WorldWideScience

Sample records for light-cured provisional cement

  1. Effect of provisional cements on shear bond strength of porcelain laminate veneers.

    Science.gov (United States)

    Altintas, Subutay Han; Tak, Onjen; Secilmis, Asli; Usumez, Aslihan

    2011-08-01

    The purpose of this study was to evaluate the effect of three provisional cements and two cleaning techniques on the final bond strength of porcelain laminate veneers. The occlusal third of the crowns of forty molar teeth were sectioned and embedded in autopolymerizing acrylic resin. Dentin surfaces were polished and specimens were randomly divided into four groups (n=10). Provisional restorations were fabricated and two provisional restorations were cemented onto each tooth. Restorations were fixed with one of three different provisional cements: eugenol-free provisional cement (Cavex), calcium hydroxide (Dycal), and light-cured provisional cement (Tempond Clear). Provisional restorations were removed with either a dental explorer and air-water spray, or a cleaning bur (Opticlean). In the control group, provisional restorations were not used on the surfaces of specimens. IPS Empress 2 ceramic discs were luted with a dual-cured resin cement (Panavia F). Shear bond strength was measured using a universal testing machine. Data were statistically analyzed by ANOVA, Tukey's HSD and Dunnett tests. Surfaces were examined by scanning electronic microscopy. Significant differences were found between the control group and both the light-cured provisional cement groups and the eugenol-free provisional cement-cleaning bur group (Pprovisional cement showed the lowest bond strength values. Selection of the provisional cement is an important factor in the ultimate bond strength of the final restoration. Calcium hydroxide provisional cement and cleaning with a dental explorer are advisable.

  2. Composite cements benefit from light-curing.

    Science.gov (United States)

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To investigate the effect of curing of composite cements and a new ceramic silanization pre-treatment on the micro-tensile bond strength (μTBS). Feldspathic ceramic blocks were luted onto dentin using either Optibond XTR/Nexus 3 (XTR/NX3; Kerr), the silane-incorporated 'universal' adhesive Scotchbond Universal/RelyX Ultimate (SBU/RXU; 3M ESPE), or ED Primer II/Panavia F2.0 (ED/PAF; Kuraray Noritake). Besides 'composite cement', experimental variables were 'curing mode' ('AA': complete auto-cure at 21°C; 'AA*': complete auto-cure at 37°C; 'LA': light-curing of adhesive and auto-cure of cement; 'LL': complete light-curing) and 'ceramic surface pre-treatment' ('HF/S/HB': hydrofluoric acid ('HF': IPS Ceramic Etching Gel, Ivoclar-Vivadent), silanization ('S': Monobond Plus, Ivoclar-Vivadent) and application of an adhesive resin ('HB': Heliobond, Ivoclar-Vivadent); 'HF/SBU': 'HF' and application of the 'universal' adhesive Scotchbond Universal ('SBU'; 3M ESPE, only for SBU/RXU)). After water storage (7 days at 37°C), ceramic-dentin sticks were subjected to μTBS testing. Regarding the 'composite cement', the significantly lowest μTBSs were measured for ED/PAF. Regarding 'curing mode', the significantly highest μTBS was recorded when at least the adhesive was light-cured ('LA' and 'LL'). Complete auto-cure ('AA') revealed the significantly lowest μTBS. The higher auto-curing temperature ('AA*') increased the μTBS only for ED/PAF. Regarding 'ceramic surface pre-treatment', only for 'LA' the μTBS was significantly higher for 'HF/S/HB' than for 'HF/SBU'. Complete auto-cure led to inferior μTBS than when either the adhesive (on dentin) or both adhesive and composite cement were light-cured. The use of a silane-incorporated adhesive did not decrease luting effectiveness when also the composite cement was light-cured. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Light curing through glass ceramics: effect of curing mode on micromechanical properties of dual-curing resin cements.

    Science.gov (United States)

    Flury, Simon; Lussi, Adrian; Hickel, Reinhard; Ilie, Nicoleta

    2014-04-01

    The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high

  4. CURING EFFICIENCY OF DUAL-CURE RESIN CEMENT UNDER ZIRCONIA WITH TWO DIFFERENT LIGHT CURING UNITS

    Directory of Open Access Journals (Sweden)

    Pınar GÜLTEKİN

    2015-04-01

    Full Text Available Purpose: Adequate polymerization is a crucial factor in obtaining optimal physical properties and a satisfying clinical performance from composite resin materials. The aim of this study was to evaluate the polymerization efficiency of dual-cure resin cement cured with two different light curing units under zirconia structures having differing thicknesses. Materials and Methods: 4 zirconia discs framework in 4 mm diameter and in 0.5 mm, 1 mm and 1.5 mm thickness were prepared using computer-aided design system. One of the 0.5 mm-thick substructures was left as mono-layered whereas others were layered with feldspathic porcelain of same thickness and ceramic samples with 4 different thicknesses (0.5, 1, 1.5 and 2.0 mm were prepared. For each group (n=12 resin cement was light cured in polytetrafluoroethylene molds using Light Emitting Diode (LED or Quartz-Tungsten Halogen (QHT light curing units under each of 4 zirconia based discs (n=96. The values of depth of cure (in mm and the Vickers Hardness Number values (VHN were evaluated for each specimen. Results: The use of LED curing unit produced a greater depth of cure compared to QTH under ceramic discs with 0.5 and 1 mm thickness (p<0.05.At 100μm and 300 μm depth, the LED unit produced significantly greater VHN values compared to the QTH unit (p<0.05. At 500 μm depth, the difference between the VHN values of LED and QTH groups were not statistically significant. Conclusion: Light curing may not result in adequate resin cement polymerization under thick zirconia structures. LED light sources should be preferred over QTH for curing dual-cure resin cements, especially for those under thicker zirconia restorations.

  5. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    Directory of Open Access Journals (Sweden)

    Anne Peutzfeldt

    2016-01-01

    Full Text Available This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM, High Power mode (HPM, or Xtra Power mode (XPM. Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2 (n=17. Vickers hardness (HV and indentation modulus (EIT were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α=0.05. Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p≤0.0001. Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p≤0.0021. However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  6. Effect of light-curing units, post-cured time and shade of resin cement on knoop hardness.

    Science.gov (United States)

    Reges, Rogério Vieira; Costa, Ana Rosa; Correr, Américo Bortolazzo; Piva, Evandro; Puppin-Rontani, Regina Maria; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2009-01-01

    The aim of this study was to evaluate the Knoop hardness after 15 min and 24 h of different shades of a dual-cured resin-based cement after indirect photoactivation (ceramic restoration) with 2 light-curing units (LCUs). The resin cement Variolink II (Ivoclar Vivadent) shade XL, A2, A3 and opaque were mixed with the catalyst paste and inserted into a black Teflon mold (5 mm diameter x 1 mm high). A transparent strip was placed over the mold and a ceramic disc (Duceram Plus, shade A3) was positioned over the resin cement. Light-activation was performed through the ceramic for 40 s using quartz-tungsten-halogen (QTH) (XL 2500; 3M ESPE) or light-emitting diode (LED) (Ultrablue Is, DMC) LCUs with power density of 615 and 610 mW/cm(2), respectively. The Koop hardness was measured using a microhardness tester HMV 2 (Shimadzu) after 15 min or 24 h. Four indentations were made in each specimen. Data were subjected to ANOVA and Tukey's test (alpha=0.05). The QTH LCU provided significantly higher (pcement showed lower Knoop hardness than the other shades for both LCUs and post-cure times.

  7. Influence of light-curing units and restorative materials on the micro hardness of resin cements

    Directory of Open Access Journals (Sweden)

    Kuguimiya Rosiane

    2010-01-01

    Full Text Available Aim: The aim of this study was to evaluate the effect of indirect restorative materials (IRMs and light-curing units (LCUs on the micro hardness of dual-cured resin cement. Materials and Methods: A total of 36 cylindrical samples (2 mm thick were prepared with dual-cured resin cement (Relyx ARC photo-activated with either a QTH (Optilight Plus for 40s or a LED (Radii light-curing unit for 65s. Photo-activation was performed through the 2-mm- thick IRMs and the samples were divided into six groups (n=6 according to the combination of veneering materials (without, ceramic and indirect resin and LCUs (QTH and LED. In the control group, the samples were light-cured with a QTH unit without the interposition of any restorative material. Vickers micro hardness test was performed on the top and bottom surfaces of each sample (load of 50 g for 15 secs. The data were statistically analyzed using a three-way ANOVA followed by Tukey x s post-hoc test ( P < 0.05. Results: There were no statistically significant differences on the top surface between the light curing-units ( P > 0.05; however, the LED provided greater hardness on the bottom surface when a ceramic material was used ( P < 0.05. The mean hardness in photo-activated samples, in which there was no interposition of indirect materials, was significantly greater ( P < 0.01. Conclusions: It may be concluded that the interposition of the restorative material decreased the micro hardness in the deeper cement layer. Such decrease, however, was lower when the ceramic was interposed and the cement light-cured with LED.

  8. Effect of light-curing method and indirect veneering materials on the Knoop hardness of a resin cement

    Directory of Open Access Journals (Sweden)

    Nelson Tetsu Iriyama

    2009-06-01

    Full Text Available This study evaluated the Knoop hardness of a dual-cured resin cement (Rely-X ARC activated solely by chemical reaction (control group or by chemical / physical mode, light-cured through a 1.5 mm thick ceramic (HeraCeram or composite (Artglass disc. Light curing was carried out using conventional halogen light (XL2500 for 40 s (QTH; light emitting diodes (Ultrablue Is for 40 s (LED; and Xenon plasma arc (Apollo 95E for 3 s (PAC. Bovine incisors had their buccal face flattened and hybridized. On this surface a rubber mold (5 mm in diameter and 1 mm in height was bulk filled with the resin cement. A polyester strip was seated for direct light curing or through the discs of veneering materials. After dry storage in the dark (24 h 37°C, the samples (n = 5 were sectioned for hardness (KHN measurements, taken in a microhardness tester (50 gF load 15 s. The data were statistically analyzed by ANOVA and Tukey's test (α = 0.05. The cement presented higher Knoop hardness values with Artglass for QTH and LED, compared to HeraCeram. The control group and the PAC/Artglass group showed lower hardness values compared to the groups light-cured with QTH and LED. PAC/HeraCeram resulted in the worst combination for cement hardness values.

  9. Comparative evaluation of marginal leakage of provisional crowns cemented with different temporary luting cements: In vitro study.

    Science.gov (United States)

    Arora, Sheen Juneja; Arora, Aman; Upadhyaya, Viram; Jain, Shilpi

    2016-01-01

    As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann-Whitney U-test, Kruskal-Wallis H-test and the results were statistically significant P provisional crowns cemented with three different luting cements along the axial walls of

  10. Effect of different light curing methods on mechanical and physical properties of resin-cements polymerized through ceramic discs

    Directory of Open Access Journals (Sweden)

    Isil Cekic-nagas

    2011-08-01

    Full Text Available OBJECTIVE: The aim of this study was to compare the polimerization ability of three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc and their exposure modes (high-intensity and soft-start by determination of microhardness, water sorption and solubility, and diametral tensile strength of 5 dual-curing resin cements. Material and methods: A total of 720 disc-shaped samples (1 mm height and 5 mm diameter were prepared from different dual-curing resin cements (Duolink, Nexus, Bifix-QM, Panavia F and RelyX Unicem. Photoactivation was performed by using quartz tungsten halogen (high-power and soft-up modes, light-emitting diode (standard and exponential modes and plasma arc (normal and ramp-curing modes curing units through ceramic discs. Then the samples (n=8/per group were stored dry in the dark at 37°C for 24 h. The Vickers hardness test was performed on the resin cement layer with a microhardness tester (Shimadzu HMV. For sorption and solubility tests; the samples were stored in a desiccator at 37°C and weighed to a constant mass. The samples were weighed both before and after being immersed in deionized water for different periods of time (24 h and 7 days and being desiccated. The diametral tensile strength of the samples was tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by nonparametric Kruskal Wallis and Mann-Whitney U tests at 5% significance level. RESULTS: Resin cement and light-curing unit had significant effects (p0.05 were obtained with different modes of LCUs. Conclusion: The study indicates that polymerization of resin cements with different light-curing units may result in various polymer structures, and consequently different mechanical and physical properties.

  11. Degree of conversion and surface hardness of resin cement cured with different curing units.

    Science.gov (United States)

    Ozturk, Nilgun; Usumez, Aslihan; Usumez, Serdar; Ozturk, Bora

    2005-01-01

    The aim of this study was to evaluate the degree of conversion and Vickers surface hardness of resin cement under a simulated ceramic restoration with 3 different curing units: a conventional halogen unit, a high-intensity halogen unit, and a light-emitting diode system. A conventional halogen curing unit (Hilux 550) (40 s), a high-intensity halogen curing unit used in conventional and ramp mode (Optilux 501) (10 s and 20 s, respectively), and a light-emitting diode system (Elipar FreeLight) (20 s, 40 s) were used in this study. The dual-curing resin cement (Variolink II) was cured under a simulated ceramic restoration (diameter 5 mm, height 2 mm), and the degree of conversion and Vickers surface hardness were measured. For degree of conversion measurement, 10 specimens were prepared for each group. The absorbance peaks were recorded using the diffuse-reflection mode of Fourier transformation infrared spectroscopy. For Vickers surface hardness measurement, 10 specimens were prepared for each group. A load of 200 N was applied for 15 seconds, and 3 evaluations of each of the samples were performed. Degree of conversion achieved with Optilux 501 (20 s) was significantly higher than those of Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). For Vickers surface hardness measurement, Optilux 501 (20 s) produced the highest surface hardness value. No significant differences were found among the Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). The high-intensity halogen curing unit used in ramp mode (20 s) produced harder resin cement surfaces than did the conventional halogen curing unit, high-intensity halogen curing unit used in conventional mode (10 s) and light-emitting diode system (20 s, 40 s), when cured through a simulated ceramic restoration.

  12. Influence of power density on the setting behaviour of light-cured glass-ionomer cements monitored by ultrasound measurements.

    Science.gov (United States)

    Tonegawa, Motoka; Yasuda, Genta; Chikako, Takubo; Tamura, Yukie; Yoshida, Takeshi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2009-07-01

    To monitor the influence of the power density of the curing unit on the setting behaviour of light-cured glass-ionomer cements (LCGICs) using ultrasound measurements. The ultrasound equipment comprised a pulser-receiver, transducers and an oscilloscope. The LCGICs used were Fuji II LC, Fuji II LC EM and Fuji Filling LC. The cements were mixed according to the manufacturer's instructions and then inserted into a transparent mould. The specimens were placed on the sample stage and cured with power densities of 0 (no irradiation), 200 or 600 mW/cm(2). The transit time through the cement disk was divided by the specimen thickness and then the longitudinal ultrasound velocity (V) within the material was obtained. Analysis of variance and Tukey's Honestly Significantly Different test were used to compare the V values between the set cements. When the LCGICs were light-irradiated, each curve displayed an initial plateau at approximately 1500 m/s and then rapidly increased to a second plateau at approximately 2600 m/s. The rate of increase of V was retarded when the cements were light-irradiated with a power density of 200 mW/cm(2) than with a power density of 600 mW/cm(2). Although sonic echoes were detected from the beginning of the measurements, the rates of increase of the sonic velocity were relatively slow when the cement was not light-irradiated. The ultrasound device monitored the setting processes of LCGICs accurately based on the longitudinal V. The polymerization behaviour of LCGICs was shown to be affected by the power density of the curing unit.

  13. Bond strength of orthodontic light-cured resin-modified glass ionomer cement.

    Science.gov (United States)

    Cheng, Hsiang Yu; Chen, Chien Hsiu; Li, Chuan Li; Tsai, Hung Huey; Chou, Ta Hsiung; Wang, Wei Nan

    2011-04-01

    The purpose of this study was to compare the bond strengths and debonded interfaces achieved with light-cured resin-modified glass ionomer cement (RMGIC) and conventional light-cured composite resin. In addition, the effects of acid etching and water contamination were examined. One hundred human premolars were randomly divided into five equal groups. The mini Dyna-lock upper premolar bracket was selected for testing. The first four groups were treated with light-cured RMGIC with or without 15 per cent phosphoric acid-etching treatment and with or without water contamination preceding bracket bonding. The control samples were treated with the conventional light-cured Transbond composite resin under acid etching and without water contamination. Subsequently, the brackets were debonded by tensile force using an Instron machine. The modified adhesive remnant index (ARI) scores were assigned to the bracket base of the debonded interfaces using a scanning electron microscope. The bond strength and modified ARI scores were determined and analysed statistically by one-way analysis of variance and chi-square test. Under all four conditions, the bond strength of the light-cure RMGIC was equal to or higher than that of the conventional composite resin. The highest bond strength was achieved when using RMGIC with acid etching but without water contamination. The modified ARI scores were 2 for Fuji Ortho LC and 3 for Transbond. No enamel detachment was found in any group. Fifteen per cent phosphoric acid etching without moistening the enamel of Fuji Ortho LC provided the more favourable bond strength. Enamel surfaces, with or without water contamination and with or without acid etching, had the same or a greater bond strength than Transbond.

  14. Effect of light energy density on conversion degree and hardness of dual-cured resin cement.

    Science.gov (United States)

    Komori, Paula Carolina de Paiva; de Paula, Andréia Bolzan; Martin, Airton Abrāo; Tango, Rubens Nisie; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2010-01-01

    This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm x 5 mm) and covered with a Mylar strip. The tip of the light-curing unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37 degrees C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (alpha = 0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the light-curing unit and by its light energy density.

  15. Microleakage of Glass Ionomer-based Provisional Cement in CAD/CAM-Fabricated Interim Crowns: An in vitro Study.

    Science.gov (United States)

    Farah, Ra'fat I; Al-Harethi, Naji

    2016-10-01

    The aim of this study was to compare in vitro the marginal microleakage of glass ionomer-based provisional cement with resin-based provisional cement and zinc oxide non-eugenol (ZONE) provisional cement in computer-aided design and computer-aided manufacturing (CAD/CAM)-fabricated interim restorations. Fifteen intact human premolars were prepared in a standardized manner for complete coverage of crown restorations. Interim crowns for the prepared teeth were then fabricated using CAD/CAM, and the specimens were randomized into three groups of provisional cementing agents (n = 5 each): Glass ionomer-based provisional cement (GC Fuji TEMP LT™), bisphenol-A-glycidyldimethacrylate (Bis-GMA)/ triethylene glycol dimethacrylate (TEGDMA) resin-based cement (UltraTemp® REZ), and ZONE cement (TempBond NE). After 24 hours of storage in distilled water at 37°C, the specimens were thermocycled and then stored again for 24 hours in distilled water at room temperature. Next, the specimens were placed in freshly prepared 2% aqueous methylene blue dye for 24 hours and then embedded in autopolymerizing acrylic resin blocks and sectioned in buccolingual and mesiodistal directions to assess dye penetration using a stereomicroscope. The results were statistically analyzed using a nonparametric Kruskal-Wallis test. Dunn's post hoc test with a Bonferroni correction test was used to compute multiple pairwise comparisons that identified differences among groups; the level of significance was set at p provisional cement demonstrated the lowest microleakage scores, which were statistically different from those of the glass ionomer-based provisional cement and the ZONE cement. The provisional cementing agents exhibited different sealing abilities. The Bis-GMA/TEGDMA resin-based provisional cement exhibited the most effective favorable sealing properties against dye penetration compared with the glass ionomer-based provisional cement and conventional ZONE cement. Newly introduced glass

  16. The Effect of Lithium Disilicate Ceramic Thickness and Translucency on Shear Bond Strength of Light-cured Resin Cement

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Moghaddas

    2017-09-01

    Full Text Available Introduction: To achieve acceptable clinical performance, a ceramic veneer must be bonded to enamel by well-polymerized resin cement. Among different factors, thickness and translucency of the ceramic may affect the resin cement polymerization. Thus, the current study evaluated the effect of the thickness and translucency of lithium disilicate ceramic on light-cured resin cement bond strength to enamel. Methods: In this laboratory study, 208 sound bovine incisors were equally divided into 16 groups (n = 13. The lithium disilicate ceramic cubes in four thicknesses (0.4, 0.6, 0.8 and 1 mm with four translucencies (high and medium opaque, high and low translucent were fabricated and bonded to prepared enamel surfaces using a light-cured translucent resin cement according to manufacturer recommendations. After 5000 cycles of thermocycling, the bonded specimens were placed in a universal testing machine and loaded to the point of fracture. To determine the mode of failure, each sample was observed under a stereomicroscope. Data were recorded and analyzed by Shapiro-Wilk test and two-way analysis of variance (ANOVA. Results: The ceramic thickness and translucency could not significantly affect shear bond strength (SBS of resin cement to enamel (p = 0.17 and p = 0.097, respectively.  The Adhesive and ceramic cohesive failures were reported as the maximum and minimum mode of failure, respectively. Conclusion: The SBS of the light-cured resin cement bonding to enamel and lithium disilicate ceramic was not affected by the translucency of ceramics having a thickness of less than 1 mm.

  17. Effect of Provisional Cements on Shear Bond Strength of Porcelain Laminate Veneers

    OpenAIRE

    Altintas, Subutay Han; Tak, Onjen; Secilmis, Asli; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to evaluate the effect of three provisional cements and two cleaning techniques on the final bond strength of porcelain laminate veneers. Methods: The occlusal third of the crowns of forty molar teeth were sectioned and embedded in autopolymerizing acrylic resin. Dentin surfaces were polished and specimens were randomly divided into four groups (n=10). Provisional restorations were fabricated and two provisional restorations were cemented onto each to...

  18. Evaluation of compatibility between different types of adhesives and dual-cured resin cement.

    Science.gov (United States)

    Franco, Eduardo B; Lopes, Lawrence G; D'alpino, Paulo H P; Pereira, José C; Mondelli, Rafael F L; Navarro, Maria F L

    2002-01-01

    The objective of this in vitro study was to evaluate the bonding compatibility between different adhesives and a dual-cured resin cement, using a conventional tensile bond test. The adhesives used were: Prime & Bond (PB) (Dentsply) (PB), Scotchbond Multi Purpose (SB) (3M), and the activator Self Cure (SC) (Dentsply). The dual-curing resin cement used was Enforce (EF) (Dentsply). Six groups with five specimens in each were tested: G1: EF/PB/EF (light cured); G2: EF/SB/EF (light cured); G3: EF/PB+SC/EF (light cured); G4: EF/PB+SC/EF (only chemically cured); G5: EF/EF (light cured); G6: EF/EF (only chemically cured). The resin cement was applied in two stainless steel molds with a cone-shaped perforation measuring 4 mm in diameter and 1 mm in thickness, and the adhesive was applied between them. Ten minutes after specimens were cured, the tensile strength was measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The mean values (MPa) +/- SD obtained in each experimental group were: G1: 1.4 +/- 0.2; G2: 1.3 +/- 0.2; G3: 1.2 +/- 0.4; G4: 0.8 +/- 0.2; G5: 1.2 +/- 0.1; G6: 0.7 +/- 0.1. The results were statistically evaluated using nonparametric Kruskal-Wallis and Dunn tests (p adhesives used with dual-cured resin cement. The lowest tensile bond strength values occurred in the absence of photoactivation.

  19. Polymerization of dual cure resin cements applied for luting tooth colored fiber posts

    Directory of Open Access Journals (Sweden)

    Ghavam M.

    2007-05-01

    Full Text Available Background and Aim: Insufficient polymerization of resin cements is of considerable clinical importance, because of mechanical deficiencies and biological side effects of uncured resin. Dual cure resin cements are getting popular in luting tooth colored posts and although their curing is claimed to proceed chemically, polymerization efficiency in deep areas of canal is uncertain. The aim of this study was to evaluate degree of polymerization of dual-cure resin cements used for luting translucent and opaque fiber posts in different distances from the light tip. Materials and Methods: In this experimental in vitro study, degree of conversion of two dual cured resin cements, Rely X ARC (3M, ESPE and Nexus 2 (Kerr, USA were measured when used with DT-Light and DT-White posts (RTD, France. The light curing unit used was Optilux 501, with output of 650-700 mw/cm2 with emitting time of 60 seconds. Degree of conversion was measured in three different depths (4, 6, 8 mm by FTIR. The data were analyzed using ANOVA and Post hoc tests. P0.05. Nexus used with DT-Light had lower DC% in 8 mm depth (P<0.05. Nexus used with DT-White showed lower DC% in 8 mm depth compared to 4 mm depth. The control groups of both cements showed significant increased DC% in 4 mm depth compared to 6 and 8 mm depths (P<0.05. DT-White caused decreased DC% in both cements in 4 mm. DT-Light caused increased DC% of Rely X in 6 mm depth compared to DT-White and control. DT-Light increased DC% of Nexus in 6 and 8 mm depths, compared to DT-White and control groups. Conclusion: Based on the results of this study, application of translucent fiber posts has a significant effect on degree of polymerization in dual-cure resin cements, compared to opaque types. Their better light transmission to deep areas due to the effect of optical fibers, can lead to better results.

  20. Influence of light curing unit and ceramic thickness on temperature rise during resin cement photo-activation.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Mastrofrancisco, Sarina; Consani, Rafael Leonardo Xediek; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2008-11-01

    The aim of this study was to determine the effect of different ceramic thickness on heat generation during resin cement photo-activation by QTH (quartz-tungsten-halogen), LED (light emitting diode), and PAC (plasma arc-curing) LCUs (light curing units). The resin cement used was Rely X ARC (3M-ESPE), and the ceramic was IPS Empress Esthetic (Ivoclar-Vivadent), of which 0.7-, 1.4- and 2.0-mm thick disks, 0.8 mm in diameter were made. Temperature increase was recorded with a type-K thermocouple connected to a digital thermometer (Iopetherm 46). An acrylic resin base was built to guide the thermocouple and support the 1.0-mm thick dentin disk. A 0.1-mm thick black adhesive paper matrix with a perforation 6 mm in diameter was placed on the dentin to contain the resin cement and support the ceramic disks of different thicknesses. Three LCUs were used: QTH, LED and PAC. Nine groups were formed (n=10) according to the interaction: 3 ceramic thicknesses, 1 resin cement and 3 photo-activation methods. Temperature increase data were submitted to Tukey's test (5%). For all ceramic thicknesses, a statistically significant difference in temperature increase was observed among the LCUs, with the highest mean value for the QTH LCU (p0.05). The interaction of higher energy density with smaller ceramic thickness showed higher temperature increase values.

  1. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    Directory of Open Access Journals (Sweden)

    Veridiana Resende NOVAIS

    Full Text Available Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC and one light-cured (Variolink Veneer. The dual-cured resin cements were tested by using the dual activation mode (base and catalyst and light-activation mode (base paste only. For degree of conversion (DC (n=5, a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR. For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05. Scanning electron microscopy (SEM was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.

  2. Influence of energy density of different light sources on knoop hardness of a dual-cured resin cement

    Directory of Open Access Journals (Sweden)

    Evandro Piva

    2008-06-01

    Full Text Available The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs were tested: tungsten halogen light (HAL, light-emitting diode (LED and xenon plasma-arc (PAC lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce. Three energy doses were used by modifying the irradiance (I of each LCU and the irradiation time (T: 24 Jcm-2 (I/2x2T, 24 Jcm-2 (IxT and 48 Jcm-2 (Ix2T. Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus. Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10. Knoop hardness number (KHN means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (a=5%. Application of 48 J.cm-2 energy dose through the ceramic using LED (50.5±2.8 and HAL (50.9±3.7 produced significantly higher KHN means (p<0.05 than the control (44.7±3.8. LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.

  3. Influence of energy density of different light sources on Knoop hardness of a dual-cured resin cement.

    Science.gov (United States)

    Piva, Evandro; Correr-Sobrinho, Lourenço; Sinhoreti, Mario Alexandre Coelho; Consani, Simonides; Demarco, Flávio Fernando; Powers, John Michael

    2008-01-01

    The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs) were tested: tungsten halogen light (HAL), light-emitting diode (LED) and xenon plasma-arc (PAC) lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce). Three energy doses were used by modifying the irradiance (I) of each LCU and the irradiation time (T): 24 Jcm(-2) (I/2x2T), 24 Jcm(-2) (IxT) and 48 Jcm(-2) (Ix2T). Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus). Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10). Knoop hardness number (KHN) means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (alpha=5%). Application of 48 J.cm(-2) energy dose through the ceramic using LED (50.5+/-2.8) and HAL (50.9+/-3.7) produced significantly higher KHN means (p<0.05) than the control (44.7+/-3.8). LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.

  4. Effect of different provisional cement remnant cleaning procedures including Er:YAG laser on shear bond strength of ceramics

    OpenAIRE

    Zortuk, Mustafa; Gumus, Hasan Onder; Kilinc, Halil Ibrahim; Tuncdemir, Ali Riza

    2012-01-01

    PURPOSE The purpose of this study was to evaluate the effect of provisional cement removal by different dentin cleaning protocols (dental explorer, pumice, cleaning bur, Er:YAG laser) on the shear bond strength between ceramic and dentin. MATERIALS AND METHODS In total, 36 caries-free unrestored human third molars were selected as tooth specimens. Provisional restorations were fabricated and cemented with eugenol-free provisional cement. Then, disc-shaped ceramic specimens were fabricated and...

  5. Heat transfer properties and thermal cure of glass-ionomer dental cements.

    Science.gov (United States)

    Gavic, Lidia; Gorseta, Kristina; Glavina, Domagoj; Czarnecka, Beata; Nicholson, John W

    2015-10-01

    Under clinical conditions, conventional glass-ionomer dental cements can be cured by application of heat from dental cure lamps, which causes acceleration in the setting. In order for this to be successful, such heat must be able to spread sufficiently through the cement to enhance cure, but not transmit heat so effectively that the underlying dental pulp of the tooth is damaged. The current study was aimed at measuring heat transfer properties of modern restorative glass-ionomers to determine the extent to which they meet these twin requirements. Three commercial glass ionomer cements (Ionofil Molar, Ketac Molar and Equia™ Fill) were used in association with three different light emitting diode cure lamps designed for clinical use. In addition, for each cement, one set of specimens was allowed to cure without application of a lamp. Temperature changes were measured at three different depths (2, 3 and 4 mm) after cure times of 20, 40 and 60 s. The difference among the tested groups was evaluated by ANOVA (P heat irradiation, but much greater temperature increases when exposed to the cure lamp. However, temperature rises did not exceed 12.9 °C. Application of the cure lamp led to the establishment of a temperature gradient throughout each specimen. Differences were typically significant (P heating effect. Because the thermal conductivity of glass-ionomers is low, temperature rises at 4 mm depths were much lower than at 2 mm. At no time did the temperature rise sufficiently to cause concern about potential damage to the pulp.

  6. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation.

    Science.gov (United States)

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-12-15

    To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation.

  7. Effect of different provisional cement remnant cleaning procedures including Er:YAG laser on shear bond strength of ceramics.

    Science.gov (United States)

    Zortuk, Mustafa; Gumus, Hasan Onder; Kilinc, Halil Ibrahim; Tuncdemir, Ali Riza

    2012-11-01

    The purpose of this study was to evaluate the effect of provisional cement removal by different dentin cleaning protocols (dental explorer, pumice, cleaning bur, Er:YAG laser) on the shear bond strength between ceramic and dentin. In total, 36 caries-free unrestored human third molars were selected as tooth specimens. Provisional restorations were fabricated and cemented with eugenol-free provisional cement. Then, disc-shaped ceramic specimens were fabricated and randomly assigned to four groups of dentin cleaning protocols (n = 9). Group 1 (control): Provisional cements were mechanically removed with a dental explorer. Group 2: The dentin surfaces were treated with a cleaning brush with pumice Group 3: The dentin surfaces were treated with a cleaning bur. Group 4: The provisional cements were removed by an Er:YAG laser. Self-adhesive luting cement was used to bond ceramic discs to dentin surfaces. Shear bond strength (SBS) was measured using a universal testing machine at a 0.05 mm/min crosshead speed. The data were analyzed using a Kolmogorov Smirnov, One-way ANOVA and Tukey HSD tests to perform multiple comparisons (α=0.05). THE DENTIN CLEANING METHODS DID NOT SIGNIFICANTLY AFFECT THE SBS OF CERAMIC DISCS TO DENTIN AS FOLLOWS: dental explorer, pumice, cleaning bur, and Er:YAG laser. The use of different cleaning protocols did not affect the SBS between dentin and ceramic surfaces.

  8. Influence of power density and primer application on polymerization of dual-cured resin cements monitored by ultrasonic measurement.

    Science.gov (United States)

    Takubo, Chikako; Yasuda, Genta; Murayama, Ryosuke; Ogura, Yukari; Tonegawa, Motoka; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2010-08-01

    We used ultrasonic measurements to monitor the influence of power density and primer application on the polymerization reaction of dual-cured resin cements. The ultrasonic equipment comprised a pulser-receiver, transducers, and an oscilloscope. Resin cements were mixed and inserted into a transparent mould, and specimens were placed on the sample stage, onto which the primer, if used, was also applied. Power densities of 0 (no irradiation), 200, or 600 mW cm(-2) were used for curing. The transit time through the cement disk was divided by the specimen thickness to obtain the longitudinal sound velocity. When resin cements were light-irradiated, each curve displayed an initial plateau of approximately 1,500 m s(-1), which rapidly increased to a second plateau of 2,300-2,900 m s(-1). The rate of sound velocity increase was retarded when the cements were light-irradiated at lower power densities, and increased when the primer was applied. The polymerization behaviour of dual-cured resin cements was therefore shown to be affected by the power density of the curing unit and the application of self-etching primer. (c) 2010 The Authors. Journal compilation (c) 2010 Eur J Oral Sci.

  9. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

    Directory of Open Access Journals (Sweden)

    Adriano Fonseca Lima

    2016-11-01

    Full Text Available Objectives In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs on the degree of conversion (DC and the mechanical properties of resin cements. Materials and Methods Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG, according to the different radiant exposures (5, 10, and 20 J/cm2 and two LCUs (single-peak and polywave. The specimens were made (7 mm in length × 2 mm in width × 1 mm in height using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA and post hoc Tukey's test were performed. Results No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

  10. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements

    International Nuclear Information System (INIS)

    Camarini, G.; Djanikian, J.G.

    1994-01-01

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95 0 C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab

  11. 3D printed versus conventionally cured provisional crown and bridge dental materials.

    Science.gov (United States)

    Tahayeri, Anthony; Morgan, MaryCatherine; Fugolin, Ana P; Bompolaki, Despoina; Athirasala, Avathamsa; Pfeifer, Carmem S; Ferracane, Jack L; Bertassoni, Luiz E

    2018-02-01

    To optimize the 3D printing of a dental material for provisional crown and bridge restorations using a low-cost stereolithography 3D printer; and compare its mechanical properties against conventionally cured provisional dental materials. Samples were 3D printed (25×2×2mm) using a commercial printable resin (NextDent C&B Vertex Dental) in a FormLabs1+ stereolithography 3D printer. The printing accuracy of printed bars was determined by comparing the width, length and thickness of samples for different printer settings (printing orientation and resin color) versus the set dimensions of CAD designs. The degree of conversion of the resin was measured with FTIR, and both the elastic modulus and peak stress of 3D printed bars was determined using a 3-point being test for different printing layer thicknesses. The results were compared to those for two conventionally cured provisional materials (Integrity ® , Dentsply; and Jet ® , Lang Dental Inc.). Samples printed at 90° orientation and in a white resin color setting was chosen as the most optimal combination of printing parameters, due to the comparatively higher printing accuracy (up to 22% error), reproducibility and material usage. There was no direct correlation between printing layer thickness and elastic modulus or peak stress. 3D printed samples had comparable modulus to Jet ® , but significantly lower than Integrity ® . Peak stress for 3D printed samples was comparable to Integrity ® , and significantly higher than Jet ® . The degree of conversion of 3D printed samples also appeared higher than that of Integrity ® or Jet ® . Our results suggest that a 3D printable provisional restorative material allows for sufficient mechanical properties for intraoral use, despite the limited 3D printing accuracy of the printing system of choice. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Effect of modified cementation technique on marginal fit and apical spread of excess cement for implant restorations: An in vitro study

    Directory of Open Access Journals (Sweden)

    Brijesh Patel

    2016-01-01

    Full Text Available Aim: To investigate and compare the vertical marginal discrepancy and spread of excess cement after cementation with modified cementation technique and conventional technique. Materials and Methods: Ten implant analogs with prefabricated standard abutments of similar dimensions were mounted individually in self-cure acrylic blocks subcrestally. Forty ideal metal coping specimens were prepared by conventional lost wax technique. Measurement of the marginal discrepancy at the implant-crown interface was done using a stereomicroscope before cementation. Abutment replicas (ARs were prepared for twenty specimens using cast copings and pattern resin. All forty copings were cemented according to the following cementation techniques and cement types, with ten specimens in each group. (1 Group 1: Half filling (HF cementation technique using provisional cement. (2 Group 2: HF cementation technique using permanent cement. (3 Group 3: AR technique using provisional cement. (4 Group 4: AR technique using permanent cement. Specimens were subjected to measurement of marginal discrepancy and spread of excess cement using stereomicroscope after cementation procedure. Data were analyzed using paired t-test and unpaired t-test. Results: AR technique showed significantly less marginal discrepancy (P = 0.000 and apical spread of excess cement (P = 0.002 than conventional HF technique. Provisional cement showed significantly more marginal discrepancy (HF-P = 0.000 and AR-P = 0.001 and less apical spread of excess cement (HF-P = 0.023 and AR-P = 0.002 and among both technique. Statistical Analysis: Unpaired t-test. Conclusion: An alternative technique of using AR is effective technique to prevent peri-implant diseases.

  13. Using bio-based polymers for curing cement-based materials

    NARCIS (Netherlands)

    Zlopasa, J.; Koenders, E.A.B.; Picken, S.J.

    2014-01-01

    Curing is the process of controlling the rate and extent of moisture loss from the surface of cement based materials. It is the final stage in the production of cement-based materials and it is the essential part for achieving continuous hydration of cement, while avoiding cracking due to drying

  14. Pre-heated dual-cured resin cements: analysis of the degree of conversion and ultimate tensile strength

    Directory of Open Access Journals (Sweden)

    Flávio Álvares França

    2011-04-01

    Full Text Available This study evaluated the degree of conversion (DC and ultimate tensile strength (UTS of dual-cured resin cements heated to 50º C prior to and during polymerization. Disc- and hourglass-shaped specimens of Rely X ARC (RX and Variolink II (VII were obtained using addition silicon molds. The products were manipulated at 25º C or 50º C and were subjected to 3 curing conditions: light-activation through a glass slide or through a pre-cured 2-mm thick resin composite disc, or they were allowed to self-cure (SC. All specimens were dark-stored dry for 15 days. For DC analysis, the resin cements were placed into the mold located on the center of a horizontal diamond on the attenuated total reflectance element in the optical bench of a Fourier Transformed Infrared spectrometer. Infrared spectra (n = 6 were collected between 1680 and 1500 cm-1, and DC was calculated by standard methods using changes in ratios of aliphatic-to-aromatic C=C absorption peaks from uncured and cured states. For UTS test, specimens (n = 10 were tested in tension in a universal testing machine (crosshead speed of 1 mm/min until failure. DC and UTS data were submitted to 2-way ANOVA, followed by Tukey's test (α= 5%. Both products showed higher DC at 50º C than at 25º C in all curing conditions. No significant difference in UTS was noted between most light-activated groups at 25º C and those at 50º C. VII SC groups showed higher UTS at 50º C than at 25º C (p < 0.05. Increased temperature led to higher DC, but its effects on resin cement UTS depended on the curing condition.

  15. Strontium binding to cement paste cured at different temperature

    International Nuclear Information System (INIS)

    Peterson, V.K.; Ray, A.

    1999-01-01

    Concentration - depth profiles were measured using Proton Induced X-ray Emission (PIXE). These results were used as a measure of the Sr 2+ retention abilities of each matrix. Ordinary Portland cement (OPC) and cemented clinoptilolite samples were cured at 25 deg C, 60 deg C and 150 deg C. As expected, the Sr 2+ penetration depth increased with increasing OPC cure temperature, caused by an increase in sample permeability. Surprisingly, the penetration depths of Sr 2+ increased with the addition of clinoptilolite to the OPC, also thought to be caused by an increase in sample permeability. However, the increase in penetration depth was reduced in samples cured at higher temperatures

  16. The effect of cure conditions on the stability of cement waste forms after immersion in water

    International Nuclear Information System (INIS)

    Siskind, B.; Adams, J.W.; Clinton, J.H.; Piciulo, P.L.; McDaniel, K.

    1988-01-01

    We investigated the effects of curing conditions on the stability of cement-solidified ion-exchange resins after immersion in water. The test specimens consisted of partially depleted mixed-bed bead resins solidified in one of three vendor-supplied Portland I cement formulations, in a reference cement formulation, or in a gypsum-based binder formulation. We cured samples prepared using each formulation in sealed containers for periods of 7, 14, or 28 days as well as in air or with an accelerated heat cure prior to 90-day immersion in water. Two cement formulations exhibited apparent Portland-cement-like behavior, i.e., compressive strength increased or stabilized with increasing cure time. Two cement formulations exhibited behavior apparently unlike that of Portland cement, i.e., compressive strength decreased with increasing cure time. Such non-Portland-cement-like behavior is correlated with higher waste loadings. The gypsum-based formulation exhibited approximately constant compressive strength with cure time. Accelerated heat cures may not give compressive strengths representative of real-time cures. Some physical deterioration (cracking, spalling) of the waste form occurs during immersion

  17. The effect of cure conditions on the stability of cement waste forms after immersion in water

    International Nuclear Information System (INIS)

    Siskind, B.; Adams, J.W.; Clinton, J.H.; Piciulo, P.L.

    1988-01-01

    The authors investigated the effects of curing conditions on the stability of cement-solidified ion-exchange resins after immersion in water. The test specimens consisted of partially depleted mixed-bed bead resins solidified in one of three vendor-supplied Portland I cement formulations, in a reference cement formulation, or in a gypsum-based binder formulation. They cured samples prepared using each formulation in sealed containers for periods of 7, 14, or 28 days as well as in air or with an accelerated heat cure prior to 90-day immersion in water. Two cement formulations exhibited apparent Portland-cement-like behavior, i.e., compressive strength increased or stabilized with increasing cure time. Two cement formulations exhibited behavior apparently unlike that of Portland cement, i.e. compressive strength decreased with increasing cure time. Such non-Portland-cement-like behavior is correlated with higher waste loadings. The gypsum-based formulation exhibited approximately constant compressive strength with cure time. Accelerated heat cures may not give compressive strengths representative of real-time cures. Some physical deterioration (cracking, spalling) of the waste form occurs during immersion

  18. Effect of water curing duration on strength behaviour of portland composite cement (PCC) mortar

    Science.gov (United States)

    Caronge, M. A.; Tjaronge, M. W.; Hamada, H.; Irmawaty, R.

    2017-11-01

    Cement manufacturing of Indonesia has been introduced Portland Composite Cement (PCC) to minimize the rising production cost of cement which contains 80% clinker and 20% mineral admixture. A proper curing is very important when the cement contains mineral admixture materials. This paper reports the results of an experimental study conducted to evaluate the effect of water curing duration on strength behaviour of PCC mortar. Mortar specimens with water to cement ratio of (W/C) 0.5 were casted. Compressive strength, flexural strength and concrete resistance were tested at 7, 28 and 91 days cured water. The results indicated that water curing duration is essential to continue the pozzolanic reaction in mortar which contributes to the development of strength of mortar made with PCC.

  19. Effect of wet curing duration on durability parameters of hydraulic cement concretes.

    Science.gov (United States)

    2010-01-01

    Hydraulic cement concrete slabs were cast and stored outdoors in Charlottesville, Virginia, to study the impact of wet curing duration on durability parameters. Concrete mixtures were produced using portland cement, portland cement with slag cement, ...

  20. Light irradiance through novel CAD-CAM block materials and degree of conversion of composite cements.

    Science.gov (United States)

    Lise, Diogo Pedrollo; Van Ende, Annelies; De Munck, Jan; Yoshihara, Kumiko; Nagaoka, Noriyuki; Cardoso Vieira, Luiz Clovis; Van Meerbeek, Bart

    2018-02-01

    To assess light irradiance (LI) delivered by two light-curing units (LCU's) and to measure the degree of conversion (DC) of three composite cements, when cured through different thicknesses of two novel CAD-CAM block materials. 100-μm-thick films of a dual-curable composite cement (G-CEM LinkAce, GC), a light-curable flowable resin-based composite (RBC) (G-ænial Universal Flo, GC) and a micro-hybrid RBC (G-ænial Posterior, GC) were investigated as luting agents. Two 'polymer-ceramic' CAD-CAM blocks (Cerasmart, GC; Enamic, Vita Zahnfabrik) were sectioned in slabs with different thicknesses (1, 3 and 5mm). LI at the bottom of the specimens was measured using a calibrated spectrometer, while being light-cured through the CAD-CAM block slabs for 40s with a low- (±500mW/cm 2 ) or high- (±1,600mW/cm 2 ) irradiance LCU (n=5). After light-curing, micro-Raman spectra of the composite films were acquired to determine DC at 5min, 10min, 1h and 24h. LI data were statistically analyzed by Kruskal-Wallis followed by post-hoc comparisons, while a linear mixed-effect model was applied for the DC analysis. In addition, the CAD-CAM blocks ultrastructure was characterized upon argon-ion slicing using scanning transmission electron microscopy (STEM). Finally, light transmission (LT) through each CAD-CAM block material was assessed using a spectrophotometer. Curing-light attenuation and DC were significantly influenced by thickness and type of the overlying material. LCU only had a significant effect on DC of the micro-hybrid RBC. DC significantly increased over time for all composite cements. CAD-CAM block structural analysis revealed a relatively small and homogenous filler configuration (mean filler size of 0.2-0.5μm) for Cerasmart, while Enamic contained ceramic grains varying in shape and size (1-10μm), which were interconnected by the polymer-based network. LT was much higher at a wavelength range of 300-800nm for Cerasmart than for Enamic. Light-curable composite cements

  1. Effect of curing mode on the hardness of dual-cured composite resin core build-up materials

    Directory of Open Access Journals (Sweden)

    César Augusto Galvão Arrais

    2010-06-01

    Full Text Available This study evaluated the Knoop Hardness (KHN values of two dual-cured composite resin core build-up materials and one resin cement exposed to different curing conditions. Two dual-cured core build-up composite resins (LuxaCore®-Dual, DMG; and FluoroCore®2, Dentsply Caulk, and one dual-cured resin cement (Rely X ARC, 3M ESPE were used in the present study. The composite materials were placed into a cylindrical matrix (2 mm in height and 3 mm in diameter, and the specimens thus produced were either light-activated for 40 s (Optilux 501, Demetron Kerr or were allowed to self-cure for 10 min in the dark (n = 5. All specimens were then stored in humidity at 37°C for 24 h in the dark and were subjected to KHN analysis. The results were submitted to 2-way ANOVA and Tukey's post-hoc test at a pre-set alpha of 5%. All the light-activated groups exhibited higher KHN values than the self-cured ones (p = 0.00001, regardless of product. Among the self-cured groups, both composite resin core build-up materials showed higher KHN values than the dual-cured resin cement (p = 0.00001. LuxaCore®-Dual exhibited higher KHN values than FluoroCore®2 (p = 0.00001 when they were allowed to self-cure, while no significant differences in KHN values were observed among the light-activated products. The results suggest that dual-cured composite resin core build-up materials may be more reliable than dual-cured resin cements when curing light is not available.

  2. Strength of Geopolymer Cement Curing at Ambient Temperature by Non-Oven Curing Approaches: An Overview

    Science.gov (United States)

    Wattanachai, Pitiwat; Suwan, Teewara

    2017-06-01

    At the present day, a concept of environmentally friendly construction materials has been intensively studying to reduce the amount of releasing greenhouse gases. Geopolymer is one of the cementitious binders which can be produced by utilising pozzolanic wastes (e.g. fly ash or furnace slag) and also receiving much more attention as a low-CO2 emission material. However, to achieve excellent mechanical properties, heat curing process is needed to apply to geopolymer cement in a range of temperature around 40 to 90°C. To consume less oven-curing energy and be more convenience in practical work, the study on geopolymer curing at ambient temperature (around 20 to 25°C) is therefore widely investigated. In this paper, a core review of factors and approaches for non-oven curing geopolymer has been summarised. The performance, in term of strength, of each non-oven curing method, is also presented and analysed. The main aim of this review paper is to gather the latest study of ambient temperature curing geopolymer and to enlarge a feasibility of non-oven curing geopolymer development. Also, to extend the directions of research work, some approaches or techniques can be combined or applied to the specific properties for in-field applications and embankment stabilization by using soil-cement column.

  3. Curing mode affects bond strength of adhesively luted composite CAD/CAM restorations to dentin.

    Science.gov (United States)

    Lührs, Anne-Katrin; Pongprueksa, Pong; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To determine the effect of curing mode and restoration-surface pre-treatment on the micro-tensile bond strength (μTBS) to dentin. Sandblasted CAD/CAM composite blocks (LAVA Ultimate, 3M ESPE) were cemented to bur-cut dentin using either the etch & rinse composite cement Nexus 3 ('NX3', Kerr) with Optibond XTR ('XTR', Kerr), or the self-etch composite cement RelyX Ultimate ('RXU', 3M ESPE) with Scotchbond Universal ('SBU', 3M ESPE). All experimental groups included different 'curing modes' (light-curing of adhesive and cement ('LL'), light-curing of adhesive and auto-cure of cement ('LA'), co-cure of adhesive through light-curing of cement ('AL'), or complete auto-cure ('AA')) and different 'restoration-surface pre-treatments' of the composite block (NX3: either a silane primer (Kerr), or the XTR adhesive; RXU: either silane primer (RelyX Ceramic Primer, 3M ESPE) and SBU, or solely SBU). After water-storage (7 days, 37°C), the μTBS was measured. Additionally, the degree of conversion (DC) of both cements was measured after 10min and after 1 week, either auto-cured (21°C/37°C) or light-cured (directly/through 3-mm CAD/CAM composite). The linear mixed-effects model (α=0.05) revealed a significant influence of the factors 'curing mode' and 'composite cement', and a less significant effect of the factor 'restoration-surface pre-treatment'. Light-curing 'LL' revealed the highest μTBS, which decreased significantly for all other curing modes. For curing modes 'AA' and 'AL', the lowest μTBS and a high percentage of pre-testing failures were reported. Overall, DC increased with light-curing and incubation time. The curing mode is decisive for the bonding effectiveness of adhesively luted composite CAD/CAM restorations to dentin. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Influence of post pattern and resin cement curing mode on the retention of glass fibre posts.

    Science.gov (United States)

    Poskus, L T; Sgura, R; Paragó, F E M; Silva, E M; Guimarães, J G A

    2010-04-01

    To evaluate the influence of post design and roughness and cement system (dual- or self-cured) on the retention of glass fibre posts. Two tapered and smooth posts (Exacto Cônico No. 2 and White Post No. 1) and two parallel-sided and serrated posts (Fibrekor 1.25 mm and Reforpost No. 2) were adhesively luted with two different resin cements--a dual-cured (Rely-X ARC) and a self-cured (Cement Post)--in 40 single-rooted teeth. The teeth were divided into eight experimental groups (n = 5): PFD--Parallel-serrated-Fibrekor/dual-cured; PRD--Parallel-serrated-Reforpost/dual-cured; TED--Tapered-smooth-Exacto Cônico/dual-cured; TWD--Tapered-smooth-White Post/dual-cured; PFS--Parallel-serrated-Fibrekor/self-cured; PRS--Parallel-serrated-Reforpost/self-cured; TES--Tapered-smooth-Exacto Cônico/self-cured; TWS--Tapered-smooth-White Post/self-cured. The specimens were submitted to a pull-out test at a crosshead speed of 0.5 mm min(-1). Data were analysed using analysis of variance and Bonferroni's multiple comparison test (alpha = 0.05). Pull-out results (MPa) were: PFD = 8.13 (+/-1.71); PRD = 8.30 (+/-0.46); TED = 8.68 (+/-1.71); TWD = 9.35 (+/-1.99); PFS = 8.54 (+/-2.23); PRS = 7.09 (+/-1.96); TES = 8.27 (+/-3.92); TWS = 7.57 (+/-2.35). No statistical significant difference was detected for posts and cement factors and their interaction. The retention of glass fibre posts was not affected by post design or surface roughness nor by resin cement-curing mode. These results imply that the choice for serrated posts and self-cured cements is not related to an improvement in retention.

  5. Luting of CAD/CAM ceramic inlays: direct composite versus dual-cure luting cement.

    Science.gov (United States)

    Kameyama, Atsushi; Bonroy, Kim; Elsen, Caroline; Lührs, Anne-Katrin; Suyama, Yuji; Peumans, Marleen; Van Meerbeek, Bart; De Munck, Jan

    2015-01-01

    The aim of this study was to investigate bonding effectiveness in direct restorations. A two-step self-etch adhesive and a light-cure resin composite was compared with luting with a conventional dual-cure resin cement and a two-step etch and rinse adhesive. Class-I box-type cavities were prepared. Identical ceramic inlays were designed and fabricated with a computer-aided design/computer-aided manufacturing (CAD/CAM) device. The inlays were seated with Clearfil SE Bond/Clearfil AP-X (Kuraray Medical) or ExciTE F DSC/Variolink II (Ivoclar Vivadent), each by two operators (five teeth per group). The inlays were stored in water for one week at 37°C, whereafter micro-tensile bond strength testing was conducted. The micro-tensile bond strength of the direct composite was significantly higher than that from conventional luting, and was independent of the operator (P<0.0001). Pre-testing failures were only observed with the conventional method. High-power light-curing of a direct composite may be a viable alternative to luting lithium disilicate glass-ceramic CAD/CAM restorations.

  6. Thermo-cured glass ionomer cements in restorative dentistry.

    Science.gov (United States)

    Gorseta, Kristina; Glavina, Domagoj

    2017-01-01

    Numerous positive properties of glass ionomer cements including biocompatibility, bioactivity, releasing of fluoride and good adhesion to hard dental tissue even under wet conditions and easy of handling are reasons for their wide use in paediatric and restorative dentistry. Their biggest drawbacks are the weaker mechanical properties. An important step forward in improving GIC's features is thermo-curing with the dental polymerization unit during setting of the material. Due to their slow setting characteristics the GIC is vulnerable to early exposure to moisture. After thermo curing, cements retain all the benefits of GIC with developed better mechanical properties, improved marginal adaptation, increased microhardness and shear bond strength. Adding external energy through thermocuring or ultrasound during the setting of conventional GIC is crucial to achieve faster and better initial mechanical properties. Further clinical studies are needed to confirm these findings.

  7. Air-Cured Fiber-Cement Composite Mixtures with Different Types of Cellulose Fibers

    Directory of Open Access Journals (Sweden)

    Ali Murat Soydan

    2018-01-01

    Full Text Available This present study was carried out to check the feasibility of different cellulose fibers obtained from cropped virgin cellulose, blenched eucalyptus, and araucaria pulps through different new environmentally friendly curing processes for fiber-cement production. The aim is to introduce the different sources of cellulose fibers with lower cost to produce the “fiber-cement without autoclave” (FCWA. The slurries used in the experiments contain approximately 8% wt. of cellulose. The influence of the waste marble powder addition to the cement mixture was also studied. The physical and mechanical properties of the products which were prepared with this method under different curing conditions were investigated. The mechanical properties of eucalyptus cellulose appear to offer the best combination, especially after longer air-cure cycles. The results showed that the production of FCWA is very economical by using waste marble powders. And moreover, two new types of cellulose fibers (eucalyptus and araucaria celluloses; EuC and ArC, resp., which provide a better density and packing in the fiber-cement leading to better modulus of rupture (MOR and modulus of elasticity (MOE values as virgin cellulose (ViC, are very usable for production of the fiber-cement in industrial scale.

  8. Self-Shrinkage Behaviors of Waste Paper Fiber Reinforced Cement Paste considering Its Self-Curing Effect at Early-Ages

    Directory of Open Access Journals (Sweden)

    Zhengwu Jiang

    2016-01-01

    Full Text Available The aim of this paper was to study how the early-age self-shrinkage behavior of cement paste is affected by the addition of the waste paper fibers under sealed conditions. Although the primary focus was to determine whether the waste paper fibers are suitable to mitigate self-shrinkage as an internal curing agent under different adding ways, evaluating their strength, pore structure, and hydration properties provided further insight into the self-cured behavior of cement paste. Under the wet mixing condition, the waste paper fibers could mitigate the self-shrinkage of cement paste and, at additions of 0.2% by mass of cement, the waste paper fibers were found to show significant self-shrinkage cracking control while providing some internal curing. In addition, the self-curing efficiency results were analyzed based on the strength and the self-shrinkage behaviors of cement paste. Results indicated that, under a low water cement ratio, an optimal dosage and adding ways of the waste paper fibers could enhance the self-curing efficiency of cement paste.

  9. Effect of different light curing methods on the push-out bond strength of glass fiber post to different root canal regions

    Directory of Open Access Journals (Sweden)

    Ali Eskandarizadeh

    2016-07-01

    Full Text Available Background and Aims: Slow polymerization rate in early stage of light curing process leads to higher monomers movement and entering in polymer network that cause higher mechanical properties.The aim of this study was to evaluate the effect of light activation methodes (immediate, 5 and 10 minutes delay on the push-out bond strength of cemented fiber posts in different regions of root canal with two types of resin cements. Materials and Methods: In sixty extracted human single canal, the teeth were decoronated from cement enamel junction and after root canal therapy, FRC postec plus were cemented with two resin cements, Duolink and Variolink 2, in three curing methods; immediate, 5 and 10 minutes of delay. After storing in a dark place for 24 hours, they were cut into three sections: coronal, middle and apical. The push-out bond strength test was performed using a universal testing machine. The failure modes were observed using a stereomicroscope. Data were analyzed using ANOVA and Tukey post hoc test (P0.05. In immediate light curing method, regardless of root region, Duolink had higher push-out bond strength than that of Variolink 2 (P=0.02. In all subgroups, there were reductions in the bond strengths from coronal to apical. Mixed failure at the cement-fiber post interface was predominent in all groups. Conclusion: 5 and 10 minutes delay caused reduction in the push-out bond strength for Variolink 2 but did not have significant effect for Duolink resin cement.

  10. Evaluation of the Luting Cement Space for Provisional Restoration by using Various Coats of Die Spacer Materials-An Invitro Study.

    Science.gov (United States)

    Chiramana, Sandeep; Siddineni, Krishna Chaitanya; Jyothula, Ravi Rakesh Dev; Gade, Phani Krishna; Bhupathi, Deepthi; Kondaka, Sudheer; Hussain, Zakir; Paluri, Geetha Bhavani

    2014-09-01

    The present study was to evaluate the space provided for the temporary luting cement, after the application of various coats of die spacers, during the fabrication of provisional crowns and bridges. A total of 50 specimens of dental stone with provisional crowns on all these samples were prepared and were divided into five groups based on the application of various coats of different die spacers. Later these specimens were sectioned buccolingually and were observed using a stereomicroscope under 100X magnification. The images thus obtained were evaluated and noted for the amount of space between the inner surface of the provisional crown and the specimens at five different locations using Image Pro 6.0 Express software and the values were subjected to one-way ANOVA test, and unpaired t-test. There was a significant increase of luting space thickness with various die spacer applications than the specimens of control group. Specimens of double coat applications of silver and gold die spacers showed higher luting cement space than the separating media application specimens.

  11. Effect of curing time on the fraction of Cs137 from cement-waste matrix

    International Nuclear Information System (INIS)

    Plecas, I.; Pavlovic, R.; Pavlovic, S.

    2003-01-01

    To assess the safety of disposal of radioactive waste material in cement, curing conditions and time of leaching radionuclides 137 Cs have been studied. Leaching tests in cement-waste matrix, were carried out in accordance with a method recommended by IAEA. Curing conditions and curing time prior to commencing the leaching test are critically important in leach studies since the extent of hydration of the cement materials determines how much hydration product develops and whether it is available to block the pore network, thereby reducing leaching. Results presented in this paper are examples of results obtained in a 10-year concrete testing project which will influence the design of the engineer trenches system for future central Yugoslav radioactive waste storing center. (orig.)

  12. Curing time effect on the fraction of 137Cs from cement- ion exchange resins-bentonite clay composition

    International Nuclear Information System (INIS)

    Plecas, I.; Dimovic, S.

    2007-01-01

    Curing conditions and time are critically important in leach studies since the extent of hydratation of the cement materials determines how much hydratation product develops and whether it is available to block the pore network, thereby reducing leaching.[1,2]. To assess the safety of disposal of radioactive waste material in cement, curing conditions and time of leaching radionuclide 137 Cs has been studied in this paper. Leaching tests in cement-ion exchange resins-bentonite matrix, were carried out in accordance with a method recommended by IAEA. Curing conditions and curing time prior to commencing the leaching test are critically important in leach studies since the extent of hydration of the cement materials determines how much hydration product develop and whether it is available to block the pore network, thereby reducing leaching. Incremental leaching rates R n (cm/d) of 137 Cs from cement-ion exchange resins-bentonite matrix after 180 days were measured. The results presented in this paper are examples of results obtained in a 20-year concrete testing project which will influence the design of the engineer trenches system for future central Serbian radioactive waste storing center. (author)

  13. Light-Cured Self-Etch Adhesives Undergo Hydroxyapatite-Triggered Self-Cure

    Science.gov (United States)

    Liu, Y.; Bai, X.; Liu, Y.W.; Wang, Y.

    2015-01-01

    Light cure is a popular mode of curing for dental adhesives. However, it suffers from inadequate light delivery when the restoration site is less accessible, in which case a self-cure mechanism is desirable to salvage any compromised polymerization. We previously reported a novel self-cure system mediated by ethyl 4-(dimethylamino)-benzoate (4E) and hydroxyapatite (HAp). The present work aims to investigate if such self-cure phenomenon takes place in adhesives that underwent prior inadequate light cure and to elucidate if HAp released from the dental etching process is sufficient to trigger it. Model self-etch adhesives were formulated with various components, including bis[2-methacryloyloxy)ethyl]-phosphate (2MP) as acidic monomer and trimethylbenzoyl-diphenylphosphine oxide (TPO) as photoinitiator. In vitro evolution of degree of conversion (DC) of HAp-incorporated adhesives was monitored by infrared spectroscopy during light irradiation and dark storage. Selected adhesives were allowed to etch and extract HAp from enamel, light-cured in situ, and stored in the dark, after which Raman line mapping was used to obtain spatially resolved DC across the enamel-resin interface. Results showed that TPO+4E adhesives reached DC similar to TPO-only counterparts upon completion of light irradiation but underwent another round of initiation that boosted DC to ~100% regardless of HAp level or prior light exposure. When applied to enamel, TPO-only adhesives had ~80% DC in resin, which gradually descended to ~50% in enamel, whereas TPO+4E adhesives consistently scored ~80% DC across the enamel-resin interface. These observations suggest that polymerization of adhesives that underwent insufficient light cure is salvaged by the novel self-cure mechanism, and such salvaging effect can be triggered by HAp released from dental substrate during the etching process. PMID:26635279

  14. Light-Cured Self-Etch Adhesives Undergo Hydroxyapatite-Triggered Self-Cure.

    Science.gov (United States)

    Liu, Y; Bai, X; Liu, Y W; Wang, Y

    2016-03-01

    Light cure is a popular mode of curing for dental adhesives. However, it suffers from inadequate light delivery when the restoration site is less accessible, in which case a self-cure mechanism is desirable to salvage any compromised polymerization. We previously reported a novel self-cure system mediated by ethyl 4-(dimethylamino)-benzoate (4E) and hydroxyapatite (HAp). The present work aims to investigate if such self-cure phenomenon takes place in adhesives that underwent prior inadequate light cure and to elucidate if HAp released from the dental etching process is sufficient to trigger it. Model self-etch adhesives were formulated with various components, including bis[2-methacryloyloxy)ethyl]-phosphate (2MP) as acidic monomer and trimethylbenzoyl-diphenylphosphine oxide (TPO) as photoinitiator. In vitro evolution of degree of conversion (DC) of HAp-incorporated adhesives was monitored by infrared spectroscopy during light irradiation and dark storage. Selected adhesives were allowed to etch and extract HAp from enamel, light-cured in situ, and stored in the dark, after which Raman line mapping was used to obtain spatially resolved DC across the enamel-resin interface. Results showed that TPO+4E adhesives reached DC similar to TPO-only counterparts upon completion of light irradiation but underwent another round of initiation that boosted DC to ~100% regardless of HAp level or prior light exposure. When applied to enamel, TPO-only adhesives had ~80% DC in resin, which gradually descended to ~50% in enamel, whereas TPO+4E adhesives consistently scored ~80% DC across the enamel-resin interface. These observations suggest that polymerization of adhesives that underwent insufficient light cure is salvaged by the novel self-cure mechanism, and such salvaging effect can be triggered by HAp released from dental substrate during the etching process. © International & American Associations for Dental Research 2015.

  15. Influence of Curing Age and Mix Composition on Compressive Strength of Volcanic Ash Blended Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Babafemi A.J.

    2012-01-01

    Full Text Available This study investigates the influence of curing age and mix proportions on the compressive strength of volcanic ash (VA blended cement laterized concrete. A total of 288 cubes of 100mm dimensions were cast and cured in water for 3, 7, 28, 56, 90 and 120 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively while a control mix of 28-day target strength of 25N/mm2 (using British Method was adopted. The results show that the compressive strength of the VA-blended cement laterized concrete increased with the increase in curing age but decreased as the VA and laterite (LAT contents increased. The optimum replacement level was 20%LAT/20%VA. At this level the compressive strength increased with curing age at a decreasing rate beyond 28 days. The target compressive strength of 25N/mm2 was achieved for this mixture at 90 days of curing. VA content and curing age was noted to have significant effect (α ≤ 0.5 on the compressive strength of the VA-blended cement laterized concrete.

  16. Correlation between clinical performance and degree of conversion of resin cements: a literature review

    Directory of Open Access Journals (Sweden)

    Grace DE SOUZA

    2015-08-01

    Full Text Available AbstractResin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used.

  17. EVALUATION OF DIELECTRIC CURING MONITORING INVESTIGATING LIGHT-CURING DENTAL FILLING COMPOSITES

    Directory of Open Access Journals (Sweden)

    Johannes Steinhaus

    2011-05-01

    Full Text Available The aim of this study is the evaluation of a dielectric analysis (DEA method monitoring the curing behaviour of a light curing dental filling material in real-time. The evaluation is to extract the influence of light intensity on the photo-curing process of dental composite filling materials. The intensity change is obtained by measuring the curing process at different sample depth. It could be shown that increasing sample thickness, and therefore exponentially decreasing light intensity, causes a proportional decrease in the initial curing rate. Nevertheless, the results give rise to the assumption that lower illumination intensities over a long period cause higher overall conversion, and thus better mechanical properties. This would allow for predictions of the impact of different curing-rates on the final mechanical properties.

  18. Effect of reduced exposure times on the cytotoxicity of resin luting cements cured by high-power led

    Directory of Open Access Journals (Sweden)

    Gulfem Ergun

    2011-06-01

    Full Text Available OBJECTIVE: Applications of resin luting agents and high-power light-emitting diodes (LED light-curing units (LCUs have increased considerably over the last few years. However, it is not clear whether the effect of reduced exposure time on cytotoxicity of such products have adequate biocompatibility to meet clinical success. This study aimed at assessing the effect of reduced curing time of five resin luting cements (RLCs polymerized by high-power LED curing unit on the viability of a cell of L-929 fibroblast cells. MATERIAL AND METHODS: Disc-shaped samples were prepared in polytetrafluoroethylene moulds with cylindrical cavities. The samples were irradiated from the top through the ceramic discs and acetate strips using LED LCU for 20 s (50% of the manufacturer's recommended exposure time and 40 s (100% exposure time. After curing, the samples were transferred into a culture medium for 24 h. The eluates were obtained and pipetted onto L-929 fibroblast cultures (3x10(4 per well and incubated for evaluating after 24 h. Measurements were performed by dimethylthiazol diphenyltetrazolium assay. Statistical significance was determined by two-way ANOVA and two independent samples were compared by t-test. RESULTS: Results showed that eluates of most of the materials polymerized for 20 s (except Rely X Unicem and Illusion reduced to a higher extent cell viability compared to samples of the same materials polymerized for 40 s. Illusion exhibited the least cytotoxicity for 20 s exposure time compared to the control (culture without samples followed by Rely X Unicem and Rely X ARC (90.81%, 88.90%, and 83.11%, respectively. For Rely X ARC, Duolink and Lute-It 40 s exposure time was better (t=-1.262 p=0,276; t=-9.399 p=0.001; and t=-20.418 p<0.001, respectively. CONCLUSION: The results of this study suggest that reduction of curing time significantly enhances the cytotoxicity of the studied resin cement materials, therefore compromising their clinical

  19. Thio-urethanes improve properties of dual-cured composite cements.

    Science.gov (United States)

    Bacchi, A; Dobson, A; Ferracane, J L; Consani, R; Pfeifer, C S

    2014-12-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm(2) × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey's test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  20. Properties and osteoblast cytocompatibility of self-curing acrylic cements modified by glass fillers.

    Science.gov (United States)

    Lopes, P; Garcia, M P; Fernandes, M H; Fernandes, M H V

    2013-11-01

    Materials filled with a silicate glass (MSi) and a borate glass (MB) were developed and compared in terms of their in vitro behavior. The effect of filler composition and concentration (0, 30, 40 and 50 wt%) on the curing parameters, residual monomer, water uptake, weight loss, bioactivity, mechanical properties (bending and compression) and osteoblast cytocompatibility was evaluated. The addition of bioactive glass filler significantly improved the cements curing parameters and the mechanical properties. The most relevant results were obtained for the lower filler concentration (30 t%) a maximum flexural strength of 40.4 Pa for MB3 and a maximum compressive strength of 95.7 MPa for MSi3. In vitro bioactivity in acellular media was enhanced by the higher glass contents in the cements. Regarding the biological assessment, the incorporation of the silicate glass significantly improved osteoblast cytocompatibility, whereas the presence of the borate glass resulted in a poor cell response. Nevertheless it was shown that the surviving cells on the MB surface were in a more differentiated stage compared to those growing over non-filled poly(methyl methacrylate). Results suggest that the developed formulations offer a high range of properties that might be interesting for their use as self-curing cements.

  1. Light output from six battery operated dental curing lights

    Energy Technology Data Exchange (ETDEWEB)

    Shimokawa, Carlos Alberto Kenji, E-mail: carlos.shimokawa@usp.br [University of São Paulo, School of Dentistry, Restorative Dentistry, Avenida Professor Lineu Prestes, 2227, 05508-000, São Paulo, São Paulo (Brazil); Dalhousie University, Faculty of Dentistry, Dental Clinical Sciences, 5981 University Avenue, B3H 4R2, Halifax, Nova Scotia (Canada); Turbino, Míriam Lacalle, E-mail: miturbin@usp.br [University of São Paulo, School of Dentistry, Restorative Dentistry, Avenida Professor Lineu Prestes, 2227, 05508-000, São Paulo, São Paulo (Brazil); Harlow, Jessie Eudora, E-mail: jessie.harlow@dal.ca [Dalhousie University, Faculty of Dentistry, Dental Clinical Sciences, 5981 University Avenue, B3H 4R2, Halifax, Nova Scotia (Canada); Price, Hannah Louise, E-mail: hannlprice@gmail.com [Dalhousie University, Faculty of Dentistry, Dental Clinical Sciences, 5981 University Avenue, B3H 4R2, Halifax, Nova Scotia (Canada); Price, Richard Bengt, E-mail: richard.price@dal.ca [Dalhousie University, School of Biomedical Engineering and Faculty of Dentistry, 5981 University Avenue, B3H 4R2, Halifax, Nova Scotia (Canada)

    2016-12-01

    Light Curing Units (LCUs) are used daily in almost every dental office to photocure resins, but because the light is so bright, the user is unable to tell visually if there are any differences between different LCUs. This study evaluated the light output from six dental LCUs: Elipar Deep Cure-S (3M ESPE), Bluephase G2 (Ivoclar Vivadent), Translux 2Wave (Heraeus Kulzer), Optilight Prime (Gnatus), Slim Blast (First Medica) and Led.B (Guilin Woodpecker) with a fully charged battery, after 50, and again after 100, 20 second light exposures. For each situation, the radiant power was measured 10 times with a laboratory-grade power meter. Then, the emission spectrum was measured using a fiber-optic spectrometer followed by an analysis of the light beam profile. It was found there were significant differences in the LCU power and the irradiance values between the LCUs (p < 0.01). The Optilight Prime and Slim Blast LCUs showed a significant reduction in light output after a 50 and 100 exposures, while Bluephase G2 exhibited a significant reduction only after 100 exposures (p < 0.01). The Bluephase G2 and Translux 2 Wave delivered an emission spectrum that had two distinct wavelength emission peaks. Only the Elipar Deep Cure-S and Bluephase G2 LCUs displayed homogeneous light beam profiles, the other LCUs exhibited highly non-homogeneous light beam profiles. It was concluded that contemporary LCUs could have very different light output characteristics. Both manufacturers and researchers should provide more information about the light output from LCUs. - Highlights: • The six LCUs delivered significantly different light output characteristics. • The use of a single irradiance value does not adequately describe the light output from a curing light. • Small differences in the tip area, or how it is defined, will have a large effect on the calculated irradiance. • In some cases there were large portions of the light tip that emitted less than 400 mW/cm². • The radiant

  2. Light output from six battery operated dental curing lights

    International Nuclear Information System (INIS)

    Shimokawa, Carlos Alberto Kenji; Turbino, Míriam Lacalle; Harlow, Jessie Eudora; Price, Hannah Louise; Price, Richard Bengt

    2016-01-01

    Light Curing Units (LCUs) are used daily in almost every dental office to photocure resins, but because the light is so bright, the user is unable to tell visually if there are any differences between different LCUs. This study evaluated the light output from six dental LCUs: Elipar Deep Cure-S (3M ESPE), Bluephase G2 (Ivoclar Vivadent), Translux 2Wave (Heraeus Kulzer), Optilight Prime (Gnatus), Slim Blast (First Medica) and Led.B (Guilin Woodpecker) with a fully charged battery, after 50, and again after 100, 20 second light exposures. For each situation, the radiant power was measured 10 times with a laboratory-grade power meter. Then, the emission spectrum was measured using a fiber-optic spectrometer followed by an analysis of the light beam profile. It was found there were significant differences in the LCU power and the irradiance values between the LCUs (p < 0.01). The Optilight Prime and Slim Blast LCUs showed a significant reduction in light output after a 50 and 100 exposures, while Bluephase G2 exhibited a significant reduction only after 100 exposures (p < 0.01). The Bluephase G2 and Translux 2 Wave delivered an emission spectrum that had two distinct wavelength emission peaks. Only the Elipar Deep Cure-S and Bluephase G2 LCUs displayed homogeneous light beam profiles, the other LCUs exhibited highly non-homogeneous light beam profiles. It was concluded that contemporary LCUs could have very different light output characteristics. Both manufacturers and researchers should provide more information about the light output from LCUs. - Highlights: • The six LCUs delivered significantly different light output characteristics. • The use of a single irradiance value does not adequately describe the light output from a curing light. • Small differences in the tip area, or how it is defined, will have a large effect on the calculated irradiance. • In some cases there were large portions of the light tip that emitted less than 400 mW/cm². • The radiant

  3. Nano-chemo-mechanical signature of conventional oil-well cement systems: Effects of elevated temperature and curing time

    Energy Technology Data Exchange (ETDEWEB)

    Krakowiak, Konrad J., E-mail: kjkrak@mit.edu [Civil and Environmental Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Thomas, Jeffrey J., E-mail: JThomas39@slb.com [Schlumberger-Doll Research Center, 1 Hampshire St., Cambridge, MA 02139-1578 (United States); Musso, Simone, E-mail: SMusso@slb.com [Schlumberger-Doll Research Center, 1 Hampshire St., Cambridge, MA 02139-1578 (United States); James, Simon, E-mail: james6@slb.com [Schlumberger Riboud Product Center, 1 rue Henri Becquerel, Clamart 92140 (France); Akono, Ange-Therese, E-mail: aakono@illinois.edu [Civil and Environmental Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Ulm, Franz-Josef, E-mail: ulm@mit.edu [Civil and Environmental Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2015-01-15

    With ever more challenging (T,p) environments for cementing applications in oil and gas wells, there is a need to identify the fundamental mechanisms of fracture resistant oil well cements. We report results from a multi-technique investigation of behavior and properties of API class G cement and silica-enriched cement systems subjected to hydrothermal curing from 30 °C to 200 °C; including electron probe microanalysis, X-ray diffraction, thermogravimetry analysis, electron microscopy, neutron scattering (SANS), and fracture scratch testing. The results provide a new insight into the link between system chemistry, micro-texture and micro-fracture toughness. We suggest that the strong correlation found between chemically modulated specific surface and fracture resistance can explain the drop in fracture properties of neat oil-well cements at elevated temperatures; the fracture property enhancement in silica-rich cement systems, between 110° and 175 °C; and the drop in fracture properties of such systems through prolonged curing over 1 year at 200 °C.

  4. Preliminary observations of water movement in cement pastes during curing using X-ray absorption

    DEFF Research Database (Denmark)

    Bentz, D. P.; Hansen, Kurt Kielsgaard

    2000-01-01

    X-ray absorption and concurrent mass measurements are used in quantifying water movement in 4 to 5 mm thick cement paste specimens with their top surface exposed to drying. Experimental variables examined in this preliminary study include water-to-cement (wic) ratio and open vs. capped samples....... The implications of these experimental observations for curing of concrete and application of repair materials are discussed....

  5. A comparative evaluation of the shear bond strength of five different orthodontic bonding agents polymerized using halogen and light-emitting diode curing lights: An in vitro investigation

    Directory of Open Access Journals (Sweden)

    Sujoy Banerjee

    2011-01-01

    Full Text Available Purpose: With the introduction of photosensitive (light-activated restorative materials in orthodontics, various methods have been suggested to enhance the polymerization of the materials used, including use of more powerful light curing devices. Bond strength is an important property and determines the amount of force delivered and the treatment duration. Many light-cured bonding materials have become popular but it is the need of the hour to determine the bonding agent that is the most efficient and has the desired bond strength. Aim: To evaluate and compare the shear bond strengths of five different orthodontic light cure bonding materials cured with traditional halogen light and low-intensity light-emitting diode (LED light curing unit. Materials and Methods: 100 human maxillary premolar teeth, extracted for orthodontic purpose, were used to prepare the samples. 100 maxillary stainless steel bicuspid brackets of 0.018 slot of Roth prescription, manufactured by D-tech Company, were bonded to the prepared tooth surfaces of the mounted samples using five different orthodontic bracket bonding light-cured materials, namely, Enlight, Fuji Ortho LC (resin-modified glass ionomer cement, Orthobond LC, Relybond, and Transbond XT. The bond strength was tested on an Instron Universal testing machine (model no. 5582. Results: In Group 1 (halogen group, Enlight showed the highest shear bond strength (16.4 MPa and Fuji Ortho LC showed the least bond strength (6.59 MPa (P value 0.000. In Group 2 (LED group, Transbond showed the highest mean shear bond strength (14.6 MPa and Orthobond LC showed the least mean shear bond strength (6.27 MPa (P value 0.000. There was no statistically significant difference in the shear bond strength values of all samples cured using either halogen (mean 11.49 MPa or LED (mean 11.20 MPa, as the P value was 0.713. Conclusion: Polymerization with both halogen and LED resulted in shear bond strength values which were above the

  6. Self-curing concrete with different self-curing agents

    Science.gov (United States)

    Gopala krishna sastry, K. V. S.; manoj kumar, Putturu

    2018-03-01

    Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.

  7. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure

    International Nuclear Information System (INIS)

    Lin Feng; Meyer, Christian

    2009-01-01

    A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.

  8. Influence of Curing Humidity on the Compressive Strength of Gypsum-Cemented Similar Materials

    Directory of Open Access Journals (Sweden)

    Weiming Guan

    2016-01-01

    Full Text Available The analogous simulation experiment is widely used in geotechnical and mining engineering. However, systematic errors derived from unified standard curing procedure have been underestimated to some extent. In this study, 140 gypsum-cemented similar material specimens were chosen to study their curing procedure with different relative humidity, which is 10%–15%, 40%, 60%, and 80%, respectively. SEM microstructures and XRD spectra were adopted to detect the correlation between microstructures and macroscopic mechanical strength during curing. Our results indicated that the needle-like phases of similar materials began to develop in the early stage of the hydration process through intersecting with each other and eventually transformed into mat-like phases. Increase of humidity may inhibit the development of needle-like phases; thus the compressive strength changes more smoothly, and the time required for the material strength to reach the peak value will be prolonged. The peak strength decreases along with the increase of humidity while the humidity is higher than 40%; however, the reverse tendency was observed if the humidity was lower than 40%. Finally, we noticed that the material strength usually reaches the peak value when the water content continuously reduces and tends towards stability. Based on the above observation, a curing method determination model and experimental strength predication method for gypsum-cemented similar materials were proposed.

  9. Effect of Light Curing Unit Characteristics on Light Intensity Output ...

    African Journals Online (AJOL)

    Background: Modern dental composite restorations are wholly dependent on the use of Visible Light Curing devices. The characteristics of these devices may influence the quality of composite resin restorations. Objective: To determine the characteristics of light curing units (LCUs) in dental clinics in Nairobi and their effect ...

  10. Effect of brief heat-curing on microstructure and mechanical properties in fresh cement based mortars

    International Nuclear Information System (INIS)

    Ballester, P.; Hidalgo, A.; Marmol, I.; Morales, J.; Sanchez, L.

    2009-01-01

    The effect of temperature on fresh mortar and cement paste was evaluated by simulating the curing conditions of external buildings plastering applied under extremely hot weather. The specimens were heated at controlled temperatures in the 40-80 o C range by exposure to IR radiation over short periods. The effect of soaking for a short time was also examined. The results of compressive strength tests, scanning electron microscopy, infrared spectroscopy and mercury porosimetry helped to characterize the mechanical and physico-chemical properties of the studied sample. Early age behaviour (28 days) in neat cement was barely affected by the temperature. By contrast, exposure to high temperatures caused significant microstructural changes in the mortar. However, successive soaking over short periods was found to reactivate the mechanism of curing and restore the expected mechanical properties. Based on the results, application of cement based mortar at high temperatures is effective when followed by a short, specific soaking process.

  11. Effect of light dispersion of LED curing lights on resin composite polymerization.

    Science.gov (United States)

    Vandewalle, Kraig S; Roberts, Howard W; Andrus, Jeffrey L; Dunn, William J

    2005-01-01

    This study evaluated the effect of light dispersion of halogen and LED curing lights on resin composite polymerization. One halogen (Optilux 501, SDS/Kerr, Orange, CA, USA) and five light-emitting diode (LED) curing lights (SmartLite iQ, Dentsply Caulk, Milford, DE, USA; LEDemetron 1, SDS/Kerr; FLASHlite 1001, Discus Dental, Culver City, CA, USA; UltraLume LED 5, Ultradent Products, South Jordan, UT, USA; Allegro, Den-Mat, Santa Maria, CA, USA) were used in this study. Specimens (8 mm diameter by 2 mm thick) were made in polytetrafluoroethylene molds using hybrid (Z100, 3M ESPE, St. Paul, MN, USA) and microfill (A110, 3M ESPE) composite resins. The top surface was polymerized for 5 seconds with the curing light guide tip positioned at a distance of 1 and 5 mm. Degree of conversion (DC) of the composite specimens was analyzed on the bottom surface using micro-Fourier Transform Infrared (FTIR) spectroscopy (Perkin-Elmer FTIR Spectrometer, Wellesley, PA, USA) 10 minutes after light activation. DC at the bottom of the 2 mm specimen was expressed as a percentage of the mean maximum DC. Five specimens were created per curing light and composite type (n=5). Percent mean DC ratios and SDs were calculated for each light under each testing condition. Data were analyzed by analysis of variance (ANOVA)/Tukey's test (alpha = .05). A beam analyzer (LBA-700, Spiricon, Logan, UT, USA) was used to record the emitted light from the curing lights at 0 and 5 mm distances (n=5). A Top Hat factor was used to compare the quality of the emitted beam profile (LBA/PC, Spiricon). The divergence angle from vertical was also determined in the x- and y-axes (LBA/PC). Mean values and SDs were calculated for each light under each testing condition (0 and 5 mm, x- and y-axes) and analyzed by a two-way ANOVA/Tukey's test (alpha = .05). For DC ratios, significant differences were found based on curing light and curing distance (p < .05). At 1 mm, Optilux 501 and FLASHlite 1001 produced significantly

  12. Battery Charge Affects the Stability of Light Intensity from Light-emitting Diode Light-curing Units.

    Science.gov (United States)

    Tongtaksin, A; Leevailoj, C

    This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was

  13. Influence of storage times on bond strength of resin cements to root canal

    Directory of Open Access Journals (Sweden)

    Matheus Coêlho Bandéca

    2010-03-01

    Full Text Available The resin cements are responsible to retention of the indirect materials decreasing marginal leakage, increasing failure resistance compared with conventional cementation. The cementation within root canal is very hard due unfavorable conditions regarding the application of adhesive techniques caused by inadequate access. Therefore, considering the possibility to decrease steps of cementation, this study was performed to evaluate the bond strength of self-adhesive resin cement (RelyX TM U100, 3M ESPE and resin cement combined with self-ecthing adhesive system (Panavia® F 2.0, Kuraray light-cured with Quartz Tungsten Halogen (QTH following storage at 37 °C immediately after light-curing, 24 and 48 hours and 7 days. The root canals were prepared to receive the glass fiber post in the depth of 10 mm, irrigated with 17% EDTA and NaOCl, rinsed with distilled water and dried using paper points. The roots were perpendicularly sectioned into approximately 1 mm thick sections, obtaining ninety-six slices (n = 12. The slices were trimmed using a cylindrical diamond bur in the proximal surfaces until it touched the post and attached into a device, which were mounted on a strength tester (Bisco and loaded in tension at a speed of 0.5 mm/min until failure occurred at specimens. The analysis of variance (ANOVA and Tukey's post-hoc tests showed significant statistical differences (P .05. The resin cements 24 and 48 hours after light-curing were statistically similar among themselves (P > .05. The both resin cement showed similar bond strength into root canal on different storage times. The highest bond strength values of the resin cements were showed 7 days after curing.

  14. Occlusal wear of provisional implant-supported restorations.

    Science.gov (United States)

    Santing, Hendrik J; Kleverlaan, Cornelis J; Werner, Arie; Feilzer, Albert J; Raghoebar, Gerry M; Meijer, Henny J A

    2015-02-01

    Implant-supported provisional restorations should be resistant to occlusal wear. The purpose of this laboratory study was to evaluate three-body wear of three indirect laboratory composite resins, five chair side bis-acryl resin-based materials, and two chair side methacrylate-based materials used to fabricate provisional implant-supported restorations. The materials were handled and cured according to the manufacturers' instructions. The three-body wear was measured 1 day, 3 days, 7 days, 4 weeks, and 8 weeks after curing using the ACTA wear device. Wear rate decreased significantly after 8 weeks compared with the first day for all tested materials, except for Estenia C&B. The three-body wear of two indirect laboratory composite resins, that is, Estenia C&B and Solidex, was significantly less compared with all other tested materials used for fabricating provisional implant-supported restorations. Of the chair side materials, the wear rate of Protemp Crown Paste was significantly less compared with the others materials used to fabricate chair side provisional implant-supported restorations. The methacrylate-based materials, Temdent Classic and Trim, showed extreme high wear rates. Based on the results of this laboratory study on long-term wear, the use of indirect composite resin is preferred over chair side methacrylate-based materials when the provisional implant-supported restoration has to be in service for a long period of time. Of the investigated materials, only Estenia C&B and Solidex showed wear rate comparable with posterior resin composites. © 2013 Wiley Periodicals, Inc.

  15. Electron beam-curing coating for pressed cement roof tiles with high-build and excellent durability

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu; Kiyata, Hiroaki

    1979-01-01

    Thick slate has expanded the demand steadily and spread to whole Japan except the northernmost part as a roof material, because it deals with rain water well, its strength, coldness resistance and endurance are excellent, and it can be worked easily. The ornamental finishing by urethane coating is not satisfactory in view of the improvement of productivity and the measures to pollution as well as the design and color. In order to meet this background, new coating has been sought, and electron beam-curing coating seems to be most suitable to cement roof tiles. The history and the present state of cement roof tiles are explained. About 700 tons/month of the coating for cement roof tiles is used at present, and acryl resin coating occupies about 75%, while urethane resin coating is used in Kyushu relatively more. The urethane coating is applied in shops by electrostatic coating, but the acryl coating is mostly applied in sites after tiling over. Electron beam curing used electron beam of 200 keV, and polymerization starts from the radicals formed through ionization, excitation and neutralization. The features of electron beam-curing coating are good adhesion to roof tiles, keeping luster and endurance to discoloration, strong film and feeling like porcelain, drying at normal temperature, productivity and economy. (J.P.N.)

  16. Comparison of the heat generation of light curing units.

    Science.gov (United States)

    Bagis, Bora; Bagis, Yildirim; Ertas, Ertan; Ustaomer, Seda

    2008-02-01

    The aim of this study was to evaluate the heat generation of three different types of light curing units. Temperature increases were recorded from a distance of 1 mm from a thermocouple to the tip of three different types of light curing units including one quartz-tungsten halogen (QTH), one plasma arc (PAC), and one light emitting diode (LED) unit. An experimental model was designed to fix the 1 mm distance between the tip of the light curing units and the thermocouple wire. Temperature changes were recorded in 10 second intervals up to 40 seconds. (10, 20, 30, and 40 seconds). Temperature measurements were repeated three times for every light curing unit after a one hour standby period. Statistical analysis of the results was performed using the analysis of variance (ANOVA) and the Bonferroni Test. The highest temperature rises (54.4+/-1.65 degrees C) occurred during activation of a PAC light curing unit for every test period (pdamage to the pulp.

  17. Gingival recontouring by provisional implant restoration for optimal emergence profile: report of two cases.

    Science.gov (United States)

    Son, Mee-Kyoung; Jang, Hyun-Seon

    2011-12-01

    The emergence profile concept of an implant restoration is one of the most important factors for the esthetics and health of peri-implant soft tissue. This paper reports on two cases of gingival recontouring by the fabrication of a provisional implant restoration to produce an optimal emergence profile of a definitive implant restoration. After the second surgery, a preliminary impression was taken to make a soft tissue working cast. A provisional crown was fabricated on the model. The soft tissue around the implant fixture on the model was trimmed with a laboratory scalpel to produce the scalloped gingival form. Light curing composite resin was added to fill the space between the provisional crown base and trimmed gingiva. After 4 to 6 weeks, the final impression was taken to make a definitive implant restoration, where the soft tissue and tooth form were in harmony with the adjacent tooth. At the first insertion of the provisional restoration, gum bleaching revealed gingival pressure. Four to six weeks after placing the provisional restoration, the gum reformed with harmony between the peri-implant gingiva and adjacent dentition. Gingival recontouring with a provisional implant restoration is a non-surgical and non-procedure-sensitive method. The implant restoration with the optimal emergence profile is expected to provide superior esthetic and functional results.

  18. Properties of ambient cured blended alkali activated cement concrete

    Science.gov (United States)

    Talha Junaid, M.

    2017-11-01

    This paper presents results of the development and strength properties of ambient-cured alkali activated geopolymer concrete (GPC). The study looks at the strength properties, such as compressive strength, splitting tensile strength, and elastic modulus of such concretes and its dependency on various parameters. The parameters studied in this work are the type and proportions of pre-cursor materials, type of activator and their respective ratios and the curing time. Two types of pre-cursor material; low calcium fly ash (FA) and ground granulated blast furnace slag (GGBFS) were activated using different proportions of sodium silicate and sodium hydroxide solutions. The results indicate that ambient cured geopolymer concrete can be manufactured to match strength properties of ordinary Portland cement concrete (OPC). The strength properties of GPC are dependent on the type and ratio of activator and the proportion of GGBFS used. Increasing the percentage of GGBFS increased the compressive and tensile strengths, while reducing the setting time of the mix. The effect of GGBFS on strength was more pronounced in mixes that contained sodium silicate as activator solution. Unlike OPC, ambient-cured GPC containing sodium silicate gain most of their strength in the first 7 days and there is no change in strength thereafter. However, GPC mixes not containing sodium silicate only achieve a fraction of their strength at 7 days and extended curing is required for such concretes to gain full strength. The results also indicate that the elastic modulus values of GPC mixes without sodium silicate are comparable to OPC while mixes with sodium silicate have elastic modulus values much lower than ordinary concrete.

  19. Additional chemical polymerization of dual resin cements: reality or a goal to be achieved?

    Directory of Open Access Journals (Sweden)

    Luzia Sakaguti UMETSUBO

    Full Text Available Abstract Introduction This study serves as a warning to dentists and researchers that dual-cured resin cements may not polymerize completely under some prosthetic crowns. Objective The aim of this study was to analyse the polymerization degree of dual-cured resin cements under prosthetic barrier, by microhardness test. Material and method Three cements (Bistite II, RelyX ARC and Variolink II were light-cured through different barriers, placed between the cement and the light source: G1: without barrier; G2: composite resin (Cesead; G3: Inceram alumina; G4: IPS Empress; G5: Inceram zirconia; G6: tooth fragment. Photopolymerization was carried out using a halogen light unit (650 mW/cm2; microhardness was evaluated using the Microhardness Tester FM 700, under a load of 50gf with a dwell time of 15s, at two evaluation times (30min and 24h. Result The results were submitted to ANOVA and Tukey tests (5%. Both Inceram alumina and Inceram zirconia ceramic barriers hindered polymerization. Bistite, followed by RelyX and Variolink, exhibited the highest microhardness values (p<0.05. As the highest values were obtained without a barrier, it was determined that the barrier, followed by the tooth, influenced microhardness. Both Empress and Cesead had the smallest microhardness values but with no statistically significant difference between them. Conclusion The barrier negatively affected the microhardness of dual-cured resin cements; evaluation time did not affect microhardness values for most of the conditions tested. There is a limited effect of the chemical activator on the polymerization of some dual-cured cements, and their performance is product specific.

  20. [Bonding of visible light cured composite resins to glass ionomer and Cermet cements].

    Science.gov (United States)

    Kakaboura, A; Vougiouklakis, G

    1990-04-01

    The "sandwich" technique involves combination of composite resins to etched glassionomer cements, is used today in restorative dentistry. The purpose of this study is to evaluate the bond strength between several composite resins and glass ionomer or cerment cements. Cylindrical specimens of the cements Ketac-Silver, Ionobond and GC-Lining Ce-ment were inserted in a mold and their flat free surfaces were etched for 30". Cylindrical plastic tubes were set upon each one of these surfaces and filled with the Composite resins Durafill, Brilliant Lux, Estilux posterior, Estilux posterior CVS and Herculite XR. Half of the specimens transferred in tap water for 24 hours and the others after thermocycling in the first month, kept for 4 months. Shear bond strengths were determined in Monsanto Testing Machine and some fractured surfaces were examined under SEM. The results of this investigation indicate that this technique produces bond strengths between composite resins and glassioners and the combination type of resin and type of cement, affects the values of the strength. Glass cermeet--small particle resin provides the most effective strength and glass ionomer--microfill resins the least. Storage time and thermocycling don't significantly effect the bond strength. SEM examination showed that all fracture failures were obtained in the cement while the opposite resin surfaces were covered with particles of the cements.

  1. Curing efficiency of three light emitting diode units at different curing profiles

    Directory of Open Access Journals (Sweden)

    Priyanka Verma

    2016-01-01

    Conclusions: Reduction of exposure time to 6 s with high-intensity curing light seemed to be clinically acceptable and should be recommended. Curing of metal brackets with single exposure from buccal side showed lower shear bond strength values.

  2. Effect of light-curing units on the thermal expansion of resin nanocomposites.

    Science.gov (United States)

    Park, Jeong-Kil; Hur, Bock; Ko, Ching-Chang; García-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2010-12-01

    To examine the thermal expansion of resin nanocomposites after light-curing using different light-curing units. Four different resin nanocomposites and four different light-curing units [quartz-tungsten-halogen (QTH), light emitting diode (LED), laser, and plasma arc] were chosen. Metal dies were filled with resin to make specimens and light-cured. The light intensity and light-curing time of the QTH and LED light-curing units were 1000 mW/cm2 and 40 seconds, 700 mW/cm2 and 40 seconds for the laser, and 1600 mW/cm2 and 3 seconds for the plasma arc. The coefficient of thermal expansion (CTE) was evaluated using a thermomechanical analyzer (TMA) at temperatures ranging from 30-80 degrees C. The CTE of the resin nanocomposites tested ranged from 28.5 to 65.8 (x 10(-6)/ degrees C), depending on the product and type of light-curing unit used. Among the specimens, Grandio showed the lowest CTE. The specimens cured using the plasma arc unit (Apollo 95E) showed the highest CTE. There was a linear correlation between the CTE and filler content (vol%) (R: -0.94-0.99 depending on the light-curing unit). The results may suggest a careful selection of the light-curing unit because there was more expansion in the specimens cured using the plasma arc unit than those cured by the other units.

  3. Effect of various infection-control methods for light-cure units on the cure of composite resins.

    Science.gov (United States)

    Chong, S L; Lam, Y K; Lee, F K; Ramalingam, L; Yeo, A C; Lim, C C

    1998-01-01

    This study (1) compared the curing-light intensity with various barrier infection-control methods used to prevent cross contamination, (2) compared the Knoop hardness value of cured composite resin when various barrier control methods were used, and (3) correlated the hardness of the composite resin with the light-intensity output when different infection-control methods were used. The light-cure unit tips were covered with barriers, such as cellophane wrap, plastic gloves, Steri-shields, and finger cots. The control group had no barrier. Composite resins were then cured for each of the five groups, and their Knoop hardness values recorded. The results showed that there was significant statistical difference in the light-intensity output among the five groups. However, there was no significant statistical difference in the Knoop hardness values among any of the groups. There was also no correlation between the Knoop hardness value of the composite resin with the light-intensity output and the different infection-control methods. Therefore, any of the five infection-control methods could be used as barriers for preventing cross-contamination of the light-cure unit tip, for the light-intensity output for all five groups exceeded the recommended value of 300 W/m2. However, to allow a greater margin of error in clinical situations, the authors recommend that the plastic glove or the cellophane wrap be used to wrap the light-cure tip, since these barriers allowed the highest light-intensity output.

  4. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements; Difratometria de raios X de pastas de cimento Portland comum e de alto-forno submetidas a cura termica

    Energy Technology Data Exchange (ETDEWEB)

    Camarini, G [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia; Djanikian, J G [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1994-12-31

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95{sup 0} C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab.

  5. Effect of disposable infection control barriers on light output from dental curing lights.

    Science.gov (United States)

    Scott, Barbara A; Felix, Corey A; Price, Richard B T

    2004-02-01

    To prevent contamination of the light guide on a dental curing light, barriers such as disposable plastic wrap or covers may be used. This study compared the effect of 3 disposable barriers on the spectral output and power density from a curing light. The hypothesis was that none of the barriers would have a significant clinical effect on the spectral output or the power density from the curing light. Three disposable barriers were tested against a control (no barrier). The spectra and power from the curing light were measured with a spectrometer attached to an integrating sphere. The measurements were repeated on 10 separate occasions in a random sequence for each barrier. Analysis of variance (ANOVA) followed by Fisher's protected least significant difference test showed that the power density was significantly less than control (by 2.4% to 6.1%) when 2 commercially available disposable barriers were used (p 0.05). The effect of each of the barriers on the power output was small and probably clinically insignificant. ANOVA comparisons of mean peak wavelength values indicated that none of the barriers produced a significant shift in the spectral output relative to the control ( p > 0.05). Two of the 3 disposable barriers produced a significant reduction in power density from the curing light. This drop in power was small and would probably not adversely affect the curing of composite resin. None of the barriers acted as light filters.

  6. Quantitative study on the effect of high-temperature curing at an early age on strength development of concrete. Experiment with mortar using moderate-heat portland cement

    International Nuclear Information System (INIS)

    Sugiyama, Hisashi; Chino, Shigeo

    1999-01-01

    The effect of high-temperature curing at an early age on the strength development of concrete using moderate-heat portland cement was quantitatively studied. High-temperature curing conditions were set so as to give systematic variations in the temperature-time factors. As a result, the integrated value of curing temperature during the period having a significant effect on the strength development was proposed as a parameter that expressed the degree of high-temperature curing. The effect of high-temperature curing on the strength development of concrete using moderate-heat portland cement could be exactly predicted with the integrated value of curing temperature during the period from 0 to 3 days. (author)

  7. Retention of long-term interim restorations with sodium fluoride enriched interim cement

    Science.gov (United States)

    Strash, Carolyn

    Purpose: Interim fixed dental prostheses, or "provisional restorations", are fabricated to restore teeth when definitive prostheses are made indirectly. Patients undergoing extensive prosthodontic treatment frequently require provisionalization for several months or years. The ideal interim cement would retain the restoration for as long as needed and still allow for ease of removal. It would also avoid recurrent caries by preventing demineralization of tooth structure. This study aims to determine if adding sodium fluoride varnish to interim cement may assist in the retention of interim restorations. Materials and methods: stainless steel dies representing a crown preparation were fabricated. Provisional crowns were milled for the dies using CAD/CAM technology. Crowns were provisionally cemented onto the dies using TempBond NE and NexTemp provisional cements as well as a mixture of TempBond NE and Duraphat fluoride varnish. Samples were stored for 24h then tested or thermocycled for 2500 or 5000 cycles before being tested. Retentive strength of each cement was recorded using a universal testing machine. Results: TempBond NE and NexTemp cements performed similarly when tested after 24h. The addition of Duraphat significantly decreased the retention when added to TempBond NE. NexTemp cement had high variability in retention over all tested time periods. Thermocycling for 2500 and 5000 cycles significantly decreased the retention of all cements. Conclusions: The addition of Duraphat fluoride varnish significantly decreased the retention of TempBond NE and is therefore not recommended for clinical use. Thermocycling significantly reduced the retention of TempBond NE and NexTemp. This may suggest that use of these cements for three months, as simulated in this study, is not recommended.

  8. Temperature rise produced by different light-curing units through dentin.

    Science.gov (United States)

    Yazici, A Rüya; Müftü, Ali; Kugel, Gerard

    2007-11-01

    This study investigated the temperature rise caused by different light curing units and the temperature increase in dentin of different thicknesses. Dentin discs of 1.0 and 2.0 mm thicknesses were prepared from extracted human mandibular molars. Temperatures were recorded directly at the surface of the light guide tip, under dentin discs with different thicknesses, and through a sandwich composed of 2 mm thick cured composite and dentin using a K-type thermocouple. The curing units used were two quartz-tungsten-halogen lights (Spectrum and Elipar Trilight-ET) and a light-emitting diode (LED). The highest temperature rise was observed under a Mylar strip using ET standard mode. Under 1 and 2 mm thick dentin barriers, the lowest temperature rise was measured for the LED curing light. Significant differences in temperature rise existed among all curing units except between the Spectrum and ET exponential modes under a 1 mm thick dentin barrier with cured composite. Temperature rises were insignificant between the Spectrum and ET exponential modes and between two modes of Trilight when the same experimental setup was used under a 2 mm thick dentin barrier. For all curing units, temperature elevation through 2 mm of dentin was less than for 1 mm of dentin thickness. The ET standard mode produced the highest and the LED produced the lowest temperature rise for all tested conditions. The thickness of dentin and light-curing unit might affect temperature transmission.

  9. Hydraulic activity of belite cement from class C coal fly ash. Effect of curing and admixtures

    OpenAIRE

    Goñi, S., Guerrero, A.

    2006-01-01

    [EN] The effect of curing method and a water-reducing additive on the hydraulic activity of high lime content (ASTM type C) fly ash belite cement (FABC-2-W) is reported. A class C fly ash was subjected to hydrothermal treatment and subsequent calcination to synthesize FABC. Hydraulic activity was evaluated in the cement paste over 180 days from the physically bound water content as determined by thermogravimetric analysis and the degree of hydration, in turn found with...

  10. effect of light curing unit characteristics on light intensity output

    African Journals Online (AJOL)

    2013-09-09

    Sep 9, 2013 ... in Nairobi and their effect on light intensity output, depth of cure (DOC) and ... result in gradual reduction in the energy output of ..... of LED lights are compared with QTH lights could ... influence on the SMH of dark shades.

  11. Comparison between three glass fiber post cementation techniques.

    Science.gov (United States)

    Migliau, Guido; Piccoli, Luca; Di Carlo, Stefano; Pompa, Giorgio; Besharat, Laith Konstantinos; Dolci, Marco

    2017-01-01

    The aim of this experimental study was to compare the traditional cement systems with those of the latest generation, to assess if indeed these could represent of viable substitutes in the cementation of indirect restorations, and in the specific case of endodontic posts. The assessment of the validity of the cementing methods was performed according to the test of the push-out, conducted on sections obtained from the roots of treated teeth. The samples were divided into three groups. Group A (10 samples): etching for 30 seconds with 37% orthophosphoric acid (Superlux-Thixo-etch-DMG) combined with a dual-curing adhesive system (LuxaBond-Total Etch-DMG), dual-cured resin-composite cement (LuxaCore-DMG) and glass fiber posts (LuxaPost-DMG). Group B (10 samples): self-adhesive resin cement (Breeze-Pentron Clinical) and glass fiber posts (LuxaPost-DMG). Group C (10 samples): 3 steps light-curing, self-etching, self-conditioning bonding agent (Contax-Total-etch-DMG), dual-cured resin-composite cement (LuxaCore-DMG) and glass fiber posts (LuxaPost-DMG). The survey was conducted by examining the breaking resistance of the post-cement-tooth complex, subjected to a mechanical force. Statistical analysis was performed using SPSS Inc. ver. 13.0, Chicago, IL, USA. Group A values of bond strenth ranged from a minimum of 10.14 Mpa to a maximum value of 14.73 Mpa with a mean value of 12.58 Mpa. In Group B the highest value of bond strength was 6.54 Mpa and the minimum 5.55 Mpa. The mean value of the bond strength for the entire group was 6.58 Mpa. In Group C the highest bond strength was 6.59 Mpa whereas the lowest bond strength was 4.84 Mpa. Mean value of the bond strength of Group C was calculated at 5.7 Mpa. Etching with orthophosphoric acid combined with a dual-curing adhesive system and a dual-cured resin-composite cement was the technique that guaranteed the highest bond strength. Lowest bond strength values were obtained when dual self-adhesive cement was used.

  12. Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA).

    Science.gov (United States)

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Großgarten, Mandy; Möginger, Bernhard

    2014-03-01

    During the curing process of light curing dental composites the mobility of molecules and molecule segments is reduced leading to a significant increase of the viscosity as well as the ion viscosity. Thus, the kinetics of the curing behavior of 6 different composites was derived from dielectric analysis (DEA) using especially redesigned flat sensors with interdigit comb electrodes allowing for irradiation at the top side and measuring the ion viscosity at the bottom side. As the ion viscosities of dental composites change 1-3 orders of magnitude during the curing process, DEA provides a sensitive approach to evaluate their curing behavior, especially in the phase of undisturbed chain growth. In order to determine quantitative kinetic parameters a kinetic model is presented and examined for the evaluation of the ion viscosity curves. From the obtained results it is seen that DEA might be employed in the investigation of the primary curing process, the quality assurance of ingredients as well as the control of processing stability of the light curing dental composites. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Compressive strength of different brands of cement (OPC) in province of Sindh

    International Nuclear Information System (INIS)

    Khaskheli, G.B.; Kumar, A.; Sheikh, A.

    2009-01-01

    OPC (Ordinary Portland Cement) is the most common type of cement used in construction industry. Three major brands of OPC are normal OPC, SRC (Sulphate Resisting Cement) and SC (Slag Cement). It is seen that the variation in constituents of cement may cause serious effects on the quality of cement. Thus the motivation of this research is to study the basic properties (consistency, setting time, and fineness), compressive strength (cement mortar and concrete cubes) and modulus of elasticity of all the OPC brands (OPC, SRC and SC) manufactured in Sindh. In total 10 cement factories, altogether 21 different brands of cement, were studied in the light of BS and ASTM Code specifications. In total 126 mortar cubes (1:3), 252 concrete cubes (126 for 3000 psi mix design and remaining for 5000 psi) and 126 concrete cylinders (6 for the each brand of cement pertaining to 3000 psi and 5000 psi mix design) were manufactured and tested. Experimental results demonstrated that all the cement brands fulfilled the BS and ASTM Code requirements for (i) basic properties (ii) compressive strength of mortar cubes at 3 and 28 days curing age (iii) compressive strength of concrete cubes at 28 days curing age, and (iv) modulus of elasticity. Some of the cements did not fulfill the BS and ASTM Code requirements for compressive strength of concrete cubes at 7 days curing age. (author)

  14. Sequential provisional implant prosthodontics therapy.

    Science.gov (United States)

    Zinner, Ira D; Markovits, Stanley; Jansen, Curtis E; Reid, Patrick E; Schnader, Yale E; Shapiro, Herbert J

    2012-01-01

    The fabrication and long-term use of first- and second-stage provisional implant prostheses is critical to create a favorable prognosis for function and esthetics of a fixed-implant supported prosthesis. The fixed metal and acrylic resin cemented first-stage prosthesis, as reviewed in Part I, is needed for prevention of adjacent and opposing tooth movement, pressure on the implant site as well as protection to avoid micromovement of the freshly placed implant body. The second-stage prosthesis, reviewed in Part II, should be used following implant uncovering and abutment installation. The patient wears this provisional prosthesis until maturation of the bone and healing of soft tissues. The second-stage provisional prosthesis is also a fail-safe mechanism for possible early implant failures and also can be used with late failures and/or for the necessity to repair the definitive prosthesis. In addition, the screw-retained provisional prosthesis is used if and when an implant requires removal or other implants are to be placed as in a sequential approach. The creation and use of both first- and second-stage provisional prostheses involve a restorative dentist, dental technician, surgeon, and patient to work as a team. If the dentist alone cannot do diagnosis and treatment planning, surgery, and laboratory techniques, he or she needs help by employing the expertise of a surgeon and a laboratory technician. This team approach is essential for optimum results.

  15. A comparative evaluation of effect of modern-curing lights and curing modes on conventional and novel-resin monomers

    Science.gov (United States)

    Roy, Konda Karthik; Kumar, Kanumuru Pavan; John, Gijo; Sooraparaju, Sujatha Gopal; Nujella, Surya Kumari; Sowmya, Kyatham

    2018-01-01

    Aim: The aim of this study is to compare and to evaluate effect of curing light and curing modes on the nanohybrid composite resins with conventional Bis-GMA and novel tricyclodecane (TCD) monomers. Methodology: Two nanohybrid composites, IPS empress direct and charisma diamond were used in this study. Light-emitting diode (LED)-curing unit and quartz-tungsten-halogen (QTH)-curing unit which were operated into two different modes: continuous and soft start. Based on the composite resin, curing lights, and mode of curing used, the samples were divided into 8 groups. After polymerization, the samples were stored for 48 h in complete darkness at 37°C and 100% humidity. The Vickers hardness (VK) of the surface was determined with Vickers indenter by the application of 200 g for 15 s. Three VK readings were recorded for each sample surface both on top and bottom surfaces. For all the specimens, the three hardness values for each surface were averaged and reported as a single value. The mean VK and hardness ratio were calculated. The depth of cure was assessed based on the hardness ratio. Results: Comparison of mean hardness values and hardness ratios was done using ANOVA with post hoc Tukey's test. Conclusion: Both QTH- and LED-curing units had shown the adequate depth of cure. Soft-start-curing mode in both QTH- and LED-curing lights had effectively increased microhardness than the continuous mode of curing. TCD monomer had shown higher hardness values compared with conventional Bis-GMA-containing resin. PMID:29628651

  16. Efficiency of light curing units in a government dental school.

    Science.gov (United States)

    Nassar, Hani M; Ajaj, Reem; Hasanain, Fatin

    2018-01-01

    The light intensity of a light-curing unit is a crucial factor that affects the clinical longevity of resin composites. This study aimed to investigate the efficiency of light-curing units in use at a local governmental dental school for curing conventional and bulk-fill resin materials. A total of 166 light-curing units at three locations were examined, and the brand, type, clinic location, diameter of curing tip, tip cleanliness (using a visual score), and the output (in mW/cm 2 using a digital radiometer) were recorded. Only 23.5% of the units examined had clean tips, with the graduate student clinical area containing the highest percentage of clean tips. Further, tips with poor cleanliness score values were associated with significantly lower output intensities. A small percentage (9.4%) of units was capable of producing intensities higher than 1,200 mW/cm 2 and lower than 600 mW/cm 2 (7.6%). The majority of the low intensity units were located in the undergraduate student area, which also contained the highest number of units with intensities between 900 and 1,200 mW/cm 2 . The output of all the units in service was satisfactory for curing conventional resin composites, and most units were capable of curing bulk-fill resin materials.

  17. Qualitative Beam Profiling of Light Curing Units for Resin Based Composites.

    Science.gov (United States)

    Haenel, Thomas; Hausnerová, Berenika; Steinhaus, Johannes; Moeginger, Ing Bernhard

    2016-12-01

    This study investigates two technically simple methods to determine the irradiance distribution of light curing units that governs the performance of a visible-light curing resin-based composites. Insufficient light irradiation leads to under-cured composites with poor mechanical properties and elution of residual monomers. The unknown irradiance distribution and its effect on the final restoration are the main critical issues requiring highly sophisticated experimental equipment. The study shows that irradiance distributions of LCUs can easily be determined qualitatively with generally available equipment. This significantly helps dentists in practices to be informed about the homogeneity of the curing lights. Copyright© 2016 Dennis Barber Ltd.

  18. Comparative Evaluation of Shear Bond Strength and Debonding Characteristics using Conventional Halogen Light Curing Unit and LED Light Curing Unit: An in vitro Study

    Directory of Open Access Journals (Sweden)

    Amit Bhardwaj

    2013-01-01

    Conclusion: The result of this study showed promise for the orthodontic application of LED as light curing units and 20 seconds of exposure time is adequate for both LED and Halogen light, since increasing the curing time to 40 seconds showed no significant difference.

  19. effect of light intensity on the cure characteristics of photo

    African Journals Online (AJOL)

    2012-05-05

    May 5, 2012 ... Objective: To determine the light intensity emitted by light curing units (LCUs) and its effect on the cure characteristics of ... of carbon-carbon double bonds conversion (11-13). Additionally, the light intensity output of a ... increases within the unit and in the restoration. This heat not only contributes to the ...

  20. The effect of high curing temperature on the reaction kinetics in MK/lime and MK-blended cement matrices at 60 deg. C

    International Nuclear Information System (INIS)

    Rojas, Moises Frias; Sanchez de Rojas, M.I.

    2003-01-01

    It is well known that the pozzolanic reaction between metakaolin (MK) and calcium hydroxide produces CSH, C 2 ASH 8 (stratlingite), C 4 AH 13 and C 3 ASH 6 (hydrogarnet). However, the presence or absence of these hydrated phases depends on different parameters, such as curing temperature, matrix used, etc. This paper shows the results of a study in order to know the effect of high curing temperature (60 deg. C) on the kinetics of the pozzolanic reaction in different matrices. MK/lime (calcium hydroxide) and MK-blended cement matrices were studied in samples stored and cured at 60 deg. C and up to 123 days of hydration. The nature, sequence and crystallinity of the hydrated phases were analysed using differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. Results showed that the sequence and formation of the hydrated phases was different in both matrices cured at 60 deg. C. In an MK/lime matrix, C 2 ASH 8 , C 4 AH 13 and C 3 ASH 6 were the main hydrated phases; while in an MK-blended cement, stratlingite was the sole hydrated phase issued from pozzolanic reaction. The DTA and XRD data also reveal an important fact: there is no evidence of the presence of hydrogarnet in blended cements

  1. Light-activation through indirect ceramic restorations: does the overexposure compensate for the attenuation in light intensity during resin cement polymerization?

    Directory of Open Access Journals (Sweden)

    Albano Luis Novaes Bueno

    2011-02-01

    Full Text Available OBJECTIVES: This study evaluated the effects of light exposure through simulated indirect ceramic restorations (SICR on hardness (KHN of dual-cured resin cements (RCs, immediately after light-activation and 24 h later. MATERIAL AND METHODS: Three dual-cured RCs were evaluated: Eco-Link (Ivoclar Vivadent, Rely X ARC (3M ESPE, and Panavia F (Kuraray Medical Inc.. The RCs were manipulated in accordance to the manufacturers' instructions and were placed into cylindrical acrylic matrixes (1-mm-thick and 4-mm diameter. The RC light-activation (Optilux 501; Demetron Kerr was performed through a glass slide for 120 s (control group, or through 2-mm or 4-mm thick SICRs (IPS Empress II; Ivoclar Vivadent. The specimens were submitted to KHN analysis immediately and 24 h after light-activation. The data obtained at the 2 evaluation intervals were submitted to 2-way ANOVA repeated measures and post-hoc Tukey's test (pre-set alpha of 5%. RESULTS: Lower KHN was observed when light-activation was performed through SICRs for Eco-Link at all evaluation intervals and for Rely X ARC 24 h later. For Panavia F, no significant difference in KHN was observed between control and experimental groups, regardless of evaluation interval. Most groups exhibited higher KHN after 24 h than immediately after light-activation, with the exception of Rely X ARC light-activated through SICR, as no significant difference in KHN was found between evaluation intervals. CONCLUSIONS: Light overexposure did not compensate for light intensity attenuation due to the presence of SICR when Rely X and Eco-Link were used. Although hardness of such RCs increased over a 24-h interval, the RCs subjected to light overexposure did not reach the hardness values exhibited after direct light exposure.

  2. Effect of Abutment Modification and Cement Type on Retention of Cement-Retained Implant Supported Crowns

    OpenAIRE

    Farzin, Mitra; Torabi, Kianoosh; Ahangari, Ahmad Hasan; Derafshi, Reza

    2014-01-01

    Objective: Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations. Materials and Method: Two prefabricated abutments were attached to their corresponding analogs and embedded in an ac...

  3. Mechanical properties of self-curing concrete (SCUC

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-12-01

    Full Text Available The mechanical properties of concrete containing self-curing agents are investigated in this paper. In this study, two materials were selected as self-curing agents with different amounts, and the addition of silica fume was studied. The self-curing agents were, pre-soaked lightweight aggregate (Leca; 0.0%, 10%, 15%, and 20% of volume of sand; or polyethylene-glycol (Ch.; 1%, 2%, and 3% by weight of cement. To carry out this study the cement content of 300, 400, 500 kg/m3, water/cement ratio of 0.5, 0.4, 0.3 and 0.0%, 15% silica fume of weight of cement as an additive were used in concrete mixes. The mechanical properties were evaluated while the concrete specimens were subjected to air curing regime (in the laboratory environment with 25 °C, 65% R.H. during the experiment. The results show that, the use of self-curing agents in concrete effectively improved the mechanical properties. The concrete used polyethylene-glycol as self-curing agent, attained higher values of mechanical properties than concrete with saturated Leca. In all cases, either 2% Ch. or 15% Leca was the optimum ratio compared with the other ratios. Higher cement content and/or lower water/cement ratio lead(s to more efficient performance of self-curing agents in concrete. Incorporation of silica fume into self-curing concrete mixture enhanced all mechanical properties, not only due to its pozzolanic reaction, but also due to its ability to retain water inside concrete.

  4. Analysis of rheological properties of bone cements.

    Science.gov (United States)

    Nicholas, M K D; Waters, M G J; Holford, K M; Adusei, G

    2007-07-01

    The rheological properties of three commercially available bone cements, CMW 1, Palacos R and Cemex ISOPLASTIC, were investigated. Testing was undertaken at both 25 and 37 degrees C using an oscillating parallel plate rheometer. Results showed that the three high viscosity cements exhibited distinct differences in curing rate, with CMW 1 curing in 8.7 min, Palacos R and Cemex ISOPLASTIC in 13 min at 25 degrees C. Furthermore it was found that these curing rates were strongly temperature dependent, with curing rates being halved at 37 degrees C. By monitoring the change of viscosity with time over the entire curing process, the results showed that these cements had differing viscosity profiles and hence exhibit very different handling characteristics. However, all the cements reached the same maximum viscosity of 75 x 10(3) Pa s. Also, the change in elastic/viscous moduli and tan delta with time, show the cements changing from a viscous material to an elastic solid with a clear peak in the viscous modulus during the latter stages of curing. These results give valuable information about the changes in rheological properties for each commercial bone cement, especially during the final curing process.

  5. Biaxial Flexural Strength of High-Viscosity Glass-Ionomer Cements Heat-Cured with an LED Lamp during Setting

    Directory of Open Access Journals (Sweden)

    Gustavo Fabián Molina

    2013-01-01

    Full Text Available Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n=30: without heating (Group 1, heated with LED lamp of 1400 mW/cm2 for 30 s while setting (Group 2, and heated with LED lamp of 1400 mW/cm2 for 60 s while setting (Group 3. Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α=0.05. Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm2 during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.

  6. Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity

    Directory of Open Access Journals (Sweden)

    Renata Andreza Talaveira da Silva

    2011-08-01

    Full Text Available During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. OBJECTIVE: this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C, medium (M and apical (A thirds of the root. MATERIAL AND METHODS: Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group: group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37°C for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. RESULTS: Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05. Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3% than in AC (C=85.9%, M=81.8% and A=76.0%, ARC (C=83.8%, M=82.4% and A=75.0% and U100 (C=84.1%, M=82.4% and A=77.3% (Kruskal-Wallis test, p<0.05. CONCLUSIONS: Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity.

  7. Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity

    Science.gov (United States)

    da SILVA, Renata Andreza Talaveira; COUTINHO, Margareth; CARDOZO, Pedro Igor; da SILVA, Larissa Alves; ZORZATTO, José Roberto

    2011-01-01

    During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. Objective this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C), medium (M) and apical (A) thirds of the root. Material and methods Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group): group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37ºC for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. Results Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05). Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3%) than in AC (C=85.9%, M=81.8% and A=76.0%), ARC (C=83.8%, M=82.4% and A=75.0%) and U100 (C=84.1%, M=82.4% and A=77.3%) (Kruskal-Wallis test, p<0.05). Conclusions Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity. PMID:21710099

  8. Bulk-Fill Composites: Effectiveness of Cure With Poly- and Monowave Curing Lights and Modes.

    Science.gov (United States)

    Gan, J K; Yap, A U; Cheong, J W; Arista, N; Tan, Cbk

    This study compared the effectiveness of cure of bulk-fill composites using polywave light-emitting diode (LED; with various curing modes), monowave LED, and conventional halogen curing lights. The bulk-fill composites evaluated were Tetric N-Ceram bulk-fill (TNC), which contained a novel germanium photoinitiator (Ivocerin), and Smart Dentin Replacement (SDR). The composites were placed into black polyvinyl molds with cylindrical recesses of 4-mm height and 3-mm diameter and photopolymerized as follows: Bluephase N Polywave High (NH), 1200 mW/cm 2 (10 seconds); Bluephase N Polywave Low (NL), 650 mW/cm 2 (18.5 seconds); Bluephase N Polywave soft-start (NS), 0-650 mW/cm 2 (5 seconds) → 1200 mW/cm 2 (10 seconds); Bluephase N Monowave (NM), 800 mW/cm 2 (15 seconds); QHL75 (QH), 550 mW/cm 2 (21.8 seconds). Total energy output was fixed at 12,000 mJ/cm 2 for all lights/modes, with the exception of NS. The cured specimens were stored in a light-proof container at 37°C for 24 hours, and hardness (Knoop Hardness Number) of the top and bottom surfaces of the specimens was determined using a Knoop microhardness tester (n=6). Hardness data and bottom-to-top hardness ratios were subjected to statistical analysis using one-way analysis of variance/Scheffe's post hoc test at a significance level of 0.05. Hardness ratios ranged from 38.43% ± 5.19% to 49.25% ± 6.38% for TNC and 50.67% ± 1.54% to 67.62% ± 6.96% for SDR. For both bulk-fill composites, the highest hardness ratios were obtained with NM and lowest hardness ratios with NL. While no significant difference in hardness ratios was observed between curing lights/modes for TNC, the hardness ratio obtained with NM was significantly higher than the hardness ratio obtained for NL for SDR.

  9. Thio-urethane oligomers improve the properties of light-cured resin cements.

    Science.gov (United States)

    Bacchi, Ataís; Consani, Rafael L; Martim, Gedalias C; Pfeifer, Carmem S

    2015-05-01

    Thio-urethanes were synthesized by combining 1,6-hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 10-30 phr to BisGMA-UDMA-TEGDMA (5:3:2, BUT). 25 wt% silanated inorganic fillers were added. Commercial cement (Relyx Veneer, 3M-ESPE) was also evaluated with 10-20 phr of aromatic oligomer. Near-IR was used to follow methacrylate conversion (DC) and rate of polymerization (Rpmax). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Volumetric shrinkage (VS, %) was measured with the bonded disk technique. Results were analyzed with ANOVA/Tukey's test (α=5%). In general terms, for BUT cements, conversion and mechanical properties in flexure increased for selected groups with the addition of thio-urethane oligomers. The aromatic versions resulted in greater FS/FM than aliphatic. Fracture toughness increased by two-fold in the experimental groups (from 1.17 ± 0.36 MPam(1/2) to around 3.23 ± 0.22 MPam(1/2)). Rpmax decreased with the addition of thio-urethanes, though the vitrification point was not statistically different from the control. VS and PS decreased with both oligomers. For the commercial cement, 20 phr of oligomer increased DC, vitrification, reduced Rpmax and also significantly increased KIC, and reduced PS and FM. Thio-urethane oligomers were shown to favorably modify conventional dimethacrylate networks. Significant reductions in polymerization stress were achieved at the same time conversion and fracture toughness increased. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Effect of water-to-cement ratio and curing method on the strength, shrinkage and slump of the biosand filter concrete body.

    Science.gov (United States)

    Chan, Nicole; Young-Rojanschi, Candice; Li, Simon

    2018-03-01

    The biosand filter is a household-level water treatment technology used globally in low-resource settings. As of December 2016, over 900,000 biosand filters had been implemented in 60 countries around the world. Local, decentralized production is one of the main advantages of this technology, but it also creates challenges, especially in regards to quality control. Using the current recommended proportions for the biosand filter concrete mix, slump was measured at water-to-cement ratios of 0.51, 0.64 and 0.76, with two replicates for each level. Twenty-eight-day strength was tested on four replicate cylinders, each at water-to-cement ratios of 0.51, 0.59, 0.67 and 0.76. Wet curing and dry curing were compared for 28-day strength and for their effect on shrinkage. Maximum strength occurred at water-to-cement ratios of 0.51-0.59, equivalent to 8-9.3 L water for a full-scale filter assuming saturated media, corresponding to a slump class of S1 (10-40 mm). Wet curing significantly improved strength of the concrete mix and reduced shrinkage. Quality control measures such as the slump test can significantly improve the quality within decentralized production of biosand filters, despite localized differences in production conditions.

  11. Pulp chamber temperature rise during curing of resin-based composites with different light-curing units.

    Science.gov (United States)

    Durey, Kathryn; Santini, Ario; Miletic, Vesna

    2008-01-01

    The purpose of the present study was to measure the intrapulpal temperature rise occurring during polymerisation of different shades of resin-based composites (RBCs), and two light-emitting diode (LED) units. Seventy non-carious permanent molars, that had been extracted for orthodontic purposes and stored in 2% thymol for not more than four months, were selected. Patient age range was 11-18 years. Standard cavity preparation with standardised remaining dentine thickness and placement of thermocouples (TCs) was prepared using a novel split-tooth technique. Cavities were filled with one of two shades of RBC (A2 and C4, Filtek Z250, 3M ESPE, Seefeld, Germany), and cured with two LED high-intensity units (Elipar Freelight2, 3M ESPE, Seefeld, Germany; Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein) and a conventional halogen light-curing unit (LCU) (Prismetics Lite 2, Dentsply, Weybridge, Surrey, UK) as a control. Pulp temperature rises during bonding [A2 results: H;2.67/0.48:E;5.24/1.32;B;5.99/1.61] were always greater than during RBC curing [A2 results: 2.44/0.63;E3.34/0.70;B3.38/0.60], and these were significant for both LED lights but not for the halogen control, irrespective of shade (Mann-Whitney test: 95% confidence limits). Temperature rises were at times in excess of the values normally quoted as causing irreversible pulp damage. Pulp temperature rises during bonding were higher with the LED lights than with the halogen control. There was no significant difference in temperature rise between the two LED lights when bonding but there was a significant difference between the two LED lights and the halogen control LCUs (Kruskal-Wallis Test: 95% confidence limits). The results support the view that there is a potential risk for heat-induced pulpal injury when light-curing RBCs. The risk is greater during bonding and with high energy, as compared to low-energy output systems. As the extent of tolerable thermal trauma by the pulp tissues is unknown, care and

  12. Effect of curing conditions on the dimensional and thermal stability of calcium phosphate cement for elevated temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Johan [Vrije Universiteit Brussel, Department of Mechanics of Materials and Constructions, Pleinlaan 2, Brussels 1050 (Belgium); Rahier, Hubert [Vrije Universiteit Brussel, Research Group of Physical Chemistry and Polymer Sciences, Pleinlaan 2, Brussels 1050 (Belgium); Wastiels, Jan, E-mail: Jan.Wastiels@vub.ac.be [Vrije Universiteit Brussel, Department of Mechanics of Materials and Constructions, Pleinlaan 2, Brussels 1050 (Belgium)

    2014-12-15

    Calcium phosphate cements (CPCs) are attractive materials for elevated temperature applications, like moulds to process thermoplastics up to 300 °C. The CPC resulting from the reaction of wollastonite with phosphoric acid cured at room temperature however contains hydrated phases like brushite, and is thus not stable when exposed to temperatures above 200 °C. A non-contact method based on digital image correlation demonstrated that isothermal curing at 60 °C reduces the thermal shrinkage up to 300 °C by 25%. This curing method results in the direct formation of the more stable monetite in a shorter curing time. The correlated results of TGA, pH of the filtration water, and DSC analysis on partially cured material indicate this. XRD diffractograms and SEM images in combination with EDX show the evolution of the transformation of wollastonite into monetite, and the structure and morphology of the formed material.

  13. Effects of layering technique on the shade of resin overlays and the microhardness of dual cure resin cement

    Directory of Open Access Journals (Sweden)

    Hoon-Sang Chang

    2014-06-01

    Full Text Available The purpose of this study was to assess the color of layered resin overlays and to test the early microhardness of dual cure resin cement (DCRC light cured through the layered resin overlays. Resin overlays of 1.5 mm thickness were fabricated with the A3 shade of Z350 (Group 1L, the A3B and A3E shades of Supreme XT (Group 2L, and the A3, E3, and T1 shades of Sinfony (Group 3L using one, two, and three layers, respectively (n = 7. Each layer of the resin overlays was set in equal thickness. The color of the resin overlays was measured with a colorimeter and compared with an A3 shade resin denture tooth. DCRC was light cured through the resin overlays, and the early microhardness of the DCRC was measured. The ΔE value between the denture tooth and the resin overlays and the Vickers hardness number (VHN of the DCRC were analyzed with one-way ANOVA and Tukey’s HSD test. The color differences were 8.9 ± 0.5, 5.3 ± 1.0, and 7.3 ± 0.5 and the VHNs were 19.4 ± 1.1, 21.1 ± 0.9, and 29.3 ± 0.6 for Groups 1L, 2L, and 3L, respectively. Therefore, to match the designated tooth color of resin inlays and to increase the early microhardness of DCRC, layered resin inlays are more appropriate than single-dentin-layer resin inlays. However, the translucent layer should be used cautiously because the color difference of resin inlays with a translucent layer was affected more than those without a translucent layer.

  14. Glass transition and degree of conversion of a light-cured orthodontic composite

    Directory of Open Access Journals (Sweden)

    Michela M. D. S. Sostena

    2009-12-01

    Full Text Available OBJECTIVE: This study evaluated the glass transition temperature (Tg and degree of conversion (DC of a light-cured (Fill Magic versus a chemically cured (Concise orthodontic composite. MATERIAL AND METHODS: Anelastic relaxation spectroscopy was used for the first time to determine the Tg of a dental composite, while the DC was evaluated by infrared spectroscopy. The light-cured composite specimens were irradiated with a commercial LED light-curing unit using different exposure times (40, 90 and 120 s. RESULTS: Fill Magic presented lower Tg than Concise (35-84ºC versus 135ºC, but reached a higher DC. CONCLUSIONS: The results of this study suggest that Fill Magic has lower Tg than Concise due to its higher organic phase content, and that when this light-cured composite is used to bond orthodontic brackets, a minimum energy density of 7.8 J/cm² is necessary to reach adequate conversion level and obtain satisfactory adhesion.

  15. Cellular effects of halogen blue light from dental curing unit

    International Nuclear Information System (INIS)

    Trosic, I.; Pavicic, I.; Jukic, S.

    2008-01-01

    Full text: Halogen curing lights are the most frequently used polymerization source in dental offices. Light-cured bonding systems have become increasingly popular among clinicians because they offer a number of advantages over self-cured adhesives. The effort to increase polymerization quality releases the commercially available high power light density dental curing units. Emitted visible blue light belongs to the range of nonionizing radiation. Common concern in both, patients and dentist grows with regard to the unfavorable effects on the pulp tissue. The aim of study was to evaluate the time and dose dependence effect of halogen light curing unit (Elipar TriLight, ESPE Dental AG, Germany) at the disposed condition modes in vitro. A quartz-tungsten-halogen light source emits radiation of the wavelengths between 400 and 515 nm. This halogen blue light source operates in the three illumination modes, medium (M), exponential (E) and standard (S), and five illumination times. The total irradiance or the light intensity was measured by the light intensity control area on the control panel of device and mean light intensity given by manufacturer was 800 m W/cm 2 . Continuous culture of V79 cells was illuminated in triplicate. The influence of medium mode (M), exponential (E) and standard (S) illumination during 20, 40 and 80 sec on the cell viability, colony forming ability and proliferation of V79 cell culture was investigated. Trypan blue exclusion test was used to determine cell viability, both, in the treated and control cell samples. Colony forming ability was assessed for each exposure time and mode by colony count on post-exposure day 7. Cell proliferation was determined by cell counts for each time and mode of exposure during five post-exposure days. Statistical difference were determined at p<0.05 (Statistica 7.0, StatSoft Inc., USA). Viability of cells was not affected by blue light in view of exposure time and modes. Regardless to exposure or illumination

  16. Determination of transmission factors of concretes with different water/cement ratio, curing condition, and dosage of cement and air entraining agent

    International Nuclear Information System (INIS)

    Sahin, Remzi; Polat, Recep; Icelli, Orhan; Celik, Cafer

    2011-01-01

    Highlights: → We determined transmission factors of parameters affecting properties of concrete. → The most important parameter is W/C ratio for attenuation of radiation of concrete. → Taguchi Method provides an appropriate methodology for parameter reduction. - Abstract: This study focuses on determination of transmission factors of main parameters affecting the properties of both normal- and heavy-weight concrete in order to increase knowledge and understanding of radiation attenuation in concrete at a later age. Water/cement (W/C) ratio, curing condition, cement quantity and air entraining agent (AEA) were selected as the main parameters. Eight energy values have been selected within the energy interval of 30.85-383.85 keV to be used in the radiation source. The Taguchi Method was used as the method of optimization. It was determined in the study that the most important parameter affecting the attenuation of the radiation of the concrete is the W/C ratio and the concretes produced with the lowest level of W/C ratio absorb more radiation. However, it was also determined that there was a combined effect between the W/C ratio and the cement dosage.

  17. Influence of curing protocol on selected properties of light-curing polymers

    DEFF Research Database (Denmark)

    Dewaele, Magali; Asmussen, Erik; Peutzfeldt, Anne

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other....

  18. Numerical simulation of heat and mass transport during hydration of Portland cement mortar in semi-adiabatic and steam curing conditions

    OpenAIRE

    Hernandez-Bautista, E.; Bentz, D. P.; Sandoval-Torres, S.; de Cano-Barrita, P. F. J.

    2016-01-01

    A model that describes hydration and heat-mass transport in Portland cement mortar during steam curing was developed. The hydration reactions are described by a maturity function that uses the equivalent age concept, coupled to a heat and mass balance. The thermal conductivity and specific heat of mortar with water-to-cement mass ratio of 0.30 was measured during hydration, using the Transient Plane Source method. The parameters for the maturity equation and the activation energy were obtaine...

  19. Laboratory Electrical Resistivity Studies on Cement Stabilized Soil

    Science.gov (United States)

    Lokesh, K. N.; Jacob, Jinu Mary

    2017-01-01

    Electrical resistivity measurement of freshly prepared uncured and cured soil-cement materials is done and the correlations between the factors controlling the performance of soil-cement and electrical resistivity are discussed in this paper. Conventional quality control of soil-cement quite often involves wastage of a lot of material, if it does not meet the strength criteria. In this study, it is observed that, in soil-cement, resistivity follows a similar trend as unconfined compressive strength, with increase in cement content and time of curing. Quantitative relations developed for predicting 7-day strength of soil-cement mix, using resistivity of the soil-cement samples at freshly prepared state, after 1-hour curing help to decide whether the soil-cement mix meets the desired strength and performance criteria. This offers the option of the soil-cement mix to be upgraded (possibly with additional cement) in its fresh state itself, if it does not fulfil the performance criteria, rather than wasting the material after hardening. PMID:28540364

  20. Effect of cement dosage and early curing towards Kuala Perlis dredged marine sediments: a ɛv - σv and SEM-EDX approach

    Science.gov (United States)

    Syakeera Nordin, Nurul; Chan, Chee-Ming

    2017-11-01

    Cement is the primary material used in solidifying the soft soils. This material was applied in solidifying Kuala Perlis dredged marine sediments (DMS). These unwanted sediments are classified as high plasticity silt, MH with 3.36 LL of wc/LL value. At dosage 10 and 20 % of cemented-DMS and 3 days curing time, compression curve results shows the settlement criteria were enhanced than the natural DMS. Unfortunately, the settlement criteria are not complies with the permissible settlement limit and applicable pressure. The formation of cementing compounds appears in the SEM micrograph for 10 and 20 % of cemented-DMS. EDX analysis shows the Ca:Si ratio were increased for cemented-DMS due to the formation of C-S-H gel.

  1. Cement solidification method for miscellaneous radioactive solid, processing device and processing tool therefor

    International Nuclear Information System (INIS)

    Mihara, Shigeru; Suzuki, Kazunori; Hasegawa, Akira.

    1994-01-01

    A basket made of a metal net and a lid with a spacer constituting a processing tool for processing miscellaneous radioactive solid wastes is formed as a mesh which scarcely passes the miscellaneous solids but pass mortars. The size of the mesh is usually from about 10 to 30mm. Since this mesh allows fine solids approximate to powders such as burning ashes and heat insulation materials, they fall to the bottom of a dram can, to cause corrosion. Then, the corners of the bottom and the bottom of the dram can are coated with cement. The miscellaneous solid wastes are contained, and the lid of a metal net having a spacer at the upper portion thereof is set, a provisional lid is put on, and it is evacuated, and mortars are injected. Since there is a possibility that light and fine radioactive powders are exposed on the surface of the mortars coagulated and hardened by curing, conditioning for further adding mortars is applied for securing the mortars in order to prevent scattering of the radioactive powders. With such procedures, a satisfactory safe solidified products can be formed. (T.M.)

  2. Evaluation of shear bond strength of orthodontic brackets using trans-illumination technique with different curing profiles of LED light-curing unit in posterior teeth.

    Science.gov (United States)

    Heravi, Farzin; Moazzami, Saied Mostafa; Ghaffari, Negin; Jalayer, Javad; Bozorgnia, Yasaman

    2013-11-21

    Although using light-cured composites for bonding orthodontic brackets has become increasingly popular, curing light cannot penetrate the metallic bulk of brackets and polymerization of composites is limited to the edges. Limited access and poor direct sight may be a problem in the posterior teeth. Meanwhile, effectiveness of the trans-illumination technique is questionable due to increased bucco-lingual thickness of the posterior teeth. Light-emitting diode (LED) light-curing units cause less temperature rise and lower risk to the pulpal tissue. The purpose of this study was to evaluate the clinical effectiveness of trans-illumination technique in bonding metallic brackets to premolars, using different light intensities and curing times of an LED light-curing unit. Sixty premolars were randomly divided into six groups. Bonding of brackets was done with 40- and 80-s light curing from the buccal or lingual aspect with different intensities. Shear bond strengths of brackets were measured using a universal testing machine. Data were analyzed by one-way analysis of variance test and Duncan's post hoc test. The highest shear bond belonged to group 2 (high intensity, 40 s, buccal) and the lowest belonged to group 3 (low intensity, 40 s, lingual). Bond strength means in control groups were significantly higher than those in experimental groups. In all experimental groups except group 6 (80 s, high intensity, lingual), shear bond strength was below the clinically accepted values. In clinical limitations where light curing from the same side of the bracket is not possible, doubling the curing time and increasing the light intensity during trans-illumination are recommended for achieving acceptable bond strengths.

  3. Temperature rise induced by various light curing units through human dentin.

    Science.gov (United States)

    Dogan, Arife; Hubbezoglu, Ihsan; Dogan, Orhan Murat; Bolayir, Giray; Demir, Hakan

    2009-05-01

    This study investigated temperature rises caused by different light curing units (LCUs) in dentin of different thicknesses. The different LCUs tested in this study were namely: quartz-tungsten-halogen (QTH) (Heliolux DLX) LCU, plasma arc (PAC) (Apollo 95E Elite) LCU, and light emitting diode (LED) (Mini LED) in standard curing mode as well as pulse and soft-start modes. One hundred and forty dentin disks of 0.5, 1, 1.5, and 2 mm thickness were prepared from mandibular molars (n=7). Temperatures were recorded using a L-type thermocouple in direct contact with the light guide tip. For all curing units/modes, dentin thickness was inversely proportional to temperature rise and that QTH light gave significantly higher values compared to PAC and LED in all the test conditions. The highest temperature rise was observed under 0.5-mm-thick dentin disk with QTH, whereas the lowest temperature rise was registered with LED light in pulse mode under 2-mm-thick dentin.

  4. Thermal analysis of bulk filled composite resin polymerization using various light curing modes according to the curing depth and approximation to the cavity wall

    Directory of Open Access Journals (Sweden)

    Hoon-Sang Chang

    2013-07-01

    Full Text Available OBJECTIVE: The purpose of this study was to investigate the polymerization temperature of a bulk filled composite resin light-activated with various light curing modes using infrared thermography according to the curing depth and approximation to the cavity wall. MATERIAL AND METHODS: Composite resin (AeliteFlo, Bisco, Schaumburg, IL, USA was inserted into a Class II cavity prepared in the Teflon blocks and was cured with a LED light curing unit (Dr's Light, GoodDoctors Co., Seoul, Korea using various light curing modes for 20 s. Polymerization temperature was measured with an infrared thermographic camera (Thermovision 900 SW/TE, Agema Infra-red Systems AB, Danderyd, Sweden for 40 s at measurement spots adjacent to the cavity wall and in the middle of the cavity from the surface to a 4 mm depth. Data were analyzed according to the light curing modes with one-way ANOVA, and according to curing depth and approximation to the cavity wall with two-way ANOVA. RESULTS: The peak polymerization temperature of the composite resin was not affected by the light curing modes. According to the curing depth, the peak polymerization temperature at the depth of 1 mm to 3 mm was significantly higher than that at the depth of 4 mm, and on the surface. The peak polymerization temperature of the spots in the middle of the cavity was higher than that measured in spots adjacent to the cavity wall. CONCLUSION: In the photopolymerization of the composite resin, the temperature was higher in the middle of the cavity compared to the outer surface or at the internal walls of the prepared cavity.

  5. Stability of the Light Output, Oral Cavity Tip Accessibility in Posterior Region and Emission Spectrum of Light-Curing Units.

    Science.gov (United States)

    André, C B; Nima, G; Sebold, M; Giannini, M; Price, R B

    2018-04-09

    This study evaluated the light output from six light-emitting diode dental curing lights after 25 consecutive light exposures without recharging the battery, tip accessibility in the posterior region, and light beam spread from light-curing units. Irradiance, spectral peak, and radiant exposure were measured with the battery fully charged (Bluephase Style, ESPE Cordless, Elipar S10, Demi Ultra, Valo Cordless, and Radii-Cal) and monitored for 25 light exposures (each lasting 10 seconds). The tip diameter was measured to identify the beam size and the ability of the six light-curing units to irradiate all areas of the lower second molar in the standard output setting. Four curing lights delivered a single peak wavelength from 454 to 462 nm, and two (Bluephase Style and Valo Cordless) delivered multiple emission peaks (at 410 and 458 nm and 400, 450, and 460 nm, respectively). The irradiance and radiant exposure always decreased after 25 exposures by 2% to 8%, depending on the light unit; however, only ESPE Cordless, Valo Cordless, and Radii-Cal presented a statistical difference between the first and the last exposure. The tip diameter ranged from 6.77 mm to 9.40 mm. The Radii-Cal delivered the lowest radiant exposure and irradiance. This light was also unable to access all the teeth with the tip parallel to the occlusal surface of the tooth. Not all of the blue-emitting lights deliver the same emission spectra, and some curing lights delivered a lower irradiance (as much as 8% lower) after the 25th exposure.

  6. The role of curing period on the engineering characteristics of a cement-stabilized soil

    Directory of Open Access Journals (Sweden)

    Athanasopoulou Antonia

    2016-07-01

    Full Text Available Very often, pavements constructed in an economical manner or matching surface elevations of adjacent lanes cannot be designed for the soil conditions of the existing subgrade. Therefore, there is a need to stabilize the soil with an appropriate chemical substance in order to increase its strength to a satisfactory level. For the enhancement of subgrade soil strength characteristics, lime and cement are the most commonly used stabilizers. An experimental program was directed to the evaluation of a clayey soil and its mixtures with different cement contents performing tests on the index properties, the moisture-density relation, the unconfined compressive strength, and linear shrinkage. There is a definite improvement in strength. The time interval used to cure the prepared specimens affected positively both strength and plasticity features of the mixtures. A comparison with mixtures of the same soil with lime has been made, because of the wide use of lime in clay soil stabilization projects.

  7. Elution of Monomers from Provisional Composite Materials

    Directory of Open Access Journals (Sweden)

    Simon Daniel Schulz

    2015-01-01

    Full Text Available The aim of this study was to evaluate the elution of substances from different materials used for the manufacturing of temporary indirect restorations, after storage in saliva and ethanol 75%. 10 samples of three chemically cured materials (Protemp 3 Garant, Systemp.c&b, and Trim and one light-cured material (Clip F were stored in saliva and ethanol 75% for 24 h, 7, and days 28 days. From the storage media at each time period, samples were prepared and analysed by LC-MS/MS, in order to access the elution of monomers. The results differed among the materials (P ≤ 0.05. No monomers were detected in the samples of Protemp 3 Garant and Clip F. Substances were detected only in ethanol samples of Systemp.c&b and Trim. The amount of BisGMA, TEGDMA, and UDMA 2 released from Systemp.c&b was higher compared to Trim. Storage time affected the release of substances (P ≤ 0.05. The highest release was observed within the first 24 h. It can be concluded that provisional resin composite materials do not show high release of monomers and this release is material dependent. However, the detection of additional peaks during the analysis, suggesting the formation of by-products of the eluted substances, may not be in favour of these materials with respect to their toxicity.

  8. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2005-02-01

    Because of the risk of thermal damage to the pulp, the temperature rise induced by light-curing units should not be too high. LED (light emitting diode) curing units have the main part of their irradiation in the blue range and have been reported to generate less heat than QTH (quartz-tungsten-halogen) curing units. This study had two aims: first, to measure the temperature rise induced by ten LED and three QTH curing units; and, second, to relate the measured temperature rise to the power density of the curing units. The light-induced temperature rise was measured by means of a thermocouple embedded in a small cylinder of resin composite. The power density was measured by using a dental radiometer. For LED units, the temperature rise increased with increasing power density, in a statistically significant manner. Two of the three QTH curing units investigated resulted in a higher temperature rise than LED curing units of the same power density. Previous findings, that LED curing units induce less temperature rise than QTH units, does not hold true in general.

  9. Physical properties of self-curing concrete (SCUC

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-08-01

    The results show that the use of self-curing agent (Ch. in concrete effectively improves the physical properties compared with conventional concrete. On the other hand, up to 15% saturated leca was effective while 20% saturated leca was effective for permeability and mass loss but adversely affects the sorptivity and volumetric water absorption. Self-curing agent Ch. was more effective than self-curing agent leca. In all cases, both 2% Ch. and 15% leca were the optimum values. Higher cement content and/or lower water–cement ratio leads to more effective results of self-curing agents in concrete. Incorporation of silica fume into concrete mixtures enhances all physical properties.

  10. Comparison of temperature rise in the pulp chamber with different light curing units: An in-vitro study.

    Science.gov (United States)

    Rajesh Ebenezar, A V; Anilkumar, R; Indira, R; Ramachandran, S; Srinivasan, M R

    2010-07-01

    This in vitro study was designed to measure and compare the temperature rise in the pulp chamber with different light curing units. The study was done in two settings-in-vitro and in-vivo simulation. In in-vitro setting, 3mm and 6mm acrylic spacers with 4mm tip diameter thermocouple was used and six groups were formed according to the light curing source- 3 Quartz-Tungsten-Halogen (QTH) units and 3 Light-Emitting-Diode (LED) units. For the LED units, three modes of curing like pulse-cure mode, fast mode and ramp mode were used. For in-vivo simulation, 12 caries free human third molar tooth with fused root were used. K-type thermocouple with 1 mm tip diameter was used. Occlusal cavity was prepared, etched, rinsed with water and blot dried; bonding agent was applied and incremental curing of composite was done. Thermal emission for each light curing agent was noted. Temperature rise was very minimal in LED light cure units than in QTH light cure units in both the settings. Temperature rise was minimal at 6mm distance when compared to 3 mm distance. Among the various modes, fast mode produces the less temperature rise. Temperature rise in all the light curing units was well within the normal range of pulpal physiology. Temperature rise caused due to light curing units does not result in irreversible pulpal damage.

  11. Bacterial adhesion of porphyromonas gingivalis on provisional fixed prosthetic materials

    Directory of Open Access Journals (Sweden)

    Mustafa Zortuk

    2010-01-01

    Conclusion : The quantity of bacterial adhesion and surface roughness differed among the assessed provisional fixed prosthodontic materials. The light-polymerized provisional material Revotek LC had rougher surface and more bacterial adhesion compared with the others.

  12. Effect of energy density and delay time on the degree of conversion and Knoop microhardness of a dual resin cement.

    Science.gov (United States)

    Mainardi, Maria do Carmo A J; Giorgi, Maria Cecília C; Lima, Débora A N L; Marchi, Giselle M; Ambrosano, Gláucia M; Paulillo, Luiz A M S; Aguiar, Flávio H B

    2015-02-01

    In the present study, we evaluated the influence of the photo-curing delay time and energy density on the degree of conversion and the Knoop microhardness of a resin cement. Seventy-eight samples were assigned to 13 groups (n = 6), one of which received no light curing (control). The samples were made of a dual-cured resin cement (RelyX ARC) with the aid of a Teflon matrix, submitted to one of the following energy densities (J/cm²): 7, 14, 20, and 28. Delay times were immediate (0), 1 min, or 2 min. After 24 h, the degree of conversion and microhardness were measured at three segments: cervical, medium, and apical. Data were submitted to three-way anova and Tukey's and Dunnett's tests, the latest of which was used to compare the control to the experimental groups. No interaction was observed between delay time and energy density regarding the degree of conversion. The cervical segment showed the highest values, while the apical showed the lowest. Microhardness values concerning the cervical segment in all groups were statistically different from that obtained for the control. A high-irradiance light-curing unit allows for a reduced irradiation exposure time with a short delay time, aimed at tooth restorations using a dual-cured resin cement. © 2014 Wiley Publishing Asia Pty Ltd.

  13. Influence of fluorescent dye on physical-mechanical properties of luting cements for confocal microscopy analysis.

    Science.gov (United States)

    Oliveira, Dayane; Prieto, Lúcia; Araújo, Cíntia; Coppini, Erick; Pereira, Gisele; Paulillo, Luís

    2014-12-01

    To evaluate the influence of a fluorescent dye (rhodamine B) on the physical and mechanical properties of three different luting cements: a conventional adhesive luting cement (RelyX ARC, 3M/ESPE), a self-adhesive luting cement (RelyX U-200, 3M/ESPE), and a self-etching and self-adhesive luting cement (SeT PP, SDI). The cements were mixed with 0.03 wt% rhodamine B, formed into bar-shaped specimens (n = 10), and light cured using an LED curing unit (Radii, SDI) with a radiant exposure of 32 J/cm(2) . The Knoop hardness (KHN), flexural strength (FS), and Young's modulus (YM) analyses were evaluated after storage for 24 h. Outcomes were subjected to two-way ANOVA and Tukey's test (P = 0.05) for multiple comparisons. No significant differences in FS or YM were observed among the tested groups (P ≥ 0.05); the addition of rhodamine B increased the hardness of the luting cements tested. The addition of a fluorescent agent at 0.03 wt% concentration does not negatively affect the physical-mechanical properties of the luting cement polymerization behavior. © 2014 Wiley Periodicals, Inc.

  14. Comparative evaluation of marginal leakage of provisional crowns cemented with different temporary luting cements: In vitro study

    Directory of Open Access Journals (Sweden)

    Sheen Juneja Arora

    2016-01-01

    Conclusion: The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage.

  15. IPS Empress onlays luted with two dual-cured resin cements for endodontically treated teeth: a 3-year clinical evaluation.

    Science.gov (United States)

    Atali, Pinar Yilmaz; Cakmakcioglu, Ozcan; Topbasi, Bulent; Turkmen, Cafer; Suslen, Ozlem

    2011-01-01

    The aim of this study was to evaluate the performance of IPS Empress ceramic onlays luted with two dual-cured adhesive resin cements for endodontically treated teeth. Twenty molar teeth were restored with all-ceramic restorations luted randomly with Maxcem or Clearfil Esthetic Cement and DC Bond Kit luting systems (n = 10 each) in 20 patients. The restorations were assessed using modified US Public Health Service criteria at baseline, 6 months, and 1, 2, and 3 years. A statistically significant deterioration was found for the criteria marginal integrity, anatomical form, and surface roughness. For luting of ceramic onlays, no difference between the two luting systems was detected.

  16. Curing potential of experimental resin composites with systematically varying amount of bioactive glass: Degree of conversion, light transmittance and depth of cure.

    Science.gov (United States)

    Par, Matej; Spanovic, Nika; Bjelovucic, Ruza; Skenderovic, Hrvoje; Gamulin, Ozren; Tarle, Zrinka

    2018-06-17

    The aim of this work was to investigate the curing potential of an experimental resin composite series with the systematically varying amount of bioactive glass 45S5 by evaluating the degree of conversion, light transmittance and depth of cure. Resin composites based on a Bis-GMA/TEGDMA resin with a total filler load of 70 wt% and a variable amount of bioactive glass (0-40 wt%) were prepared. The photoinitiator system was camphorquinone and ethyl-4-(dimethylamino) benzoate. The degree of conversion and light transmittance were measured by Raman spectroscopy and UV-vis spectroscopy, respectively. The depth of cure was evaluated according to the classical ISO 4049 test. The initial introduction of bioactive glass into the experimental series diminished the light transmittance while the further increase in the bioactive glass amount up to 40 wt% caused minor variations with no clear trend. The curing potential of the experimental composites was similar to or better than that of commercial resin composites. However, unsilanized bioactive glass fillers demonstrated the tendency to diminish both the maximum attainable conversion and the curing efficiency at depth. Experimental composite materials containing bioactive glass showed a clinically acceptable degree of conversion and depth of cure. The degree of conversion and depth of cure were diminished by bioactive glass fillers in a dose-dependent manner, although light transmittance was similar among all of the experimental composites containing 5-40 wt% of bioactive glass. Reduced curing potential caused by the bioactive glass has possible consequences on mechanical properties and biocompatibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Leaching of tritium from a cement composite

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Ito, Akihiko

    1978-10-01

    Leaching of tritium from cement composites into an aqueous phase has been studied to evaluate the safety of incorporation of the tritiated liquid waste into cement. Leaching tests were performed by the method recommended by the International Atomic Energy Agency. The Leaching fraction was measured as functions of waste-cement ratio (Wa/C), temperature of leachant and curing time. The tritium leachability of cement in the long term test follows the order: alumina cement portland cement slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than synthetic sea water. The amount leached of tritium from a 200 l drum size specimen was estimated on the basis of the above results. (author)

  18. Comparative study of nanomechanical properties of cements used in teeth restoration

    International Nuclear Information System (INIS)

    Peluccio, M S; Bignardi, C; Lombardo, S; Montevecchi, F M; Carossa, S

    2007-01-01

    The discipline of dental science includes the diagnosis of disease in the mouth and teeth, its manifestations and the procedures involved in the restoration of their integrity and function. Restoration of lost tooth structure with suitable materials plays an integral part in the successful rehabilitation of oral tissues. Several factors influence the performance of dental restorations. These factors include the type of cement used to bond crown restoration to prepared teeth. The nanoindentation method was used to explore the mechanical properties of different types of resin cement polymerized using different techniques. A Nano Indenter XP (from MTS Nano Instruments, USA) was used for the experimental tests. A sample of 40 extracted human teeth were restored using two different resin cements: Variolink II (Ivoclar Vivadent, Liechtenstein) and Venus A2 (Heraeus Kulzer, Germany). Both resin cements are light-cured and one of them is self-cured so that the degree of polymerization would be higher. The data obtained for nanohardness and the Young's modulus were analysed using ANOVA to evaluate the influence of different factors (the resin cement and polymerization technique used, the position on the tooth-restoration interface) and to determine the best performance for restoration. The results obtained could give a useful indication of the choice of cementation technique and of the materials used for the restoration of lost tooth structure in different clinical cases

  19. Characterization of heat emission of light-curing units.

    Science.gov (United States)

    Wahbi, Mohammed A; Aalam, F A; Fatiny, F I; Radwan, S A; Eshan, I Y; Al-Samadani, K H

    2012-04-01

    This study was designed to analyze the heat emissions produced by light-curing units (LCUs) of different intensities during their operation. The null hypothesis was that the tested LCUs would show no differences in their temperature rises. FIVE COMMERCIALLY AVAILABLE LCUS WERE TESTED: a "Flipo" plasma arc, "Cromalux 100" quartz-tungsten-halogen, "L.E. Demetron 1" second-generation light-emitting diode (LED), and "Blue Phase C5" and "UltraLume 5" third-generation LED LCUs. The intensity of each LCU was measured with two radiometers. The temperature rise due to illumination was registered with a type-K thermocouple, which was connected to a computer-based data acquisition system. Temperature changes were recorded in continues 10 and 20 s intervals up to 300 s. The Flipo (ARC) light source revealed the highest mean heat emission while the L.E. Demetron 1 LED showing the lowest mean value at 10 and 20 s exposure times. Moreover, Cromalux (QTH) recorded the second highest value for all intervals (12.71, 14.63, 14.60) of heat emission than Blue Phase C5 (LED) (12.25, 13.87, 13.69), interestingly at 20 s illumination for all intervals the highest results (18.15, 19.27, 20.31) were also recorded with Flipo (PAC) LCU, and the lowest (6.71, 5.97, 5.55) with L.E. Demetron 1 LED, while Blue Phase C5 (LED) recorded the second highest value at the 1st and 2nd 20 s intervals (14.12, 11.84, 10.18) of heat emission than Cromalux (QTH) (12.26, 11.43, 10.26). The speed of temperature or heat rise during the 10 and 20 s depends on light intensity of emitted light. However, the QTH LCU was investigated resulted in a higher temperature rise than LED curing units of the same power density. The PAC curing unit induced a significantly higher heat emission and temperature increase in all periods, and data were statistically different than the other tested groups (p < .05). LED (Blue Phase C5) was not statistically significant (p < .05) (at 10 s) than QTH units, also LED (Blue

  20. The use of definitive implant abutments for the fabrication of provisional crowns: a case series.

    Science.gov (United States)

    Bilhan, Hakan; Geckili, Onur; Mumcu, Emre

    2011-10-01

    The anterior region is a challenge for most clinicians to achieve optimal esthetics with dental implants. The provisional crown is a key factor in the success of obtaining pink esthetics around restorations with single implants, by soft tissue and inter-proximal papilla shaping. Provisional abutments bring additional costs and make the treatment more expensive. Since one of the aims of the clinician is to reduce costs and find more economic ways to raise patient satisfaction, this paper describes a practical method for chair-side fabrication of non-occlusal loaded provisional crowns used by the authors for several years successfully. Twenty two patients (9 males, 13 females; mean age, 36,72 years) with one missing anterior tooth were treated by using the presented method. Metal definitive abutments instead of provisional abutments were used and provisional crowns were fabricated on the definitive abutments for all of the patients. The marginal fit was finished on a laboratory analogue and temporarily cemented to the abutments. The marginal adaptation of the crowns was evaluated radiographically. The patients were all satisfied with the final appearance and no complications occurred until the implants were loaded with permanent restorations. The use of the definitive abutments for provisional crowns instead of provisional abutments reduces the costs and the same results can be obtained.

  1. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    International Nuclear Information System (INIS)

    Wong, H.S.; Buenfeld, N.R.

    2009-01-01

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  2. A Comparison of the Shear Bond Strength of Orthodontic Brackets Bonded With Light-Emitting Diode and Halogen Light-Curing Units

    Directory of Open Access Journals (Sweden)

    SM. Abtahi

    2006-09-01

    Full Text Available Statement of the problem: Various methods such as light emitting diode (LED have been used to enhance the polymerization of resin-based orthodontic adhesives. There is a lack of information on the advantages and disadvantages of different light curing systems.Purpose: The aim of this study was to compare the effect of LED and halogen light curing systems on the shear bond strength of orthodontic brackets.Materials and Methods: Forty extracted human premolars were etched with 37% phosphoric acid and cleansed with water spray and air dried. The sealant was applied on the tooth surface and the brackets were bonded using Transbond adhesive (3M Unitek,Monrovia, Calif. Adhesives were cured for 40 and 20 seconds with halogen (Blue Light, APOZA, Taiwan and LED (Blue dent, Smart, Yugoslavia light-curing systems,respectively. Specimens were thermocycled 2500 times (from 5 to 55 °C and the shear bond strength of the adhesive system was evaluated with an Universal testing machine (Zwick GmbH, Ulm, Germany at a crosshead speed of 1 mm/min until the bracketswere detached from the tooth. Adhesive remnant index (ARI scores were determined after bracket failure. The data were submitted to statistical analysis, using Mann-Whitney analysis and t-test.Results: No significant difference was found in bond strength between the LED and halogen groups (P=0.12. A significant difference was not observed in the adhesive remnant index scores between the two groups (P=0.97.Conclusion: Within the limitations of this in vitro study, the shear bond strength of resin-based orthodontic adhesives cured with a LED was statistically equivalent to those cured with a conventional halogen-based unit. LED light-curing units can be suggested for the polymerization of orthodontic bonding adhesives.

  3. Effect of mode of polymerization of bonding agent on shear bond strength of autocured resin composite luting cements.

    Science.gov (United States)

    Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E

    2003-04-01

    There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.

  4. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained by...... on assumptions of degree of reaction and product densities gave for plain cement pastes results comparable to MIP data.......Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...

  5. Evaluation of degree of conversion and the effect of thermal aging on the color stability of resin cements and flowable composite.

    Science.gov (United States)

    Prieto, Lúcia Trazzi; Pimenta de Araújo, Cíntia Tereza; Araujo Pierote, Josué Junior; Salles de Oliveira, Dayane Carvalho Ramos; Coppini, Erick Kamiya; Sartini Paulillo, Luís Alexandre Maffei

    2018-01-01

    The aim of this in vitro study was to evaluate the color stability and degree of conversion (DC) of dual-cure and light-cure cements and flowable composites after thermal aging. A total of 50 human incisors were prepared and divided into six groups ( n = 10). Veneers were fabricated using IPS Empress Direct composite resin were bonded with three types of luting agents: Light-cured, conventional dual, and flowable composite according to the manufacturer's instructions. The groups were as follows: Filtek Z350XT Flow/Single Bond 2, RelyX ARC/Single Bond 2, RelyX Veneer/Single Bond 2, Tetric N-Flow/Tetric N-Bond, and Variolink II/Tetric N-Bond. Commission Internationale de l'Éclairage L*, a* and b* color coordinates were measured 24 h after cementation procedure with a color spectrophotometer and reevaluated after 10,000 thermal cycles. To evaluate the DC 50 specimens ( n = 10) of each resin material were obtained and Fourier transform infrared spectroscopy was used to evaluate the absorption spectra. Statistical analysis was performed with one-way ANOVA and Tukey's test (α = 0.05). No statistically significant differences in ΔE* occurred after aging. The greatest change in lightness occurred in the Variolink II resin cement. Changes in red-green hue were very small for the same cement and largest in the Tetric N-Flow flowable resin composite, while the greatest change in blue-yellow hue was a yellowing of the RelyX ARC luting cement. RelyX ARC exhibited the highest DC, and there were no statistically significant differences in DC among the other cements. Resin-based luting agent might affect the final of ceramic veneer restorations. The thermal aging affected the final color of the evaluated materials, and these were regarded as clinically unacceptable (ΔE >3.3).

  6. Cytotoxicity of Light-Cured Dental Materials according to Different Sample Preparation Methods

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lee

    2017-03-01

    Full Text Available Dental light-cured resins can undergo different degrees of polymerization when applied in vivo. When polymerization is incomplete, toxic monomers may be released into the oral cavity. The present study assessed the cytotoxicity of different materials, using sample preparation methods that mirror clinical conditions. Composite and bonding resins were used and divided into four groups according to sample preparation method: uncured; directly cured samples, which were cured after being placed on solidified agar; post-cured samples were polymerized before being placed on agar; and “removed unreacted layer” samples had their oxygen-inhibition layer removed after polymerization. Cytotoxicity was evaluated using an agar diffusion test, MTT assay, and confocal microscopy. Uncured samples were the most cytotoxic, while removed unreacted layer samples were the least cytotoxic (p < 0.05. In the MTT assay, cell viability increased significantly in every group as the concentration of the extracts decreased (p < 0.05. Extracts from post-cured and removed unreacted layer samples of bonding resin were less toxic than post-cured and removed unreacted layer samples of composite resin. Removal of the oxygen-inhibition layer resulted in the lowest cytotoxicity. Clinicians should remove unreacted monomers on the resin surface immediately after restoring teeth with light-curing resin to improve the restoration biocompatibility.

  7. Mixture proportioning for internal curing

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Pietro, Lura; Roberts, John W.

    2005-01-01

    of additional internal water that is not part of the mixing water.” The additional internal water is typically supplied by using relatively small amounts of saturated, lightweight, fine aggregates (LWA) or superabsorbent polymer (SAP) particles in the concrete. Benefits of internal curing include increased...... less than that of bulk water, a hydrating cement paste will imbibe water (about 0.07 g water/g cement) from an available source. While in higher w/c concretes, this water can be, and often is, supplied by external (surface) curing, in low w/c concretes, the permeability of the concrete quickly becomes...

  8. The influence of alkalinity of portland cement on the absorption characteristics of superabsorbent polymers (SAP) for use in internally cured concrete

    Science.gov (United States)

    Tabares Tamayo, Juan D.

    The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking. This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions to provide a better understanding of: (1) the influence of the chemistry of the pore solution (i.e. its level of alkalinity and the type of ionic species present) on the absorption capacity of SAP, and (2) the effectiveness of SAP with different absorption capacities as an internal curing agent. This research work was divided into three stages: (a) materials characterization, (b) measurement of absorption capacity of SAP in synthetic pore solutions, and (c) evaluation of the internal curing effectiveness of SAP. During the first stage (Materials Characterization), pore solutions were extracted from the fresh (5 minutes old) cement pastes prepared using cements with three different levels of alkalinity. The pH values of the extracted solutions were determined (using the pH meter) and their chemical analysis was performed by means of titration (concentration of hydroxyl), ion chromatography (sulfates and chlorides), atomic absorption (AA) and inductively coupled plasma optical emission spectrometry (ICP) (sodium, potassium and calcium). The commercial SAP adopted for this study was used with "as-supplied" gradation and with the finer gradation obtained by grinding the original polymer in the 6850 Cryomilling Freezer/Mill. The physical properties of these SAP's, such

  9. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  10. Real-time synchronous measurement of curing characteristics and polymerization stress in bone cements with a cantilever-beam based instrument

    Science.gov (United States)

    Palagummi, Sri Vikram; Landis, Forrest A.; Chiang, Martin Y. M.

    2018-03-01

    An instrumentation capable of simultaneously determining degree of conversion (DC), polymerization stress (PS), and polymerization exotherm (PE) in real time was introduced to self-curing bone cements. This comprises the combination of an in situ high-speed near-infrared spectrometer, a cantilever-beam instrument with compliance-variable feature, and a microprobe thermocouple. Two polymethylmethacrylate-based commercial bone cements, containing essentially the same raw materials but differ in their viscosity for orthopedic applications, were used to demonstrate the applicability of the instrumentation. The results show that for both the cements studied the final DC was marginally different, the final PS was different at the low compliance, the peak of the PE was similar, and their polymerization rates were significantly different. Systematic variation of instrumental compliance for testing reveals differences in the characteristics of PS profiles of both the cements. This emphasizes the importance of instrumental compliance in obtaining an accurate understanding of PS evaluation. Finally, the key advantage for the simultaneous measurements is that these polymerization properties can be correlated directly, thus providing higher measurement confidence and enables a more in-depth understanding of the network formation process.

  11. Do blood contamination and haemostatic agents affect microtensile bond strength of dual cured resin cement to dentin?

    Directory of Open Access Journals (Sweden)

    Kerem KiLiC

    2013-01-01

    Full Text Available Objective The purpose of this study was to evaluate the effects of blood contamination and haemostatic agents such as Ankaferd Blood Stopper (ABS and hydrogen peroxide (H2O2 on the microtensile bond strength between dual cured resin cement-dentin interface. Material and Methods Twelve pressed lithium disilicate glass ceramics were luted to flat occlusal dentin surfaces with Panavia F under the following conditions: Control Group: no contamination, Group Blood: blood contamination, Group ABS: ABS contamination Group H2O2: H2O2 contamination. The specimens were sectioned to the beams and microtensile testing was carried out. Failure modes were classified under stereomicroscope. Two specimens were randomly selected from each group, and SEM analyses were performed. Results There were significant differences in microtensile bond strengths (µTBS between the control and blood-contaminated groups (p0.05. Conclusions Contamination by blood of dentin surface prior to bonding reduced the bond strength between resin cement and the dentin. Ankaferd Blood Stoper and H2O2 could be used safely as blood stopping agents during cementation of all-ceramics to dentin to prevent bond failure due to blood contamination.

  12. The effect of different light-curing units on tensile strength and microhardness of a composite resin

    Directory of Open Access Journals (Sweden)

    Eduardo Batista Franco

    2007-12-01

    Full Text Available The aim of this study was to evaluate the influence of different light-curing units on the tensile bond strength and microhardness of a composite resin (Filtek Z250 - 3M/ESPE. Conventional halogen (Curing Light 2500 - 3M/ESPE; CL and two blue light emitting diode curing units (Ultraled - Dabi/Atlante; UL; Ultrablue IS - DMC; UB3 and UB6 were selected for this study. Different light intensities (670, 130, 300, and 600 mW/cm², respectively and different curing times (20s, 40s and 60s were evaluated. Knoop microhardness test was performed in the area corresponding to the fractured region of the specimen. A total of 12 groups (n=10 were established and the specimens were prepared using a stainless steel mold composed by two similar parts that contained a cone-shaped hole with two diameters (8.0 mm and 5.0 mm and thickness of 1.0 mm. Next, the specimens were loaded in tensile strength until fracture in a universal testing machine at a crosshead speed of 0.5 mm/min and a 50 kg load cell. For the microhardness test, the same matrix was used to fabricate the specimens (12 groups; n=5. Microhardness was determined on the surfaces that were not exposed to the light source, using a Shimadzu HMV-2 Microhardness Tester at a static load of 50 g for 30 seconds. Data were analyzed statistically by two-way ANOVA and Tukey's test (p<0.05. Regarding the individual performance of the light-curing units, there was similarity in tensile strength with 20-s and 40-s exposure times and higher tensile strength when a 60-s light-activation time was used. Regarding microhardness, the halogen lamp had higher results when compared to the LED units. For all light-curing units, the variation of light-exposure time did not affect composite microhardness. However, lower irradiances needed longer light-activation times to produce similar effect as that obtained with high-irradiance light-curing sources.

  13. Comparison of Film Thickness of Two Commercial Brands of Glass lonomer Cement and One Dual-cured Composite: An in vitro Study.

    Science.gov (United States)

    Khajuria, Rajat R; Singh, Rishav; Barua, Pranamee; Hajira, Nausheen; Gupta, Naveen; Thakkar, Rohit R

    2017-08-01

    The present study is undertaken to examine the film thickness of three most commonly used luting cements and to determine their usage as a luting agent. This study was carried out strictly according to the guidelines of American Dental Association (ADS) specification no. 8. Two glass slabs of 5 cm in length and 2 cm in width were used. One glass slab was kept over the other glass slab and the space between the two glass slabs was measured using metallurgical microscope at the power of 10*. Two brands of glass ionomer cement (GIC) and one dual-cured resin cement were used in this study. The test cement is sandwiched between two glass slabs. A static load of 15 kg was applied using universal testing machine on the glass slabs for 1 hour and the space present between the two glass slabs was measured using metallurgical microscope at the power of 10*. Greatest film thickness was found in group III (Paracore) followed by group II (micron) and lowest in group I (GC luting and lining cement). All the tested samples can be used for luting purposes. Greatest film thickness was observed in Paracore followed by micron and lowest in GC luting and lining cement. This suggests that the 25 to 27°C is ideal for mixing of the cement when used for luting consistency. The cement with film thickness more than 30 urn should never be used for luting purposes. The dentist should choose the luting cement with utmost care noting the film thickness and bond strength of the cement. The cement with low exothermic heat production and good bond strength should be encouraged.

  14. Behaviour of soil-cement specimens in unconfined dynamic compression

    Science.gov (United States)

    Davies, J.; Fendukly, L. M.

    1994-06-01

    The response of the cement-stabilized red marl to dynamic loading in compression has been investigated over a range of cement contents and curing times. Specimens were subjected to different stress levels below unconfined compressive strength, at a frequency of 5 Hz, and a fatigue relationship for the material was developed. The value of resilient modulus was found to be greater than the modulus of elasticity for the same cement content and curing time.

  15. STOCHASTIC MODELING OF COMPRESSIVE STRENGTH OF PHOSPHORUS SLAG CONTENT CEMENT

    Directory of Open Access Journals (Sweden)

    Ali Allahverdi

    2016-07-01

    Full Text Available One of the common methods for quick determination of compressive strength as one of the most important properties for assessment of cement quality is to apply various modeling approaches. This study is aimed at finding a model for estimating the compressive strength of phosphorus slag content cements. For this purpose, the compressive strengths of chemically activated high phosphorus slag content cement prepared from phosphorus slag (80 wt.%, Portland cement (14 wt.% and a compound chemical activator containing sodium sulfate and anhydrite (6 wt.% were measured at various Blaine finenesses and curing times. Based on the obtained results, a primary stochastic model in terms of curing time and Blaine fineness has been developed. Then, another different dataset was used to incorporate composition variable including weight fractions of phosphorus slag, cement, and activator in the model. This model can be effectively used to predict the compressive strength of phosphorus slag content cements at various Blaine finenesses, curing times, and compositions.

  16. [Application of individual light-curing resin tray as edge plastic material in complete denture modulo].

    Science.gov (United States)

    Chai, Mei; Tang, Xuyan; Liang, Guangku

    2015-12-01

    To investigate clinical effect of individual light-curing resin tray as edge plastic material in complete denture modulo.
 A total of 30 patients with poor condition for alveolar ridge of mandible were chosen individual tray with individual light-curing resin tray for material edge shaping or traditional individual impression tray for edge shaping cream to produce complete denture. The operability, questionnaire about denture retention, comfort, mucosal cases and chewing function in the process of shaping the edge were investigated three months later after wearing dentures.
 There was no significant difference in retention, comfort, mucosa and the chewing function between the two mandibular denture impression methods. However, the patients with individual light-curing resin tray as edge shaping material felt better in the process than that in the patients with die-cream as the edge shaping material (P<0.05). Furthermore, the manipulation with individual light-curing resin tray as edge shaping material is easy for doctor.
 Although the clinical effect of Individual light-curing resin tray material as the edge shaping material is equal to that of impression cream, it saves time and human resource. Moreover, it is more acceptable for the patients and thus it can be spread in clinics.

  17. Effect of amorphous silica ash used as a partial replacement for cement on the compressive and flexural strengths cement mortar.

    Science.gov (United States)

    Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura

    2018-04-01

    This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar

  18. Leaching behaviour of tritium from a hardened cement paste

    International Nuclear Information System (INIS)

    Matsuzuru, H.; Moriyama, N.; Ito, A.

    1979-01-01

    Leaching of tritium from a hardened cement paste into an aqueous phase has been studied to assess the safety of solidification of the tritiated liquid waste with cement. Leaching tests were carried out in accordance with the method recommended by the International Atomic Energy Agency. The leaching fraction was measured as functions of the waste-cement wt ratio (Wa/C), temperature of leachant and curing time. the tritium leachability of cements follows the order: alumina cement > Portland cement > slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than the synthetic sea water. The coating of the specimen surface with bitumen reduces the leachability to about 5% of its value for the specimen without coating. (author)

  19. A clinical trial of Empress II porcelain inlays luted to vital teeth with a dual-curing adhesive system and a self-curing resin cement.

    Science.gov (United States)

    Fabianelli, Andrea; Goracci, Cecilia; Bertelli, Egidio; Davidson, Carel L; Ferrari, Marco

    2006-12-01

    The aim of the study was to clinically evaluate Empress II inlays cemented with a dual-curing bonding agent and a self-curing luting system. Forty patients were selected to receive one Empress II inlay. Empress II is a heat-pressed glass ceramic containing lithium disilicate and lithium orthophosphate crystals, purported to provide higher stress resistance and improved strength. The restorations were placed between March and May 2000. Recalls were performed after 6, 12, 24, and 36 months. At the 3-year recall, 7 patients were lost to follow-up. Inlays were evaluated for postoperative sensitivity, marginal integrity, marginal leakage, color stability, surface staining, retention, and surface crazing (microcracks). At the 3-year recall, all the restorations were in place and only one showed postoperative sensitivity (at the first recall, 1 week after placement). Only 3 inlays showed slight marginal staining, and 4 inlays showed gaps, with little surface staining or microcracks. No inlay debonded or fractured during theobservation period. All the evaluated inlays were in place and acceptable.

  20. Effect of Rice Husk Ash on Cement Stabilized Laterite

    Directory of Open Access Journals (Sweden)

    Musa ALHASSAN

    2007-09-01

    Full Text Available Laterite soil collected from Maikunkele area of Minna, classified as an A-7-6 on AASHTO classification, was stabilized with 2-8% cement by weight of the dry soil. Using British Standard Light (BSL compaction energy, the effect of Rice Husk Ash (RHA on the soil was investigated with respect to compaction characteristics, California Bearing Ratio (CBR and Unconfined Compressive Strength (UCS tests. Results obtained, indicate a general decrease in Maximum Dry Density (MDD and increase in Optimum Moisture Content (OMC, all with increase in RHA Content (2-8% at specified cement contents. There was also a tremendous improvement in the CBR and UCS with increase in the RHA content at specified cement contents to their peak values at between 4-6% RHA. The UCS values also improved with curing age. This indicates the potentials of using 4-6% RHA admixed with less cement contents for laterite soil stabilization.

  1. Titanium dioxide nanotubes addition to self-adhesive resin cement: Effect on physical and biological properties.

    Science.gov (United States)

    Ramos-Tonello, Carla M; Lisboa-Filho, Paulo N; Arruda, Larisa B; Tokuhara, Cintia K; Oliveira, Rodrigo C; Furuse, Adilson Y; Rubo, José H; Borges, Ana Flávia S

    2017-07-01

    This study has investigated the influence of Titanium dioxide nanotubes (TiO 2 -nt) addition to self-adhesive resin cement on the degree of conversion, water sorption, and water solubility, mechanical and biological properties. A commercially available auto-adhesive resin cement (RelyX U200™, 3M ESPE) was reinforced with varying amounts of nanotubes (0.3, 0.6, 0.9wt%) and evaluated at different curing modes (self- and dual cure). The DC in different times (3, 6, 9, 12 and 15min), water sorption (Ws) and solubility (Sl), 3-point flexural strength (σf), elastic modulus (E), Knoop microhardness (H) and viability of NIH/3T3 fibroblasts were performed to characterize the resin cement. Reinforced self-adhesive resin cement, regardless of concentration, increased the DC for the self- and dual-curing modes at all times studied. The concentration of the TiO 2 -nt and the curing mode did not influence the Ws and Sl. Regarding σf, concentrations of both 0.3 and 0.9wt% for self-curing mode resulted in data similar to that of dual-curing unreinforced cement. The E increased with the addition of 0.9wt% for self-cure mode and H increased with 0.6 and 0.9wt% for both curing modes. Cytotoxicity assays revealed that reinforced cements were biocompatible. TiO 2 -nt reinforced self-adhesive resin cement are promising materials for use in indirect dental restorations. Taken together, self-adhesive resin cement reinforced with TiO 2 -nt exhibited physicochemical and mechanical properties superior to those of unreinforced cements, without compromising their cellular viability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Development of a biodegradable bone cement

    International Nuclear Information System (INIS)

    Yusof Abdullah; Nurhaslinda Ee Abdullah; Wee Pee Chai; Norita Mohd Zain

    2002-01-01

    Biodegradable bone cement is a newly developed bone repair material, which is able to give immediate support to the implant area, and does not obstruct the bone repairing and regeneration process through appropriate biodegradation rate, which is synchronized with the mechanical load it should bear. The purpose of this study is to locally produce biodegradable bone cement using HA as absorbable filler. The cement is composed of an absorbable filler and unsaturated polyester for 100% degradation. Cross-linking effect is achieved through the action of poly (vinyl pyrrol lidone) (PVP) and an initiator. On the other hand, PPF was synthesized using direct esterification method. Characteristics of the bone cement were studied; these included the curing time, cross-linking effect and curing temperature. The products were characterized using X-Ray diffraction (XRD) to perform phase analysis and Scanning Electrons Microscopes to determine the morphology. The physical and mechanical properties of the bone cement were also investigated. The biocompatibility of the bone cement was tested using simulated body physiological solution. (Author)

  3. Effect of different light-curing devices and aging procedures on composite knoop microhardness

    Directory of Open Access Journals (Sweden)

    Fernanda Regina Voltarelli

    2009-12-01

    Full Text Available The aim of this study was to evaluate the effect of light-curing devices (Halogen/HAL, Light Emitting Diodes/LED, Argon Laser/LAS and Plasma Arc/PAC and aging procedures (Mechanical Cycling/MC, Thermal Cycling/TC, Storage/S, MC+TC and MC+TC+S on the micro-hardness of bottom/B and top/T surfaces of 2-mm-high composite resin cylinders. The Knoop microhardness test (25 g, 20 s on both B and T was performed before and after each aging procedure. For B and T, before aging procedures, PAC showed reduced polymerization effectiveness when compared with HAL. In the T, after TC, PAC and LAS had also showed reduced polymerization effectiveness when compared to HAL and LED. For all light-curing devices, MC+TC+S and S affected the Knoop microhardness values. In the B, no difference could be observed among the aging procedures for PAC. From all light-curing units, PAC may have rendered composites of reduced quality and the storage aging procedures were the most harmful to the polymer hardness.

  4. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    OpenAIRE

    Auday A Mehatlaf

    2017-01-01

    Cement Klin Dust (CKD) was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40) had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28) d...

  5. Effect of Resin Coating and Chlorhexidine on Microleakage of Two Resin Cements after Storage

    Directory of Open Access Journals (Sweden)

    F. Shafie

    2010-03-01

    Full Text Available Objective: Evaluating the effect of resin coating and chlorhexidine on microleakage of two resin cements after water storage.Materials and Methods: Standardized class V cavities were prepared on facial and lingual surfaces of one hundred twenty intact human molars with gingival margins placed 1mm below the cemento-enamel junction. Indirect composite inlays were fabricated and thespecimens were randomly assigned into 6 groups. In Groups 1 to 4, inlays were cemented with Panavia F2.0 cement. G1: according to the manufacturer’s instruction. G2: with light cured resin on the ED primer. G3: chlorhexidine application before priming. G4: withchlorhexidine application before priming and light cured resin on primer. G5: inlays were cemented with Nexus 2 resin cement. G6: chlorhexidine application after etching. Each group was divided into two subgroups based on the 24-hour and 6-month water storagetime. After preparation for microleakage test, the teeth were sectioned and evaluated at both margins under a 20×stereomicroscope. Dye penetration was scored using 0-3 criteria.The data was analyzed using Kruskal-Wallis and complementary Dunn tests.Results: There was significantly less leakage in G2 and G4 than the Panavia F2.0 control group at gingival margins after 6 months (P<0.05. There was no significant differences in leakage between G1 and G3 at both margins after 24 hours and 6 months storage. After 6months, G6 revealed significantly less leakage than G5 at gingival margins (P=0.033. In general, gingival margins showed more leakage than occlusal margins.Conclusion: Additionally, resin coating in self-etch (Panavia F2.0 and chlorhexidine application in etch-rinse (Nexus resin cement reduced microleakage at gingival margins after storage.

  6. Durability of Gamma Irradiated Polymer Impregnated Blended Cement Pastes

    International Nuclear Information System (INIS)

    Khattab, M.M.; Abdel-Rahman, H.A.; Younes, M.M.

    2010-01-01

    This study is focusing on durability and performance of the neat blended cement paste as well as those of the polymer-impregnated paste towards seawater and various concentrations of magnesium sulfate solutions up to 6 months of curing. The neat blended cement paste is prepared by a partial substitution of ordinary Portland cement with 5% of active rice husk ash (RHA). These samples were cured under tap water for 7 days. Similar samples were impregnated with unsaturated polyester resin (UPE) and subjected to various doses of gamma rays ranging from 10 to 50 kGy. The results showed that the irradiated impregnated specimens gave higher values of compressive strength than the neat blended cement paste specimens. On immersing the neat blended cement specimens and polymer impregnated specimens especially that irradiated at 30 kGy in seawater and different concentrations of magnesium sulfate solutions up to 6 months of curing, the results showed that the polymer impregnated blended cement (OPC-RHA-UPE) paste have a good resistance towards aggressive media as compared to the neat blended cement (OPC-RHA) paste. The results also indicated that the sea water has a greater corrosive effect than the magnesium sulfate solutions. These results were confirmed by scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP)

  7. Microtensile Bond Strength of CAD/CAM Resin Blocks to Dual-Cure Adhesive Cement: The Effect of Different Sandblasting Procedures.

    Science.gov (United States)

    Tekçe, Neslihan; Tuncer, Safa; Demirci, Mustafa; Kara, Dilan; Baydemir, Canan

    2018-02-11

    To investigate the effect of sandblasting powder particles on microtensile bond strength (μTBS) of dual-cure adhesive cement to CAD/CAM blocks. CAD/CAM blocks (Cerasmart, VITA, and LAVA) were cut in slabs and divided into groups: group 1, no sandblasting; group 2, sandblasted with 27-μm Al 2 O 3 ; group 3, sandblasted with 30-μm CoJet; group 4, sandblasted with 50-μm Al 2 O 3 . After sandblasting, all specimens were silanized and luted using dual-cure adhesive cement (G-CEM LinkForce). After 24 hours, bonded specimens were cut into 1 ± 0.2 mm 2 sticks, and μTBS values were obtained (N = 30). Additionally, 132 CAD/CAM block sections were prepared for surface roughness testing and scanning electron microscopy (SEM) evaluations. Results were analyzed using Kruskal-Wallis One-way ANOVA and Dunn's Post Hoc Test (p 0.05). For LAVA, μTBS values of specimens that were sandblasted with 50-μm Al 2 O 3 powder were significantly higher than 30-μm-SiO 2 and 27-μm Al 2 O 3 (p CAD/CAM blocks for Cerasmart and VITA, although the results changed significantly for LAVA. The ideal bond protocol for CAD/CAM blocks is specific to the material used. © 2018 by the American College of Prosthodontists.

  8. The macro- and micro properties of cement pastes with silica-rich materials cured by wet-mixed steaming injection

    International Nuclear Information System (INIS)

    Wu, D.S.; Peng, Y.N.

    2003-01-01

    This research used cement pastes with a low water/blaine ratio (W/b=0.27). Rice husk ashes (RHA) burned at 700 and 850 deg. C, silica fume, silica sand (Ottawa standard sand), etc., were the added ingredients. Wet-mixed steam injection (WMSI) was at five different temperatures: 65, 80, 120, 150 and 180 deg. C. We investigated cement pastes with added silica-rich materials. For different WMSI temperatures and times, we explored the relations between compressive strength, hydration products, and pozzolanic reaction mechanism. From scanning electron microscopy (SEM) and EDS, we know that hydration products become very complicated, depending on the WMSI temperatures and times. It is difficult to determine the direct effects on the strength based on changes in the products. Experimental results, however, clearly showed that the compressive strength was worst for 80 deg. C and best for 180 deg. C. High-temperature WMSI is best with 4-h presteaming period and 8-h retention time. Curing in saturated limewater for 28 days did not increase the strength. The three types of silica-rich materials used in this research all participated in the reaction during high-temperature WMSI; they helped to increase the strength. Addition of Ottawa standard sand resulted in the best strength, followed by addition of RHA, while addition of silica fume was worse than the others. Specimens treated with high-temperature WMSI would swell slightly if they were placed in air. This was different from normal-temperature curing

  9. Degree of conversion of resin-based materials cured with dual-peak or single-peak LED light-curing units.

    Science.gov (United States)

    Lucey, Siobhan M; Santini, Ario; Roebuck, Elizabeth M

    2015-03-01

    There is a lack of data on polymerization of resin-based materials (RBMs) used in paediatric dentistry, using dual-peak light-emitting diode (LED) light-curing units (LCUs). To evaluate the degree of conversion (DC) of RBMs cured with dual-peak or single-peak LED LCUs. Samples of Vit-l-escence (Ultradent) and Herculite XRV Ultra (Kerr) and fissure sealants Delton Clear and Delton Opaque (Dentsply) were prepared (n = 3 per group) and cured with either one of two dual-peak LCUs (bluephase(®) G2; Ivoclar Vivadent or Valo; Ultradent) or a single-peak (bluephase(®) ; Ivoclar Vivadent). High-performance liquid chromatography and nuclear magnetic resonance spectroscopy were used to confirm the presence or absence of initiators other than camphorquinone. The DC was determined using micro-Raman spectroscopy. Data were analysed using general linear model anova; α = 0.05. With Herculite XRV Ultra, the single-peak LCU gave higher DC values than either of the two dual-peak LCUs (P < 0.05). Both fissure sealants showed higher DC compared with the two RBMs (P < 0.05); the DC at the bottom of the clear sealant was greater than the opaque sealant, (P < 0.05). 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin(®) TPO) was found only in Vit-l-escence. Dual-peak LED LCUs may not be best suited for curing non-Lucirin(®) TPO-containing materials. A clear sealant showed a better cure throughout the material and may be more appropriate than opaque versions in deep fissures. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Analysis of gap formation at tooth-composite resin interface: effect of C-factor and light-curing protocol

    Directory of Open Access Journals (Sweden)

    Gustavo Oliveira dos Santos

    2007-08-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effect of C-factor and light-curing protocol on gap formation in composite resin restorations. Material and METHODS: Cylindrical cavities with 5.0 mm diameter and three different depths (A=1.0, B=2.0 and C=3.0 mm were prepared on the occlusal surface of 30 human molars and restored in a single increment with P 60. The composite resin was light-cured according to two protocols: standard - 850 mW/cm² / 20 s and gradual - 100 up to 1000 mW/cm² / 10 s + 1000 mW/cm² / 10 s. After storage in distilled water (37°C/7 days, the restorations were cut into three slices in a buccolingual direction and the gap widths were analyzed using a 3D-scanning system. The data were submitted to ANOVA and Student-Newman-Keuls test (alpha=0.05. RESULTS: ANOVA detected a significant influence for the C-factor and light-curing protocol as independent factors, and for the double interaction C-factor vs. light-curing protocol. Cavities with higher C-factor presented the highest gap formation. The gradual light-curing protocol led to smaller gap formation at cavity interfaces. CONCLUSIONS: The findings of this study suggest that the C-factor played an essential role in gap formation. The gradual light-curing protocol may allow relaxation of composite resin restoration during polymerization reaction.

  11. Micropore Structure of Cement-Stabilized Gold Mine Tailings

    Directory of Open Access Journals (Sweden)

    Joon Kyu Lee

    2018-03-01

    Full Text Available Mine tailings have often to be stabilized by mixing them with cementing agents. In this study, the pore structure of gold tailings stabilized with Portland cement was evaluated by means of mercury intrusion porosimetry. The investigation was conducted on samples prepared with different fractions of tailings and cement as well as on samples activated with elevated temperature curing and chemical (CaCl2 addition. It was observed that all mixed samples exhibit a mono-modal pore size distribution, indicating that the cement-stabilized tailings are characterized by a single-porosity structure. The results also showed that the higher fraction of tailings and cement leads to a dense and finer pore structure. The total porosity of mixture samples decreases with increasing curing temperature and CaCl2 concentration due to the acceleration of hydration reaction.

  12. The effect of different light-curing units on fatigue behavior and degree of conversion of a resin composite.

    Science.gov (United States)

    Lohbauer, Ulrich; Rahiotis, Christos; Krämer, Norbert; Petschelt, Anselm; Eliades, George

    2005-07-01

    The aim of this study was to investigate the effect of different light-curing units and irradiation modes on the mechanical fatigue strength and degree of conversion of a restorative resin composite. Conventional halogen, plasma arc and blue LED light-curing units were used for polymerization of a resin composite (Tetric) Ceram, Ivoclar, Vivadent, Liechtenstein). Initial fracture strength (FS) and flexural fatigue limit (FFL) as well as degree of conversion (DC) were measured. The FFL was determined under cyclic loading for 10(5) cycles in terms of a staircase approach. The specimens were stored for 14 days in 37 degrees C distilled water prior to testing. The curing efficiency was observed with Fourier transform infrared micromultiple internal reflectance spectroscopy. The measurements were carried out at 0.5 and 2.5 mm distance from the directly irradiated surface after 14 days storage in dark and dry conditions at 37 degrees C. The highest FS, FFL and DC were observed from high energy curing devices and from extended curing intervals. The conventional halogen light exhibited the most homogenous in-depth curing efficiency along with a low loss of mechanical resistance under cyclic fatigue. Evaluation of flexural fatigue limit and curing efficiency correlate in terms of decreased mechanical strength due to insufficient light-curing intervals or light intensities. Initial promising fracture strengths do not correlate with a clinically more relevant fatigue loading and with the in-depth degree of conversion, both accounting for a significantly reduced strength performance.

  13. Influence of curing time, overlay material and thickness on three light-curing composites used for luting indirect composite restorations.

    Science.gov (United States)

    D'Arcangelo, Camillo; De Angelis, Francesco; Vadini, Mirco; Carluccio, Fabio; Vitalone, Laura Merla; D'Amario, Maurizio

    2012-08-01

    To assess the microhardness of three resin composites employed in the adhesive luting of indirect composite restorations and examine the influence of the overlay material and thickness as well as the curing time on polymerization rate. Three commercially available resin composites were selected: Enamel Plus HRI (Micerium) (ENA), Saremco ELS (Saremco Dental) (SAR), Esthet-X HD (Dentsply/DeTrey) (EST-X). Post-polymerized cylinders of 6 different thicknesses were produced and used as overlays: 2 mm, 3 mm, 3.5 mm, 4 mm, 5 mm, and 6 mm. Two-mm-thick disks were produced and employed as underlays. A standardized amount of composite paste was placed between the underlay and the overlay surfaces which were maintained at a fixed distance of 0.5 mm. Light curing of the luting composite layer was performed through the overlays for 40, 80, or 120 s. For each specimen, the composite to be cured, the cured overlay, and the underlay were made out of the same batch of resin composite. All specimens were assigned to three experimental groups on the basis of the resin composite used, and to subgroups on the basis of the overlay thickness and the curing time, resulting in 54 experimental subgroups (n = 5). Forty-five additional specimens, 15 for each material under investigation, were produced and subjected to 40, 80, or 120 s of light curing using a microscope glass as an overlay; they were assigned to 9 control subgroups (n = 5). Three Vicker's hardness (VH) indentations were performed on each specimen. Means and standard deviations were calculated. Data were statistically analyzed using 3-way ANOVA. Within the same material, VH values lower than 55% of control were not considered acceptable. The used material, the overlay thickness, and the curing time significantly influenced VH values. In the ENA group, acceptable hardness values were achieved with 3.5-mm or thinner overlays after 120 or 80 s curing time (VH 41.75 and 39.32, respectively), and with 2-mm overlays after 40 s (VH 54

  14. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The effect of curing conditions on the durability of high performance concrete

    Science.gov (United States)

    Bumanis, G.; Bajare, D.

    2017-10-01

    This study researches compressive strength and durability of the high strength self-compacting concrete (SCC) impacted at early stage by the curing conditions. The mixture compositions of metakaolin containing waste and cenospheres as partial cement replacement (15 wt%) were compared to reference SCC with 100% cement. The specimens prepared in advance were demoulded 24h after casting of the SCC and the specific curing conditions were applied for up to 28 days: standard water curing at 20°C (i); indoor curing at 20°C, RH 60% (ii) and low temperature air curing (2°C) at RH 60% (iii). Results indicate that at early stage (14 days) indoor curing conditions increase compressive strength of the SCC whilst no strength loss has been detected even at a low temperature curing. The further strength gain has been substantially reduced for samples cured indoor and at a low temperature with significant variation observed for long term compressive strength (180 days). The metakaolin containing waste has proved to be an effective partial cement replacement and it has improved strength gain even at a low temperature curing. Meanwhile cenospheres have reduced the SCC strength and with no positive effect on strength observed within the standard term. Freeze-thaw durability and resistance to the chloride penetration have been improved for the SCC cured at low temperature. The SCC with metakaolin containing waste has proved to be the most durable thus demonstrating importance of effective micro filler use.

  16. Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications

    International Nuclear Information System (INIS)

    Vipulanandan, C; Mohammed, A

    2015-01-01

    In this study, smart cement with a 0.38 water-to-cement ratio was modified with iron oxide nanoparticles (NanoFe 2 O 3 ) to have better sensing properties, so that the behavior can be monitored at various stages of construction and during the service life of wells. A series of experiments evaluated the piezoresistive smart cement behavior with and without NanoFe 2 O 3 in order to identify the most reliable sensing properties that can also be relatively easily monitored. Tests were performed on the smart cement from the time of mixing to a hardened state behavior. When oil well cement (Class H) was modified with 0.1% of conductive filler, the piezoresistive behavior of the hardened smart cement was substantially improved without affecting the setting properties of the cement. During the initial setting the electrical resistivity changed with time based on the amount of NanoFe 2 O 3 used to modify the smart oil well cement. A new quantification concept has been developed to characterize the smart cement curing based on electrical resistivity changes in the first 24 h of curing. Addition of 1% NanoFe 2 O 3 increased the compressive strength of the smart cement by 26% and 40% after 1 day and 28 days of curing respectively. The modulus of elasticity of the smart cement increased with the addition of 1% NanoFe 2 O 3 by 29% and 28% after 1 day and 28 days of curing respectively. A nonlinear curing model was used to predict the changes in electrical resistivity with curing time. The piezoresistivity of smart cement with NanoFe 2 O 3 was over 750 times higher than the unmodified cement depending on the curing time and nanoparticle content. Also the nonlinear stress–strain and stress–change in resistivity relationships predicated the experimental results very well. Effects of curing time and NanoFe 2 O 3 content on the model parameters have been quantified using a nonlinear model. (paper)

  17. Effects of various light curing methods on the leachability of uncured substances and hardness of a composite resin.

    Science.gov (United States)

    Moon, H-J; Lee, Y-K; Lim, B-S; Kim, C-W

    2004-03-01

    The purpose of this study was to evaluate the effect of the various light curing units (plasma arc, halogen and light-emitting diodes) and irradiation methods (one-step, two-step and pulse) using different light energy densities on the leachability of unreacted monomers (Bis-GMA and UDMA) and the surface hardness of a composite resin (Z250, 3M). Leachability of the specimens immersed for 7 days in ethanol was analysed by HPLC. Vicker's hardness number (VHN) was measured immediately after curing (IC) and after immersion in ethanol for 7 days. Various irradiation methods with three curing units resulted in differences in the amount of leached monomers and VHN of IC when light energy density was lower than 17.0 J cm(-2) (P = 0.05). However, regardless of curing units and irradiation methods, these results were not different when the time or light energy density increased. When similar light energy density was irradiated (15.6-17.7 J cm(-2)), the efficiency of irradiation methods was different by the following order: one-step > or = two-step > pulse. These results suggest that the amount of leached monomers and VHN were influenced by forming polymer structure in activation and initiation stages of polymerization process with different light source energies and curing times.

  18. Mechanical and microscopic properties of API G cement after exposure to supercritical CO2

    Directory of Open Access Journals (Sweden)

    C. C. Kuo

    2017-01-01

    Full Text Available An experiment on API G-level (American Petroleum Institute cement is conducted after curing under a supercritical carbon dioxide environment. Cement paste is prepared first to generate a uniaxial compressive specimen, after which the specimen is exposed to the supercritical carbon dioxide environment (temperature = 70°C; pressure = 20 MPa for curing at different numbers of days (7 - 84 days. The physical and chemical changes in the cement are subsequently simulated at 1500 - 2000 m below the injection well during CO2 sequestration. Results show that the uniaxial compressive strength of the specimen decreases as the number of curing days increases, indicating that the specimen sustains considerable damage when cured under humid environments. This result also implies a declining trend in the longitudinal and transverse waves of the cured specimen. Based on the material analytical results we determine that carbon dioxide reacts with the calcium hydroxide, water and calcium silicate in the cement. The carbon dioxide is then converted into calcium carbonate, resulting in different degrees of carbonization depending on the number of curing days.

  19. BOND STRENGTH DURABILITY OF SELF-ETCHING ADHESIVES AND RESIN CEMENTS TO DENTIN

    Science.gov (United States)

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    Objectives: To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, padhesive combination that provided the most promising bond strength after 90 days of storage in water. PMID:19466243

  20. Optimization of mix design by using superplasticized cement

    International Nuclear Information System (INIS)

    Khaskheli, G.B.; Kumar, A.; Umrani, A.N.

    2009-01-01

    Superplasticizers are high range water reducers which are capable of producing high-strength concrete with low permeability. Recently a cement factory in Sindh has launched SPC (Superplasticized Cement) which contains the required amount of superplasticizers. It is needed to investigate its performance compared to that of OPC (Ordinal-Y Portland Cement). This study is framed to optimize various strengths of structural concrete through the use of SPC of the cement factory. In total 288 cubes (6x6x6) were cast and tested for four different compressive strength of concrete (8000, 6000, 5000 and 4000 psi) manufactured with two brands of cement (OPC and SPC) of the cement factory and two different coarse aggregate sizes (40 and 20 mm) at three different curing ages (7,14 and 28 days). The effect on compressive strength of structural concrete was also observed by adopting 5 and 10% reduction in cement content of the superplasticized cement. Results have indicated that structural concrete made with superplasticized cement could give higher compressive strength than that of OPC at all the curing ages, and 10% saving in cement content could be achieved by using superplasticized cement. Structural concrete made with superplasticized cement could attain higher strength in a shorter period of time, and workability of structural concrete could be increased by using SPC. (author)

  1. Bacterial Adhesion of Porphyromonas Gingivalis on Provisional Fixed Prosthetic Materials

    OpenAIRE

    Zortuk, Mustafa; Kesim, Servet; Kaya, Esma; Özbilge, Hatice; Kiliç, Kerem; Çölgeçen, Özlem

    2010-01-01

    Background: When provisional restorations are worn for long term period, the adhesion of bacteria becomes a primary factor in the development of periodontal diseases. The aims of this study were to evaluate the surface roughness and bacterial adhesion of four different provisional fixed prosthodon-tic materials. Methods: Ten cylindrical specimens were prepared from bis-acrylic composites (PreVISION CB and Protemp 3 Garant), a light-polymerized composite (Revotek LC), and a polymethyl metha...

  2. Microleakage of different provisionalization techniques for class I inlays

    Directory of Open Access Journals (Sweden)

    Selim Erkut

    2013-03-01

    Conclusion: The microleakage in class I inlay cavities could be reduced by the application of dentin-bonding agents after cavity preparation followed by the placement of light-polymerized provisional restorative materials.

  3. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    Science.gov (United States)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  4. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Hesaraki, S., E-mail: S-hesaraki@merc.ac.ir

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~ 32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. - Highlights: • Light cure cement based on SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass and polymer-like matrix was formed. • The matrix includes poly(acrylic/maleic acid) and poly(hydroxyethyl methacrylate). • The cement is as strong as polymethylmethacrylate bone cement. • The cement exhibits apatite formation ability in simulated body fluid. • The cement is biodegradable and supports proliferation of osteoblastic cells.

  5. Predictable repair of provisional restorations.

    Science.gov (United States)

    Hammond, Barry D; Cooper, Jeril R; Lazarchik, David A

    2009-01-01

    The importance of provisional restorations is often downplayed, as they are thought of by some as only "temporaries." As a result, a less-than-ideal provisional is sometimes fabricated, in part because of the additional chair time required to make provisional modifications when using traditional techniques. Additionally, in many dental practices, these provisional restorations are often fabricated by auxillary personnel who may not be as well trained in the fabrication process. Because provisionals play an important role in achieving the desired final functional and esthetic result, a high-quality provisional restoration is essential to fabricating a successful definitive restoration. This article describes a method for efficiently and predictably repairing both methacrylate and bis-acryl provisional restorations using flowable composite resin. By use of this relatively simple technique, provisional restorations can now be modified or repaired in a timely and productive manner to yield an exceptional result. Successful execution of esthetic and restorative dentistry requires attention to detail in every aspect of the case. Fabrication of high-quality provisional restorations can, at times, be challenging and time consuming. The techniques for optimizing resin provisional restorations as described in this paper are pragmatic and will enhance the delivery of dental treatment.

  6. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust.

    Science.gov (United States)

    Moon, Deok Hyun; Grubb, Dennis G; Reilly, Trevor L

    2009-09-15

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO(3)(2-)) and selenate (SeO(4)(2-)). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO(3).H(2)O) and selenate substituted ettringite (Ca(6)Al(2)(SeO(4))(3)(OH)(12).26H(2)O), respectively.

  7. Research on curing behavior of concrete with anti-frost admixtures at subzero temperature

    Science.gov (United States)

    Ionov, Yulian; Kramar, Ludmila; Kirsanova, Alena; Kolegova, Irina

    2017-01-01

    The purpose of this paper is research on curing behavior of cold-weather concrete with anti-frost admixtures. During the study derivative thermal and X-ray phase analyses were performed and tests were carried out according to the standard GOST technique. The research results obtained reveal the peculiarities of cement hydration and concrete curing at subzero temperatures. The influence of subzero temperatures and anti-frost admixtures on hydrated phases of hardened cement paste and concrete strength formation was studied. It is found that cold-weather concrete does not cure at subzero temperatures, but when defrosting it attains 80 to 85% of its grade strength by the 28th day. Concrete achieves its grade strength when curing in normal conditions in 60 days only. Freezing concrete with anti-frost admixtures results in increase of calcium hydroxide content in hardened cement paste immediately when produced and has increased tendency of concrete to carbonation.

  8. Preparation of low viscosity epoxy acrylic acid photopolymer prepolymer in light curing system

    Science.gov (United States)

    Li, P.; Huang, J. Y.; Liu, G. Z.

    2018-01-01

    With the integration and development of materials engineering, applied mechanics, automatic control and bionics, light cured composite has become one of the most favourite research topics in the field of materials and engineering at home and abroad. In the UV curing system, the prepolymer and the reactive diluent form the backbone of the cured material together. And they account for more than 90% of the total mass. The basic properties of the cured product are mainly determined by the prepolymer. A low viscosity epoxy acrylate photosensitive prepolymer with a viscosity of 6800 mPa • s (25 °C ) was obtained by esterification of 5 hours with bisphenol A epoxy resin with high epoxy value and low viscosity.

  9. Applications of Blue Light-curing Acrylic Resin to Forensic Sample Preparation and Microtomy.

    Science.gov (United States)

    Groves, Ethan; Palenik, Christopher S

    2016-03-01

    This study discusses the results of an evaluation of a one-part blue light-curing acrylic resin for embedding trace evidence prior to the preparation of thin sections with a microtome. Through a comparison to several epoxy resins, the physical properties relevant to both trace evidence examination and analytical microscopy in general, including as viscosity, clarity, color, hardness, and cure speed, were explored. Finally, thin sections from paint samples embedded in this acrylic resin were evaluated to determine if, through smearing or impregnation, the resin contributed to the infrared spectra. The results of this study show that blue light-curing acrylic resins provide the desired properties of an embedding medium, generate high-quality thin sections, and can significantly simplify the preparation of paint chips, fibers and a multitude of other types of microscopic samples in the forensic trace evidence laboratory. © 2015 American Academy of Forensic Sciences.

  10. Comparative study on strength properties of cement mortar by partial replacement of cement with ceramic powder and silica fume

    Science.gov (United States)

    Himabindu, Ch.; Geethasri, Ch.; Hari, N.

    2018-05-01

    Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.

  11. Comparative Evaluation of Marginal Discrepancy in Tooth Colored Self Cure Acrylic Provisional Restorations With and Without Reinforcement of Glass Beads: An In-Vitro Study.

    Science.gov (United States)

    Yasangi, Manoj Kumar; Mannem, Dhanalakshmi; Bommireddy, Vikram Simha; Neturi, Sirisha; Ravoori, Srinivas; Jyothi

    2015-05-01

    This invitro study was conducted to compare and evaluate marginal discrepancy in two types of tooth colored self cure provisional restorative materials {DPI&UNIFAST TRAD} before and after reinforcement of glass beads. The aim of the present study was to evaluate and compare marginal discrepancy in two types of provisional restorative materials (DPI and UNI FAST TRAD) before and after reinforcement with Glass beads. Tooth shaped resin copings were fabricated on custom made brass metal die. A total of 60 resin copings were fabricated in which 30 samples were prepared with DPI and 30 samples with UNIFAST material. Each group of 30 samples were divided in to two sub groups in which 15 samples were prepared with glass bead reinforcement and 15 samples without reinforcement. The marginal discrepancy was evaluated with photomicroscope {Reichet Polyvar 2 met} by placing the resin copings on custom made brass resin coping holder. Measurements obtained were statistically analysed by unpaired t-test to know any significance between two variables. Unreinforced DPI specimens had shown lower marginal discrepancy (442.82) than reinforced specimens (585.77). Unreinforced UNIFAST specimens have shown high values of marginal discrepancy (592.83) than reinforced specimens (436.35). p-value between reinforced and unreinforced specimens of DPI (p=0.0013) and UNIFAST (p= 0.0038) has shown statistical significance. This in-vitro study revealed that unreinforced DPI specimens have shown lower marginal discrepancy than reinforced specimens and unreinforced UNIFAST specimens have shown higher values of marginal discrepancy than reinforced specimens.

  12. Comparative Evaluation of Marginal Discrepancy in Tooth Colored Self Cure Acrylic Provisional Restorations With and Without Reinforcement of Glass Beads: An In-Vitro Study

    Science.gov (United States)

    Yasangi, Manoj Kumar; Mannem, Dhanalakshmi; Neturi, Sirisha; Ravoori, Srinivas; Jyothi

    2015-01-01

    Context This invitro study was conducted to compare and evaluate marginal discrepancy in two types of tooth colored self cure provisional restorative materials {DPI&UNIFAST TRAD} before and after reinforcement of glass beads. Aim The aim of the present study was to evaluate and compare marginal discrepancy in two types of provisional restorative materials (DPI and UNI FAST TRAD) before and after reinforcement with Glass beads. Materials and Methods Tooth shaped resin copings were fabricated on custom made brass metal die. A total of 60 resin copings were fabricated in which 30 samples were prepared with DPI and 30 samples with UNIFAST material. Each group of 30 samples were divided in to two sub groups in which 15 samples were prepared with glass bead reinforcement and 15 samples without reinforcement. The marginal discrepancy was evaluated with photomicroscope {Reichet Polyvar 2 met} by placing the resin copings on custom made brass resin coping holder. Results Measurements obtained were statistically analysed by unpaired t-test to know any significance between two variables. Unreinforced DPI specimens had shown lower marginal discrepancy (442.82) than reinforced specimens (585.77). Unreinforced UNIFAST specimens have shown high values of marginal discrepancy (592.83) than reinforced specimens (436.35). p-value between reinforced and unreinforced specimens of DPI (p=0.0013) and UNIFAST (p= 0.0038) has shown statistical significance. Conclusion This in-vitro study revealed that unreinforced DPI specimens have shown lower marginal discrepancy than reinforced specimens and unreinforced UNIFAST specimens have shown higher values of marginal discrepancy than reinforced specimens. PMID:26155574

  13. Fiber Optic Systems for Light Curing Rigidization of Inflatable Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Light (UV and visible) curing composite matrix resins are being explored as an attractive means for rigidizing inflatable spacecraft for large space-deployed...

  14. Mechanical properties and polymerization shrinkage of composite resins light-cured using two different lasers.

    Science.gov (United States)

    Kim, Tae-Wan; Lee, Jang-Hoon; Jeong, Seung-Hwa; Ko, Ching-Chang; Kim, Hyung-Il; Kwon, Yong Hoon

    2015-04-01

    The purpose of the present study was to investigate the usefulness of 457 and 473 nm lasers for the curing of composite resins during the restoration of damaged tooth cavity. Monochromaticity and coherence are attractive features of laser compared with most other light sources. Better polymerization of composite resins can be expected. Eight composite resins were light cured using these two lasers and a light-emitting diode (LED) light-curing unit (LCU). To evaluate the degrees of polymerization achieved, polymerization shrinkage and flexural and compressive properties were measured and compared. Polymerization shrinkage values by 457 and 473 nm laser, and LED ranged from 10.9 to 26.8, from 13.2 to 26.1, and from 11.5 to 26.3 μm, respectively. The values by 457 nm laser was significantly different from those by 473 and LED LCU (p0.05). For the tested LCUs, no specific LCU could consistently achieve highest strength and modulus from the specimens tested. Two lasers (457 and 473 nm) can polymerize composite resins to the level that LED LCU can achieve despite inconsistent trends of polymerization shrinkage and flexural and compressive properties of the tested specimens.

  15. Assessing the irradiance delivered from light-curing units in private dental offices in Jordan.

    Science.gov (United States)

    Maghaireh, Ghada A; Alzraikat, Hanan; Taha, Nessrin A

    2013-08-01

    The authors conducted a study to examine the irradiance from light-curing units (LCUs) used in dental offices in Jordan. Two of the authors visited 295 private dental offices (15 percent) in Jordan and collected the following information about the LCUs: age, type (quartz-tungsten-halogen or light-emitting diode), date of last maintenance, type of maintenance, last date of use, number of times used during the day, availability of a radiometer, exposure time for each resin-based composite increment, size of light-curing tips and presence of resin-based composite on the tips. The authors used a radiometer to measure the irradiance from the LCUs. They used linear regression with stepwise correlation for the statistical analysis. The authors set the minimum acceptable irradiance at 300 milliwatts/square centimeter. The mean irradiance of the 295 LCUs examined was 361 mW/cm(2), and 136 LCUs (46.1 percent) delivered an irradiance of less than 300 mW/cm(2). The unit's age, type and presence of resin-based composite on the light-curing tips had a significant effect on the irradiance (P ≤ .001). Only 37 of the 141 quartz-tungsten-halogen units (26.2 percent) and 122 of the 154 light-emitting diode units (79.2 percent) delivered at least 300 mW/cm(2). Resin contamination on the light-curing tips had a significant effect on the irradiance delivered. The irradiance from the LCUs decreased with use. Practical Implications. The irradiance from many of the units in this study was less than 300 mW/cm(2), which may affect the quality of resin-based composite restorations. Dentists should monitor the performance of the LCUs in their offices weekly.

  16. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  17. Self-curing concrete types; water retention and durability

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-09-01

    This study was carried out to compare among concretes without or with silica fume (SF along with chemical type of shrinkage reducing admixture, polyethylene-glycol (Ch, and leca as self-curing agents for water retention even at elevated temperature (50 °C and their durability. The cement content of 400 kg/m3, silica fume of 15% by weight of cement, polyethylene-glycol of 2% by weight of cement, pre-saturated lightweight aggregate (leca 15% by volume of sand and water with Ch/binder ratio of 0.4 were selected in this study. Some of the physical and mechanical properties were determined periodically up to 28 days in case of exposure to air curing in temperature of (25 °C and (50 °C while up to 6 months of exposure to 5% of carbon dioxide and wet/dry cycles in 8% of sodium chloride for durability study. The concrete mass loss and the volumetric water absorption were measured, to evaluate the water retention of the investigated concretes. Silica fume concrete either without or with Ch gave the best results under all curing regimes; significant water retention and good durability properties.

  18. Marginal Adaptation and Quality of Interfaces in Lithium Disilicate Crowns - Influence of Manufacturing and Cementation Techniques.

    Science.gov (United States)

    Melo Freire, C A; Borges, G A; Caldas, Dbm; Santos, R S; Ignácio, S A; Mazur, R F

    To evaluate the cement line thickness and the interface quality in milled or injected lithium disilicate ceramic restorations and their influence on marginal adaptation using different cement types and different adhesive cementation techniques. Sixty-four bovine teeth were prepared for full crown restoration (7.0±0.5 mm in height, 8.0 mm in cervical diameter, and 4.2 mm in incisal diameter) and were divided into two groups: CAD/CAM automation technology, IPS e.max CAD (CAD), and isostatic injection by heat technology, IPS e.max Press (PRESS). RelyX ARC (ARC) and RelyX U200 resin cements were used as luting agents in two activation methods: initial self-activation and light pre-activation for one second (tack-cure). Next, the specimens were stored in distilled water at 23°C ± 2°C for 72 hours. The cement line thickness was measured in micrometers, and the interface quality received scores according to the characteristics and sealing aspects. The evaluations were performed with an optical microscope, and scanning electron microscope images were presented to demonstrate the various features found in the cement line. For the cement line thickness, data were analyzed with three-way analysis of variance (ANOVA) and the Games-Howell test (α=0.05). For the variable interface quality, the data were analyzed with the Mann-Whitney U-test, the Kruskal-Wallis test, and multiple comparisons nonparametric Dunn test (α=0.05). The ANOVA presented statistical differences among the ceramic restoration manufacturing methods as well as a significant interaction between the manufacturing methods and types of cement (pcement line thickness values when compared to the ARC with both cementation techniques (pmanufacturing methods and cementation techniques. The PRESS ceramics obtained lower scores than did the CAD ceramics when using ARC cement (pcemented with self-adhesive resin cement resulted in a thinner cement line that is statistically different from that of CAD or pressed

  19. Degree of conversion of resin-based orthodontic bonding materials cured with single-wave or dual-wave LED light-curing units.

    Science.gov (United States)

    Santini, Ario; McGuinness, Niall; Nor, Noor Azreen Md

    2014-12-01

    To evaluate the degree of conversion (DC) of orthodontic adhesives (RBOAs) cured with dual peak or single peak light-emitting diode (LED) light-curing units (LCUs). Standardized samples of RBOAs, APCPlus, Opal® Bond® and LightBond(TM) were prepared (n = 3) and cured with one of two dual peak LCUs (bluephase® G2-Ivoclar-Vivadent or Valo-Ultradent) or a single peak control (bluephase® Ivoclar-Vivadent). The DC was determined using micro-Raman spectroscopy. The presence or absence of initiators other than camphorquinone was confirmed by high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. Data were analysed using general linear model in Minitab 15 (Minitab Inc., State College, PA, USA). There was no significant difference in DC between APCPlus, and Opal® Bond (confidence interval: -3.89- to 2.48); significant difference between APCPlus and LightBond(TM) (-18.55 to -12.18) and Opal® Bond and Lightbond(TM) (-17.85 to -11.48); no significant difference between bluephase (single peak) and dual peak LCUs, bluephase G2 (-4.896 to 1.476) and Valo (-3.935 to 2.437) and between bluephase G2 and Valo (-2.225 to 4.147). APCPlus and Opal® Bond showed higher DC values than LightBond(TM) (P<0.05). Lucirin® TPO was found only in Vit-l-escence. Lucirin® TPO was not identified in the three orthodontic adhesives. All three LCUs performed similarly with the orthodontic adhesives: orthodontic adhesive make had a greater effect on DC than the LCUs. It is strongly suggested that manufacturers of resin-based orthodontic materials test report whether or not dual peak LCUs should be used with their materials. Dual peak LED LCUs, though suitable in the majority of cases, may not be recommended for certain non Lucirin® TPO-containing materials. © 2014 British Orthodontic Society.

  20. Knowledge Gaps Exist Among Dentists Regarding Curing Lights and Personal Protection.

    Science.gov (United States)

    Wright, Wanda G

    2017-09-01

    Light curing procedures - performance, knowledge level and safety awareness among dentists. Kopperud SE, Rukke HV, Kopperud HM, Bruzell EM. J Dent 2017;58:67-73. Information not available TYPE OF STUDY/DESIGN: Cross-sectional study. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT

    International Nuclear Information System (INIS)

    Butler, L.G.

    1999-01-01

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 microm; a search with EPMA for vesicles in the range of 1-20 microm proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from 29 Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, 2 H NMR of d 8 -toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste)

  2. Enhancing the compressive strength of landfill soil using cement and bagasse ash

    Science.gov (United States)

    Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.

    2017-11-01

    The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.

  3. Light energy transmission and Vickers hardness ratio of bulk-fill resin based composites at different thicknesses cured by a dual-wave or a single-wave light curing unit.

    Science.gov (United States)

    Santini, Ario; Naaman, Reem Khalil; Aldossary, Mohammed Saeed

    2017-04-01

    To quantify light energy transmission through two bulk-fill resin-based composites and to measure the top to bottom surface Vickers hardness ratio (VHratio) of samples of various incremental thicknesses, using either a single-wave or dual-wave light curing unit (LCU). Tetric EvoCeram Bulk Fill (TECBF) and SonicFill (SF) were studied. Using MARC-RC, the irradiance delivered to the top surface of the samples 2, 3, 4 and 5 mm thick (n= 5 for each thickness) was adjusted to 800 mW/cm2 for 20 seconds (16 J/cm2) using either a single-wave, Bluephase or a dual-wave, Bluephase G2 LCUs. Light energy transmission through to the bottom surface of the specimens was measured at real time using MARC-RC. The Vickers hardness (VH) was determined using Vickers micro hardness tester and the VHratio was calculated. Data were analyzed using a general linear model in Minitab 16; α= 0.05. TECBF was more translucent than SF (Pwave Bluephase G2). SF showed significantly higher VH ratio than TECBF at all different thickness levels (P 0.05). TECBF showed significantly greater VH ratio when cured with the single-wave Bluephase than when using the dual-wave Bluephase G2 (Penergy through to the bottom surface and the VHratio are material dependent. Although TECBF is more translucent than SF, it showed lower VHratio compared to SF when cured with dual-wave Bluephase G2.

  4. Influence of resin cement shade on the color and translucency of ceramic veneers.

    Science.gov (United States)

    Hernandes, Daiana Kelly Lopes; Arrais, Cesar Augusto Galvão; Lima, Erick de; Cesar, Paulo Francisco; Rodrigues, José Augusto

    2016-01-01

    This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  5. Effects of surface treatment and artificial aging on the shear bond strength of orthodontic brackets bonded to four different provisional restorations.

    Science.gov (United States)

    Al Jabbari, Youssef S; Al Taweel, Sara M; Al Rifaiy, Mohammed; Alqahtani, Mohammed Q; Koutsoukis, Theodoros; Zinelis, Spiros

    2014-07-01

    To evaluate the combined effects of material type, surface treatment, and thermocycling on the bond strength of orthodontic brackets to materials used for the fabrication of provisional crowns. Four materials were included in this study (ProTemp, Trim Plus, Trim II, and Superpont C+B). Sixty cylindrical specimens (1 × 3 cm) were prepared from each material and equally divided into three groups. The first group was ground with silica carbide paper, the second was polished with pumice, and the last group was sandblasted with 50-µm aluminum oxide particles. Stainless-steel maxillary central incisor brackets (Victory Series, 3M) were bonded to the provisional material specimens with Transbond XT light-cured composite resin, and half of the specimens from each group were thermocycled 500 times in 5°C and 55°C water baths. Then the brackets were debonded with shear testing, and the results were statistically analyzed by three-way analysis of variance and Tukey's multiple-comparison tests at α  =  0.05. Adhesive Remnant Index (ARI) was also identified. Before and after thermocycling, ProTemp materials showed the highest shear bond strength with orthodontic brackets (10.3 and 13.1 MPa, respectively). The statistical analysis indicated an interaction among the three independent variables (P < .05) and statistically significant differences in bond strength among provisional materials (P < .001), surface treatments (P < .001), and thermocycling (P < .05). According to the ARI, most groups demonstrated adhesive failure. The provisional material type, surface treatment, and artificial aging have a significant effect on bond strength. Sandblasting treatment exerts a beneficial effect on shear bond strength.

  6. Stabilization and solidification of Pb in cement matrices

    International Nuclear Information System (INIS)

    Gollmann, Maria A.C.; Silva, Marcia M. da; Santos, Joao H. Z. dos; Masuero, Angela B.

    2010-01-01

    Pb was incorporated to a series of cement matrices, which were submitted to different cure time and pH. Pb content leached to aqueous solution was monitored by atomic absorption spectroscopy. The block resistance was evaluated by unconfined compressive strength at 7 and 28 ages. Data are discussed in terms of metal mobility along the cement block monitored by X-ray fluorescence (XRF) spectrometry. The Pb incorporated matrices have shown that a long cure time is more suitable for avoiding metal leaching. For a longer cure period the action of the metal is higher and there is a decreasing in the compressive strength. The XRF analyses show that there is a lower Ca concentration in the matrix in which Pb was added. (author)

  7. Thermographic analysis of the effect of composite type, layering method, and curing light on the temperature rise of photo-cured composites in tooth cavities.

    Science.gov (United States)

    Kim, Min-Jung; Kim, Ryan Jin-Young; Ferracane, Jack; Lee, In-Bog

    2017-10-01

    The purpose of this study was to investigate temperature rise in the composite and dentin of a class I cavity in extracted human molars under different restoration conditions, including the use of different composite types, layering methods, and curing lights. Open occlusal cavities were prepared on 28 extracted human molars. A conventional (Filtek Z250) and a bulk-fill (Filtek Bulk Fill Posterior; BFP) composite were used to restore the preparations. BFP was incrementally layered or bulk-filled. Bulk-filled BFP was cured with two different lights, the Elipar S10 and the BeLite. Each layer was illuminated for 20s, while thermograms of the specimens were recorded for 100s using an infrared thermal camera. Temperature changes on the composite and dentin surfaces were obtained at points of interest (POI) pertaining to successive incremental distances of 0.75mm from the top of the cavity to the pulp. The polymerization kinetics of each composite was determined using photo-differential scanning calorimetry. The greatest temperature rise was observed 0.75mm apical from the top of the cavity. All groups showed over 6°C maximum temperature rise (ΔT max ) at the pulpal side of the dentin. Upon curing, Z250 reached ΔT=5°C faster than BFP; however, ΔT max of the two composites were comparable at any POI. Bulk filling showed greater ΔT max than incremental filling at 0.75mm apical from the top and in the middle of the cavity. The Elipar S10 light generated faster temperature changes in the curing composite at all recorded positions throughout the depth of the cavity and greater ΔT max in all POIs compared to BeLite. Real-time thermographic analysis demonstrated that the composite type and layering method did not influence the temperature rise at the pulpal side of dentin during composite restoration of an occlusal preparation in a tooth. The amount and initial rate of temperature increase was most affected by the radiant exposure of the light curing unit. Within the

  8. Elasticity and expansion test performance of geopolymer as oil well cement

    Science.gov (United States)

    Ridha, S.; Hamid, A. I. Abd; Halim, A. H. Abdul; Zamzuri, N. A.

    2018-04-01

    History has shown that geopolymer cement provides high compressive strength as compared to Class G cement. However, the research had been done at ambient temperature, not at elevated condition which is the common oil well situation. In this research, the physical and mechanical properties performance of the oil well cement were investigated by laboratory work for two types of cement that are geopolymer and Class G cement. The cement samples were produced by mixing the cement according to the API standards. Class C fly ash was used in this study. The alkaline solution was prepared by mixing sodium silicate with NaOH solution. The NaOH solution was prepared by diluting NaOH pellets with distilled water to 8M. The cement samples were cured at a pressure of 3000 psi and a temperature of 130 °C to simulate the downhole condition. After curing, the physical properties of the cement samples were investigated using OYO Sonic Viewer to determine their elastic properties. Autoclave expansion test and compressive strength tests were conducted to determine the expansion value and the strength of the cement samples, respectively. The results showed that the geopolymer cement has a better physical and mechanical properties as compared with Class G cement at elevated condition.

  9. Performance of Periwinkle Shell Ash Blended Cement Concrete Exposed to Magnesium Sulphate

    Directory of Open Access Journals (Sweden)

    Umoh A.A.

    2013-01-01

    Full Text Available The study examined the compressive strength of periwinkle shell ash (PSA blended cement concrete in magnesium sulphate medium. Specimens were prepared from designed characteristics strength of 25 MPa. The cement replacement with PSA ranged between 0 and 40% by volume. A total of 180 cube specimens were cast and cured in water. At 28 days curing, 45 specimens each were transferred into magnesium sulphate of 1%, 3%, and 5% solution, while others were continuously cured in water and tested at 62, 92, and 152 days. The results revealed a higher loss in compressive strength with the control mix, and that it increases with increased in MgSO4 concentration and exposure period, whereas, the attack on the PSA blended cement concrete was less and the least value recorded by 10% PSA content. Therefore, the study concluded that the optimum percentage replacement of cement with 10% PSA could mitigate magnesium sulphate attack.

  10. Leaching behaviour of strontium-90 in cement composites

    International Nuclear Information System (INIS)

    Matsuzuru, H.; Ito, A.

    1977-01-01

    The leaching of 90 Sr from a cement composite into an aqueous phase has been studied by the method recommended by IAEA. The amount leached was measured as functions of waste to cement ratio (Wa/C), salt content of waste, temperature of leachant and curing time of specimens. The leach coefficient of 90 Sr varies from ca. 6 x 10 -8 to 4 x 10 -7 cm 2 /day depending on the composition of specimen and the leaching conditions. The leachability depends on such factors as Wa/C, temperature of leachant and curing time. The Portland cement composite gives a higher leaching fraction than the slag cement one. Additives used have no significant effect on the leachability. The amount leached in deionized water as a leachant is higher than in synthetic sea water. On the basis of the results obtained, the amount of 90 Sr leached from a composite of 200 1 drum size for an extended period was estimated. (author)

  11. FY 1975 Report on results of Sunshine Project. Research and development of cement serviceable under geothermal conditions; 1975 nendo chinetsu kankyoka de shiyo kanona cement no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-30

    Three types of base geothermal cement were developed, on a trial basis, using C{sub 3}S(3Ca{center_dot}SiO{sub 2}) and C{sub 3}A(3CaO{center_dot}Al{sub 2}O{sub 3}), and incorporated with silica as the strength stabilizer, to prepare geothermal cement samples. They were tested for 45 days at a geothermal well in the Takinoue Geothermal District, showing a tendency of increasing in strength. The cement sample was prepared by incorporating 42.8% of the purest silica and 0.45% of lignin-based curing retardant. It showed a thickening time of 3 hours and 5 minutes. It showed a strength of 400 kg/cm{sup 2} or higher, when cured at 130 and 200 degrees C. The mixed cement, with G cement as the base incorporated with 42.8% of silica as the strength stabilizer, showed a thickening time of 4 hours and 12 minutes, when incorporated with 0.5% of a dispersant and 1.2% of a lignin-based curing retardant, where the G cement is developed for a 300 to 400 m deep geothermal well (maximum bed temperature: 220 degrees C, circulation temperature at the pit bottom: 135 degrees C), in accordance with the casing program for a 1,500 m deep geothermal well. When cured at 220 degrees C, it showed a strength of 370 kg/cm{sup 2} after it was tested for 15 days. (NEDO)

  12. A Fourier transform Raman spectroscopy analysis of the degree of conversion of a universal hybrid resin composite cured with light-emitting diode curing units.

    Science.gov (United States)

    Lindberg, Anders; Emami, Nazanin; van Dijken, Jan W V

    2005-01-01

    The degree of conversion (DC), of a universal hybrid resin composite cured with LED curing units with low and high power densities and a 510 mW/cm2 quartz tungsten halogen unit, was investigated with Fourier Transform Raman spectroscopy. Three curing depths (0, 2, 4mm) and 0 and 7 mm light guide tip - resin composite (LT - RC) distances were tested. The DC of the LED units varied between 52.3% - 59.8% at the top surface and 46.4% - 57.0% at 4 mm depth. The DC of specimen cured with a 0 mm LT- RC distance at 4 mm depth varied between 50.8% - 57.0% and with 7 mm distance between 46.4% - 55.4%. The low power density LED unit showed a significantly lower DC for both distances at all depth levels compared to the other curing units (p units were only found at the 4 mm depth level cured from 7 mm distance (p units. It can be concluded that the improved LED curing units could cure the studied resin composite to the same DC as the control unit.

  13. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials.

    Science.gov (United States)

    Cekic-Nagas, Isil; Ergun, Gulfem; Egilmez, Ferhan; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2016-10-01

    The aim of this study was to evaluate the effects of hydrofluoric acid treatment on bond strength of resin cements to three different types of ceramic/glass containing CAD-CAM block composite materials. CAD-CAM block materials of polymer infiltrated (Vita Enamic), resin nanoceramic (Lava Ultimate) and nanoceramic (Cerasmart) with a thickness of 1.5mm were randomly divided into two groups according to the surface treatment performed. In Group 1, specimens were wet-ground with silicon carbide abrasive papers up to no. 1000. In Group 2, 9.6% hydrofluoric acid gel was applied to ceramics. Three different resin cements (RelyX, Variolink Esthetic and G-CEM LinkAce) were applied to the tubes in 1.2-mm thick increments and light-cured for 40s using LED light curing unit. Half of the specimens (n=10) were submitted to thermal cycling (5000 cycles, 5-55°C). The strength measurements were accomplished with a universal testing machine (Lloyd Instruments) at a cross-head speed of 0.5mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with multivariate analysis of variance (MANOVA) and Tukey's post hoc tests (α=0.05). There were significant differences between ceramics and resin cements (pceramics (pceramic/glass-polymer materials might promote the bonding capacity of these systems. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Effect of Self-Adhesive and Separate Etch Adhesive Dual Cure Resin Cements on the Bond Strength of Fiber Post to Dentin at Different Parts of the Root

    Directory of Open Access Journals (Sweden)

    Ehsan Mohamadian Amiri

    2017-10-01

    Full Text Available Objectives: Bonding of fiber posts to intracanal dentin is challenging in the clinical setting. This study aimed to compare the effect of self-adhesive and separate etch adhesive dual cure resin cements on the bond strength of fiber post to dentin at different parts of the root.Materials and Methods: This in-vitro experimental study was conducted on 20 single-rooted premolars. The teeth were decoronated at 1mm coronal to the cementoenamel junction (CEJ, and the roots underwent root canal treatment. Post space was prepared in the roots. Afterwards, the samples were randomly divided into two groups. In group 1, the fiber posts were cemented using Rely X Unicem cement, while in group 2, the fiber posts were cemented using Duo-Link cement, according to the manufacturer's instructions. The intracanal post in each root was sectioned into three segments of coronal, middle, and apical, and each cross-section was subjected to push-out bond strength test at a crosshead speed of 1mm/minute until failure. Push-out bond strength data were analyzed using independent t-test and repeated measures ANOVA.Results: The bond strength at the middle and coronal segments in separate etch adhesive cement group was higher than that in self-adhesive cement group. However, the bond strength at the apical segment was higher in self-adhesive cement group compared to that in the other group. Overall, the bond strength in separate etch adhesive cement group was significantly higher than that in self-adhesive cement group (P<0.001.Conclusions: Bond strength of fiber post to intracanal dentin is higher after the use of separate etch adhesive cement compared to self-adhesive cement.

  15. Petroleum Sludge as gypsum replacement in cement plants: Its Impact on Cement Strength

    Science.gov (United States)

    Benlamoudi, Ali; Kadir, Aeslina Abdul; Khodja, Mohamed

    2017-08-01

    Due to high cost of cement manufacturing and the huge amount of resources exhaustion, companies are trying to incorporate alternative raw materials or by-products into cement production so as to produce alternative sustainable cement. Petroleum sludge is a dangerous waste that poses serious imparts on soil and groundwater. Given that this sludge contains a high percentage of anhydrite (CaSO4), which is the main component of gypsum (CaSO4.2H2O), it may play the same gypsum role in strength development. In this research, a total replacement of gypsum (100%) has been substituted by petroleum sludge in cement production and has led to an increase of 28.8% in UCS values after 28 curing days. Nevertheless, the burning of this waste has emitted a considerable amount of carbon monoxide (CO) gas that needs to be carefully considered prior to use petroleum sludge within cement plants.

  16. Comparison of temperature rise in the pulp chamber with different light curing units: An in-vitro study

    OpenAIRE

    Rajesh Ebenezar, A V; Anilkumar, R; Indira, R; Ramachandran, S; Srinivasan, M R

    2010-01-01

    Aims/Objectives: This in vitro study was designed to measure and compare the temperature rise in the pulp chamber with different light curing units. Materials and Methods: The study was done in two settings-in-vitro and in-vivo simulation. In in-vitro setting, 3mm and 6mm acrylic spacers with 4mm tip diameter thermocouple was used and six groups were formed according to the light curing source- 3 Quartz-Tungsten-Halogen (QTH) units and 3 Light-Emitting-Diode (LED) units. For the LED units, th...

  17. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    Directory of Open Access Journals (Sweden)

    Auday A Mehatlaf

    2017-12-01

    Full Text Available Cement Klin Dust (CKD was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40 had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28 day. In addition, mechanical properties included the coefficient of thermal conductivity and compressive strength had also observed with different age (3,7, and 28 for all prepared specimens. From the obtained the experimental results and their discussion, it was clear that the addition (20% of CKD had the good results in cement mortars.  

  18. A multiphysics-viscoplastic cap model for simulating blast response of cemented tailings backfill

    Directory of Open Access Journals (Sweden)

    Gongda Lu

    2017-06-01

    Full Text Available Although a large number of previous researches have significantly contributed to the understanding of the quasi-static mechanical behavior of cemented tailings backfill, an evolutive porous medium used in underground mine cavities, very few efforts have been made to improve the knowledge on its response under sudden dynamic loading during the curing process. In fact, there is a great need for such information given that cemented backfill structures are often subjected to blast loadings due to mine exploitations. In this study, a coupled thermo-hydro-mechanical-chemical (THMC-viscoplastic cap model is developed to describe the behavior of cementing mine backfill material under blast loading. A THMC model for cemented backfill is adopted to evaluate its behavior and evolution of its properties in curing processes with coupled thermal, hydraulic, mechanical and chemical factors. Then, the model is coupled to a Perzyna type of viscoplastic model with a modified smooth surface cap envelope and a variable bulk modulus, in order to reasonably capture the nonlinear and rate-dependent behaviors of the cemented tailings backfill under blast loading. All of the parameters required for the variable-modulus viscoplastic cap model were obtained by applying the THMC model to reproducing evolution of cemented paste backfill (CPB properties in the curing process. Thus, the behavior of hydrating cemented backfill under high-rate impacts can be evaluated under any curing time of concern. The validation results of the proposed model indicate a good agreement between the experimental and the simulated results. The authors believe that the proposed model will contribute to a better understanding of the performance of hydrating cemented backfill under blasting, and also to practical risk management of backfill structures associated with such a dynamic condition.

  19. Efeito do tempo de cura na rigidez de argamassas produzidas com cimento Portland Effect of the curing time on the stiffness of mortars produced with Portland cement

    Directory of Open Access Journals (Sweden)

    G. C. R. Garcia

    2011-03-01

    Full Text Available O concreto de cimento Portland é um dos materiais mais usados no mundo inteiro, entretanto, devido a sua estrutura ser muito complexa, torna-se imprescindível estudar suas propriedades com bastante profundidade. O concreto é produzido a partir de uma argamassa, de areia e cimento, com adição de agregados graúdos, sendo que suas propriedades estão basicamente suportadas nessa argamassa de constituição. O objetivo deste trabalho foi estudar a variação da rigidez de duas argamassas de composições com razão cimento:areia de 1:2 e 1:3 em função do tempo de cura, tendo como parâmetro a variação do módulo de Young. Os resultados mostraram que o módulo de Young cresce até atingir o valor máximo no oitavo dia, sendo que nos três primeiros dias esse crescimento é mais acentuado. A análise dos resultados indica que grande parte do processo de hidratação do cimento, com formação das ligações químicas responsáveis pela rigidez da argamassa, acontece nos primeiros dias de cura.Concrete produced with Portland cement is one of building materials most widely used worldwide. However, due to its highly complex structure, its properties require in-depth studies. Concrete is a mortar consisting of a mixture of cement, sand and coarse aggregates, and its properties are represented basically by the mortar base. The aim of this work was to study the change in stiffness of two mortar compositions cured at 25 ºC with a cement-to-sand ratio of 1:2 and 1:3, as a function of curing time using the variation of Young modulus as the measuring parameter. The results showed that Young modulus increases up to a maximum value on the 8th day, and that this increase is more pronounced during the first three days. An analysis of the results indicates that a large part of the cement hydration process, involving the formation of chemical bonds that are responsible for the mortar stiffness, takes place in the early days of curing.

  20. Comparative evaluation of shear bond strength, between IPS-Empress2 ceramics and three dual-cured resin cements

    Directory of Open Access Journals (Sweden)

    Hajimiragha H

    2006-06-01

    Full Text Available Background and Aim: Cementation is one of the most critical steps of the porcelain restoration technique. However, limited information is available concerning the bond strength of current ceramic bonding systems. The aim of this study was to evaluate the shear bond strength of three dual-cure resin cements to IPS-Empress2 ceramics. Materials and Methods: In this experimental study, 30 pairs of IPS-Empress 2 ceramic discs were fabricated with 10 and 8 mm diameters and 2.5 mm thickness. After sandblasting and ultrasonic cleaning, the surfaces of all specimens were etched with 9% hydrofluoric acid for 60 seconds. Then, the three groups of 10 bonded specimens were prepared ceramic bonding resin systems including Panavia F2, Variolink II and Rely X ARC. After storage in 37±1c water for 24 hours and thermocycling in 5c and 55c water for 500 cycles with 1-minute dwell time, the shear bond strengths were determined using Instron machine at speed of 0.5mm/min. Data were analyzed by One Way ANOVA test. For multiple paired comparisons, the Tukey HSD method was used. The mode of failure was evaluated by scanning electro microscope (SEM. P<0.05 was considered as the limit of significance. Result: Significant differences were found between different cement types (P<0.05. Variolink II provided the highest bonding values with IPS-Empress2. A combination of different modes of failure was observed. Conclusion: Based on the results of this study, according to the highest mode of cohesive failure, Variolink II seems to have the strongest bond with IPS-Empress2 ceramics.

  1. Ultrasonic measurement of the effects of light irradiation and presence of water on the polymerization of self-adhesive resin cement.

    Science.gov (United States)

    Takenaka, Hirotaka; Ouchi, Hajime; Sai, Keiichi; Kawamoto, Ryo; Murayama, Ryosuke; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2015-08-14

    Self-adhesive resin cements are useful in restorations because they reduce the number of clinical steps involved in the restoration process. This study evaluated, using ultrasonic measurements, the influence of light irradiation and the presence of water on the polymerization behavior and elastic modulus of a self-adhesive resin cement. A self-adhesive resin cement (RelyX Unicem 2 Automix) or a resin cement (RelyX ARC) was inserted into a transparent mold on a sample stage, and the presence of water and effect of light-irradiation were evaluated. The transit time of a sonic wave through the cement disk was divided by the specimen thickness to obtain the sonic velocity, and longitudinal and shear waves were used to determine the elastic modulus. When the resin cements were light-irradiated, the sonic velocity rapidly increased and plateaued at 2,500-2,700 m s -1 . When the cements were not irradiated, the rates of increase in the sonic velocity were reduced. When water was applied to the sample stage, the sonic velocity was reduced. The elastic modulus values of the specimens ranged from 9.9 to 15.9 GPa after 24 h. The polymerization behavior of self-adhesive resin cements is affected by the polymerization mode and the presence of water. © 2015 Eur J Oral Sci.

  2. Effect of addition of Sikament-R superplasticizer on the hydration characteristics of portland cement pastes

    Directory of Open Access Journals (Sweden)

    Safaa.M. El Gamal

    2012-08-01

    Full Text Available The effect of addition of Sikament-R superplasticizer (modified lignosulphonate base on the hydration characteristics of hardened Portland cement pastes were studied at different curing conditions. Four mixtures were prepared using 0, 0.2, 0.4 and 0.6 wt% addition of Sikament-R superplasticizer (SR of cement. These pastes were hydrated under two different conditions; (i normal curing at room temperature; 25 °C up to 90 days periods and (ii hydrothermal curing at a pressure of 8 atm. of saturated steam up to 24 h. The compressive strength, combined water content, free lime content, gel/space ratio and microstructure of hardened cement pastes were studied. The results revealed that addition of SR superplasticizer promote the dispersion of cement particles and interacts with Ca(OH2. The addition of SR superplasticizer exhibits Portland cement better workability during the preparation of pastes. In addition, amore compact structure were obtained leading to higher values of compressive strength for all the hardened hydrated pastes under both normal and hydrothermal curing. The results indicated that the addition of SR superplasticizer to Portland cement does not alter the types of hydration products formed during normal or hydrothermal conditions; only it caused a decrease in the degree of the porosity of the formed pastes.

  3. Effect of light-curing units on microleakage under dental composite resins

    Science.gov (United States)

    Queiroz, R. S.; Bandéca, M. C.; Calixto, L. R.; Saade, E. G.; Nadalin, M. R.; Andrade, M. F.; Porto-Neto, S. T.

    2009-09-01

    The aim of this study was to determine the effect of two light-curing units (QTH and LED) on microleakage of Class II composite resin restorations with dentin cavosurface margins. Twenty extracted mandibular first premolars, free of caries and fractures were prepared two vertical “slot” cavities in the occluso-mesial and -destal surfaces (2 mm buccal-lingually, 2 mm proximal-axially and cervical limit in enamel) and divided into 4 equal groups ( n = 8): GI and GII: packable posterior composite light-activated with LED and QTH, respectively; GIII and GIV: micro-hybrid composite resin light-activated with LED and QTH, respectively. The composite resins were applied following the manufacturer’s instructions. After 24 h of water storage specimens were subjected to thermocycling for a total of 500 cycles at 5 and 55°C and the teeth were then sealed with impermeable material. Teeth were immersed in 0.5% Basic fuchsin during 24 h at room temperature, and zero to three levels of penetration score were attributed. The Mann-Whitney and Kruskal-Wallis tests showed significant statistically similar ( P > 0.05) from GI to GII and GIII to GIV, which the GII (2.750) had the highest mean scores and the GIII and GIV (0.875) had lowest mean scores. The use of different light-curing units has no influence on marginal integrity of Class II composite resin restorations and the proprieties of composite resins are important to reduce the microleakage.

  4. Influence of immediate loading on provisional restoration in dental implant stability

    Science.gov (United States)

    Ikbal, M.; Odang, R. W.; Indrasari, M.; Dewi, R. S.

    2017-08-01

    The success of dental implant treatment is determined by the primary stability at placement. One factor that could influence this stability is occlusal loading through provisional restoration. Two types of loading protocols are usually used: immediate and delayed loading. However, some controversies remain about the influence of occlusal loading on implant stability. Therefore, the influence of immediate loading on implant stability must be studied. An animal study was conducted by placing nine dental implants in the mandibular jaw of three Macaca fascicularis. Provisional restorations with various occlusal contacts (no, light, and normal contact) were placed on the implant. The implant stability was measured using the Ostell ISQ three times: immediately (baseline) and at the first and second months after implant placement. The implant stability between implants with no and normal occlusal contact as well as light and normal occlusal contact showed significant differences (p implant placement. However, no significant increase (p > 0.05) in implant stability was seen at the baseline and the first and second months after implant placement for all occlusal contact groups. Immediate loading influenced the implant stability, and provisional restoration of implant without occlusal contact showed the highest implant stability.

  5. Aspects of bonding between resin luting cements and glass ceramic materials.

    Science.gov (United States)

    Tian, Tian; Tsoi, James Kit-Hon; Matinlinna, Jukka P; Burrow, Michael F

    2014-07-01

    The bonding interface of glass ceramics and resin luting cements plays an important role in the long-term durability of ceramic restorations. The purpose of this systematic review is to discuss the various factors involved with the bond between glass ceramics and resin luting cements. An electronic Pubmed, Medline and Embase search was conducted to obtain laboratory studies on resin-ceramic bonding published in English and Chinese between 1972 and 2012. Eighty-three articles were included in this review. Various factors that have a possible impact on the bond between glass ceramics and resin cements were discussed, including ceramic type, ceramic crystal structure, resin luting cements, light curing, surface treatments, and laboratory test methodology. Resin-ceramic bonding has been improved substantially in the past few years. Hydrofluoric acid (HF) etching followed by silanizaiton has become the most widely accepted surface treatment for glass ceramics. However, further studies need to be undertaken to improve surface preparations without HF because of its toxicity. Laboratory test methods are also required to better simulate the actual oral environment for more clinically compatible testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Light resin curing devices - a hazard evaluation

    International Nuclear Information System (INIS)

    Glansholm, A.

    1985-09-01

    An evaluation has been made of optical hazards to the eye from 18 specified lamps designed for curing dental composite plastic fillings. Radiation source in all of the investigated units were incandescent lamps of the tungsten metal halide type. Ultraviolet and visible radiation was measured with a calibrated EGandG 585 spectroradiometer system. Tables and diagrams of spectral radiance (Wm -2 nm -1 sr -1 ) are given. Hazard evaluation based on the ACGIH Threshold Limit Values of ultraviolet and visible radiation gave the following results: 1. Ultraviolet radiation is of no concern ( -2 UVA at 10 cm). 2. Reflexes from teeth are harmless. 3. Retinal thermal injury hazard (permanent burn damage) is diminnutive and non-existent if the equipment is handled with sense (irradiation of an unprotected eye at a distance less than 10 cm should be avoided). 4. Retinal photochemical (blue-light) injury may appear after direct viewing of the end of the fiber-optics cable. A table with safe exposure time for each apparatus is given. Proper protective goggles can eliminate the blue-light hazard. (Author)

  7. Carbonation of lime and cement stabilized layers in road construction

    CSIR Research Space (South Africa)

    Netterberg, F

    1984-04-01

    Full Text Available The problem of deterioration of lime, lime-slag and cement stabilized pavement layers during curing, before sealing and in service is partly ascribed to carbonation of the stabilizer during curing and subsequent exposure to the atmosphere before...

  8. Studies on potential of Portland cement mortar for binding of ...

    Indian Academy of Sciences (India)

    Paramalinggam Thanalechumi

    10%, and basic (pH [ 7) curing solution was found to be better than water for curing purposes. It is concluded ... regulations on waste management by the Department of. Environment [8]. .... cement, sand and sediment [16, 17]. The major ...

  9. Comparison the effect of two types of light curing units with different modes on microleakage of composite filling in Cl II restorations

    Directory of Open Access Journals (Sweden)

    Esmail Yassini

    2017-12-01

    Conclusion: The results showed that both light curing devices were effective and no significant difference between different modes of LED light curing device on microleakage of class II composite restorations was found.

  10. Leach characterization of cement encapsulated wastes

    International Nuclear Information System (INIS)

    Roy, D.M.; Scheetz, B.E.; Wakeley, L.D.; Barnes, M.W.

    1982-01-01

    Matrix encapsulation of defense nuclear waste as well as intermediate-level commercial wastes within a low-temperature cementitious composite were investigated. The cements for this study included both as-received and modified calcium silicate and calcium aluminate cements. Specimens were prepared following conventional formulation techniques designed to produce dense monoliths, followed by curing at 60 0 C. An alternative preparation procedure is contrasted in which the specimens were ''warm'' pressed in a uniaxial press at 150 0 C at 50,000 psi for 0.5 h. Specimens of the waste/cement composites were leached in deionized water following three different procedures which span a wide range of temperatures and solution saturation conditions. Aluminate and compositionally adjusted silicate cements exhibited a better retentivity for Cs and Sr than did the as-received silicate cement. 15 refs

  11. Effect of different light curing units on Knoop hardness and temperature of resin composite.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Xediek Consani, Rafael Leonardo; Mendes, Wilson Batista; Lympius, Thais; Coelho Sinhoreti, Mario Alexandre

    2009-01-01

    To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC) lights on Knoop hardness and change in polymerization temperature of resin composite. Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46). A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk of 1.0 mm thickness obtained from bovine tooth. On the acrylic resin base, elastomer mold of 2.0 mm was adapted. The temperature increase was measured after composite light curing. After 24 h, the specimens were submitted to Knoop hardness test (HMV-2000, Shimadzu, Tokyo, Japan). Data were submitted to ANOVA and Tukey's test (alpha = 0.05). For both composites, there were no significant differences (P > 0.05) in the top surface hardness; however, PAC promoted statistically lower (P 0.05). The standardized radiant exposure showed no influence on the temperature increase of the composite, however, showed significant effect on hardness values.

  12. Time-dependent conversion of a methacrylate-based sealer polymerized with different light-curing units.

    Science.gov (United States)

    Beriat, Nilufer C; Ertan, Atilla; Cehreli, Zafer C; Gulsahi, Kamran

    2009-01-01

    The purpose of this study was to investigate the degree of conversion of a methacrylate-based sealer (Epiphany; Pentron Clinical Technologies, Wallingford, CT) with regard to the method of photoactivation, distance from the light-curing unit (LCU), and post-curing time. Freshly mixed Epiphany sealer was dispensed into half-pipe-shaped silicone moulds (n = 48), after which the specimens were photoactivated with one of the following LCUs from the coronal aspect: (1) quartz tungsten halogen/40 seconds and (2) light-emitting diode/20 seconds. In each specimen, the degree of conversion was measured at three different locations (coronal, middle, and apical) using Fourier transform infrared spectroscopy before and after photoactivation. The amount of conversion was approximately 50% after photoactivation and improved by approximately 10% after 15 days. Conversion of Epiphany was not affected by the type of LCU (p > 0.001) or the distance from the LCU (p > 0.001) but showed a significant increase within time (p < 0.001). These results indicate incomplete polymerization of Epiphany, despite a post-curing time of as long as 2 weeks in vitro.

  13. Evaluation of effect of different disposable infection control barriers on light intensity of light-curing unit and microhardness of composite - An in vitro study.

    Science.gov (United States)

    Khode, Rajiv Tarachand; Shenoi, Pratima Ramakrishna; Kubde, Rajesh R; Makade, Chetana S; Wadekar, Kanchan D; Khode, Priyanka Tarachand

    2017-01-01

    This study evaluated effect of infection control barriers on light intensity (LI) of light-curing unit (LCU) and microhardness of composite. Four different disposable barriers ( n = 30) were tested against the control. LI for each barrier was measured with Lux meter. One hundred and fifty Teflon molds were equally divided into five groups of thirty each. Composite was filled in bulk in these molds and cured without and with barrier. Microhardness was evaluated on top and bottom surface of composite specimen with microhardness testing machine and hardness ratio (HR) was derived. One-way analysis of variance, Tukey's honestly significant difference test, and paired t -test using SPSS version 18 software. All barriers had significantly reduced the baseline LI of LCU ( P glove pieces (LCGP) significantly reduced the microhardness of the composite ( P < 0.05). However, HR determined inadequate curing only with LCGP. Although entire tested barrier significantly reduced the LI; none, except LCGP markedly affected the degree of cure of the composite.

  14. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust

    International Nuclear Information System (INIS)

    Moon, Deok Hyun; Grubb, Dennis G.; Reilly, Trevor L.

    2009-01-01

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO 3 2- ) and selenate (SeO 4 2- ). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10 mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration 3 .H 2 O) and selenate substituted ettringite (Ca 6 Al 2 (SeO 4 ) 3 (OH) 12 .26H 2 O), respectively.

  15. FY 1974 Report on results of Sunshine Project. Research and development of cement serviceable under geothermal conditions; 1974 nendo chinetsu kankyoka de shiyo kanona cement kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-30

    Researches are conducted for the (research and development of cement serviceable under geothermal conditions). The research items include (1) surveys on test apparatuses, (2) basic surveys on cement, additives and cement slurry, (3) R and D of cement, and (4) researches on cement additives and slurry. For the item (1), bright prospects are obtained that US's Chandler can supply a thickening time tester serviceable at up to 750 degrees F and 40,000 psi, and a cement curing device serviceable at up to 750 degrees F and 5,000 psi. For the item (2), the surveys are conducted on the existing techniques for curing reactions and chemical resistance of cement at elevated temperature and pressure. For the item (3), the researches are conducted to develop cement resistant to heat and sulfates for geothermal development purposes, where portland cement and mixed portland cement are used as the bases which are incorporated with silica powder. As a result, it is found that the optimum Ca/SiO{sub 2} and CaO/SiO{sub 2}+Al{sub 2}O{sub 3} molar ratios are around 1.0 to 0.9 and 0.9 to 0.8, respectively. For the item (4), the tests are conducted to determine adequate conditions of conductor pipe cementing and cement slurry for 1,500m deep geothermal wells, and the standard composition is established. (NEDO)

  16. FY 1974 Report on results of Sunshine Project. Research and development of cement serviceable under geothermal conditions; 1974 nendo chinetsu kankyoka de shiyo kanona cement kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-30

    Researches are conducted for the (research and development of cement serviceable under geothermal conditions). The research items include (1) surveys on test apparatuses, (2) basic surveys on cement, additives and cement slurry, (3) R and D of cement, and (4) researches on cement additives and slurry. For the item (1), bright prospects are obtained that US's Chandler can supply a thickening time tester serviceable at up to 750 degrees F and 40,000 psi, and a cement curing device serviceable at up to 750 degrees F and 5,000 psi. For the item (2), the surveys are conducted on the existing techniques for curing reactions and chemical resistance of cement at elevated temperature and pressure. For the item (3), the researches are conducted to develop cement resistant to heat and sulfates for geothermal development purposes, where portland cement and mixed portland cement are used as the bases which are incorporated with silica powder. As a result, it is found that the optimum Ca/SiO{sub 2} and CaO/SiO{sub 2}+Al{sub 2}O{sub 3} molar ratios are around 1.0 to 0.9 and 0.9 to 0.8, respectively. For the item (4), the tests are conducted to determine adequate conditions of conductor pipe cementing and cement slurry for 1,500m deep geothermal wells, and the standard composition is established. (NEDO)

  17. Early-age monitoring of cement structures using FBG sensors

    Science.gov (United States)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2006-03-01

    With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.

  18. The Effects of Different Curing Methods on the Compressive Strength of Terracrete

    Directory of Open Access Journals (Sweden)

    O. Alake

    2009-01-01

    Full Text Available This research evaluated the effects of different curing methods on the compressive strength of terracrete. Several tests that included sieve analysis were carried out on constituents of terracrete (granite and laterite to determine their particle size distribution and performance criteria tests to determine compressive strength of terracrete cubes for 7 to 35 days of curing. Sand, foam-soaked, tank and open methods of curing were used and the study was carried out under controlled temperature. Sixty cubes of 100 × 100 × 100mm sized cubes were cast using a mix ratio of 1 part of cement, 1½ part of latrite, and 3 part of coarse aggregate (granite proportioned by weight and water – cement ratio of 0.62. The result of the various compressive strengths of the cubes showed that out of the four curing methods, open method of curing was the best because the cubes gained the highest average compressive strength of 10.3N/mm2 by the 35th day.

  19. Study of Compressive Strength of Concrete with Coal Power Plant Fly Ash as Partial Replacement of Cement and Fine Aggregate

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2010-10-01

    Full Text Available This research study comprises of concrete cubes made with Ordinary Portland Cement and with different configurations of fly ash by replacing cement and fine aggregate. To achieve the aim of this study, total 81 concrete cubes were cast. Among 81 cubes, 9 cubes were made with normal concrete, 36 cubes were made by replacing 25%, 50%, 75% and 100% of fine aggregate with fly ash and 36 cubes were made by replacing 10%, 25%, 50%, and 75% of cement with fly ash. The cubes were 6\\" x 6\\" in cross-section, and the mix design was aimed for 5000 psi. After proper curing of all 81 cubes, they were tested at 3, 7 and 28 days curing age. The cubes were tested in Forney Universal Testing Machine. By analyzing the test results of all the concrete cubes, the following main findings have been drawn. The compressive strength of concrete cubes made by replacing 100 % fine aggregate by fly ash was higher than the concrete cubes made with Ordinary Portland Cement at all 3, 7 and 28 days curing ages. On the other hand, the compressive strength of concrete cubes made by replacing 10 % and 25 % cement by fly ash was slightly lower than the concrete cubes made with Ordinary Portland Cement at all curing ages, whereas, the compressive strength of concrete cubes made by replacing 50 % and 75 % of cement by fly ash were quite lower than the concrete cubes made with Ordinary Portland Cement at all curing ages.

  20. Influence of resin cement shade on the color and translucency of ceramic veneers

    Science.gov (United States)

    HERNANDES, Daiana Kelly Lopes; ARRAIS, Cesar Augusto Galvão; de LIMA, Erick; CESAR, Paulo Francisco; RODRIGUES, José Augusto

    2016-01-01

    ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C* ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable. PMID:27556211

  1. Influence of resin cement shade on the color and translucency of ceramic veneers

    Directory of Open Access Journals (Sweden)

    Daiana Kelly Lopes HERNANDES

    Full Text Available ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3 layer on color change, translucency parameter (TP, and chroma of low (LT and high (HT translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B and white (W background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  2. Effect of different light curing units on Knoop hardness and temperature of resin composite

    OpenAIRE

    Guiraldo Ricardo; Consani Simonides; Xediek Consani Rafael; Mendes Wilson; Lympius Thais; Coelho Sinhoreti Mario

    2009-01-01

    Aim: To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC) lights on Knoop hardness and change in polymerization temperature of resin composite. Materials and Methods: Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46). A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk ...

  3. Influence of Curing Conditions on Long-Term Compressive Strength of Mortars with Accelerating Admixtures

    Science.gov (United States)

    Pizoń, Jan; Łaźniewska-Piekarczyk, Beata

    2017-10-01

    One of disadvantages of accelerating admixtures usage is possibility of significant decline of long-term compressive strength of concrete in comparison to non-modified one. Described tests were intended to define scale of lowered long-term compressive strength of mortars caused by accelerating admixtures in different curing conditions. Portland cement and blended cement with ground granulated blast furnace slag (GGBFS) addition and four types of non-chloride accelerating agents were used. Compressive strength was tested after 7 up to 360 days. Curing conditions were designed to simulate probable conditions close to reality. Such conditions are simulation of internal concrete elements, external elements cast on start of summer and external elements cast on start of winter. Results had shown that it is invalid to state that every accelerating admixture will cause drop of long-term compressive strength in every conditions and for every cement type. Change of curing conditions even after a long time (in this case half of the year) leads to significant differences in compression strength.

  4. Improvement of poor subgrade soils using cement kiln dust

    Directory of Open Access Journals (Sweden)

    Ahmed Mancy Mosa

    2017-12-01

    Full Text Available Construction of pavements layers on subgrade with excellent to good properties reduces the thickness of the layers and consequently reduces the initial and maintenance cost of highways and vice versa. However, construction of pavements on poor subgrade is unavoidable due to several constrains. Improvement of subgrade properties using traditional additives such as lime and Portland cement adds supplementary costs. Therefore, using by-products in this domain involves technical, economic, and environmental advantages. Cement kiln dust (CKD is generated in huge quantities as a by-product material in Portland cement plants. Therefore, it can be considered as an excellent alternative in this domain. In Iraq, Portland cement plants generate about 350000 tons of CKD annually which is available for free. Therefore, Iraq can be adopted as a case study. This paper covers using CKD to improve the properties of poor subgrade soils based on series of California Bearing Ration (CBR tests on sets of untreated samples and samples treated with different doses of CKD in combination with different curing periods to investigate their effects on soil properties. The results exhibited that adding 20% of CKD with curing for 14 days increases the CBR value from 3.4% for untreated soil to 48% for treated soil; it, also, decreases the swelling ratio. To determine the effects of using this dose under the mentioned curing period on the designed thicknesses of pavements layers, a case study was adopted. The case study results exhibited that treatment of the subgrade soil by 20% of CKD with curing for 14 days reduces the cost of the pavements by $25.875 per square meter.

  5. Comparison of temperature rise in the pulp chamber with different light curing units: An in-vitro study

    OpenAIRE

    Rajesh Ebenezar A; Anilkumar R; Indira R; Ramachandran S; Srinivasan M

    2010-01-01

    Aims/Objectives : This in vitro study was designed to measure and compare the temperature rise in the pulp chamber with different light curing units. Materials and Methods : The study was done in two settings-in-vitro and in-vivo simulation. In in-vitro setting, 3mm and 6mm acrylic spacers with 4mm tip diameter thermocouple was used and six groups were formed according to the light curing source- 3 Quartz-Tungsten-Halogen (QTH) units and 3 Light-Emitting-Diode (LED) units. For the LED units...

  6. SYNTHESIS OF EXPANDER TO PREVENT CONTRACTION OF CEMENT STONE

    Directory of Open Access Journals (Sweden)

    Elenova Aurika Almazovna

    2017-03-01

    Full Text Available This article contains the results of studies of the use of additives containing crystallization components significantly affecting the curing of cement, improving the structure of cement stone and concrete. The crystalline component is obtained using the rotary-pulse unit, which provides not only the grinding of agents, but their interaction with each other as well in order to accelerate the hydration and structure formation in cement stone. The degree, and kinetics of hydration, the composition of hydrated phases, the structure of the additives and cement stone was studied using the following methods: x-ray diffraction (XRD, differential thermal analysis (DTA, scanning electron microscope (SEM. Mechanical properties of cement were determined by standard methods and techniques. The expander produced by means of hydrodynamic activation of the sulfoaluminate clinker (SAC consists of ettringite and hydrated calcium silicates, which are characterized by high dispersion rate (less than 10 µm and reactivity as the seed for the crystallization of hydrated compounds. The introduction of the ultrafine additives of the crystalline SAC (within 1-5% was discovered to cause expansion of the cement stone. Implementation of the additives increases cement hydration and contributes to the formation of active centers of crystallization that lead to the fast formation of ettringite, hydrated calcium aluminates and calcium silicates. The activated crystalline additive provides for significant reduction of porosity, initial curing, and high strength of cement stone. In addition, the additive is an expansive component, forming needle-like crystals of ettringite during hydration. These microcrystals grow in the capillaries of cement stone, filling them, and create conditions for improving the crack resistance of cement concrete.

  7. Study on compressive strength of self compacting mortar cubes under normal & electric oven curing methods

    Science.gov (United States)

    Prasanna Venkatesh, G. J.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    In the majority of civil engineering applications, the basic building blocks were the masonry units. Those masonry units were developed as a monolithic structure by plastering process with the help of binding agents namely mud, lime, cement and their combinations. In recent advancements, the mortar study plays an important role in crack repairs, structural rehabilitation, retrofitting, pointing and plastering operations. The rheology of mortar includes flowable, passing and filling properties which were analogous with the behaviour of self compacting concrete. In self compacting (SC) mortar cubes, the cement was replaced by mineral admixtures namely silica fume (SF) from 5% to 20% (with an increment of 5%), metakaolin (MK) from 10% to 30% (with an increment of 10%) and ground granulated blast furnace slag (GGBS) from 25% to 75% (with an increment of 25%). The ratio between cement and fine aggregate was kept constant as 1: 2 for all normal and self compacting mortar mixes. The accelerated curing namely electric oven curing with the differential temperature of 128°C for the period of 4 hours was adopted. It was found that the compressive strength obtained from the normal and electric oven method of curing was higher for self compacting mortar cubes than normal mortar cube. The cement replacement by 15% SF, 20% MK and 25%GGBS obtained higher strength under both curing conditions.

  8. Verification of the light intensity from halogens curing lamps in comparison with the manufacturer's specifications

    International Nuclear Information System (INIS)

    Morales Ramirez, Elvis

    2011-01-01

    The light intensity emitted from halogens curing lamps is measured to determine if photoactivation units utilized in the Caja Costarricense de Seguro Social are complied with the manufacturer's specifications of the lamp and the resin. The light intensity mW/cm 2 from halogens curing lamps operated by odontologist of the Caja Costarricense de Seguro Social is compared with the manufacturer's specifications of the lamp. The light intensity is compared with the manufacturer's specifications of the resin. The results obtained are analyzed to specify that lamp or lamps have presented light intensities lower to indication of the manufacturer. A list of recommendations is performed for each Servicio de Odontologia of the Caja Costarricense de Seguro Social of the Region Central Sur of the results reported [es

  9. Densified ultra-light cement-based materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro

    2015-01-01

    be used as a “clean technology” in the production of cement-based materials for structural applications with a low carbon footprint. This paper describes the principles of this concept coupled with experimental results on the basic properties of this enhanced type of cement-based materials with combined...

  10. Test of 134Cs, 85,89Sr leaching rate in a resemble vitrifiable cement waste form

    International Nuclear Information System (INIS)

    Lin Meiqiong; Wei Feng; Yin Qi; Fan Xianhua; Xu Shengli; Li Yongde

    2003-01-01

    A novel material--resemble vitrifiable cement for conditioning low and mediate level radioactive waste has been developed. Waste form has been characterized for their physical and chemical performance, phase composition. The cement formulation has been patented. In this experiment the cement is mixed with simulated wastes spiked with 134 Cs and 85,89 Sr by 5 min at least. The Ratio of the waste to the cement is 0.45-0.55. The mixture is packed into cylindrical molds which has the same dimension of diameter and height . The grouts are cured for a period of 28 d in a room temperature curing chamber at an atmospheric pressure. The cured waste form is then completely immersed into deionized water. According to standard GB7023-86, leaching rate of 134 Cs and 85,89 Sr are measured. The result shows that the leaching rate of the species 134 Cs and 85,89 Sr is to be on the order 10 -4 and 10 -5 on the 42 d immersion, respectively and is better than that of commercial cement

  11. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  12. Sliding Malar Bone Augmentation Technique with a High Le Fort I ...

    African Journals Online (AJOL)

    2016-02-03

    Feb 3, 2016 ... Upon clinical evaluation of the frontal view, maxillary hypoplasia is often associated ... resin. For the cementation of the appliance, light-cured glass ionomer cement (Unitek Multi-Cure Glass Ionomer. Orthodontic Band Cement ...

  13. Comparison between two methods to evaluate temperature changes produced by composite light curing units and polymerization techniques.

    Science.gov (United States)

    Loureiro, F H F; Consani, S; Guiraldo, R D; Consani, R L X; Berger, S B; Carvalho, R V; Correr-Sobrinho, L; Sinhoreti, M A C

    2011-10-01

    This study evaluated the temperature change into the pulp chamber during the light curing of composite resin by direct (bovine tooth) and indirect (matrix) methods. Direct method: fifty standardized cavities (2x2x2 mm) were prepared in bovine incisors, which were randomly assigned to evaluation of the temperature changes in the pulp chamber. Indirect method: temperature changes were evaluated through a dentine slice of 1.0 mm thickness in a elastomer cubic mold (2x2x2 mm). Filtek Z250 composite resin (3M/ESPE) was photo-activated using three light curing units: quartz-tungsten-halogen (QTH) by continuous, soft-start or intermittent light modulations; light emitting diode (LED); and plasma arc-curing (PAC). Ten groups (N.=10) were established according to technique evaluation and photo-activation methods. All experiments were carried out in a controlled environment (37 °C and 50 ± 10% relative humidity). The temperature changes were recorded using a digital thermometer attached to a type-K thermocouple in contact with the dentin slice (indirect method) or in contact with the axial wall (dentin) of pulp chamber (direct method). The results were submitted to ANOVA and Tukey's test (α=0.05). Temperature changes were statistically higher for the matrix indirect method (2.56 ºC) than bovine teeth direct method (1.17ºC). The change temperature was statistically higher for the PAC (1.77 ºC) when compared to other photo-activation modes in bovine teeth direct method. The two methods of temperature evaluation were different, however indirect method detected the higher temperature increase. Higher energy density arising from the light curing units and polymerization techniques promoted higher temperature increase.

  14. Solidification and performance of cement doped with phenol

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Krishnan, S.

    1991-01-01

    Treating mixed hazardous wastes using the solidification/stabilization technology is becoming a critical element in waste management planning. The effect of phenol, a primary constituent in many hazardous wastes, on the setting and solidification process of Type I Portland cement was evaluated. The leachability of phenol from solidified cement matrix (TCLP test) and changes in mechanical properties were studied after curing times up to 28 days. The changes in cement hydration products due to phenol were studied using the X-ray diffraction (XRD) powder technique. Results show that phenol interferes with initial cement hydration by reducing the formation of calcium hydroxide and also reduces the compressive strength of cement. A simple model has been proposed to quantify the phenol leached from the cement matrix during the leachate test

  15. The Effect of Abutment Surface Roughness on the Retention of Implant-Supported Crowns Cemented with Provisional Luting Cement

    Directory of Open Access Journals (Sweden)

    Jalil Ganbarzadeh

    2013-01-01

    Full Text Available Introduction: Surface roughness can increase the retention of castings by ridges and grooves that are microretentive. This study compared the retention of implant-supported crowns when used with 3 different surface roughness abutments and one temporary cement. Methods: Thirty solid abutments (ITI, 4 mm high, were divided into three groups randomly. In the first group, 10 abutments were roughened with sandblast (50-µm aluminum oxide and in the second group, 10 abutments were roughened with diamond bur. The third group had no surface treatment. Then, thirty implant fixture analogs (ITI were placed in the center of acrylic cylinders. After that a solid abutment was tightened on the each fixture analog with 35 N/cm force. Thirty base metal crowns were made on the 4 mm ITI abutment analogs using plastic coping. The prepared copings were cemented on the abutments by TempBond temporary cement and finally, crowns were pulled from the abutment in a universal test machine at a cross speed of 0.5cm/min. Results: The mean tensile strength in sandblasted, bur treated, and control group were 64.38±8, 91.37±7.19, and 58.61±1.93, respectively. Bur treated group showed higher tensile strength in comparison with two other groups. Conclusion: Surface modification of implant abutment by diamond bur may be an effective method to increase retention of crown when TempBond is used.

  16. Development of the Portland cement slurries with diatomaceous earth to the oil industry; Desenvolvimento de pastas de cimento Portland com adicao de diatomita para a industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Roseane A; Melo, Dulce M.A.; Martinelli, Antonio E.; Simao, Cristina A.; Paiva, Maria D.M. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Melo, Marcus A.F. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The class-G Portland cement has been used with success in oil well cementing. The material is usually shipped to the Northeast Brazil, because the only plant that manufactures class-G is located in Cantagalo/RJ. The present work investigates the influence of the partial substitution of Portland cement by diatomaceous earth, aiming at reducing the costs in oil well cementing, improving the slurry properties and using local raw material. The diatomaceous earth has pozzolanic properties and can be used as extenders of cement slurries. This properties added to the lower cost and availability of this material in Northeast Brazil, make the diatomaceous earth a candidate material to produce light cements, to well conditions in advanced phases of production. It were evaluated the rheological properties of the slurries (at 25 and 52 deg C), volume of free water, compressive strength after curing for 8, 24 and 48 h at 38 deg C, and consistometry tests. The results show that the diatomaceous earth maintain the viscosity values and gel force suitable for use in oil well cementing. No free water was observed in the formulations. It was also verified that the compressive strength of slurries hardened with diatomaceous earth is similar to those with only Portland cement and that the minimum compressive strength of 300 psi, after curing for 8 h was reached. The thickening time was longer than the average value and the application value. (author)

  17. Effect of curing light emission spectrum on the nanohardness and elastic modulus of two bulk-fill resin composites.

    Science.gov (United States)

    Issa, Yaser; Watts, David C; Boyd, Daniel; Price, Richard B

    2016-04-01

    To determine the nanohardness and elastic moduli of two bulk-fill resin based composites (RBCs) at increasing depths from the surface and increasing distances laterally from the center after light curing. Two bulk-fill dental RBCs: Tetric EvoCeram Bulk Fill (TECBF) and Filtek Bulk Fill Flowable (FBFF) were light cured in a metal mold with a 6mm diameter and a 10mm long semi-circular notch. The RBCs were photo-polymerized for 10s using a light emitting diode (LED) Bluephase Style curing light, with the original light probe that lacked the homogenizer. This light has two blue light and one violet light LED emitters. By changing the probe orientation over the mold, the light output from only two LEDs reached the RBC. Measurements were made using: (i) the light from one violet and one blue LED, and (ii) the light from the two blue LEDs. Five specimens of each RBC were made using each LED orientation (total 20 specimens). Specimens were then stored in the dark at 37°C for 24h. Fifty indents were made using an Agilent G200 nanoindentor down to 4mm from the surface and 2.5mm right and left of the centerline. The results were analyzed (alpha=0.05) using multiple paired-sample t-tests, ANOVA, Bonferroni post-hoc tests, and Pearson correlations. The elastic modulus and nanohardness varied according to the depth and the distance from the centerline. For TECBF, no significant difference was found between the spatial variations in the elastic modulus or hardness values when violet-blue or blue-blue LEDs were used. For FBFF, the elastic modulus and nanohardness on the side exposed to the violet emitter were significantly less than the side exposed to the blue emitter. A strong correlation between nanohardness and elastic modulus was found in all groups (r(2)=0.9512-0.9712). Resin polymerization was not uniform throughout the RBC. The nanohardness and elastic modulus across two RBC materials were found to decline differently according to the orientation of the violet and blue

  18. EB-curing of coatings on wood composite boards

    International Nuclear Information System (INIS)

    Czvikovszky, T.; Czajlic, I.; Takacs, E.; Ille, A.; Salleh, N.G.; Alpar, T.

    1988-01-01

    The industrial radiation processing using low energy electron beam (EB) accelerators lower than 300 keV offers high speed, safe technologies for the chemical conversion of thin layer coatings. Because of the nonselective mode of initiating chain reaction polymerization involving free radicals in synthetic coating layers and suitable substrates, the EB curing of the coatings on woods and papers has particular advantage. Hungary decided to start an up-to-date EB line to process cement-bound (CB) wood chipboards with pigmented acrylic coatings. The CB wood chipboards contain more than 60 % of portland cement and up to 40 % of wood particles. They are produced as large boads of 6 - 16 mm thickness. In their fireproof character and other aspects, they are similar to asbestos-cement boards without containing carcinagenic asbestos, and are stable against moisture and atmospheric influences. EB-cured acrylate coating improved further those properties, and makes them valuable structural material. Oligomers and monomers as the main components of EB curable coatings, the irradiation with a Van de Graaff type electron accelerator of 2 MeV and the results are reported. The oligomers play the most important role in the formation of radiation curable coatings. (K.I.)

  19. Visible light cure characteristics of a cycloaliphatic polyester dimethacrylate alternative oligomer to bisGMA.

    Science.gov (United States)

    Vaidyanathan, Tritala K; Vaidyanathan, Jayalakshmi

    2015-12-01

    Objective : The goal of this study was to characterize the light curing characteristics of a new oligomer PEM-665 designed to be used as an alternative monomer to BisGMA. Materials and methods : PEM-665 (P) and BisGMA (B) solutions were prepared with triethylene glycol dimethacrylate (T) diluent in different weight proportions (70/30 and 50/50). Solutions containing 70% P and 30% T were designated as 70PT, 70%B and 30%T as 70BT, 50%P and 50%T as 50PT and 50%B and 50%T as 50BT. The initiators were CQ (EDMAB was used as amine accelerator for CQ) and DPO in 1% concentration. Eight solutions were prepared in a factorial design: 70PT/DPO; 70PT/CQ; 50PT/DPO; 50PT/CQ; 70BT/DPO; 70BT/CQ; 50BT/DPO; 50BT/CQ. BISCO VIP visible light was used to cure the monomer solutions using 30 s exposure time and 400 W power setting. TA Instruments Differential Scanning Calorimeter (DSC 2910) was used to determine the heat of cure (J/g) during polymerization at 37 °C, from which molar heat of cure (kJ/mole) and %Conversion values were estimated. Results : Range of mean values as a function monomer selections were: heat of cure (J/g): 161.7 for 70PT/DPO system to 198.6 for 50BT/CQ system; molar heat of cure (kJ/mole): 67.3 for 70BT/DPO to 78.86 for 50PT/CQ; % conversion: 59.9 for 70BT/DPO to 70.3 for 50PT/CQ. Analysis of variance and Tukey HSD pairwise contrast showed statistically significant differences between % conversion means of PEM and BisGMA mixtures, with PEM mixtures showing significantly higher mean values. Conclusions : The results suggest that PEM-665 is a promising candidate material for dental polymer applications.

  20. Hydraulic activity of belite cement from class C coal fly ash. Effect of curing and admixtures

    Directory of Open Access Journals (Sweden)

    Guerrero, A.

    2006-09-01

    Full Text Available The effect of curing method and a water-reducing additive on the hydraulic activity of high lime content (ASTM type C fly ash belite cement (FABC-2-W is reported. A class C fly ash was subjected to hydrothermal treatment and subsequent calcination to synthesize FABC. Hydraulic activity was evaluated in the cement paste over 180 days from the physically bound water content as determined by thermogravimetric analysis and the degree of hydration, in turn found with X-ray diffraction (XRD analysis. Mechanical strength, porosity and pore size distribution were also studied in equivalent mortar samples.En este trabajo se discute la influencia del tipo de curado y de un aditivo reductor de la demanda de agua en la actividad hidráulica de un cemento belítico de cenizas volantes de alto contenido en cal denominado (CBCV-2-A. Este cemento ha sido sintetizado por una ruta húmeda hidrotermal con posterior calcinación, empleando ceniza volante de alto contenido en cal (ASTM tipo C como materia prima. La actividad hidráulica se ha estudiado en la pasta de cemento, durante un periodo de 180 días, por medio del contenido de agua combinada, determinada por análisis termogravimétrico, y el grado de hidratación por difracción de rayos X (DRX. La resistencia mecánica y la porosidad total y distribución de tamaño de poro se han estudiado en probetas equivalentes de mortero

  1. Evaluation of wear rate of dental composites polymerized by halogen or LED light curing units

    Directory of Open Access Journals (Sweden)

    Alaghehmand H.

    2006-08-01

    Full Text Available Background and Aim: Sufficient polymerization is a critical factor to obtain optimum physical properties and clinical efficacy of resin restorations. The aim of this study was to evaluate wear rates of composite resins polymerized by two different systems Light Emitting Diodes (LED to and Halogen lamps. Materials and Methods: In this laboratory study, 20 specimens of A3 Tetric Ceram composite were placed in brass molds of 2*10*10 mm dimensions and cured for 40 seconds with 1 mm distance from surface. 10 specimens were cured with LED and the other 10 were cured with Halogen unit. A device with the ability to apply force was developed in order to test the wear of composites. After storage in distilled water for 10 days, the specimens were placed in the wear testing machine. A chrome cobalt stylus with 1.12 mm diameter was applied against the specimens surfaces with a load of 2 kg. The weight of each samples before and after 5000, 10000, 20000, 40000, 80000 and 120000 cycles was measured using an electronic balance with precision of 10-4 grams. Data were analyzed using t test and paired t test. P0.05. Conclusion: Based on the results of this study, LED and halogen light curing units resulted in a similar wear rate in composite resin restorations.

  2. Effect of the irradiance distribution from light curing units on the local micro-hardness of the surface of dental resins.

    Science.gov (United States)

    Haenel, Thomas; Hausnerová, Berenika; Steinhaus, Johannes; Price, Richard B T; Sullivan, Braden; Moeginger, Bernhard

    2015-02-01

    An inhomogeneous irradiance distribution from a light-curing unit (LCU) can locally cause inhomogeneous curing with locally inadequately cured and/or over-cured areas causing e.g. monomer elution or internal shrinkage stresses, and thus reduce the lifetime of dental resin based composite (RBC) restorations. The aim of the study is to determine both the irradiance distribution of two light curing units (LCUs) and its influence on the local mechanical properties of a RBC. Specimens of Arabesk TOP OA2 were irradiated for 5, 20, and 80s using a Bluephase® 20i LCU in the Low mode (666mW/cm(2)), in the Turbo mode (2222mW/cm(2)) and a Celalux® 2 (1264mW/cm(2)). The degree of conversion (DC) was determined with an ATR-FTIR. The Knoop micro-hardness (average of five specimens) was measured on the specimen surface after 24h of dark and dry storage at room temperature. The irradiance distribution affected the hardness distribution across the surface of the specimens. The hardness distribution corresponded well to the inhomogeneous irradiance distributions of the LCU. The highest reaction rates occurred after approximately 2s light exposure. A DC of 40% was reached after 3.6 or 5.7s, depending on the LCU. The inhomogeneous hardness distribution was still evident after 80s of light exposure. The irradiance distribution from a LCU is reflected in the hardness distribution across the surface. Irradiance level of the LCU and light exposure time do not affect the pattern of the hardness distribution--only the hardness level. In areas of low irradiation this may result in inadequate resin polymerization, poor physical properties, and hence premature failure of the restorations as they are usually much smaller than the investigated specimens. It has to be stressed that inhomogeneous does not necessarily mean poor if in all areas of the restoration enough light intensity is introduced to achieve a high degree of cure. Copyright © 2014 Academy of Dental Materials. Published by

  3. Effect of different light curing units on Knoop hardness and temperature of resin composite

    Directory of Open Access Journals (Sweden)

    Guiraldo Ricardo

    2009-01-01

    Full Text Available Aim: To evaluate the influence of quartz tungsten halogen and plasma arc curing (PAC lights on Knoop hardness and change in polymerization temperature of resin composite. Materials and Methods: Filtek Z250 and Esthet X composites were used in the shade A3. The temperature increase was registered with Type-k thermocouple connected to a digital thermometer (Iopetherm 46. A self-cured polymerized acrylic resin base was built in order to guide the thermocouple and to support the dentin disk of 1.0 mm thickness obtained from bovine tooth. On the acrylic resin base, elastomer mold of 2.0 mm was adapted. The temperature increase was measured after composite light curing. After 24 h, the specimens were submitted to Knoop hardness test (HMV-2000, Shimadzu, Tokyo, Japan. Data were submitted to ANOVA and Tukey′s test (a = 0.05. Results: For both composites, there were no significant differences (P > 0.05 in the top surface hardness; however, PAC promoted statistically lower (P < 0.05 Knoop hardness number values in the bottom. The mean temperature increase showed no significant statistical differences (P > 0.05. Conclusion: The standardized radiant exposure showed no influence on the temperature increase of the composite, however, showed significant effect on hardness values.

  4. The Stabilization of Weathered Dolerite Aggregates with Cement, Lime, and Lime Fly Ash for Pavement Construction

    Directory of Open Access Journals (Sweden)

    Felix N. Okonta

    2014-01-01

    Full Text Available An experimental program was performed on weathered dolerite specimens stabilized by adding varying percentages of cement (4, 8, 12, and 16 % and lime (6 and 12 % and a combination of lime and fly ash (6% lime + 12% Fly ash and 12% lime + 12% Fly ash % by dry weight of soil. The strength was examined under three different curing methods, namely, membrane curing (MBC, alternate moist-air curing (MAC, and water curing (WAC, by conducting unconfined compressive strength (UCS tests. Simple polynomial and linear functions (regression models were used to define the relationships between the variables investigated. Membrane curing (MBC gave results close enough to the water curing (WAC to indicate that it can be confidently used on the field during pavement construction. From the results obtained, for class B (interurban collector and major rural roads pavement construction, addition of 8% cement was recommended for road base construction with stabilized WDA. Also the addition of 12 + 12% Lime and Fly Ash was recommended for road subbase construction with stabilized WDA. Stabilized WDA against the prejudiced myths would perform satisfactorily for base and subbase construction in both heavily trafficked and low volume roads with economic quantities of cement, lime, and fly ash in South Africa.

  5. Chloride Ingress in Chemically Activated Calcined Clay-Based Cement

    Directory of Open Access Journals (Sweden)

    Joseph Mwiti Marangu

    2018-01-01

    Full Text Available Chloride-laden environments pose serious durability concerns in cement based materials. This paper presents the findings of chloride ingress in chemically activated calcined Clay-Ordinary Portland Cement blended mortars. Results are also presented for compressive strength development and porosity tests. Sampled clays were incinerated at a temperature of 800°C for 4 hours. The resultant calcined clay was blended with Ordinary Portland Cement (OPC at replacement level of 35% by mass of OPC to make test cement labeled PCC35. Mortar prisms measuring 40 mm × 40 mm × 160 mm were cast using PCC35 with 0.5 M Na2SO4 solution as a chemical activator instead of water. Compressive strength was determined at 28th day of curing. As a control, OPC, Portland Pozzolana Cement (PPC, and PCC35 were similarly investigated without use of activator. After the 28th day of curing, mortar specimens were subjected to accelerated chloride ingress, porosity, compressive strength tests, and chloride profiling. Subsequently, apparent diffusion coefficients (Dapp were estimated from solutions to Fick’s second law of diffusion. Compressive strength increased after exposure to the chloride rich media in all cement categories. Chemically activated PCC35 exhibited higher compressive strength compared to nonactivated PCC35. However, chemically activated PCC35 had the least gain in compressive strength, lower porosity, and lower chloride ingress in terms of Dapp, compared to OPC, PPC, and nonactivated PCC35.

  6. Interactions between cement grouts and sulphate bearing ground water

    International Nuclear Information System (INIS)

    Walton, P.L.; Duerden, S.L.; Atkins, K.M.; Majumdar, A.J.

    1989-01-01

    The physical, chemical and mineralogical properties of mixtures of Ordinary Portland cement and blastfurnace slag or pulverized fuel ash, exposed to a sulphate-bearing ground water at different temperatures and pressures, were investigated in order to assess the long term durability of cements for encapsulating radioactive waste and backfilling a repository. The effect of the ground water on the chemical and mineralogical characteristics of the cements is minimal. Calcite and C-S-H are present in all the samples and are durable throughout the test. Dimensional changes in the cements during setting and curing may cause weaknesses in the materials which may increase the effects of a percolating ground water. (author)

  7. Radiation curing in the eighties

    International Nuclear Information System (INIS)

    Vrancken, A.

    1984-01-01

    The subject is discussed under the headings: introduction; what is radiation curing; history; radiation curable resins (with properties of products); ultraviolet and electron beam curing; photoinitiation and the ultraviolet light curing process; electron beam curing (initiation; electron beam accelerators); end uses (graphic arts; wood finishing; paper upgrading; adhesives; metal finishing; electronic chemical; floor coatings). (U.K.)

  8. Accompanying of parameters of color, gloss and hardness on polymeric films coated with pigmented inks cured by different radiation doses of ultraviolet light

    International Nuclear Information System (INIS)

    Gonçalves Bardi, Marcelo Augusto; Brocardo Machado, Luci Diva

    2012-01-01

    In the search for alternatives to traditional paint systems solvent-based, the curing process of polymer coatings by ultraviolet light (UV) has been widely studied and discussed, especially because of their high content of solids and null emission of VOC. In UV-curing technology, organic solvents are replaced by reactive diluents, such as monomers. This paper aims to investigate variations on color, gloss and hardness of print inks cured by different UV radiation doses. The ratio pigment/clear coating was kept constant. The clear coating presented higher average values for König hardness than pigmented ones, indicating that UV-light absorption has been reduced by the presence of pigments. Besides, they have indicated a slight variation in function of cure degree for the studied radiation doses range. The gloss loss related to UV light exposition allows inferring that some degradation occurred at the surface of print ink films. - Highlights: ► Color, gloss and hardness are directly influenced by the different pigments. ► Clear coating analysis indicates reduction on UV-light absorption. ► Color and gloss indices indicated aeration in function of cure degree.

  9. Ageing of portland cement concrete cured under moist conditions

    NARCIS (Netherlands)

    Yu, Z.; Ye, G.; Van Breugel, K.; Chen, W.

    2014-01-01

    Deterioration of microstructure in cement concrete will cause changes in the transport properties of the concrete. Transport properties at different ages of the concrete provide information about the microstructural changes of the material. A way to measure the transport properties, i.e. the

  10. Provisional Restorations – A Permanent Problem?

    Science.gov (United States)

    Keys, William F; Keirby, Naomi; Ricketts, David N J

    2016-12-01

    Provisional restorations play an important role when providing indirect restorations. There are a number of materials and techniques available for their construction. Careful planning and construction can protect the prepared tooth surface, improve the periodontal condition and help plan for the definitive restoration. A good provisional restoration can save time, money and effort. Clinical relevance: Provisional restoration construction is an integral part of the indirect restorative process for inlays, onlays, crowns and bridges.

  11. Influence of curing regimes on compressive strength of ultra high ...

    Indian Academy of Sciences (India)

    142 MPa with change in curing regimes. The samples ..... Guide, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, ... the 5th International Conference on the Chemistry of Cement, Tokyo, Japan, pp.

  12. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    Science.gov (United States)

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Heat-cured acrylic resin versus light-activated resin: a patient, professional and technician-based evaluation of mandibular implant-supported overdentures.

    Science.gov (United States)

    Asal, S A; Al-AlShiekh, H M

    2017-12-01

    Although light-activated resins (Eclipse) have been reported to possess superior physical and mechanical properties compared with the heat-cured acrylic resins (Lucitone-199), a few studies have compared overdentures with a locator attachment constructed from heat-cured acrylic resins with those constructed from light-activated resins. This clinical study was designed to compare the performance of a mandibular implant-supported overdenture constructed from a heat-cured acrylic resin (Lucitone-199) with that of an overdenture constructed from a light-activated resin (Eclipse). Ten participants received two identical mandibular implant-retained overdentures (Lucitone-199 and Eclipse) opposing one maxillary denture in a random order. Each mandibular overdenture was delivered and worn for 6 months, and two weeks of rest was advised between wears to minimize any carryover effects. Three questionnaires were devised. The first questionnaire (patient evaluation) focused on evaluating different aspects of the denture and overall satisfaction. The second questionnaire (professional dentist evaluation) was based on a clinical evaluation of soft tissues, complications, and the applied technique. The third questionnaire (technician evaluation) involved ranking the different manufacturing steps of the denture and overall preferences. The obtained data was statistically analyzed using an independent sample t-test and the Wilcoxon rank-sum test. The clinician and technician preferred the Eclipse dentures because of their technical aspects, whereas the patients preferred the Lucitone-199 dentures for their aesthetic properties. Implant-supported overdentures constructed from a heat-cured acrylic resin showed superior aesthetics and had a better odor compared with those constructed from a light-cured resin.

  14. Characterization and optimization of an inkjet-printed smart textile UV-sensor cured with UV-LED light

    Science.gov (United States)

    Seipel, S.; Yu, J.; Periyasamy, A. P.; Viková, M.; Vik, M.; Nierstrasz, V. A.

    2017-10-01

    For the development of niche products like smart textiles and other functional high-end products, resource-saving production processes are needed. Niche products only require small batches, which makes their production with traditional textile production techniques time-consuming and costly. To achieve a profitable production, as well as to further foster innovation, flexible and integrated production techniques are a requirement. Both digital inkjet printing and UV-light curing contribute to a flexible, resource-efficient, energy-saving and therewith economic production of smart textiles. In this article, a smart textile UV-sensor is printed using a piezoelectric drop-on-demand printhead and cured with a UV-LED lamp. The UVcurable ink system is based on free radical polymerization and the integrated UVsensing material is a photochromic dye, Reversacol Ruby Red. The combination of two photoactive compounds, for which UV-light is both the curer and the activator, challenges two processes: polymer crosslinking of the resin and color performance of the photochromic dye. Differential scanning calorimetry (DSC) is used to characterize the curing efficiency of the prints. Color measurements are made to determine the influence of degree of polymer crosslinking on the developed color intensities, as well as coloration and decoloration rates of the photochromic prints. Optimized functionality of the textile UV-sensor is found using different belt speeds and lamp intensities during the curing process.

  15. Mitigation of the collapse of asbestos cement light covers by hurricane winds

    Directory of Open Access Journals (Sweden)

    R. A. Estrada Cingualbres

    2017-09-01

    Full Text Available The Caribbean region, the Gulf of Mexico and the Strait of Florida, is an area of high vulnerability to high-level hurricanes. Light covers are the most vulnerable during the occurrence of these phenomena, their collapse generates a great danger to the life of the residents of these homes, as well as a high economic and social impact. The objective of this research has been the characterization of the lightweight fiber cement roofs (asbestos-cement most commonly used in Cuba and through the modeling of the Finite Element Method to determine the causes of the collapse of these when extreme winds occur due to high intensity hurricanes, perform the comparative analysis of the resistive behavior of the covers studied and to mitigate the collapse of the covered ones.

  16. Production of more durable and sustainable concretes using volcanic scoria as cement replacement

    International Nuclear Information System (INIS)

    Al-Swaidani, A. M.

    2017-01-01

    The objective of the study is to investigate strength and durability-related properties of volcanic scoria-based cements. Compressive and tensile strength development of mortars and concretes containing volcanic scoria with replacement levels ranging from 10 to 35% was investigated. Water permeability, chloride penetrability and porosity of concretes cured for 2, 7, 28, 90 and 180 days were also examined. Results revealed that volcanic scoria could be suitable for making blended cements. The strength of mortar/concrete containing volcanic scoria was lower than that of plain cement mortar/concrete at all ages. However, at 90 day curing, the strengths of volcanic scoria-based mortars/concretes were comparable to those of plain cement. In addition, water permeability, chloride penetrability and porosity of scoria-based concretes were much lower than those of plain concrete. Further, the results were statistically analysed and estimation equations have been developed to predict the studied properties. SEM/EDX analysis was employed, as well. [es

  17. Hydrothermal cements for use in the completion of geothermal wells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    A research program to develop an improved cement for use in high-temperature geothermal wells was carried out. The work involved in the selection and evaluation of an aluminum hydroxide-cured cement from the SwRI family of hydrothermal cements for this use are described. The physical testing program is described; the topics discussed include placement ability, compressive and bond strengths, permeability to water, compatibility to drilling muds, corrosion properties, and thermal properties.

  18. Influence of adhesion promoters and curing-light sources on the shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Claudia Tavares Machado

    2012-01-01

    Conclusions: The conventional orthodontic adhesive presented higher bond strength than the nanofilled composite, although both materials interacted similarly to the teeth. The curing-light devices tested did not influence on bond strength of orthodontic brackets.

  19. Micro-shear bond strength of resin cement to dentin after application of desensitizing toothpastes.

    Science.gov (United States)

    Bavbek, Andac Barkin; Goktas, Baris; Cekic-Nagas, Isil; Egilmez, Ferhan; Ergun, Gulfem; Eskitascioglu, Gurcan

    2013-01-01

    The aim of the study was to evaluate the effect of three desensitizing toothpastes on bonding of resin cements to dentin. The occlusal surfaces of 72 maxillary third molars were ground to obtain flat dentin surfaces and then divided into three groups according to three desensitizing toothpastes used: Sensodyne Rapid Relief (GlaxoSmithKline, SmithKline Beecham Ltd., Slough, UK), Signal Sensitive Expert (Unilever Sanayi ve Ticaret Türk A.Ş., Ümraniye, İstanbul, Turkey) and Colgate Sensitive Pro-Relief (Colgate Palmolive, New York, NY). Following bonding of the resin cement (Clearfil™ SA Cement, Kuraray Co, Osaka, Japan) to dentin, the specimens were light cured for 40 s with a LED (Elipar S10, 3M Espe, St. Paul, MN). The strength measurements were accomplished with a micro-shear testing machine (Bisco, Schaumburg, IL) at a cross-head speed of 0.5 mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with one-way analysis of variance (ANOVA) and Tukey HSD test (α = 0.05). ANOVA revealed that the application of desensitizing toothpastes had significant effects on bond strength of the resin cement tested to dentin (p < 0.05). Mixed failures were observed in all of the groups. The use of a desensitizing toothpaste before cementation might alter the bond strength of adhesively luted restorations.

  20. [Ru(bipy)3]2+ nanoparticle-incorporate dental light cure resin to promote photobiomodulation therapy for enhanced vital pulp tissue repair

    Science.gov (United States)

    Mosca, Rodrigo C.; Young, Nicholas; Zeituni, Carlos A.; Arany, Praveen R.

    2018-02-01

    The use of nanoparticle on dental light cure resin is not new, currently several compounds (nanoadditives) are used to promote better communication between the restorative material and biological tissues. The interest for this application is growing up to enhance mechanical proprieties to dental tissue cells regeneration. Bioactive nanoparticles and complex compounds with multiple functions are the major target for optimizing the restorative materials. In this work, we incorporate [Ru(bipy)3]2+ nanoparticles, that absorbs energy at 450 nm (blue-light) and emits strongly at 620 nm (red-light), in PLGA Microspheres and insert it in Dental Light Cure Resin to promote the Photobiomodulation Therapy (PBM) effects to accelerate dental pulp repair by in vitro using cytotoxicity and proliferation assay.

  1. Effect of Abutment Modification and Cement Type on Retention of Cement-Retained Implant Supported Crowns

    Science.gov (United States)

    Farzin, Mitra; Torabi, Kianoosh; Ahangari, Ahmad Hasan; Derafshi, Reza

    2014-01-01

    Objective: Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations. Materials and Method: Two prefabricated abutments were attached to their corresponding analogs and embedded in an acrylic resin block. The first abutment (control group) was left intact without any modifications. The screw access channel for the first abutment was completely filled with composite resin. In the second abutment, (test group) the axial wall was partially removed to form an abutment with 3 walls. Wax models were made by CAD/CAM. Ten cast copings were fabricated for each abutment. The prepared copings were cemented on the abutments by Temp Bond luting agent under standardized conditions (n=20). The assemblies were stored in 100% humidity for one day at 37°C prior to testing. The cast crown was removed from the abutment using an Instron machine, and the peak removal force was recorded. Coping/abutment specimens were cleaned after testing, and the testing procedure was repeated for Dycal luting agent (n=20). Data were analyzed with two- way ANOVA (α=0.05). Results: There was no significant difference in the mean transformed retention (Ln-R) between intact abutments (4.90±0.37) and the abutments with 3 walls (4.83±0.25) using Dycal luting agent. However, in TempBond group, the mean transformed retention (Ln-R) was significantly lower in the intact abutment (3.9±0.23) compared to the abutment with 3 walls (4.13±0.33, P=0.027). Conclusion: The retention of cement-retained implant restoration can be improved by the type of temporary cement used. The retention of cast crowns cemented to implant abutments with TempBond is influenced by the wall removal. PMID:25628660

  2. Effect of abutment modification and cement type on retention of cement-retained implant supported crowns.

    Directory of Open Access Journals (Sweden)

    Mitra Farzin

    2014-06-01

    Full Text Available Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations.Two prefabricated abutments were attached to their corresponding analogs and embedded in an acrylic resin block. The first abutment (control group was left intact without any modifications. The screw access channel for the first abutment was completely filled with composite resin. In the second abutment, (test group the axial wall was partially removed to form an abutment with 3 walls. Wax models were made by CAD/CAM. Ten cast copings were fabricated for each abutment. The prepared copings were cemented on the abutments by Temp Bond luting agent under standardized conditions (n=20. The assemblies were stored in 100% humidity for one day at 37°C prior to testing. The cast crown was removed from the abutment using an Instron machine, and the peak removal force was recorded. Coping/abutment specimens were cleaned after testing, and the testing procedure was repeated for Dycal luting agent (n=20. Data were analyzed with two- way ANOVA (α=0.05.There was no significant difference in the mean transformed retention (Ln-R between intact abutments (4.90±0.37 and the abutments with 3 walls (4.83±0.25 using Dycal luting agent. However, in TempBond group, the mean transformed retention (Ln-R was significantly lower in the intact abutment (3.9±0.23 compared to the abutment with 3 walls (4.13±0.33, P=0.027.The retention of cement-retained implant restoration can be improved by the type of temporary cement used. The retention of cast crowns cemented to implant abutments with TempBond is influenced by the wall removal.

  3. Influence Of Cement Kiln Dust As Partial Replacement On Some Properties Of Ordinary And White Portland Cement

    Directory of Open Access Journals (Sweden)

    Salah Sharif

    2013-04-01

    Full Text Available Cement Kiln Dust (CKD is produced as a solid waste with large quantities during manufacturing of Portland cement clinker. The possibility of utilizing CKD as partial replacement for Ordinary Portland Cement (OPC and White Portland Cement (WPC produced in factories of the Iraqi cement state company has been examined in this study to fulfil the environmental and economical aims. Different percentages of CKD were blended with OPC and WPC mixes. The results show that the amount of water for normal consistency were increased with about 39 % and 31 % for OPC and WPC blended with 25 % CKD. The setting time (initial and final decreases with increasing percent of CKD added. Compressive strength decreases slightly with increasing CKD content up to 10 %. For 7- day curing time, it decreases 7 % and 9 % for OPC and WPC mixes, respectively. As percent of added CKD increases to more than 10 %, the compressive strength and other parameters where affected significantly. Overall results proved that OPC and WPC blended with up to 10 % CKD are admissible for passing relevant specification requirements.

  4. Provisional crown failures in dental school predoctoral clinics.

    Science.gov (United States)

    Hyde, Jeffrey D; Bader, James A; Shugars, Daniel A

    2007-11-01

    Following a preliminary study indicating that at least 10 percent of single-unit crown temporary restorations failed in patients who received treatment by predoctoral students, a comprehensive examination of provisional crown failure was initiated to identify strategies to reduce the failure rate. For all provisionalized, natural tooth, single-unit crown preparations in University of North Carolina School of Dentistry predoctoral clinics for one year (N=1008), we noted tooth type, type of crown, student level, faculty coverage experience, treatment clinic, temporary material and luting agent, and retreatment (failure) of the provisional restoration. For failures, we also noted the stage of crown preparation at failure and the time since initial placement of the temporary. We analyzed these data using simple cross-tabs and logistic regression on need for retreatment (alpha =0.05). The failure rate was 18.75 percent (N=189). The median time to failure was twelve days; the 25(th) and 75(th) percentiles were six and twenty-six days. Significant risk factors, in order of odds ratio estimates, were molar tooth, second- or third-year student, and inexperienced faculty. Most provisional failures occurred during the final preparation phase of treatment. Provisional restoration failure is more frequent than was initially suspected from preliminary studies. Strategies for institutional intervention to reduce provisional restoration failure include greater attention to evaluating provisional crowns placed by inexperienced students (sophomores and juniors) and placing more emphasis on the retentiveness of provisional restorations reused following the final impression. Review of provisional evaluation procedures is also indicated for faculty who do not routinely supervise these procedures.

  5. Influence of alloy microstructure on the microshear bond strength of basic alloys to a resin luting cement.

    Science.gov (United States)

    Bauer, José; Costa, José Ferreira; Carvalho, Ceci Nunes; Souza, Douglas Nesadal de; Loguercio, Alessandro Dourado; Grande, Rosa Helena Miranda

    2012-01-01

    The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13 mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.

  6. Evaluation of bond strength between grooved titanium alloy implant abutments and provisional veneering materials after surface treatment of the abutments: An in vitro study

    Directory of Open Access Journals (Sweden)

    Gowtham Venkat

    2017-01-01

    Full Text Available Introduction: Titanium has become the material of choice with greater applications in dental implants. The success of the dental implant does not only depend on the integration of the implant to the bone but also on the function and longevity of the superstructure. The clinical condition that demands long-term interim prosthesis is challenging owing to the decreased bond between the abutment and the veneering material. Hence, various surface treatments are done on the abutments to increase the bond strength. Aim: This study aimed to evaluate the bond strength between the abutment and the provisional veneering materials by surface treatments such as acid etching, laser etching, and sand blasting of the abutment. Materials and Methods: Forty titanium alloy abutments of 3 mm diameter and 11 mm height were grouped into four groups with ten samples. Groups A, B, C, and D are untreated abutments, sand blasted with 110 μm aluminum particles, etched with 1% hydrofluoric acid and 30% nitric acid, and laser etched with Nd: YAG laser, respectively. Provisional crowns were fabricated with bis-acrylic resin and cemented with noneugenol temporary luting cement. The shear bond strength was measured in universal testing machine using modified Shell–Nielsen shear test after the cemented samples were stored in water at 25°C for 24 h. Load was applied at a constant cross head speed of 5 mm/min until a sudden decrease in resistance indicative of bond failure was observed. The corresponding force values were recorded, and statistical analysis was done using one-way ANOVA and Newman–Keuls post hoc test. Results: The laser-etched samples showed higher bond strength. Conclusion: Among the three surface treatments, laser etching showed the highest bond strength between titanium alloy implant abutment and provisional restorations. The sand-blasted surfaces demonstrated a significant difference in bond strength compared to laser-etched surfaces. The results of this

  7. Evaluation of Bond Strength between Grooved Titanium Alloy Implant Abutments and Provisional Veneering Materials after Surface Treatment of the Abutments: An In vitro Study.

    Science.gov (United States)

    Venkat, Gowtham; Krishnan, Murugesan; Srinivasan, Suganya; Balasubramanian, Muthukumar

    2017-01-01

    Titanium has become the material of choice with greater applications in dental implants. The success of the dental implant does not only depend on the integration of the implant to the bone but also on the function and longevity of the superstructure. The clinical condition that demands long-term interim prosthesis is challenging owing to the decreased bond between the abutment and the veneering material. Hence, various surface treatments are done on the abutments to increase the bond strength. This study aimed to evaluate the bond strength between the abutment and the provisional veneering materials by surface treatments such as acid etching, laser etching, and sand blasting of the abutment. Forty titanium alloy abutments of 3 mm diameter and 11 mm height were grouped into four groups with ten samples. Groups A, B, C, and D are untreated abutments, sand blasted with 110 μm aluminum particles, etched with 1% hydrofluoric acid and 30% nitric acid, and laser etched with Nd: YAG laser, respectively. Provisional crowns were fabricated with bis-acrylic resin and cemented with noneugenol temporary luting cement. The shear bond strength was measured in universal testing machine using modified Shell-Nielsen shear test after the cemented samples were stored in water at 25°C for 24 h. Load was applied at a constant cross head speed of 5 mm/min until a sudden decrease in resistance indicative of bond failure was observed. The corresponding force values were recorded, and statistical analysis was done using one-way ANOVA and Newman-Keuls post hoc test. The laser-etched samples showed higher bond strength. Among the three surface treatments, laser etching showed the highest bond strength between titanium alloy implant abutment and provisional restorations. The sand-blasted surfaces demonstrated a significant difference in bond strength compared to laser-etched surfaces. The results of this study confirmed that a combination of surface treatments and bond agents enhances the

  8. A simple visible light photo-assisted method for assembling and curing multilayer GO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro da Silva, Mauro Francisco, E-mail: mfps@usp.br [Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia Metalúrgica e de Materiais, PMT-EPUSP e Departamento de Engenharia de Sistemas Eletrônicos, PSI-EPUSP, Av. Professor Mello Moraes, n° 2463, Cidade Universitária, CEP 05508-030, São Paulo, SP (Brazil); Pontifícia Universidade de São Paulo, Faculdade de Ciências Exatas e Tecnologia, Rua Marquês de Paranaguá, 111, CEP 01303-050, São Paulo, SP (Brazil); Oliveira, Débora Rose de [Instituto de Criminalística da Secretaria de Segurança do Estado de São Paulo, Núcleo de Química, Rua Moncorvo Filho, CEP 05507-060, São Paulo, SP (Brazil); Pontifícia Universidade de São Paulo, Faculdade de Ciências Exatas e Tecnologia, Rua Marquês de Paranaguá, 111, CEP 01303-050, São Paulo, SP (Brazil); and others

    2015-09-01

    A simple and efficient method for deposition of reduced graphene oxide (RGO) thin films onto arbitrary substrates is described. The present protocol consists in the application of radial compression to a thin layer of graphene oxide (GO) formed at the air–liquid interface of an ammoniacal dispersion of graphene oxide by continuous irradiation with visible light, that drives both the formation and curing of the film. Both infrared and near infrared luminescence spectroscopies were used for the proposition of a chemical mechanism in which the in situ singlet oxygen Δ{sup 1}O{sub 2}, generated by the photosensitization of molecular oxygen to visible light, initiates the formation and curing of the film. The GO and RGO films display Raman spectral signatures typical of graphene – based materials, with thickness of ca. 20 nm as evaluated by atomic force microscopy. The deposited films exhibited good transparency to visible light (max. 85%; 550 ± 2 nm), electrical resistivity equals to 14 ± 0.02 Ω m, sheet resistance equals to 5 kΩ sq{sup −1} with associated charge carrier mobility of 200 cm{sup 2}/V s. - Highlights: • Visible light photochemical assembly of self-supported graphene oxide thin films. • Graphene oxide photosensitizer for in situ production of singlet oxygen Δ{sup 1}O{sub 2}. • Δ{sup 1}O{sub 2}, as initiator of formation and curing of graphene oxide thin film. • Deposition of colloidal graphene oxide thin film by radial compression. • Deposition of graphene oxide thin film in arbitrary solid substrate.

  9. Investigation of Erosion of Cement-Bentonite via Piping

    Directory of Open Access Journals (Sweden)

    Zijun Wang

    2017-01-01

    Full Text Available Cement-bentonite is one of the main materials used in the seepage barriers to protect earth dams and levees from water erosion. However, the current understanding of the erodibility of the cementitious materials and the interactions between cracked seepage barriers and the water flow is inadequate. Based on the laboratory pinhole erosion test, we first investigated the impacts of cement-bentonite treatments by using the ground granulated blast-furnace slag (GGBS as replacement on the erosion characteristics, compared with the original mixtures; the inclusion of GGBS highlighted a potential advantage against water erosion. In addition, we proposed to calculate the erosion percentage and establish the mathematical relationships between the erosion percentage and different regimes, that is, different curing period, erosion time, and sizes of initial holes. Results showed that enough curing period was critical to avoid the increases of hydraulic conductivity in the macrofabric of the barrier; meanwhile, the materials were eroded quickly at the beginning and slowed down with the erosion time, where the enlargement of the initial creaks would be stabilised at some point in time. Moreover, the sizes of initial holes may affect the erosion situation varying from the sample curing periods.

  10. The effect of polymerization mode on monomer conversion, free radical entrapment, and interaction with hydroxyapatite of commercial self-adhesive cements.

    Science.gov (United States)

    D'Alpino, Paulo Henrique Perlatti; Silva, Marília Santos; Vismara, Marcus Vinícius Gonçalves; Di Hipólito, Vinicius; Miranda González, Alejandra Hortencia; de Oliveira Graeff, Carlos Frederico

    2015-06-01

    This study evaluated the degree of conversion, the free radical entrapment, and the chemical interaction of self-adhesive resin cements mixed with pure hydroxyapatite, as a function of the polymerization activation mode among a variety of commercial self-adhesive cements. Four cements (Embrace WetBond, MaxCem Elite, Bifix SE, and RelyX U200) were mixed, combined with hydroxyapatite, dispensed into molds, and distributed into three groups, according to polymerization protocols: IP (photoactivation for 40s); DP (delayed photoactivation, 10 min self-curing plus 40s light-activated); and CA (chemical activation, no light exposure). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=10). The free radical entrapment values of the resin cements were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) calculated (n=3). Values were compared using two-way ANOVA and Tukey's post-hoc test (α=5%). X-ray diffraction (XRD) characterized the crystallinity of hydroxyapatite as a function of the chemical interactions with the resin cements. The tested parameters varied as a function of resin cement and polymerization protocol. Embrace WetBond and RelyX U200 demonstrated dependence on photoactivation (immediate or delayed), whereas MaxCem Elite exhibited dependence on the chemical activation mode. Bifix SE presented the best balance based on the parameters analyzed, irrespective of the activation protocol. Choice of polymerization protocol affects the degree of conversion, free radical entrapment, and the chemical interaction between hydroxyapatite and self-adhesive resin cement mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Comparison of the Amount of Temperature Rise in the Pulp Chamber of Teeth Treated With QTH, Second and Third Generation LED Light Curing Units: An In Vitro Study.

    Science.gov (United States)

    Mahant, Rajesh Harivadanbhai; Chokshi, Shraddha; Vaidya, Rupal; Patel, Pruthvi; Vora, Asima; Mahant, Priyanka

    2016-01-01

    Introduction: This in vitro study was designed to measure and compare the amount of temperature rise in the pulp chamber of the teeth exposed to different light curing units (LCU), which are being used for curing composite restorations. Methods: The study was performed in two settings; first, an in vitro and second was mimicking an in vivo situation. In the first setup of the study, three groups were formed according to the respective three light curing sources. i.e. quartz-tungsten-halogen (QTH) unit and two light-emitting diode (LED) units (second and third generations). In the in vitro setting, direct thermal emission from three light sources at 3 mm and 6 mm distances, was measured with a k-type thermocouple, and connected to a digital thermometer. For a simulation of an in vivo situation, 30 premolar teeth were used. Class I Occlusal cavity of all the teeth were prepared and they were restored with incremental curing of composite, after bonding agent application. While curing the bonding agent and composite in layers, the intrapulpal temperature rise was simultaneously measured with a k-type thermocouple. Results: The first setting of the study showed that the heat produced by irradiation with LCU was significantly less at 6 mm distance when compared to 3 mm distance. The second setting of the study showed that the rise of intrapulpal temperature was significantly less with third generation LED light cure units than with second generation LED and QTH light cure units. Conclusion: As the distance from the light source increases, less irradiation heat is produced. Third generation LED lights cause the least temperature change in the pulp chamber of single rooted teeth.

  12. INFLUENCE OF CURING TEMPERATURE ON THE PHYSICO-MECHANICAL, CHARACTERISTICS OF CALCIUM ALUMINATE CEMENT WITH AIR-COOLED SLAG OR WATER-COOLED SLAG

    Directory of Open Access Journals (Sweden)

    M. Heikal

    2004-12-01

    Full Text Available The nature, sequence, crystallinity and microstructure of hydrated phases were analyzed using differential scanning calorimetry (DSC, X-ray diffraction (XRD and scanning electron microscopy (SEM. The results showed that the formation of different hydrated phases was temperature dependence. The physico-mechanical and microstructural characteristics were investigated after curing at 20, 40 and 60° C. The results indicated that for the substitution of calcium aluminate cement (CAC by air-cooled slag (AS or water-cooled slag (WS at 20° C, the compressive strength increases with slag content up to 10 wt.%, then followed by a decrease with further slag substitution up to 25 wt.%; but the values are still higher than those of the neat CAC pastes at different curing ages up to 60 days. After 28 days of hydration at 40-60° C, the compressive strength increases with the slag content. This is attributed to the prevention of the conversion reaction, which was confirmed by XRD, DSC and SEM techniques, and the preferential formation of stratlingite (gehleinte-like phase. The SEM micrographs showed a close texture of hydrated CAC/slag blends made with AS or WS at 40°C due to the formation of C2ASH8 and C-S-H phases.

  13. Measurement of water transport from saturated pumice aggregates to hardening cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Bentz, Dale; Lange, David A.

    2006-01-01

    In internal water curing of High Performance Concrete, it is fundamental to know how and when the water contained in the internal curing agent is released into the hydrating cement paste. In this study, X-ray absorption measurements showed that considerable transport of water from saturated pumice...... the crucial factor to avoid self-desiccation shrinkage at early-age....

  14. Quantitative study of Portland cement hydration by X-Ray diffraction/Rietveld analysis and geochemical modeling

    Science.gov (United States)

    Coutelot, F.; Seaman, J. C.; Simner, S.

    2017-12-01

    In this study the hydration of Portland cements containing blast-furnace slag and type V fly ash were investigated during cement curing using X-ray diffraction, with geochemical modeling used to calculate the total volume of hydrates. The goal was to evaluate the relationship between the starting component levels and the hydrate assemblages that develop during the curing process. Blast furnace-slag levels of 60, 45 and 30 wt.% were studied in blends containing fly ash and Portland cement. Geochemical modelling described the dissolution of the clinker, and predicted quantitatively the amount of hydrates. In all cases the experiments showed the presence of C-S-H, portlandite and ettringite. The quantities of ettringite, portlandite and the amorphous phases as determined by XRD agreed well with the calculated amounts of these phases after different periods of time. These findings show that changes in the bulk composition of hydrating cements can be described by geochemical models. Such a comparison between experimental and modelled data helps to understand in more detail the active processes occurring during cement hydration.

  15. Possibilities of using aluminate cements in high-rise construction

    Science.gov (United States)

    Kaddo, Maria

    2018-03-01

    The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.

  16. Settlement Control of Soft Ground using Cement-Ricehusk Stabilization

    Directory of Open Access Journals (Sweden)

    Mokhtar M.

    2012-01-01

    Full Text Available Cement is widely used for improvement of soft soils, but financial and environmental concerns are causing genuine concerns to all parties, leading to the quest for alternative and effective stabilizers. Ricehusk is an agricultural waste in Malaysia, commonly disposed of by open burning or dumping in landfills. Considering that the ashes derived from ricehusk are pozzolanic in nature, there is a possibility that a cement-ricehusk mixture could effectively improve soft soils with reduced cement dosage. This study examines the mixture’s effectiveness by monitoring the settlement reduction in a clay soil. Standard oedometer tests were carried out on a soft marine clay sample admixed with cement-ricehusk. Test specimens contained 0-10% cement and 0-5% of ricehusk respectively, and were left to cure for either seven or 28 days. The stabilized specimens were observed to undergo significant reduction in compressibility, verifying the potential of cement-ricehusk as an alternative soft soil stabilizer.

  17. Temperature rise during adhesive and composite polymerization with different light-curing sources.

    Science.gov (United States)

    Pereira Da Silva, A; Alves Da Cunha, L; Pagani, C; De Mello Rode, S

    2010-05-01

    This study evaluated the temperature rise of the adhesive system Single Bond (SB) and the composite resins Filtek Z350 flow (Z) and Filtek Supreme (S), when polymerized by light-emitting diode (LED XL 3000) and quartz-tungsten halogen (QTH Biolux). Class V cavities (3 yen2 mm) were prepared in 80 bovine incisors under standardized conditions. The patients were divided as follows: G1: Control; G2: SB; G3: SB + Z; G4: SB + S. The groups were subdivided into two groups for polymerization (A: QTH, B: LED). Light curing was performed for 40 s and measurement of temperature changes during polymerization was performed with a thermocouple positioned inside the pulp chamber. Data were statistically analyzed using ANOVA and Tukey tests. The factors material (P<0.00001) and curing unit (P<0.00001) had significant influence on temperature rise. The lowest temperature increase (0.15 degrees C) was recorded in G2 B and the highest was induced in G1 A (0.75 degrees C, P<0.05). In all groups, lower pulp chamber temperature measurements were obtained when using LED compared to QTH (P<0.05). QTH caused greater increases in tooth temperature than LED. However, both sources did not increase pulpal temperature above the critical value that may cause pulpal damage.

  18. 42 CFR 431.710 - Provisional licenses.

    Science.gov (United States)

    2010-10-01

    ... Licensing Nursing Home Administrators § 431.710 Provisional licenses. To fill a position of nursing home... 42 Public Health 4 2010-10-01 2010-10-01 false Provisional licenses. 431.710 Section 431.710 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  19. Compressive strength measurements of hybrid dental composites treated with dry heat and light emitting diodes (LED post cure treatment

    Directory of Open Access Journals (Sweden)

    Jenny Krisnawaty

    2014-11-01

    Full Text Available Hybrid composites are mostly used on large cavities as restorative dental materials, whether it is used directly or indirectly. The mechanical properties of composite resin shall increase if it is treated with post cure treatment. The aim of this study is to evaluate compressive strength differences between dry heat and Light Emitting Diodes (LED treatment on the hybrid dental composite. A quasi-experimental was applied on this research with a total of 30 samples that were divided into two groups. Each sample was tested using LLOYD Universal Testing Machine with 1 mm/min speed to evaluate the compressive strength. The compressive strength results were marked when the sample was broken. The results of two groups were then analyzed using t-test statistical calculation. The results of this study show that post cure treatment on hybrid composite using LED light box (194.138 MPa was lower than dry heat treatment (227.339 MPa, which was also significantly different from statistical analysis. It can be concluded that compressive strength of LED light box was lower than dry heat post-cure treatment on the hybrid composite resin.

  20. Low porosity portland cement pastes based on furan polymers

    International Nuclear Information System (INIS)

    Darweesh, H.H.M.

    2005-01-01

    The effect of three different types of Furan polymers on the porosity, mechanical properties, mechanism of hydration and microstructure of Ordinary Portland cement (OPC) pastes was investigated. The results showed that mixing the OPC with Furan polymers, the standard water of consistency of the different cement pastes decreases and therefore the setting times (initial and final) are shortened. The total porosity of the hardened cement pastes decreased, while the mechanical properties improved and enhanced at all curing ages of hydration compared with those of the pure OPC pastes. The hydration process with Furan polymers proceeded according to the following decreasing order: F.ac. > F.ph. > F.alc. > OPC

  1. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Science.gov (United States)

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  2. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Directory of Open Access Journals (Sweden)

    Mehmet Serkan Kirgiz

    2014-01-01

    Full Text Available Effects of chemical compositions changes of blended-cement pastes (BCPCCC on some strength gains of blended cement mortars (BCMSG were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP or 6%, 20%, 21%, and 35% brick powder (BP for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min. Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS and flexural strengths (FS of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2, sodium oxide (Na2O, and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2 at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM in comparison with reference mortars (RM at whole cure days as MP up to 6% or BP up to 35% was blended for cement.

  3. Influence of moisture condition on chloride diffusion in partially saturated ordinary Portland cement mortar

    NARCIS (Netherlands)

    Zhang, Y.; Zhang, M.; Ye, G.

    2018-01-01

    Experiments have been carried out to study the influence of moisture condition, including moisture content and its distribution, on the chloride diffusion in partially saturated ordinary Portland cement mortar. The mortar samples with water-to-cement (w/c) ratios of 0.4, 0.5 and 0.6, cured for 1

  4. SEALING ABILITY OF MINERAL TRIOXIDE AGGREGATE, CALCIUM PHOSPHATE CEMENT, AND GLASS IONOMER CEMENT IN THE REPAIR OF FURCATION PERFORATIONS

    Directory of Open Access Journals (Sweden)

    Prabath Singh

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the in vitro sealing ability of three repair materials. Mineral trioxide aggregate (MTA; Group A, calcium phosphate cement (CPC; Group B, and light cured glass ionomer cement (GIC; Group C when used to repair the perforation created in the pulpal floor of fifty extracted human permanent molars. Materials and methods: Preparation of access openings and furcation perforations were done, and the teeth divided into five experimental groups (A, B, C including two controls (D, E with ten samples in each group randomly. Following the repair procedure, the pulp chambers and access openings were filled with composite resin and immersed in 2% methylene blue solution for 48 hours. The teeth were sectioned longitudinally and the linear dye penetration measured under a stereo­microscope. Results: The comparison of the linear length of micro-leakage (mm among the experimental groups revealed no significant difference (p = 0.332. On calculating the percentage of depth of leakage to the total length of the perforation, it was observed that the mean leakage was 35.5% in Group A, 53.6% in Group B and the highest, 87.5% in Group C. The mean of leakage percentage was statistically significant by Kruskal-Wallis test (p = 0.003. The results indicated that the dye penetration used as furcation perforation repair material was least with mineral trioxide aggregate. Comparing the depth of penetration of dye, 50% of the Group A samples showed less than 25% of depth penetration. While 40% of Group B cases had more than 50% dye penetration. In our study, all Group C teeth had ≥ 50% dye penetration. Conclusions: The present study indicated that GIC had the greatest dye penetration followed by CPC and MTA. Mineral trioxide aggregate and calcium phosphate cement had comparatively better sealing ability than glass ionomer cement.

  5. Assessing degradation of composite resin cements during artificial aging by Martens hardness.

    Science.gov (United States)

    Bürgin, Stefan; Rohr, Nadja; Fischer, Jens

    2017-05-19

    Aim of the study was to verify the efficiency of Martens hardness measurements in detecting the degradation of composite resin cements during artificial aging. Four cements were used: Variolink II (VL2), RelyX Unicem 2 Automix (RUN), PermaFlo DC (PDC), and DuoCem (DCM). Specimens for Martens hardness measurements were light-cured and stored in water at 37 °C for 1 day to allow complete polymerization (baseline). Subsequently the specimens were artificially aged by water storage at 37 °C or thermal cycling (n = 6). Hardness was measured at baseline as well as after 1, 4, 9 and 16 days of aging. Specimens for indirect tensile strength measurements were produced in a similar manner. Indirect tensile strength was measured at baseline and after 16 days of aging (n = 10). The results were statistically analyzed using one-way ANOVA (α = 0.05). After water storage for 16 days hardness was significantly reduced for VL2, RUN and DCM while hardness of PDC as well as indirect tensile strength of all cements were not significantly affected. Thermal cycling significantly reduced both, hardness and indirect tensile strength for all cements. No general correlation was found between Martens hardness and indirect tensile strength. However, when each material was analyzed separately, relative change of hardness and of indirect tensile strength revealed a strong linear correlation. Martens hardness is a sensible test method to assess aging of resin composite cements during thermal cycling that is easy to perform.

  6. Physico Mechanical Properties of Irradiated Waste Rubber Cement Mortar

    International Nuclear Information System (INIS)

    Younes, M.M.

    2010-01-01

    In the present study a partial replacement of aggregate with two different ratios of waste rubber (5%, 10%) with the addition of a constant ratio of rice husk ash (RHA), 5% was carried out. The hardened cement mortar used the optimum water of consistency. The specimens were molded into 1 inch cubic moulds .The specimens were first cured for 24 hours, at 100% relative humidity and then cured under tap water for 3, 7 and 28 days followed by irradiation at different doses of gamma irradiation namely 5 and 10 kGy. The physico-chemical and mechanical properties such as compressive strength, total porosity and bulk density were studied for the three types of specimens. The results showed that the values of the compressive strength, bulk density and chemically combined water of the blended cement mortar paste (OPC-RHA) increase ,while blended cement mortar paste with 5% RHA and 5, 10% waste rubber decrease. The results were confirmed by scanning electron microscopy and thermal behavior of the specimens. Also, it was observed that the irradiated sample was thermally more stable than the unirradiated one

  7. Physical and mechanical properties of sand stabilized by cement and natural zeolite

    Science.gov (United States)

    Salamatpoor, Sina; Jafarian, Yaser; Hajiannia, Alborz

    2018-05-01

    Loose sands are prone to lose their shear strength when being subjected to static or cyclic loads. To this end, there exist several methods to improve the mechanical properties of sands, but the most crucial and viable approach is the one with the lowest harmful environmental impact both in production and recycling processes. In this regard, zeolite as a natural pozzolanic additive offers an eco-friendly improvement in strength parameters of cemented sandy soils. Thereby, in this study, a series of unconfined compressive strength (UCS) tests are conducted to evaluate the mechanical parameters of the zeolite-cemented sand. The results demonstrate a meaningful increase in the UCS of the treated sand samples for replacement of cement by zeolite at an optimum proportion of 40% in specimens with 14 and 28 days curing time. The effectiveness of the improvement process is demonstrated by the strength improvement ratio which was up to be 128% to 209% for the samples with 14 and 28 days curing time, respectively. With regard to the above results, zeolite can be introduced as a promising cement substitute in stabilization of sandy ground including backfills, roadbed, embankments, and other structural filling systems.

  8. Comparison of shear bond strength of stainless steel brackets bonded with three light- cured adhesives

    Directory of Open Access Journals (Sweden)

    Zahra Minaei Basharik

    2015-09-01

    Full Text Available Introduction: The bonding process of the brackets to enamel has been a critical issue in orthodontic research. The purpose of this study was to evaluate the shear bond strength of 3 light-cured adhesives (transbond XT, Z250, light bond. Materials &Methods: In this study sixty extracted human premolars were collected and randomly divided into 3 test groups. All teeth were etched by 37% phosphoric acid. In first group brackets were bonded by Transbond XT adhesive, in group two brackets were bonded by Light bond adhesive and in third group were bonded by filtek Z250 composite. All of them were cured with Ortholux xt for 40 seconds.24 hours after thermocycling, Shear Bond Strength (SBS values of these brackets were recorded using a Universal Testing Machine. Adhesive Remnant Index (ARI scores were determined after the failure of the brackets, using Stereo Microscope the data were analyzed using ANOVA and Chi-square tests. Results: Mean shear bond strength of Transbond XT, light bond and Z250 were 28.9±2.25 MPa, 25.06±1.98 MPa and 26.8±2.57 MPa, respectively. No significant difference was observed in the SBS among the groups and a clinically acceptable SBS was found for the three adhesives. ARI scores were not significantly different between the various groups (P>0.05. Conclusion: This study showed that the Z250 can be used as light bond and transbond xt to bond orthodontic brackets and ARI and SBS scores were not significantly different.

  9. Fracture strengths of chair-side-generated veneers cemented with glass fibers.

    Science.gov (United States)

    Turkaslan, S; Bagis, B; Akan, E; Mutluay, M M; Vallittu, P K

    2015-01-01

    CAD/CAM (computer-aided design and computer-aided manufacturing) systems have refreshed the idea of chair-side production of restorations, but the fracture of ceramic veneers remains a problem. Cementation with glass fibers may improve the fracture strengths and affect the failure modes of CAD/CAM-generated ceramic veneers. Therefore, this study compared the fracture strengths of ceramic veneers produced at chair side and cemented with or without glass fibers with those of composite veneers. Thirty intact mandibular incisors were randomly divided into three groups ( n = 10) and treated with CAD/CAM-fabricated veneers cemented with dual-cure composite resin luting cement (CRLC; Group 1), CAD/CAM-fabricated veneers cemented with a glass fiber network (GFN) and dual-cure CRLC (Group 2), and a direct particulate filler composite veneer constructed utilizing fiber and a restorative composite resin (Group 3). The specimens were tested with a universal testing machine after thermal cycling treatment. The loads at the start of fracture were the lowest for traditionally fabricated composite veneers and higher for CAD/CAM-generated. Veneers cemented either without or with the GFN. The failure initiation loads (N) for the veneers were 798.92 for Group 1, 836.27 for Group 2, and 585.93 for Group 3. The predominant failure mode is adhesive failure between the laminates and teeth for Group 1, cohesive failure in the luting layer for Group 2, and cohesive laminate failure for Group 3, which showed chipping and small fractures. Ceramic material is a reliable alternative for veneer construction at chair side. Fibers at the cementation interface may improve the clinical longevity and provide higher fracture strength values.

  10. Influence of dunite mineral additive on strength of cement

    Science.gov (United States)

    Vasilyeva, A. A.; Moskvitina, L. V.; Moskvitin, S. G.; Lebedev, M. P.; Fedorova, G. D.

    2017-12-01

    The work studies the applicability of dunite rocks from Inagli massif (South Yakutia) for the production of mixed (composite) cement. The paper reviews the implementation of dunite for manufacturing materials and products. The chemical and mineral compositions of Inagli massif dunite rocks are presented, which relegate the rocks to magnesia-silicate rocks of low-quality in terms of its application as refractory feedstock due to appreciable serpentinization of dunite. The work presents the results of dunite study in terms of its applicability as an additive to Portland cement. The authors have established that dunite does not feature hydraulicity and can be used as a filling additive to Portland cement in the amount of up to 40%. It was unveiled that the mixed grinding of Portland cement and dunite sand with specific surface area of 5500 cm2/g yields the cement that complies with GOST 31108-2016 for CEM II and CEM V normal-cured cements with strength grades of 32.5 and 42.5. The work demonstrates the benefits of the studies of dunite as a filling additive for producing both Portland cement with mineral component and composite (mixed) cement.

  11. The Effect of Graphene Oxide on Cement Mortar

    Science.gov (United States)

    Kjaernsmo, Henrik; Kakay, Samdar; Fossa, Kjell T.; Gronli, John

    2018-05-01

    This paper investigates the effect of water dispersed- and powder Graphene oxide (GO) nanoparticle on fresh cement mortar, microstructure and mechanical strength after 3,7, and 28 days of curing. These properties were studied by treating the cement mortar with 0.03 wt%, 0.05 wt%, and 0.2 wt% GO of the cement weight combined with 0.8wt % polycarboxylate superplasticizer. The results show that the workability decreases as increasing the content of water dispersed GO. The heat of hydration is increased for both types of GO systems. The percent air content in 0.03 wt% and 0.05 wt% GO is almost constant, but increased from 3.2 % to 4.9 % in 0.2 wt% water dispersed GO. The increased air content has effect on poor compaction and workability. GO has the potential of accelerating the hydration process and enhance the early mechanical strength (3 and 7 days), but the workability seems to diminish the mechanical strength after 28 days of curing, particularly for the highest content of water dispersed GO. No distinct influence of GO on the microstructure. The overall results showed that the impact of water dispersed GO was found out to be higher than the powder GO.

  12. Bond strength durability of self-etching adhesives and resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Carolina de Andrade Lima Chaves

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate the microtensile bond strength (µTBS of one- (Xeno III, Dentsply and two-step (Tyrian-One Step Plus, Bisco self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar within a short (24 h and long period of evaluation (90 days. MATERIAL AND METHODS: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10. The restored teeth were stored in distilled water at 37ºC for 7 days. The teeth were then cut along two axes (x and y, producing beam-shaped specimens with 0.8 mm² cross-sectional area, which were subjected to µTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The µTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05. RESULTS: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001. All eight experimental means (MPa were compared by the Tukey's test (p<0.05 and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4±7.3; Tyrian-One Step Plus /Variolink II/24 h (39.4±11.6; Xeno III/C&B/24 h (40.3±12.9; Xeno III/Variolink II/24 h (25.8±10.5; Tyrian-One Step Plus /C&B/90 d (22.1±12.8 Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2; Xeno III/C&B/90 d (27.0±13.5; Xeno III/Variolink II/90 d (33.0±8.9. CONCLUSIONS: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.

  13. CARIOSTATIC EFFECT AND FLUORIDE RELEASE FROM A VISIBLE LIGHT-CURING ADHESIVE FOR BONDING OF ORTHODONTIC BRACKETS

    NARCIS (Netherlands)

    OGAARD, B; REZKLEGA, F; RUBEN, J; ARENDS, J

    This study was designed to investigate the cariostatic potential in vivo of a visible light-curing adhesive for the bonding of orthodontic brackets. The fluoride release of the adhesive in water and saliva was also measured. Ten orthodontic patients with premolars to be extracted participated. One

  14. Effect of zirconium nanoparticles on the mechanical properties of light-cured resin based dental composites

    International Nuclear Information System (INIS)

    Afza, N.; Anis, I.; Aslam, M.; Shah, M.R.; Hussain, M.T.; Bokhari, T.H.; Hussain, A.; Safdar, M.

    2012-01-01

    The aim of this study was to evaluate the mechanical properties of conventional composite resins (Solare-P) and the modified composite resin having mixed with zirconium nanoparticles. The composite resins are used to replace the missing tooth structure and improve esthetics. In this study, the composite was filled with increments in a mould which was 4 mm in depth and 3 mm in diameter. After filling, it was polymerized with halogen light curing unit for 20 seconds for each increment. In other experiments, the composite was mixed with zirconium nanoparticles and filled in the moulds with increments and polymerized for 20 seconds with halogen light curing unit for each increment. After keeping the moulds at 37 deg. C for 24 hours their mechanical properties including compressive force, %age elongation, compressive strength and hardness were evaluated. It was seen that by adding zirconium nanoparticles, compressive force, %age elongation, compressive strength and hardness increased significantly. Thus it was concluded that the new materials are better than the conventional compomers. (author)

  15. Aging and Curing Temperature Effects on Compressive Strength of Mortar Containing Lime Stone Quarry Dust and Industrial Granite Sludge

    Directory of Open Access Journals (Sweden)

    Muhammad Nasir Amin

    2017-06-01

    Full Text Available In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD and granite sludge (GS, respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD, fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures and curing moisture (continuously moist and partially moist followed by air curing. Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM and mortar containing fly ash (FA. The test results indicated that under normal curing (20 °C, moist cured, the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more incorporating local environmental conditions.

  16. Influence of Emission Spectrum and Irradiance on Light Curing of Resin-Based Composites.

    Science.gov (United States)

    Shimokawa, Cak; Sullivan, B; Turbino, M L; Soares, C J; Price, R B

    This study examined the influence of different emission spectra (single-peak and broad-spectrum) light-curing units (LCUs) delivering the same radiant exposures at irradiance values of 1200 or 3600 mW/cm 2 on the polymerization and light transmission of four resin-based composites (RBCs). Two prototype LCUs that used the same light tip, but were either a single-peak blue or a broad-spectrum LED, were used to deliver the same radiant exposures to the top surfaces of the RBCs using either standard (1200 mW/cm 2 ) or high irradiance (3600 mW/cm 2 ) settings. The emission spectrum and radiant power from the LCUs were measured with a laboratory-grade integrating sphere coupled to a spectrometer, and the light beam was assessed with a beam profiler camera. Four RBCs (Filtek Supreme Ultra A2, Tetric EvoCeram A2, Tetric EvoCeram T, and TPH Spectra High Viscosity A2) were photoactivated using four different light conditions: single-peak blue/standard irradiance, single-peak blue/high irradiance, broad-spectrum/standard irradiance, and broad-spectrum/high irradiance. The degree of conversion (N=5) and microhardness at the top and bottom of 2.3-mm-diameter by 2.5-mm-thick specimens (N=5) were analyzed with analysis of variance and Tukey tests. The real-time light transmission through the RBCs was also measured. For all light conditions, the 2.3-mm-diameter specimens received a homogeneous irradiance and spectral distribution. Although similar radiant exposures were delivered to the top surfaces of the RBCs, the amount of light energy emitted from the bottom surfaces was different among the four RBCs, and was also greater for the single-peak lights. Very little violet light (wavelengths below 420 nm) reached the bottom of the 2.5-mm-thick specimens. The degree of conversion and microhardness results varied according to the RBC (pspectrum lights, while at the bottom, where little violet light was observed, the results were equal or higher when they were photoactivated with

  17. Laser-light backscattering response to water content and proteolysis in dry-cured ham

    DEFF Research Database (Denmark)

    Fulladosa, E.; Rubio-Celorio, M.; Skytte, Jacob Lercke

    2017-01-01

    on the acquisition conditions used. Laser backscattering was influenced by both dryness and proteolysis intensity showing an average light intensity decrease of 0.2 when decreasing water content (1% weight loss) and increasing proteolysis (equivalent to one-hour enzyme action). However, a decrease of scattering area...... was only detected when the water content was decreased (618 mm(2) per 1% weight loss). Changes on scattering of light profiles were only observed when the water content changed. Although there is a good correlation between water content and LBI parameters when analysing commercial samples, proteolysis...... of laser incidence) and to analyse the laser-light backscattering changes caused by additional hot air drying and proteolysis of dry-cured ham slices. The feasibility of the technology to determine water content and proteolysis (which is related to textural characteristics) of commercial sliced dry...

  18. Sodium Sulphate Effect on Cement Produced with Building Stone Waste

    Directory of Open Access Journals (Sweden)

    Emre Sancak

    2015-01-01

    Full Text Available In this study, the blended cements produced by using the building stone waste were exposed to sulphate solution and the cement properties were examined. Prepared mortar specimens were cured under water for 28 days and then they were exposed to three different proportions of sodium sulphate solution for 125 days. Performances of cements were determined by means of compressive strength and tensile strength tests. The broken parts of some mortar bars were examined with scanning electron microscope (SEM. Besides, they were left under moist atmosphere and their length change was measured and continuously monitored for period of 125 days. In blended cements, solely cements obtained by replacing 10–20% of diatomites gave similar strength values with ordinary Portland cement (CEM I 42.5R at the ages of 7, 28, and 56 days. In all mortar specimens that included either waste andesite (AP or marble powder (MP showed best performance against very severe effective sodium sulphate solutions (13500 mg/L.

  19. Influence of various amount of diatomaceous earth used as cement substitute on mechanical properties of cement paste

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert

    2016-06-01

    Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.

  20. Cementation of Radioactive Waste from a PWR with Calcium Sulfoaluminate Cement

    International Nuclear Information System (INIS)

    Li, J.

    2013-01-01

    Spent radioactive ion-exchange resin (SIER) and evaporation concentrates are radioactive wastes that are produced at by pressurized water reactor (PWR) nuclear power stations. Borate, which is used as a retardent for cement, is also present as a moderator in a PWR, therefore, borate will be present in both ion-exchange resins and evaporation concentrates. In this study the use of Calcium sulfoaluminate cements (SAC) as encapsulation medium for these waste streams was investigated. The study involved the manufacturing of different cement test samples with different amounts of SAC cement, waste resins (50% water content) and admixtures. In order to reduce hydration heat during 200 L solidification experiments, different admixtures were investigated. Initial results based on compressive strength tests and hydration temperature studies, indicated that zeolite was the best admixture for the current waste form. Experiments indicated that the addition of resin material into the current cement matrix reduces the hydration heat during curing Experimental results indicated that a combination of SAC (35 wt. %), zeolite (7 wt. %) mix with 42 wt. % resins (50% water content) and 16 wt. % of water forms a optimum cured monolith with low hydration heat. The microstructures of hydrated OPC, SAC and SAC with zeolite addition were studied using a Scanning Electron Microscopy (SEM). SEM results indicated that the SAC matrices consist of a needle type structure that changed gradually into a flake type structure with the addition of zeolite. Additionally, the presence of zeolite material inside the SAC matrix reduced the leaching rates of radionuclides significantly. In a final 200 L grouting test, measured results indicated a hydration temperature below 90oC withno thermal cracks after solidified. The influence of radiation on the compressive strength and possible gas generation (due to radiolysis) on cement waste forms containing different concentrations ion exchange resin was

  1. Provisional materials: advances lead to extensive options for clinicians.

    Science.gov (United States)

    Comisi, John C

    2015-01-01

    The progression of provisional materials to bis-acrylics has lead to such improvements as easier handling, improved compressive and tensile strength, less water sorption, and less shrinkage. The end-result is more options for clinicians for high-quality chairside provisional restorations. Newer provisional materials are easy to manipulate and bring increased comfort to the patient. This review of current products affirms that the choices of provisional materials available for the dental professional today are quite extensive and have advanced the quality of interim restorations.

  2. Treatment of a Vertical Root Fracture Using Dual-Curing Resin Cement: A Case Report

    Directory of Open Access Journals (Sweden)

    Nima Moradi Majd

    2012-01-01

    Full Text Available Introduction. Vertical root fracture (VRF is one of the most frustrating complications of root canal treatment. The prognosis of the root with VRF is poor therefore tooth extraction and root amputation are usually the only treatment options. However, bonding of the fracture line with adhesive resin cement during the intentional replantation procedure was recently suggested as an alternative to tooth extraction. Methods. A vertically fractured left maxillary incisor was carefully extracted, fracture line was treated with adhesive resin cement, a retrograde cavity was produced and filled with calcium-enriched mixture (CEM cement, and tooth was replanted. Results. After 12 months the tooth was asymptomatic. The size of periapical radiolucency was noticeably reduced and there was no clinical sign of ankylosis. Conclusion. Using adhesive resin cement to bond the fracture lines extraorally in roots with VRF and intentional replantation of the reconstructed teeth could be considered as an alternative to tooth extraction, especially for anterior teeth.

  3. Improvement in engineering properties of soft-soil using cement and lime additives: A case study of southern Vietnam

    Science.gov (United States)

    To-Anh Phan, Vu; Ngoc-Anh Pham, Kha

    2018-04-01

    This paper presents the experimental results of using two additives to improve natural soft soil properties in southern Vietnam (i.g., cement and cement-lime mixture). The specimens were prepared by compacting method. Firstly, the natural soil was mixed with cement or cement-lime to determine the optimum water contents of various additive contents. Then, optimum water content was used to produce samples to test some engineering properties such as unconfined compressive strength, splitting tensile strength, and Young’s modulus. The specimens were tested by various curing duration of 7, 14, and 28 days. Results indicated that using cement additive is suitable for improvement of soft soil in the local area and cement-soil stabilization can be replaced as the subbase layer of the flexible pavement according to current Vietnamese standard. In addition, a higher cement content has a greater compressive strength as well as tensile strength. Besides, the Young’ modulus has significantly increased with a long-term curing age and more cement content. No evidences of increasing in strength and modulus are found with the cement-lime-soil stabilization. Finally, the best-fit power function is established by the relationships between unconfined compressive strength and splitting tensile strength as well unconfined compressive strength and Young’s Modulus, with the coefficient of determination, R2>0.999.

  4. Ground improvement using soil–cement columns: Experimental investigation

    Directory of Open Access Journals (Sweden)

    Ahmed Farouk

    2013-12-01

    Full Text Available The construction of heavy structures on soils of low relative density is a challenging task. The inclusion of soil–cement columns produced by the deep mixing method is one of the soil stabilizing techniques that could be applied successfully to overcome this challenge. Nevertheless, this technique did not receive a considerable attention in Egypt yet. In the first part of this study, two different natural silty sand soils extracted from the Delta of the River Nile were mixed with cement to prepare samples of different cement doses and different water cement ratios. After curing, the hardened samples were tested and their unconfined compressive strength was investigated. The second part of this study investigates the interaction between a strip footing model and Nile deltaic soil improved by a group of soil–cement columns. Results of the first part of this study showed that the compressive strength of the investigated Nile delta soils could be increased even at lower values of cement doses. Results extracted from the second part of this study showed that a considerable settlement reduction up to 80% could be achieved depending on both the number and the length of the soil–cement columns that is used to improve the soil.

  5. Immobilization of spent Bentonite by using cement matrix

    International Nuclear Information System (INIS)

    Isman MT; Endro-Kismolo

    1996-01-01

    Investigation of spent bentonite immobilization by using cement was done. The purpose of the investigation was to know the performance of cement in binding bentonite waste. The investigation was done by adding cement, water, and bentonite waste into a container and string until the mixture became homogenous. The mixture was put into a polyethylene tube (3.5 cm in diameter and 4 cm high) and it was cured up to 28 days. The specific weight of the monolith block was then calculated, and the compressive strength and the leaching rate in ground water and sea water was tested. The mass ratio of water to cement was 0.4. The variable investigated was the mass ratio of bentonite to cement. The immobilized bentonite waste was natural bentonite waste and activated bentonite waste. The result of the investigation showed that cement was good for binding bentonite waste. The maximum binding mass ratio of bentonite to cement was 0.4. In this condition the specific weight of the monolith block was 2.177 gram/cm 3 , its compressive strength was 22.6 N/mm 2 , and the leaching rate for 90 days in ground water and sea water was 5.7 x 10 -4 gram cm -2 day -1

  6. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  7. Influence of curing conditions on durability of alkali-resistant glass ...

    Indian Academy of Sciences (India)

    Glass fibres in concrete material often increase the flexural strength. However, these fibres when in contact with cement are altered by alkali reactions due to the presence of portlandite. This study presents the results of investigation to show the effect of curing conditions on the durability of alkali-resistant glass fibres in ...

  8. Techniques of Fabrication of Provisional Restoration: An Overview

    Directory of Open Access Journals (Sweden)

    K. M. Regish

    2011-01-01

    Full Text Available A properly fabricated provisional restoration is important in achieving a successful indirect restoration. The importance of provisional restorations as an integral part of fixed prosthodontic treatment is evident from the abundance of the literature pertaining to their importance regarding margin fidelity, function, occlusion, and esthetics. There are a variety of techniques available to suit the individual needs of the clinician and of the clinical situation, from a single unit to a complete-arch provisional fixed prostheses.

  9. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    Science.gov (United States)

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness.

  10. Role of Substrate on Quartz Cementation in Quartz Aggregates

    Science.gov (United States)

    Farver, J. R.; Winslow, D.; Onasch, C.

    2010-12-01

    Quartz cementation in quartz aggregates has been experimentally investigated. The starting material was disaggregated detrital quartz grains from the well-sorted, mature St. Peter Sandstone. The ‘as-is’ grains have patches of iron oxide coatings and some have euhedral overgrowths that contain iron oxide dust rims. In addition a set of experiments was run using grains that were cleaned by soaking in sodium hydrosulfite and sodium bisulfate solutions to remove exposed iron oxide coatings. Experimental charges consisted of amorphous silica powder (≈30 mg) to provide a source of silica for the quartz cement, AlCl3 powder (≈3 mg) to provide a tracer for Cathodoluminescence (CL) identification of cement formed during the experiment, 25 wt% NaCl brine solution (≈25 mg) to increase the silica solubility and to better mimic oil field brines, and the natural quartz grains (100-130 mg). The charges were weld-sealed in Au capsules and run in cold-seal pressure vessels at 250°C to 450°C at 150 MPa confining pressure for up to 8 weeks. After the experiments, the samples were vacuum impregnated with a low viscosity epoxy containing a blue dye. After curing, the sample charge was sawn in half along its long axis and one half was polished (to 1 micron diamond paste) for analysis. The nature and amount of quartz cement in the samples were determined by a combination of CL, light microscopy, and scanning electron microscopy. Photomosaics of the samples were created and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement formed during the experiment was easily recognized from the quartz grains (and previous overgrowths) by the difference in luminescence. The results indicate the amorphous silica powder provides a ready source for silica for quartz cementation due to its greater solubility than the quartz. The cementation rates are rapid (>14% cement formed in 2 weeks at 450°C and >7% in 8 weeks at 250°C). Compared to

  11. Bond strength of a pit-and-fissure sealant associated to etch-and-rinse and self-etching adhesive systems to saliva-contaminated enamel: individual vs. simultaneous light curing.

    Science.gov (United States)

    Gomes-Silva, Jaciara Miranda; Torres, Carolina Paes; Contente, Marta Maria Martins Giamatei; Oliveira, Maria Angélica Hueb de Menezes; Palma-Dibb, Regina Guenka; Borsatto, Maria Cristina

    2008-01-01

    This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (alpha=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (+/-4.29); II-8.57 (+/-3.19); III-7.97 (+/-2.16); IV-12.56 (+/-3.11); V-11.45 (+/-3.77); and VI-7.47 (+/-1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.

  12. Effect of gloss and heat on the mechanical behaviour of a glass carbomer cement.

    Science.gov (United States)

    Menne-Happ, Ulrike; Ilie, Nicoleta

    2013-03-01

    The effect of gloss and heat on the mechanical behaviour of a recently launched glass carbomer cement (GCP, GCP dental) was evaluated and compared with resin-modified glass ionomer cements (Fuji II LC, GC and Photac Fil Quick Aplicap, 3M ESPE). 120bar-shaped specimens (n=20) were produced, maintained in distilled water at 37°C and tested after one week. The GCP specimens were cured with and without heat application and with and without gloss. The flexural strength and modulus of elasticity in flexural test as well as the micro-mechanical properties (Vickers Hardness, indentation modulus, creep) of the top and bottom surface were evaluated. The amount and size of the fillers, voids and cracks were compared using a light and a scanning electron microscope. In the flexural test, the resin-modified glass ionomer cements performed significantly better than GCP. Fuji II LC and Photac Fil (Weibull parameter: 17.7 and 14.3) proved superior reliability in the flexural test compared to GCP (1.4-2.6). The highest Vickers Hardness and lowest creep were achieved by GCP, whereas Fuji II LC reached the highest indentation modulus. The results of this study proved that relationships exist between the compositions, microstructures and mechanical properties of the cements. Heat treatment and gloss application did not influence the mechanical properties of GCP. The mechanical properties were basically influenced by the type of cement and its microstructure. Considering the measured mechanical properties, there is no need of using gloss or heat when restoring teeth with GCP. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Long-term degradation of resin-based cements in substances present in the oral environment: influence of activation mode

    Directory of Open Access Journals (Sweden)

    Eduardo Moreira da SILVA

    2013-06-01

    Full Text Available Indirect restorations in contact with free gingival margins or principally within the gingival sulcus, where the presence of organic acids produced by oral biofilm is higher, may present faster degradation of the resin-based cement pellicle. Objectives To investigate the degradation of four resin-based cements: Rely X ARC (R, Variolink II (V, Enforce (E and All Cem (A, after immersion in distilled water (DW, lactic acid (LA and artificial saliva (AS and to analyze the influence of the activation mode on this response. Material and Methods Two activation modes were evaluated: chemical (Ch and dual (D. In the dual activation, a two-millimeter thick ceramic disk (IPS Empress System was interposed between the specimen and light-curing unit tip. Specimens were desiccated, immersed in distilled water, artificial saliva and lactic acid 0.1 M at 37°C for 180 days, weighed daily for the first 7 days, and after 14, 21, 28, 90 and 180 days and were desiccated again. Sorption and solubility (µg/mm 3 were calculated based on ISO 4049. The data were submitted to multifactor analysis of variance (MANOVA and Tukey's HSD test for media comparisons (α=0.05. Results Sorption was higher after immersion in LA (pD (p<0.05. The lowest solubility was presented by R (p<0.05. Conclusions Lactic acid increased the degradation of resin-based cements. Moreover, the physical component of activation, i.e., light-activation, contributed to a low degradation of resin-based cements.

  14. Further investigations of the properties of polymer modified cements

    International Nuclear Information System (INIS)

    Johnson, D.I.

    1988-05-01

    This report concludes the work done on behalf of the Department of the Environment on polymer modified cement composites. Topics covered include: the influence of cure schedule on flexural properties, observation of the onset and cracking during flexural testing, measurement of water permeability and caesium diffusion rates, and the use of Back Scattered Electron Imaging to identify the polymer phase. The properties of epoxide resin modified cements in the previous report were disappointing. Air entrainment of the mixing stage was a likely cause of the poor performance of these products and procedures to overcome this problem were devised. The range of polymer additives investigated was broadened by the inclusion of modified acrylic latexes and a polymensable acrylate resin additive. Properties for OPC and 9 BFS: 1 OPC cements are compared and the modification of properties achieved by polymer additions to both cement systems is discussed. (author)

  15. The success rate of narrow body implants used for supporting immediate provisional restorations: a pilot feasibility study.

    Science.gov (United States)

    Wang, Hom-Lay; Okayasu, Kozue; Fu, Jia-Hui; Hamerink, Howard A; Layher, Mary G; Rudek, Ivan Elimar

    2012-12-01

    Implants were first designed to be used in the reconstruction of edentulous mandibles. However, with the technological advancement, enormous changes were made to improve the implant design and surface characteristics leading to the wide use of implants in the replacement of missing teeth. During the transition from an edentulous span to a fixed prosthesis, narrow body implants (NBIs) have been proposed to enhance patient comfort and function. Therefore, this study was aimed at investigating the survival and success rates of NBIs used for supporting immediately nonfunctional loaded provisional fixed partial denture (PFPD). Either 2.2- or 2.4-mm-diameter dental implants were placed transmucosally into the edentulous ridges of 10 partially edentulous patients. PFPD of self-cured bis-acryl composite material were made using either a vacuform template chairside or a relined prefabricated PFPD. Occlusal adjustments were made to ensure that there was no functional loading on the provisional restorations before they were secured onto the transitional implants. At 1 year, the implant success and survival rates were 38.7% and 93.5%, respectively, with a mean percentage of bone loss of 9.46% (0%-40%) and a mean bone loss of 1.19 mm (range: 0-3.5 mm). With a favorable implant survival rate, the use of NBIs to support provisional restorations seemed to be a feasible treatment option. In addition, there is merit for research on the long-term use of NBIs-supported final prostheses.

  16. Performance of super-absorbent polymer as an internal curing agent for self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Al-Hubboubi Suhair

    2018-01-01

    Full Text Available Internal curing agent by using super-absorbent polymer was present in this study, its effect on the properties of self-compacting concrete was evaluated .The SAP content in the concrete mix was 0.5 % by weight of cement. Three procedures for curing were adopted; curing in water, curing in water and air and curing in polyethylene sealed bags. Fresh concrete tests conducted to assess the self-compactability of the produced concrete. Moreover, compressive and splitting strength tests were carried out. The testing program had been extended to the age of 90 days.The use of super-absorbent polymer did not affect the fresh state characteristics of the studied SCC and achieved an increase in both compressive and tensile strengths as compared to the reference concrete mix.

  17. Radiation cured coating containing glitter particles and process therefor

    International Nuclear Information System (INIS)

    Sachs, P.R.; Sears, J.W.

    1992-01-01

    Radiation curable coatings for use on a variety of substrates and curable by exposure to ionizing irradiation of ultraviolet light are well known. The use of urethane type coatings cured with ultraviolet light to provide protective wear layers for wall or floor tile is for instance described in U.S. Pat. No. 4,180,615. U.S. Pat. No. 3,918,393 describes a method for obtaining a non-glossy coating on various substrates by curing radiation sensitive material with ionizing irradiation or ultraviolet light in two stages. In this process the coating is partially cured in an oxygen-containing atmosphere and the curing is completed in an inert atmosphere. U.S. Pat. No. 4,122,225 discloses a method and apparatus for coating tile which involves the application of one coat of radiation curable material to an entire substrate followed by partial curing and the subsequent application and curing of a second coat or radiation curable material only on high areas of the substrate which are subject to greater than average wear. Use of pigment in radiation cured coatings on products such as floor covering which are subject to wear during use has presented substantial difficulties. Incorporation of pigment, especially enough pigment to make the coating opaque, makes the coating hard to cure and substantially reduces the thicknesses of coating which can be cured relative to a clear coating cured under the same conditions

  18. The Effect of Water Cement Ratio on Cement Brick Containing High Density Polyethylene (HDPE as Sand Replacement

    Directory of Open Access Journals (Sweden)

    Ali Noorwirdawati

    2018-01-01

    Full Text Available Waste disposal can contribute to the problem of environmental pollution. Most of the waste material is plastic based, because the nature of difficult of plastic degradable by itself. In order to overcome the problem, many study has been conducted on the reuse of plastic material into various field such as civil engineering and construction. In this study, municipal solid waste (MSW in the form of High Density Polyethylene (HDPE plastic was used to replace sand in cement sand brick production. The HDPE used in this study was obtained from a recycle factory at Nilai, Negeri Sembilan. 3% of HDPE replacement was applied in this study, with the cement-sand mix design of 1:6 and water-cement ratio 0.35, 0.40, 0.45 and 0.50 respectively. All specimens were tested for compressive strength and water absorption at 7 and 28 days. The density of the bricks was also recorded. The finding show that brick with 3% HDPE content and 0.45 of water-cement ratio at 28 days of age curing show the highest compressive strength, which is 19.5N/mm2 compared to the control specimen of 14.4 N/mm2.

  19. Prototype of a new tip developed to be coupled to dental light-curing units for optimizing bonding of orthodontic brackets and accessories

    Directory of Open Access Journals (Sweden)

    Sergio Luiz Mota Júnior

    2013-12-01

    Full Text Available OBJECTIVE: development of a new device to be coupled to light-curing units for bonding orthodontic brackets and accessories, and test its efficacy in an in vitro mechanical trial. The inner surface of the device is mirrored and is based on physical concepts of light refraction and reflection. The main advantage of such device is the reduced clinical time needed for bonding and the low possibility of contamination during the process. METHODS: One hundred and twenty specimens were used for testing the shear bond strength of brackets bonded with the device. The Adhesive Remnant Index (ARI was also determined. The sample was divided into 2 groups. In group 1 a halogen light-curing unit was used while in group 2 a led light-curing unit was used. Each group was then subdivided. In subgroups H1 and L1, a conventional light guide rod was used while in subgroups H2 and L2 bonding was performed with the mirrored device coupled to the tip of the guide light rod. RESULTS: The values obtained for the shear bond strength and the ARI in the subgroups were compared. Results showed that there was no statistically significant difference for the shear strength (p > 0.05 and the ARI (p > 0.05 between the subgroups. CONCLUSION: The tests of mechanical trials and the ARI analysis showed that the new device fulfilled the requirements for bonding orthodontic accessories, and that the time for bonding was reduced to half, being necessary only one light exposure.

  20. Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite

    Directory of Open Access Journals (Sweden)

    Theobaldo JD

    2017-05-01

    Full Text Available Jéssica Dias Theobaldo,1 Flávio Henrique Baggio Aguiar,1 Núbia Inocencya Pavesi Pini,2 Débora Alves Nunes Leite Lima,1 Priscila Christiane Suzy Liporoni,3 Anderson Catelan3 1Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, 2Ingá University Center, Maringá, 3Departament of Dentistry, University of Taubaté, Taubaté, Brazil Objective: The aim of this study is to evaluate the effect of composite preheating and polymerization mode on degree of conversion (DC, microhardness (KHN, plasticization (P, and depth of polymerization (DP of a bulk fill composite.Methods: Forty disc-shaped samples (n = 5 of a bulk fill composite were prepared (5 × 4 mm thick and randomly divided into 4 groups according to light-curing unit (quartz–tungsten–halogen [QTH] or light-emitting diode [LED] and preheating temperature (23 or 54 °C. A control group was prepared with a flowable composite at room temperature. DC was determined using a Fourier transform infrared spectrometer, KHN was measured with a Knoop indenter, P was evaluated by percentage reduction of hardness after 24 h of ethanol storage, and DP was obtained by bottom/top ratio. Data were statistically analyzed by analysis of variance and Tukey’s test (α = 0.05.Results: Regardless of light-curing, the highest preheating temperature increased DC compared to room temperature on bottom surface. LED showed a higher DC compared to QTH. Overall, DC was higher on top surface than bottom. KHN, P, and DP were not affected by curing mode and temperature, and flowable composite showed similar KHN, and lower DC and P, compared to bulk fill.Conclusion: Composite preheating increased the polymerization degree of 4-mm-increment bulk fill, but it led to a higher plasticization compared to the conventional flowable composite evaluated. Keywords: composite resins, physicochemical phenomena, polymerization, hardness, heating

  1. Influence of industrial solid waste addition on properties of soil-cement bricks

    OpenAIRE

    Siqueira, F. B.; Amaral, M. C.; Bou-Issa, R. A.; Holanda, J. N. F.

    2016-01-01

    Abstract The reuse of pollutant solid wastes produced in distinct industrial activities (avian eggshell waste and welding flux slag waste) as a source of alternative raw material for producing soil-cement bricks for civil construction was investigated. Soil-cement bricks containing up to 30 wt% of industrial solid waste were uniaxially pressed and cured for 28 days. Special emphasis is given on the influence of solid waste addition on the technical properties (as such volumetric shrinkage, wa...

  2. Polypropylene fumarate/phloroglucinol triglycidyl methacrylate blend for use as partially biodegradable orthopaedic cement.

    Science.gov (United States)

    Jayabalan, M; Thomas, V; Rajesh, P N

    2001-10-01

    Polypropylene fumarate/phloroglucinol triglycidyl methacrylate oligomeric blend-based bone cement was studied. Higher the percentage of phloroglucinol triglycidyl methacrylate, lesser the setting time. An optimum setting time could be arrived with 50:50 blend composition of the two oligomers. Composite cement of 50:50 blend prepared with hydroxyapatite granules of particle size 125 microm binds bovine rib bones. The tensile strength of this adhesive bond was found to be 1.11 kPa. The thermal studies suggest the onset of cross-linking reaction in the cured blend if the blend is heated. The absence of softening endotherm in the cured blend shows the thermosetting-like amorphous nature of blend system, which may restrict the changes in creep properties. The in vitro biodegradation studies reveal possible association of calcium ions with negatively charged units of degrading polymer chain resulting in slow down of degradation. Relatively slow degradation was observed in Ringer's solution. The study reveals the potential use of polypropylene fumarate/phloroglucinol triglycidyl methacrylate as partially degradable polymeric cement for orthopaedic applications.

  3. Calculation of calcium diffusion coefficient of cement hardenings using minute pore data

    International Nuclear Information System (INIS)

    Hitomi, Takashi; Takeda, Nobufumi; Iriya, Keishiro

    2009-01-01

    This report describes the calculations of the diffusion coefficient of the Ca ion of cement hardenings using minute pore data. The observed hardenings were ordinary Portland cement (OPC), low-heat Portland cement with fly ash (LPC+FA) and highly fly ash containing silica fume cement (HFSC). The samples were cured in the standard and artificially leached by accelerated test. Minute pore datas of the cement hardenings were acquired with image processing of internal structural information obtained from high resolution X-ray computed tomography observations. Upon analysis, several voxels are combined into one bigger voxel, the diffusion coefficient of the voxels were determined in proportion to the number of voxels which were included in. The results reveal that the change in the calcium diffusion coefficient of OPC due to leaching was large, but the LPC+FA and HFSC cements exhibited even greater changes than OPC. It is suggested that the diffusion coefficients are proportional to the Ca/Si ratio of the samples. (author)

  4. Microwave processing of cement and concrete materials – towards an industrial reality?

    International Nuclear Information System (INIS)

    Buttress, Adam; Jones, Aled; Kingman, Sam

    2015-01-01

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination

  5. A prospective clinical trial on the influence of a triamcinolone/demeclocycline and a calcium hydroxide based temporary cement on pain perception

    Directory of Open Access Journals (Sweden)

    Willershausen Brita

    2012-03-01

    Full Text Available Abstract Introduction The aim of this clinical trial was to compare the degree of short term post-operative irritation after application of a triamcinolone/demeclocycyline based or a calcium hydroxide based provisional cement. Methods A total of 109 patients (55 female and 54 male; mean age: 51 ± 14 years with primary or secondary dentinal caries were randomly assigned to the two treatment groups of this biomedical clinical trial (phase III. Selection criteria were good systemic health and treated teeth, which were vital and showed no symptoms of pulpitis. Up to three teeth were prepared for indirect metallic restorations, and the provisional restorations were cemented with a triamcinolone/demeclocycyline (Ledermix or a calcium hydroxide (Provicol based material. The intensity of post-operative pain experienced was documented according to the VAS (4, 12, 20, 24, and 82 h and compared to VAS baseline. Results A total of 159 teeth were treated (Ledermix: 83 teeth, Provicol: 76 teeth. The minor irritation of the teeth, experienced prior to treatment, was similar in both groups; however, 4 h after treatment this value was significantly higher in the Provicol group than in the Ledermix group (p Conclusions The patients had no long term post-operative pain experience in both groups. However, within the first hours after cementation the sensation of pain was considerably higher in the Provicol group than in the Ledermix group.

  6. Excimer Laser Curing Of Polymer Coatings

    Science.gov (United States)

    Klick, David; Akerman, M. Alfred; Paul, George L.; Supurovic, Darko; Tsuda, Haruki

    1988-12-01

    The use of the excimer laser as a source of energy for photo-assisted curing of industrial polymeric coatings was investigated. Presently, UV lamps are sometimes used to excite a photoinitiating molecule mixed with the starting monomers and oligomers of a coating. The resulting polymeric chain reaction multiplies the effect of the initial photons, making economical use of the light source. The high cost of laser photons may thus be justifiable if lasers provide advantages over lamps. A series of visibly transparent 7 μm coatings (a typical thickness for 'slick' magazine coatings) with various photoinitiators, monomers, and oligomers was illuminated with excimer laser light of various wavelengths, fluences, and pulse repetition rates. For the optimum parameters, it was found that the laser had large advantages in curing speed over existing UV lamp processes, due to its monochromaticity. Pigmented coatings (20 μm TiO2 mixtures typical of appliance or automotive finishes) are not easily cured with UV lamps due to the inability of light to penetrate the absorbing and scattering pigmented layer. However, economically-viable cure rates were achieved with certain photoinitiators using a tunable excimer-pumped dye laser. A prototype of such a laser suitable for factory use was built and used to cure these coatings. Results are scaled to a factory situation, and costs are calculated to show the advantages of the laser method over currently used processes.

  7. Effect of natural fibers on mechanical properties of green cement mortar

    Science.gov (United States)

    AL-Zubaidi, Aseel B.

    2018-05-01

    Natural fibers of banana, reed, palm and coconut were used to reinforce cement composite. Optical microscopy showed that the prepared fibers are different in size and morphology. Nearly equiaxed, ribbon-like and nearly cylindrical morphologies were observed. Each of the utilized natural fibers was incorporated in the cement matrix at 0, 0.25, 0.5, 0.75 and 1.0 wt% and cured for 28 days. The scanning electron micrographs for the 1.0 wt% -reinforced composite showed differences in porosity, grain size and shape. Each of the utilized fibers has different effect on the microstructure of the cement composite that depends on the fiber size and morphology. Water absorption, thermal conductivity, bending strength, hardness and compression strengths were measured for the reinforced cement composite. It is found that the final physical and mechanical properties of the set cement composite depend on the fiber content and fiber type through the differences in their sizes and morphologies.

  8. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  9. Physico-Chemical studies on irradiated polymer-reinforcement cement mortar composites

    International Nuclear Information System (INIS)

    Younes, M.M.

    2001-01-01

    The reinforced concrete suffers from corrosion by several salts, acids or alkalies and physico-mechanical properties are greatly affected. This leads to reduce the life of reinforced concrete structure. The present investigation deals with a comparison of corrosion presentation efficiency and passivity retention of reinforcement steel coated with methylethyl and propyl inhibitors which are prepared by using γ radiation and non-coated steel embedded in γ -induced polyester cement mortar composites. From the results of these studies several conclusions could be derived and these are summarized as follows: 1- The time required to reach passivation for coated steel embedded in the mortar after soaking in tap water for 28 days lies within the range 5-15 minutes; whereas, the time required to reach passivation for steel embedded in the polyester cement mortar composites is very short (1 minute). This result is related to the presence of copolymerized polyester in the pore system of the specimens. 2- The time required to reach passivation for steel coated by inhibitors in the mortar specimens after curing in tap water for 6 months is lower than that of non -coated steel embedded in the mortar specimens cured at the same conditions. 3- A relatively high degree of corrosion inhibition was obtained for the steel embedded in polyester-cement mortar composites after curing in sea water for 28 days, the time required to reach passivation is considered as moderate in the case of methyl and ethyl inhibitors the time to passivation (T.T.P.) = 9 minutes and the degree of inhibition of steel coated with the propyl inhibitor is comparatively low (T.T.P.=21 minutes)

  10. Geo-environmental application of municipal solid waste incinerator ash stabilized with cement

    Directory of Open Access Journals (Sweden)

    Davinder Singh

    2017-04-01

    Full Text Available The behavior of soluble salts contained in the municipal solid waste incinerator (MSWI ash significantly affects the strength development and hardening reaction when stabilized with cement. The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash. A series of indices such as unconfined compressive strength, split tensile strength, California bearing ratio (CBR and pH value was examined. Prior to this, the specimens were cured for 7 d, 14 d, and 28 d. The test results depict that the maximum dry density (MDD decreases and the optimum moisture content (OMC increases with the addition of cement. The test results also reveal that the cement increases the strength of the mixed specimens. Thus, the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.

  11. Evaluation of Compressive Strength and Sorption/Solubility of Four Luting Cements

    Directory of Open Access Journals (Sweden)

    Tavangar MS

    2017-06-01

    Full Text Available Abstract: Statement of Problem: Compressive strength (CS and sorption/solubility of the luting cements are two associated factors. Searching a correlation between sorption/solubility and compressive strength of various luting cements is required. Objectives: To measure the water sorption/solubility, and compressive strength of three resin-based and one conventional glass ionomer (CGI luting cement after 1 and 24 h of immersion in distilled water and to determine if there is any correlation between those properties found. Materials and Methods: Four luting cements were investigated. For each material, 10 disc shaped specimens were prepared for measuring the sorption/solubility. The specimens were cured according to the manufacturer’s instructions, and the sorption/solubility were measured in accordance with the ISO 4049’s. For testing the compression strength, for each material 16 cylindrical specimens were prepared by insertion of cements into a stainless steel split mould. The specimens were cured, divided into groups of 8, and then stored in distilled water at (37 ± 1°C for 1 and 24 h. The test was performed using the universal testing machine, the maximum load was recorded and CS was calculated. The data were analysed using SPSS software version 18. One-way ANOVA, post-hoc Tukey’s test and Pearson’s correlation coefficient were performed. Results: G-CEM had the highest mean CS (153.60± 25.15 and CGI luting had the lowest CS (21.36±5.37 (p 0.05. The lowest mean sorption/solubility value was for RelyXTM U200 and Panavia F, and the highest for CGI luting (all p < 0.001. Conclusions: The compressive strength of all cements did not necessarily increase after 24 h and varied depending on the materials. There was a strong reverse correlation between sorption and CS values after both 1 and 24 h immersion. It may be practical for clinician to use those cements with the less sorption / solubility and more stable compression strength over

  12. Physical-Mechanical Properties and Micromorphology of Calcium Cements Exposed to Polyacrylic and Phosphoric Acids.

    Science.gov (United States)

    de Souza, Gustavo Fernandes; Arrais, Ana Beatriz; Aragão, Cícero Flávio Soares; Ferreira, Isana Alvares; Borges, Boniek Castillo Dutra

    2018-01-01

    To evaluate if physical and mechanical properties of self-curing calcium hydroxide cements were affected by contact with polyacrylic and phosphoric acids. Resin-containing (Life (LF)) and resin-free (Hydro C (HyC)) materials were subjected to polyacrylic acid conditioning and rinsing (POL); phosphoric acid conditioning and rinsing (PHO); rinsing only; and no treatment ( n = 10). Water sorption/solubility, release of hydroxyl ions (pH), roughness (Ra), and impact resistance were evaluated. Additional samples ( n = 1) were prepared for scanning electron microscopy (SEM) analysis of the surface morphology. Data were analyzed by two-way ANOVA and Tukey post hoc test ( P < 0.05). Water sorption was significantly higher for LF when in contact with PHO and lower for POL ( P < 0.05). The mean solubility was higher with POL for both cements ( P < 0.05). PHO increased the mean surface roughness for HyC ( P < 0.01); a significant decrease was noted for LF after contact with both acids ( P < 0.01). PHO promoted lower release of hydroxyl ions on both cements ( P < 0.05). For LF, rinsing, PHO, and POL presented similar morphology, differing from the control group. For HyC, PHO and POL presented similar morphology, differing from the control group. PHO had a negative effect on the physical properties of the cements tested, except for the solubility test. POL affected roughness and solubility of HyC cement. Clinical procedures that require polyacrylic and phosphoric acid conditioning must be done carefully on self-curing calcium hydroxide cements in order to avoid negative impact on their properties.

  13. Influence of curing rate of resin composite on the bond strength to dentin

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, E; Peutzfeldt, A

    2007-01-01

    @ 1000 mW/cm2) for all groups. A split Teflon mold was clamped to the treated dentin surface and filled with resin composite. The rate of cure was varied, using one of four LED-curing units of different power densities. The rate of cure was also varied using the continuous or pulse-delay mode....... In continuous curing mode, in order to give an energy density totaling 16 J/cm2, the power densities (1000, 720, 550, 200 mW/cm2) emitted by the various curing units were compensated for by the light curing period (16, 22, 29 or 80 seconds). In the pulse-delay curing mode, two seconds of light curing at one...... of the four power densities was followed by a one-minute interval, after which light cure was completed (14, 29, 27 or 78 seconds), likewise, giving a total energy density of 16 J/cm2. The specimens produced for each of the eight curing protocols and two resin composites (Tetric EvoCeram, Ivoclar Vivadent...

  14. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics

    Science.gov (United States)

    Osorio, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-01-01

    Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or sandblasted alumina showed the most stable interfaces. CAL experimented spontaneous debonding in all tested groups. Key words:CAD/CAM ceramic, alumina, zirconia, resin cement, surface pre-treatment, sandblasting, silica-coating, chemical aging, bond degradation, microtensile bond strength. PMID:22322517

  15. The Effect of Abutment Surface Roughness on the Retention of Implant-Supported Crowns Cemented with Provisional

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Abrisham

    2012-09-01

    Full Text Available Introduction: Surface roughness can increase the retention of castings by ridges and grooves that are microretentive. This study compared the retention of implant-supported crowns when used with 3 different surface roughness abutments and one temporary cement. Methods: Thirty solid abutments (ITI, 4 mm high, were divided into three groups randomly. In the first group, 10 abutments were roughened with sandblast (50-µm aluminum oxide and in the second group, 10 abutments were roughened with diamond bur. The third group had no surface treatment. Then, thirty implant fixture analogs (ITI were placed in the center of acrylic cylinders. After that a solid abutment was tightened on the each fixture analog with 35 N/cm force. Thirty base metal crowns were made on the 4 mm ITI abutment analogs using plastic coping. The prepared copings were cemented on the abutments by TempBond temporary cement and finally, crowns were pulled from the abutment in a universal test machine at a cross speed of 0.5cm/min. Results: The mean tensile strength in sandblasted, bur treated, and control group were 64.38±8, 91.37±7.19, and 58.61±1.93, respectively. Bur treated group showed higher tensile strength in comparison with two other groups. Conclusion: Surface modification of implant abutment by diamond bur may be an effective method to increase retention of crown when TempBond is used.

  16. Properties of cement based composites modified using diatomaceous earth

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Pavlík, Zbyšek

    2017-07-01

    Diatomite belongs among natural materials rich on amorphous silica (a-SiO2). When finely milled, it can potentially substitute part of cement binder and positively support formation of more dense composite structure. In this connection, two types of diatomaceous earth applied as a partial substitution of 5, 10, 15, and 20 mass% of Portland cement in the composition of cement paste were studied. In the tested mixtures with cement blends, the amount of batch water remained same, with water/binder ratio 0.5. For fresh paste mixtures, initial and final setting times were measured. First, hardened pastes cured 28 days in water were characterized by their physical properties such as bulk density, matrix density and open porosity. Then, their mechanical and thermophysical parameters were assessed. Obtained results gave clear evidence of setting time shortening for pastes with diatomite what brought negative effect with respect to the impaired workability of fresh mixtures. On the other hand, there was observed strength improvement for mixtures containing diatomite with higher amount of SiO2. Here, the increase in mechanical resistivity was distinct up to 15 mass% of cement replacement. Higher cement substitution by diatomite resulted in an increase in porosity and thus improvement of thermal insulation properties.

  17. Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements

    Institute of Scientific and Technical Information of China (English)

    Yanhua GUAN; Ying GAO; Renjuan SUN; Moon C.WON; Zhi GE

    2017-01-01

    The fast-track repair of deteriorated concrete pavement requires materials that can be placed,cured,and opened to the traffic in a short period.Type Ⅲ cement and Calcium Sulfoaluminate (CSA) cement are the most commonly used fast-setting hydraulic cement (FSHC).In this study,the properties of Type Ⅲ and CSA cement concrete,including compressive strength,coefficient of thermal expansion (CTE) and shrinkage were evaluated.The test results indicate that compressive strength of FSHC concrete increased rapidly at the early age.CSA cement concrete had higher early-age and long term strength.The shrinkage of CSA cement concrete was lower than that of Type Ⅲ cement concrete.Both CSA and Type Ⅲ cement concrete had similar CTE values.Based on the laboratory results,the CSA cement was selected as the partial-depth rapid repair material for a distressed continuously reinforced concrete pavement.The data collected during and after the repair show that the CSA cement concrete had good short-term and long-term performances and,therefore,was suitable for the rapid repair of concrete pavement.

  18. Theoretical prediction and experimental determination of the effect of mold characteristics on temperature and monomer conversion fraction profiles during polymerization of a PMMA-based bone cement.

    Science.gov (United States)

    Vallo, Claudia I

    2002-01-01

    The present work is concerned with applications of a kinetic model for free-radical polymerization of a polymethylmethacrylate-based bone cement. Autocatalytic behavior at the first part of the reaction as well as a diffusion control phenomenon near vitrification are described by the model. Comparison of theoretical computations with experimental measurements for the temperature evolution during batch casting demonstrated the capacity of the proposed model to represent the kinetic behavior of the polymerization reaction. Temperature evolution and monomer conversion were simulated for the cure of the cement in molds made of different materials. The maximum monomer conversion fraction was markedly influenced by the physical properties of the mold material. The unreacted monomer acts as a plasticizer that influences the mechanical behavior of the cement. Hence, the same cement formulation cured in molds of different materials may result in different mechanical response because of the differences in the amounts of residual monomer. Standardization of the mold type to prepare specimens for the mechanical characterization of bone cements is recommended. Theoretical prediction of temperature evolution during hip replacement indicated that for cement thickness lower than 6 mm the peak temperature at the bone-cement interface was below the limit stated for thermal injury (50 degrees C for more than 1 min). The use of thin cement layers is recommended to diminish the risk of thermal injury; however, it is accompanied by an increase in the amount of unreacted monomer present in the cured material. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 627-642, 2002

  19. Physical and chemical durability of cement impregnated epoxy resin

    International Nuclear Information System (INIS)

    Suryantoro

    1997-01-01

    Immobilization of simulation radioactive waste contains Cs and Sr with cement impregnated epoxy resin has been done. Low level liquid waste in 30% weight mixed cement homogeneously and then set in its curing time about 28 days. Waste from was impregnated with epoxy resin (Bisphenol-A-diglycidylether) and use Triethylenteramin as catalyst. the sample of cement impregnated epoxy resin 2.5 cm x 2.5 cm in diameter and length was tested by Paul Weber. The compressive strength was obtained of 4.08 kN.cm - 2. The sochxlet apparatus was run on flow rate of 300 ml/hour at 100 o C and during 24 hours. The leaching rate of Cs was round on 5.5 x 10 - 4 g.cm - 2.d - 1 and Sr was 6.1 x 10 - 4 g.cm - 2.d - 1 (author)

  20. The effects of light curing units and environmental temperatures on C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C conversion of commercial and experimental bonding agents.

    Science.gov (United States)

    Jafarzadeh-Kashi, Tahereh Sadat; Erfan, Mohmmad; Kalbasi, Salmeh; Ghadiri, Malihe; Rakhshan, Vahid

    2014-10-01

    Polymerization of bonding agents (BA) is a critical factor in determining the success of bonded restorations. We aimed to assess the effects of two light curing units and two temperatures on the extent of polymerization (EP) of a commercial BA and an experimental BA. Forty BA specimens were randomly divided into 8 subgroups of n = 5 to compare the polymerization of two BAs (experimental/Scotchbond) based on the variables: temperature (23/37 °C) and light-curing unit (quartz-tungsten-halogen/light-emitting diode). The EP (%) was measured using differential scanning calorimetry, and analyzed using the t-test, two- and three-way analyses of variance (ANOVA), and the Bonferroni test (α = 0.05). There were significant differences between the EP results between the two BAs (P = 0.012) and due to the different temperatures (P = 0.001), but not between the different light-curing units (P = 0.548). The interaction between BA and temperature was significant (P units had similar effects on the EP. The EP values were better when curing was performed at human body temperature.

  1. Research of Cemented Paste Backfill in Offshore Environments

    Science.gov (United States)

    Wang, Kun; Yang, Peng; Lyu, Wensheng; Lin, Zhixiang

    2018-01-01

    To promote comprehensive utilization of mine waste tailings and control ground pressure, filling mine stopes with cement paste backfill (CPB) is becoming the most widely used and applicable method in contemporary underground mining. However, many urgent new problems have arisen during the exploitation in offshore mines owing to the complex geohydrology conditions. A series of rheological, settling and mechanical tests were carried out to study the influences of bittern ions on CPB properties in offshore mining. The results showed that: (1) the bittern ion compositions and concentrations of backfill water sampled in mine filling station were similar to seawater. Backfill water mixed CPB slurry with its higher viscosity coefficient was adverse to pipeline gravity transporting; (2) Bleeding rate of backfill water mixed slurry was lower than that prepared with tap water at each cement-tailings ratio; (3) The UCS values of backfill water mixed samples were higher at early curing ages (3d, 7d) and then became lower after longer curing time at 14d and 28d. Therefore, for mine production practice, the offshore environments can have adverse effects on the pipeline gravity transporting and have positive effects on stope dewatering process and early-age strength growth.

  2. Influência do tipo de ponteira condutora de luz na microdureza de uma resina composta Influence of the different light-curing TIPS in the microhardness of a composite resin

    Directory of Open Access Journals (Sweden)

    Máx Dobrovolski

    2010-01-01

    Full Text Available O objetivo desta pesquisa foi avaliar a influência do tipo de ponteira condutora de luz na microdureza de uma resina composta micro-híbrida. Foram confeccionados 14 corpos de prova da resina composta Opallis (FGM com dimensões: 5 x 2 mm, divididos em dois grupos de acordo com a ponteira condutora de luz do aparelho fotoativador de lâmpada halógena Optilight Plus - GNATUS/300 mW.cm-2. GI - ponteira condutora de luz de fibra óptica; GII - ponteira condutora de luz de polímero. Após 24 horas, as medidas de microdureza foram efetuadas com um microdurômetro HMV 2000 (Shimadzu Japão. Cinco penetrações foram efetuadas em cada superfície (topo e base totalizando 10 penetrações para cada corpo de prova. A análise estatística dos resultados realizada por meio do teste de ANOVA não apresentou diferenças significativas entre os tipos de ponta condutora de luz nas superfícies avaliadas. A análise estatística demonstrou diferença significativa nos valores médios de microdureza superficial entre as superfícies de topo e de base, para ambas as ponteiras. Com base nos resultados obtidos, foi possível concluir que as ponteiras de luz não interferem na microdureza da resina composta, e que ambas apresentaram diferenças estatisticamente significativas nos valores de microdureza das superfícies topo e base.The aim of this study is to evaluate the influence of the light-curing tips on the microhardness of a micro-hybrid composite resin. Fourteen samples of Opallis (FGM composite resin with 5 x 2 mm were prepared. The specimens were divided into two groups according to the light-curing tips from a halogen light curing unit (Optilight Plus -GNATUS/300 mW.cm-2: GI - optical fiber light-curing; GII - polymer light-curing. After 24 hours, the microhardness measurements were determined using the HMV 2000 (Shimadzu Japan. Five measurements were made on each surface (top and bottom totalizing 10 indentations for each sample. Statistical analysis

  3. Evaluation of Carbonation Effects on Cement-Solidified Contaminated Soil Used in Road Subgrade

    Directory of Open Access Journals (Sweden)

    Yundong Zhou

    2018-01-01

    Full Text Available Cement solidification/stabilization is widely used towards contaminated soil since it has a low price and significant improvement for the structural capacity of soil. To increase the usage of the solidified matrix, cement-solidified contaminated soil was used as road subgrade material. In this study, carbonation effect that reflected the durability on strength characteristics of cement-solidified contaminated soil and the settlement of pavement were evaluated through experimental and numerical analysis, respectively. According to results, compressive strengths of specimens with 1% Pb(II under carbonation and standard curing range from 0.44 MPa to 1.17 MPa and 0.14 MPa to 2.67 MPa, respectively. The relatively low strengths were attributed to immobilization of heavy metal, which consumed part of SiO2, Al2O3, and CaO components in the cement or kaolin and reduced the hydration and pozzolanic reaction materials. This phenomenon further decreased the strength of solidified soils. The carbonation depth of 1% Cu(II or Zn(II contaminated soils was 18 mm, which significantly increased with the increase of curing time and contamination concentration. Furthermore, the finite element calculation results showed that surface settlements decreased with the increase of modulus of subgrade and the distance away from the center. At the center, the pavement settlement was proportional to the level of traffic load.

  4. Root distribution pattern of flue-cured tobacco in light and heavy soils

    International Nuclear Information System (INIS)

    Nagaraj, G.; Gopalachari, N.C.

    1977-01-01

    Root distribution of flue-cured tobacco (variety : Kanakaprabha) in clayey and loamy sand soils was studied with the help of 32 P wick feeding technique. About 90 percent of the roots of tobacco plant in black soil on 40th day and in light soil on 60th day are present in a soil core of diameter 40 cm and depth 30 cm. On the 90th day of growth stage, no significant differences were observed in the root distribution of tobacco between the two types of soil. About 85 percent of the roots were present in a soil core of diameter 40 cm and depth 30 cm on 90th day in both the soils. (author)

  5. In vitro analysis of shear bond strength and adhesive remnant index comparing light curing and self-curing composites

    Directory of Open Access Journals (Sweden)

    Murilo Gaby Neves

    2013-06-01

    Full Text Available OBJECTIVE: To evaluate, in vitro, the shear bond strength of self-curing (ConciseTM - 3M and Alpha Plast - DFL and light-curing composites (TransbondTM XT - 3M and Natural Ortho - DFL used in orthodontics bonding, associated to Morelli metal brackets, with further analysis of adhesive remnant index (ARI and enamel condition in scanning electron microscopy (SEM. METHODS: Forty human premolars, just extracted and stored in physiologic solution 0.9 % were used. Randomly, these samples were divided in four groups: G1 group, the brackets were bonded with ConciseTM - 3M composite; in G2 group, Alpha Plast - DFL composite was used; in G3 group, TransbondTM XT - 3M was used; in G4 group, Natural Ortho - DFL composite was used. These groups were submitted to shear strength tests in universal testing machine, at 0.5 mm per minute speed. RESULTS: Statistical difference between G3 and G4 groups was recorded, as G4 showing higher strength resistance than G3. In the other hand, there were no statistical differences between G1, G2 and G3 and G1, G2 and G4 groups. ARI analysis showed that there was no statistical difference between the groups, and low scores were recorded among then. The scanning electron microscopy (SEM analysis revealed the debonding spots and the enamel surface integrity. CONCLUSIONS: Shear bond strength was satisfactory and similar between the composites, however Natural Ortho - DFL revealed best comparing to TransbondTM XT - 3M.

  6. Late-Age Properties of Concrete with Different Binders Cured under 45°C at Early Ages

    Directory of Open Access Journals (Sweden)

    Hu Jin

    2017-01-01

    Full Text Available It is commonly accepted that high curing temperature (near 60°C or above results in reduced mechanical properties and durability of concrete compared to normal curing temperature. The internal temperature of concrete structures at early ages is not so high as 60°C in many circumstances. In this paper, concretes were cured at 45°C at early ages and their late-age properties were studied. The concrete cured at 20°C was employed as the reference sample. Four different concretes were used: plain cement concrete, concrete containing fly ash, concrete containing ground granulate blast furnace slag (GGBS, and concrete containing silica fume. The results show that, for each concrete, high-temperature curing after precuring does not have any adverse effect on the nonevaporable water content, compressive strength, permeability to chloride ions, and the connected porosity of concrete at late ages compared with standard curing. Additionally, high-temperature curing improves the late-age properties of concrete containing fly ash and GGBS.

  7. Influence of industrial solid waste addition on properties of soil-cement bricks

    Directory of Open Access Journals (Sweden)

    F. B. Siqueira

    Full Text Available Abstract The reuse of pollutant solid wastes produced in distinct industrial activities (avian eggshell waste and welding flux slag waste as a source of alternative raw material for producing soil-cement bricks for civil construction was investigated. Soil-cement bricks containing up to 30 wt% of industrial solid waste were uniaxially pressed and cured for 28 days. Special emphasis is given on the influence of solid waste addition on the technical properties (as such volumetric shrinkage, water absorption, bulk density, durability, and compressive strength, microstructure and mineral phases of soil-cement bricks. Microstructural evolution was evaluated via confocal microscopy. The experimental results showed that the solid wastes behave as charge material and influenced both technical properties and microstructure of the soil-cement bricks. It was found that up to 15 wt% of welding flux slag waste and up to 30 wt% of avian eggshell waste could be added into the soil-cement bricks for use as building material.

  8. Bonding efficacy of new self-etching, self-adhesive dual-curing resin cements to dental enamel.

    Science.gov (United States)

    Benetti, Paula; Fernandes, Virgílio Vilas; Torres, Carlos Rocha; Pagani, Clovis

    2011-06-01

    This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test. Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm2 flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37°C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm2 (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tukey's test. Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p ≤ 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF). Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

  9. Physical-mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment

    NARCIS (Netherlands)

    Bonifacio, C.C.; Kleverlaan, C.J.; Raggio, D.P.; Werner, A.; de Carvalho, R.C.R.; van Amerongen, W.E.

    2009-01-01

    Background:  This study evaluated mechanical properties of glass ionomer cements (GICs) used for atraumatic restorative treatment. Wear resistance, Knoop hardness (Kh), flexural (Fs) and compressive strength (Cs) were evaluated. The GICs used were Riva Self Cure (RVA), Fuji IX (FIX), Hi Dense (HD),

  10. Ordinary Portland Cement matrix for solidification of cellulosic protective clothes hazardous wastes

    International Nuclear Information System (INIS)

    Shatta, H.A.; Saleh, H.M.

    2006-01-01

    The used cellulosic protective clothes constitutes considerable fraction of the hazardous and radioactive wastes accumulated during the practical daily life. The direct solidification of these wastes with ordinary Portland cement resulted in waste forms having undesired characters, therefore, it is recommended to immobilize the secondary waste solutions coming from the oxidative degradation of the used protective clothes waste simulates rather than direct imbedding. IR analyses, X-ray diffraction and thermal characteristics for products of both direct encapsulation of the waste and the cementation of its degradation products were performed to evaluate the properties of the final waste cemented form before their disposal. Based on the results reached from X-ray diffraction, IR spectrograms and thermal analyses reports, it could be stated that no detectable changes in hydration and curing coarse of ordinary Portland cement when mixing the residual secondary waste solution resulting from the oxidative degradation of the used protective clothes waste simulate compared with mixing cement with water and in reverse with imbedding the unprocessed waste in cement matrix

  11. Immediate functional loading of provisional implants in the reconstructed atrophic maxilla: preliminary results of a prospective study after 6 months of loading with a provisional bridge.

    Science.gov (United States)

    Lenssen, O; Barbier, L; De Clercq, C

    2011-09-01

    Implant-prosthetic rehabilitation of atrophic maxillae remains a challenging problem. The aim of this paper is to describe a novel treatment for functional rehabilitation of the atrophic maxilla and to discuss preliminary results of this treatment protocol. A prospective pilot study was carried out in 10 patients who underwent bony reconstruction of atrophic maxillae under general anaesthesia, with autologous calvarial bone grafts and simultaneous placement of six provisional implants. The provisional implants were loaded with a provisional acrylic bridge 1 day after surgery. After 6 months, the provisional implants were removed and final implants were placed under local anaesthesia, again in an immediate loading concept with a provisional bridge, followed by a final bridge after another 6 months of healing. The bone grafts integrated well in all 10 patients without infectious complications. The prosthetic survival of the provisional bridge at the time of placing the implants was 100%. All final implants could be placed and immediately loaded with a second provisional bridge. Patient satisfaction was high due to limited postoperative inconvenience and immediate fixed prosthetic rehabilitation. The preliminary results of this pilot study demonstrate that this treatment protocol is a well tolerated treatment for patients with maxillary atrophy desiring dental rehabilitation. Copyright © 2011 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC Concrete

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone is widely used in the construction industry to produce Portland limestone cement (PLC concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel–space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.

  13. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    International Nuclear Information System (INIS)

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  14. Valuation of the light intensity from curing lamps of the students of odontology of the Universidad de Costa Rica during 2011, with respect to the manufacturer's specifications

    International Nuclear Information System (INIS)

    Solano Badilla, Lucrecia

    2011-01-01

    The behavior of the light intensity from halogens curing lamps used by students at the Facultad de Odontologia of the Universidad de Costa Rica (UCR) is studied with respect to the manufacturer's specifications of the lamp and the resin. The distribution of the type of curing lamp per student is described, as well as some characteristics of them. The light intensity mW/cm 2 of the curing lamps operated by students at the Facultad de Odontologia is compared with the manufacturer's specifications of the lamp. The light intensity mW/cm 2 is compared with the manufacturer's specifications of the resin utilized, by brand, by students of the Facultad de Odontologia of the UCR for their photopolymerization [es

  15. In vitro comparative evaluation of mechanical properties of temporary restorative materials used in fixed partial denture.

    Science.gov (United States)

    Saisadan, D; Manimaran, P; Meenapriya, P K

    2016-10-01

    Materials used to fabricate provisional restorations can be classified as acrylics or resin composites. Provisional crows can be either prefabricated or custom made. These materials have been used to fabricate provisional restorations since the 1930s and usually available as powder and liquid. They are the most commonly used materials today for both single-unit and multiple-unit restorations. In general, their popularity is due to their low cost, acceptable esthetics, and versatility. Composite provisional materials use bis-acryl resin, a hydrophobic material that is similar to bis-GMA. Composites are available as auto-polymerized, dualpolymerized and visible light polymerized. Preformed provisional crowns or matrices usually consist of tooth-shaped shells of plastic, cellulose acetate or metal. They are commercially available in various tooth sizes and are usually selected for a particular tooth anatomy. They are commonly relined with acrylic resin to provide a more custom fit before cementation, but the plastic and metal crown shells can also be cemented directly onto prepared teeth. The aim of this study is to choose a material to serve as a better interim prosthesis and to compare three different properties - flexural strength, compressive strength, and color stability. The samples were made with three different provisional materials (Revotek LC, Protemp 4, TemSpan). It was inferred from the study that no one material was superior in all three tested parameters.

  16. Immobilization of citric acid solutions in portland cement

    International Nuclear Information System (INIS)

    Lopes, Valdir M.; Rzyski, Barbara M.

    1997-01-01

    Decontamination processes by using citric acid on certain items used in the nuclear area, can result in large volumes of liquid wastes with low activity or effluents, contaminated with uranium and some elements dangerous to the environment. A great number of installations that have decontamination processes adopt the zero discharge philosophy. So, one of the forms to isolate the solutions is by reducing its volume through the evaporation process. The generated must can be neutralized and encapsulated or immobilized in Portland cement. This work propose a chemical technique to destroy the citric acid in the decontamination solutions instead of neutralization and, depending on the installation convenience, a direct cement immobilization of these solutions or of the evaporation mud. The results obtained in this work involve data about the workability, setting time and mechanical resistance, after 28 days of sealed cure, for samples with water-cement ratios of 4, 0.5 and 0.6, by weight. (author). 5 refs., 2 tabs

  17. Compressive Strength of Volcanic Ash/Ordinary Portland Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Olusola K. O.

    2010-01-01

    Full Text Available This study investigates the effect of partial replacement of cement with volcanic ash (VA on the compressive strength of laterized concrete. A total of 192 cubes of 150mm dimensions were cast and cured in water for 7, 14, 21, and 28 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively, while a control mix of 28-day target strength of 25 N/mm2 was adopted. The results show that the density and compressive strength of concrete decreased with increase in volcanic ash content. The 28-day, density dropped from 2390 kg/m3 to 2285 kg/m3 (i.e. 4.4% loss and the compressive strength from 25.08 N/mm2 to 17.98 N/mm2 (i.e. 28% loss for 0-30% variation of VA content with no laterite introduced. The compressive strength also decreased with increase in laterite content; the strength of the laterized concrete however increases as the curing age progresses.

  18. Evaluation of the Compressive Strength of Cement-Spent Resins Matrix Mixed with Bio char

    International Nuclear Information System (INIS)

    Zalina Laili; Muhamad Samudi Yasir; Zalina Laili; Mohd Abdul Wahab; Nur Azna Mahmud; Nurfazlina Zainal Abidin

    2015-01-01

    The evaluation of compressive strength of cement-spent resins matrix mixed with bio char was investigated. In this study, bio char with different percentage (5 %, 8 %, 11 % 14 % and 18 %) was used as alternative admixture material for cement solidification of spent resins. Some properties of the physical and chemical of spent resins and bio char were also investigated. The performance of cemented spent resins with the addition of bio char was evaluated based on their compressive strength and the water resistance test. The compressive strength was evaluated at three different curing periods of 7, 14 and 28 days, while 4 weeks of immersion in distilled water was chosen for water resistance test. The result indicated that the compressive strength at 7, 14 and 28 days of curing periods were above the minimum criterion for example > 3.45 MPa of acceptable level for cemented waste form. Statistical analysis showed that there was no significant relationship between the compressive strength of the specimen and the percentage of bio char content. Result from the water resistance test showed that only one specimen that contained of 5 % of bio char failed the water resistance test due to the high of spent resins/ bio char ratio. The compressive strength of cement solidified spent resins was found increased after the water resistance test indicating further hydration occurred after immersed in water. The results of this study also suggest that the specimen with 8 %, 11 %, 14 % and 18 % of bio char content were resistance in water and suitable for the leaching study of radionuclides from cement-bio char-spent resins matrix. (author)

  19. Solidification of low-level radioactive wastes in masonry cement

    International Nuclear Information System (INIS)

    Zhou, H.; Colombo, P.

    1987-03-01

    Portland cements are widely used as solidification agents for low-level radioactive wastes. However, it is known that boric acid wastes, as generated at pressurized water reactors (PWR's) are difficult to solidify using ordinary portland cements. Waste containing as little as 5 wt % boric acid inhibits the curing of the cement. For this purpose, the suitability of masonry cement was investigated. Masonry cement, in the US consists of 50 wt % slaked lime (CaOH 2 ) and 50 wt % of portland type I cement. Addition of boric acid in molar concentrations equal to or less than the molar concentration of the alkali in the cement eliminates any inhibiting effects. Accordingly, 15 wt % boric acid can be satisfactorily incorporated into masonry cement. The suitability of masonry cement for the solidification of sodium sulfate wastes produced at boiling water reactors (BWR's) was also investigated. It was observed that although sodium sulfate - masonry cement waste forms containing as much as 40 wt % Na 2 SO 4 can be prepared, waste forms with more than 7 wt % sodium sulfate undergo catastrophic failure when exposed to an aqueous environment. It was determined by x-ray diffraction that in the presence of water, the sulfate reacts with hydrated calcium aluminate to form calcium aluminum sulfate hydrate (ettringite). This reaction involves a volume increase resulting in failure of the waste form. Formulation data were identified to maximize volumetric efficiency for the solidification of boric acid and sodium sulfate wastes. Measurement of some of the waste form properties relevant to evaluating the potential for the release of radionuclides to the environment included leachability, compression strengths and chemical interactions between the waste components and masonry cement. 15 refs., 19 figs., 9 tabs

  20. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement.

    Science.gov (United States)

    Yamamoto, S; Han, L; Noiri, Y; Okiji, T

    2017-12-01

    To evaluate the Ca 2+ -releasing, alkalizing and apatite-like surface precipitate-forming abilities of a prototype tricalcium silicate cement, which was mainly composed of synthetically prepared tricalcium silicate and zirconium oxide radiopacifier. The prototype tricalcium silicate cement, white ProRoot MTA (WMTA) and TheraCal LC (a light-cured resin-modified calcium silicate-filled material) were examined. The chemical compositions were analysed with a wavelength-dispersive X-ray spectroscopy electron probe microanalyser with an image observation function (SEM-EPMA). The pH and Ca 2+ concentrations of water in which the set materials had been immersed were measured, and the latter was assessed with the EDTA titration method. The surface precipitates formed on the materials immersed in phosphate-buffered saline (PBS) were analysed with SEM-EPMA and X-ray diffraction (XRD). Kruskal-Wallis tests followed by Mann-Whitney U-test with Bonferroni correction were used for statistical analysis (α = 0.05). The prototype cement contained Ca, Si and Zr as major elemental constituents, whereas it did not contain some metal elements that were detected in the other materials. The Ca 2+ concentrations and pH of the immersion water samples exhibited the following order: WMTA = prototype cement > TheraCal LC (P prototype cement and WMTA. The prototype tricalcium silicate cement exhibited similar Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities to WMTA. The Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities of TheraCal LC were lower than those of the other materials. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  1. 19 CFR 210.58 - Provisional acceptance of the motion.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Provisional acceptance of the motion. 210.58 Section 210.58 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Temporary Relief § 210.58 Provisional acceptance of...

  2. Effect of In-Situ Curing on Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Bali Ika

    2016-01-01

    Full Text Available A development of Reactive Powder Concrete (RPC currently is the use of quartz powder as a stabilizing agent with the content to cement ratio of 30% and steam curing method in an autoclave temperature of 250ºC which produced a high compressive strength of 180 MPa. That RPC can be generated due to one reason for using the technique of steam curing in an autoclave in the laboratory. This study proposes in-situ curing method in order the curing can be applied in the field and with a reasonable compressive strength results of RPC. As the benchmarks in this study are the curing methods in laboratory that are steam curing of 90°C for 8 hours (C1, and water curing for 28 days (C2. For the in-situ curing methods that are covering with tarpaulins and flowed steam of 3 hours per day for 7 days (C3, covering with wet sacks for 28 days (C4, and covering with wet sacks for 28 days for specimen with unwashed sand as fine aggregate (C5. The comparison of compressive strength of the specimens in this study showed compressive strength of RPC with in-situ steam curing (101.64 MPa close to the compressive strength of RPC with steam curing in the laboratory with 8.2% of different. While in-situ wet curing compared with the water curing in laboratory has the different of 3.4%. These results indicated that the proposed in-situ curing methods are reasonable good in term of the compressive strength that can be achieved.

  3. Effect of Rebonding on the Bond Strength of Orthodontic Tubes: A Comparison of Light Cure Adhesive and Resin-Modified Glass Ionomer Cement In Vitro

    Directory of Open Access Journals (Sweden)

    Monika Aleksiejunaite

    2017-01-01

    Full Text Available The purpose of this study was to determine the impact of different enamel preparation procedures and compare light cure composite (LCC and resin-modified glass ionomer (RMGI on the bond strength of orthodontic metal tubes rebonded to the enamel. Twenty human molars were divided into two groups (n=10. Tubes were bonded using LCC (Transbond XT in group 1 and RMGI (Fuji Ortho LC in group 2. The tubes in each group were bonded following manufacturers’ instructions (experiment I and then debonded using testing machine. Then, the same brackets were sandblasted and rebonded twice. Before the first rebonding, the enamel was cleaned using carbide bur (experiment II and before second rebonding, it was cleaned using carbide bur and soda blasted (experiment III. Mann–Whitney and Wilcoxon signed-rank tests showed no significant difference between RMGI and LCC bond strengths in case of normal bonding and rebonding, when enamel was cleaned using carbide bur before rebonding. Enamel soda blasting before rebonding significantly increased RMGI tensile bond strength value compared to LLC (p<0.05. LCC and RMGI (especially RMGI provide sufficient bond strengths for rebonding of molar tubes, when residual adhesive from previous bonding is removed and enamel soda blasted.

  4. Effect of different power settings of Er,Cr:YSGG laser before or after tribosilicatization on the microshear bond strength between zirconia and two types of cements.

    Science.gov (United States)

    Zeidan, Leonardo C; Esteves, Camila M; Oliveira, Juliana A; Brugnera, Aldo; Cassoni, Alessandra; Rodrigues, José Augusto

    2018-02-01

    The aim of this study was to evaluate the effect of different output powers of Er,Cr:YSGG laser and the association with tribochemical silica coating on the bond strength between zirconia ceramic and two resin cements. One hundred ninety-two zirconia ceramic bars (IPS e-max ZirCAD Ivoclar Vivadent-) were sectioned (6 × 6 × 4 mm), sintered, and randomly divided into 12 groups for each cement system according to the surface treatment (n = 8): C-without treatment (control); R-tribochemical coating + resin cement (control); 2L-laser (2.0 W) + resin cement; 2LR-laser (2.0 W) + tribochemical coating + resin cement; R2L-tribochemical coating + laser (2.0 W) + resin cement; 2.5L-laser (2.5 W) + resin cement; 2.5LR-laser (2.5 W) + tribochemical coating + resin cement; R2.5L-tribochemical coating + laser (2.5 W) + resin cement; 3L-laser (3.0 W) + resin cement; 3LR-laser (3.0 W) + tribochemical coating + resin cement, R3L-tribochemical coating + laser (3.0 W) + resin cement; and RPHO-tribochemical + resin cement + photoactivation (control). After the surface treatment, the respective primers were applied, and resin cements, Multilink N, Ivoclar Vivadent (M), and Panavia F 2.0, Kuraray Medical Inc. (P), were inserted into Tygon molds which were bonded to the zirconia bars. Each specimen received two cements bars. After 24 h of storage in a relative humidity (100%) at 37 °C, they were evaluated by the microshear test speed of 1 mm/min. The microshear values were analyzed by one-way ANOVA and Tukey's test (α = 0.05). ANOVA showed statistically significant differences among the evaluated groups. The highest bond strength was observed in RPHO, which statistically differed from all groups. The lowest bond strength was observed in M2.5L (Multilink N) and in P3LR (Panavia F 2.0). It can be concluded that the lowest power output tested was suitable and showed bond strength values similar to tribochemical silica deposition. The light curing is important to

  5. The effect of provisional restoration type on micromovement of implants.

    Science.gov (United States)

    Holst, Stefan; Geiselhoeringer, Hans; Wichmann, Manfred; Holst, Alexandra Ioana

    2008-09-01

    The osseointegration or fibrous encapsulation of immediately loaded dental implants depends largely on the extent of implant micromovement. The impact of acrylic resin or metal-reinforced acrylic resin provisional restorations on this movement is currently unknown. The purpose of this study was to isolate and measure the effect of provisional restoration type on the vertical displacement of adjacent implants under load at 2 locations. Vertical loads ranging from 10-200 N were applied to polymethyl methacrylate resin (n=56) or metal-reinforced acrylic resin provisional restorations (n=56) supported by 4 implants inserted into homogenous artificial bone in a "u-shaped" alignment. Provisional restorations were first loaded in the anterior segment where the provisional restoration was supported by a mesial and distal implant, followed by loading on an extension 8 mm distal to the last implant. Vertical displacement of the 2 implants nearest the load application was measured and recorded using an optical image correlation technique based on photogrammetric principles. Data were subjected to a nonparametric multivariate analysis (generalized Wilcoxon test) and a Mann-Whitney test with a 2-tailed P value (alpha=.05). There was no significant difference in the vertical implant displacement of the 2 provisional restoration groups when they were loaded in the anterior segment. However, when loads were applied to the distal cantilever, metal reinforcement resulted in less vertical displacement of the next-to-last implant. The mean vertical displacement of the next-to-last implant when supporting an acrylic resin provisional restoration increased from 20 microm +/-3 microm (pooled loads of 10-50 N) to 130 microm +/-21 microm (pooled loads of 160-200 N), while the vertical displacement of the implant when retaining a metal-reinforced acrylic resin provisional restoration increased from 10 microm +/-2 microm to 69 microm +/-13 microm under the same loads (Pprovisional

  6. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    Science.gov (United States)

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  7. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    OpenAIRE

    Solikin Mochamad; Setiawan Budi

    2017-01-01

    High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly ...

  8. UV curing by radical, cationic and concurrent radicalcationic polymerization

    International Nuclear Information System (INIS)

    Pappas, S.P.

    1984-01-01

    UV and EB curing represent complementary technologies with respective advantages and disadvantages. This paper deals with the design and evaluation of UV curable coatings to optimize cure rate and film properties. Topics included are state-of-the-art photoinitiator systems, light intensity effects, retardation of air-inhibition, adhesion, and amplification of photons for enhanced speed of cure

  9. In-Situ X-ray Tomography Study of Cement Exposed to CO2 Saturated Brine

    DEFF Research Database (Denmark)

    Chavez Panduro, E. A.; Torsæter, M.; Gawel, K.

    2017-01-01

    For successful CO2 storage in underground reservoirs, the potential problem of CO2 leakage needs to be addressed. A profoundly improved understanding of the behavior of fractured cement under realistic subsurface conditions including elevated temperature, high pressure and the presence of CO2...... saturated brine is required. Here, we report in situ X-ray micro computed tomography (μ-CT) studies visualizing the microstructural changes upon exposure of cured Portland cement with an artificially engineered leakage path (cavity) to CO2 saturated brine at high pressure. Carbonation of the bulk cement......, self-healing of the leakage path in the cement specimen, and leaching of CaCO3 were thus directly observed. The precipitation of CaCO3, which is of key importance as a possible healing mechanism of fractured cement, was found to be enhanced in confined regions having limited access to CO2...

  10. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    Science.gov (United States)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  11. Effect of irradiation on acrylic cement with special reference to fixation of pathological fractures

    International Nuclear Information System (INIS)

    Eftekhar, N.S.; Thurston, C.W.

    1975-01-01

    Self-curing cement is generally used in conjunction with conventional metallic devices. If the acrylic cement was supplemented, the primary goal would be a rigid immobiliztion of the fracture to alleviate the pain; usually, however, the final aim is toward osteosynthesis. During the course of rehabilitation, it is often desirous to supplement the treatment by irradiation. Although the industrial, dental and surgical literature has adequately dealt with many aspects of bone cement; for example, physical and chemical properties in joint replacement, and so on, the effects of irradiation on the acrylic cement have not been previously reported. It is the purpose of this paper to analyze the experimental studies conducted to evaluate the mechanical properties of the polymethylmethacrylate when subjected to irradiation within a maximum range of a therapeutic dose

  12. The Effect of CaO and MgO as Expanding Additives to Improve Cement Isolation Strength under HPHT Exposure

    Directory of Open Access Journals (Sweden)

    Rudi Rubiandini

    2005-05-01

    Full Text Available Cementing is one of the most important parts in oil-well drilling. Recent development in oil-well drilling technology has led to a more problematic case in cementing. High temperature cementing is one of the problems. High temperature cementing may cover steam recovery wells, geothermal wells and ultra deep wells.The use of expanding cements as an effort to improve the sealing efficacy of annulus cementing has been considered for a long time as a promising solution to the existing problems. CaO and MgO have been proposed as two of the most effective additives to create excellent expanding cement. The purpose of this study is to find the effect of adding up burnt pure CaO and MgO to the value of compressive strength and shear bond strength of API class G cement in high pressure and high temperature condition. The method that we used within this research is an evaluation of the data taken from a simulator that simulated within temperature range of 100 – 250oC and pressure of 2000 psi.The conclusion is taken according to the results which saying that the addition of burnt pure CaO and MgO would increase the shear bond strength and the compressive strength on specific condition up to 200oC temperature. The addition won’t be effective for the condition of 250oC temperature. The behavior of cement strength was also influenced by the length of curing time.Further more, research on expanding cement needs to be developed and extended whether to vary its compositions, temperatures, or curing time conditions. The compatibility when mixed with other additives together with silica flour has not yet been figured out.

  13. Early age compressive strength, porosity, and sorptivity of concrete using peat water to produce and cure concrete

    Science.gov (United States)

    Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.

    2017-09-01

    Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.

  14. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2017-01-01

    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  15. Partial replacement of Portland cement by red ceramic waste in mortars: study of pozzolanic activity

    International Nuclear Information System (INIS)

    Silva, A.R. da; Cabral, K.C.; Pinto, E.N. de M.G.l.

    2016-01-01

    The objective of this study is to analyze the pozzolanic activity of red ceramic residue on the partial replacement of Portland cement in mortars. The mortars were prepared by substituting 25% of the Portland cement for ground of ceramic residue with water cement’s factor of 0.48. The concrete used to construct the reference mortars and those with addiction was CPII-Z-32 (compound of Portland pozzolana cement). The chemical analysis and physical ceramic waste showed that this meets the requirements of NBR12653 (2014) for use as pozzolanic material. The pozzolanic activity index (IAP) obtained for the ceramic waste to twenty-eight days cure rate was 80.28%. (author)

  16. Pore size distribution, strength, and microstructure of portland cement paste containing metal hydroxide waste

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.

    1996-12-31

    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} for a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.

  17. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio ≤ 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  18. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  19. Formulation study on immobilization of spent ion exchange resins in polymer cement

    International Nuclear Information System (INIS)

    Xia Lili; Lin Meiqiong; Bao Liangjin; Fan Xianhua

    2006-01-01

    The aim of this study is to develop a formulation of cement-solidified spent radioactive ion exchange resin form. The solidified form consists of a sort of composite cement, epoxide resin emulsion, and spent ion exchange resins. The composite cement is made up of quick-setting sulphoaluminate cement, silica powder, zeolite, and fly ash in the proportion 1:0.05:0.10:0.05. Sixteen combinations of composite cement, epoxide resin emulsion and mixed anion-cation exchange resins are selected according to a three-factors-four-levels normal design table with the compression strength as the evaluation criterion. The resulted formulation is as follows: the mass ratio of polymer emulsion to composite cement is 0.55:1, the loading of mixed anion-cation exchange resins is 0.3, and the anionic-to-cationic exchange resins ratio is 2:1. The polymer cement solidified forms were tested after 28 d curing for Cs + and Sr 2+ leaching rates, pH and conductivity of the leaching water, and radiation-resistant property in addition to their compressive strength. The measurement results indicate that the performance of thus prepared solidified forms can meet the requirements of the National Standard GB14569.1-93 for near earth's surface disposal of low radioactive waste. (authors)

  20. Experimental study of silty clay stabilization with cement and lime in multan, pakistan

    International Nuclear Information System (INIS)

    Sultan, T.

    2014-01-01

    Stabilization is valuable substitute for advancing the soil characteristics. The engineering features gained after stabilization differs broadly owing to non-uniformity in constitutions of soil. This study describes an assessment of cement and lime additives for advancing soils ventures. The effectiveness of lime and cement stabilization on geotechnical characteristics of the in situ soil has also been described in the paper. The additives like cement and lime were added in different dosage rates to examine the change in properties of the in situ soil. Cement addition caused an increase in unconfined compression strength (UCS) throughout from 4% to 16% of cement. Moreover, it has been observed that by adding lime, the early strength of clay increases up to 6% of lime but for long term strength i.e. 28 days maximum strengths is achieved for 4% of lime. It also confirms that with more percentage of lime and longer duration of curing, it expands. In addition to the strength behavior of samples at various percentages of cement and lime, the deflection at failure point was also examined. In order to make a straight comparison, both cement and lime stabilized soils were also tested in laboratory. Generally, the performance of Portland cement-stabilized soils was advanced to lime in the experiments performed. (author)

  1. In vitro color stability of provisional restorative materials.

    Science.gov (United States)

    Jalali, Hamid; Dorriz, Hassan; Hoseinkhezri, Farzaneh; Emadian Razavi, S F

    2012-01-01

    Discoloration of provisional restorations can result in esthetic problems which are critically important in, for example, anterior areas and may compromise the acceptability of the restoration. The purpose of this study was to investigate the effect of tea on provisional restorative materials. This study was designed to measure the degree of color change of three acrylic resin provisional materials, before and after immersion in artificial saliva and artificial saliva-tea solution for 2 and 4 weeks. Three types of acrylic provisional materials (duralay, tempron, acropars TRP), were studied. Twenty disks (20 ± 0.1 mm by 2 ± 0.05 mm) were fabricated from each material. Specimens were polished with acrylic bur using pumice and diamond polishing paste. Base line color was measured using a spectrophotometer. Ten disks were stored in artificial saliva and 10 were stored in a solution of artificial saliva and tea at room temperature. Color measurements were made after 2 and 4 weeks of immersion. Differences in color changes were compared by two way ANOVA, across the six groups, followed by a Turkey-Kramer's multiple comparison test. For specimens immersed in artificial saliva, the color change of methyl methacrylate materials; duralay (ΔE=4.94) and tempron (ΔE=6.54), was significantly more than butyl methacrylate material; acropars (ΔE=4.10). After immersion in an artificial saliva- tea solution, tempron exhibited less color change (ΔE=8.50) compared to duralay (ΔE=10.93) and acropars (ΔE=15.64). Color stability of methyl methacrylate is higher than butyl methacrylates so if provisional materials are used for extended periods of time; tempron is preferred.

  2. BiOBr@SiO2 flower-like nanospheres chemically-bonded on cement-based materials for photocatalysis

    Science.gov (United States)

    Wang, Dan; Hou, Pengkun; Yang, Ping; Cheng, Xin

    2018-02-01

    Endowment of photocatalytic property on the surface of concrete structure can contribute to the self-cleaning of the structure and purification of the polluted environment. We developed a nano-structured BiOBr@SiO2 photocatalyst and innovatively used for surface-treatment of cement-based materials with the hope of attaining the photocatalytic property in visible-light region and surface modification/densification performances. The SiO2 layer on the flower-like BiOBr@SiO2 helps to maintain a stable distribution of the photocatalyst, as well as achieving a chemical bonding between the coating and the cement matrix. Results showed that the color fading rate of during the degradation of Rhodamine B dye of the BiOBr-cem sample is 2 times higher compared with the commonly studied C, N-TiO2-cem sample. The photo-degradation rates of samples BiOBr-cem and BiOBr@SiO2-cem are 93 and 81% within 150 min, respectively, while sample BiOBr@SiO2-cem reveals a denser and smoother surface after curing for 28 days and pore-filling effect at size within 0.01-0.2 μm when compared with untreated samples. Moreover, additional C-S-H gel can be formed due to the pozzolanic reaction between BiOBr@SiO2 and the hardened cement matrix. Both advantages of the BiOBr@SiO2 favor its application for surface-treatment of hardened cement-based material to acquire an improved surface quality, as well as durable photocatalytic functionality.

  3. The adhesive system and root canal region do not influence the degree of conversion of dual resin cement

    Directory of Open Access Journals (Sweden)

    Priscilla Cristoforides Pereira

    2010-10-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate the influence of two adhesive systems and the post space region on the degree of conversion of dual resin cement and its bond strength to root dentin. MATERIAL AND METHODS: One three-step etch-and-rinse (All-bond 2, Bisco and another one-step self-etch (Xeno III, Dentsply adhesive systems were applied on 20 (n=10 crownless bovine incisors, at 12-mm-deep post space preparation, and a fiber post (FRC Postec, Ivoclar was cemented using a dual cure resin cement (Duo-Link, Bisco. Three transverse sections (3 mm were obtained, being one from each study region (cervical, middle and apical. The degree of conversion of the dual cure resin cement was determined by a micro-Raman spectrometer. The data (% were submitted to repeated-measures analysis of variance and Tukey's test (p<0.05. RESULTS: For both groups, the degree of conversion means (% (All bond 2cervical = 69.3; All bond 2middle = 55.1; All bond 2apical= 56; Xeno III cervical = 68.7; Xeno IIImiddle = 68.8; Xeno III apical = 54.3 were not significantly different along the post space regions (p<0.05. CONCLUSION: Neither the adhesive nor the post space region influenced the degree of conversion of the cement layer.

  4. POF based smart sensor for studying the setting dynamics of cement paste

    International Nuclear Information System (INIS)

    Rajesh, M; Sheeba, M; Nampoori, V P N

    2007-01-01

    Fiber optic smart sensors are used to monitor the civil structures. One of the important parameters in civil engineering is the setting characteristics of concrete made of cement. The paper discusses how a simple polymer optical fiber can be used to characterise the setting dynamics of various grades of cement. The results explain the comparative performance of polymer fiber over silica fiber. The basic principle underlying the sensor is that as the cement sets, it exerts a stress on the sensing fiber, which is laid within the cement paste. This stress induces strain on the optical fiber, which can be thought of as a series of aperiodic microbends on the surface of the fiber. This in turn changes the characteristics of the light signal transmitted through the fiber and can be viewed as stress induced modulation of light in the fiber. By monitoring the intensity variation of transmitted light signal with time we can determine the cement setting rate. This can be used as an effective tool for quality testing of commercially available cements of different grades

  5. Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F

    Directory of Open Access Journals (Sweden)

    Tatiana Pyatina

    2016-05-01

    Full Text Available An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder.

  6. Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F.

    Science.gov (United States)

    Pyatina, Tatiana; Sugama, Toshifumi; Moon, Juhyuk; James, Simon

    2016-05-27

    An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm) and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder.

  7. Effect of different thermo-light polymerization on flexural strength of two glass ionomer cements and a glass carbomer cement.

    Science.gov (United States)

    Gorseta, Kristina; Borzabadi-Farahani, Ali; Moshaverinia, Alireza; Glavina, Domagoj; Lynch, Edward

    2017-07-01

    Whether polymerization lights can be used for heating glass ionomer cements (GICs) or glass carbomer (GCP) to improve their mechanical properties is not well established. The purpose of this in vitro study was to assess the effect of thermo-light polymerization on the flexural strength (FS) of 2 GICs (Fuji IX GP Fast, Ketac Molar) and a GCP. Specimens (n=10) were prepared in stainless steel molds (2×2×25 mm), compressed, exposed to 3 polymerization lights (500, 1000, 1200 mW/cm 2 ) for 2 cycles of 40 seconds on each side, and stored in petroleum jelly (37°C, 24 hours). Significant FS differences were detected among groups after different thermo-light polymerization regimens (F=50.926, df=11, Pthermo-light polymerization with power outputs of 1000 (127.1 ±25.8 MPa) and 1200 mW/cm 2 (117.4 ±18.5 MPa), with no significance difference between them (P=.98), compared with 500 mW/cm 2 (24.1 ±1.7 MPa). For Ketac Molar, compared with autopolymerization setting (15.5 ±3.1 MPa), a significant increase in mean FS (∼2.5 times) was only observed in specimens treated with 1200 mW/cm 2 polymerization light (P=.03). For Fuji IX GP Fast, only the light with 1000 mW/cm 2 output significantly increased the FS (98.9 ±23.4 MPa, PThermo-light polymerization accelerated the development of FS in the tested GICs, potentially protecting against saliva contamination during the first 3 to 4 minutes after mixing GIC. Thermo-light polymerization of the glass carbomer with power outputs of 1000 and 1200 mW/cm 2 also substantially increased FS. The clinical advantages of the findings should be validated by in vivo studies. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behavior.

    Science.gov (United States)

    Gandolfi, Maria Giovanna; Taddei, Paola; Siboni, Francesco; Modena, Enrico; Ciapetti, Gabriela; Prati, Carlo

    2011-07-01

    An innovative light-curable calcium-silicate cement containing a HEMA-TEGDMA-based resin (lc-MTA) was designed to obtain a bioactive fast setting root-end filling and root repair material. lc-MTA was tested for setting time, solubility, water absorption, calcium release, alkalinizing activity (pH of soaking water), bioactivity (apatite-forming ability) and cell growth-proliferation. The apatite-forming ability was investigated by micro-Raman, ATR-FTIR and ESEM/EDX after immersion at 37°C for 1-28 days in DPBS or DMEM+FBS. The marginal adaptation of cement in root-end cavities of extracted teeth was assessed by ESEM/EDX, and the viability of Saos-2 cell on cements was evaluated. lc-MTA demonstrated a rapid setting time (2min), low solubility, high calcium release (150-200ppm) and alkalinizing power (pH 10-12). lc-MTA proved the formation of bone-like apatite spherulites just after 1 day. Apatite precipitates completely filled the interface porosities and created a perfect marginal adaptation. lc-MTA allowed Saos-2 cell viability and growth and no compromising toxicity was exerted. HEMA-TEGDMA creates a polymeric network able to stabilize the outer surface of the cement and a hydrophilic matrix permeable enough to allow water absorption. SiO(-)/Si-OH groups from the mineral particles induce heterogeneous nucleation of apatite by sorption of calcium and phosphate ions. Oxygen-containing groups from poly-HEMA-TEGDMA provide additional apatite nucleating sites through the formation of calcium chelates. The strong novelty was that the combination of a hydraulic calcium-silicate powder and a poly-HEMA-TEGDMA hydrophilic resin creates the conditions (calcium release and functional groups able to chelate Ca ions) for a bioactive fast setting light-curable material for clinical applications in dental and maxillofacial surgery. The first and unique/exclusive light-curable calcium-silicate MTA cement for endodontics and root-end application was created, with a potential

  9. Shrinkage Characteristics of Experimental Polymer Containing Composites under Controlled Light Curing Modes

    Directory of Open Access Journals (Sweden)

    Alain Pefferkorn

    2012-01-01

    Full Text Available The adsorption of polymethylmethacrylate polymer of different molecular weight at the aerosil/ethyleneglycol- or 1,3 butanediol-dimethacrylate interfaces was determined to provide microstructured networks. Their structural characteristics were determined to be controlled by the amount of polymer initially supplied to the system. The sediment (the settled phase characteristics, determined as a function of the polymer concentration and the rate of the polymerization shrinkage determined for composite resins, obtained by extrusion of the sediment after centrifugation, were found to be correlated. The specific role of the adsorbed polymer was found to be differently perturbed with the supplementary supply of dimethacrylate based monomer additives. Particularly, the bisphenol A dimethacrylate that generated crystals within the sediment was found to impede the shrinkage along the crystal lateral faces and strongly limit the shrinkage along its basal faces. Addition of ethyleneglycol- or polyethylene-glycoldimethacrylate monomers was determined to modify the sedimentation characteristics of the aerosil suspension and the shrinkage properties of the composites. Finally, the effects of stepwise light curing methods with prolonged lighting-off periods were investigated and found to modify the development and the final values of the composite shrinkage.

  10. Factors affecting the leachability of caesium and strontium from cemented simulant evaporator wastes

    International Nuclear Information System (INIS)

    Lee, D.J.; Brown, D.J.

    1981-08-01

    Leach rates of stable cesium and strontium from a range of simulated evaporator waste/cement formulations have been determined. Important factors in plant operation are assessed for their effect on leach rates. Increasing the curing time and lowering the water/cement ratio has been shown to reduce leach rates by up to a factor of four. Incorporation of additives such as clays and supplementary cementatious materials can reduce leach rates by up to three orders magnitude, and coating the surface of the waste form with a neat cement grout can reduce the cesium leach rate by up to four orders of magnitude. The effects of permeability of the matrix and its cesium absorption capacity on the leach rates have been analysed qualitatively. (U.K.)

  11. Release of U(VI) from spent biosorbent immobilized in cement concrete blocks

    Energy Technology Data Exchange (ETDEWEB)

    Venkobachar, C.; Iyengar, L.; Mishra, U.K.; Chauhan, M.S. [Indian Inst. of Tech., Kanpur (India)

    1995-12-01

    This paper deals with cementation as the method for the disposal of spent biosorbent, Ganoderma lucidum (a wood rotting macrofungi) after it is used for the removal of Uranium. Results on the uranium release during the curing of cement-concrete (CC) blocks indicated that placing the spent sorbent at the center of the blocks during their casting yields better immobilization of uranium as compared to the homogeneous mixing of the spent sorbent with the cement. Short term leach tests indicated that the uranium release was negligible in simulated seawater, 1.8% in 0.2 N sodium carbonate and 6.0% in 0.2 N HCl. The latter two leachates were used to represent the extreme environmental conditions. It was observed that the presence of the spent biosorbent up to 5% by weight did not affect the compressive strength of CC blocks. Thus cementation technique is suitable for the immobilization of uranium loaded biosorbent for its ultimate disposal.

  12. Release of U(VI) from spent biosorbent immobilized in cement concrete blocks

    International Nuclear Information System (INIS)

    Venkobachar, C.; Iyengar, L.; Mishra, U.K.; Chauhan, M.S.

    1995-01-01

    This paper deals with cementation as the method for the disposal of spent biosorbent, Ganoderma lucidum (a wood rotting macrofungi) after it is used for the removal of Uranium. Results on the uranium release during the curing of cement-concrete (CC) blocks indicated that placing the spent sorbent at the center of the blocks during their casting yields better immobilization of uranium as compared to the homogeneous mixing of the spent sorbent with the cement. Short term leach tests indicated that the uranium release was negligible in simulated seawater, 1.8% in 0.2 N sodium carbonate and 6.0% in 0.2 N HCl. The latter two leachates were used to represent the extreme environmental conditions. It was observed that the presence of the spent biosorbent up to 5% by weight did not affect the compressive strength of CC blocks. Thus cementation technique is suitable for the immobilization of uranium loaded biosorbent for its ultimate disposal

  13. Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement

    Science.gov (United States)

    Knoell, A. C.; Maxwell, H. G. (Inventor)

    1977-01-01

    A method is described for adhering bone to the surface of a rigid substrate such as a metal or resin prosthesis using an improved surgical bone cement. The bone cement has mechanical properties more nearly matched to those of animal bone and thermal curing characteristics which result in less traumatization of body tissues and comprises a dispersion of short high modulus graphite fibers within a bonder composition including polymer dissolved in reactive monomer such as polymethylmethacrylate dissolved in methylmethacrylate monomer.

  14. Successful field implementation of novel cementing solution for ISC wells : case histories

    Energy Technology Data Exchange (ETDEWEB)

    Meher, R.K.; Suyan, K.M.; Dasgupta, D. [Society of Petroleum Engineers, Dubai (United Arab Emirates)]|[Oil and Natural Gas Corp. Ltd., Tel Bhavan, Dehradun (India); Deodhar, S.; Sharma, V.; Jain, V.K. [Oil and Natural Gas Corp. Ltd., Tel Bhavan, Dehradun (India)

    2008-10-15

    Cementation of in-situ combustion (ISC) wells is challenging since wells are frequently associated with weak and unconsolidated formation. However, cement rise up to surface is desired to prevent casing failure. Moreover, the cement sheath is also required to withstand extreme stresses due to high temperature cycling experienced during in-situ combustion process. In response to the problem of inadequate placement time and flash setting, Portland cement-silica blends were used for cementation of ISC wells in India instead of alumina cement blends. However, the use of the cement-silica blends has resulted in insufficient cement rise because of losses during cementation. The cured cement failed to contain the strength and permeability in course of ISC process causing charge of sub-surface shallower layers. This paper discussed the development and implementation of a non-alumina based thermally stable lightweight lead slurry and a ductile high temperature resistance tail slurry for mitigating these problems. The paper provided details of the study as well as four successful case histories. The cementing practice for ISC wells around the world was first described and illustrated. Next, the paper outlined the formulation of thermally stable tail slurry through laboratory studies. Slurry parameters of the tail slurry were presented, including slurry weight; thickening time; fluid loss; free fluid; and rheology. The paper also reviewed a study of compressive strength and permeability of thermal slurry; slurry parameters of the lightweight lead slurry; and study of compressive strength and permeability of lightweight thermal slurry. 8 refs., 4 tabs., 12 figs.

  15. Accelerated weathering of composite cements used for immobilisation

    International Nuclear Information System (INIS)

    Borges, P. H. R.; Milestone, N. B.; Streatfield, R. E.

    2008-01-01

    Trying to estimate the long-term durability of cemented waste-forms is a difficult task as the cement matrix is a reactive medium and interactions can occur with the encapsulated waste as well as with the environment. There are few studies of samples that have been stored under controlled conditions for more than 10-15 years. waste-forms are now being expected to last hundreds of years, much of that likely to be in some form of storage where sample integrity is important. There is also the concern that results from any long-term samples may only be indicative as both formulations and materials change with time. This paper discusses changes in physical properties that occur in composite cements when some of the short-term accelerated procedures employed in construction testing are applied to encapsulating matrices. Changes after increased temperature of curing, wetting/drying and accelerated carbonation are discussed. Many of the encapsulating formulations currently used are composite cements where large replacement levels of OPC with supplementary cementing materials (SCMs) such as PFA or BFS are made, primarily to reduce heat output. Accelerating the exposure conditions, either by increasing temperature or through wetting/drying has the effect of changing the hydration pattern of the composite cement by generating more hydration in the SCMs than would normally occur. The large amount of porosity that occurs because of limited hydration allows intrusion of gases and ready movement of water, so the samples subjected to accelerated testing do not appear as durable as expected if stored at ambient. (authors)

  16. Technology and the use of acrylics for provisional dentine protection.

    Science.gov (United States)

    Kapusevska, Biljana; Dereban, Nikola; Popovska, Mirjana; Nikolovska, Julijana; Radojkova Nikolovska, Vеrа; Zabokova Bilbilova, Efka; Mijoska, Aneta

    2013-01-01

    Acrylics are compounds polymerized from monomers of acrylic, metacrylic acid or acrylonitrates. The purpose of this paper is to present the technology and use of acrylics for provisional dentine protection in the practice of dental prosthodontics. For this reason, we followed 120 clinical cases from the everyday clinical practice, divided into 4 groups of 30 patients who needed prosthetic reconstruction. The first group included cases in which we applied celluloid crowns for dentine protection, for the second group we used acrylic teeth from a set of teeth for complete dentures; in the third and fourth groups the fabrication was done with the system of an impression matrix and the acrylic resin block technique respectively. In all the examined patients, the gingival index by Silness and Loe and the vitality of the dental pulp were verified clinically, after preparation and 8 days from the placement of the provisional crown. The value for dental sensitivity measured after preparation was 2.59, and 8 days after the placement of the provisional crown it bwas 3.1. From these results we can conclude that after the 8th day from the placement of the provisional crown, there was an adaptation period, characterized by a decrease in the painful sensations. The value of the Silness and Loe gingival index measured after the preparation was 1.34, and 8 days from the placement of the provisional crown was 0.94. The results inclined us to the fact that the provisional acrylic crowns facilitated the reparation of the periodontal tissue.

  17. The effects of silica fume and hydrated lime on the strength development and durability characteristics of concrete under hot water curing condition

    Directory of Open Access Journals (Sweden)

    Hamza Ali

    2017-01-01

    Full Text Available Sustainability is considered to be highly important for preserving continued industrial growth and human development. Concrete, being the world’s largest manufacturing material comprises cement as an essential binding component for strength development. However, excessive production of cement due to high degree of construction practices around the world frames cement as a leading pollutant of releasing significant amounts of CO2 in the atmosphere. To overcome this environmental degradation, silica fume and hydrated lime are used as partial replacements to cement. This paper begins with the examination of the partial replacement levels of hydrated lime and silica fume in concrete and their influence on the mechanical properties and durability characteristics of concrete. The effect of hot water curing on concrete incorporated with both silica fume and hydrated lime is also investigated in this paper. The results reported in this paper show that the use of silica fume as a partial replacement material improved both the mechanical properties and durability characteristics of concrete due to the formation of calcium silica hydrate crystals through the pozzolanic reaction. Although the hydrated lime did not significantly contribute in the development of strength, its presence enhanced the durability of concrete especially at long-term. The results also showed that hot water curing enhanced the strength development of concrete incorporated with silica fume due to the accelerated rate of both the hydration and pozzolanic reaction that takes place between silica fume and calcium hydroxide of the cement matrix particularly at early times. The results reported in this paper have significant contribution in the development of sustainable concrete. The paper does not only address the use of alternative binders as a partial replacement material in concrete but also suggest proper curing conditions for the proposed replacement materials. These practices

  18. Retrospective study investigating the clinical success of two provisional implant systems

    OpenAIRE

    Hotz, Nadine

    2011-01-01

    The use of dental implants allows a reliable stabilisation of prosthesis. Usually, definitive implants can´t be used for fixation of prosthesis during their healing period. Therefore, in many cases it is not possible to follow the demand of patients of an immediate loading of definitive implants to avoid a unfixed dental prosthesis. This is one domain of provisional dental implants. The present study of two provisional implant systems approves the benefit of provisional implants during...

  19. In vitro comparative evaluation of mechanical properties of temporary restorative materials used in fixed partial denture

    Directory of Open Access Journals (Sweden)

    D Saisadan

    2016-01-01

    Full Text Available Introduction: Materials used to fabricate provisional restorations can be classified as acrylics or resin composites. Provisional crows can be either prefabricated or custom made. Acrylics: These materials have been used to fabricate provisional restorations since the 1930s and usually available as powder and liquid. They are the most commonly used materials today for both single-unit and multiple-unit restorations. In general, their popularity is due to their low cost, acceptable esthetics, and versatility. Composites: Composite provisional materials use bis-acryl resin, a hydrophobic material that is similar to bis-GMA. Composites are available as auto-polymerized, dualpolymerized and visible light polymerized. Preformed Crowns: Preformed provisional crowns or matrices usually consist of tooth-shaped shells of plastic, cellulose acetate or metal. They are commercially available in various tooth sizes and are usually selected for a particular tooth anatomy. They are commonly relined with acrylic resin to provide a more custom fit before cementation, but the plastic and metal crown shells can also be cemented directly onto prepared teeth. Aims and Objectives: The aim of this study is to choose a material to serve as a better interim prosthesis and to compare three different properties – flexural strength, compressive strength, and color stability. Materials and Methods: The samples were made with three different provisional materials (Revotek LC, Protemp 4, TemSpan. Result: It was inferred from the study that no one material was superior in all three tested parameters.

  20. A cure for HIV: is it in sight?

    Science.gov (United States)

    Pace, Matthew; Frater, John

    2014-07-01

    HIV is a devastating disease affecting millions of people worldwide despite the advent of successful antiretroviral therapy (ART). However, ART does not result in a cure and has to be taken for life. Accordingly, researchers are turning towards cure efforts, particularly in the light of two patients whose HIV has been seemingly eradicated. Numerous approaches and strategies have been considered for curing HIV, but no scalable and safe solution has yet been reached. With newly discovered difficulties in measuring the HIV reservoir, the main barrier to a cure, the only true test of cure is to stop ART and see whether the virus becomes detectable. However, it is possible that this treatment interruption may be associated with certain risks for patients. Here, we compare the current major approaches and recent advances for curing HIV, as well as discuss ways of evaluating HIV cure and the safety concerns involved.

  1. Provisional matrix: A role for versican and hyaluronan.

    Science.gov (United States)

    Wight, Thomas N

    2017-07-01

    Hyaluronan and versican are extracellular matrix (ECM) components that are enriched in the provisional matrices that form during the early stages of development and disease. These two molecules interact to create pericellular "coats" and "open space" that facilitate cell sorting, proliferation, migration, and survival. Such complexes also impact the recruitment of leukocytes during development and in the early stages of disease. Once thought to be inert components of the ECM that help hold cells together, it is now quite clear that they play important roles in controlling cell phenotype, shaping tissue response to injury and maintaining tissue homeostasis. Conversion of hyaluronan-/versican-enriched provisional matrix to collagen-rich matrix is a "hallmark" of tissue fibrosis. Targeting the hyaluronan and versican content of provisional matrices in a variety of diseases including, cardiovascular disease and cancer, is becoming an attractive strategy for intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A multi-technique investigation of the nanoporosity of cement paste

    International Nuclear Information System (INIS)

    Jennings, Hamlin M.; Thomas, Jeffrey J.; Gevrenov, Julia S.; Constantinides, Georgios; Ulm, Franz-Josef

    2007-01-01

    The nanometer-scale structure of cement paste, which is dominated by the colloidal-scale porosity within the C-S-H gel phase, has a controlling effect on concrete properties but is difficult to study due to its delicate structure and lack of long-range order. Here we present results from three experimental techniques that are particularly suited to analyzing disordered nanoporous materials: small-angle neutron scattering (SANS), weight and length changes during equilibrium drying, and nanoindentation. Particular attention is paid to differences between pastes of different ages and cured at different temperatures. The SANS and equilibrium drying results indicate that hydration of cement paste at 20 deg. C forms a low-density (LD) C-S-H gel structure with a range of gel pore sizes and a relatively low packing fraction of solid particles. This fine structure may persist indefinitely under saturated conditions. However, if the paste is dried or is cured at elevated temperatures (60 deg. C or greater) the structure collapses toward a denser (less porous) and more stable configuration with fewer large gel pores, resulting in a greater amount of capillary porosity. Nanoindentation measurements of pastes cured at different temperatures demonstrate in all cases the existence of two C-S-H structures with different characteristic values of the indentation modulus. The average value of the modulus of the LD C-S-H is the same for all pastes tested to date, and a micromechanical analysis indicates that this value corresponds to the denser and more stable configuration of LD C-S-H. The experimental results presented here are interpreted in terms of a previously proposed quantitative 'colloid' model of C-S-H gel, resulting in an improved understanding of the microstructural changes associated with drying and heat curing

  3. Evaluation of the effect of various beverages and food material on the color stability of provisional materials - An in vitro study.

    Science.gov (United States)

    Gupta, Gaurav; Gupta, Tina

    2011-07-01

    THIS STUDY EVALUATED THE COLOR STABILITY OF FOUR PROVISIONAL MATERIALS: 1) Poly-methyl methacrylates (DPI); 2) Bis-acryl composite (ProtempTM II - 3M ESPE); 3) Bis-acryl composite (Systemp® c and b - Ivoclar Vivadent) and 4) Light polymerized composite resin (Revotek LC- GC). The color and color difference of each specimen after immersion in different staining solutions i.e. 1) tea and artificial saliva, 2) coffee and artificial saliva, 3) Pepsi and artificial saliva, 4) turmeric solution and artificial saliva was measured using reflectance spectrophotometer with CIELAB system before immersion and after immersion at 2, 5 ,7 , 10 and 15 days. Revotek LC- GC (light polymerized composite resin) was found to be the most color stable provisional restorative material followed by Protemp II (Bis-acryl composite), Systemp (Bis-acryl composite) and DPI (Methylmethacrylate resin). Turmeric solution had the maximum staining potential followed by coffee, tea and Pepsi.

  4. New-generation curing units and short irradiation time: the degree of conversion of microhybrid composite resin.

    Science.gov (United States)

    Scotti, Nicolla; Venturello, Alberto; Migliaretti, Giuseppe; Pera, Francesco; Pasqualini, Damiano; Geobaldo, Francesco; Berutti, Elio

    2011-09-01

    This in vitro study investigated the depth of cure of a microhybrid composite resin when cured with reduced times of exposure to three commercially available curing lights. Different sample thicknesses (1, 2, and 3 mm) were light cured in high intensity polymerization mode (2,400 mW/cm² for 5, 10, 15, and 20 seconds; 1,100 mW/cm² for 10, 20, 30, and 40 seconds; and 1,100 mW/cm² for 10, 20, 30, and 40 seconds, respectively). The degree of conversion (%) at the bottom of each sample was measured by Attenuated Total Reflection Fourier Transform Infrared (ATR F-TIR) analysis after each polymerization step. Data were analyzed by ANOVA for repeated measures, showing the degree of conversion was not influenced by the curing light employed (P = .622) but was significantly influenced by the thickness of composite resin (P conversion vs the shorter irradiation time permitted (T1) were not significant among different lamps but were significant among different thicknesses. The depth of cure of microhybrid composite resin appears not to be influenced by the curing light employed. Increased irradiation time significantly increases the degree of conversion. Thickness strongly influences depth of cure.

  5. Strength characteristics of lightly solidified dredged marine clay admixed with bentonite

    Science.gov (United States)

    Ariffin, Syazwana Tajul; Chan, Chee-Ming

    2017-11-01

    Strength characteristic is a significant parameter in measuring the effect of soil improvement and effective composition of solidification. In this study, the dredged marine sediment (DMS) collected from Kuala Perlis (Malaysia) was examined to determine its strength characteristics under light cement solidification with bentonite. Dredged marine clay generally has the low shear strength and high void ratio, and consists mainly of soil particles of the fine-grained type. As a discarded geo-waste, it can be potentially treated to for reuse as a backfill material instead of being disposed of, hence reducing the negative impact on the environment. Physico-chemical parameters of the dredged sample were first determined, then solidification was carried out to improve the engineering properties by admixing ordinary Portland cement (OPC) as the binder and bentonite as a volume enhancer to the soil. The DMS was treated with the addition of 3 % and 6 % cement and bentonite within the range of 0-30 %. The specimens were cured at room temperature for 3, 7 and 14 days. The strength gain was measured by unconfined compression test and vane shear test. The laboratory test results were analyzed to establish the relationship between strength properties and solidification specifications. In summary, the strength of specimens increased with the increase of the quantity of bentonite and cement to get the effective composition of the specimen.

  6. Influence of MWCNT/surfactant dispersions on the mechanical properties of Portland cement pastes

    Science.gov (United States)

    Rodríguez, B.; Quintero, J. H.; Arias, Y. P.; Mendoza-Reales, O. A.; Ochoa-Botero, J. C.; Toledo-Filho, R. D.

    2017-12-01

    This work studies the reinforcing effect of Multi Walled Carbon Nanotubes (MWCNT) on cement pastes. A 0.35% solid concentration of MWCNT in powder was dispersed in deionized water with sodium dodecyl sulfate (cationic surfactant), cetylpyridinium chloride (anionic surfactant) and triton X-100 (amphoteric surfactant) using an ultrasonic tip processor. Three concentrations of each surfactant (1mM, 10mM and 100mM) were tested, and all samples were sonicated until an adequate dispersion degree was obtained. Cement pastes with additions of carbon nanotubes of 0.15% by mass of cement were produced in two steps; first the dispersions of MWCNT were combined with the mixing water using an ultrasonic tip processor to guarantee homogeneity, and then cement was added and mixed until a homogeneous paste was obtained. Direct tensile strength, apparent density and open porosity of the pastes were measured after 7 days of curing. It was found that the MWCNT/surfactants dispersions decrease the mechanical properties of the cement based matrix due to an increased porosity caused by the presence of surfactants.

  7. Influence of light-exposure methods and depths of cavity on the microhardness of dual-cured core build-up resin composites

    Directory of Open Access Journals (Sweden)

    Keiichi YOSHIDA

    2014-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the Knoop hardness number (KHN of dual-cured core build-up resin composites (DCBRCs at 6 depths of cavity after 3 post-irradiation times by 4 light-exposure methods. Material and Methods: Five specimens each of DCBRCs (Clearfil DC Core Plus [DCP] and Unifil Core EM [UCE] were filled in acrylic resin blocks with a semi-cylindrical cavity and light-cured using an LED light unit (power density: 1,000 mW/cm2at the top surface by irradiation for 20 seconds (20 s, 40 seconds (40 s, bonding agent plus 20 seconds (B+20 s, or 40 seconds plus light irradiation of both sides of each acrylic resin block for 40 seconds each (120 s. KHN was measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours, 24 hours, and 7 days post-irradiation. Statistical analysis was performed using repeated measures ANOVA and Tukey's compromise post-hoc test with a significance level of p0.05. In DCP, and not UCE, at 24 hours and 7 days post-irradiation, the B+20 s method showed significantly higher KHN at all depths of cavity, except the depth of 0.5 mm (p<0.05. Conclusion: KHN depends on the light-exposure method, use of bonding agent, depth of cavity, post-irradiation time, and material brand. Based on the microhardness behavior, DCBRCs are preferably prepared by the effective exposure method, when used for a greater depth of cavity.

  8. Influence of curing conditions on the sorptivity and weight change characteristics of self-compacting concrete

    International Nuclear Information System (INIS)

    Caliskan, S.

    2006-01-01

    This paper reports on a study carried out to investigate the influence of curing conditions on the capillary water absorption and weight change characteristics of self compacting concrete (SCC). Specimens were prepared using three types of concrete (SCC, Portland cement (PC), Fly ash (FA) concretes) and were cured under three different curing conditions (20C water and 20C and 40C air cure) for 28 days. Weight gain (water intake) in water curing and weight loss (water loss) in 20C and 40C air curing were recorded throughout the curing period. Compressive strength, water absorption and capillary water absorption tests were carried out at 28 days. The results indicated that FA concrete gained about 0.5% whilst PC and self-compacting concretes gained about 1.0% of the initial weight. This indicates that due to the slower reaction process more free water remains within FA concrete avoiding further water intake. In the weight loss study, FA concrete lost about 4.0% and 6.0% of the initial weight at 20C and 40C air curing, respectively; whereas SCC and PC concretes (both had almost identical values) lost about 3.2 and 5.2% at 20C and 40C, respectively. The absorption test results indicated that SCC gave the lowest captivity coefficient values followed by PC and FA concretes in all curing conditions. (author)

  9. Improvement of Shear Strength of Sandy Soil by Cement Grout with Fly Ash

    Directory of Open Access Journals (Sweden)

    Haifaa Abdulrasool Ali

    2018-12-01

    Full Text Available The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51 cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c; (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c, while the soil samples were dehydrated for one day curing time. Fly ash class (F was used with cement grout as filler material; it was added to the mixture as a replacement material for cement in weight percentages; 10%, 25% and 40%. According to the results of tests, both shear strength and approximate volume of the effective grouted zone for treated samples soil with cement grout was increased when the water cement ratio decreased. Fly ash with cement grout needs to increase the water demand for the grout mixing to give best results in both shear strength and filling the soil voids.

  10. Nanoscale studies of cement chemistry with 15N resonance reaction analysis

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Livingston, Richard A.; Rolfs, Claus; Becker, Hans-Werner; Kubsky, Stefan; Spillane, Timothy; Castellote, Marta; Viedma, Paloma G. de

    2005-01-01

    Analyses of materials with ion beams have proven to be a valuable technique for describing the spatial distributions of specific elements in host materials. We have applied this technique using the 15 N(p, αγ) 12 C reaction to study the time dependence of the chemical reactions involved in the curing of cement. By using the Dynamitron Tandem accelerator at the Ruhr Universitaet, Bochum, Germany, we have been able to achieve a few nanometer spatial resolution at the surface of cement grains and to study the hydrogen distributions to a depth of about 2 μm. By applying a technique for stopping the chemical reactions at arbitrary times, the time dependence of the chemical reactions involving specific components of cement can be investigated. In addition, the effects of additives on the chemical reactions have been studied, as have materials that are components of concrete

  11. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  12. The Optimization of Immobilization for the Low-Activity Waste of theEvaporation Product with Cement

    International Nuclear Information System (INIS)

    Supardi

    2000-01-01

    The experimental investigation of immobilization the low active wasteconcentration containing 2.44x10 -3 μCi/cc a great deal of NaNO 3 withcement was done. The immobilization process was carried out by mixing cement,water, concentrate, and Ca-bentonite with a given ratio within a glassbeaker. The mixture was then stirred with an electrical hand mixer untilhomogeneous. The studied immobilization condition were the influences of theweight ratio water to cement, the weight ratio of concentrate to cement withwhich the concentrate pH was varied, and the influence of the addition ofCa-bentonite (% in weight) with the optimum pH of concentrate. The sample inthe container with the size of 2.54 cm in diameter and 3.0 cm in height wasmade of polyethylene and was covered by a tight lid and was cured for 28days. After the sample was cured for 28 days and then it was taken out of thecontainer. This sample quality was ready for being tested. The quality ofcementation product tested compressive strength, density, chemical stability,irradiation stability and thermal stability. The optimum results ofinvestigation were the weight ratio of water to cement = 0.30, thecompressive strength of 30.37 N/mm 2 . For the immobilization of the waste andcement with the optimum pH being used, yielded in the compressive strength of28.07 N/mm 2 . Further more from the condition of waste and cement at theoptimum pH which was added by the optimum Ca-bentonite gained the compressivestrength of 33.64 N/mm 2 before irradiation, where as after irradiation thecompressive strength was 32.41 N/mm 2 . The optimum thermal test resultachieved was 250 o C with the compressive strength of 44.10 N/mm 2 . For theleaching test results after being cured for 91 days in the distilled watermedia was 0.47x10 -4 gcm -2 day -1 , while in the sea water was 0.66x10 -4 gcm -2 day -1 . Water medium activity until 91 days = 3.1x10 -7 μCi/cc,MPC from ICRP = 8.1x10 -7 μCi/cc. The experimental investigation ofcemented waste

  13. VSRR Provisional Drug Overdose Death Counts

    Data.gov (United States)

    U.S. Department of Health & Human Services — This data contains provisional counts for drug overdose deaths based on a current flow of mortality data in the National Vital Statistics System. National...

  14. Effect of ceramic thickness and shade on mechanical properties of a resin luting agent.

    Science.gov (United States)

    Passos, Sheila Pestana; Kimpara, Estevão Tomomitsu; Bottino, Marco Antonio; Rizkalla, Amin S; Santos, Gildo Coelho

    2014-08-01

    This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement. Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3 mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05). The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade. The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used. Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations. © 2014 by the American College of Prosthodontists.

  15. Assessment of Physical and Mechanical Properties of Cement Panel Influenced by Treated and Untreated Coconut Fiber Addition

    Science.gov (United States)

    Abdullah, Alida; Jamaludin, Shamsul Baharin; Anwar, Mohamed Iylia; Noor, Mazlee Mohd; Hussin, Kamarudin

    This project was conducted to produce a cement panel with the addition of treated and untreated coconut fiber in cement panel. Coconut fiber was added to replace coarse aggregate (sand) in this cement panel. In this project, the ratios used to design the mixture were 1:1:0, 1:0.97:0.03, 1:0.94:0.06, 1:0.91:0.09 (cement: sand: coconut fiber). The water cement ratio was constant at 0.55. The sizes of sample tested were, 160 mm x 40 mm x 40 mm for compression test, and 100 mm x 100 mm x 40 mm for density, moisture content and water absorption tests. After curing samples for 28 days, it was found that the addition of coconut fiber, further increase in compressive strength of cement panel with untreated coconut fiber. Moisture content of cement panel with treated coconut fiber increased with increasing content of coconut fiber whereas water absorption of cement panel with untreated coconut fiber increased with increasing content of coconut fiber. The density of cement panel decreased with the addition of untreated and treated coconut fiber.

  16. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Directory of Open Access Journals (Sweden)

    Roberto De Santis

    2018-03-01

    Full Text Available Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design/CAM (computer-aided manufacturing assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance.

  17. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Science.gov (United States)

    De Santis, Roberto; Gloria, Antonio; Maietta, Saverio; Martorelli, Massimo; De Luca, Alessandro; Spagnuolo, Gianrico; Riccitiello, Francesco; Rengo, Sandro

    2018-01-01

    Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED) curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design)/CAM (computer-aided manufacturing) assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance. PMID:29584683

  18. Effect of ultraviolet light irradiation and sandblasting treatment on bond strengths between polyamide and chemical-cured resin.

    Science.gov (United States)

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of this study was to evaluate the effects of ultraviolet light (UV) irradiation and sandblasting treatment on the shear bond strength between polyamide and chemical-cured resin. Three types of commercial polyamides were treated using UV irradiation, sandblasting treatment, and a combining sandblasting and UV irradiation. The shear bond strength was measured and analyzed using the Kruskal-Wallis test (α=0.05). Comparing shear bond strengths without surface treatment, from 4.1 to 5.7 MPa, the UV irradiation significantly increased the shear bond strengths except for Valplast, whose shear bond strengths ranged from 5.2 to 9.3 MPa. The sandblasting treatment also significantly increased the shear bond strengths (8.0 to 11.4 MPa). The combining sandblasting and UV irradiation significantly increased the shear bond strengths (15.2 to 18.3 MPa) comparing without surface treatment. This combined treatment was considered the most effective at improving the shear bond strength between polyamide and chemical-cured resin.

  19. A resin composite material containing an eugenol derivative for intracanal post cementation and core build-up restoration.

    Science.gov (United States)

    Almaroof, A; Rojo, L; Mannocci, F; Deb, S

    2016-02-01

    To formulate and evaluate new dual cured resin composite based on the inclusion of eugenyl methacrylate monomer (EgMA) with Bis-GMA/TEGDMA resin systems for intracanal post cementation and core build-up restoration of endodontically treated teeth. EgMA was synthesized and incorporated at 5% (BTEg5) or 10% (BTEg10) into dual-cure formulations. Curing properties, viscosity, Tg, radiopacity, static and dynamic mechanical properties of the composites were determined and compared with Clearfil™DC Core-Plus, a commercial dual-cure, two-component composite. Statistical analysis of the data was performed with ANOVA and the Tukey's post-hoc test. The experimental composites were successfully prepared, which exhibited excellent curing depths of 4.9, 4.7 and 4.2 mm for BTEg0, BTEg5 and BTEg10 respectively, which were significantly higher than Clearfil™DC. However, the inclusion of EgMA initially led to a lower degree of cure, which increased when measured at 24 h with values comparable to formulations without EgMA, indicating post-curing. The inclusion of EgMA also lowered the polymerization exotherm thereby reducing the potential of thermal damage to host tissue. Both thermal and viscoelastic analyses confirmed the ability of the monomer to reduce the stiffness of the composites by forming a branched network. The compressive strength of BTEg5 was significantly higher than the control whilst flexural strength increased significantly from 95.9 to 114.8 MPa (BTEg5) and 121.9 MPa (BTEg10). Radiopacity of the composites was equivalent to ∼3 mm Al allowing efficient diagnosis. The incorporation of EgMA within polymerizable formulations provides a novel approach to prepare reinforced resin composite material for intracanal post cementation and core build-up and the potential to impart antibacterial properties of eugenol to endodontic restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. The provisional matrix: setting the stage for tissue repair outcomes.

    Science.gov (United States)

    Barker, Thomas H; Engler, Adam J

    2017-07-01

    Since its conceptualization in the 1980s, the provisional matrix has often been characterized as a simple fibrin-containing scaffold for wound healing that supports the nascent blood clot and is functionally distinct from the basement membrane. However subsequent advances have shown that this matrix is far from passive, with distinct compositional differences as the wound matures, and providing an active role for wound remodeling. Here we review the stages of this matrix, provide an update on the state of our understanding of provisional matrix, and present some of the outstanding issues related to the provisional matrix, its components, and their assembly and use in vivo. Copyright © 2017. Published by Elsevier B.V.

  1. Do light cured ART conventional high-viscosity glass-ionomer sealants perform better than resin-composite sealants: a 4-year randomized clinical trial

    NARCIS (Netherlands)

    Zhang, W.; Chen, X.; Fan, M.W.; Mulder, J.; Huysmans, M.C.D.N.J.M.; Frencken, J.E.F.M.

    2014-01-01

    OBJECTIVE: The hypotheses tested were: the cumulative survival rates of dentin caries lesion-free pits and fissures of ART conventional high-viscosity glass-ionomer sealants with light-curing (high-intensity LED) and glass-carbomer sealants are higher than those of conventional ART sealants and

  2. Effect of Curing Direction on Microtensile Bond Strength of Fifth and Sixth Generation Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ali Nadaf

    2012-09-01

    Full Text Available Background and Aims: Composite restorative materials and dental adhesives are usually cured with light sources. The light direction may influence the bond strength of dental adhesives. The aim of this study was to evaluate the effect of light direction on the microtensile bond strength of fifth and sixth generation dental adhesives.Materials and Methods: Prime & Bond NT and Clearfil SE bond were used with different light directions.Sixty human incisor teeth were divided into 4 groups (n=15. In groups A and C, Clearfil SE bond with light curing direction from buccal was used for bonding a composite resin to dentin. In groups B and D, Prime & Bond NT with light curing direction from composite was used. After thermocycling the specimens were subjected to tensile force until debonding occurred and values for microtensile bond strength were recorded. The data were analyzed using two-way ANOVA and Tukey post hoc test.Results: The findings showed that the bond strength of Clearfil SE bond was significantly higher than that of Prime&Bond NT (P<0.001. There was no significant difference between light curing directions (P=0.132.Conclusion: Light curing direction did not have significant effect on the bond strength. Sixth generation adhesives was more successful than fifth generation in terms of bond strength to dentin.

  3. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    Energy Technology Data Exchange (ETDEWEB)

    Schroefl, Christof, E-mail: christof.schroefl@tu-dresden.de [Technische Universität Dresden, Fakultät Bauingenieurwesen, Institut für Baustoffe, DE-01062 Dresden (Germany); Mechtcherine, Viktor [Technische Universität Dresden, Fakultät Bauingenieurwesen, Institut für Baustoffe, DE-01062 Dresden (Germany); Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard [Paul Scherrer Institut, Laboratory for Neutron Scattering and Imaging, CH-5232 Villigen/AG (Switzerland)

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.

  4. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    International Nuclear Information System (INIS)

    Schroefl, Christof; Mechtcherine, Viktor; Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard

    2015-01-01

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1

  5. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications.

    Science.gov (United States)

    Paz, E; Forriol, F; Del Real, J C; Dunne, N

    2017-08-01

    Graphene (G) and graphene oxide (GO) nano-sized powders with loadings ranging from 0.1 to 1.0wt% were investigated as reinforced agents for polymethyl methacrylate (PMMA) bone cements. The mechanical properties (i.e. bend strength, bend modulus, compression strength, fracture toughness and fatigue performance) and the thermal properties (i.e. maximum temperature, setting time, curing heat and residual monomer) of the resultant nanocomposites were characterised. The mechanical performance of G-PMMA and GO-PMMA bone cements has been improved at low loadings (≤0.25wt%), especially the fracture toughness and fatigue performance. These improvements were attributed to the fact that the G and GO induced deviations in the crack fronts and hampered crack propagation. The high functionalisation of GO compared with G resulted in greater enhancements because it facilitated the creation of a stronger interfacial adhesion between the GO and PMMA. The use of loadings ≥0.25wt% showed a detriment in the mechanical performance as consequence of the formation of agglomerates as well as to an increase in the porosity. The increase in the residual monomer and the decrease in the curing heat, observed with the increase in the level of G and GO added, suggests that such materials retard and inhibit the curing reaction at high levels of loading by interfering in the radical reaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cementing Material From Rice Husk-Broken Bricks-Spent Bleaching Earth-Dried Calcium Carbide Residue

    Directory of Open Access Journals (Sweden)

    Muthengia Jackson Washira

    2012-10-01

    Full Text Available A cementious material, coded CSBR (Carbide residue Spent bleaching earth Broken bricks and Rice husks, was made from dried calcium carbide residue (DCCR and an incinerated mix of rice husks (RH, broken bricks (BB and spent bleaching earth (SBE. Another material, coded SBR (Spent bleaching earth Broken bricks and Rice husk ash, was made from mixing separately incinerated RH, SBE and ground BB in the same ash ratio as in CSBR. When CSBR was inter-ground with Ordinary Portland Cement (OPC, it showed a continued decrease in Ca(OH2 in the hydrating cement as a function of curing time and replacement levels of the cement. Up to 45 % replacement of the OPC by CSBR produced a Portland pozzolana cement (PPC material that passed the relevant Kenyan Standard. Incorporation of the CSBR in OPC reduces the resultant calcium hydroxide from hydrating Portland cement. The use of the waste materials in production of cementitious material would rid the environment of wastes and lead to production of low cost cementitious material.

  7. Provisional prostheses during ridge augmentation and implant dentistry.

    Science.gov (United States)

    Livada, Rania; Hottel, Timothy L; Shiloah, Jacob

    2013-01-01

    Recent advancements in ridge augmentation and bone regeneration have expanded the pool of patients that could benefit from dental implants. However, providing the patient with a temporary prosthesis during the wound healing phase without impairing the process is a challenging task. This article summarizes available information pertaining to provisional prostheses, both tooth-supported and soft tissue-supported, that may meet the patient needs. The advantages and disadvantages of each class of prosthesis, along with indications and contraindications, were taken into consideration to aid the restorative dentist in choosing the optimal provisional for their patients.

  8. LED and Halogen Light Transmission through a CAD/CAM Lithium Disilicate Glass-Ceramic.

    Science.gov (United States)

    Pereira, Carolina Nemesio de Barros; De Magalhães, Cláudia Silami; Daleprane, Bruno; Peixoto, Rogéli Tibúrcio Ribeiro da Cunha; Ferreira, Raquel da Conceição; Cury, Luiz Alberto; Moreira, Allyson Nogueira

    2015-01-01

    The effect of thickness, shade and translucency of CAD/CAM lithium disilicate glass-ceramic on light transmission of light-emitting diode (LED) and quartz-tungsten-halogen units (QTH) were evaluated. Ceramic IPS e.max CAD shades A1, A2, A3, A3.5, high (HT) and low (LT) translucency were cut (1, 2, 3, 4 and 5 mm). Light sources emission spectra were determined. Light intensity incident and transmitted through each ceramic sample was measured to determine light transmission percentage (TP). Statistical analysis used a linear regression model. There was significant interaction between light source and ceramic translucency (p=0.008) and strong negative correlation (R=-0.845, pceramic thickness and TP. Increasing one unit in thickness led to 3.17 reduction in TP. There was no significant difference in TP (p=0.124) between shades A1 (ß1=0) and A2 (ß1=-0.45) but significant reduction occurred for A3 (ß1=-0.83) and A3.5 (ß1=-2.18). The interaction QTH/HT provided higher TP (ß1=0) than LED/HT (ß1=-2.92), QTH/LT (ß1=-3.75) and LED/LT (ß1=-5.58). Light transmission was more effective using halogen source and high-translucency ceramics, decreased as the ceramic thickness increased and was higher for the lighter shades, A1 and A2. From the regression model (R2=0.85), an equation was obtained to estimate TP value using each variable ß1 found. A maximum TP of 25% for QTH and 20% for LED was found, suggesting that ceramic light attenuation could compromise light cured and dual cure resin cements polymerization.

  9. INFLUENCE OF SILICEOUS AND CALCAREOUS FLY-ASHES ON PROPERTIES OF CEMENT MORTARS

    Directory of Open Access Journals (Sweden)

    Gabriela Monika Rutkowska

    2016-09-01

    Full Text Available Care of the environment in accordance with the principles of sustainable development introduces the possibility and need for waste recycling. Construction and building industries have the greatest potential for reuse of waste. The article presents the results of investigations of cement mortars – tests of compressive and tensile strength after 28 and 56 days of curing – for normative mortars and mortars containing fly ashes – calcareous and siliceous ash – in their composition. To make the samples, the Portland cement CEM I 32,5 R, 42,5R and natural aggregate with graining of 0–2 mm were used. Concrete with siliceous and calcareous admixtures was made in six lots where the ash was added in the quantity of 2%, 5%, 10% of the cement mass or the 2%, 5%, 10% of cement was replaced by ashes. After the tests, it was stated that the siliceous fly-ash admixture increases the compressive and bending strength in comparison to the mortars with the calcareous ash admixtures.

  10. Electron-beam curing of paints and varnishes on wood panels

    International Nuclear Information System (INIS)

    Grosmaire, P.R.

    1977-01-01

    An analysis is presented of the relative costs of curing polyester coated wood panels using (a) the conventional peroxide cure, (b) treatment with UV light, or (c) electron beams. Electron treatment is shown to compare very favourably with either of the other treatments. (U.K.)

  11. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    Science.gov (United States)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  12. Easy Debonding of Ceramic Brackets Bonded with a Light-Cured Orthodontic Adhesive Containing Microcapsules with a CO2 Laser.

    Science.gov (United States)

    Arima, Shiori; Namura, Yasuhiro; Tamura, Takahiko; Shimizu, Noriyoshi

    2018-03-01

    An easy debonding method for ceramic brackets using a light-cured Bis-GMA resin containing heat-expandable microcapsules and CO 2 laser was investigated. Ceramic brackets are used frequently in orthodontic treatment because of their desirable esthetic properties. However, the application of heavy force to ceramic brackets in debonding can fracture the tooth enamel and ceramic brackets, causing tooth pain. In total, 60 freshly extracted bovine permanent mandibular incisors were divided randomly into 10 groups of 6 specimens each, corresponding to the number of variables tested. Ceramic brackets were bonded to bovine permanent mandibular incisors using an orthodontic bonding agent containing heat-expandable microcapsules at different levels (0-30 wt%) and resin composite paste, and cured by a curing device. The bond strengths were measured before and after CO 2 laser irradiation, and the temperature increase in the pulp chamber in fresh human first premolars was also evaluated. With CO 2 laser irradiation for 5 sec to the bracket, the bond strength in the 25% microcapsule group decreased significantly, to ∼0.17-fold, compared with that of the no-laser group (p brackets, with less debonding time and enamel damage.

  13. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust.

    Science.gov (United States)

    Yoon, In-Ho; Moon, Deok Hyun; Kim, Kyoung-Woong; Lee, Keun-Young; Lee, Ji-Hoon; Kim, Min Gyu

    2010-11-01

    In this study, the mechanism for the stabilization/solidification (S/S) of arsenic (As)-contaminated soils with Portland cement (PC), and cement kiln dust (CKD) using 1 N HCl extraction fluid, X-ray powder diffraction (XRPD), X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS) spectroscopy was investigated. The degree of As immobilization after stabilization was assessed using a 1 N HCl extraction on the basis of the Korean Standard Test (KST). After 1 day of curing with 30 wt% PC and 7 days of curing with 50 wt% CKD, the concentration of As leached from the amended soils was less than the Korean countermeasure standard (3 mg L(-1)). The As concentrations in the leachate treated with PC and CKD were significantly decreased at pH > 3, indicating that pH had a prevailing influence on As mobility. XRPD results indicated that calcium arsenite (Ca-As-O) and sodium calcium arsenate hydrate (NaCaAsO(4).7.5H(2)O) were present in the PC- and CKD-treated slurries as the key phases responsible for As(III) and As(V) immobilization, respectively. The XANES spectroscopy confirmed that the As(III) and As(V) oxidation states of the PC and CKD slurry samples were consistent with the speciated forms in the crystals identified by XRPD. EXAFS spectroscopy showed As-Ca bonding in the As(III)-PC and As(III)-CKD slurries. The main mechanism for the immobilization of As-contaminated soils with PC and CKD was strongly associated with the bonding between As(III) or As(V) and Ca. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Nanoscale studies of cement chemistry with {sup 15}N resonance reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Jeffrey S. [University of Connecticut, Department of Physics, Unit 3046, Storrs, CT 06269-3046 (United States)]. E-mail: schweitz@phys.uconn.edu; Livingston, Richard A. [Federal Highway Administration, HRDI-05, 6300 Georgetown Pike McLean, VA 22101 (United States); Rolfs, Claus [Institut fuer Physik mit Ionenstrahlen, Ruhr-Universitaet, Bochum Universitaetsstr. 150, Gebaeude NB 3, 44780 Bochum (Germany); Becker, Hans-Werner [Institut fuer Physik mit Ionenstrahlen, Ruhr-Universitaet, Bochum Universitaetsstr. 150, Gebaeude NB 3, 44780 Bochum (Germany); Kubsky, Stefan [Institut fuer Physik mit Ionenstrahlen, Ruhr-Universitaet, Bochum Universitaetsstr. 150, Gebaeude NB 3, 44780 Bochum (Germany); Spillane, Timothy [University of Connecticut, Department of Physics, Unit 3046, Storrs, CT 06269-3046 (United States); Castellote, Marta [Institute of Construction Science ' Eduardo Torroja' (CSIC), Serrano Galvache no. 4, 28033 Madrid (Spain); Viedma, Paloma G. de [Institute of Construction Science ' Eduardo Torroja' (CSIC), Serrano Galvache no. 4, 28033 Madrid (Spain)

    2005-12-15

    Analyses of materials with ion beams have proven to be a valuable technique for describing the spatial distributions of specific elements in host materials. We have applied this technique using the {sup 15}N(p, {alpha}{gamma}){sup 12}C reaction to study the time dependence of the chemical reactions involved in the curing of cement. By using the Dynamitron Tandem accelerator at the Ruhr Universitaet, Bochum, Germany, we have been able to achieve a few nanometer spatial resolution at the surface of cement grains and to study the hydrogen distributions to a depth of about 2 {mu}m. By applying a technique for stopping the chemical reactions at arbitrary times, the time dependence of the chemical reactions involving specific components of cement can be investigated. In addition, the effects of additives on the chemical reactions have been studied, as have materials that are components of concrete.

  15. Predicting the durability of Portland cement systems in aggressive environments--Laboratory validation

    International Nuclear Information System (INIS)

    Maltais, Y.; Samson, E.; Marchand, J.

    2004-01-01

    Portland cement systems are often exposed to severe environments, and their long-term performance is of concern. The main results of a comprehensive investigation of deterioration processes that may affect the behavior of Portland cement systems exposed to chemically aggressive environments is presented. As part of this investigation, well-cured cement paste discs were fully characterized and exposed to deionized water and sodium sulfate solutions. Degradation experiments were conducted under saturated and unsaturated conditions. At the end of the exposure period, microstructural alterations were investigated by microprobe analyses, scanning electron microscope observations and energy-dispersive X-ray analyses. Test results provide information on the basic aspects of various degradation phenomena, such as decalcification and external sulfate attack. Experimental results were also compared with results obtained by a numerical model. The analysis reveals that the intricate microstructural features of the degraded samples could be accurately reproduced by the model

  16. Effectiveness of composite resin polymerization using light-emitting diodes (LEDs or halogen-based light-curing units Efetividade de polimerização de uma resina composta fotopolimerizada por diodos emissores de luz (LEDs ou luz halógena

    Directory of Open Access Journals (Sweden)

    Bianca Micali

    2004-09-01

    Full Text Available The clinical performance of composite resins is greatly influenced by the quality of the light-curing unit used. The aim of this study was to compare the efficiency of a commercial light-emitting diode (LED with that of a halogen-based light-curing unit by means of dye penetration of a micro hybrid composite resin. The composite resin evaluated was Filtek Z250 (3M Dental. The composite was filled into acrylic moulds that were randomly polymerized for 40 seconds by each of the light-emitting systems: light-emitting diode Ultraled (Dabi Atlante or halogen light Degulux (Degussa Hüls curing units. Immediately after polymerization, each specimen was individually immersed in 1 ml of 2% methylene blue solution at 37°C ± 2°C. After 24 hours, the specimens were rinsed under running distilled water for 1 minute and stored at 37°C ± 2°C at relative humidity for 24 hours. The composite resins were removed from the moulds and individually triturated before being immersed in new test tubes containing 1 ml of absolute alcohol for 24 hours. The solutions were filtered and centrifuged for 3 minutes at 4,000 rpm and the supernatant was used to determine absorbance in a spectrophotometer at 590 nm. To verify the differences between groups polymerized by LED or halogen light t-test was applied. No significant differences were found between composite resins light-cured by LED or halogen light-curing unit (p > 0.05. The commercially LED-based light-curing unit is as effective to polymerize hybrid composite resins as the halogen-based unit.A longevidade clínica das resinas compostas é grandemente influenciada pela qualidade do aparelho fotopolimerizador utilizado. O objetivo deste trabalho foi comparar a eficácia de um aparelho fotopolimerizador de diodos emissores de luz e a de um de luz halógena através do grau de penetração de um corante em uma resina composta micro-híbrida. A resina composta utilizada (Filtek Z250/3M Dental foi inserida em matrizes

  17. In vitro color stability of provisional restorative materials

    Directory of Open Access Journals (Sweden)

    Hamid Jalali

    2012-01-01

    Aims: The purpose of this study was to investigate the effect of tea on provisional restorative materials. Setting and Design: This study was designed to measure the degree of color change of three acrylic resin provisional materials, before and after immersion in artificial saliva and artificial saliva-tea solution for 2 and 4 weeks. Materials and Methods : Three types of acrylic provisional materials (duralay, tempron, acropars TRP, were studied. Twenty disks (20±0.1 mm by 2±0.05 mm were fabricated from each material. Specimens were polished with acrylic bur using pumice and diamond polishing paste. Base line color was measured using a spectrophotometer. Ten disks were stored in artificial saliva and 10 were stored in a solution of artificial saliva and tea at room temperature. Color measurements were made after 2 and 4 weeks of immersion. Statistical analysis used: Differences in color changes were compared by two way ANOVA, across the six groups, followed by a Turkey-Kramer′s multiple comparison test. Results: For specimens immersed in artificial saliva, the color change of methyl methacrylate materials; duralay (ΔE=4.94 and tempron (ΔE=6.54, was significantly more than butyl methacrylate material; acropars (ΔE=4.10. After immersion in an artificial saliva- tea solution, tempron exhibited less color change (ΔE=8.50 compared to duralay (ΔE=10.93 and acropars (ΔE=15.64. Conclusion: Color stability of methyl methacrylate is higher than butyl methacrylates so if provisional materials are used for extended periods of time; tempron is preferred.

  18. Evaluating the freeze-thaw durability of portland cement-stabilized-solidified heavy metal waste using acoustic measurements

    International Nuclear Information System (INIS)

    El-Korchi, T.; Gress, D.; Baldwin, K.; Bishop, P.

    1989-01-01

    The use of stress wave propagation to assess freeze-thaw resistance of portland cement solidified/stabilized waste is presented. The stress wave technique is sensitive to the internal structure of the specimens and would detect structural deterioration independent of weight loss or visual observations. The freeze-thaw resistance of a cement-solidified cadmium waste and a control was evaluated. The control and cadmium wastes both showed poor freeze-thaw resistance. However, the addition of cadmium and seawater curing increased the resistance to more cycles of freezing and thawing. This is attributed to microstructural changes

  19. Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network

    Science.gov (United States)

    MolaAbasi, H.; Shooshpasha, I.

    2016-04-01

    The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.

  20. Effect of Gamma Irradiation on Polymer Modified White Sand Cement Mortar Composites

    International Nuclear Information System (INIS)

    Khattab, M.M.

    2012-01-01

    This study focuses on the substitution effect of standard sand of conventional cement mortar made from ordinary Portland cement (OPC) and standard sand (SS) OPC/SS 1:3; by different ratios of white sand (WS) powder to prepare three types of white sand cement mortar designated as 1OPC:2SS:1WS, 1OPC:1SS:2WS and 1OPC:0SS:3WS. The prepared samples were first cured under tap water for different time intervals namely 3, 7, 28 and 90 days. The effect of addition of 10% styrene-acrylic ester (SAE) as well as the effect of different doses of gamma rays (10, 20, 30 and 50 kGy) on the physicomechanical properties of polymer modified white sand cement mortar specimens also discussed. Compression strength test, total porosity and water absorption percentages were measured according to standard specifications. The obtained data indicated that, the cement mortar samples containing different ratios of white sand have lower values of compressive strength as compared to the conventional cement mortar while, the percentages of total porosity and water absorption increased. On the other hand, the polymer modified mortar specimens showed a noticeably enhancement in the physico-mechanical properties under the effect of gamma-radiation than those of untreated samples. These results were confirmed by scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) studies

  1. Evaluation of the effect of various beverages and food material on the color stability of provisional materials – An in vitro study

    Science.gov (United States)

    Gupta, Gaurav; Gupta, Tina

    2011-01-01

    Aim: This study evaluated the color stability of four provisional materials: 1) Poly-methyl methacrylates (DPI); 2) Bis-acryl composite (ProtempTM II – 3M ESPE); 3) Bis-acryl composite (Systemp® c and b – Ivoclar Vivadent) and 4) Light polymerized composite resin (Revotek LC- GC). Materials and Methods: The color and color difference of each specimen after immersion in different staining solutions i.e. 1) tea and artificial saliva, 2) coffee and artificial saliva, 3) Pepsi and artificial saliva, 4) turmeric solution and artificial saliva was measured using reflectance spectrophotometer with CIELAB system before immersion and after immersion at 2, 5 ,7 , 10 and 15 days. Results: Revotek LC- GC (light polymerized composite resin) was found to be the most color stable provisional restorative material followed by Protemp II (Bis-acryl composite), Systemp (Bis-acryl composite) and DPI (Methylmethacrylate resin). Turmeric solution had the maximum staining potential followed by coffee, tea and Pepsi. PMID:22025835

  2. A new acoustic method to determine the setting time of calcium sulfate bone cement mixed with antibiotics

    International Nuclear Information System (INIS)

    Cooper, J J; Brayford, M J; Laycock, P A

    2014-01-01

    A new method is described which can be used to determine the setting times of small amounts of high value bone cements. The test was developed to measure how the setting times of a commercially available synthetic calcium sulfate cement (Stimulan, Biocomposites, UK) in two forms (standard and Rapid Cure) varies with the addition of clinically relevant antibiotics. The importance of being able to accurately quantify these setting times is discussed. The results demonstrate that this new method, which is shown to correlate to the Vicat needle, gives reliable and repeatable data with additional benefits expressed in the article. The majority of antibiotics mixed were found to retard the setting reaction of the calcium sulfate cement. (paper)

  3. A new acoustic method to determine the setting time of calcium sulfate bone cement mixed with antibiotics.

    Science.gov (United States)

    Cooper, J J; Brayford, M J; Laycock, P A

    2014-08-01

    A new method is described which can be used to determine the setting times of small amounts of high value bone cements. The test was developed to measure how the setting times of a commercially available synthetic calcium sulfate cement (Stimulan, Biocomposites, UK) in two forms (standard and Rapid Cure) varies with the addition of clinically relevant antibiotics. The importance of being able to accurately quantify these setting times is discussed. The results demonstrate that this new method, which is shown to correlate to the Vicat needle, gives reliable and repeatable data with additional benefits expressed in the article. The majority of antibiotics mixed were found to retard the setting reaction of the calcium sulfate cement.

  4. An indirect technique for assuring simplicity and marginal integrity of provisional restorations during full mouth rehabilitation.

    Science.gov (United States)

    Al Jabbari, Youssef S; Al-Rasheed, Abdulaziz; Smith, Jesse W; Iacopino, Anthony M

    2013-01-01

    Full mouth rehabilitation with fixed prosthodontics can be a time- and labor-intensive process. The use of provisional restorations allows the treating clinician to determine the functional and esthetic requirements of the definitive prostheses. However, in the case of full mouth rehabilitation, the individual preparation of provisional restorations for multiple teeth may complicate the provisional phase and increase the treatment time. This article describes a method to simplify the indirect fabrication of provisional restorations for full mouth reconstruction. Provisional restorations may be easily achieved by splinting the provisional restorations in sextants, trimming them according to red pencil marks around the prepared margins as guidelines, and fitting them in the laboratory, utilizing a second set of solid casts for the prepared teeth.

  5. DEVELOPMENT and TESTING OF A CEMENT-BASED SOLID WASTE FORM USING SYNTHETIC UP-1 GROUNDWATER

    International Nuclear Information System (INIS)

    COOKE, G.A.; LOCKREM, L.L.

    2006-01-01

    The Effluent Treatment Facility (ETF) in the 200 East Area of the Hanford Site is investigating the conversion of several liquid waste streams from evaporator operations into solid cement-based waste forms. The cement/waste mixture will be poured into plastic-lined mold boxes. After solidification the bags will be removed from the molds and sealed for land disposal at the Hanford Site. The RJ Lee Group, Inc. Center for Laboratory Sciences (CLS) at Columbia Basin College (CBC) was requested to develop and test a cementitious solids (CS) formulation to solidify evaporated groundwater brine, identified as UP-1, from Basin 43. Laboratory testing of cement/simulant mixtures is required to demonstrate the viability of cement formulations that reduce the overall cost, minimize bleed water and expansion, and provide suitable strength and cure temperature. Technical support provided mixing, testing, and reporting of values for a defined composite solid waste form. In this task, formulations utilizing Basin 43 simulant at varying wt% solids were explored. The initial mixing consisted of making small (∼ 300 g) batches and casting into 500-mL Nalgene(reg s ign) jars. The mixes were cured under adiabatic conditions and checked for bleed water and consistency at recorded time intervals over a 1-week period. After the results from the preliminary mixing, four formulations were selected for further study. The testing documentation included workability, bleed water analysis (volume and pH) after 24 hours, expansivity/shrinkage, compressive strength, and selected Toxicity Characteristic Leaching Procedure (TCLP) leach analytes of the resulting solid waste form

  6. Influence of the waste glass in the axial compressive strength of Portland cement concrete

    International Nuclear Information System (INIS)

    Miranda Junior, E.J.P.; Paiva, A.E.M.

    2012-01-01

    In this work, was studied the influence of the incorporation of waste glass, coming from the stage of thinning and polishing of a company of thermal glass treatments, in the axial compressive strength of Portland cement concrete. The coarse and ground aggregates used was crushed stone and sand, respectively. For production of the concrete, percentages of glass residues of 5%, 10% and 20% had been used in substitution to the sand, and relations water/cement (a/c) 0,50, 0,55 and 0,58. The cure of the test bodies was carried through in 7, 14 and 28 days. The statistics analysis of the results was carried out through of the analysis of variance for each one of the cure times. From the results of the compressive strength of the concrete, it could be observed that the concrete has structural application for the relation a/c 0,5, independently of waste glass percentage used, and for the relation a/c 0,55 with 20% of waste glass. (author)

  7. Dimensional stability under wet curing of mortars containing high amounts of nitrates and phosphates

    International Nuclear Information System (INIS)

    Benard, P.; Cau Dit Coumes, C.; Garrault, S.; Nonat, A.; Courtois, S.

    2008-01-01

    Investigations were carried out in order to solidify in cement some aqueous streams resulting from nuclear decommissioning processes and characterized by a high salinity (300 g/L), as well as important concentrations of nitrate (150-210 g/L) and phosphate ions (0-50 g/L). Special attention was paid to the influence of these compounds on the dimensional variations under wet curing of simulated solidified waste forms. The length changes of mortars containing nitrate salts only (KNO 3 , NaNO 3 ) were shown to be governed by a concentration effect which involved osmosis: the higher their concentration in the mixing solution, the higher the swelling. The expansion of mortars containing high amounts of phosphates (≥ 30 g/L in the mixing solution) was preceded by a shrinkage which increased with the phosphate concentration, and which could be suppressed by seeding the cement used with hydroxyapatite crystals. This transitory shrinkage was attributed to the conversion into hydroxyapatite of a precursor readily precipitated in the cement paste after mixing

  8. Effect of different curing modes on the degree of conversion and the microhardness of different composite restorations

    Directory of Open Access Journals (Sweden)

    Reem Ali Ajaj

    2015-01-01

    Full Text Available Introduction: This study aims to evaluate the effects of different curing units and modes on the degree of conversion (DC and microhardness (MH of two different resin composites [ESTELITE ∑ QUICK (EQ, and Z350 XT (Z3]. Materials and Methods: One hundred (100 discs of each tested material were made and divided into two subgroups (n = 50 according to the discs′ dimensions: 5 mm diameter × 2 mm thickness, and 2 mm diameter × 2 mm thickness. Each subgroup was further subdivided into the following five classes (n = 10: I cured with halogen light curing-unit; II cured with light-emitting diode (LED unit; III cured with argon laser; IV cured with halogen light-curing unit for 5 s, 10 s rest followed by 20 s curing; and V cured with halogen light-curing unit for 10 s, then 10 s rest, followed by 10 s curing. The first subgroup was tested for MH using the Vickers Microhardness tester and the second subgroup was tested for DC using Fourier transform infrared spectroscopy (FTIR. Data were statistically analyzed using two-way analysis of variance (ANOVA and Tukey′s post hoc test P < 0.05. Results: Specimens in class IV showed the highest mean DC and MH, followed by class III, then class II. Class I showed significantly lower mean values for both DC and MH. On the other hand, Z3 showed statistically significantly higher mean DC and MH than EQ. Conclusion: Although the two tested composites did not perform similarly under the test conditions, curing with halogen unit for 5 s, then 10 s rest, followed by 10 s curing improved the DC and the MH of both the tested materials.

  9. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.

    Science.gov (United States)

    Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-02

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  10. Production of a Fixed Provisional Restoration Using an Acrylic Denture: Technique and Case Report.

    Science.gov (United States)

    Kocaagaoglu, Hasan

    2015-07-01

    The damage or loss of anterior teeth causes a negative impact on the patient in many ways. In adolescents and young patients, the provisional replacement with artificial teeth may minimize this impact. Many approaches have been described for provisional restorations. This article discusses about a chairside fixed provisional restoration technique that was adjusted into the edentulous area of a 15-year-old girl.

  11. Physical, chemical and antimicrobial evaluation of a composite material containing quaternary ammonium salt for braces cementation

    International Nuclear Information System (INIS)

    Sugii, Mari Miura; Ferreira, Fábio Augusto de Souza; Müller, Karina Cogo; Lima, Debora Alves Nunes Leite; Groppo, Francisco Carlos; Imasato, Hidetake; Rodrigues-Filho, Ubirajara Pereira

    2017-01-01

    The antibiofilm effect of iodide quaternary ammonium methacryloxy silicate (IQAMS) in Transbond XT Light Cure Adhesive resin used for braces cementation was evaluated. Fourier Transform Infrared (FTIR) spectroscopy confirmed IQAMS formation and Scanning Electron Microscopy coupled to Energy-Dispersive X-ray Spectroscopy (SEM-EDS) revealed that as coating, the quaternary ammonium groups from IQAMS were homogeneously dispersed throughout the surface. When incorporated, the composite material presented homogeneous dispersion throughout the resin. Assays with Streptococcus mutans demonstrated enhanced antibiofilm effect for the IQAMS coated resin, with much lower colony-forming units (CFU), in comparison to incorporated IQAMS. Such a difference was assigned to low availability of quaternary ammonium groups at the surface of resin when IQAMS was incorporated, hindering its antibiofilm effect. Additionally, the incorporation of IQAMS led to slight decrease in ultimate bond strength (UBS) and shear bond strength (SBS), in comparison to the neat commercial resin. Thus, the synthesized IQAMS displays great potential as antibiofilm coating or sealant to prevent oral infections in brackets during orthodontic treatment. - Highlights: • Synthesis of ORMOSIL-based material with antibiofilm activity is performed. • Antibiofilm activity of the ORMOSIL-based material on commercial available resin for braces cementation is evaluated. • Antibiofilm ORMOSIL-based coating with potential application as varnish or sealant in orthodontic appliances is presented.

  12. Physical, chemical and antimicrobial evaluation of a composite material containing quaternary ammonium salt for braces cementation

    Energy Technology Data Exchange (ETDEWEB)

    Sugii, Mari Miura [Departamento de Odontologia Restaurativa, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Ferreira, Fábio Augusto de Souza, E-mail: ferreira.fabio.a.s@gmail.com [Grupo de Química de Materiais Híbridos e Inorgânicos, Instituto de Química de São Carlos – Universidade de São Paulo, São Carlos, SP 13563-120 (Brazil); Müller, Karina Cogo [Departamento de Ciências Fisiológicas, Área de Farmacologia, Anestesiologia e Terapeutica, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Lima, Debora Alves Nunes Leite [Departamento de Odontologia Restaurativa, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Groppo, Francisco Carlos [Departamento de Ciências Fisiológicas, Área de Farmacologia, Anestesiologia e Terapeutica, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Imasato, Hidetake; Rodrigues-Filho, Ubirajara Pereira [Grupo de Química de Materiais Híbridos e Inorgânicos, Instituto de Química de São Carlos – Universidade de São Paulo, São Carlos, SP 13563-120 (Brazil); and others

    2017-04-01

    The antibiofilm effect of iodide quaternary ammonium methacryloxy silicate (IQAMS) in Transbond XT Light Cure Adhesive resin used for braces cementation was evaluated. Fourier Transform Infrared (FTIR) spectroscopy confirmed IQAMS formation and Scanning Electron Microscopy coupled to Energy-Dispersive X-ray Spectroscopy (SEM-EDS) revealed that as coating, the quaternary ammonium groups from IQAMS were homogeneously dispersed throughout the surface. When incorporated, the composite material presented homogeneous dispersion throughout the resin. Assays with Streptococcus mutans demonstrated enhanced antibiofilm effect for the IQAMS coated resin, with much lower colony-forming units (CFU), in comparison to incorporated IQAMS. Such a difference was assigned to low availability of quaternary ammonium groups at the surface of resin when IQAMS was incorporated, hindering its antibiofilm effect. Additionally, the incorporation of IQAMS led to slight decrease in ultimate bond strength (UBS) and shear bond strength (SBS), in comparison to the neat commercial resin. Thus, the synthesized IQAMS displays great potential as antibiofilm coating or sealant to prevent oral infections in brackets during orthodontic treatment. - Highlights: • Synthesis of ORMOSIL-based material with antibiofilm activity is performed. • Antibiofilm activity of the ORMOSIL-based material on commercial available resin for braces cementation is evaluated. • Antibiofilm ORMOSIL-based coating with potential application as varnish or sealant in orthodontic appliances is presented.

  13. The difference nanocomposite hardness level using LED photoactivation based on curing period variations

    Directory of Open Access Journals (Sweden)

    Hasiana Tatian

    2011-03-01

    Full Text Available Polimerizatian is the critical stage to determine the quality of composites resin, this involves isolated monomer carbon double bonds being converted to an extended network of single bonds. Physical and mechanical properties of composites are influenced by the level of conversion attained during polymerization. An adequate light intensity and light curing time are important to obtain the degree of polymerization. The objective of this study is to evaluate the difference of the hardness nanocomposites which activated by LED LCU based on the variation of curing times. This study is a true experimental research. The samples were made from nanocomposites material with cylinder form of 4 mm in depth, 6 mm in diameter. This samples divided into 3 groups of curing times. Group, I was cured for 20's curing time as a control due to manufactory recommended; Group II was cured for 30's, and Group III was cured for 40's and the hardness (Rebound hardness tester was determined using Rebound scale (RS and converted by Mohs scale (MS. There was a very significant level of hardness rate from each group using ANOVA test. The result of the study concludes that there were the differences on the nanocomposites hardness level cured under different curing times 20, 30 and 40 sec. The longer of curing times, the higher level of hardness.

  14. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic.

    Science.gov (United States)

    Baratto, Samantha Schaffer Pugsley; Spina, Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Baratto Filho, Flares; Correr, Gisele Maria

    2015-10-01

    The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.

  15. Influence of light curing source on microhardness of composite resins of different shades Influência da fonte de luz polimerizadora na microdureza da resina composta de diferentes cores

    Directory of Open Access Journals (Sweden)

    André Luiz Fraga Briso

    2006-01-01

    Full Text Available INTRODUCTION: The evolution of light curing units can be noticed by the different systems recently introduced. The technology of LED units promises longer lifetime, without heating and with production of specific light for activation of camphorquinone. However, further studies are still required to check the real curing effectiveness of these units. PURPOSE: This study evaluated the microhardness of 4 shades (B-0.5, B-1, B-2 and B-3 of composite resin Filtek Z-250 (3M ESPE after light curing with 4 light sources, being one halogen (Ultralux - Dabi Atlante and three LED (Ultraled - Dabi Atlante, Ultrablue - DMC and Elipar Freelight - 3M ESPE. METHODS: 192 specimens were distributed into 16 groups, and materials were inserted in a single increment in cylindrical templates measuring 4mm x 4mm and light cured as recommended by the manufacturer. Then, they were submitted to microhardness test on the top and bottom aspects of the cylinders. RESULTS: The hardness values achieved were submitted to analysis of variance and to Tukey test at 5% confidence level. It was observed that microhardness of specimens varied according to the shade of the material and light sources employed. The LED appliance emitting greater light intensity provided the highest hardness values with shade B-0.5, allowing the best curing. On the other hand, appliances with low light intensity were the least effective. It was also observed that the bottom of specimens was more sensitive to changes in shade. CONCLUSION: Light intensity of LED light curing units is fundamental for their good functioning, especially when applied in resins with darker shades.INTRODUCTION: A evolução dos aparelhos fotopolimerizadores pode ser notada nos diferentes sistemas introduzidos recentemente no mercado. A tecnologia apresentada pelos aparelhos LED promete maior tempo de vida útil, não gerar aquecimento e produzir luz específica para a ativação da canforoquinona. No entanto, ainda são necess

  16. Properties of cement-fly ash grout admixed with bentonite, silica fume, or organic fiber

    International Nuclear Information System (INIS)

    Huang, W.H.

    1997-01-01

    A detailed laboratory study was conducted to investigate the properties of cement-fly ash grout mixtures as barriers for isolation of hazardous and low-level radioactive wastes. In the grout studied, fly ash was used to replace 30 percent by mass of cement. Three additives including bentonite, silica fume, and polypropylene fiber were used individually in the grout mixes to improve the properties of the grouts in different aspects. The flowability, bleeding, and setting time of freshly mixed grouts were determined; and the unconfined compressive strength, pore size distribution, and water permeability were determined for hardened grouts at various curing durations up to 120 days. Finally, the durability of cement-fly ash grouts was carefully examined in terms of the changes in their physical properties after different levels of exposure to sulfate attack and wet-dry cycles

  17. Short communication: pre- and co-curing effect of adhesives on shear bond strengths of composite resins to primary enamel and dentine: an in vitro study.

    Science.gov (United States)

    Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V

    2011-12-01

    To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (padhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.

  18. Sodium Silicate Gel Effect on Cemented Tailing Backfill That Contains Lead-Zinc Smelting Slag at Early Ages

    OpenAIRE

    Guo, Lijie; Li, Wenchen; Yang, Xiaocong; Xu, Wenyuan

    2018-01-01

    This paper presents the results of an experimental study on the priming effect of sodium silicate gel (SS) on cemented tailing backfill (CTB) that contains lead-zinc smelting slag. CTB and cemented paste (CP) containing lead-zinc smelting slag samples with SS of 0 and 0.4% of the mass of the slag were prepared and cured at 20°C for 1, 3, 7, and 28 days. Mechanical test and pore structure analyses were performed on the studied CTB samples, microstructural analyses (X-ray diffraction analysis a...

  19. The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials

    DEFF Research Database (Denmark)

    Snoeck, D.; Jensen, Ole Mejlhede; De Belie, N.

    2015-01-01

    Fly ash and blast-furnace slag containing binders are frequently used in the construction industry and it is important to know the extent of autogenous shrinkage and its (ideal) mitigation by superabsorbent polymers in these systems as a function of their age. In this paper, the autogenous...... shrinkage was determined by manual and automated shrinkage measurements. Autogenous shrinkage was reduced in cement pastes with the supplementary cementitious materials versus Portland cement pastes. At later ages, the rate of autogenous shrinkage is higher due to the pozzolanic activity. Internal curing...

  20. Palate Fracture Repair With Light-Cured Resin Splint: Technical Note.

    Science.gov (United States)

    Waldrop, Jimmy; Dale, Elizabeth L; Halsey, Jordan; Sargent, Larry A

    2015-10-01

    Palate fractures are rare, and their treatment is a matter of debate. Although some investigators have favored rigid plate fixation, others have reported successful treatment without it. Sagittal split and comminuted fractures can require rigid fixation to reduce the maxillary width; however, additional stabilization is needed. Also, palate repair without a splint is complicated by prolonged intermaxillary fixation (IMF), causing stiffness to the temporomandibular joint. We introduce a technique using a rapid light-cured resin (TRIAD TranSheet) frequently used by orthodontists for making dental retainers. Its use is similar to the splints traditionally created preoperatively, but obviates the need for making impressions, a model, and a molded splint. A series of 13 patients treated with this technique during a 5-year period is presented. The average duration of IMF was 4.7 weeks (range 3 to 6). The average duration of the palate splint was 8.4 weeks (range 5 to 12). One patient had malocclusion, but none had malunion, infection, or oronasal fistula. Our series has demonstrated a simple, cost-effective, and successful technique. It can be used alone or combined with rigid fixation and allows for a shortened duration of maxillomandibular fixation. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Autogenous Deformation and Change of the Relative Humidity in Silica Fume-Modified Cement Paste

    DEFF Research Database (Denmark)

    Jensen, Ole mejlhede; Hansen, Per Freiesleben

    1996-01-01

    Even during sealed curing and at a constant temperature a hardening cement paste will deform and the relative humidity within its pores will lower. This autogenous deformation and autogenous relative humidity change may be so significant that the cement paste cracks if the deformation is restrained....... This article focuses on the influence of silica fume addition on autogenous deformation and autogenous relative humidity change. Continuous measurement of autogenous deformation and autogenous relative humidity change for more than 1 year and 1« years, respectively, was performed. The investigations show...... thatsilica fume addition markedly increases the autogenous shrinkage as well as the autogenous relative humidity change....

  2. In vitro comparative study of share bond of light cured composite resins with halogen light and argon laser, using stainless steel brackets on human premolars

    International Nuclear Information System (INIS)

    Carillo, Vitoria Eugenia Bismarck

    2004-01-01

    The aim of this study in vitro was to compare the share bond strength of the light-cured composite resins Transbond XT (Unitek), with halogen light and argon laser. The Adhesive Remmant Index (ARI) was also investigated. The brackets Dyna lock (3M-UNITEK) were bonded to 75 human premolars, divided into 5 groups (15 each) according to time and the polymerization: Group H20, 15 brackets bonded with halogen light for 20s (10s both sides); Group H40, 15 brackets bonded with halogen light for 40s (20s both sides); Group A40, 15 brackets bonded with argon laser for 40s (20s both sides); Group A20, 15 brackets bonded with argon laser for 20s (10s both sides); Group A10, 15 brackets bonded with argon laser for 10s (5s both sides). The pulpal temperature changes were determined during a polymerization, not exceeding 3,5 deg C. After bonding, the teeth were submitted to a thermo cycled of 700 cycles between 5 deg C and 55 deg C, to simulate the consuming that the light cured composite resin would have in a short space of time. The specimens were then placed in PVC ring and embedded in acrylic resin (Aero-Jet). The tensile bond strength test was performed on an Universal Machine set at a crosshead speed of 1,5 mm/min, and for each rupture we registered a graphic and the best load required in Newtons, was converted to MPa and kgf. The share bond strength showed bigger values for the exposure time of 20 seconds, for the Group bonded for halogen light (H20), 7,45 kgf (7,64 MPa) and for argon laser 7,50 kgf (7,69 MPa); lesser values for the exposure time of 40s for the Group with halogen light (H40), 6,15 kgf (6,30 MPa) and argon laser Group (A40), 6,20 kgf (6,35 MPa) 0; and A10, 4,85 kgf (4,97 MPa). In the ARI Index, only A40 Group showed the 1 Index, with statistical results. In this Group, less than half of the remainder adhesive stayed on the surface of the enamel, conferring specimens failed at the enamel-adhesive interface. The results of the in vitro study demonstrate that

  3. Leachability of Arsenic (As) Contaminated Landfill Soil Stabilised by Cement and Bagasse Ash

    Science.gov (United States)

    Azhar, A. T. S.; Azim, M. A. M.; Aziman, M.; Nabila, A. T. A.

    2016-11-01

    Contaminated soil with heavy metals, especially Arsenic (As) has become a major issue worldwide. As is reported to be a metal that affects human health and is related to have caused serious diseases that interrupts the nervous system, blood vessels and kidneys. However, proper treatment techniques such as Stabilization/Solidification (S/S) method can be employed and is capable of controlling these heavy metals from contaminating the soil strata and groundwater resources. This study is to investigate the leachability of Arsenic (As) in S/S method when bagasse ash (BA) is added to remedy contaminated Landfill soil. Cement is added at a proportion of 5%, 10%, 15% and 20% in sample weights without BA while in another sample; the cement replaces BA at a proportion of 2.5%, 5%, 7.5%. and 10%. All samples were allowed to harden and cured at room temperature for 7, 14 and 28 days. The effectiveness of the treatment was assessed by conducting Synthetic Precipitation Leaching Procedure (SPLP). Results indicate that pH and leachability are found to have major influence on metal release. The final pH after leaching tests showed improvements especially samples containing BA. In addition, the concentration of As in the SPLP test after the curing period of 28 days were detected to be below the leachability limit as regulated by WHO's Guidelines for Drinking-water Quality. As a whole, the results obtained from testing showed that sample containing 10% cement with 10% BA is the most effective and is the optimum mix since this proportion succeeded in minimising the leachability of As at total reduction by 100%, In conclusion, partial replacement of cement with BA in the binder system has been successful in reducing the leachability.

  4. The biocompatibility of modified experimental Portland cements with potential for use in dentistry.

    Science.gov (United States)

    Camilleri, J

    2008-12-01

    To evaluate the biocompatibility of a group of new potential dental materials and their eluants by assessing cell viability. Calcium sulpho-aluminate cement (CSA), calcium fluoro-aluminate cement (CFA) and glass-ionomer cement (GIC; Ketac Molar), used as the control, were tested for biocompatibility. Using a direct test method cell viability was measured quantitatively using alamarBluetrade mark dye, and an indirect test method where cells were grown on material elutions and cell viability was assessed using methyltetrazolium (MTT) assay as recommended by ISO 10 993-Part 5 for in vitro testing. Statistical analysis was performed by analysis of variance and Tukey multi-comparison test method. Elution collected from the prototype cements and the GIC cured for 1 and 7 days allowed high cell activity after 24 h cell exposure, which reduced after 48 h when compared to the nontoxic glass-ionomer control, but increased significantly after 72 h cell contact. Elutions collected after 28 days revealed reduced cell activity at all cell exposure times. Cells placed in direct contact with the prototype materials showed reduced cell activity when compared with the control. Cell growth was poor when seeded in direct contact with the prototype cements. GIC encouraged cell growth after 1 day of contact. The eluted species for all the cements tested exhibited adequate cell viability in the early ages with reduced cell activity at 28 days. Changes in the production of calcium hydroxide as a by-product of cement hydration affect the material biocompatibility adversely.

  5. Chemical stability of seven years aged cement-PET composite waste form containing radioactive borate waste simulates

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com [Radioisotope Department, Atomic Energy Authority, Dokki (Egypt); Tawfik, M.E. [Department of Polymers and Pigments, National Research Center, Dokki (Egypt); Bayoumi, T.A. [Radioisotope Department, Atomic Energy Authority, Dokki (Egypt)

    2011-04-15

    Different samples of radioactive borate waste simulate [originating from pressurized water reactors (PWR)] have been prepared and solidified after mixing with cement-water extended polyester composite (CPC). The polymer-cement composite samples were prepared from recycled poly (ethylene terephthalate) (PET) waste and cement paste (water/cement ratio of 40%). The prepared samples were left to set at room temperature (25 deg. C {+-} 5) under humid conditions. After 28 days curing time the obtained specimens were kept in their molds to age for 7 years under ambient conditions. Cement-polymer composite waste form specimens (CPCW) have been subjected to leach tests for both {sup 137}Cs and {sup 60}Co radionuclides according to the method proposed by the International Atomic Energy Agency (IAEA). Leaching tests were justified under various factors that may exist within the disposal site (e.g. type of leachant, surrounding temperature, leachant behavior, the leachant volume to CPCW surface area...). The obtained data after 260 days of leaching revealed that after 7 years of aging the candidate cement-polymer composite (CPC) containing radioactive borate waste samples are characterized by adequate chemical stability required for the long-term disposal process.

  6. Strength, shrinkage, erodibility and capillary flow characteristics of cement-treated recycled pavement materials

    Directory of Open Access Journals (Sweden)

    William Fedrigo

    2017-09-01

    Full Text Available Full-depth recycling with portland cement (FDR-PC has been widely used for pavement rehabilitation; however, doubts remain regarding factors affecting some properties of the recycled material. Aiming on quantifying the effects of those factors on the strength, drying shrinkage, erodibility, capillary rise and absorption of cement-treated mixtures (CTM of reclaimed asphalt pavement (RAP and graded crushed stone, tests were conducted considering different RAP contents, cement contents, compaction efforts and curing times. Cement addition increased the mixtures strength and reduced their erodibility and capillary flow characteristics, but increased shrinkage. Low cement contents resulted in acceptable strength for CTM, but in high capillary rise and absorption, not being suitable if the layer is exposed to long periods of water soaking. Higher compaction effort led to similar effects as cement addition, counterbalancing low cement contents usage and reducing costs and shrinkage cracking risk. Strength and shrinkage showed higher growth rates at early stages, and then precautions should be taken in order to avoid moisture loss. Increasing RAP content decreased strength; though, RAP effect on the other properties was statistically non-significant, indicating a similar behaviour as CTM without RAP. Considering the studied properties, the mixture with most satisfactory behaviour for field applications was identified. The results highlighted strength is not the only property to be considered when designing FDR-PC mixtures; although presenting acceptable strength, some mixtures may fail due to shrinkage cracking or erosion, when exposed to water content variations. Keywords: Full-depth recycling with cement, Strength, Drying shrinkage, Erodibility, Capillary rise, Absorption

  7. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    Directory of Open Access Journals (Sweden)

    Michał A. Glinicki

    2016-01-01

    Full Text Available The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  8. Accompanying of parameters of color, brightness and hardness on polymeric films coated with pigmented inks cured by different radiation doses of ultraviolet light

    International Nuclear Information System (INIS)

    Bardi, M.A.G.; Machado, L.D.B.

    2011-01-01

    Complete text of publication follows. In the search for alternatives to traditional paint systems containing solvents, the curing process of polymer coatings by ultraviolet (UV) light has been widely studied and discussed, specially because of their high content of solids and null emission of VOCs. Radiation curing is defined as the conversion of a reactive liquid into a solid through polymerization and crosslinking reactions between the species, promoted by the interaction of the chemical system with the incident ionizing radiation. The appearance of the coated object (e.g., color, gloss) is a complex function of the light incident on the object, the optical scattering characteristic of the material, and human perception. Pigments are very fine powders being nearly insoluble in binders and solvents, but provide color and the ability to hide the underlying surface. In this context, this paper aims to investigate variations on color, brightness and hardness of UV-cured pigmented coatings by different doses. When it comes to irradiation exposition, the incorporation of pigments can preferentially cause its reflection or absorption of the incident radiation. Reflection usually occurs at the pigment surface within the resin so that the radiation has to pass through the top layers twice. Some degradation can, therefore, occur at the surface, and this is why materials frequently lose gloss on exposure.

  9. [Effect of thermal cycling on surface microstructure of different light-curing composite resins].

    Science.gov (United States)

    Lv, Da; Liu, Kai-Lei; Yao, Yao; Zhang, Wei-Sheng; Liao, Chu-Hong; Jiang, Hong

    2015-04-01

    To evaluate the effect of thermal cycling on surface microstructure of different light-curing composite resins. A nanofilled composite (Z350) and 4 microhybrid composites (P60, Z250, Spectrum, and AP-X) were fabricated from lateral to center to form cubic specimens. The lateral surfaces were abrased and polished before water storage and 40 000 thermal cycles (5/55 degrees celsius;). The mean surface roughness (Ra) were measured and compared before and after thermal cycling, and the changes of microstructure were observed under scanning electron microscope (SEM). Significant decreases of Ra were observed in the composites, especially in Spectrum (from 0.164±0.024 µm to 0.140±0.017 µm, Presins, and fissures occurred on Z350 following the thermal cycling. Water storage and thermal cycling may produce polishing effect on composite resins and cause fissures on nanofilled composite resins.

  10. Electrospraying and ultraviolet light curing of nanometer-thin polydimethylsiloxane membranes for low-voltage dielectric elastomer transducers

    Science.gov (United States)

    Osmani, Bekim; Töpper, Tino; Siketanc, Matej; Kovacs, Gabor M.; Müller, Bert

    2017-04-01

    Dielectric elastomer transducers (DETs) have attracted interest as actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. To reach strains of more than 10 %, they currently require operating voltages of several hundred volts. In medical applications for artificial muscles, however, their operation is limited to a very few tens of volts, which implies high permittivity materials and thin-film structures. Such micro- or nanostructures can be prepared using electro-spraying, a cost-effective technique that allows upscaling using multiple nozzles for the fabrication of silicone films down to nanometer thickness. Deposition rates of several micrometers per hour have already been reached. It has been recently demonstrated that such membranes can be fabricated by electro-spraying and subsequent ultraviolet light irradiation. Herein, we introduce a relatively fast deposition of a dimethyl silicone copolymer fluid that contains mercaptopropyl side chains in addition to the methyl groups. Its elastic modulus was tuned with the irradiation dose of the 200 W Hg-Xe lamp. We also investigated the formation of elastomer films, using polymer concentrations in ethyl acetate of 1, 2, 5 and 10 vol%. After curing, the surface roughness was measured by means of atomic force microscopy. This instrument also enabled us to determine the average elastic modulus out of, for example, 400 nanoindentation measurements, using a spherical tip with a radius of 500 nm. The elastomer films were cured for a period of less than one minute, a speed that makes it feasible to combine electro-spraying and in situ curing in a single process step for fabricating low-voltage, multilayer DETs.

  11. Influence of different light-curing units on the surface roughness of restorative materials: in situ study

    Directory of Open Access Journals (Sweden)

    Juliane Cristina Ciccone-Nogueira

    2007-09-01

    Full Text Available The aim of this study was to evaluate the influence of different light sources (LED and Halogen lamp on the roughness (superficial of composite resin (Filtek Z250, Filtek P60, Charisma and Durafill varying post-irradiation times, in an in situ experiment. For this purpose, 80 specimens were made in polyurethane moulds. Ten volunteers without medicament use and good oral condition were selected and from them study moulds were obtained. A palatal intra-oral acrylic resin appliance was made for each of the subjects of the experiment. In each appliance, two specimens of each material were fixed (LED/Halogen lamp - control group. Roughness tests were performed immediately and 30 days after initial light-curing. Statistical analysis was performed using ANOVA. Statistically significant difference was observed only between post-irradiation times, where the 30th day showed the highest roughness values. It be concluded that roughness was influenced only by post-irradiation times, presenting the 30- days period inferior behavior.

  12. Impact of bleaching agents on water sorption and solubility of resin luting cements.

    Science.gov (United States)

    Torabi Ardakani, Mahshid; Atashkar, Berivan; Bagheri, Rafat; Burrow, Michael F

    2017-08-01

    The aim of the present study was to evaluate the effect of distilled water and home and office bleaching agents on the sorption and solubility of resin luting cements. A total of 18 disc-shaped specimens were prepared from each of four resin cements: G-CEM LinkAce, Panavia F, Rely X Unicem, and seT. Specimens were cured according to the manufacturers' instructions and randomly divided into three groups of six, where they were treated with either an office or home bleaching agent or immersed in distilled water (control). Water sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed using Pearson correlation coefficient, two-way analysis of variance (ANOVA) and Tukey's test. There was a significant, positive correlation between sorption and solubility. Two-way anova showed significant differences among all resin cements tested for either sorption or solubility. Water sorption and solubility of all cements were affected significantly by office bleaching, and even more by home bleaching agents. Sorption and solubility behavior of the studied cements were highly correlated and significantly affected by applying either office or home bleaching agents; seT showed the highest sorption and solubility, whereas Rely X Unicem revealed the lowest. © 2016 John Wiley & Sons Australia, Ltd.

  13. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns

    Directory of Open Access Journals (Sweden)

    Adil Othman ABDULLAH

    Full Text Available ABSTRACT Objective This study compared the marginal gap, internal fit, fracture strength, and mode of fracture of CAD/CAM provisional crowns with that of direct provisional crowns. Material and Methods An upper right first premolar phantom tooth was prepared for full ceramic crown following tooth preparation guidelines. The materials tested were: VITA CAD-Temp®, Polyetheretherketone “PEEK”, Telio CAD-Temp, and Protemp™4 (control group. The crowns were divided into four groups (n=10, Group1: VITA CAD-Temp®, Group 2: PEEK, Group 3: Telio CAD-Temp, and Group 4: Protemp™4. Each crown was investigated for marginal and internal fit, fracture strength, and mode of fracture. Statistical analysis was performed using GraphPad Prism software version 6.0. Results The average marginal gap was: VITA CAD-Temp® 60.61 (±9.99 µm, PEEK 46.75 (±8.26 µm, Telio CAD-Temp 56.10 (±5.65 µm, and Protemp™4 193.07(±35.96 µm (P0.05. Conclusions CAD/CAM fabricated provisional crowns demonstrated superior fit and better strength than direct provisional crowns.

  14. Technique for making full-coverage provisional restorations on teeth with insufficient clinical crowns.

    Science.gov (United States)

    Feinberg, Edward

    2010-11-01

    Provisional restorations fabricated with copper bands are tremendous practice builders, eliminating the sensitivity, recurrent decay and poor retention that are common with conventional temporary restorations. The copper-band provisional restoration is the ideal choice when conventional butt-joint temporary restorations are unsuitable. The technique for making this restoration is demonstrated in this article with a step-by-step "how-to" description. An analysis of the basic principles and theories behind the success of the copper band provisional restoration is also presented, as well as a discussion of the restoration's advantages and disadvantages.

  15. Reactivity of Ordinary Portland Cement (OPC) grout and various lithologies from the Harwell research site

    International Nuclear Information System (INIS)

    Milodowski, A.E.; George, I.A.; Bloodworth, A.J.; Robins, N.S.

    1985-08-01

    Ordinary Portland Cement (OPC) has been used in the completion of boreholes on the Harwell Research Site, AERE, Oxfordshire. The purpose of this study was to examine the effect of OPC and the alkaline pore fluids generated during its setting on the various lithological types encountered in the boreholes. To facilitate this, samples of core representing the various rock types were selected and cement-rock composites were prepared from these in the laboratory to simulate the borehole cements. After a curing period of 15 months the cores and associated cement plugs were examined for any signs of reactivity or bonding. The best cement-rock bonding was shown by naturally well-cemented sandstone and limestone lithologies. Although no significant chemical reaction was seen to have occurred between OPC and rock, the OPC appears able to bind onto the rock surface because of the rigidity of the rock surface. Therefore, the best cement rock bonding and seal with OPC may be expected in the limestones of the Great Oolite Group, Inferior Oolite Group and parts of the Corallian Beds. Because of the reactivity of OPC towards certain lithologies a better borehole seal in such a sedimentary sequence might be achieved using a bentonite backfill in those parts of the sequence which either react with or bond only weakly to OPC. (author)

  16. 75 FR 26939 - Target Corporation: Provisional Acceptance of a Settlement Agreement and Order

    Science.gov (United States)

    2010-05-13

    ... CONSUMER PRODUCT SAFETY COMMISSION [CPSC Docket No. 09-C0037] Target Corporation: Provisional...(e). Published below is a provisionally-accepted Settlement Agreement with Target Corporation..., Target Corporation (``Target '') and the staff (``Staff '') of the United States Consumer Product Safety...

  17. Bond strength of adhesive resin cement with different adhesive systems

    OpenAIRE

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; S?, Marcus-Vinicius-Reis; Pereira, Jefferson-Ricardo

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder? Scotchbond? Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-s...

  18. VSRR - Quarterly provisional estimates for infant mortality

    Data.gov (United States)

    U.S. Department of Health & Human Services — Provisional estimates of infant mortality (deaths of infants under 1 year per 1,000 live births), neonatal mortality (deaths of infants aged 0-27 days per 1,000 live...

  19. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    Directory of Open Access Journals (Sweden)

    Solikin Mochamad

    2017-01-01

    Full Text Available High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete. The experiment and data analysis were prepared using minitab, a statistic software for design of experimental. The specimens were concrete cylinder with diameter of 15 cm and height of 30 cm, tested for its compressive strength at 56 days. The result of the research demonstrates that high volume fly ash concrete can produce comparable compressive strength which meets the strength of OPC design strength especially for high strength concrete. In addition, the best mix proportion to achieve the design strength is the combination of high strength concrete and 50% content of fly ash. Moreover, the use of spraying method for curing method of concrete on site is still recommended as it would not significantly reduce the compressive strength result.

  20. VSRR - Quarterly provisional estimates for selected birth indicators

    Data.gov (United States)

    U.S. Department of Health & Human Services — Provisional estimates of selected reproductive indicators. Estimates are presented for: general fertility rates, age-specific birth rates, total and low risk...