, region with high vulnerability of lightning flashes cover the entire Sumatra Island, the Malacca Strait, and Peninsular Malaysia as well as Java Island. High-frequent of lightning activity over the Malacca Strait is unique since it is the only sea-region in the world where lightning flashes are denser. As previously mentioned that strong lightning activity over the strait is driven by mesoscale convective system of Sumatra Squalls due to convergences of land breeze between Sumatra and Peninsular Malaysia. Lightning activity over the strait is continuously observed throughout season despite the intensity reduced. Java Island, most populated island, receive high-density of lightning flashes during rainy season (December to February) but small part in the northwestern of Java Island, e.g., Bogor and surrounding areas, the density of lightning flashes are high throughout season. Northern and southern parts of Kalimantan and Central part of Sulawesi are also prone to lightning activity particularly during transition season March to May and September to November. In the eastern part of MC, Papua receive denser lightning flashes during September to November. It is found that lightning activity are mostly concentrated over land instead of ocean which is in accordance with diurnal convective

  20. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-05-16

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  1. An archival analysis of stall warning system effectiveness during airborne icing encounters

    Science.gov (United States)

    Maris, John Michael

    An archival study was conducted to determine the influence of stall warning system performance on aircrew decision-making outcomes during airborne icing encounters. A Conservative Icing Response Bias (CIRB) model was developed to explain the historical variability in aircrew performance in the face of airframe icing. The model combined Bayes' Theorem with Signal Detection Theory (SDT) concepts to yield testable predictions that were evaluated using a Binary Logistic Regression (BLR) multivariate technique applied to two archives: the NASA Aviation Safety Reporting System (ASRS) incident database, and the National Transportation Safety Board (NTSB) accident databases, both covering the period January 1, 1988 to October 2, 2015. The CIRB model predicted that aircrew would experience more incorrect response outcomes in the face of missed stall warnings than with stall warning False Alarms. These predicted outcomes were observed at high significance levels in the final sample of 132 NASA/NTSB cases. The CIRB model had high sensitivity and specificity, and explained 71.5% (Nagelkerke R2) of the variance of aircrew decision-making outcomes during the icing encounters. The reliability and validity metrics derived from this study suggest indicate that the findings are generalizable to the population of U.S. registered turbine-powered aircraft. These findings suggest that icing-related stall events could be reduced if the incidence of stall warning Misses could be minimized. Observed stall warning Misses stemmed from three principal causes: aerodynamic icing effects, which reduced the stall angle-of-attack (AoA) to below the stall warning calibration threshold; tail stalls, which are not monitored by contemporary protection systems; and icing-induced system issues (such as frozen pitot tubes), which compromised stall warning system effectiveness and airframe envelope protections. Each of these sources of missed stall warnings could be addressed by Aerodynamic Performance

  2. Lightning may pose a danger to patients receiving deep brain stimulation: case report.

    Science.gov (United States)

    Prezelj, Neža; Trošt, Maja; Georgiev, Dejan; Flisar, Dušan

    2018-05-01

    Deep brain stimulation (DBS) is an established treatment option for advanced stages of Parkinson's disease and other movement disorders. It is known that DBS is susceptible to strong electromagnetic fields (EMFs) that can be generated by various electrical devices at work, home, and in medical environments. EMFs can interfere with the proper functioning of implantable pulse generators (IPGs). Very strong EMFs can generate induction currents in implanted electrodes and even damage the brain. Manufacturers of DBS devices have issued a list of warnings on how to avoid this danger. Strong EMFs can result from natural forces as well. The authors present the case of a 66-year-old woman who was being treated with a rechargeable DBS system for neck dystonia when her apartment was struck by lightning. Domestic electronic devices that were operating during the event were burned and destroyed. The woman's IPG switched off but remained undamaged, and she suffered no neurological consequences.

  3. Lightning NOx and Impacts on Air Quality

    Science.gov (United States)

    Murray, Lee T.

    2016-01-01

    Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.

  4. Flood Monitoring and Early Warning System Using Ultrasonic Sensor

    Science.gov (United States)

    Natividad, J. G.; Mendez, J. M.

    2018-03-01

    The purpose of this study is to develop a real-time flood monitoring and early warning system in the northern portion of the province of Isabela, particularly the municipalities near Cagayan River. Ultrasonic sensing techniques have become mature and are widely used in the various fields of engineering and basic science. One of advantage of ultrasonic sensing is its outstanding capability to probe inside objective non-destructively because ultrasound can propagate through any kinds of media including solids, liquids and gases. This study focuses only on the water level detection and early warning system (via website and/or SMS) that alerts concern agencies and individuals for a potential flood event. Furthermore, inquiry system is also included in this study to become more interactive wherein individuals in the community could inquire the actual water level and status of the desired area or location affected by flood thru SMS keyword. The study aims in helping citizens to be prepared and knowledgeable whenever there is a flood. The novelty of this work falls under the utilization of the Arduino, ultrasonic sensors, GSM module, web-monitoring and SMS early warning system in helping stakeholders to mitigate casualties related to flood. The paper envisions helping flood-prone areas which are common in the Philippines particularly to the local communities in the province. Indeed, it is relevant and important as per needs for safety and welfare of the community.

  5. Vrancea early warning system for Bucharest and industrial objectives

    International Nuclear Information System (INIS)

    Ionescu, C.; Marmureanu, A.; Grigore, A.; Tataru, D.

    2005-01-01

    Romania is an earthquake prone area and it is of crucial importance to obtain quantitative information needed for seismic risk mitigation and related public policies and seismic safety measures. The most damaging earthquakes in Romania concentrate in the Vrancea region, located at the sharp bend of the Eastern Carpathians Arc, in a well confined focal volume at intermediate depths between 60 km and 200 km.Vrancea earthquakes are documented for at least a millennium (since 985 a.c.) and represent very peculiar characteristics. They are a permanent threat for large urban areas on the Romanian territory and extended areas in Europe. Bucharest is among the cities mostly affected by destructive earthquakes. The early warning system in Romania is to provide individuals and communities exposed to disaster risk given by strong Vrancea earthquakes, with accurate information about an impending hazard as early as possible, to act in a timely and appropriate manner to reduce probability of suffering, personal damage, death and property losses. The purpose of this early system is to issue messages at sites of interest before the destructive seismic energy arrives. Early warning system is a technological instrument to detect, monitor and submit warnings/alerts. It needs to become part of a management information system for decision - making in the context of national institutional frameworks for disaster management and as a part of national and local strategies for disaster risk reduction. (authors)

  6. Vrancea early warning system for Bucharest and industrial objectives

    International Nuclear Information System (INIS)

    Ionescu, Constantin; Marmureanu, Alexandru; Wenzel, Friedemann; Bonjer, K. P.

    2004-01-01

    Romania is an earthquake prone area and it is of crucial importance to obtain quantitative information needed for seismic risk mitigation and related public policies and seismic safety measures. The most damaging earthquakes in Romania concentrate in the Vrancea region, located at the sharp bend of the Eastern Carpathians Arc, in a well confined focal volume at intermediate depths between 60 km and 200 km. Vrancea earthquakes are documented for at least a millennium (since 985 a.c.) and represent very peculiar characteristics. They are a permanent threat for large urban areas on the Romanian territory and extended areas in Europe. Bucharest is among the mega cities mostly affected by destructive earthquakes. The early warning system in Romania is to provide individuals and communities exposed to disaster risk due to strong Vrancea earthquakes, with accurate information about an impending hazard as early as possible, to act in a timely and appropriate manner to reduce probability of suffering, personal damage, death and property losses. The purpose of this early system is to issue messages at sites of interest before the destructive seismic energy arrives. Early warning system is a technological instrument to detect, monitor and issue warnings/alerts. It needs to become part of a management information system for decision - making in the context of national institutional frameworks for disaster management and as a part of national and local strategies for disaster risk reduction. (authors)

  7. Atmospheric electricity. [lightning protection criteria in spacecraft design

    Science.gov (United States)

    Daniels, G. E.

    1973-01-01

    Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.

  8. Studies on an Electromagnetic Transient Model of Offshore Wind Turbines and Lightning Transient Overvoltage Considering Lightning Channel Wave Impedance

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-12-01

    Full Text Available In recent years, with the rapid development of offshore wind turbines (WTs, the problem of lightning strikes has become more and more prominent. In order to reduce the failure rate caused by the transient overvoltage of lightning struck offshore WTs, the influencing factors and the response rules of transient overvoltage are analyzed. In this paper, a new integrated electromagnetic transient model of offshore WTs is established by using the numerical calculation method of the electromagnetic field first. Then, based on the lightning model and considering the impedance of the lightning channel, the transient overvoltage of lightning is analyzed. Last, the electromagnetic transient model of offshore WTs is simulated and analyzed by using the alternative transients program electro-magnetic transient program (ATP-EMTP software. The influence factors of lightning transient overvoltage are studied. The main influencing factors include the sea depth, the blade length, the tower height, the lightning flow parameters, the lightning strike point, and the blade rotation position. The simulation results show that the influencing factors mentioned above have different effects on the lightning transient overvoltage. The results of the study have some guiding significance for the design of the lightning protection of the engine room.

  9. Signal Processing Methods for Flood Early Warning Systems

    NARCIS (Netherlands)

    Pyayt, A.L.; Mokhov, I.I.; Kozionov, A.P.; Kusherbaeva, V.T.; Krzhizhanovskaya, V.V.; Broekhuijsen, B.J.; Meijer, R.J.; Hinkelmann, R.; Nasermoaddeli, M.H.; Liong, S.Y.; Savic, D.; Fröhle, P.; Daemrich, K.F.

    2012-01-01

    We present in a data-driven approach for detection of anomalies in earthen dam (dike) behaviour that can indicate the onset of flood defence structure failure. This approach is implemented in the UrbanFlood early warning system's Artificial Intelligence component that processes dike measurements in

  10. Disaster warning system: Satellite feasibility and comparison with terrestrial systems. Volume 1: Executive summary

    Science.gov (United States)

    Spoor, J. H.; Hodge, W. H.; Fluk, M. J.; Bamford, T. F.

    1974-01-01

    The Disaster Warning System (DWS) is a conceptual system which will provide the National Weather Service (NWS) with communication services in the 1980s to help minimize losses caused by natural disasters. The object of this study is a comparative analysis between a terrestrial DWS and a satellite DWS. Baseline systems satisfying the NOAA requirements were synthesized in sufficient detail so that a comparison could be made in terms of performance and cost. The cost of both baseline systems is dominated by the disaster warning and spotter reporting functions. An effort was undertaken to reduce system cost through lower-capacity alternative systems generated by modifying the baseline systems. By reducing the number of required channels and modifying the spotter reporting techniques, alternative satellite systems were synthesized. A terrestrial alternative with the coverage reduced to an estimated 95 percent of the population was considered.

  11. 49 CFR 176.120 - Lightning protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lightning protection. 176.120 Section 176.120 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 1 (Explosive) Materials Stowage § 176.120 Lightning protection. A lightning conductor...

  12. 14 CFR 25.581 - Lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning protection. 25.581 Section 25.581 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a...

  13. On the Relationship between Observed NLDN Lightning ...

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past decade, considerable uncertainties still exist with the quantification of lightning NOX production and distribution in the troposphere. It is even more challenging for regional chemistry and transport models to accurately parameterize lightning NOX production and distribution in time and space. The Community Multiscale Air Quality Model (CMAQ) parameterizes the lightning NO emissions using local scaling factors adjusted by the convective precipitation rate that is predicted by the upstream meteorological model; the adjustment is based on the observed lightning strikes from the National Lightning Detection Network (NLDN). For this parameterization to be valid, the existence of an a priori reasonable relationship between the observed lightning strikes and the modeled convective precipitation rates is needed. In this study, we will present an analysis leveraged on the observed NLDN lightning strikes and CMAQ model simulations over the continental United States for a time period spanning over a decade. Based on the analysis, new parameterization scheme for lightning NOX will be proposed and the results will be evaluated. The proposed scheme will be beneficial to modeling exercises where the obs

  14. Flexible Early Warning Systems with Workflows and Decision Tables

    Science.gov (United States)

    Riedel, F.; Chaves, F.; Zeiner, H.

    2012-04-01

    An essential part of early warning systems and systems for crisis management are decision support systems that facilitate communication and collaboration. Often official policies specify how different organizations collaborate and what information is communicated to whom. For early warning systems it is crucial that information is exchanged dynamically in a timely manner and all participants get exactly the information they need to fulfil their role in the crisis management process. Information technology obviously lends itself to automate parts of the process. We have experienced however that in current operational systems the information logistics processes are hard-coded, even though they are subject to change. In addition, systems are tailored to the policies and requirements of a certain organization and changes can require major software refactoring. We seek to develop a system that can be deployed and adapted to multiple organizations with different dynamic runtime policies. A major requirement for such a system is that changes can be applied locally without affecting larger parts of the system. In addition to the flexibility regarding changes in policies and processes, the system needs to be able to evolve; when new information sources become available, it should be possible to integrate and use these in the decision process. In general, this kind of flexibility comes with a significant increase in complexity. This implies that only IT professionals can maintain a system that can be reconfigured and adapted; end-users are unable to utilise the provided flexibility. In the business world similar problems arise and previous work suggested using business process management systems (BPMS) or workflow management systems (WfMS) to guide and automate early warning processes or crisis management plans. However, the usability and flexibility of current WfMS are limited, because current notations and user interfaces are still not suitable for end-users, and workflows

  15. Establishing the fundamentals for an elephant early warning and monitoring system.

    Science.gov (United States)

    Zeppelzauer, Matthias; Stoeger, Angela S

    2015-09-04

    The decline of habitat for elephants due to expanding human activity is a serious conservation problem. This has continuously escalated the human-elephant conflict in Africa and Asia. Elephants make extensive use of powerful infrasonic calls (rumbles) that travel distances of up to several kilometers. This makes elephants well-suited for acoustic monitoring because it enables detecting elephants even if they are out of sight. In sight, their distinct visual appearance makes them a good candidate for visual monitoring. We provide an integrated overview of our interdisciplinary project that established the scientific fundamentals for a future early warning and monitoring system for humans who regularly experience serious conflict with elephants. We first draw the big picture of an early warning and monitoring system, then review the developed solutions for automatic acoustic and visual detection, discuss specific challenges and present open future work necessary to build a robust and reliable early warning and monitoring system that is able to operate in situ. We present a method for the automated detection of elephant rumbles that is robust to the diverse noise sources present in situ. We evaluated the method on an extensive set of audio data recorded under natural field conditions. Results show that the proposed method outperforms existing approaches and accurately detects elephant rumbles. Our visual detection method shows that tracking elephants in wildlife videos (of different sizes and postures) is feasible and particularly robust at near distances. From our project results we draw a number of conclusions that are discussed and summarized. We clearly identified the most critical challenges and necessary improvements of the proposed detection methods and conclude that our findings have the potential to form the basis for a future automated early warning system for elephants. We discuss challenges that need to be solved and summarize open topics in the context of

  16. Monitoring of lightning discharge

    International Nuclear Information System (INIS)

    Grigor'ev, V.A.

    2001-01-01

    The paper presents a brief description of a lightning discharge recording system developed at the NPO 'Monitoring Techniques' under the direction of V.M. Moskolenko (Moscow). The system provides information about dangerous environmental occurrences such as tornados and hurricanes, making the forecast of extreme situations possible, especially in the areas of dangerous industries and objects. The created automatic system can be useful in solving the tasks relating to nuclear test monitoring. (author)

  17. Lightning on Venus

    Science.gov (United States)

    Scarf, F. L.

    1985-01-01

    On the night side of Venus, the plasma wave instrument on the Pioneer-Venus Orbiter frequently detects strong and impulsive low-frequency noise bursts when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere. The signals have characteristics of lightning whistlers, and an attempt was made to identify the sources by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with additional significant clustering near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  18. Induction and Conduction Electromagnetic Waves Caused by Lightning Strike on the Low Voltage Network

    Directory of Open Access Journals (Sweden)

    Reynaldo Zoro

    2010-10-01

    Full Text Available Direct and indirect lightning strikes can disturb and induce low voltage overheadlines and it can produced overvoltage due to traveling waves along the lines. This overvoltage can damage the equipments connected to it. It was recorded that there were already a lot of damages of electronic equipments and arrestesr located inside the building of Lightning Measurement Station at Mnt. Tangkuban Perahu. Most of the overvoltage which was developed on the low voltage lines were coming from indirect lightning strike nearby due to the fact that most of the lines were covered by trees. Research was carried out to study and evaluate the induction and conduction of the lightning strikes to the LV lines that can lead to the cause of equipment and arrester damages inside the building. Local lightning data for the analysis were derived from measurement system installed at the stations and historical lightning data from lightning detection network called Jadpen (National Lightning Detection Network. The data was used for calculating and evaluating the voltage elevation, induction voltage profiles and conduction in the form of traveling waves using Rusck Model. Two damaged arresters were evaluated and compared and it give the better understanding on how the protection system work.Keywords: 

  19. Flood forecasting and early warning system for Dungun River Basin

    International Nuclear Information System (INIS)

    Hafiz, I; Sidek, L M; Basri, H; Fukami, K; Hanapi, M N; Livia, L; Nor, M D

    2013-01-01

    Floods can bring such disasters to the affected dweller due to loss of properties, crops and even deaths. The damages to properties and crops by the severe flooding are occurred due to the increase in the economic value of the properties as well as the extent of the flood. Flood forecasting and warning system is one of the examples of the non-structural measures which can give early warning to the affected people. People who live near the flood-prone areas will be warned so that they can evacuate themselves and their belongings before the arrival of the flood. This can considerably reduce flood loss and damage and above all, the loss of human lives. Integrated Flood Analysis System (IFAS) model is a runoff analysis model converting rainfall into runoff for a given river basin. The simulation can be done using either ground or satellite-based rainfall to produce calculated discharge within the river. The calculated discharge is used to generate the flood inundation map within the catchment area for the selected flood event using Infowork RS.

  20. LOFAR for lightning-interferometery and mapping

    NARCIS (Netherlands)

    Scholten, Olaf; Buitink, Stijn; trinh, Gia; Bonardi, Antonio; Corstanje, Arthur; Ebert, Ute; Falcke, Heino; Hoerandel, Joerg; Mitra, Pragati; Mulrey, Katherine; Nelles, Anna; Rachen, Joerg; Rossetto, Laura; Rutjes, Casper; Schellart, Pim; Thoudam, Satayendra; ter Veen, Sander; Winchen, Tobias; Hare, Brian

    2017-01-01

    We show that a new observation mode at the Low Frequency Array (LOFAR) for Lightning-Interferometery and Mapping (LIM) allows for lightning observations with a resolution that is at least an order of magnitude better than presently operating Lightning Napping Arrays LMAs. Furthermore the

  1. A Study of Lightning Protection Systems

    Science.gov (United States)

    1981-10-01

    from lightning, we must bear in mind that it does not follow the law of electric currents such as we are familiar with or those we read about as...radius equal to twice its height. Later on Guy Lussac Introduced M. Charles’ single cone--ie, a similar cone having a base with a radius equal to...or nforms with orrect. Th required d preservatio 1901 two mention the ned. Dr. of Science, Guy Lussac curity, but less good the e means

  2. Total Lightning as an Indicator of Mesocyclone Behavior

    Science.gov (United States)

    Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.

    2014-01-01

    Apparent relationship between total lightning (in-cloud and cloud to ground) and severe weather suggests its operational utility. Goal of fusion of total lightning with proven tools (i.e., radar lightning algorithms. Preliminary work here investigates circulation from Weather Suveilance Radar- 1988 Doppler (WSR-88D) coupled with total lightning data from Lightning Mapping Arrays.

  3. Upgrade of the early warning system in Slovenia

    International Nuclear Information System (INIS)

    Sarvari, A.; Cindro, M.; Krizman, M.; Mitic, D.

    2003-01-01

    The main task of the Early Warning System in Slovenia is to warn the competent authorities of the increase of external radiation. Only an efficient Ewes can cope with the situation that we have in case of nuclear or radiation accident. For such purposes the measuring locations have to fulfil some basic radiation monitoring criteria (population density, distance from NPP, precipitation, land use). In this article the results of each criterion as well as the total set is described. The results of the applied criteria are presented with colour contour images. The purpose of this article is to allocate the critical areas on the territory of Slovenia that have to be considered in final determination of the appropriate measuring locations. (author)

  4. Development of a hybrid earthquake early warning system based on single sensor technique

    International Nuclear Information System (INIS)

    Gravirov, V.V.; Kislov, K.V.

    2012-01-01

    There are two methods to earthquake early warning system: the method based on a network of seismic stations and the single-sensor method. Both have advantages and drawbacks. The current systems rely on high density seismic networks. Attempts at implementing techniques based on the single-station principle encounter difficulties in the identification of earthquake in noise. The noise may be very diverse, from stationary to impulsive. It seems a promising line of research to develop hybrid warning systems with single-sensors being incorporated in the overall early warning network. This will permit using all advantages and will help reduce the radius of the hazardous zone where no earthquake warning can be produced. The main problems are highlighted and the solutions of these are discussed. The system is implemented to include three detection processes in parallel. The first is based on the study of the co-occurrence matrix of the signal wavelet transform. The second consists in using the method of a change point in a random process and signal detection in a moving time window. The third uses artificial neural networks. Further, applying a decision rule out the final earthquake detection is carried out and estimate its reliability. (author)

  5. Design of Early Warning System Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Gan Bo

    2018-01-01

    Full Text Available In order to solve the shortcomings of the landslide monitoring technology method, a set of landslides monitoring and early warning system is designed. It can achieve real-time sensor data acquisition, remote transmission and query display. In addition, aiming at the harsh environment of landslide monitoring and the performance requirements of the monitoring system, an improved minimum hop routing protocol is proposed. It can reduce network energy consumption, enhance network robustness, and improve node layout and networking flexibility. In order to realize the remote transmission of data, GPRS wireless communication is used to transmit monitoring data. Combined with remote monitoring center, real-time data display, query, preservation and landslide warning and prediction are realized. The results show that the sensor data acquisition system is accurate, the system is stable, and the node network is flexible. Therefore, the monitoring system has a good use value.

  6. The Food Early Warning System Project in Somalia

    Directory of Open Access Journals (Sweden)

    Leblanc, M.

    1992-01-01

    Full Text Available The article describes shortly the objectives of a Food Early Warning System (FEWS project, as well as its organisation. The specifie case of Somalia, where the project had to evolve in increasingly difficult situations, and the solutions used so as to preserve the output, are described.

  7. Effectiveness of a Forward Collision Warning System in simple and in dual task from an electrophysiological perspective.

    Science.gov (United States)

    Bueno, Mercedes; Fort, Alexandra; Francois, Mathilde; Ndiaye, Daniel; Deleurence, Philippe; Fabrigoule, Colette

    2013-04-29

    Forward Collision Warning Systems (FCWS) are expected to assist drivers; however, it is not completely clear whether these systems are of benefit to distracted drivers as much as they are to undistracted drivers. This study aims at investigating further the analysis of the effectiveness of a surrogate FCWS according to the attentional state of participants. In this experiment electrophysiological and behavioural data were recording while participants were required to drive in a simple car simulator and to react to the braking of the lead vehicle which could be announced by a warning system. The effectiveness of this warning system was evaluated when drivers were distracted or not by a secondary cognitive task. In a previous study, the warning signal was not completely effective likely due to the presence of another predictor of the forthcoming braking which competes with the warning. By eliminating this secondary predictor in the present study, the results confirmed the negative effect of the secondary task and revealed the expected effectiveness of the warning system at behavioural and electrophysiological levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Lightning injury: a review.

    Science.gov (United States)

    Ritenour, Amber E; Morton, Melinda J; McManus, John G; Barillo, David J; Cancio, Leopoldo C

    2008-08-01

    Lightning is an uncommon but potentially devastating cause of injury in patients presenting to burn centers. These injuries feature unusual symptoms, high mortality, and significant long-term morbidity. This paper will review the epidemiology, physics, clinical presentation, management principles, and prevention of lightning injuries.

  9. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  10. 14 CFR 35.38 - Lightning strike.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning strike. 35.38 Section 35.38... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by... lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller has...

  11. GPS water level measurements for Indonesia's Tsunami Early Warning System

    Directory of Open Access Journals (Sweden)

    T. Schöne

    2011-03-01

    Full Text Available On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements.

    The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS (Rudloff et al., 2009 combines GPS technology and ocean bottom pressure (OBP measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information.

    The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  12. A projected decrease in lightning under climate change

    Science.gov (United States)

    Finney, Declan L.; Doherty, Ruth M.; Wild, Oliver; Stevenson, David S.; MacKenzie, Ian A.; Blyth, Alan M.

    2018-03-01

    Lightning strongly influences atmospheric chemistry1-3, and impacts the frequency of natural wildfires4. Most previous studies project an increase in global lightning with climate change over the coming century1,5-7, but these typically use parameterizations of lightning that neglect cloud ice fluxes, a component generally considered to be fundamental to thunderstorm charging8. As such, the response of lightning to climate change is uncertain. Here, we compare lightning projections for 2100 using two parameterizations: the widely used cloud-top height (CTH) approach9, and a new upward cloud ice flux (IFLUX) approach10 that overcomes previous limitations. In contrast to the previously reported global increase in lightning based on CTH, we find a 15% decrease in total lightning flash rate with IFLUX in 2100 under a strong global warming scenario. Differences are largest in the tropics, where most lightning occurs, with implications for the estimation of future changes in tropospheric ozone and methane, as well as differences in their radiative forcings. These results suggest that lightning schemes more closely related to cloud ice and microphysical processes are needed to robustly estimate future changes in lightning and atmospheric composition.

  13. Recommendations to harmonize European early warning dosimetry network systems

    Science.gov (United States)

    Dombrowski, H.; Bleher, M.; De Cort, M.; Dabrowski, R.; Neumaier, S.; Stöhlker, U.

    2017-12-01

    After the Chernobyl nuclear power plant accident in 1986, followed by the Fukushima Nuclear power plant accident 25 years later, it became obvious that real-time information is required to quickly gain radiological information. As a consequence, the European countries established early warning network systems with the aim to provide an immediate warning in case of a major radiological emergency, to supply reliable information on area dose rates, contamination levels, radioactivity concentrations in air and finally to assess public exposure. This is relevant for governmental decisions on intervention measures in an emergency situation. Since different methods are used by national environmental monitoring systems to measure area dose rate values and activity concentrations, there are significant differences in the results provided by different countries. Because European and neighboring countries report area dose rate data to a central data base operated on behalf of the European Commission, the comparability of the data is crucial for its meaningful interpretation, especially in the case of a nuclear accident with transboundary implications. Only by harmonizing measuring methods and data evaluation, is the comparability of the dose rate data ensured. This publication concentrates on technical requirements and methods with the goal to effectively harmonize area dose rate monitoring data provided by automatic early warning network systems. The requirements and procedures laid down in this publication are based on studies within the MetroERM project, taking into account realistic technical approaches and tested procedures.

  14. Development of a Low Cost Earthquake Early Warning System in Taiwan

    Science.gov (United States)

    Wu, Y. M.

    2017-12-01

    The National Taiwan University (NTU) developed an earthquake early warning (EEW) system for research purposes using low-cost accelerometers (P-Alert) since 2010. As of 2017, a total of 650 stations have been deployed and configured. The NTU system can provide earthquake information within 15 s of an earthquake occurrence. Thus, this system may provide early warnings for cities located more than 50 km from the epicenter. Additionally, the NTU system also has an onsite alert function that triggers a warning for incoming P-waves greater than a certain magnitude threshold, thus providing a 2-3 s lead time before peak ground acceleration (PGA) for regions close to an epicenter. Detailed shaking maps are produced by the NTU system within one or two minutes after an earthquake. Recently, a new module named ShakeAlarm has been developed. Equipped with real-time acceleration signals and the time-dependent anisotropic attenuation relationship of the PGA, ShakingAlarm can provide an accurate PGA estimation immediately before the arrival of the observed PGA. This unique advantage produces sufficient lead time for hazard assessment and emergency response, which is unavailable for traditional shakemap, which are based on only the PGA observed in real time. The performance of ShakingAlarm was tested with six M > 5.5 inland earthquakes from 2013 to 2016. Taking the 2016 M6.4 Meinong earthquake simulation as an example, the predicted PGA converges to a stable value and produces a predicted shake map and an isocontour map of the predicted PGA within 16 seconds of earthquake occurrence. Compared with traditional regional EEW system, ShakingAlarm can effectively identify possible damage regions and provide valuable early warning information (magnitude and PGA) for risk mitigation.

  15. Lightning Radio Source Retrieval Using Advanced Lightning Direction Finder (ALDF) Networks

    Science.gov (United States)

    Koshak, William J.; Blakeslee, Richard J.; Bailey, J. C.

    1998-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of lightning radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National Lightning Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).

  16. A Method to Increase Drivers' Trust in Collision Warning Systems Based on Reliability Information of Sensor

    Science.gov (United States)

    Tsutsumi, Shigeyoshi; Wada, Takahiro; Akita, Tokihiko; Doi, Shun'ichi

    Driver's workload tends to be increased during driving under complicated traffic environments like a lane change. In such cases, rear collision warning is effective for reduction of cognitive workload. On the other hand, it is pointed out that false alarm or missing alarm caused by sensor errors leads to decrease of driver' s trust in the warning system and it can result in low efficiency of the system. Suppose that reliability information of the sensor is provided in real-time. In this paper, we propose a new warning method to increase driver' s trust in the system even with low sensor reliability utilizing the sensor reliability information. The effectiveness of the warning methods is shown by driving simulator experiments.

  17. Security warning method and system for worker safety during live-line working

    Science.gov (United States)

    Jiang, Chilong; Zou, Dehua; Long, Chenhai; Yang, Miao; Zhang, Zhanlong; Mei, Daojun

    2017-09-01

    Live-line working is an essential part in the operations in an electric power system. Live-line workers are required to wear shielding clothing. Shielding clothing, however, acts as a closed environment for the human body. Working in a closed environment for a long time can change the physiological responses of the body and even endanger personal safety. According to the typical conditions of live-line working, this study synthesizes environmental factors related to shielding clothing and the physiological factors of the body to establish the heart rate variability index RMSSD and the comprehensive security warning index SWI. On the basis of both indices, this paper proposes a security warning method and system for the safety live-line workers. The system can monitor the real-time status of workers during live-line working to provide security warning and facilitate the effective safety supervision by the live operation center during actual live-line working.

  18. Global early warning systems for natural hazards: systematic and people-centred.

    Science.gov (United States)

    Basher, Reid

    2006-08-15

    To be effective, early warning systems for natural hazards need to have not only a sound scientific and technical basis, but also a strong focus on the people exposed to risk, and with a systems approach that incorporates all of the relevant factors in that risk, whether arising from the natural hazards or social vulnerabilities, and from short-term or long-term processes. Disasters are increasing in number and severity and international institutional frameworks to reduce disasters are being strengthened under United Nations oversight. Since the Indian Ocean tsunami of 26 December 2004, there has been a surge of interest in developing early warning systems to cater to the needs of all countries and all hazards.

  19. Sensing the danger. Can tsunami early warning systems benefit from test ban monitoring?

    International Nuclear Information System (INIS)

    Zerbo, L.

    2005-01-01

    An editorial in the February 2005 edition of the Magazine for European Research pointed to the very issue of responsibility: Improvements are always possible, of course, but the very nature of a 'natural disaster' is that while not entirely absolving humans of responsibility it surpasses our means to deal with and even understand the forces at work. But science can help enhance our knowledge. For if there is one subject that the Asian tragedy has highlighted, it is the importance of putting in place coordinated early warning systems for earthquakes and, in particular, the absence of effective monitoring of tsunamis in the Indian Ocean. A concerted effort is now being made to develop a coordinated system of systems - bringing together organizations and initiatives that together can put in place an early warning system. The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), set-up to monitor adherence to the Comprehensive Nuclear-Test-Ban Treaty, is one organization seen to contribute to a coordinated early warning system

  20. National Renewable Energy Laboratory program on lightning risk and wind turbine generator protection

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E. [National Renewable Energy Lab., Golden, CO (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

    1997-12-31

    In the early development of wind turbine generators (WTG) in the United States, wind farms were primarily located in California where lightning activity is the lowest in the United States. As such, lightning protection for wind turbines was not considered to be a major issue for designers or wind farm operators. However, wind turbine installations are expanding into the Midwest, Southwest and other regions of the United States where lightning activity is significantly more intense and lightning damage to wind turbines is more common. There is a growing need, therefore, to better understand lightning activity on wind farms and to improve wind turbine lightning protection systems. In support of the U.S. Department of Energy/Electric Power Research Institute (DOE/EPRI) Utility Wind Turbine Verification Program (TVP), the National Renewable Energy Laboratory (NREL) has recently begun to take steps to determine the extent of damage due to lightning and the effectiveness of various lightning protection techniques for wind power plants. Working through the TVP program, NREL will also perform outreach and education to (1) help manufacturers to provide equipment that is adequately designed to survive lightning, (2) make sure that operators are aware of effective safety procedures, and (3) help site designers and wind farm developers take the risk of lightning into account as effectively as possible.

  1. Availability and Reliability of Disaster Early Warning Systems and the IT Infrastructure Library

    Science.gov (United States)

    Wächter, J.; Loewe, P.

    2012-12-01

    The Boxing Day Tsunami of 2004 caused an information catastrophy. Crucial early warning information could not be delivered to the communities under imminent threat, resulting in over 240,000 casualties in 14 countries. This tragedy sparked the development of a new generation of integrated modular Tsunami Early Warning Systems (TEWS). While significant advances were accomplished in the past years, recent events, like the Chile 2010 and the Tohoku 2011 tsunami demonstrate that the key technical challenge for Tsunami Early Warning research on the supranational scale still lies in the timely issuing of status information and reliable early warning messages. A key challenge stems from the main objective of the IOC Tsunami Programme, the integration of national TEWS towards ocean-wide networks: Each of the increasing number of integrated Tsunami Early Warning Centres has to cope with the continuing evolution of sensors, hardware and software while having to maintain reliable inter-center information exchange services. To avoid future information catastrophes, the performance of all components, ranging from sensors to Warning Centers, has to be regularly validated against defined criteria. This task is complicated by the fact that in term of ICT system life cycles tsunami are very rare event resulting in very difficult framing conditions to safeguard the availability and reliability of TWS. Since 2004, GFZ German Research Centre for Geosciences (GFZ) has built up expertise in the field of TEWS. Within GFZ, the Centre for GeoInformation Technology (CEGIT) has focused its work on the geoinformatics aspects of TEWS in two projects already: The German Indonesian Tsunami Early Warning System (GITEWS) funded by the German Federal Ministry of Education and Research (BMBF) and the Distant Early Warning System (DEWS), a European project funded under the sixth Framework Programme (FP6). These developments are continued in the TRIDEC project (Collaborative, Complex, and Critical

  2. Lightning Location System Data from Wind Power Plants Compared to Meteorological Conditions of Warm- and Cold Thunderstorm Events

    DEFF Research Database (Denmark)

    Vogel, Stephan; Lopez, Javier; Garolera, Anna Candela

    2016-01-01

    of topography, height above mean sea level (AMSL), and average ground flash density. For three sites, the most severe lightning events have been identified during the warm and cold months whereas the other two locations exhibit severe lightning detections mainly during the warm months. In this work severity......Five years of Lightning Location System (LLS) data from five different wind turbine sites in Europe are analysed. The sites are located in Croatia, Italy, Spain, France and one offshore wind power plant in the North sea. Each location exhibits individual characteristic properties in terms...... of such an episode can vary from tens of minutes to several hours in the case of new storms being continuously developed in the same area. The distance of the charge separating -10◦ C and the ground is usually larger than 3000 meters. This analyse provides information about the different thunderstorm types which...

  3. PRESSCA: A regional operative Early Warning System for landslides risk scenario assessment

    Science.gov (United States)

    Ponziani, Francesco; Stelluti, Marco; Berni, Nicola; Brocca, Luca; Moramarco, Tommaso

    2013-04-01

    The Italian national alert system for the hydraulic and hydrogeological risk is ensured by the National Civil Protection Department, through the "Functional Centres" Network, together with scientific/technical Support Centres, named "Competence Centres". The role of the Functional Centres is to alert regional/national civil protection network, to manage the prediction and the monitoring phases, thus ensuring the flow of data for the management of the emergency. The Umbria regional alerting procedure is based on three increasing warning levels of criticality for 6 sub-areas (~1200 km²). Specifically, for each duration (from 1 to 48 hours), three criticality levels are assigned to the rainfall values corresponding to a recurrence interval of 2, 5, and 10 years. In order to improve confidence on the daily work for hydrogeological risk assessment and management, a simple and operational early warning system for the prediction of shallow landslide triggering on regional scale was implemented. The system is primarily based on rainfall thresholds, which represent the main element of evaluation for the early-warning procedures of the Italian Civil Protection system. Following previous studies highlighting that soil moisture conditions play a key role on landslide triggering, a continuous physically-based soil water balance model was implemented for the estimation of soil moisture conditions over the whole regional territory. In fact, a decreasing trend between the cumulated rainfall values over 24, 36 and 48 hours and the soil moisture conditions prior to past landslide events was observed. This trend provides an easy-to-use tool to dynamically adjust the operational rainfall thresholds with the soil moisture conditions simulated by the soil water balance model prior to rainfall events. The application of this procedure allowed decreasing the uncertainties tied to the application of the rainfall thresholds only. The system is actually operational in real-time and it was

  4. Observed activation status of lane departure warning and forward collision warning of Honda vehicles at dealership service centers.

    Science.gov (United States)

    Reagan, Ian J; McCartt, Anne T

    2016-11-16

    There are little objective data on whether drivers with lane departure warning and forward collision warning systems actually use them, but self-report data indicate that lane departure warning may be used less and viewed less favorably than forward collision warning. The current study assessed whether the systems were turned on when drivers brought their vehicles to dealership service stations and whether the observational protocol is a feasible method for collecting similar data on various manufacturers' systems. Observations of 2013-2015 Honda Accords, 2014-2015 Odysseys, and 2015 CR-Vs occurred at 2 U.S. Honda dealerships for approximately 4 weeks during Summer 2015. Of the 265 vehicles observed to have the 2 systems, 87 (32.8%) had lane departure warning turned on. Accords were associated with a 66% increase in the likelihood that lane departure warning was turned on compared with Odysseys, but the rate was still only about 40% in Accords. In contrast, forward collision warning was turned on in all but one of the observed vehicles. Observations found that the activation rate was much higher for forward collision warning than lane departure warning. The observation method worked well and appears feasible for extending to other manufacturers.

  5. Augmenting Satellite Precipitation Estimation with Lightning Information

    Energy Technology Data Exchange (ETDEWEB)

    Mahrooghy, Majid [Mississippi State University (MSU); Anantharaj, Valentine G [ORNL; Younan, Nicolas H. [Mississippi State University (MSU); Petersen, Walter A. [NASA Marshall Space Flight Center, Huntsville, AL; Hsu, Kuo-Lin [University of California, Irvine; Behrangi, Ali [Jet Propulsion Laboratory, Pasadena, CA; Aanstoos, James [Mississippi State University (MSU)

    2013-01-01

    We have used lightning information to augment the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network - Cloud Classification System (PERSIANN-CCS). Co-located lightning data are used to segregate cloud patches, segmented from GOES-12 infrared data, into either electrified (EL) or non-electrified (NEL) patches. A set of features is extracted separately for the EL and NEL cloud patches. The features for the EL cloud patches include new features based on the lightning information. The cloud patches are classified and clustered using self-organizing maps (SOM). Then brightness temperature and rain rate (T-R) relationships are derived for the different clusters. Rain rates are estimated for the cloud patches based on their representative T-R relationship. The Equitable Threat Score (ETS) for daily precipitation estimates is improved by almost 12% for the winter season. In the summer, no significant improvements in ETS are noted.

  6. The Elusive Evidence of Volcanic Lightning.

    Science.gov (United States)

    Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M

    2017-11-14

    Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.

  7. Software for ASS-500 based early warning system

    International Nuclear Information System (INIS)

    Lipinski, P.; Isajenko, K.

    1998-01-01

    The article describes the software for the management of early warning system based on ASS-500 station. The software can communicate with the central computer using TCP/IP protocol. This allows remote control of the station through modem or local area network connection. The article describes Windows based user interface of the program

  8. Lightning simulation of a combined overhead line/cable connected GIS

    DEFF Research Database (Denmark)

    Kessel, Jakob; Atlason, Vioir; Bak, Claus Leth

    2008-01-01

    performance, compared to a system consisting solely of AIS connected thorugh overhead lines. The main purpose is to investigate whether overvoltage protection is necessary at the GIS busbar. Here, the price for a GIS SA is significantly more expensive than the price for an AIS SA. The analysis is conducted......The paper concerns different investigations of lightning simulation of a combined 170 kV overhead line/cable connected GIS. This is interesting due to the increasing amount of underground cables and GIS in the Danish transmission system. This creates a different system with respect to lightning...... by implementing a simulation model in PSCAD/EMTDC. Simulations are conducted for both SF and BFO where the overvoltage at the transformer are evaluated as this component has the lowest insulation strength. The overvoltages are evaluated for different front imes of the lightning surge, different soil resistivities...

  9. Hybrid Intelligent Warning System for Boiler tube Leak Trips

    Directory of Open Access Journals (Sweden)

    Singh Deshvin

    2017-01-01

    Full Text Available Repeated boiler tube leak trips in coal fired power plants can increase operating cost significantly. An early detection and diagnosis of boiler trips is essential for continuous safe operations in the plant. In this study two artificial intelligent monitoring systems specialized in boiler tube leak trips have been proposed. The first intelligent warning system (IWS-1 represents the use of pure artificial neural network system whereas the second intelligent warning system (IWS-2 represents merging of genetic algorithms and artificial neural networks as a hybrid intelligent system. The Extreme Learning Machine (ELM methodology was also adopted in IWS-1 and compared with traditional training algorithms. Genetic algorithm (GA was adopted in IWS-2 to optimize the ANN topology and the boiler parameters. An integrated data preparation framework was established for 3 real cases of boiler tube leak trip based on a thermal power plant in Malaysia. Both the IWSs were developed using MATLAB coding for training and validation. The hybrid IWS-2 performed better than IWS-1.The developed system was validated to be able to predict trips before the plant monitoring system. The proposed artificial intelligent system could be adopted as a reliable monitoring system of the thermal power plant boilers.

  10. Lightning characteristics observed by a VLF/LF lightning detection network (LINET in Brazil, Australia, Africa and Germany

    Directory of Open Access Journals (Sweden)

    H. Höller

    2009-10-01

    Full Text Available This paper describes lightning characteristics as obtained in four sets of lightning measurements during recent field campaigns in different parts of the world from mid-latitudes to the tropics by the novel VLF/LF (very low frequency/low frequency lightning detection network (LINET. The paper gives a general overview on the approach, and a synopsis of the statistical results for the observation periods as a whole and for one special day in each region. The focus is on the characteristics of lightning which can specifically be observed by this system like intra-cloud and cloud-to-ground stroke statistics, vertical distributions of intra-cloud strokes or peak current distributions. Some conclusions regarding lightning produced NOx are also presented as this was one of the aims of the tropical field campaigns TROCCINOX (Tropical Convection, Cirrus and Nitrogen Oxides Experiment and TroCCiBras (Tropical Convection and Cirrus Experiment Brazil in Brazil during January/February 2005, SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere and TWP-ICE (Tropical Warm Pool-International Cloud Experiment during November/December 2005 and January/February 2006, respectively, in the Darwin area in N-Australia, and of AMMA (African Monsoon Multidisciplinary Analyses in W-Africa during June–November 2006.

    Regional and temporal characteristics of lightning are found to be dependent on orographic effects (e.g. S-Germany, Brazil, Benin, land-sea breeze circulations (N-Australia and especially the evolution of the monsoons (Benin, N-Australia. Large intra-seasonal variability in lightning occurrence was found for the Australian monsoon between the strong convection during build-up and break phases and the weak active monsoon phase with only minor lightning activity. Total daily lightning stroke rates can be of comparable intensity in all regions with the heaviest events found in Germany and N

  11. Monitoring of lightning from the April-May 2010 Eyjafjallajoekull volcanic eruption using a very low frequency lightning location network

    International Nuclear Information System (INIS)

    Bennett, A J; Odams, P; Edwards, D; Arason, P.

    2010-01-01

    The April-May 2010 explosive eruption of the Eyjafjallajoekull volcano in Iceland produced a tephra plume extending to an altitude of over 9 km. During many, but not all, of the periods of significant volcanic activity the plume was sufficiently electrified to generate lightning. This lightning was located by the UK Met Office long-range lightning location network (ATDnet), operating in the very low frequency radio spectrum. An approximately linear relationship between hourly lightning count rate and radar-derived plume height was found. A minimum plume height for lightning generation of sufficient strength to be detected by ATDnet was shown to be 5 km above sea level. It is not clear why some plumes exceeding 5 km did not produce lightning detected by ATDnet, although ambient atmospheric conditions may be an important factor.

  12. Monitoring of lightning from the April-May 2010 Eyjafjallajoekull volcanic eruption using a very low frequency lightning location network

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, A J; Odams, P; Edwards, D [Met Office, FitzRoy Road, Exeter EX1 3PB (United Kingdom); Arason, P., E-mail: alec.bennett@metoffice.gov.uk [Icelandic Meteorological Office, Bustaoavegi 9, IS-150 ReykjavIk (Iceland)

    2010-10-15

    The April-May 2010 explosive eruption of the Eyjafjallajoekull volcano in Iceland produced a tephra plume extending to an altitude of over 9 km. During many, but not all, of the periods of significant volcanic activity the plume was sufficiently electrified to generate lightning. This lightning was located by the UK Met Office long-range lightning location network (ATDnet), operating in the very low frequency radio spectrum. An approximately linear relationship between hourly lightning count rate and radar-derived plume height was found. A minimum plume height for lightning generation of sufficient strength to be detected by ATDnet was shown to be 5 km above sea level. It is not clear why some plumes exceeding 5 km did not produce lightning detected by ATDnet, although ambient atmospheric conditions may be an important factor.

  13. Lightning incidents in Mongolia

    Directory of Open Access Journals (Sweden)

    Myagmar Doljinsuren

    2015-11-01

    Full Text Available This is one of the first studies that has been conducted in Mongolia on the distribution of lightning incidents. The study covers a 10-year period from 2004 to 2013. The country records a human death rate of 15.4 deaths per 10 million people per year, which is much higher than that of many countries with similar isokeraunic level. The reason may be the low-grown vegetation observed in most rural areas of Mongolia, a surface topography, typical to steppe climate. We suggest modifications to Gomes–Kadir equation for such countries, as it predicts a much lower annual death rate for Mongolia. The lightning incidents spread over the period from May to August with the peak of the number of incidents occurring in July. The worst lightning affected region in the country is the central part. Compared with impacts of other convective disasters such as squalls, thunderstorms and hail, lightning stands as the second highest in the number of incidents, human deaths and animal deaths. Economic losses due to lightning is only about 1% of the total losses due to the four extreme weather phenomena. However, unless precautionary measures are not promoted among the public, this figure of losses may significantly increase with time as the country is undergoing rapid industrialization at present.

  14. Lightning injuries in sports and recreation.

    Science.gov (United States)

    Thomson, Eric M; Howard, Thomas M

    2013-01-01

    The powers of lightning have been worshiped and feared by all known human cultures. While the chance of being struck by lightning is statistically very low, that risk becomes much greater in those who frequently work or play outdoors. Over the past 2 yr, there have been nearly 50 lightning-related deaths reported within the United States, with a majority of them associated with outdoor recreational activities. Recent publications primarily have been case studies, review articles, and a discussion of a sixth method of injury. The challenge in reducing lightning-related injuries in organized sports has been addressed well by both the National Athletic Trainers' Association and the National Collegiate Athletic Association in their guidelines on lightning safety. Challenges remain in educating the general population involved in recreational outdoor activities that do not fall under the guidelines of organized sports.

  15. The Telemetric Early Warning Environmental Radiation Monitoring System of Cyprus

    Energy Technology Data Exchange (ETDEWEB)

    Christofides, S [Medical Physics Department, Nicosia General Hospital, Nicosia (Cyprus)

    1998-12-31

    This paper presents the hardware design, the development of the software and the use of the Telemetric Early Warning Environmental Radiation Monitoring System (TEWERMS) of Cyprus. (author). 3 refs, 6 figs.

  16. 10. VDE/ABB lightning protection conference. Lectures

    International Nuclear Information System (INIS)

    2013-01-01

    The proceedings of the 10. VDE/ABB lightning protection conference include lectures on the following issues: Status on the standardization and resulting consequences; lightning protection of specific facilities; electrical grounding and potential equalization; lightning research; personal security and protection.

  17. Assessment of lightning impact frequency for process equipment

    International Nuclear Information System (INIS)

    Necci, Amos; Antonioni, Giacomo; Cozzani, Valerio; Krausmann, Elisabeth; Borghetti, Alberto; Nucci, Carlo Alberto

    2014-01-01

    Fires and explosions triggered by lightning strikes are among the most frequent Natech scenarios affecting the chemical and process industry. Although lightning hazard is well known, well accepted quantitative procedures to assess the contribution of accidents caused by lightning to industrial risk are still lacking. In the present study, a quantitative methodology for the assessment of the expected frequency of lightning capture by process equipment is presented. A specific model, based on Monte Carlo simulations, was developed to assess the capture frequency of lightning for equipment with a given geometry. The model allows the assessment of lay-out effects and the reduction of the capture probability due to the presence of other structures or equipment items. The results of the Monte Carlo simulations were also used to develop a simplified cell method allowing a straightforward assessment of the lightning impact probability in a quantitative risk assessment framework. The developed approach allows an in-depth analysis of the hazard due to lightning impact by identifying equipment items with the highest expected frequency of lightning impacts in a given lay-out. The model thus supplies useful data to approach the assessment of the quantitative contribution of lightning-triggered accidents to industrial risk. - Highlights: • A specific approach to storage tank lightning impact frequency calculation was developed. • The approach is suitable for the quantitative assessment of industrial risk due to lightning. • The models developed provide lightning capture frequency based on tank geometry. • Lay-out effects due to nearby structures are also accounted. • Capture frequencies may be as high as 10 −1 events/year for standalone unprotected tanks

  18. Lightning effects on the NASA F-8 digital fly-by-wire airplane

    Science.gov (United States)

    Plumer, J. A.

    1975-01-01

    An investigation was conducted to evaluate the possible electromagnetic effects of lightning on a fly-by-wire flight control system which had been developed for an F8 aircraft. A brief description is presented of the flight control system. The test and measurement technique used in the investigation is discussed. The results of the investigation are considered, taking into account the vulnerability of individual system components to lightning induced voltages.

  19. Laboratory demonstration of ball lightning

    International Nuclear Information System (INIS)

    Egorov, Anton I; Stepanov, Sergei I; Shabanov, Gennadii D

    2004-01-01

    A common laboratory facility for creating glowing flying plasmoids akin to a natural ball lightning, allowing a number of experiments to be performed to investigate the main properties of ball lightning, is described. (methodological notes)

  20. Acute transient hemiparesis induced by lightning strike.

    Science.gov (United States)

    Rahmani, Seyed Hesam; Faridaalaee, Gholamreza; Jahangard, Samira

    2015-07-01

    According to data from the National Oceanic and Atmospheric Administration,in the years from 1959 to 1994, lightning was responsible for more than 3000 deaths and nearly 10,000 casualties. The most important characteristic features of lightning injuries are multisystem involvement and widely variable severity. Lightning strikes are primarily a neurologic injury that affects all 3 components of the nervous system: central, autonomic,and peripheral. Neurologic complications of lightning strikes vary from transient benign symptoms to permanent disability. Many patients experience a temporary paralysis called keraunoparalysis. Here we reported a 22-year-old mountaineer man with complaining of left sided hemiparesis after being hit by a lightning strike in the mountain 3 hours ago. There was no loss of consciousness at hitting time. On arrival the patient was alert, awake and hemodynamically stable. In neurologic examination cranial nerves were intact, left sided upper and lower extremity muscle force was I/V with a combination of complete sensory loss, and right-sided muscle force and sensory examination were normal. There is not any evidence of significant vascular impairment in the affected extremities. Brain MRI and CT scan and cervical MRI were normal. During 2 days of admission, with intravenous hydration, heparin 5000 unit SC q12hr and physical therapy of the affected limbs, motor and sensory function improved and was normal except mild paresthesia. He was discharged 1 day later for outpatient follow up while vitamin B1 100mg orally was prescribed.Paresthesia improved after 3 days without further sequels.

  1. Lightning effects on the NASA F-8 digital-fly-by-wire airplane

    Science.gov (United States)

    Plumer, J. A.; Fisher, F. A.; Walko, L. C.

    1975-01-01

    The effects of lightning on a Digital Fly-By-Wire (DFBW)aircraft control system were investigated. The aircraft was a NASA operated F-8 fitted with a modified Apollo guidance computer. Current pulses similar in waveshape to natural lightning, but lower in amplitude, were injected into the aircraft. Measurements were made of the voltages induced on the DFBW circuits, the total current induced on the bundles of wires, the magnetic field intensity inside the aircraft, and the current density on the skin of the aircraft. Voltage measurements were made in both the line-to-ground and line-to-line modes. Voltages measured at the non-destructive test level were then scaled upward to determine how much would be produced by actual lightning. A 200,000 ampere severe lightning flash would produce between 40 and 2000 volts in DFBW circuits. Some system components are expected to be vulnerable to these voltages.

  2. An intelligent IoT emergency vehicle warning system using RFID and Wi-Fi technologies for emergency medical services.

    Science.gov (United States)

    Lai, Yeong-Lin; Chou, Yung-Hua; Chang, Li-Chih

    2018-01-01

    Collisions between emergency vehicles for emergency medical services (EMS) and public road users have been a serious problem, impacting on the safety of road users, emergency medical technicians (EMTs), and the patients on board. The aim of this study is to develop a novel intelligent emergency vehicle warning system for EMS applications. The intelligent emergency vehicle warning system is developed by Internet of Things (IoT), radio-frequency identification (RFID), and Wi-Fi technologies. The system consists of three major parts: a system trigger tag, an RFID system in an emergency vehicle, and an RFID system at an intersection. The RFID system either in an emergency vehicle or at an intersection contains a controller, an ultrahigh-frequency (UHF) RFID reader module, a Wi-Fi module, and a 2.4-GHz antenna. In addition, a UHF ID antenna is especially designed for the RFID system in an emergency vehicle. The IoT system provides real-time visual warning at an intersection and siren warning from an emergency vehicle in order to effectively inform road users about an emergency vehicle approaching. The developed intelligent IoT emergency vehicle warning system demonstrates the capabilities of real-time visual and siren warnings for EMS safety.

  3. Automation warning system against driver falling asleep in-traffic

    Directory of Open Access Journals (Sweden)

    Dymov I. S.

    2017-12-01

    Full Text Available The paper is devoted to the development of a new automation recognition and warning system against driver falling asleep in-traffic. The issue of the physical condition control of professional drivers on the voyage has been considered both on the part of efficiency and quality of its determination, and in terms of improving overall road safety. The existing and widely used devices for determining the transition to the stage of sleep of drivers being in-traffic have been analyzed. Their advantages and disadvantages have been detected. It has been established that the main negative factor preventing the mass introduction of pre-existing warning systems is the need to wear one or another monitoring device before starting the movement. Carried out project research work has proposed a complex monitoring of the physical and physiological condition of driving person as a new warning method against falling asleep in-traffic. The proposed variations of algorithmic implementations can be used in long-distance trucks and passenger vehicles. Two different versions of the automatic control status of the driver physical condition have been considered. The first approach has proposed the use of sensors of the biometric parameters of body, pulsus, body temperature, and hands on wheel pressure sensors. The second one has proposed using the tracking cameras. Both for the first and second versions of the automation system a toolset of control devices is being installed inside the vehicle and have no physical, so irritating action on the driver. Software approach for the false operation rejection of the devices has been developed. The paper considers the flow diagrams of the automatic systems and logical structure of analysis and decision-making. The set of impacts intended for driver's awakening has been proposed. The conclusion about the engineering perspectives of the proposed approach of projected automation systems has been made.

  4. Climate change implications and use of early warning systems for global dust storms

    Science.gov (United States)

    Harriman, Lindsey M.

    2014-01-01

    With increased changes in land cover and global climate, early detection and warning of dust storms in conjunction with effective and widespread information broadcasts will be essential to the prevention and mitigation of future risks and impacts. Human activities, seasonal variations and long-term climatic patterns influence dust storms. More research is needed to analyse these factors of dust mobilisation to create more certainty for the fate of vulnerable populations and ecosystems in the future. Early warning and communication systems, when in place and effectively implemented, can offer some relief to these vulnerable areas. As an issue that affects many regions of the world, there is a profound need to understand the potential changes and ultimately create better early warning systems for dust storms.

  5. An investigation of the generation and properties of laboratory-produced ball lightning

    Science.gov (United States)

    Oreshko, A. G.

    2015-06-01

    The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning - in an external spherical layer that rotates around the axis - there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is `embedded' in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.

  6. An uncertain future for lightning

    Science.gov (United States)

    Murray, Lee T.

    2018-02-01

    The most commonly used method for representing lightning in global atmospheric models generally predicts lightning increases in a warmer world. A new scheme finds the opposite result, directly challenging the predictive skill of an old stalwart.

  7. Climatology of lightning in the Czech Republic

    Science.gov (United States)

    Novák, Petr; Kyznarová, Hana

    2011-06-01

    The Czech Hydrometeorological Institute (CHMI) has utilized lightning data from the Central European Lightning Detection Network (CELDN) since 1999. The CELDN primarily focuses on the detection of cloud-to-ground (CG) lightning but intra-cloud (IC) lightning detection is also available. Lightning detection is used by the CHMI forecasters as an additional source to radar and satellite data for nowcasting of severe storms. Lightning data are also quantitatively used in automatic nowcasting applications. The quality of lightning data can be evaluated using their climatological characteristics. Climatological characteristics are also useful for defining decision thresholds that are valuable for human forecasters as well as for automatic nowcasting applications. The seven-year period from 2002 to 2008, which had relatively even-quality lightning data, was used to calculate the spatial and temporal distributions of lightning. The monthly number of CG strokes varies depending on the season. The highest number of CG strokes occurs during summer, with more than 20 days of at least five detected CG strokes on the Czech Republic territory in June and July. The least number of CG stokes occurs in winter, with less than three days per month having at least five detected CG stokes. The mean diurnal distribution of CG strokes peaks between 1500 and 1600 UTC and reaches a minimum between 0500 and 0800 UTC. The average spatial distribution of CG strokes shows sharp local maxima corresponding with the locations of the TV broadcast towers. The average spatial distribution of CG flash density, calculated on a 20 × 20 km grid, shows the maximum (3.23 flashes km - 2 year - 1 ) in the western part of Czech Republic and the minimum (0.92 flashes km - 2 year - 1 ) in the south-southeast of the Czech Republic. In addition, lightning characteristics related to the identified convective cells, such as distribution of the lightning stroke rates or relation to the radar derived by Vertically

  8. Connected motorcycle crash warning interfaces.

    Science.gov (United States)

    2016-01-15

    Crash warning systems have been deployed in the high-end vehicle market segment for some time and are trickling down to additional motor vehicle industry segments each year. The motorcycle segment, however, has no deployed crash warning system to dat...

  9. Implementing the national AIGA flash flood warning system in France

    Science.gov (United States)

    Organde, Didier; Javelle, Pierre; Demargne, Julie; Arnaud, Patrick; Caseri, Angelica; Fine, Jean-Alain; de Saint Aubin, Céline

    2015-04-01

    The French national hydro-meteorological and flood forecasting centre (SCHAPI) aims to implement a national flash flood warning system to improve flood alerts for small-to-medium (up to 1000 km2) ungauged basins. This system is based on the AIGA method, co-developed by IRSTEA these last 10 years. The method, initially set up for the Mediterranean area, is based on a simple event-based hourly hydrologic distributed model run every 15 minutes (Javelle et al. 2014). The hydrologic model ingests operational radar-gauge rainfall grids from Météo-France at a 1-km² resolution to produce discharges for successive outlets along the river network. Discharges are then compared to regionalized flood quantiles of given return periods and warnings (expressed as the range of the return period estimated in real-time) are provided on a river network map. The main interest of the method is to provide forecasters and emergency services with a synthetic view in real time of the ongoing flood situation, information that is especially critical in ungauged flood prone areas. In its enhanced national version, the hourly event-based distributed model is coupled to a continuous daily rainfall-runoff model which provides baseflow and a soil moisture index (for each 1-km² pixel) at the beginning of the hourly simulation. The rainfall-runoff models were calibrated on a selection of 700 French hydrometric stations with Météo-France radar-gauge reanalysis dataset for the 2002-2006 period. To estimate model parameters for ungauged basins, the 2 hydrologic models were regionalised by testing both regressions (using different catchment attributes, such as catchment area, soil type, and climate characteristic) and spatial proximity techniques (transposing parameters from neighbouring donor catchments), as well as different homogeneous hydrological areas. The most valuable regionalisation method was determined for each model through jack-knife cross-validation. The system performance was then

  10. Evaluating lightning hazards to building environments using explicit numerical solutions of Maxwell's equations

    Science.gov (United States)

    Collier, Richard S.; McKenna, Paul M.; Perala, Rodney A.

    1991-08-01

    The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.

  11. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  12. Visual Analysis for Nowcasting of Multidimensional Lightning Data

    Directory of Open Access Journals (Sweden)

    Stefan Peters

    2013-08-01

    Full Text Available Globally, most weather-related damages are caused by thunderstorms. Besides floods, strong wind, and hail, one of the major thunderstorm ground effects is lightning. Therefore, lightning investigations, including detection, cluster identification, tracking, and nowcasting are essential. To enable reliable decisions, current and predicted lightning cluster- and track features as well as analysis results have to be represented in the most appropriate way. Our paper introduces a framework which includes identification, tracking, nowcasting, and in particular visualization and statistical analysis of dynamic lightning data in three-dimensional space. The paper is specifically focused on enabling users to conduct the visual analysis of lightning data for the purpose of identification and interpretation of spatial-temporal patterns embedded in lightning data, and their dynamics. A graphic user interface (GUI is developed, wherein lightning tracks and predicted lightning clusters, including their prediction certainty, can be investigated within a 3D view or within a Space-Time-Cube. In contrast to previous work, our approach provides insight into the dynamics of past and predicted 3D lightning clusters and cluster features over time. We conclude that an interactive visual exploration in combination with a statistical analysis can provide new knowledge within lightning investigations and, thus, support decision-making in weather forecast or lightning damage prevention.

  13. Lightning NOx Production in CMAQ Part I – Using Hourly NLDN Lightning Strike Data

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  14. Lightning Mapping Observations During DC3 in Northern Colorado

    Science.gov (United States)

    Krehbiel, P. R.; Rison, W.; Thomas, R. J.

    2012-12-01

    The Deep Convective Clouds and Chemistry Experiment (DC3) was conducted in three regions covered by Lightning Mapping Arrays (LMAs): Oklahoma and west Texas, northern Alabama, and northern Colorado. In this and a companion presentation, we discuss results obtained from the newly-deployed North Colorado LMA. The CO LMA revealed a surprising variety of lightning-inferred electrical structures, ranging from classic tripolar, normal polarity storms to several variations of anomalously electrified systems. Storms were often characterized by a pronounced lack or deficit of cloud-to-ground discharges (negative or positive), both in relative and absolute terms compared to the large amount of intracloud activity revealed by the LMA. Anomalous electrification was observed in small, localized storms as well as in large, deeply convective and severe storms. Another surprising observation was the frequent occurrence of embedded convection in the downwind anvil/outflow region of large storm systems. Observations of discharges in low flash rate situations over or near the network are sufficiently detailed to enable branching algorithms to estimate total channel lengths for modeling NOx production. However, this will not be possible in large or distant storm systems where the lightning was essentially continuous and structurally complex, or spatially noisy. Rather, a simple empirical metric for characterizing the lightning activity can be developed based on the number of located VHF radiation sources, weighted for example by the peak source power, source altitude, and temporal duration.

  15. Using the VAHIRR Radar Algorithm to Investigate Lightning Cessation

    Science.gov (United States)

    Stano, Geoffrey T.; Schultz, Elise V.; Petersen, Walter A.

    2012-01-01

    Accurately determining the threat posed by lightning is a major area for improved operational forecasts. Most efforts have focused on the initiation of lightning within a storm, with far less effort spent investigating lightning cessation. Understanding both components, initiation and cessation, are vital to improving lightning safety. Few organizations actively forecast lightning onset or cessation. One such organization is the 45th Weather Squadron (45WS) for the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45WS has identified that charged anvil clouds remain a major threat of continued lightning and can greatly extend the window of a potential lightning strike. Furthermore, no discernable trend of total lightning activity has been observed consistently for all storms. This highlights the need for more research to find a robust method of knowing when a storm will cease producing lightning. Previous lightning cessation work has primarily focused on forecasting the cessation of cloud-to -ground lightning only. A more recent, statistical study involved total lightning (both cloud-to-ground and intracloud). Each of these previous works has helped the 45WS take steps forward in creating improved and ultimately safer lightning cessation forecasts. Each study has either relied on radar data or recommended increased use of radar data to improve cessation forecasts. The reasoning is that radar data is able to either directly or by proxy infer more about dynamical environment leading to cloud electrification and eventually lightning cessation. The authors of this project are focusing on a two ]step approach to better incorporate radar data and total lightning to improve cessation forecasts. This project will utilize the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm originally developed during the Airborne Field Mill II (ABFM II) research project. During the project, the VAHIRR product showed a trend of increasing

  16. An Early Warning System for Oil Security in China

    Directory of Open Access Journals (Sweden)

    Qingsong Wang

    2018-01-01

    Full Text Available The oil system security in a country or region will affect its sustainable development ability. China’s oil security has risen to the national strategic level. It is urgent to construct an early warning indicator system to reflect the oil security level accurately, as well as to diagnose and assess the oil system status effectively and put forward the corresponding proposals for ensuring oil security. An early warning indicator system of China’s oil system covering 23 sub-indicators from three aspects, i.e., resource security, market security and consumption security, was constructed using the SPSS (Statistical Product and Service Solutions factor analysis method. It shows that China’s oil system safety level has been seriously threatened and is generally declining. However, due to the strong introduction of energy policies and increasing energy utilization technology in recent years, the increasing proportion of new energy, renewable energy and oil substitutes eases the energy security threats. In response to complex oil security issues, the Chinese government needs to strengthen macroeconomic regulation and control at the policy level continuously, increase efforts to explore resource reserves, upgrade energy conservation and emission reduction technologies, develop new alternatives for oil products, and reduce the dependence on international oil imports.

  17. Nearshore regional behavior of lightning interaction with wind turbines

    Directory of Open Access Journals (Sweden)

    Gilbert A. Malinga

    2016-01-01

    Full Text Available The severity of lightning strikes on offshore wind turbines built along coastal and nearshore regions can pose safety concerns that are often overlooked. In this research study the behavior of electrical discharges for wind turbines that might be located in the nearshore regions along the East Coast of China and Sea of Japan were characterized using a physics-based model that accounted for a total of eleven different geometrical and lightning parameters. Utilizing the electrical potential field predicted using this model it was then possible to estimate the frequency of lightning strikes and the distribution of electrical loads utilizing established semi-empirical relationships and available data. The total number of annual lightning strikes on an offshore wind turbine was found to vary with hub elevation, extent of cloud cover, season and geographical location. The annual lightning strike rate on a wind turbine along the nearshore region on the Sea of Japan during the winter season was shown to be moderately larger compared to the lightning strike frequency on a turbine structure on the East Coast of China. Short duration electrical discharges, represented using marginal probability functions, were found to vary with season and geographical location, exhibiting trends consistent with the distribution of the electrical peak current. It was demonstrated that electrical discharges of moderately long duration typically occur in the winter months on the East Coast of China and the summer season along the Sea of Japan. In contrast, severe electrical discharges are typical of summer thunderstorms on the East Coast of China and winter frontal storm systems along the West Coast of Japan. The electrical charge and specific energy dissipated during lightning discharges on an offshore wind turbine was found to vary stochastically, with severe electrical discharges corresponding to large electrical currents of long duration.

  18. On the Initiation of Lightning in Thunderclouds

    International Nuclear Information System (INIS)

    Chilingarian, A.; Chilingaryan, S.; Karapetyan, T.; Kozliner, L.; Khanikyants, Y.; Hovsepyan, G.; Pokhsraryan, D.; Soghomonyan, S.

    2017-01-01

    The relationship of lightning and elementary particle fluxes in the thunderclouds is not fully understood to date. Using the particle beams (the so-called Thunderstorm Ground Enhancements - TGE) as a probe we investigate the characteristics of the interrelated atmospheric processes. The well-known effect of the TGE dynamics is the abrupt termination of the particle flux by the lightning flash. With new precise electronics, we can see that particle flux decline occurred simultaneously with the rearranging of the charge centers in the cloud. The analysis of the TGE energy spectra before and after the lightning demonstrates that intense high-energy part of the TGE energy spectra disappeared just after lightning. The decline of particle flux coincides on millisecond time scale with first atmospheric discharges and we can conclude that Relativistic Runaway Electron Avalanches (RREA) in the thundercloud assist initiation of the negative cloud to ground lightning. Thus, RREA can provide enough ionization to play a significant role in the unleashing of the lightning flash. (author)

  19. Nature and Intensity of the 22-23 April 2015 Eruptions of Volcán Calbuco, Chile, from Satellite, Lightning, and Field Observations

    Science.gov (United States)

    Van Eaton, A. R.; Amigo, A.; Bertin, D.; Mastin, L. G.; Giacosa, R.; Behnke, S. A.

    2015-12-01

    On 22 April 2015, Calbuco Volcano in southern Chile erupted for the first time in 43 years. The two primary phases of eruption, separated by a few hours, produced pyroclastic density currents, lahars, and spectacular vertical eruption columns that rose into the stratosphere. Clear weather conditions allowed the populated areas of Puerto Montt and Puerto Varas full view of the lightning-rich eruption, which was rapidly shared through social media. A wealth of remote-sensing data was also publically available in near real-time. We used this information to assess the eruption behavior by combining satellite-based umbrella growth rates, and the location and frequency of volcanic lightning. Umbrella expansion rates from GOES-13 satellite retrievals correspond to eruption rates of about 4x106 kg s-1 for the first eruptive phase and 6x106 kg s-1 for the second phase, following the approach of Pouget et al. (2013, JVGR, 258, 100-112). The location and timing of lightning flashes were obtained from the World Wide Lightning Location Network (WWLLN) Global Volcanic Lightning Monitor, which is updated approximately every minute (Ewert et al., 2010, Fall AGU Abstract AE31A-04). Interestingly, the onset of detected flashes was delayed by ~30 min after the start of each eruptive phase. Lighting provided a useful proxy for the waxing or waning intensity of the eruption, and helped identify the end of significant ash emissions. Using the 1-D volcanic plume model Plumeria, we have also simulated the vertical distribution of ash and ice in the plumes to examine potential causes of the extraordinary amount of volcanic lightning (1,094 flashes detected). Our analysis provides information on eruption timing, duration, and mass flow rate, which are necessary for ash dispersal modeling within hours of eruption. Results are also consistent with the field-based measurements of total erupted volume. We suggest that the combination of satellite-detected umbrella expansion rates with lightning

  20. Global Drought Services: Collaborations Toward an Information System for Early Warning

    Science.gov (United States)

    Hayes, M. J.; Pulwarty, R. S.; Svoboda, M.

    2014-12-01

    Drought is a hazard that lends itself well to diligent, sustained monitoring and early warning. However, unlike most hazards, the fact that droughts typically evolve slowly, can last for months or years and cover vast areas spanning multiple political boundaries/jurisdictions and economic sectors can make it a daunting task to monitor, develop plans for, and identify appropriate, proactive mitigation strategies. The National Drought Mitigation Center (NDMC) and National Integrated Drought Information System (NIDIS) have been working together to reduce societal vulnerability to drought by helping decision makers at all levels to: 1) implement drought early warning/forecasting and decision support systems; 2) support and advocate for better collection of, and understanding of drought impacts; and 3) increase long-term resilience to drought through proactive planning. The NDMC and NIDIS risk management approach has been the basis from which many partners around the world are developing a collaboration and coordination nexus with an ultimate goal of building comprehensive global drought early warning information systems (GDEWIS). The core emphasis of this model is on developing and applying useful and usable information that can be integrated and transferred freely to other regions around the globe. The High-Level Ministerial Declaration on Drought, the Integrated Drought Management Programme (IDMP) co-led by the WMO and the Global Water Partnership (GWP), and the Global Framework for Climate Services are drawing extensively from the integrated NDMC-NIDIS risk management framework. This presentation will describe, in detail, the various drought resources, tools, services, and collaborations already being provided and undertaken at the national and regional scales by the NDMC, NIDIS, and their partners. The presentation will be forward-looking, identifying improvements in existing and proposed mechanisms to help strengthen national and international drought early

  1. Automated Identification of Initial Storm Electrification and End-of-Storm Electrification Using Electric Field Mill Sensors

    Science.gov (United States)

    Maier, Launa M.; Huddleston, Lisa L.

    2017-01-01

    Kennedy Space Center (KSC) operations are located in a region which experiences one of the highest lightning densities across the United States. As a result, on average, KSC loses almost 30 minutes of operational availability each day for lightning sensitive activities. KSC is investigating using existing instrumentation and automated algorithms to improve the timeliness and accuracy of lightning warnings. Additionally, the automation routines will be warning on a grid to minimize under-warnings associated with not being located in the center of the warning area and over-warnings associated with encompassing too large an area. This study discusses utilization of electric field mill data to provide improved warning times. Specifically, this paper will demonstrate improved performance of an enveloping algorithm of the electric field mill data as compared with the electric field zero crossing to identify initial storm electrification. End-of-Storm-Oscillation (EOSO) identification algorithms will also be analyzed to identify performance improvement, if any, when compared with 30 minutes after the last lightning flash.

  2. A simulation method for lightning surge response of switching power

    International Nuclear Information System (INIS)

    Wei, Ming; Chen, Xiang

    2013-01-01

    In order to meet the need of protection design for lighting surge, a prediction method of lightning electromagnetic pulse (LEMP) response which is based on system identification is presented. Experiments of switching power's surge injection were conducted, and the input and output data were sampled, de-noised and de-trended. In addition, the model of energy coupling transfer function was obtained by system identification method. Simulation results show that the system identification method can predict the surge response of linear circuit well. The method proposed in the paper provided a convenient and effective technology for simulation of lightning effect.

  3. Relating lightning data to fire occurrence data

    Science.gov (United States)

    Frank H. Koch

    2009-01-01

    Lightning disturbance can affect forest health at various scales. Lightning strikes may kill or weaken individual trees. Lightning-damaged trees may in turn function as epicenters of pest outbreaks in forest stands, as is the case with the southern pine beetle and other bark beetles (Rykiel and others 1988).

  4. Lightning and Life on Exoplanets

    Science.gov (United States)

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane

    2016-07-01

    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude

  5. Tsunami early warning and decision support

    Directory of Open Access Journals (Sweden)

    T. Steinmetz

    2010-09-01

    Full Text Available An innovative newly developed modular and standards based Decision Support System (DSS is presented which forms part of the German Indonesian Tsunami Early Warning System (GITEWS. The GITEWS project stems from the effort to implement an effective and efficient Tsunami Early Warning and Mitigation System for the coast of Indonesia facing the Sunda Arc along the islands of Sumatra, Java and Bali. The geological setting along an active continental margin which is very close to densely populated areas is a particularly difficult one to cope with, because potential tsunamis' travel times are thus inherently short. National policies require an initial warning to be issued within the first five minutes after an earthquake has occurred. There is an urgent requirement for an end-to-end solution where the decision support takes the entire warning chain into account. The system of choice is based on pre-computed scenario simulations and rule-based decision support which is delivered to the decision maker through a sophisticated graphical user interface (GUI using information fusion and fast information aggregation to create situational awareness in the shortest time possible. The system also contains risk and vulnerability information which was designed with the far end of the warning chain in mind – it enables the decision maker to base his acceptance (or refusal of the supported decision also on regionally differentiated risk and vulnerability information (see Strunz et al., 2010. While the system strives to provide a warning as quickly as possible, it is not in its proper responsibility to send and disseminate the warning to the recipients. The DSS only broadcasts its messages to a dissemination system (and possibly any other dissemination system which is operated under the responsibility of BMKG – the meteorological, climatological and geophysical service of Indonesia – which also hosts the tsunami early warning center. The system is to be seen

  6. Experimental research on ball lightning

    International Nuclear Information System (INIS)

    Ofuruton, H.; Ohtsuki, Y.H.

    1990-01-01

    Experiments on producing ball lightning were made with discharge in flammable gas and/or aerosol. A long lifetime (2 s) ball lightning was observed in 2.7 % ethane and 100 cm 3 cotton fibers, and in 1.5 % methane and 1.9 % ethane

  7. Lightning

    Science.gov (United States)

    Pampe, William R.

    1970-01-01

    Presents basic physical theory for movement of electric charges in clouds, earth, and air during production of lightning and thunder. Amount of electrical energy produced and heating effects during typical thunderstorms is described. Generalized safety practices are given. (JM)

  8. Lightning discrimination by a ground-based nuclear burst detection system

    International Nuclear Information System (INIS)

    Thornbrough, A.D.

    1978-04-01

    Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis

  9. Lightning discrimination by a ground-based nuclear burst detection system

    Energy Technology Data Exchange (ETDEWEB)

    Thornbrough, A.D.

    1978-04-01

    Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis.

  10. Technique for the comparison of light spectra from natural and laboratory generated lightning current arcs

    International Nuclear Information System (INIS)

    Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.

    2016-01-01

    A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.

  11. An electrophysiological study of the impact of a Forward Collision Warning System in a simulator driving task.

    Science.gov (United States)

    Bueno, Mercedes; Fabrigoule, Colette; Deleurence, Philippe; Ndiaye, Daniel; Fort, Alexandra

    2012-08-27

    Driver distraction has been identified as the most important contributing factor in rear-end collisions. In this context, Forward Collision Warning Systems (FCWS) have been developed specifically to warn drivers of potential rear-end collisions. The main objective of this work is to evaluate the impact of a surrogate FCWS and of its reliability according to the driver's attentional state by recording both behavioral and electrophysiological data. Participants drove following a lead motorcycle in a simplified simulator with or without a warning system which gave forewarning of the preceding vehicle braking. Participants had to perform this driving task either alone (simple task) or simultaneously with a secondary cognitive task (dual task). Behavioral and electrophysiological data contributed to revealing a positive effect of the warning system. Participants were faster in detecting the brake light when the system was perfect or imperfect, and the time and attentional resources allocation required for processing the target at higher cognitive level were reduced when the system was completely reliable. When both tasks were performed simultaneously, warning effectiveness was considerably affected at both performance and neural levels; however, the analysis of the brain activity revealed fewer differences between distracted and undistracted drivers when using the warning system. These results show that electrophysiological data could be a valuable tool to complement behavioral data and to have a better understanding of how these systems impact the driver. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Landslide early warning system prototype with GIS analysis indicates by soil movement and rainfall

    Science.gov (United States)

    Artha, Y.; Julian, E. S.

    2018-01-01

    The aim of this paper is developing and testing of landslide early warning system. The early warning system uses accelerometersas ground movement and tilt-sensing device and a water flow sensor. A microcentroller is used to process the input signal and activate the alarm. An LCD is used to display the acceleration in x,y and z axis. When the soil moved or shifted and rainfall reached 100 mm/day, the alarm rang and signal were sentto the monitoring center via a telemetry system.Data logging information and GIS spatial data can be monitored remotely as tables and graphics as well as in the form of geographical map with the help of web-GIS interface. The system were tested at Kampung Gerendong, Desa Putat Nutug, Kecamatan Ciseeng, Kabupaten Bogor. This area has 3.15 cumulative score, which mean vulnerable to landslide. The results show that the early warning system worked as planned.

  13. Tropical Cyclone Lightning Distribution and Its Relationship to Convection and Intensity Change

    Science.gov (United States)

    Rodgers, Edward; Wienman, James; Pierce, Harold; Olson, William

    2000-01-01

    The long distance National Lightning Detection Network (NLDN) was used to monitor the distribution of lightning strokes in various 1998 and 1999 western North Atlantic tropical cyclones. These ground-based lightning observations together with the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and the Tropical Rain Mapping Mission (TRMM) Microwave Instrument (TMI) derived convective rain rates were used to monitor the propagation of electrically charged convective rain bands aid to qualitatively estimate intensification. An example of the lightning analyses was performed on hurricane George between 25-28 September, 1998 when the system left Key West and moved towards the Louisiana coast. During this period of time, George's maximum winds increased from 38 to 45 meters per second on 25 September and then remained steady state until it made landfall. Time-radius displays of the lightning strokes indicated that the greatest number of lightning strokes occurred within the outer core region (greater than 165 km) with little or no lightning strokes at radii less than 165 km. The trend in these lightning strokes decreased as George move into the Gulf of Mexico and showed no inward propagation. The lack inward propagating lightning strokes with time indicated that there was no evidence that an eye wall replacement was occurring that could alter George's intensity. Since George was steady state at this time, this result is not surprising. Time-azimuth displays of lightning strokes in an annulus whose outer and inner radii were respectively, 222 and 333 km from George's center were also constructed. A result from this analysis indicated that the maximum number of strokes occurred in the forward and rear right quadrant when George was over the Gulf of Mexico. This result is, consistent with the aircraft and satellite observations of maximum rainfall.

  14. Building regional early flood warning systems by AI techniques

    Science.gov (United States)

    Chang, F. J.; Chang, L. C.; Amin, M. Z. B. M.

    2017-12-01

    Building early flood warning system is essential for the protection of the residents against flood hazards and make actions to mitigate the losses. This study implements AI technology for forecasting multi-step-ahead regional flood inundation maps during storm events. The methodology includes three major schemes: (1) configuring the self-organizing map (SOM) to categorize a large number of regional inundation maps into a meaningful topology; (2) building dynamic neural networks to forecast multi-step-ahead average inundated depths (AID); and (3) adjusting the weights of the selected neuron in the constructed SOM based on the forecasted AID to obtain real-time regional inundation maps. The proposed models are trained, and tested based on a large number of inundation data sets collected in regions with the most frequent and serious flooding in the river basin. The results appear that the SOM topological relationships between individual neurons and their neighbouring neurons are visible and clearly distinguishable, and the hybrid model can continuously provide multistep-ahead visible regional inundation maps with high resolution during storm events, which have relatively small RMSE values and high R2 as compared with numerical simulation data sets. The computing time is only few seconds, and thereby leads to real-time regional flood inundation forecasting and make early flood inundation warning system. We demonstrate that the proposed hybrid ANN-based model has a robust and reliable predictive ability and can be used for early warning to mitigate flood disasters.

  15. Debris flow early warning systems in Norway: organization and tools

    Science.gov (United States)

    Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.

    2012-04-01

    In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance

  16. Web-based Tsunami Early Warning System with instant Tsunami Propagation Calculations in the GPU Cloud

    Science.gov (United States)

    Hammitzsch, M.; Spazier, J.; Reißland, S.

    2014-12-01

    Usually, tsunami early warning and mitigation systems (TWS or TEWS) are based on several software components deployed in a client-server based infrastructure. The vast majority of systems importantly include desktop-based clients with a graphical user interface (GUI) for the operators in early warning centers. However, in times of cloud computing and ubiquitous computing the use of concepts and paradigms, introduced by continuously evolving approaches in information and communications technology (ICT), have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in three research projects - 'German Indonesian Tsunami Early Warning System' (GITEWS), 'Distant Early Warning System' (DEWS), and 'Collaborative, Complex, and Critical Decision-Support in Evolving Crises' (TRIDEC) - new technologies are exploited to implement a cloud-based and web-based prototype to open up new prospects for EWS. This prototype, named 'TRIDEC Cloud', merges several complementary external and in-house cloud-based services into one platform for automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The prototype in its current version addresses tsunami early warning and mitigation. The integration of GPU accelerated tsunami simulation computations have been an integral part of this prototype to foster early warning with on-demand tsunami predictions based on actual source parameters. However, the platform is meant for researchers around the world to make use of the cloud-based GPU computation to analyze other types of geohazards and natural hazards and react upon the computed situation picture with a web-based GUI in a web browser at remote sites. The current website is an early alpha version for demonstration purposes to give the

  17. Development of Early Warning Methods for Electric Power Systems

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur

    This thesis concerns the development of methods that can provide, in realtime, an early warning for an emerging blackout in electric power systems. The blackout in E-Denmark and S-Sweden on September 23, 2003 is the main motivation for the method development. The blackout was caused by occurrence...

  18. Near Real Time Flood Warning System for National Capital Territory of Delhi

    Science.gov (United States)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.

    2017-12-01

    Extreme floods are common phenomena during Indian Monsoons. The National Capital Territory area of India, Delhi, frequently experiences fluvial as well as pluvial inundation due to its proximity to river Yamuna and poor functioning of its stormwater drainage system. The urban floods result in severe waterlogging and heavy traffic snarls, bringing life in this megapolis to a halt. The city has witnessed six major floods since 1900 and thus its residents are well conscious of potential flood risks but the city still lacks a flood warning system. The flood related risks can be considerably reduced, if not eliminated, by issuing timely warnings and implementing adaptive measures. Therefore, the present study attempts to develop a web based platform that integrates Web-GIS technology and mathematical simulation modelling to provide an effective and reliable early flood warning service for Delhi. The study makes use of India Metorological Department's Doppler radar-derived near real time rainfall estimates of 15 minutes time step. The developed SWMM model has been validated using information from gauges, monitoring sensors and crowd sourcing techniques and utilises capabilities of cloud computing on server side for fast processing. This study also recommends safe evacuation policy and remedial measures for flooding hotspots as part of flood risk management plan. With heightened risk of floods in fast urbanizing areas, this work becomes highly pertinent as flood warning system with adequate lead time can not only save precious lives but can also substantially reduce flood damages.

  19. 18th international conference on lightning protection ICLP '85. Conference proceedings. 18. internationale Blitzschutzkonferenz ICLP '85. Conference Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The proceedings contain all conference papers on the following main topics: 1) Research on thunderstorm and lightning (12 papers); 2) striking mechanism (6 papers); 3) lightning down conductors and grounding (10 papers); 4) electromagnetic lightning impulse (LEMP) and induction effects (9 papers); 5) protection of electronic systems and devices (16 papers); 6) life hazard due to lightning (9 papers).

  20. Development of Lightning Observation Network in the Western Pacific Region for the Intensity Prediction of Severe Weather

    Science.gov (United States)

    Sato, M.; Takahashi, Y.; Yamashita, K.; Kubota, H.; Hamada, J. I.; Momota, E.; Marciano, J. J.

    2017-12-01

    Lightning activity represents the thunderstorm activity, that is, the precipitation and/or updraft intensity and area. Thunderstorm activity is also an important parameter in terms of the energy inputs from the ocean to the atmosphere inside tropical cyclone, which is one of severe weather events. Recent studies suggest that it is possible to predict the maximum wind velocity and minimum pressure near the center of the tropical cyclone by one or two days before if we monitor the lightning activities in the tropical cyclone. Many countries in the western Pacific region suffer from the attack of tropical cyclone (typhoon) and have a strong demand to predict the intensity development of typhoons. Thus, we started developing a new lightning observation system and installing the observation system at Guam, Palau, and Manila in the Philippines from this summer. The lightning observation system consists of a VLF sensor detecting lightning-excited electromagnetic waves in the frequency range of 1-5 kHz, an automatic data-processing unit, solar panels, and batteries. Lightning-excited pulse signals detected by the VLF sensor are automatically analyzed by the data-processing unit, and only the extracted information of the trigger time and pulse amplitude is transmitted to a data server via the 3G data communications. In addition, we are now developing an upgraded lightning and weather observation system, which will be installed at 50 automated weather stations in Metro Manila and 10 radar sites in the Philippines under the 5-year project (SATREPS) scheme. At the presentation, we will show the initial results derived from the lightning observation system in detail and will show the detailed future plan of the SATREPS project.

  1. A simple lightning assimilation technique for improving ...

    Science.gov (United States)

    Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly averaged bias of 6 h accumulated rainfall is reduced from 0.54 to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF applications. The

  2. Assessing Lightning and Wildfire Hazard by Land Properties and Cloud to Ground Lightning Data with Association Rule Mining in Alberta, Canada.

    Science.gov (United States)

    Cha, DongHwan; Wang, Xin; Kim, Jeong Woo

    2017-10-23

    Hotspot analysis was implemented to find regions in the province of Alberta (Canada) with high frequency Cloud to Ground (CG) lightning strikes clustered together. Generally, hotspot regions are located in the central, central east, and south central regions of the study region. About 94% of annual lightning occurred during warm months (June to August) and the daily lightning frequency was influenced by the diurnal heating cycle. The association rule mining technique was used to investigate frequent CG lightning patterns, which were verified by similarity measurement to check the patterns' consistency. The similarity coefficient values indicated that there were high correlations throughout the entire study period. Most wildfires (about 93%) in Alberta occurred in forests, wetland forests, and wetland shrub areas. It was also found that lightning and wildfires occur in two distinct areas: frequent wildfire regions with a high frequency of lightning, and frequent wild-fire regions with a low frequency of lightning. Further, the preference index (PI) revealed locations where the wildfires occurred more frequently than in other class regions. The wildfire hazard area was estimated with the CG lightning hazard map and specific land use types.

  3. Utility of temporary aftershock warning system in the immediate aftermath of large damaging earthquakes

    International Nuclear Information System (INIS)

    Harben, P.E.; Jarpe, S.P.; Hunter, S.; Johnston, C.A.

    1993-01-01

    An aftershock warning system (AWS) is a real-time warning system that is deployed immediately after a large damaging earthquake in the epicentral region of the main shock. The primary purpose of such a system is to warn rescue teams and workers within damaged structures of imminent destructive shaking. The authors have examined the utility of such a system (1) by evaluating historical data, and (2) by developing and testing a prototype system during the 1992 Landers, California, aftershock sequence. Analyzing historical data is important in determining when and where damaging aftershocks are likely to occur and the probable usefulness of an AWS in a particular region. As part of this study, they analyzed the spatial and temporal distribution of large (magnitude >5.0) aftershocks from earthquakes with magnitudes >6.0 that took place between 1942 and 1991 in California and Nevada. They found that one-quarter of these large aftershocks occurred from 2 days-2 months after the main event, nearly one-half occurred within the first two days of the main event, and greater than one-half occurred within 20 km of the main shock's epicenter. They also reviewed a case study of the 1985 Mexico City earthquake, which showed that an AWS could have given Mexico City a warning of ∼60 sec before the magnitude 7.6 aftershock that occurred 36 hr. after the main event. They deployed a four-station prototype AWS near Landers after a magnitude 7.4 earthquake occurred on June 28, 1992. The aftershock data, collected from July 3-10, showed that the aftershocks in the vicinity of the four stations varied in magnitude from 3.0-4.4. Using a two-station detection criterion to minimize false alarms, this AWS reliably discriminated between smaller and larger aftershocks within 3 sec of the origin time of the events. This prototype could have provided 6 sec of warning to Palm Springs and 20 sec of warning to San Bernardino of aftershocks occurring in the main-shock epicentral region

  4. Operation of a real-time warning system for debris flows in the San Francisco bay area, California

    Science.gov (United States)

    Wilson, Raymond C.; Mark, Robert K.; Barbato, Gary; ,

    1993-01-01

    The United States Geological Survey (USGS) and the National Weather Service (NWS) have developed an operational warning system for debris flows during severe rainstorms in the San Francisco Bay region. The NWS makes quantitative forecasts of precipitation from storm systems approaching the Bay area and coordinates a regional network of radio-telemetered rain gages. The USGS has formulated thresholds for the intensity and duration of rainfall required to initiate debris flows. The first successful public warnings were issued during a severe storm sequence in February 1986. Continued operation of the warning system since 1986 has provided valuable working experience in rainfall forecasting and monitoring, refined rainfall thresholds, and streamlined procedures for issuing public warnings. Advisory statements issued since 1986 are summarized.

  5. Prevalent lightning sferics at 600 megahertz near Jupiter's poles

    Science.gov (United States)

    Brown, Shannon; Janssen, Michael; Adumitroaie, Virgil; Atreya, Sushil; Bolton, Scott; Gulkis, Samuel; Ingersoll, Andrew; Levin, Steven; Li, Cheng; Li, Liming; Lunine, Jonathan; Misra, Sidharth; Orton, Glenn; Steffes, Paul; Tabataba-Vakili, Fachreddin; Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William; Hospodarsky, George; Gurnett, Donald; Connerney, John

    2018-06-01

    Lightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures1-6. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning7-9. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies10,11, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range12. Strong ionospheric attenuation or a lightning discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy13,14. Here we report observations of Jovian lightning sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer15 onboard the Juno spacecraft. These detections imply that Jovian lightning discharges are not distinct from terrestrial lightning, as previously thought. In the first eight orbits of Juno, we detected 377 lightning sferics from pole to pole. We found lightning to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of lightning is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet16,17, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles9,16,18. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.

  6. Recent Advancements in Lightning Jump Algorithm Work

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  7. Infrasound from lightning measured in Ivory Coast from 2004 to 2014

    Science.gov (United States)

    Farges, Thomas; Le Pichon, Alexis; Ceranna, Lars; Diawara, Adama

    2016-04-01

    It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. 80 % of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes …). Some of the IMS stations are located where lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. Assink et al. (2008) and Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within 300 km. One-to-one correlation is possible when the thunderstorm is within about 75 km from the station. When the lightning flash occurs within 20 km, it is also possible to rebuild the 3D geometry of the discharges when the network size is less than 100 m (Arechiga et al., 2011; Gallin, 2014). An IMS infrasound station has been installed in Ivory Coast since 2002. The lightning rate of this region is 10-20 flashes/km²/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 10 years of data (2005-2014). Correlation between infrasound having a mean frequency higher than 1 Hz and lightning flashes detected by the World Wide Lightning Location Network (WWLLN) is systematically looked for. One-to-one correlation is obtained for flashes occurring within about 100 km. An exponential decrease of the

  8. Rationales for the Lightning Launch Commit Criteria

    Science.gov (United States)

    Willett, John C. (Editor); Merceret, Francis J. (Editor); Krider, E. Philip; O'Brien, T. Paul; Dye, James E.; Walterscheid, Richard L.; Stolzenburg, Maribeth; Cummins, Kenneth; Christian, Hugh J.; Madura, John T.

    2016-01-01

    Since natural and triggered lightning are demonstrated hazards to launch vehicles, payloads, and spacecraft, NASA and the Department of Defense (DoD) follow the Lightning Launch Commit Criteria (LLCC) for launches from Federal Ranges. The LLCC were developed to prevent future instances of a rocket intercepting natural lightning or triggering a lightning flash during launch from a Federal Range. NASA and DoD utilize the Lightning Advisory Panel (LAP) to establish and develop robust rationale from which the criteria originate. The rationale document also contains appendices that provide additional scientific background, including detailed descriptions of the theory and observations behind the rationales. The LLCC in whole or part are used across the globe due to the rigor of the documented criteria and associated rationale. The Federal Aviation Administration (FAA) adopted the LLCC in 2006 for commercial space transportation and the criteria were codified in the FAA's Code of Federal Regulations (CFR) for Safety of an Expendable Launch Vehicle (Appendix G to 14 CFR Part 417, (G417)) and renamed Lightning Flight Commit Criteria in G417.

  9. Statistical Evolution of the Lightning Flash

    Science.gov (United States)

    Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.

    2012-12-01

    Natural lightning is one of the most fascinating and powerful electrical processes on Earth. To date, the physics behind this natural phenomenon are not fully understood, due primarily to the difficulty of obtaining measurements inside thunderstorms and to the wide range of timescales involved (from nanoseconds to seconds). Our aim is to use accurate lightning geo-location data from the National Lightning Detection Network (NLDN) to study statistical patterns in lightning, taking advantage of the fact that millions of lightning flashes occur around the globe every day. We present two sets of results, one involving the patterns of flashes in a storm, and a second involving the patterns of strokes in a flash. These patterns can provide a surrogate measure of the timescales and the spatial extents of the underlying physical processes. First, we study the timescales of charge buildup inside thunderstorms. We find that, following a lightning flash, the probability of another neighboring flash decreases and takes tens of seconds to recover. We find that this suppression effect is a function of flash type, stroke peak current, cloud-to-ground (CG) stroke multiplicity, and other lightning and geographical parameters. We find that the probabilities of subsequent flashes are more suppressed following oceanic lightning, or following flashes with higher peak currents and/or higher multiplicities (for CG flashes). Second, we use NLDN data to study the evolution of the strokes within a CG flash. A CG flash typically includes multiple return strokes, which can occur in the same channel or in multiple channels within a few kilometers. We cluster NLDN stroke data into flashes and produce the probability density function of subsequent strokes as a function of distance and time-delays relative to the previous stroke. Using this technique, we investigate processes which occur during the CG lightning flash with nanosecond to millisecond timescales. For instance, our results suggest

  10. Big data managing in a landslide early warning system: experience from a ground-based interferometric radar application

    Directory of Open Access Journals (Sweden)

    E. Intrieri

    2017-10-01

    Full Text Available A big challenge in terms or landslide risk mitigation is represented by increasing the resiliency of society exposed to the risk. Among the possible strategies with which to reach this goal, there is the implementation of early warning systems. This paper describes a procedure to improve early warning activities in areas affected by high landslide risk, such as those classified as critical infrastructures for their central role in society. This research is part of the project LEWIS (Landslides Early Warning Integrated System: An Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines. LEWIS is composed of a susceptibility assessment methodology providing information for single points and areal monitoring systems, a data transmission network and a data collecting and processing center (DCPC, where readings from all monitoring systems and mathematical models converge and which sets the basis for warning and intervention activities. The aim of this paper is to show how logistic issues linked to advanced monitoring techniques, such as big data transfer and storing, can be dealt with compatibly with an early warning system. Therefore, we focus on the interaction between an areal monitoring tool (a ground-based interferometric radar and the DCPC. By converting complex data into ASCII strings and through appropriate data cropping and average, and by implementing an algorithm for line-of-sight correction, we managed to reduce the data daily output without compromising the capability for performing.

  11. Big data managing in a landslide early warning system: experience from a ground-based interferometric radar application

    Science.gov (United States)

    Intrieri, Emanuele; Bardi, Federica; Fanti, Riccardo; Gigli, Giovanni; Fidolini, Francesco; Casagli, Nicola; Costanzo, Sandra; Raffo, Antonio; Di Massa, Giuseppe; Capparelli, Giovanna; Versace, Pasquale

    2017-10-01

    A big challenge in terms or landslide risk mitigation is represented by increasing the resiliency of society exposed to the risk. Among the possible strategies with which to reach this goal, there is the implementation of early warning systems. This paper describes a procedure to improve early warning activities in areas affected by high landslide risk, such as those classified as critical infrastructures for their central role in society. This research is part of the project LEWIS (Landslides Early Warning Integrated System): An Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines. LEWIS is composed of a susceptibility assessment methodology providing information for single points and areal monitoring systems, a data transmission network and a data collecting and processing center (DCPC), where readings from all monitoring systems and mathematical models converge and which sets the basis for warning and intervention activities. The aim of this paper is to show how logistic issues linked to advanced monitoring techniques, such as big data transfer and storing, can be dealt with compatibly with an early warning system. Therefore, we focus on the interaction between an areal monitoring tool (a ground-based interferometric radar) and the DCPC. By converting complex data into ASCII strings and through appropriate data cropping and average, and by implementing an algorithm for line-of-sight correction, we managed to reduce the data daily output without compromising the capability for performing.

  12. Forest fires caused by lightning activity in Portugal

    Science.gov (United States)

    Russo, Ana; Ramos, Alexandre M.; Benali, Akli; Trigo, Ricardo M.

    2017-04-01

    Wildfires in southern Europe have been causing in the last decades extensive economic and ecological losses and, even human casualties (e.g. Pereira et al., 2011). According to statistics provided by the EC-JRC European Forest Fires Information System (EFFIS) for Europe, the years of 2003 and 2007 represent the most dramatic fire seasons since the beginning of the millennium, followed by the years 2005 and 2012. These extreme years registered total annual burned areas for Europe of over 600.000 ha, reaching 800.000 ha in 2003. Over Iberia and France, the exceptional fire seasons registered in 2003 and 2005 were coincident respectively with one of the most severe heatwaves (Bastos et al., 2014) and droughts of the 20th century (Gouveia et al., 2009). On the other hand, the year 2007 was very peculiar as the area of the Peloponnese was struck by a severe winter drought followed by a subsequent wet spring, being also stricken by three heat heaves during summer and played a major role increasing the susceptibility of the region to wildfires (Gouveia et al., 2016). Some countries have a relatively large fraction of fires caused by natural factors such as lightning, e.g. northwestern USA, Canada, Russia. In contrast, Mediterranean countries such as Portugal has only a small percentage of fire records caused by lightning. Although significant uncertainties remain for the triggering mechanism for the majority of fires registered in the catalog, since they were cataloged without a likely cause. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2002-2009, with the original data provided by the National forestry Authority; 2) lightning discharges location which were extracted from the Portuguese Lightning Location System that has been in service since June of 2002 and is operated by the national weather service - Portuguese Institute for Sea

  13. Lightning activity on Jupiter

    Science.gov (United States)

    Borucki, W. J.; Bar-Nun, A.; Scarf, F. L.; Look, A. F.; Hunt, G. E.

    1982-01-01

    Photographic observations of the nightside of Jupiter by the Voyager 1 spacecraft show the presence of extensive lightning activity. Detection of whistlers by the plasma wave analyzer confirms the optical observations and implies that many flashes were not recorded by the Voyager camera because the intensity of the flashes was below the threshold sensitivity of the camera. Measurements of the optical energy radiated per flash indicate that the observed flashes had energies similar to that for terrestrial superbolts. The best estimate of the lightning energy dissipation rate of 0.0004 W/sq m was derived from a consideration of the optical and radiofrequency measurements. The ratio of the energy dissipated by lightning compared to the convective energy flux is estimated to be between 0.000027 and 0.00005. The terrestrial value is 0.0001.

  14. NOx from lightning: 1. Global distribution based on lightning physics

    Science.gov (United States)

    Price, Colin; Penner, Joyce; Prather, Michael

    1997-03-01

    This paper begins a study on the role of lightning in maintaining the global distribution of nitrogen oxides (NOx) in the troposphere. It presents the first global and seasonal distributions of lightning-produced NOx (LNOx) based on the observed distribution of electrical storms and the physical properties of lightning strokes. We derive a global rate for cloud-to-ground (CG) flashes of 20-30 flashes/s with a mean energy per flash of 6.7×109 J. Intracloud (IC) flashes are more frequent, 50-70 flashes/s but have 10% of the energy of CG strokes and, consequently, produce significantly less NOx. It appears to us that the majority of previous studies have mistakenly assumed that all lightning flashes produce the same amount of NOx, thus overestimating the NOx production by a factor of 3. On the other hand, we feel these same studies have underestimated the energy released in CG flashes, resulting in two negating assumptions. For CG energies we adopt a production rate of 10×1016 molecules NO/J based on the current literature. Using a method to simulate global lightning frequencies from satellite-observed cloud data, we have calculated the LNOx on various spatial (regional, zonal, meridional, and global) and temporal scales (daily, monthly, seasonal, and interannual). Regionally, the production of LNOx is concentrated over tropical continental regions, predominantly in the summer hemisphere. The annual mean production rate is calculated to be 12.2 Tg N/yr, and we believe it extremely unlikely that this number is less than 5 or more than 20 Tg N/yr. Although most of LNOx, is produced in the lowest 5 km by CG lightning, convective mixing in the thunderstorms is likely to deposit large amounts of NOx, in the upper troposphere where it is important in ozone production. On an annual basis, 64% of the LNOx, is produced in the northern hemisphere, implying that the northern hemisphere should have natural ozone levels as much as 2 times greater than the southern hemisphere

  15. Silent Warning: Understanding the National Terrorism Advisory System

    Science.gov (United States)

    2014-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited SILENT WARNING...PERFORMING OR GANIZATION NA:i\\ti E (S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 9. SP ONSORING /MONIT ORING AGENCY NAME(S) AND...Homeland Sectu’ity Advisory System, Boston Marathon bombing, Christmas Day bomber, tmderwear bomber, hum cane , cotmteiteiTO!’ism, CT AB

  16. Estimates of lightning NOx production from GOME satellite observations

    Directory of Open Access Journals (Sweden)

    K. F. Boersma

    2005-01-01

    Full Text Available Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2. A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parameterizations, one relating convective preciptation (CP scheme to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parameterizations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parameterizations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal

  17. Emergency Communications: The Emergency Alert System (EAS) and All-Hazard Warnings

    National Research Council Canada - National Science Library

    Moore, Linda K; Reese, Shawn

    2005-01-01

    ... tested. Much has been accomplished in recent years but the current hodgepodge of warning and alert systems is inadequate for fully alerting the public about terrorist attacks or natural disasters...

  18. A first look at lightning energy determined from GLM

    Science.gov (United States)

    Bitzer, P. M.; Burchfield, J. C.; Brunner, K. N.

    2017-12-01

    The Geostationary Lightning Mapper (GLM) was launched in November 2016 onboard GOES-16 has been undergoing post launch and product post launch testing. While these have typically focused on lightning metrics such as detection efficiency, false alarm rate, and location accuracy, there are other attributes of the lightning discharge that are provided by GLM data. Namely, the optical energy radiated by lightning may provide information useful for lightning physics and the relationship of lightning energy to severe weather development. This work presents initial estimates of the lightning optical energy detected by GLM during this initial testing, with a focus on observations during field campaign during spring 2017 in Huntsville. This region is advantageous for the comparison due to the proliferation of ground-based lightning instrumentation, including a lightning mapping array, interferometer, HAMMA (an array of electric field change meters), high speed video cameras, and several long range VLF networks. In addition, the field campaign included airborne observations of the optical emission and electric field changes. The initial estimates will be compared with previous observations using TRMM-LIS. In addition, a comparison between the operational and scientific GLM data sets will also be discussed.

  19. Setting up a French national flash flood warning system for ungauged catchments based on the AIGA method

    Directory of Open Access Journals (Sweden)

    Javelle Pierre

    2016-01-01

    Full Text Available Occurring at small temporal and spatial scales, flash floods (FF can cause severe economic damages and human losses. To better anticipate such events and mitigate their impacts, the French Ministry in charge of Ecology has decided to set up a national FF warning system over the French territory. This automated system will be run by the SCHAPI, the French national service in charge of flood forecasting, providing warnings for fast-responding ungauged catchments (area ranging from ~10 to ~1000 km2. It will therefore be complementary to the SCHAPI’s national “vigilance” system which concerns only gauged catchments. The FF warning system to be implemented in 2017 will be based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014. This method has been experimented in real time in the south of France in the RHYTMME project (http://rhytmme.irstea.fr. It consists in comparing discharges generated by a simple conceptual hourly hydrologic model run at a 1-km2 resolution to reference flood quantiles of different (e.g., 2-, 10- and 50-year return periods. Therefore the system characterizes in real time the severity of ongoing events by the range of the return period estimated by AIGA at any point along the river network. The hydrologic model ingests operational rainfall radar-gauge products from Météo-France and takes into account the baseflow and the initial soil humidity conditions to better estimate the basin response to rainfall inputs. To meet the requirements of the future FF warning system, the AIGA method has been extended to the whole French territory (except Corsica and overseas French territories. The calibration, regionalization and validation procedures of the hydrologic model were carried out using data for ~700 hydrometric stations from the 2002-2015 period. Performance of the warning system was evaluated with various contingency criteria (e.g., probability of detection and success rate. Furthermore, specific

  20. A WebGIS-Based Information System for Monitoring and Warning of Geological Disasters for Lanzhou City, China

    Directory of Open Access Journals (Sweden)

    Fang Miao

    2013-01-01

    Full Text Available Monitoring and warning of geological disasters accurately and in a timely fashion would dramatically mitigate casualties and economic losses. This paper takes Lanzhou city as an example and designs a Web-based system, namely the information system for geological disaster monitoring and warning (ISGDMW. Presented are its framework, key developing technologies, database, and working flow. The information system adopts a Browser/Server (B/S structure and has three-tier architecture, combining in-situ monitoring instruments, the wireless sensor network, WebGIS techniques and the grey system theory. The framework of the ISGDMW can be divided into three categories: (1 in-situ monitoring system, it aims to monitor geological disaster sites and get state information of geological disaster sites; (2 database, manage in-situ monitoring data, antecedent field investigating data and basic data; (3 analyzing and warning system, analyze in-situ monitoring data, understand the deformation trend of the potential geological disaster, and release disaster warning information to the public. The ISGDMW allow the processes of geological disaster monitoring, in-situ monitoring data analysis, geological disaster warning to be implemented in an efficient and quick way, and can provide scientific suggestions to commanders for quick response to the possibility of geological disaster.

  1. Improvements of existing early warning system in Croatia

    International Nuclear Information System (INIS)

    Tomisa, T.

    2000-01-01

    The gamma radiation early warning system in Croatia was established in 1993. The first configuration contained 3 measuring stations connected to the monitoring center and up today the system is expanded with 5 additional locations. Each location is equipped with the MFM202 gamma-monitor and additional equipment that is not unique for all locations. This difference in remote equipment configuration caused by different communication medium used, is the reason to improve existing system trough equipment unification introducing PLC unit in the standard configuration. Such configuration enables additional functions such as automatic alerting and collecting meteorological data. (author)

  2. Flood early warning system in I.R. of Iran

    International Nuclear Information System (INIS)

    Samadi, Slina; Jamali, Javad B.; Javanmard, Soheila

    2004-01-01

    At the close of the twentieth century, natural hazards and disasters are one of the most common forms of disasters around the world. Natural disasters cause in significant loss of life and serious economic, environmental and social impacts that greatly retard the development process. Careful hazard assessment and planning, and a range of social, economic and political measures, can significantly contain these threats. Risk is defined as the potential for loss or damage as the result of a particular action or decision and Risk Management is a process consisting of well-defined steps which, when taken in sequence, support better decision making by contributing to a greater insight into risks and their impacts. Most commonly, there are three components in a natural disaster plan: monitoring and early warning; risk assessment; and mitigation and response. Given the improved tools and technologies available today, it is possible to provide disaster information and minimize the potential damage of disasters. In the following parts of the report, the national early warning systems for flood would be discussed, as one of the important component of natural disaster risk management. In 1. R. of Iran, also, different types of natural disasters occur, such as drought, flood, earthquake, sea-level rise, dust storm, hail, freezing and etc, but Flood hazard and disaster is one of the most frequent and damaging types of natural disasters. They have been the most common type of geophysical disaster in the latter half of the twentieth century in Iran, generating an estimated more than 20 percent of all disasters from 1950 to 2003. One of the hazardous floods of Iran occurred in Golestan and north of Khorasan provinces, located in north-east of the country, on August 2001 and 2002. In this regard, according to the responsibility of I. R. of Iran Meteorological Organization (IRIMO) on the flood forecasting, the early warning issue of the mentioned flood, issued within 48 hour's in

  3. Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System

    Science.gov (United States)

    Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.

    2014-12-01

    The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.

  4. Lightning and surge protection of large ground facilities

    Science.gov (United States)

    Stringfellow, Michael F.

    1988-04-01

    The vulnerability of large ground facilities to direct lightning strikes and to lightning-induced overvoltages on the power distribution, telephone and data communication lines are discussed. Advanced electrogeometric modeling is used for the calculation of direct strikes to overhead power lines, buildings, vehicles and objects within the facility. Possible modes of damage, injury and loss are discussed. Some appropriate protection methods for overhead power lines, structures, vehicles and aircraft are suggested. Methods to mitigate the effects of transients on overhead and underground power systems as well as within buildings and other structures are recommended. The specification and location of low-voltage surge suppressors for the protection of vulnerable hardware such as computers, telecommunication equipment and radar installations are considered. The advantages and disadvantages of commonly used grounding techniques, such as single point, multiple and isolated grounds are compared. An example is given of the expected distribution of lightning flashes to a large airport, its buildings, structures and facilities, as well as to vehicles on the ground.

  5. Drunk driving warning system (DDWS). Volume 2, Field test evaluation

    Science.gov (United States)

    1983-12-01

    The Drunk Driving Warning System (DDWS) is a vehicle-mounted device for testing driver impairment and activating alarms. The driver must pass a steering competency test (the Critical Tracking Task or CTT) in order to drive the car in a normal manner....

  6. Strategic framework for socioeconomic viability of community-based early warning system

    NARCIS (Netherlands)

    Homberg, M.J.C. van den; Posthumus, A.L.

    2014-01-01

    Christian Aid, Cordaid, PVGS and Practical Action established a community-based early warning system for cross-border floods between India and Nepal in 45 Indian villages. The project will scale to 95 villages early 2016. The number of stakeholders and organizational levels of this system with four

  7. Transient Simulation of Wind Turbine Towers under Lightning Stroke

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available A simulation algorithm is proposed in this paper for lightning transient analysis of the wind turbine (WT towers. In the proposed algorithm, the tower body is first subdivided into a discrete multiconductor system. A set of formulas are given to calculate the electrical parameters of the branches in the multiconductor system. By means of the electrical parameters, each branch unit in the multiconductor system is replaced as a coupled π-type circuit and the multiconductor system is converted into a circuit model. Then, the lightning transient responses can be obtained in different parts on the tower body by solving the circuit equations of the equivalent discretization network. The laboratory measurement is also made by a reduced-scale tower for checking the validity of the proposed algorithm.

  8. Collision warning system based on probability density functions

    NARCIS (Netherlands)

    Broek, T.H.A. van den; Ploeg, J.

    2010-01-01

    In this paper, a collision warning method between the host vehicle and target object(s) is studied. A probabilistic collision warning method is proposed, which is, in particular, useful for objects, e.g. vulnerable road users, which trajectories can rapidly change heading and/or velocity with

  9. The Effect of Sonic Booms on Earthquake Warning Systems

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.

    2011-01-01

    Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.

  10. High-Resolution WRF Forecasts of Lightning Threat

    Science.gov (United States)

    Goodman, S. J.; McCaul, E. W., Jr.; LaCasse, K.

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM)lightning and precipitation observations have confirmed the existence of a robust relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of the Weather Research and Forecast (WRF) model, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Initial experiments using 6-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. The WRF has been initialized on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data. An array of subjective and objective statistical metrics is employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  11. [Evaluation and analysis of monitoring and early warning functions of the occupational disease reporting system in China].

    Science.gov (United States)

    Zhu, Xiaojun; Li, Tao; Liu, Mengxuan

    2015-06-01

    To evaluate the monitoring and early warning functions of the occupational disease reporting system right now in China, and to analyze their influencing factors. An improved audit tool (ODIT) was used to score the monitoring and early warning functions with a total score of 10. The nine indices were completeness of information on the reporting form, coverage of the reporting system, accessibility of criteria or guidelines for diagnosis, education and training for physicians, completeness of the reporting system, statistical methods, investigation of special cases, release of monitoring information, and release of early warning information. According to the evaluation, the occupational disease reporting system in China had a score of 5.5 in monitoring existing occupational diseases with a low score for release of monitoring information; the reporting system had a score of 6.5 in early warning of newly occurring occupational diseases with low scores for education and training for physicians as well as completeness of the reporting system. The occupational disease reporting system in China still does not have full function in monitoring and early warning. It is the education and participation of physicians from general hospitals in the diagnosis and treatment of occupational diseases and suspected occupational diseases that need to be enhanced. In addition, the problem of monitoring the incidence of occupational diseases needs to be solved as soon as possible.

  12. Comparison of Expected Crash and Injury Reduction from Production Forward Collision and Lane Departure Warning Systems.

    Science.gov (United States)

    Kusano, Kristofer D; Gabler, Hampton C

    2015-01-01

    The U.S. New Car Assessment Program (NCAP) now tests for forward collision warning (FCW) and lane departure warning (LDW). The design of these warnings differs greatly between vehicles and can result in different real-world field performance in preventing or mitigating the effects of collisions. The objective of this study was to compare the expected number of crashes and injured drivers that could be prevented if all vehicles in the fleet were equipped with the FCW and LDW systems tested under the U.S. NCAP. To predict the potential crashes and serious injury that could be prevented, our approach was to computationally model the U.S. crash population. The models simulated all rear-end and single-vehicle road departure collisions that occurred in a nationally representative crash database (NASS-CDS). A sample of 478 single-vehicle crashes from NASS-CDS 2012 was the basis for 24,822 simulations for LDW. A sample of 1,042 rear-end collisions from NASS-CDS years 1997-2013 was the basis for 7,616 simulations for FCW. For each crash, 2 simulations were performed: (1) without the system present and (2) with the system present. Models of each production safety system were based on 54 model year 2010-2014 vehicles that were evaluated under the NCAP confirmation procedure for LDW and/or FCW. NCAP performed 40 LDW and 45 FCW tests of these vehicles. The design of the FCW systems had a dramatic impact on their potential to prevent crashes and injuries. Between 0 and 67% of crashes and 2 and 69% of moderately to fatally injured drivers in rear-end impacts could have been prevented if all vehicles were equipped with the FCW systems. Earlier warning times resulted in increased benefits. The largest effect on benefits, however, was the lower operating speed threshold of the systems. Systems that only operated at speeds above 20 mph were less than half as effective as those that operated above 5 mph with similar warning times. The production LDW systems could have prevented

  13. An In Depth Look at Lightning Trends in Hurricane Harvey using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Ringhausen, J.

    2017-12-01

    This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.

  14. The Evaluation Method of the Lightning Strike on Transmission Lines Aiming at Power Grid Reliability

    Science.gov (United States)

    Wen, Jianfeng; Wu, Jianwei; Huang, Liandong; Geng, Yinan; Yu, zhanqing

    2018-01-01

    Lightning protection of power system focuses on reducing the flashover rate, only distinguishing by the voltage level, without considering the functional differences between the transmission lines, and being lack of analysis the effect on the reliability of power grid. This will lead lightning protection design of general transmission lines is surplus but insufficient for key lines. In order to solve this problem, the analysis method of lightning striking on transmission lines for power grid reliability is given. Full wave process theory is used to analyze the lightning back striking; the leader propagation model is used to describe the process of shielding failure of transmission lines. The index of power grid reliability is introduced and the effect of transmission line fault on the reliability of power system is discussed in detail.

  15. Lightning Strike in Pregnancy With Fetal Injury.

    Science.gov (United States)

    Galster, Kellen; Hodnick, Ryan; Berkeley, Ross P

    2016-06-01

    Injuries from lightning strikes are an infrequent occurrence, and are only rarely noted to involve pregnant victims. Only 13 cases of lightning strike in pregnancy have been previously described in the medical literature, along with 7 additional cases discovered within news media reports. This case report presents a novel case of lightning-associated injury in a patient in the third trimester of pregnancy, resulting in fetal ischemic brain injury and long-term morbidity, and reviews the mechanics of lightning strikes along with common injury patterns of which emergency providers should be aware. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  16. Extensive air showers, lightnings and thunderstorm ground enhancements

    International Nuclear Information System (INIS)

    Chilingarian, A.; Hovsepyan, G.; Kozliner, L.

    2016-01-01

    For the lightning research, we monitor the particle fluxes from thunderclouds, the so called Thunderstorm Ground Enhancements (TGEs) initiated by the runaway electrons, and Extensive Air Showers (EASs) originated from high energy protons or fully stripped nuclei that enter the Earth’s atmosphere. Besides, we monitor the near-surface electric field and the atmospheric discharges with the help of a network of electric field mills. The Aragats “electron accelerator” produced plenty of TGE and lightning events in spring 2015. Using 1-sec time series, we investigated the relation of lightnings and particle fluxes. Lightning flashes often terminated the particle flux; during some of TGEs the lightning would terminate the particle flux 3 times after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of TGE or on the decay phase of it; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just on a maximum of its development. We discuss the possibility that a huge EAS facilitates lightning leader to find its path to the ground. (author)

  17. Experimental and analytical investigation on metal damage suffered from simulated lightning currents

    Science.gov (United States)

    Yakun, LIU; Zhengcai, FU; Quanzhen, LIU; Baoquan, LIU; Anirban, GUHA

    2017-12-01

    The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 kA, 8 kA, 400 A, and 100 kA, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235B, the first return stroke component results in the largest damage area with damage depth 0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.

  18. Assessing the accuracy of forecasting: applying standard diagnostic assessment tools to a health technology early warning system.

    Science.gov (United States)

    Simpson, Sue; Hyde, Chris; Cook, Alison; Packer, Claire; Stevens, Andrew

    2004-01-01

    Early warning systems are an integral part of many health technology assessment programs. Despite this finding, to date, there have been no quantitative evaluations of the accuracy of predictions made by these systems. We report a study evaluating the accuracy of predictions made by the main United Kingdom early warning system. As prediction of impact is analogous to diagnosis, a method normally applied to determine the accuracy of diagnostic tests was used. The sensitivity, specificity, and predictive values of the National Horizon Scanning Centre's prediction methods were estimated with reference to an (imperfect) gold standard, that is, expert opinion of impact 3 to 5 years after prediction. The sensitivity of predictions was 71 percent (95 percent confidence interval [CI], 0.36-0.92), and the specificity was 73 percent (95 percent CI, 0.64-0.8). The negative predictive value was 98 percent (95 percent CI, 0.92-0.99), and the positive predictive value was 14 percent (95 percent CI, 0.06-0.3). Forecasting is difficult, but the results suggest that this early warning system's predictions have an acceptable level of accuracy. However, there are caveats. The first is that early warning systems may themselves reduce the impact of a technology, as helping to control adoption and diffusion is their main purpose. The second is that the use of an imperfect gold standard may bias the results. As early warning systems are viewed as an increasingly important component of health technology assessment and decision making, their outcomes must be evaluated. The method used here should be investigated further and the accuracy of other early warning systems explored.

  19. Early Warning System for reducing disaster risk: the technological platform DEWETRA for the Republic of Serbia

    Science.gov (United States)

    Massabo, Marco; Molini, Luca; Kostic, Bojan; Campanella, Paolo; Stevanovic, Slavimir

    2015-04-01

    Disaster risk reduction has long been recognized for its role in mitigating the negative environmental, social and economic impacts of natural hazards. Flood Early Warning System is a disaster risk reduction measure based on the capacities of institutions to observe and predict extreme hydro-meteorological events and to disseminate timely and meaningful warning information; it is furthermore based on the capacities of individuals, communities and organizations to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss. An operational definition of an Early Warning System has been suggested by ISDR - UN Office for DRR [15 January 2009]: "EWS is the set of capacities needed to generate and disseminate timely and meaningful warning information to enable individuals, communities and organizations threatened by a hazard to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss.". ISDR continues by commenting that a people-centered early warning system necessarily comprises four key elements: 1-knowledge of the risks; 2-monitoring, analysis and forecasting of the hazards; 3-communication or dissemination of alerts and warnings; and 4- local capabilities to respond to the warnings received." The technological platform DEWETRA supports the strengthening of the first three key elements of EWS suggested by ISDR definition, hence to improve the capacities to build real-time risk scenarios and to inform and warn the population in advance The technological platform DEWETRA has been implemented for the Republic of Serbia. DEWETRA is a real time-integrate system that supports decision makers for risk forecasting and monitoring and for distributing warnings to end-user and to the general public. The system is based on the rapid availability of different data that helps to establish up-to-date and reliable risk scenarios. The integration of all relevant data for risk management significantly

  20. Management of radioactive disused lightning rods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de Oliveira; Silva, Fabio, E-mail: pos@cdtn.br, E-mail: silvaf@cdtn.br [Centro de Desenvolvimento da Energia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The manufacture of radioactive lightning rod was allowed from 1970 to 1989. This authorization was based on state-of-the art science of that time that verified that radioactive lightning rods had efficiency superior to the conventional lightning rods, denominated Franklin. However, the experience showed that their efficiency was not superior enough to justify the use of radioactive sources. Consequently, in 1989, the National Commission or Nuclear Energy - CNEN, issued the Resolution 04/89 from 04-19-1989, that forbidden the importation of {sup 241}Am tapes, assembling and commercialization of radioactive lightning-rods. The institutes of CNEN are responsible for receiving these lightning-rods and sending to the users procedures for removing and dispatch to the institutes. Therewith, these devices are kept away from the human being and environment. The Nuclear technology Development Center - CDTN and Institute for Energy and Nuclear Research - IPEN of CNEN, has built laboratories appropriate for dismantling such devices and store the {sup 241}Am tapes safely. Nowadays are being researched methodologies to evaluate the contamination levels of the frame for possible recycling and become better the management of these devices. (author)

  1. Climate Change and Tropical Total Lightning

    Science.gov (United States)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  2. Management of radioactive disused lightning rods

    International Nuclear Information System (INIS)

    Santos, Paulo de Oliveira; Silva, Fabio

    2013-01-01

    The manufacture of radioactive lightning rod was allowed from 1970 to 1989. This authorization was based on state-of-the art science of that time that verified that radioactive lightning rods had efficiency superior to the conventional lightning rods, denominated Franklin. However, the experience showed that their efficiency was not superior enough to justify the use of radioactive sources. Consequently, in 1989, the National Commission or Nuclear Energy - CNEN, issued the Resolution 04/89 from 04-19-1989, that forbidden the importation of 241 Am tapes, assembling and commercialization of radioactive lightning-rods. The institutes of CNEN are responsible for receiving these lightning-rods and sending to the users procedures for removing and dispatch to the institutes. Therewith, these devices are kept away from the human being and environment. The Nuclear technology Development Center - CDTN and Institute for Energy and Nuclear Research - IPEN of CNEN, has built laboratories appropriate for dismantling such devices and store the 241 Am tapes safely. Nowadays are being researched methodologies to evaluate the contamination levels of the frame for possible recycling and become better the management of these devices. (author)

  3. 77 FR 5616 - Proposed Technical Standard Order (TSO)-C151c, Terrain Awareness and Warning System (TAWS)

    Science.gov (United States)

    2012-02-03

    ... (TSO)-C151c, Terrain Awareness and Warning System (TAWS) ACTION: Notice of availability and request for... second draft of Technical Standard Order (TSO)- C151c, Terrain Awareness and Warning System. Comments.... b. Addition of Localizer Performance with Vertical guidance (LPV) and Global Navigation Satellite...

  4. Lightning protection for the process canyons at the Savannah River site

    International Nuclear Information System (INIS)

    McAfee, D.E.

    1995-01-01

    Westinghouse Savannah River Company (WSRC) has performed Lightning Studies for the existing Process Canyons at the Savannah River Site (SRS). These studies were initiated to verify the lightning protection systems for the facilities and to compare the installations to the National Fire Protection (NFPA) Standard 780, Lighting Protection Code, 1992. The original study of the F-Canyon was initiated to develop answers to concerns raised by the Defense Nuclear Facility Safety Board (DNFSB). Once this study was completed it was determined that a similar study for H-Canyon would be prudent; followed by an evaluation of the Defense Waste Processing Facility (DWPF) Vitrification Building (S-Canyon). This paper will provide an overview of the nature of lightning and the principals of lightning protection. This will provide the reader with a basic understanding of the phenomena of lighting and its potential for damaging structures, components, and injuring personnel in or near the structure

  5. Lightning-caused fires in Central Spain

    DEFF Research Database (Denmark)

    Nieto Solana, Hector; Aguado, Inmaculada; García, Mariano

    2012-01-01

    Lightning-caused fire occurrence has been modelled for two different Spanish regions, Madrid andAragon, based on meteorological, terrain, and vegetation variables. The model was built on two very contrasting regions, one presenting low number of lightning-caused fires whereas the other presented...... in the model, where an increasing number of thunderstorms leads to a higher probability of occurrence. Validation was assessed through the Receiver Operator Characteristic, showing a good agreement between the modelled probabilities and the reported lightning-caused fires, with an Area Under the Curve around 0...

  6. An improved method for predicting the lightning performance of high and extra-high-voltage substation shielding

    Science.gov (United States)

    Vinh, T.

    1980-08-01

    There is a need for better and more effective lightning protection for transmission and switching substations. In the past, a number of empirical methods were utilized to design systems to protect substations and transmission lines from direct lightning strokes. The need exists for convenient analytical lightning models adequate for engineering usage. In this study, analytical lightning models were developed along with a method for improved analysis of the physical properties of lightning through their use. This method of analysis is based upon the most recent statistical field data. The result is an improved method for predicting the occurrence of sheilding failure and for designing more effective protection for high and extra high voltage substations from direct strokes.

  7. "Thunderstruck": penetrating thoracic injury from lightning strike.

    Science.gov (United States)

    van Waes, Oscar J F; van de Woestijne, Pieter C; Halm, Jens A

    2014-04-01

    Lightning strike victims are rarely presented at an emergency department. Burns are often the primary focus. This case report describes the improvised explosive device like-injury to the thorax due to lightning strike and its treatment, which has not been described prior in (kerauno)medicine. Penetrating injury due to blast from lightning strike is extremely rare. These "shrapnel" injuries should however be ruled out in all patients struck by lightning. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  8. Surveillance and early warning systems of infectious disease in China: From 2012 to 2014.

    Science.gov (United States)

    Zhang, Honglong; Wang, Liping; Lai, Shengjie; Li, Zhongjie; Sun, Qiao; Zhang, Peng

    2017-07-01

    Appropriate surveillance and early warning of infectious diseases have very useful roles in disease control and prevention. In 2004, China established the National Notifiable Infectious Disease Surveillance System and the Public Health Emergency Event Surveillance System to report disease surveillance and events on the basis of data sources from the National Notifiable Infectious Disease Surveillance System, China Infectious Disease Automated-alert and Response System in this country. This study provided a descriptive summary and a data analysis, from 2012 to 2014, of these 3 key surveillance and early warning systems of infectious disease in China with the intent to provide suggestions for system improvement and perfection. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Control of Radioactive Lightning-Conductor

    International Nuclear Information System (INIS)

    Esposito, E.

    2004-01-01

    The radioactive lightning-conductor production in Brazil was started in 1970 and after a period of 19 years of commercialization of these devices, the National Nuclear Energy Commission (CNEN), based in studies done in Brazil and abroad, proved that the radioactive lightning-conductor performance wasn't superior to the conventional one, so the use of radioactive source is not justified. Thence, the authorization for its production was suspended and the installation of this type of lightning-conductor was forbidden. The radioactive material that results from the dismount of these devices must be immediately sent to CNEN, for treatment and temporary storage. After this prohibition and its publication in several specialized magazines, CNEN was searched for several institutions, factories, churches, etc, interested in obtaining information about the handling and shipment procedures of radioactive lightning-conductors that are inoperative and that must be sent to CNEN's Institutes, in a correct and secure form. From this moment CNEN technicians realize that the owners of radioactive lightning-conductors didn't have any knowledge and training in radiation protection, neither in equipment to monitoring the radiation. The radioactive material from these sources is, in almost all cases, the radioisotope 241Am which has a maximum activity of an order of 5 mCi (1,85 x 10-2 TBq); as the radiation emitted by 241Am is of alpha type, whose range in the air, is just few centimeters and the gamma rays are of low energy, an irradiation offer small risk. However, there is a contamination risk on someone hands, by the contact with the source. Aiming to attend, in an objective way, the users' interests in obtaining some pertinent technical information about the shipping of radioactive lightning-conductor that is inoperative or is being replaced and also to optimize its receipt in CNEN's Institutes, because there still has a great number of these lightning-conductors installed and still

  10. Katrina and Rita were lit up with lightning

    Science.gov (United States)

    Shao, X.-M.; Harlin, J.; Stock, M.; Stanley, M.; Regan, A.; Wiens, K.; Hamlin, T.; Pongratz, M.; Suszcynsky, D.; Light, T.

    Hurricanes generally produce very little lightning activity compared to other noncyclonic storms, and lightning is especially sparse in the eye wall and inner regions within tens of kilometers surrounding the eye [Molinari et al., 1994, 1999]. (The eye wall is the wall of clouds that encircles the eye of the hurricane.) Lightning can sometimes be detected in the outer, spiral rainbands, but the lightning occurrence rate varies significantly from hurricane to hurricane as well as within an individual hurricane's lifetime.Hurricanes Katrina and Rita hit the U.S. Gulf coasts of Louisiana, Mississippi, and Texas, and their distinctions were not just limited to their tremendous intensity and damage caused. They also differed from typical hurricanes in their lightning production rate.

  11. A lightning multiple casualty incident in Sequoia and Kings Canyon National Parks.

    Science.gov (United States)

    Spano, Susanne J; Campagne, Danielle; Stroh, Geoff; Shalit, Marc

    2015-03-01

    Multiple casualty incidents (MCIs) are uncommon in remote wilderness settings. This is a case report of a lightning strike on a Boy Scout troop hiking through Sequoia and Kings Canyon National Parks (SEKI), in which the lightning storm hindered rescue efforts. The purpose of this study was to review the response to a lightning-caused MCI in a wilderness setting, address lightning injury as it relates to field management, and discuss evacuation options in inclement weather incidents occurring in remote locations. An analysis of SEKI search and rescue data and a review of current literature were performed. A lightning strike at 10,600 feet elevation in the Sierra Nevada Mountains affected a party of 5 adults and 7 Boy Scouts (age range 12 to 17 years old). Resources mobilized for the rescue included 5 helicopters, 2 ambulances, 2 hospitals, and 15 field and 14 logistical support personnel. The incident was managed from strike to scene clearance in 4 hours and 20 minutes. There were 2 fatalities, 1 on scene and 1 in the hospital. Storm conditions complicated on-scene communication and evacuation efforts. Exposure to ongoing lightning and a remote wilderness location affected both victims and rescuers in a lightning MCI. Helicopters, the main vehicles of wilderness rescue in SEKI, can be limited by weather, daylight, and terrain. Redundancies in communication systems are vital for episodes of radio failure. Reverse triage should be implemented in lightning injury MCIs. Education of both wilderness travelers and rescuers regarding these issues should be pursued. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  12. Analysis of Lightning-induced Impulse Magnetic Fields in the Building with an Insulated Down Conductor

    Science.gov (United States)

    Du, Patrick Y.; Zhou, Qi-Bin

    This paper presents an analysis of lightning-induced magnetic fields in a building. The building of concern is protected by the lightning protection system with an insulated down conductor. In this paper a system model for metallic structure of the building is constructed first using the circuit approach. The circuit model of the insulated down conductor is discussed extensively, and explicit expressions of the circuit parameters are presented. The system model was verified experimentally in the laboratory. The modeling approach is applied to analyze the impulse magnetic fields in a full-scale building during a direct lightning strike. It is found that the impulse magnetic field is significantly high near the down conductor. The field is attenuated if the down conductor is moved to a column in the building. The field can be reduced further if the down conductor is housed in an earthed metal pipe. Recommendations for protecting critical equipment against lightning-induced magnetic fields are also provided in the paper.

  13. Environmental Warning System Based on the DPSIR Model: A Practical and Concise Method for Environmental Assessment

    Directory of Open Access Journals (Sweden)

    Wenqi Wang

    2018-05-01

    Full Text Available Though we are in urgent need of environmental warnings to slow environmental deterioration, currently, there is no internationally concise method for environmental warnings. In addition, the existing approaches do not combine the three aspects of ecology, resources, and environment. At the same time, the three elements of the environment (air, water, and soil are separated in most environmental warning systems. Thus, the method this paper gives is an innovative attempt and aims to make environmental assessment more practical. This paper establishes the index system of an environmental early warning based on the Driving–Pressure–State–Influence–Response (DPSIR model. The Analytic Hierarchy Process (AHP method was used to determine the weights. Next, single and integrated index methods further assess the environmental warning state, in which the weighted summation method is used to summarize the data and results. The case of Tianjin is used to confirm the applicability of this method. In conclusion, the method in this paper is more well-behaved and, therefore, more suitable to assist cities in their environmental assessment.

  14. In-flight measurements of energetic radiation from lightning and thunderclouds

    International Nuclear Information System (INIS)

    Kochkin, Pavlo; Van Deursen, Alexander P J; De Boer, Alte; Bardet, Michiel; Boissin, Jean-François

    2015-01-01

    In the certification procedure for new aircraft, manufacturers carry out so-called icing test flights, where the altitude at which the temperature reaches zero degrees Celsius is deliberately sought and crossed in or under thunderstorms. Airbus also used these flights to test ILDAS, a system aimed at determining the severity and attachment points of lightning during flight from high-speed data on the electric and magnetic fields at the aircraft’s surface. We used this unique opportunity to enhance the ILDAS systems with two x-ray detectors coupled to high-speed data recorders in an attempt to determine the x-rays produced by lightning in situ, with synchronous determination of the lightning current distribution and electric field at the aircraft. Such data are of interest in a study of lightning physics. In addition, the data may provide clues to the x-ray dose for personnel and equipment during flights. The icing campaign ran in April 2014; in six flights we collected data from 61 lightning strikes on an Airbus test aircraft. In this communication we briefly describe ILDAS and present selected results on three strikes, two aircraft-initiated and one intercepted. Most of the x-rays have been observed synchronously with initiating negative leader steps, and as bursts immediately preceding the current of the recoil process. Those processes include the return stroke. The bursts last one to four microseconds and attain x-ray energies up to 10 MeV. The intensity and spectral distribution of the x-rays and their association with the current distribution are discussed. ILDAS also continuously records x-rays at low resolution in time and amplitude. (paper)

  15. Enhancing Famine Early Warning Systems with Improved Forecasts, Satellite Observations and Hydrologic Simulations

    Science.gov (United States)

    Funk, C. C.; Verdin, J.; Thiaw, W. M.; Hoell, A.; Korecha, D.; McNally, A.; Shukla, S.; Arsenault, K. R.; Magadzire, T.; Novella, N.; Peters-Lidard, C. D.; Robjohn, M.; Pomposi, C.; Galu, G.; Rowland, J.; Budde, M. E.; Landsfeld, M. F.; Harrison, L.; Davenport, F.; Husak, G. J.; Endalkachew, E.

    2017-12-01

    Drought early warning science, in support of famine prevention, is a rapidly advancing field that is helping to save lives and livelihoods. In 2015-2017, a series of extreme droughts afflicted Ethiopia, Southern Africa, Eastern Africa in OND and Eastern Africa in MAM, pushing more than 50 million people into severe food insecurity. Improved drought forecasts and monitoring tools, however, helped motivate and target large and effective humanitarian responses. Here we describe new science being developed by a long-established early warning system - the USAID Famine Early Warning Systems Network (FEWS NET). FEWS NET is a leading provider of early warning and analysis on food insecurity. FEWS NET research is advancing rapidly on several fronts, providing better climate forecasts and more effective drought monitoring tools that are being used to support enhanced famine early warning. We explore the philosophy and science underlying these successes, suggesting that a modal view of climate change can support enhanced seasonal prediction. Under this modal perspective, warming of the tropical oceans may interact with natural modes of variability, like the El Niño-Southern Oscillation, to enhance Indo-Pacific sea surface temperature gradients during both El Niño and La Niña-like climate states. Using empirical data and climate change simulations, we suggest that a sequence of droughts may commence in northern Ethiopia and Southern Africa with the advent of a moderate-to-strong El Niño, and then continue with La Niña/West Pacific related droughts in equatorial eastern East Africa. Scientifically, we show that a new hybrid statistical-dynamic precipitation forecast system, the FEWS NET Integrated Forecast System (FIFS), based on reformulations of the Global Ensemble Forecast System weather forecasts and National Multi-Model Ensemble (NMME) seasonal climate predictions, can effectively anticipate recent East and Southern African drought events. Using cross-validation, we

  16. Injuries, Sequelae, and Treatment of Lightning-Induced Injuries: 10 Years of Experience at a Swiss Trauma Center

    Directory of Open Access Journals (Sweden)

    Carmen A. Pfortmueller

    2012-01-01

    Full Text Available Principals. Lightning is one of the most powerful and spectacular natural phenomena. Lightning strikes to humans are uncommon but can cause devastating injuries. We analyzed lightning-related admissions to our emergency department from January 2000 to December 2010 to review and highlight the main features of lightning-related injuries. Methods. All data were collected prospectively and entered in the emergency department’ database (Qualicare Switzerland and retrospectively analyzed. Results. Nine patients with lightning-related injuries presented to our emergency department. Four were female, and five were male. The most common site of injury was the nervous system (6 out of 9 patients followed by the cardiovascular system (5 out of 9 patients. The third most common injuries occurred to the skin (3 out of 9 patients. Four of the patients had to be hospitalized for further observation. Conclusion. Reports of lightning strikes and related injuries are scarce. The establishment of an international register would therefore benefit the understanding of their injury patterns and facilitate specific treatment.

  17. 14 CFR 121.360 - Ground proximity warning-glide slope deviation alerting system.

    Science.gov (United States)

    2010-01-01

    ... deviation alerting system. 121.360 Section 121.360 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Equipment Requirements § 121.360 Ground proximity warning-glide slope deviation alerting system. (a) No... system that meets the performance and environmental standards of TSO-C92 (available from the FAA, 800...

  18. Harmful effects of lightning surge discharge on communications terminal equipments

    International Nuclear Information System (INIS)

    Liang, Sisi; Xu, Xiaoying; Tao, Zhigang; Dai, Yanling

    2013-01-01

    The interference problem of lightning surges on electronic and telecommunication products were examined, and a series of experiments were conducted to analyze the failure situations to find out the mechanisms of failures caused by the lightning surge. In addition, the ways in which lightning surges damaged equipment were deduced. It was found that failure positions were scattered and appeared in groups, and most of them were ground discharge. Internet access transformer had high withstand-voltage under the lightning pulse, and the lightning surge seldom passed through the internet access transformer. The lightning current can release to the ground via the computer network adapter of the terminal user. The study will help to improve the performance of lightning surge protection circuit and protection level.

  19. A tsunami early warning system for the coastal area modeling

    Science.gov (United States)

    Soebroto, Arief Andy; Sunaryo, Suhartanto, Ery

    2015-04-01

    The tsunami disaster is a potential disaster in the territory of Indonesia. Indonesia is an archipelago country and close to the ocean deep. The tsunami occurred in Aceh province in 2004. Early prevention efforts have been carried out. One of them is making "tsunami buoy" which has been developed by BPPT. The tool puts sensors on the ocean floor near the coast to detect earthquakes on the ocean floor. Detection results are transmitted via satellite by a transmitter placed floating on the sea surface. The tool will cost billions of dollars for each system. Another constraint was the transmitter theft "tsunami buoy" in the absence of guard. In this study of the system has a transmission system using radio frequency and focused on coastal areas where costs are cheaper, so that it can be applied at many beaches in Indonesia are potentially affected by the tsunami. The monitoring system sends the detection results to the warning system using a radio frequency with a capability within 3 Km. Test results on the sub module sensor monitoring system generates an error of 0.63% was taken 10% showed a good quality sensing. The test results of data transmission from the transceiver of monitoring system to the receiver of warning system produces 100% successful delivery and reception of data. The test results on the whole system to function 100% properly.

  20. Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites

    Science.gov (United States)

    Kawakami, Hirohide

    Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch

  1. Spatial variability of correlated color temperature of lightning channels

    Directory of Open Access Journals (Sweden)

    Nobuaki Shimoji

    Full Text Available In this paper, we present the spatial variability of the correlated color temperature of lightning channel shown in a digital still image. In order to analyze the correlated color temperature, we calculated chromaticity coordinates of the lightning channels in the digital still image. From results, the spatial variation of the correlated color temperature of the lightning channel was confirmed. Moreover, the results suggest that the correlated color temperature and peak current of the lightning channels are related to each other. Keywords: Lightning, Color analysis, Correlated color temperature, Chromaticity coordinate, CIE 1931 xy-chromaticity diagram

  2. Lightning Injuries

    Science.gov (United States)

    ... metal vehicle (for example, a car, van, or truck) with the windows closed. Sheltering in a small ... A person struck by lightning does not retain electricity, so there is no danger in providing first ...

  3. Cloud-to-Ground Lightning Estimates Derived from SSMI Microwave Remote Sensing and NLDN

    Science.gov (United States)

    Winesett, Thomas; Magi, Brian; Cecil, Daniel

    2015-01-01

    Lightning observations are collected using ground-based and satellite-based sensors. The National Lightning Detection Network (NLDN) in the United States uses multiple ground sensors to triangulate the electromagnetic signals created when lightning strikes the Earth's surface. Satellite-based lightning observations have been made from 1998 to present using the Lightning Imaging Sensor (LIS) on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, and from 1995 to 2000 using the Optical Transient Detector (OTD) on the Microlab-1 satellite. Both LIS and OTD are staring imagers that detect lightning as momentary changes in an optical scene. Passive microwave remote sensing (85 and 37 GHz brightness temperatures) from the TRMM Microwave Imager (TMI) has also been used to quantify characteristics of thunderstorms related to lightning. Each lightning detection system has fundamental limitations. TRMM satellite coverage is limited to the tropics and subtropics between 38 deg N and 38 deg S, so lightning at the higher latitudes of the northern and southern hemispheres is not observed. The detection efficiency of NLDN sensors exceeds 95%, but the sensors are only located in the USA. Even if data from other ground-based lightning sensors (World Wide Lightning Location Network, the European Cooperation for Lightning Detection, and Canadian Lightning Detection Network) were combined with TRMM and NLDN, there would be enormous spatial gaps in present-day coverage of lightning. In addition, a globally-complete time history of observed lightning activity is currently not available either, with network coverage and detection efficiencies varying through the years. Previous research using the TRMM LIS and Microwave Imager (TMI) showed that there is a statistically significant correlation between lightning flash rates and passive microwave brightness temperatures. The physical basis for this correlation emerges because lightning in a thunderstorm occurs where ice is first

  4. Cloud-to-ground lightning in Portugal: patterns and dynamical forcing

    Science.gov (United States)

    Santos, J. A.; Reis, M. A.; Sousa, J.; Leite, S. M.; Correia, S.; Janeira, M.; Fragoso, M.

    2012-03-01

    An analysis of the cloud-to-ground discharges (CGD) over Portugal is carried out using data collected by a network of sensors maintained by the Portuguese Meteorological Institute for 2003-2009 (7 yr). Only cloud-to-ground flashes are considered and negative polarity CGD are largely dominant. The total number of discharges reveals a considerable interannual variability and a large irregularity in their distribution throughout the year. However, it is shown that a large number of discharges occur in the May-September period (71%), with a bimodal distribution that peaks in May and September, with most of the lightning activity recorded in the afternoon (from 16:00 to 18:00 UTC). In spring and autumn the lightning activity tends to be scattered throughout the country, whereas in summer it tends to be more concentrated over northeastern Portugal. Winter generally presents low lightning activity. Furthermore, two significant couplings between the monthly number of days with discharges and the large-scale atmospheric circulation are isolated: a regional forcing, predominantly in summer, and a remote forcing. In fact, the identification of daily lightning regimes revealed three important atmospheric conditions for triggering lightning activity: regional cut-off lows, cold troughs induced by remote low pressure systems and summertime regional low pressures at low-tropospheric levels combined with a mid-tropospheric cold trough.

  5. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    Science.gov (United States)

    Dowdy, Andrew J

    2016-02-11

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.

  6. [Lightning-caused fire, its affecting factors and prediction: a review].

    Science.gov (United States)

    Zhang, Ji-Li; Bi, Wu; Wang, Xiao-Hong; Wang, Zi-Bo; Li, Di-Fei

    2013-09-01

    Lightning-caused fire is the most important natural fire source. Its induced forest fire brings enormous losses to human beings and ecological environment. Many countries have paid great attention to the prediction of lightning-caused fire. From the viewpoint of the main factors affecting the formation of lightning-caused fire, this paper emphatically analyzed the effects and action mechanisms of cloud-to-ground lightning, fuel, meteorology, and terrain on the formation and development process of lightning-caused fire, and, on the basis of this, summarized and reviewed the logistic model, K-function, and other mathematical methods widely used in prediction research of lightning-caused fire. The prediction methods and processes of lightning-caused fire in America and Canada were also introduced. The insufficiencies and their possible solutions for the present researches as well as the directions of further studies were proposed, aimed to provide necessary theoretical basis and literature reference for the prediction of lightning-caused fire in China.

  7. Strengthening flood warning systems: the benefits of encouraging social preparedness

    Science.gov (United States)

    Girons Lopez, Marc; Di Baldassarre, Giuliano; Seibert, Jan

    2017-04-01

    Flood warning and response have normally been focused on the technical aspects and disregarded the connections and feedbacks between the hydrological and social dimensions. An increasing body of research, however, points at the importance of considering socio-hydrological aspects to improve flood damage mitigation. One of the key factors is the preparedness of the public and first responders during flood situations, which is influenced by many behavioural traits such as perceived benefits, risk awareness, or denial. In this study, we investigate the impact of social preparedness on the efficiency of flood early warning systems by using the recency of flood experience as a proxy for social preparedness. To this end, we developed a stylised model and a synthetic data-set to perform a hypothetical analysis. The main findings point to the importance of social preparedness for flood loss mitigation, especially when the technical forecasting and warning capabilities are limited. More specifically, efforts to promote and preserve social preparedness may help to reduce disaster-induced losses by almost one half. The findings from this study provide insights into the importance of considering social preparedness in decision-making for disaster risk reduction.

  8. Terrestrial gamma-ray flash production by lightning

    Science.gov (United States)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared

  9. Proposal of secure camera-based radiation warning system for nuclear detection

    International Nuclear Information System (INIS)

    Tsuchiya, Ken'ichi; Kurosawa, Kenji; Akiba, Norimitsu; Kakuda, Hidetoshi; Imoto, Daisuke; Hirabayashi, Manato; Kuroki, Kenro

    2016-01-01

    Counter-terrorisms against radiological and nuclear threat are significant issues toward Tokyo 2020 Olympic and Paralympic Games. In terms of cost benefit, it is not easy to build a warning system for nuclear detection to prevent a Dirty Bomb attack (dispersion of radioactive materials using a conventional explosive) or a Silent Source attack (hidden radioactive materials) from occurring. We propose a nuclear detection system using the installed secure cameras. We describe a method to estimate radiation dose from noise pattern in CCD images caused by radiation. Some dosimeters under neutron and gamma-ray irradiations (0.1mSv-100mSv) were taken in CCD video camera. We confirmed amount of noise in CCD images increased in radiation exposure. The radiation detection using CMOS in secure cameras or cell phones has been implemented. However, in this presentation, we propose a warning system including neutron detection to search shielded nuclear materials or radiation exposure devices using criticality. (author)

  10. Implementing an Inpatient Social Early Warning System for Child Maltreatment

    Science.gov (United States)

    Atabaki, Armita; Heddaeus, Daniela; Metzner, Franka; Schulz, Holger; Siefert, Sonke; Pawils, Silke

    2013-01-01

    Objectives: The current article describes the process evaluation of a social early warning system (SEWS) for the prevention of child maltreatment in the federal state of Hamburg. This prevention initiative targets expectant mothers and their partners including an initial screening of risk factors for child maltreatment, a subsequent structured…

  11. Design Principles for resilient cyber-physical Early Warning Systems - Challenges, Experiences, Design Patterns, and Best Practices

    Science.gov (United States)

    Gensch, S.; Wächter, J.; Schnor, B.

    2014-12-01

    Early warning systems (EWS) are safety-critical IT-infrastructures that serve the purpose of potentially saving lives or assets by observing real-world phenomena and issuing timely warning products to authorities and communities. An EWS consists of sensors, communication networks, data centers, simulation platforms, and dissemination channels. The components of this cyber-physical system may all be affected by both natural hazards and malfunctions of components alike. Resilience engineering so far has mostly been applied to safety-critical systems and processes in transportation (aviation, automobile), construction and medicine. Early warning systems need equivalent techniques to compensate for failures, and furthermore means to adapt to changing threats, emerging technology and research findings. We present threats and pitfalls from our experiences with the German and Indonesian tsunami early warning system, as well as architectural, technological and organizational concepts employed that can enhance an EWS' resilience. The current EWS is comprised of a multi-type sensor data upstream part, different processing and analysis engines, a decision support system, and various warning dissemination channels. Each subsystem requires a set of approaches towards ensuring stable functionality across system layer boundaries, including also institutional borders. Not only must services be available, but also produce correct results. Most sensors are distributed components with restricted resources, communication channels and power supply. An example for successful resilience engineering is the power capacity based functional management for buoy and tide gauge stations. We discuss various fault-models like cause and effect models on linear pathways, interaction of multiple events, complex and non-linear interaction of assumedly reliable subsystems and fault tolerance means implemented to tackle these threats.

  12. Regional early flood warning system: design and implementation

    Science.gov (United States)

    Chang, L. C.; Yang, S. N.; Kuo, C. L.; Wang, Y. F.

    2017-12-01

    This study proposes a prototype of the regional early flood inundation warning system in Tainan City, Taiwan. The AI technology is used to forecast multi-step-ahead regional flood inundation maps during storm events. The computing time is only few seconds that leads to real-time regional flood inundation forecasting. A database is built to organize data and information for building real-time forecasting models, maintaining the relations of forecasted points, and displaying forecasted results, while real-time data acquisition is another key task where the model requires immediately accessing rain gauge information to provide forecast services. All programs related database are constructed in Microsoft SQL Server by using Visual C# to extracting real-time hydrological data, managing data, storing the forecasted data and providing the information to the visual map-based display. The regional early flood inundation warning system use the up-to-date Web technologies driven by the database and real-time data acquisition to display the on-line forecasting flood inundation depths in the study area. The friendly interface includes on-line sequentially showing inundation area by Google Map, maximum inundation depth and its location, and providing KMZ file download of the results which can be watched on Google Earth. The developed system can provide all the relevant information and on-line forecast results that helps city authorities to make decisions during typhoon events and make actions to mitigate the losses.

  13. Spatial and temporal analysis of a 17-year lightning climatology over Bangladesh with LIS data

    Science.gov (United States)

    Dewan, Ashraf; Ongee, Emmanuel T.; Rahman, Md. Masudur; Mahmood, Rezaul; Yamane, Yusuke

    2017-10-01

    Using NASA's TRMM Lightning Imaging Sensor (LIS) data from 1998 to 2014, this paper presents a 17-year lightning climatology of Bangladesh, at 0.5° × 0.5° spatial resolution. Diurnal, seasonal, monthly and annual variations in the occurrence of lightning flashes were explored. The diurnal regime of lightning is dominated by afternoon/evening events. Overall, peak lightning activity occurs in the early morning (0200 LST) and evening (1900 LST). The distribution of lightning flash counts by season over Bangladesh landmass is as follows: pre-monsoon (69.2%), monsoon (24.1%), post-monsoon (4.6%) and winter (2.1%). Flash rate density (FRD) hotspots were primarily located in the north and north-eastern parts of Bangladesh, with a maximum of 72 fl km-2 year-1. Spatially, the distribution of FRD increases from the Bay of Bengal in the south to relatively higher elevations (of the Himalayan foothills) in the north. A spatial shift in FRD hotspots occurs with change in season. For example, in monsoon season, hotspots of lightning activity move in a south-westerly direction from their pre-monsoon location (i.e. north-eastern Bangladesh) towards West Bengal in India. South and south-eastern parts of Bangladesh experience high lightning activity during post-monsoon season due to regional orographic lifting and low-pressure systems (i.e. cyclone) in the Bay of Bengal. To the best of our knowledge, this is the first study focused on LIS-based lightning climatology over Bangladesh. This baseline study, therefore, is an essential first step towards effective management of lightning-related hazards in Bangladesh.

  14. Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather

    Directory of Open Access Journals (Sweden)

    Colin Price

    2008-01-01

    Full Text Available Severe and extreme weather is a major natural hazard all over the world, oftenresulting in major natural disasters such as hail storms, tornados, wind storms, flash floods,forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence,etc. can only be observed at close distances, lightning activity in these damaging stormscan be monitored at all spatial scales, from local (using very high frequency [VHF]sensors, to regional (using very low frequency [VLF] sensors, and even global scales(using extremely low frequency [ELF] sensors. Using sensors that detect the radio wavesemitted by each lightning discharge, it is now possible to observe and track continuouslydistant thunderstorms using ground networks of sensors. In addition to the number oflightning discharges, these sensors can also provide information on lightningcharacteristics such as the ratio between intra-cloud and cloud-to-ground lightning, thepolarity of the lightning discharge, peak currents, charge removal, etc. It has been shownthat changes in some of these lightning characteristics during thunderstorms are oftenrelated to changes in the severity of the storms. In this paper different lightning observingsystems are described, and a few examples are provided showing how lightning may beused to monitor storm hazards around the globe, while also providing the possibility ofsupplying short term forecasts, called nowcasting.

  15. GRIP LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lightning Instrument Package (LIP) dataset was collected by the Lightning Instrument Package (LIP), which consists of 6 rotating vane type electric field...

  16. Earthquake Early Warning Systems

    OpenAIRE

    Pei-Yang Lin

    2011-01-01

    Because of Taiwan’s unique geographical environment, earthquake disasters occur frequently in Taiwan. The Central Weather Bureau collated earthquake data from between 1901 and 2006 (Central Weather Bureau, 2007) and found that 97 earthquakes had occurred, of which, 52 resulted in casualties. The 921 Chichi Earthquake had the most profound impact. Because earthquakes have instant destructive power and current scientific technologies cannot provide precise early warnings in advance, earthquake ...

  17. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  18. NO signatures from lightning flashes

    Science.gov (United States)

    Stith, J.; Dye, J.; Ridley, B.; Laroche, P.; Defer, E.; Baumann, K.; Hübler, G.; Zerr, R.; Venticinque, M.

    1999-07-01

    In situ measurements of cloud properties, NO, and other trace gases were made in active thunderstorms by two research aircraft. Concurrent measurements from a three-dimensional (3-D) VHF interferometer and the 2-D National Lightning Detection Network were used to determine lightning frequency and location. The CHILL Doppler radar and the NOAA-WP-3D Orion X band Doppler radar were also used to measure storm characteristics. Two case studies from the (STERAO) Stratosphere-Troposphere Experiments: Radiation, Aerosols, and Ozone project in northeastern Colorado during the summer of 1996 are presented. Narrow spikes (0.11-0.96 km across), containing up to 19 ppbv of NO, were observed in the storms. Most were located in or downwind of electrically active regions where the NO produced by lightning would be expected. However, it was difficult to correlate individual flashes with NO spikes. A simple model of the plume of NO from lightning is used to estimate NO production from the mean mixing ratio measured in these spikes. The estimates range from 2.0×1020 to 1.0×1022 molecules of NO per meter of flash length.

  19. 30 CFR 56.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 56... Electricity § 56.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  20. Combined VLF and VHF lightning observations of Hurricane Rita landfall

    Science.gov (United States)

    Henderson, B. G.; Suszcynsky, D. M.; Wiens, K. C.; Hamlin, T.; Jeffery, C. A.; Orville, R. E.

    2009-12-01

    Hurricane Rita displayed abundant lightning in its northern eyewall as it made landfall at 0740 UTC 24 Sep 2005 near the Texas/Louisiana border. For this work, we combined VHF and VLF lightning data from Hurricane Rita, along with radar observations from Gulf Coast WSR-88D stations, for the purpose of demonstrating the combined utility of these two spectral regions for hurricane lightning monitoring. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. As Rita approached the Gulf coast, the VHF lightning emissions were distinctly periodic with a period of 1.5 to 2 hours, which is consistent with the rotational period of hurricanes. VLF lightning emissions, measured by LASA and NLDN, were present in some of these VHF bursts but not all of them. At landfall, there was a significant increase in lightning emissions, accompanied by a significant convective surge observed in radar. Furthermore, VLF and VHF lightning source heights clearly increase as a function of time. The evolution of the IC/CG ratio is consistent with that seen in thunderstorms, showing a dominance of IC activity during storm development, followed by an increase in CG activity at the storm’s peak. The periodic VHF lightning events are correlated with increases in convective growth (quantified by the volume of radar echo >40 dB) above 7 km altitude. VLF can discriminate between lightning types, and in the LASA data, Rita landfall lightning activity was dominated by Narrow Bi-polar Events (NBEs)—high-energy, high-altitude, compact intra-cloud discharges. The opportunity to locate NBE lightning sources in altitude may be particularly useful in quantifying the vertical extent (strength) of the convective development and in possibly deducing vertical charge distributions.

  1. Geoethical issues involved in Tsunami Warning System concepts and operations

    Science.gov (United States)

    Charalampakis, Marinos; Papadopoulos, Gerassimos A.; Tinti, Stefano

    2016-04-01

    The main goal of a Tsunami Warning System (TWS) is to mitigate the effect of an incoming tsunami by alerting coastal population early enough to allow people to evacuate safely from inundation zones. Though this representation might seem oversimplified, nonetheless, achieving successfully this goal requires a positive synergy of geoscience, communication, emergency management, technology, education, social sciences, politics. Geoethical issues arise always when there is an interaction between geoscience and society, and TWS is a paradigmatic case where interaction is very strong and is made critical because a) the formulation of the tsunami alert has to be made in a time as short as possible and therefore on uncertain data, and b) any evaluation error (underestimation or overestimation) can lead to serious (and sometimes catastrophic) consequences involving wide areas and a large amount of population. From the geoethical point of view three issues are critical: how to (i) combine forecasts and uncertainties reasonably and usefully, (ii) cope and possibly solve the dilemma whether it is better over-alerting or under-alerting population and (iii) deal with responsibility and liability of geoscientists, TWS operators, emergency operators and coastal population. The discussion will be based on the experience of the Hellenic National Tsunami Warning Center (HL-NTWC, Greece), which operates on 24/7 basis as a special unit of the Institute of Geodynamics, National Observatory of Athens, and acts also as Candidate Tsunami Service Provider (CTSP) in the framework of the North-Eastern Atlantic, the Mediterranean and connected seas Tsunami Warning System (NEAMTWS) of the IOC/UNESCO. Since August 2012, when HL-NTWC was officially declared as operational, 14 tsunami warning messages have been disseminated to a large number of subscribers after strong submarine earthquakes occurring in Greece and elsewhere in the eastern Mediterranean. It is recognized that the alerting process

  2. Implementing paediatric early warning scores systems in the Netherlands: future implications.

    NARCIS (Netherlands)

    Groot, J.F. de; Damen, N.; Loos, E. de; Steeg, L. van de; Rosias, P.; Bruijn, M.; Goorhuis, J.; Wagner, C.

    2018-01-01

    Background: Paediatric Early Warning Scores (PEWS) are increasingly being used for early identification and management of clinical deterioration in paediatric patients. A PEWS system includes scores, cut-off points and appropriate early intervention. In 2011, The Dutch Ministry of Health advised

  3. Vulnerability analysis for a drought Early Warning System

    Science.gov (United States)

    Angeluccetti, Irene; Demarchi, Alessandro; Perez, Francesca

    2014-05-01

    Early Warning Systems (EWS) for drought are often based on risk models that do not, or marginally, take into account the vulnerability factor. The multifaceted nature of drought (hydrological, meteorological, and agricultural) is source of coexistence for different ways to measure this phenomenon and its effects. The latter, together with the complexity of impacts generated by this hazard, causes the current underdevelopment of drought EWS compared to other hazards. In Least Developed Countries, where drought events causes the highest numbers of affected people, the importance of correct monitoring and forecasting is considered essential. Existing early warning and monitoring systems for drought produced at different geographic levels, provide only in a few cases an actual spatial model that tries to describe the cause-effect link between where the hazard is detected and where impacts occur. Integrate vulnerability information in such systems would permit to better estimate affected zones and livelihoods, improving the effectiveness of produced hazard-related datasets and maps. In fact, the need of simplification and, in general, of a direct applicability of scientific outputs is still a matter of concern for field experts and early warning products end-users. Even if the surplus of hazard related information produced right after catastrophic events has, in some cases, led to the creation of specific data-sharing platforms, the conveyed meaning and usefulness of each product has not yet been addressed. The present work is an attempt to fill this gap which is still an open issue for the scientific community as well as for the humanitarian aid world. The study aims at conceiving a simplified vulnerability model to embed into an existing EWS for drought, which is based on the monitoring of vegetation phenological parameters and the Standardized Precipitation Index, both produced using free satellite derived datasets. The proposed vulnerability model includes (i) a

  4. Early warning system realized by ENVINET a.s., domestic and abroad

    International Nuclear Information System (INIS)

    Sury, J.; Skala, L.; Holcak, P.; Matousek, P.

    2014-01-01

    Within recent years, research and development has expanded the portfolio of applied results in the field of early warning systems - both stationary and mobile standalone. Their implementation in different areas all over the world in different climatic conditions and their coincidence of possible communication interface software, databases, data collection and assessment of the radiation situations allow the users to respond to possible events and thus significantly affect the decision-making level for the preventive countermeasures including their utilization during radiation accidents. Some of the results will be presented during the presentation: - Implementation of monitoring stations in Varazdin, Velika Gorica, Sisak, Virovitica, Beli Manastir, Zadar, Knin and Ploce in Croatia 2014. Other locations such as Plitvice, Sibenik and Koprivnica are also considered. Radiometric monitoring station NuEM RAMS, dose rate from 10 nSv h -1 to 1 Sv h -1 . - Implementation of radiation monitoring stations in Warszawa, Zagan, Wroclaw, Szczecin, Krakow, Lublin, Gdynia, Bydgoszcz, Rzeszow, Bartoszyce, Srem, Swinoujscie, and Ustka in Poland 2014-2015. Radiometric monitoring station NuEM RAMS, dose rate from 10 nSv h -1 to 9 Sv h -1 . Purpose of stations - for a radiation monitoring network in a given area and for integration into the networks of early warning system. Measurement by using smart probe with 2 (3) GM tubes according to a measuring range. Power supply from photo-voltaic panel for the standalone mode. Transmission of measured data is done by using a GSM network. Data are stored into database at a web server. - Early warning system in Latvia 2013-2014. 20 pcs of stationary spectrometric AGR or IGS type or equivalent stations, NaI (Tl) or LaBr detector for on-line identification of radionuclides based on integrated isotope base with at least 10 indicated radionuclides (K-40, Mo-99, Ru-103, Rh -106, Te-129, I-131, Te-132, I-133, Cs-134, Cs-137, and Ba-140). Objective

  5. High-detail snapshots of rare gigantic jet lightning

    Science.gov (United States)

    Schultz, Colin

    2011-08-01

    In the ionosphere, more than 80 kilometers above Earth's surface, incoming radiation reacts with the thin air to produce highly charged ions, inducing an electric potential between the ionosphere and the surface. This charge difference is dissipated by a slow leak from the ionosphere during calm weather and reinvigorated by a charge built up near the surface during a thunderstorm. In 2001, however, researchers discovered gigantic jets (GJs), powerful lightning that arcs from tropospheric clouds up to the ionosphere, suggesting there may be an alternate path by which charge is redistributed. GJs are transient species, and little is known about how much charge they can carry, how they form, or how common they are. In a step toward answering these questions, Lu et al. report on two GJs that occurred near very high frequency (VHF) lightning detection systems, which track the development of lightning in three spatial dimensions, giving an indication of the generation mechanism. The researchers also measured the charge transfer in the two GJs through remote sensing of magnetic fields. They found that both jets originated from the development of otherwise normal intracloud lightning. The dissipation of the cloud's positively charged upper layer allowed the negative lightning channel to break through and travel up out of the top of the cloud to the ionosphere. The first jet, which occurred off the coast of Florida, leapt up to 80 kilometers, depositing 110 coulombs of negative charge in 370 milliseconds. The second jet, observed in Oklahoma, traveled up to 90 kilometers, raising only 10-20 coulombs in 300 milliseconds. Each new observation of gigantic jets such as these can provide valuable information toward understanding this novel atmospheric behavior. (Geophysical Research Letters, doi:10.1029/2011GL047662, 2011)

  6. Radiation early warning system

    International Nuclear Information System (INIS)

    Schmitzer, C.; Kloesch, W.; Stadtmann, H.

    1993-01-01

    A prototype station for a Radiation Early Warning Network has been designed and set up at the Austrian Research Centre Seibersdorf. This unit was developed to measure all relevant parameters necessary to detect and track radioactive contamination at an early stage. The station consists of the following components: Radiation measuring channel for ambient gamma dose rate. Meteorological measurement channels for air temperature and humidity, wind direction and wind speed, and precipitation. Data processing and storage unit. The system is capable of unattended operation and data acquisition even under adverse environmental conditions. Connection to a central processing platform may be achieved via leased line, dial up over public switched telephone network (PSTN), or radio-frequency transmission. The remote station will continue acquiring and storing data for at least a month, even if the communications link is broken. Multiple stations can be combined to form a network, providing detailed information about radiological and meteorological data at each site. Thus increased ambient radiation levels may be discovered, tracked, and forecasted based on calculations using current and local weather data

  7. A lightning climatology of the South-West Indian Ocean

    Directory of Open Access Journals (Sweden)

    C. Bovalo

    2012-08-01

    Full Text Available The World Wide Lightning Location Network (WWLLN data have been used to perform a lightning climatology in the South-West Indian Ocean (SWIO region from 2005 to 2011. Maxima of lightning activity were found in the Maritime Continent and southwest of Sri Lanka (>50 fl km−2 yr−1 but also over Madagascar and above the Great Lakes of East Africa (>10–20 fl km−2 yr−1. Lightning flashes within tropical storms and tropical cyclones represent 50 % to 100 % of the total lightning activity in some oceanic areas of the SWIO (between 10° S and 20° S.

    The SWIO is characterized by a wet season (November to April and a dry season (May to October. As one could expect, lightning activity is more intense during the wet season as the Inter Tropical Convergence Zone (ITCZ is present over all the basin. Flash density is higher over land in November–December–January with values reaching 3–4 fl km−2 yr−1 over Madagascar. During the dry season, lightning activity is quite rare between 10° S and 25° S. The Mascarene anticyclone has more influence on the SWIO resulting in shallower convection. Lightning activity is concentrated over ocean, east of South Africa and Madagascar.

    A statistical analysis has shown that El Niño–Southern Oscillation mainly modulates the lightning activity up to 56.8% in the SWIO. The Indian Ocean Dipole has a significant contribution since ~49% of the variability is explained by this forcing in some regions. The Madden–Julian Oscillation did not show significative impact on the lightning activity in our study.

  8. Using cloud ice flux to parametrise large-scale lightning

    Directory of Open Access Journals (Sweden)

    D. L. Finney

    2014-12-01

    Full Text Available Lightning is an important natural source of nitrogen oxide especially in the middle and upper troposphere. Hence, it is essential to represent lightning in chemistry transport and coupled chemistry–climate models. Using ERA-Interim meteorological reanalysis data we compare the lightning flash density distributions produced using several existing lightning parametrisations, as well as a new parametrisation developed on the basis of upward cloud ice flux at 440 hPa. The use of ice flux forms a link to the non-inductive charging mechanism of thunderstorms. Spatial and temporal distributions of lightning flash density are compared to tropical and subtropical observations for 2007–2011 from the Lightning Imaging Sensor (LIS on the Tropical Rainfall Measuring Mission (TRMM satellite. The well-used lightning flash parametrisation based on cloud-top height has large biases but the derived annual total flash density has a better spatial correlation with the LIS observations than other existing parametrisations. A comparison of flash density simulated by the different schemes shows that the cloud-top height parametrisation has many more instances of moderate flash densities and fewer low and high extremes compared to the other parametrisations. Other studies in the literature have shown that this feature of the cloud-top height parametrisation is in contrast to lightning observations over certain regions. Our new ice flux parametrisation shows a clear improvement over all the existing parametrisations with lower root mean square errors (RMSEs and better spatial correlations with the observations for distributions of annual total, and seasonal and interannual variations. The greatest improvement with the new parametrisation is a more realistic representation of the zonal distribution with a better balance between tropical and subtropical lightning flash estimates. The new parametrisation is appropriate for testing in chemistry transport and chemistry

  9. Methodology for the assessment of possible damages in low voltage equipment due to lightning surges

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Nelson M.; Kagan, Nelson [University of Sao Paulo (USP), SP (Brazil)], Emails: matsuonm@usp.br, nelsonk@pea.usp.br; Domingues, Ivo T. [AES Eletropaulo, SP (Brazil); Jesus, Nelson C. de [AES Sul, Porto Alegre, RS (Brazil); Silva, Marcelo H.I. da [Grupo Rede, Sao Paulo, SP (Brazil); Takauti, Edson H. [Bandeirante, Sao Paulo, SP (Brazil)

    2007-07-01

    This paper deals with the development of a methodology to assess the possibility of equipment damages in low voltage customers due to lightning surges. The main objective is to incorporate this methodology in a computation system that supports distribution companies to determine the possible causes of equipment damages claimed by customers and to decide whether the claims are to be reimbursed or not. The proposed methodology determines whether a specific customer could be affected by a lightning strike according to his/her location and to the lightning main parameters, by using data from a lightning detection system and from the specific equipment surge withstand capability. A specific study using ATP (Alternative Transients Program) was carried out to assess the propagation of lightning surges in electric power distribution systems and their impact over low voltage customers. On the other hand, the withstand capability of the main household appliances was determined by a series of tests carried out in the University's power quality laboratory. The paper details the modeling used for simulation, such as network configuration, grounding points, and modelling of insulator flashover, distribution transformer, low voltage loads. It also presents some results regarding the evaluation of over voltages in low voltage customers installations. A practical method is proposed for assessing the possibility of equipment damage and describes how the existing uncertainties were handled. Also, some issues regarding the withstand capability of electric household appliances to lightning surges are discussed and some results of the laboratory tests are presented. (author)

  10. Optimizing Precipitation Thresholds for Best Correlation Between Dry Lightning and Wildfires

    Science.gov (United States)

    Vant-Hull, Brian; Thompson, Tollisha; Koshak, William

    2018-03-01

    This work examines how to adjust the definition of "dry lightning" in order to optimize the correlation between dry lightning flash count and the climatology of large (>400 km2) lightning-ignited wildfires over the contiguous United States (CONUS). The National Lightning Detection Network™ and National Centers for Environmental Prediction Stage IV radar-based, gauge-adjusted precipitation data are used to form climatic data sets. For a 13 year analysis period over CONUS, a correlation of 0.88 is found between annual totals of wildfires and dry lightning. This optimal correlation is found by defining dry lightning as follows: on a 0.1° hourly grid, a precipitation threshold of no more than 0.3 mm may accumulate during any hour over a period of 3-4 days preceding the flash. Regional optimized definitions vary. When annual totals are analyzed as done here, no clear advantage is found by weighting positive polarity cloud-to-ground (+CG) lightning differently than -CG lightning. The high variability of dry lightning relative to the precipitation and lightning from which it is derived suggests it would be an independent and useful climate indicator.

  11. Study of the transport parameters of cloud lightning plasmas

    International Nuclear Information System (INIS)

    Chang, Z. S.; Yuan, P.; Zhao, N.

    2010-01-01

    Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar sudden change behavior in tortuous positions and the branch of the cloud lightning channel.

  12. 14 CFR 27.610 - Lightning and static electricity protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection....610 Lightning and static electricity protection. (a) The rotorcraft must be protected against catastrophic effects from lightning. (b) For metallic components, compliance with paragraph (a) of this section...

  13. 30 CFR 57.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 57... MINES Electricity Surface Only § 57.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  14. A Performance Evaluation of Lightning-NO Algorithms in CMAQ

    Science.gov (United States)

    In the Community Multiscale Air Quality (CMAQv5.2) model, we have implemented two algorithms for lightning NO production; one algorithm is based on the hourly observed cloud-to-ground lightning strike data from National Lightning Detection Network (NLDN) to replace the previous m...

  15. Effects of Lightning Injection on Power-MOSFETs

    Science.gov (United States)

    Celaya, Jose; Saha, Sankalita; Wysocki, Phil; Ely, Jay; Nguyen, Truong; Szatkowski, George; Koppen, Sandra; Mielnik, John; Vaughan, Roger; Goebel, Kai

    2009-01-01

    Lightning induced damage is one of the major concerns in aircraft health monitoring. Such short-duration high voltages can cause significant damage to electronic devices. This paper presents a study on the effects of lightning injection on power metal-oxide semiconductor field effect transistors (MOSFETs). This approach consisted of pin-injecting lightning waveforms into the gate, drain and/or source of MOSFET devices while they were in the OFF-state. Analysis of the characteristic curves of the devices showed that for certain injection modes the devices can accumulate considerable damage rendering them inoperable. Early results demonstrate that a power MOSFET, even in its off-state, can incur considerable damage due to lightning pin injection, leading to significant deviation in its behavior and performance, and to possibly early device failures.

  16. EVALUATING EFFECTIVENESS OF MOBILE BROWSER SECURITY WARNINGS

    Directory of Open Access Journals (Sweden)

    Ronak Shah

    2016-09-01

    Full Text Available This work precisely evaluates whether browser security warnings are as ineffective as proposed by popular sentiments and past writings. This research used different kinds of Android mobile browsers as well as desktop browsers to evaluate security warnings. Security experts and developers should give emphasis on making a user aware of security warnings and should not neglect aim of communicating this to users. Security experts and system architects should emphasis the goal of communicating security information to end users. In most of the browsers, security warnings are not emphasized, and browsers simply do not show warnings, or there are a number of ways to hide those warnings of malicious sites. This work precisely finds that how inconsistent browsers really are in prompting security warnings. In particular, majority of the modern mobile web browsers are vulnerable to these security threats. We find inconsistency in SSL warnings among web browsers. Based on this work, we make recommendations for warning designers and researchers.

  17. Development and validation of a weather-based warning system to advise fungicide applications to control dollar spot on turfgrass

    Science.gov (United States)

    Smith, D. L.; Kerns, J. P.; Walker, N. R.; Payne, A. F.; Horvath, B.; Inguagiato, J. C.; Kaminski, J. E.; Tomaso-Peterson, M.

    2018-01-01

    Dollar spot is one of the most common diseases of golf course turfgrass and numerous fungicide applications are often required to provide adequate control. Weather-based disease warning systems have been developed to more accurately time fungicide applications; however, they tend to be ineffective and are not currently in widespread use. The primary objective of this research was to develop a new weather-based disease warning system to more accurately advise fungicide applications to control dollar spot activity across a broad geographic and climactic range. The new dollar spot warning system was developed from data collected at field sites in Madison, WI and Stillwater, OK in 2008 and warning system validation sites were established in Madison, WI, Stillwater, OK, Knoxville, TN, State College, PA, Starkville, MS, and Storrs, CT between 2011 and 2016. A meta-analysis of all site-years was conducted and the most effective warning system for dollar spot development consisted of a five-day moving average of relative humidity and average daily temperature. Using this model the highest effective probability that provided dollar spot control similar to that of a calendar-based program across the numerous sites and years was 20%. Additional analysis found that the 20% spray threshold provided comparable control to the calendar-based program while reducing fungicide usage by up to 30%, though further refinement may be needed as practitioners implement this warning system in a range of environments not tested here. The weather-based dollar spot warning system presented here will likely become an important tool for implementing precision disease management strategies for future turfgrass managers, especially as financial and regulatory pressures increase the need to reduce pesticide usage on golf course turfgrass. PMID:29522560

  18. Hybrid Intrusion Forecasting Framework for Early Warning System

    Science.gov (United States)

    Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo

    Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.

  19. Application of electro geometric model for analysis of overhead power lines and substation in lightning incidence, v. 16(62)

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2008-01-01

    This paper is a resume of the master thesis made within my master studies at the Department for transmission and distribution systems at FEIT-Skopje. New methodology is presented for estimation of the rates of lightning strikes on power lines and substations with Monte Carlo simulation. Modeling is based on well known electro geometric model which states that protection zones of lightning protection devices are dependant with amplitude of the lighting current. Therefore, for a known configuration it is possible with application of simple numerical methods to evaluate efficiency of the protection devices. Data gained from the simulations can be used to design such devices, to correct existing lightning protection systems or to make analysis for improving reliability of power system elements in lightning incidence. (Author)

  20. Application of electro geometric model for analysis of overhead power lines and substation in lightning incidence, v. 16(63)

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2008-01-01

    This paper is a resume of the master thesis made within my master studies at the Department for transmission and distribution systems at FEIT-Skopje. New methodology is presented for estimation of the rates of lightning strikes on power lines and substations with Monte Carlo simulation. Modeling is based on well known electro geometric model which states that protection zones of lightning protection devices are dependant with amplitude of the lighting current. Therefore, for a known configuration it is possible with application of simple numerical methods to evaluate efficiency of the protection devices. Data gained from the simulations can be used to design such devices, to correct existing lightning protection systems or to make analysis for improving reliability of power system elements in lightning incidence. (Author

  1. 14 CFR 29.610 - Lightning and static electricity protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection... § 29.610 Lightning and static electricity protection. (a) The rotorcraft structure must be protected against catastrophic effects from lightning. (b) For metallic components, compliance with paragraph (a) of...

  2. When lightning strikes: bolting down the facts & fiction.

    Science.gov (United States)

    Usatch, Ben

    2009-04-01

    MYTH: There's no danger from lightning until the rain starts. FACT: Lightning often precedes the storm by up to 10 miles. A reasonable guideline is the "30-30 rule," by which you count the seconds between the flash and the thunder. If the time span is less than 30 seconds, seek shelter. Additionally, wait a full 30 minutes from last lightning flash to resume outdoor activities.

  3. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  4. A Steady-State Visual Evoked Potential Brain-Computer Interface System Evaluation as an In-Vehicle Warning Device

    Science.gov (United States)

    Riyahi, Pouria

    This thesis is part of current research at Center for Intelligence Systems Research (CISR) at The George Washington University for developing new in-vehicle warning systems via Brain-Computer Interfaces (BCIs). The purpose of conducting this research is to contribute to the current gap between BCI and in-vehicle safety studies. It is based on the premise that accurate and timely monitoring of human (driver) brain's signal to external stimuli could significantly aide in detection of driver's intentions and development of effective warning systems. The thesis starts with introducing the concept of BCI and its development history while it provides a literature review on the nature of brain signals. The current advancement and increasing demand for commercial and non-medical BCI products are described. In addition, the recent research attempts in transportation safety to study drivers' behavior or responses through brain signals are reviewed. The safety studies, which are focused on employing a reliable and practical BCI system as an in-vehicle assistive device, are also introduced. A major focus of this thesis research has been on the evaluation and development of the signal processing algorithms which can effectively filter and process brain signals when the human subject is subjected to Visual LED (Light Emitting Diodes) stimuli at different frequencies. The stimulated brain generates a voltage potential, referred to as Steady-State Visual Evoked Potential (SSVEP). Therefore, a newly modified analysis algorithm for detecting the brain visual signals is proposed. These algorithms are designed to reach a satisfactory accuracy rate without preliminary trainings, hence focusing on eliminating the need for lengthy training of human subjects. Another important concern is the ability of the algorithms to find correlation of brain signals with external visual stimuli in real-time. The developed analysis models are based on algorithms which are capable of generating results

  5. An early warning system for flash floods in Egypt

    Science.gov (United States)

    Cools, J.; Abdelkhalek, A.; El Sammany, M.; Fahmi, A. H.; Bauwens, W.; Huygens, M.

    2009-09-01

    This paper describes the development of the Flash Flood Manager, abbreviated as FlaFloM. The Flash Flood Manager is an early warning system for flash floods which is developed under the EU LIFE project FlaFloM. It is applied to Wadi Watier located in the Sinai peninsula (Egypt) and discharges in the Red Sea at the local economic and tourist hub of Nuweiba city. FlaFloM consists of a chain of four modules: 1) Data gathering module, 2) Forecasting module, 3) Decision support module or DSS and 4) Warning module. Each module processes input data and consequently send the output to the following module. In case of a flash flood emergency, the final outcome of FlaFloM is a flood warning which is sent out to decision-makers. The ‘data gathering module’ collects input data from different sources, validates the input, visualise data and exports it to other modules. Input data is provided ideally as water stage (h), discharge (Q) and rainfall (R) through real-time field measurements and external forecasts. This project, however, as occurs in many arid flash flood prone areas, was confronted with a scarcity of data, and insufficient insight in the characteristics that release a flash flood. Hence, discharge and water stage data were not available. Although rainfall measurements are available through classical off line rain gauges, the sparse rain gauges network couldn’t catch the spatial and temporal characteristics of rainfall events. To overcome this bottleneck, we developed rainfall intensity raster maps (mm/hr) with an hourly time step and raster cell of 1*1km. These maps are derived through downscaling from two sources of global instruments: the weather research and forecasting model (WRF) and satellite estimates from the Tropical Rainfall Measuring Mission (TRMM). The ‘forecast module’ comprises three numerical models that, using data from the gathering module performs simulations on command: a rainfall-runoff model, a river flow model, and a flood model. A

  6. Characteristics of VLF/LF Sferics from Elve-producing Lightning Discharges

    Science.gov (United States)

    Blaes, P.; Zoghzoghy, F. G.; Marshall, R. A.

    2013-12-01

    Lightning return strokes radiate an electromagnetic pulse (EMP) which interacts with the D-region ionosphere; the largest EMPs produce new ionization, heating, and optical emissions known as elves. Elves are at least six times more common than sprites and other transient luminous events. Though the probability that a lightning return stroke will produce an elve is correlated with the return stroke peak current, many large peak current strokes do not produce visible elves. Apart from the lightning peak current, elve production may depend on the return stroke speed, lightning altitude, and ionospheric conditions. In this work we investigate the detailed structure of lightning that gives rise to elves by analyzing the characteristics of VLF/LF lightning sferics in conjunction with optical elve observations. Lightning sferics were observed using an array of six VLF/LF receivers (1 MHz sample-rate) in Oklahoma, and elves were observed using two high-speed photometers pointed over the Oklahoma region: one located at Langmuir Laboratory, NM and the other at McDonald Observatory, TX. Hundreds of elves with coincident LF sferics were observed during the summer months of 2013. We present data comparing the characteristics of elve-producing and non-elve producing lightning as measured by LF sferics. In addition, we compare these sferic and elve observations with FDTD simulations to determine key properties of elve-producing lightning.

  7. Mechanisms and effects of lightning current coupling to structures

    International Nuclear Information System (INIS)

    Foboda, Marek

    1999-01-01

    To evaluate the effects of a lightning discharge on a structure, it is necessary to know the modes of interaction of lightning electromagnetic field pulses to structures. The effects to these interactions are considered by means to the concept to equivalent collection areas. The equations to calculate the distance and equivalent collection areas due to lightning discharges are given in this article. Additionally, the possible modes of a direct lightning strike to the incoming line and the equations to calculate the resultant over voltages are also given. This article ends with the calculation of voltage drops due to direct and nearby lightning strike and induced voltages due to magnetic coupling. Several examples of calculations of the different mentioned cases are given

  8. Development of SNS Stream Analysis Based on Forest Disaster Warning Information Service System

    Science.gov (United States)

    Oh, J.; KIM, D.; Kang, M.; Woo, C.; Kim, D.; Seo, J.; Lee, C.; Yoon, H.; Heon, S.

    2017-12-01

    Forest disasters, such as landslides and wildfires, cause huge economic losses and casualties, and the cost of recovery is increasing every year. While forest disaster mitigation technologies have been focused on the development of prevention and response technologies, they are now required to evolve into evacuation and border evacuation, and to develop technologies fused with ICT. In this study, we analyze the SNS (Social Network Service) stream and implement a system to detect the message that the forest disaster occurred or the forest disaster, and search the keyword related to the forest disaster in advance in real time. It is possible to detect more accurate forest disaster messages by repeatedly learning the retrieved results using machine learning techniques. To do this, we designed and implemented a system based on Hadoop and Spark, a distributed parallel processing platform, to handle Twitter stream messages that open SNS. In order to develop the technology to notify the information of forest disaster risk, a linkage of technology such as CBS (Cell Broadcasting System) based on mobile communication, internet-based civil defense siren, SNS and the legal and institutional issues for applying these technologies are examined. And the protocol of the forest disaster warning information service system that can deliver the SNS analysis result was developed. As a result, it was possible to grasp real-time forest disaster situation by real-time big data analysis of SNS that occurred during forest disasters. In addition, we confirmed that it is possible to rapidly propagate alarm or warning according to the disaster situation by using the function of the forest disaster warning information notification service. However, the limitation of system application due to the restriction of opening and sharing of SNS data currently in service and the disclosure of personal information remains a problem to be solved in the future. Keyword : SNS stream, Big data, Machine

  9. Warning Triggers in Environmental Hazards: Who Should Be Warned to Do What and When?

    Science.gov (United States)

    Cova, Thomas J; Dennison, Philip E; Li, Dapeng; Drews, Frank A; Siebeneck, Laura K; Lindell, Michael K

    2017-04-01

    Determining the most effective public warnings to issue during a hazardous environmental event is a complex problem. Three primary questions need to be answered: Who should take protective action? What is the best action? and When should this action be initiated? Warning triggers provide a proactive means for emergency managers to simultaneously answer these questions by recommending that a target group take a specified protective action if a preset environmental trigger condition occurs (e.g., warn a community to evacuate if a wildfire crosses a proximal ridgeline). Triggers are used to warn the public across a wide variety of environmental hazards, and an improved understanding of their nature and role promises to: (1) advance protective action theory by unifying the natural, built, and social themes in hazards research into one framework, (2) reveal important information about emergency managers' risk perception, situational awareness, and threat assessment regarding threat behavior and public response, and (3) advance spatiotemporal models for representing the geography and timing of disaster warning and response (i.e., a coupled natural-built-social system). We provide an overview and research agenda designed to advance our understanding and modeling of warning triggers. © 2016 Society for Risk Analysis.

  10. Simulation of Lightning Overvoltage Distribution on Stator Windings of Wind Turbine Generators

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; LIU Xue-zhong; WANG Ying; LI Dan-dan

    2011-01-01

    This paper analyzes lightning surge on the stator windings of wind turbine generators. The path of lightning in the wind turbines was analyzed. An equivalent circuit model for megawatt direct-driven wind turbine system was developed, in which high-frequency distributed parameters of the blade conducts, tower, power cables and stator windings of generator were calculated based on finite element method, and the models of converter, grounding, loads, surge protection devices and power grid were established. The voltage distribution along stator windings, when struck by lightning with 10/350 ~ts wave form and different amplitude current between 50 kA and 200 kA, was simulated u- sing electro-magnetic transient analysis method. The simulated results show that the highest coil-to-core voltage peak appears on the last coil or near the neutral of stator windings, and the voltage distribution along the windings is non- uniform initially. The voltage drops of each coil fall from first to last coil, and the highest voltage drop appears on the first coil. The insulation damage may occur on the windings under lightning overvoltage. The surge arresters can re- strain the lightning surge in effect and protect the insulation. The coil-to-core voltage in the end of windings is nearly 19.5 kV under the 200 kA lightning current without surge arresters on the terminal of generator, but is only 2.7 kV with arresters.

  11. Time Correlations of Lightning Flash Sequences in Thunderstorms Revealed by Fractal Analysis

    Science.gov (United States)

    Gou, Xueqiang; Chen, Mingli; Zhang, Guangshu

    2018-01-01

    By using the data of lightning detection and ranging system at the Kennedy Space Center, the temporal fractal and correlation of interevent time series of lightning flash sequences in thunderstorms have been investigated with Allan factor (AF), Fano factor (FF), and detrended fluctuation analysis (DFA) methods. AF, FF, and DFA methods are powerful tools to detect the time-scaling structures and correlations in point processes. Totally 40 thunderstorms with distinguishing features of a single-cell storm and apparent increase and decrease in the total flash rate were selected for the analysis. It is found that the time-scaling exponents for AF (αAF) and FF (αFF) analyses are 1.62 and 0.95 in average, respectively, indicating a strong time correlation of the lightning flash sequences. DFA analysis shows that there is a crossover phenomenon—a crossover timescale (τc) ranging from 54 to 195 s with an average of 114 s. The occurrence of a lightning flash in a thunderstorm behaves randomly at timescales τc but shows strong time correlation at scales >τc. Physically, these may imply that the establishment of an extensive strong electric field necessary for the occurrence of a lightning flash needs a timescale >τc, which behaves strongly time correlated. But the initiation of a lightning flash within a well-established extensive strong electric field may involve the heterogeneities of the electric field at a timescale τc, which behave randomly.

  12. Activity determination of the Am-241 radioactive lightning rods

    International Nuclear Information System (INIS)

    Dellamano, Jose C.; Minematsu, Denise; Potiens Jr, Ademar J.

    2008-01-01

    Full text: The radioactive lightning rods had been manufactured in Brazil up to 1989, when the Comissao Nacional de Energia Nuclear (CNEN) lifted the license for manufacture, commerce and installation of these devices. Since this date, the radioactive lightning rods have been replaced for conventional protection systems against electric discharges and have been sent to the institutes subordinated to the CNEN, amongst them the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP). The radioactive lightning rods are constituted in its majority for a central metallic rod where the plates are mounted. Am-241 radioactive sources are fixed in these plates. The treatment of these devices is made in a glove box, where mechanically the sources are separate of the plates and connecting rods, placed in a metallic package and stored for posterior characterization, final packaging, intermediate storage and final disposal. In accordance with manufacturers information had been installed in Brazil, approximately 75,000 units with activities varying between 25 and 92 MBq. Preliminary studies were carried out in some of the 16,000 lightning rods received by the Laboratorio de Rejeitos Radioativos (LRR) of the IPEN-CNEN/SP, and demonstrated that the variation of the values of activity is very bigger. The implantation of a methodology for the radioisotope characterization of the Am-241 removed sources of the radioactive lightning rods is important because the isotope inventory is necessary for the certification of the processes considered for packaging and storage, besides being indispensable data for the final disposal. It is convenient mentioning that one is not about the determination of activity of a radioactive source with geometry and defined characteristics, but the implantation of a measure protocol for groups of sources that will be used in the routine tasks of the LRR. The current work presents the methodology developed for the radioisotope characterization of the Am

  13. Upper limit set for level of lightning activity on Titan

    Science.gov (United States)

    Desch, M. D.; Kaiser, M. L.

    1990-01-01

    Because optically thick cloud and haze layers prevent lightning detection at optical wavelength on Titan, a search was conducted for lightning-radiated signals (spherics) at radio wavelengths using the planetary radioastronomy instrument aboard Voyager 1. Given the maximum ionosphere density of about 3000/cu cm, lightning spherics should be detectable above an observing frequency of 500 kHz. Since no evidence for spherics is found, an upper limit to the total energy per flash in Titan lightning of about 10 to the 6th J, or about 1000 times weaker than that of typical terrestrial lightning, is inferred.

  14. Risk-Based Evaluation of Flood Warning and Preparedness Systems. Volume 2 - Technical

    National Research Council Canada - National Science Library

    Haimes, Yacov Y

    1996-01-01

    ... for both structural and nonstructural measures. The unifing theme of these results is that the design and evaluation of structural and nonstructural measures for flood mitigation, including flood warning and preparedness systems, is an integrative...

  15. Interception efficiency of CVM-based lightning protection systems for buildings and the fractional Poisson model

    OpenAIRE

    Haller, Harold S.; Woyczynski, Wojbor A.

    2016-01-01

    The purpose of this paper is to resolve a question regarding efficiency of a lightning protection system (LPS) for buildings based on the collection volume method (CVM) . The paper has two components. The first, following suggestions of other authors [Abidin and Ibrahim 2004], takes advantage of count data from installed devices, and independent installation-site inspections to develop our statistical analysis. The second component investigates the validity of the underlying theory by introdu...

  16. An early record of ball lightning: Oliva (Spain), 1619

    Science.gov (United States)

    Domínguez-Castro, Fernando

    2018-05-01

    In a primary documentary source we found an early record of ball lightning (BL), which was observed in the monastery of Pi (Oliva, southeastern Spain) on 18 October 1619. The ball lightning was observed by at least three people and was described as a rolling burning vessel and a ball of fire. The ball lightning appeared following a lightning flash, showed a mainly horizontal motion, crossed a wall, smudged an image of the Lady of Rebollet (then known as Lady of Pi) and burnt her ruff, and overturned a cross.

  17. Ball lightning as a route to fusion energy

    International Nuclear Information System (INIS)

    Roth, J.R.

    1989-01-01

    The reality of ball lightning is attested to by observations reported in surveys of large populations, which are the subject of several books. These observations indicate that its characteristics may be relevant to fusion energy applications. Ball lightning can have a diameter up to several meters, a lifetime of over 100 seconds, an energy content in excess of 10 megajoules, and an energy density and a kinetic pressure greater than that of a reacting DT plasma. This paper reviews some of the properties of ball lightning which commend it to the attention of the fusion community, and it discusses some potential advantages and applications of ball lightning fusion reactors. 11 refs., 6 figs., 1 tab

  18. Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection

    Science.gov (United States)

    Gurecki, Jay; Scully, Robert; Davis, Allen; Kirkendall, Clay; Bucholtz, Frank

    2011-01-01

    A fiber-optic sensor system is designed to measure magnetic fields associated with a lightning stroke. Field vector magnitudes are detected and processed for multiple locations. Since physical limitations prevent the sensor elements from being located in close proximity to highly conductive materials such as aluminum, the copper wire sensor elements (3) are located inside a 4-cubic-in. (.66-cubic-cm) plastic housing sensor head and connected to a fiber-optic conversion module by shielded cabling, which is limited to the shortest length feasible. The signal path between the conversion module and the avionics unit which processes the signals are fiber optic, providing enhanced immunity from electromagnetic radiation incident in the vicinity of the measurements. The sensors are passive, lightweight, and much smaller than commercial B-dot sensors in the configuration which measures a three-dimensional magnetic field. The system is expandable, and provides a standard-format output signal for downstream processing. Inside of the sensor head, three small search coils, each having a few turns on a circular form, are mounted orthogonally inside the non-metallic housing. The fiber-optic conversion module comprises three interferometers, one for each search coil. Each interferometer has a high bandwidth optical phase modulator that impresses the signal received from its search coil onto its output. The output of each interferometer travels by fiber optic cable to the avionics unit, and the search coil signal is recovered by an optical phase demodulator. The output of each demodulator is fed to an analog-to-digital converter, whose sampling rate is determined by the maximum expected rate of rise and peak signal magnitude. The output of the digital processor is a faithful reproduction of the coil response to the incident magnetic field. This information is provided in a standard output format on a 50-ohm port that can be connected to any number of data collection and processing

  19. Dual-Polarization Radar Observations of Upward Lightning-Producing Storms

    Science.gov (United States)

    Lueck, R.; Helsdon, J. H.; Warner, T.

    2013-12-01

    The Upward Lightning Triggering Study (UPLIGHTS) seeks to determine how upward lightning, which originates from the tips of tall objects, is triggered by nearby flash activity. As a component of this study we analyze standard and dual-polarization weather radar data. The Correlation Coefficient (CC) in particular can be used to identify and quantify the melting layer associated with storms that produce upward lightning. It has been proposed that positive charge generation due to aggregate shedding at the melting layer results in a positive charge region just above the cloud base. This positive charge region may serve as a positive potential well favorable for negative leader propagation, which initiate upward positive leaders from tall objects. We characterize the horizontal coverage, thickness and height of the melting layer in addition to cloud base heights when upward lightning occurs to determine trends and possible threshold criteria relating to upward lightning production. Furthermore, we characterize storm type and morphology using relevant schemes as well as precipitation type using the Hydrometer Classification Algorithm (HCA) for upward lightning-producing storms. Ice-phase hydrometeors have been shown to be a significant factor in thunderstorm electrification. Only a small fraction of storms produce upward lightning, so null cases will be examined and compared as well.

  20. Technical implementation plan for the ShakeAlert production system: an Earthquake Early Warning system for the West Coast of the United States

    Science.gov (United States)

    Given, Douglas D.; Cochran, Elizabeth S.; Heaton, Thomas; Hauksson, Egill; Allen, Richard; Hellweg, Peggy; Vidale, John; Bodin, Paul

    2014-01-01

    Earthquake Early Warning (EEW) systems can provide as much as tens of seconds of warning to people and automated systems before strong shaking arrives. The United States Geological Survey (USGS) and its partners are developing such an EEW system, called ShakeAlert, for the West Coast of the United States. This document describes the technical implementation of that system, which leverages existing stations and infrastructure of the Advanced National Seismic System (ANSS) regional networks to achieve this new capability. While significant progress has been made in developing the ShakeAlert early warning system, improved robustness of each component of the system and additional testing and certification are needed for the system to be reliable enough to issue public alerts. Major components of the system include dense networks of ground motion sensors, telecommunications from those sensors to central processing systems, algorithms for event detection and alert creation, and distribution systems to alert users. Capital investment costs for a West Coast EEW system are projected to be $38.3M, with additional annual maintenance and operations totaling $16.1M—in addition to current ANSS expenditures for earthquake monitoring. An EEW system is complementary to, but does not replace, other strategies to mitigate earthquake losses. The system has limitations: false and missed alerts are possible, and the area very near to an earthquake epicenter may receive little or no warning. However, such an EEW system would save lives, reduce injuries and damage, and improve community resilience by reducing longer-term economic losses for both public and private entities.

  1. The communications industry's requirements and interests. [thunderstorm and lightning data useful to telephone operating companies

    Science.gov (United States)

    Wanaselja, O.

    1979-01-01

    Of interest to the communications industry are the amplitude, waveshape, duration and frequency of lightning-originated voltage surges and transients on the communications network, including the distribution system and AC power supply circuits. The cloud-to-ground lightning discharge and its characteristics are thought to be most meaningful. Of specific interest are peak current, waveshape, number of flashes, strokes per flash, and zone of influence. Accurate and meaningful lightning data at the local level (telephone district office) is necessary for a decision on the appropriate protection level. In addition to lightning, the protection engineer must consider other factors such as: AC induction, switching surges, ground potential rise, soil resistivity, bonding and grounding techniques, shielding and isolation, and exposure of the telephone loop.

  2. Lightning deaths: a retrospective review of New Mexico's cases, 1977-2009.

    Science.gov (United States)

    Pincus, Jennifer L; Lathrop, Sarah L; Briones, Alice J; Andrews, Sam W; Aurelius, Michelle B

    2015-01-01

    To better understand lightning deaths, a retrospective review of electronic records from New Mexico's Office of the Medical Investigator database was performed between 1977 and 2009 to update and assess current risk factors. Information on demographics, circumstances, autopsy, and death certificates were collected and analyzed. Fifty-four decedents were identified, ages 2-71 years old (mean 34 years old), 42 males and 12 females. Common racial/ethnic groups were non-Hispanic Whites and American Indians (together comprising 72% of all cases). Physical findings were often related to the heat carried by the electrical current including clothing alterations (29.6%) and burning of skin (53.7%). Most deaths occurred on weekend afternoons in summer months, associated with recreational activities or agricultural work, and rural locations (77.8%). Utilizing the demographic information, clustered events, and associated outdoor activities will assist in creating public awareness and provide a framework to support targeted warnings in an attempt to prevent future deaths. © 2014 American Academy of Forensic Sciences.

  3. Effects of stressor characteristics on early warning signs of critical transitions and "critical coupling" in complex dynamical systems.

    Science.gov (United States)

    Blume, Steffen O P; Sansavini, Giovanni

    2017-12-01

    Complex dynamical systems face abrupt transitions into unstable and catastrophic regimes. These critical transitions are triggered by gradual modifications in stressors, which push the dynamical system towards unstable regimes. Bifurcation analysis can characterize such critical thresholds, beyond which systems become unstable. Moreover, the stochasticity of the external stressors causes small-scale fluctuations in the system response. In some systems, the decomposition of these signal fluctuations into precursor signals can reveal early warning signs prior to the critical transition. Here, we present a dynamical analysis of a power system subjected to an increasing load level and small-scale stochastic load perturbations. We show that the auto- and cross-correlations of bus voltage magnitudes increase, leading up to a Hopf bifurcation point, and further grow until the system collapses. This evidences a gradual transition into a state of "critical coupling," which is complementary to the established concept of "critical slowing down." Furthermore, we analyze the effects of the type of load perturbation and load characteristics on early warning signs and find that gradient changes in the autocorrelation provide early warning signs of the imminent critical transition under white-noise but not for auto-correlated load perturbations. Furthermore, the cross-correlation between all voltage magnitude pairs generally increases prior to and beyond the Hopf bifurcation point, indicating "critical coupling," but cannot provide early warning indications. Finally, we show that the established early warning indicators are oblivious to limit-induced bifurcations and, in the case of the power system model considered here, only react to an approaching Hopf bifurcation.

  4. Forecasting Lightning Threat using Cloud-resolving Model Simulations

    Science.gov (United States)

    McCaul, E. W., Jr.; Goodman, S. J.; LaCasse, K. M.; Cecil, D. J.

    2009-01-01

    As numerical forecasts capable of resolving individual convective clouds become more common, it is of interest to see if quantitative forecasts of lightning flash rate density are possible, based on fields computed by the numerical model. Previous observational research has shown robust relationships between observed lightning flash rates and inferred updraft and large precipitation ice fields in the mixed phase regions of storms, and that these relationships might allow simulated fields to serve as proxies for lightning flash rate density. It is shown in this paper that two simple proxy fields do indeed provide reasonable and cost-effective bases for creating time-evolving maps of predicted lightning flash rate density, judging from a series of diverse simulation case study events in North Alabama for which Lightning Mapping Array data provide ground truth. One method is based on the product of upward velocity and the mixing ratio of precipitating ice hydrometeors, modeled as graupel only, in the mixed phase region of storms at the -15\\dgc\\ level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domainwide statistics of the peak values of simulated flash rate proxy fields against domainwide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. A blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Weather Research and Forecast Model simulations of selected North Alabama cases show that this model can distinguish the general character and intensity of most convective events, and that the proposed methods show promise as a means of generating

  5. CAMEX-3 LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-3 Lightning Instrument Package (LIP) dataset contains electrical field measurements of lightning within storms studied during the Convection And Moisture...

  6. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence

    International Nuclear Information System (INIS)

    Uman, M.A.; Rakov, V.A.; Elisme, J.O.; Jordan, D.M.; Biagi, C.J.; Hill, J.D.

    2008-01-01

    The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we give sets of constants for these expressions so that they yield approximately the median and extreme negative lightning parameters presented in this report. Expressions for the median negative lightning waveforms are plotted. Finally, we provide information on direct-strike lightning damage to metals such as stainless steel, which could be used as components of storage containers for nuclear waste materials; and we describe UF's new experimental research program to add to the sparse data base on the properties of positive lightning. Our literature survey, referred to above, is included in four Appendices. The following four sections (II, III, IV, and V) of this final report deal with related aspects of the research: Section II. Recommended Direct-Strike Median and Extreme Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and Appendix 4. Lightning Damage to Metal Surfaces

  7. Determination of the Global-Average Charge Moment of a Lightning Flash Using Schumann Resonances and the LIS/OTD Lightning Data

    Science.gov (United States)

    Boldi, Robert; Williams, Earle; Guha, Anirban

    2018-01-01

    In this paper, we use (1) the 20 year record of Schumann resonance (SR) signals measured at West Greenwich Rhode Island, USA, (2) the 19 year Lightning Imaging Sensor (LIS)/Optical Transient Detector (OTD) lightning data, and (3) the normal mode equations for a uniform cavity model to quantify the relationship between the observed Schumann resonance modal intensity and the global-average vertical charge moment change M (C km) per lightning flash. This work, by integrating SR measurements with satellite-based optical measurements of global flash rate, accomplishes this quantification for the first time. To do this, we first fit the intensity spectra of the observed SR signals to an eight-mode, three parameter per mode, (symmetric) Lorentzian line shape model. Next, using the LIS/OTD lightning data and the normal mode equations for a uniform cavity model, we computed the expected climatological-daily-average intensity spectra. We then regressed the observed modal intensity values against the expected modal intensity values to find the best fit value of the global-average vertical charge moment change of a lightning flash (M) to be 41 C km per flash with a 99% confidence interval of ±3.9 C km per flash, independent of mode. Mode independence argues that the model adequately captured the modal intensity, the most important fit parameter herein considered. We also tested this relationship for the presence of residual modal intensity at zero lightning flashes per second and found no evidence that modal intensity is significantly different than zero at zero lightning flashes per second, setting an upper limit to the amount of nonlightning contributions to the observed modal intensity.

  8. Tennessee Valley Total and Cloud-to-Ground Lightning Climatology Comparison

    Science.gov (United States)

    Buechler, Dennis; Blakeslee, R. J.; Hall, J. M.; McCaul, E. W.

    2008-01-01

    The North Alabama Lightning Mapping Array (NALMA) has been in operation since 2001 and consists often VHF receivers deployed across northern Alabama. The NALMA locates sources of impulsive VHF radio signals from total lightning by accurately measuring the time that the signals arrive at the different receiving stations. The sources detected are then clustered into flashes by applying spatially and temporally constraints. This study examines the total lightning climatology of the region derived from NALMA and compares it to the cloud-to-ground (CG) climatology derived from the National Lightning Detection Network (NLDN) The presentation compares the total and CG lightning trends for monthly, daily, and hourly periods.

  9. Assessment of early warning system performance and improvements since it is in operational phase in Romania

    Science.gov (United States)

    Ionescu, Constantin; Marmureanu, Alexandru; Marmureanu, Gheorghe; Ortansa Cioflan, Carmen

    2017-04-01

    Earthquake represents a major natural disaster for Romanian territory. The main goal following the occurrence of a strong earthquake is to minimize the total number of fatalities. A rapid early warning system (REWS) was developed in Romania in order to provide 25-35 seconds warning time to Bucharest facilities for the earthquakes with M>5.0. The system consists of four components: a network of strong motion sensors installed in the epicentral area, a redundant communication network, an automatic analyzing system located in the Romanian Data Centre and an alert distribution system. The detection algorithm is based on the magnitude computation using strong motion data and rapid evaluation and scaling relation between the maximum P-wave acceleration measured in the epicentral area and the higher ground motion amplitude recorded in Bucharest. In order to reduce the damages caused by earthquakes, the exploitation of the up to date technology is very important. The information is the key point in the disaster management, and the internet is one of the most used instrument, implying also low costs. The Rapid Early Warning System was expanded to cover all countries affected by major earthquakes originating in the Vrancea seismic area and reduce their impact on existing installations of national interest in neighbouring Romania and elsewhere. REWS provides an efficient instrument for prevention and reaction based on the integrated system for seismic detection in South-Eastern Europe. REWS has been operational since 2013 and sends alert the authorities, hazardous facilities in Romania and Bulgaria (NPP, emergency response agencies etc.) and to public via twitter and some smartphone applications developed in the house. Also, NIEP is part of the UNESCO initiative case on developing a platform on earthquake early warning systems (IP-MEP) that aims to promote and strengthen the development of earthquake early warning systems in earthquake-prone regions of the world by sharing

  10. Deaths and injuries as a result of lightning strikes to aircraft.

    Science.gov (United States)

    Cherington, M; Mathys, K

    1995-07-01

    Aircraft are at risk of being struck by lightning or triggering lightning as they fly through clouds. Commercial and private airplanes have been struck, with resultant deaths and injuries to passengers and crew. We were interested in learning how large a problem existed to the American public from lightning strikes to airplanes. We analyzed data from the National Transportation Safety Board (NTSB) on lightning-related accidents in the United States from 1963-89. NTSB recorded 40 lightning-related aircraft accidents. There were 10 commercial airplane accidents reported, 4 of which were associated with 260 fatalities and 28 serious injuries. There were 30 private aircraft accidents that accounted for 30 fatalities and 46 serious injuries. While lightning remains a potential risk to aircraft passengers and crew, modern airplanes are better equipped to lessen the dangers of accidents due to lightning.

  11. Lightning measurements from the Pioneer Venus Orbiter

    Science.gov (United States)

    Scarf, F. L.; Russell, C. T.

    1983-01-01

    The plasma wave instrument on the Pioneer Venus Orbiter frequently detects strong and impulsive low-frequency signals when the spacecraft traverses the nightside ionosphere near periapsis. These particular noise bursts appear only when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere thus; the signals have all characteristics of lightning whistlers. We have tried to identify lightning sources between the cloud layers and the planet itself by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set, consisting of measurements through Orbit 1185, strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with an additional significant cluster near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  12. Lightning activity during the 1999 Superior derecho

    Science.gov (United States)

    Price, Colin G.; Murphy, Brian P.

    2002-12-01

    On 4 July 1999, a severe convective windstorm, known as a derecho, caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators of severe weather.

  13. The Deep Space Gateway Lightning Mapper (DLM) — Monitoring Global Change and Thunderstorm Processes through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.

    2018-02-01

    We propose the Deep Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not observed by current and planned spaceborne lightning mappers.

  14. Dancing red sprites and the lightning activity in their parent thunderstorm

    Science.gov (United States)

    Bór, József; Zelkó, Zoltán; Hegedüs, Tibor; Jäger, Zoltán; Mlynarczyk, Janusz; Popek, Martin; Betz, Hans-Dieter

    2016-04-01

    Red sprites are brief optical emissions initiated in the mesosphere by intense tropospheric lightning discharges. A group of red sprites, in which the elements appear in rapid succession with some lateral offset from one another is referred to as a dancing sprite event. The occurrence of such events implies that significant and sequential charge removal extending to large regions of the thunderstorm can take place in the underlying cloud system. In this work, we examine the relation of the locations and observation times of appearing sprite elements to the temporal and spatial distribution of the lightning activity in a specific sprite-active thunderstorm. The selected mesoscale convective system (MCS) composed of several extremely active thundercloud cells crossed Central Europe from South-West to North-East through Germany, Austria, the Czech Republic, and Poland on the night of 6 August, 2013. This MCS has triggered over one hundred sprites including several dancing sprite events. Video recordings of sprites captured from Sopron, Hungary (16.6°E, 47.7°N) and Nydek, Czech Republic (18.8°E, 49.7°N) were used to identify dancing sprite events and to determine the exact locations of the appearing sprite elements by a triangulation technique used originally to analyze meteor observations. Lightning activity in the MCS can be reviewed using the database of LINET lightning detection network which fully covers the region of interest (ROI). The poster demonstrates how cases of sequential charge removal in the thunderstorm can be followed by combining the available information on the occurrence time, location, polarity, and type (CG/IC) of detected lightning strokes in the ROI on one hand and the occurrence time and location of elements in dancing sprite events on the other hand.

  15. Non-invasive, home-based electroencephalography hypoglycaemia warning system for personal monitoring using skin surface electrodes: a single-case feasibility study.

    Science.gov (United States)

    Clewett, Christopher J; Langley, Phillip; Bateson, Anthony D; Asghar, Aziz; Wilkinson, Antony J

    2016-03-01

    Hypoglycaemia unawareness is a common condition associated with increased risk of severe hypoglycaemia. The purpose of the authors' study was to develop a simple to use, home-based and non-invasive hypoglycaemia warning system based on electroencephalography (EEG), and to demonstrate its use in a single-case feasibility study. A participant with type 1 diabetes forms a single-person case study where blood sugar levels and EEG were recorded. EEG was recorded using skin surface electrodes placed behind the ear located within the T3 region by the participant in the home. EEG was analysed retrospectively to develop an algorithm which would trigger a warning if EEG changes associated with hypoglycaemia onset were detected. All hypoglycaemia events were detected by the EEG hypoglycaemia warning algorithm. Warnings were triggered with blood glucose concentration levels at or below 4.2 mmol/l in this participant and no warnings were issued when in euglycaemia. The feasibility of a non-invasive EEG-based hypoglycaemia warning system for personal monitoring in the home has been demonstrated in a single case study. The results suggest that further studies are warranted to evaluate the system prospectively in a larger group of participants.

  16. Lightning-based propagation of convective rain fields

    Directory of Open Access Journals (Sweden)

    S. Dietrich

    2011-05-01

    Full Text Available This paper describes a new multi-sensor approach for continuously monitoring convective rain cells. It exploits lightning data from surface networks to propagate rain fields estimated from multi-frequency brightness temperature measurements taken by the AMSU/MHS microwave radiometers onboard NOAA/EUMETSAT low Earth orbiting operational satellites. Specifically, the method allows inferring the development (movement, morphology and intensity of convective rain cells from the spatial and temporal distribution of lightning strokes following any observation by a satellite-borne microwave radiometer. Obviously, this is particularly attractive for real-time operational purposes, due to the sporadic nature of the low Earth orbiting satellite measurements and the continuous availability of ground-based lightning measurements – as is the case in most of the Mediterranean region. A preliminary assessment of the lightning-based rainfall propagation algorithm has been successfully made by using two pairs of consecutive AMSU observations, in conjunction with lightning measurements from the ZEUS network, for two convective events. Specifically, we show that the evolving rain fields, which are estimated by applying the algorithm to the satellite-based rainfall estimates for the first AMSU overpass, show an overall agreement with the satellite-based rainfall estimates for the second AMSU overpass.

  17. Evaluation of lightning performance of transmission lines protected by metal oxide surge arresters using artificial intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, C.A.; Perantzakis, G. [Technological Educational Institute (TEI) of Lamia, Department of Electrical Engineering, Lamia (Greece); Spanakis, G.E. [School of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece); Karampelas, P. [Hellenic American University, Manchester, NH (United States)

    2012-12-15

    Lightning and switching overvoltages are the main causes for faults in electrical networks. In the last decades, several different conventional methodologies have been used for the adjustment of the lightning performance of high voltage transmission lines, which are protected against lightning using overhead ground wires and surge arresters. The current paper proposes a new developed Artificial Neural Network (ANN), based on the Q-learning algorithm, in order to estimate the lightning failure rate of lines of the Hellenic system. The results obtained by the ANN model exhibit a satisfactory correlation in comparison with the real recorded data or the simulations results taken from a conventional method. (orig.)

  18. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  19. Long recovery VLF perturbations associated with lightning discharges

    Science.gov (United States)

    Salut, M. M.; Abdullah, M.; Graf, K. L.; Cohen, M. B.; Cotts, B. R. T.; Kumar, Sushil

    2012-08-01

    Long D-region ionospheric recovery perturbations are a recently discovered and poorly understood subcategory of early VLF events, distinguished by exceptionally long ionospheric recovery times of up to 20 min (compared to more typical ˜1 min recovery times). Characteristics and occurrence rates of long ionospheric recovery events on the NWC transmitter signal recorded at Malaysia are presented. 48 long recovery events were observed. The location of the causative lightning discharge for each event is determined from GLD360 and WWLLN data, and each discharge is categorized as being over land or sea. Results provide strong evidence that long recovery events are attributed predominately to lightning discharges occurring over the sea, despite the fact that lightning activity in the region is more prevalent over land. Of the 48 long recovery events, 42 were attributed to lightning activity over water. Analysis of the causative lightning of long recovery events in comparison to all early VLF events reveals that these long recovery events are detectable for lighting discharges at larger distances from the signal path, indicating a different scattering pattern for long recovery events.

  20. 3D modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn

    Science.gov (United States)

    Pérez-Invernón, Francisco J.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.

    2017-04-01

    Atmospheric electricity is a common phenomenon in some planets of The Solar System. We know that atmospheric discharges exist on Earth and gaseous planets; however, some characteristics of lightning on Saturn and Jupiter as well as their relevance on the effects of lightning in the atmospheres of these planets are still unknown. In the case of Venus, there exist some radio evidences of lightning, but the lack of optical observations suggests exploring indirect methods of detection, such as searching for lightning-induced transient optical emissions from the upper atmosphere. The Akatsuki probe, currently orbiting Venus, is equipped with a camera whose temporal resolution is high enough to detect optical emissions from lightning discharges and to measure nightglow enhancements. In this work, we extend previous models [1,2] to investigate the chemical impact and transient optical emissions produced by possible lightning-emitted electromagnetic pulses (EMP) in Venus, Saturn and Jupiter. Using a 3D FDTD ("Finite Differences Time Domain") model we solve the Maxwell equations coupled with the Langevin equation for electrons [3] and with a kinetic scheme, different for each planetary atmosphere. This method is useful to investigate the temporal and spatial impact of lightning-induced electromagnetic fields in the atmosphere of each planet for different lightning characteristics (e.g. energy released, orientation). This 3D FDTD model allows us to include the saturnian and jovian background magnetic field inclination and magnitude at different latitudes, and to determine the effects of different lightning channel inclinations. Results provide useful information to interpret lightning observations on giant gaseous planets and in the search for indirect optical signals from atmospheric discharge on Venus such as fast nightglow transient enhancements related to lightning as seen on Earth. Furthermore, we underline the observation of electrical discharges characteristics as a