WorldWideScience

Sample records for light curve luminosity-width

  1. Pre-nebular Light Curves of SNe I

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, W. David [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Fryer, Christopher [Los Alamos National Laboratory, Los Alamos, NM (United States); Matheson, Thomas [National Optical Astronomy Observatory, Tucson, AZ (United States)

    2017-09-01

    We compare analytic predictions of supernova light curves with recent high-quality data from SN2011fe (Ia), KSN2011b (Ia), and the Palomar Transient Factory and the La Silla-QUEST variability survey (LSQ) (Ia). Because of the steady, fast cadence of observations, KSN2011b provides unique new information on SNe Ia: the smoothness of the light curve, which is consistent with significant large-scale mixing during the explosion, possibly due to 3D effects (e.g., Rayleigh–Taylor instabilities), and provides support for a slowly varying leakage (mean opacity). For a more complex light curve (SN2008D, SN Ib), we separate the luminosity due to multiple causes and indicate the possibility of a radioactive plume. The early rise in luminosity is shown to be affected by the opacity (leakage rate) for thermal and non-thermal radiation. A general derivation of Arnett’s rule again shows that it depends upon all processes heating the plasma, not just radioactive ones, so that SNe Ia will differ from SNe Ibc if the latter have multiple heating processes.

  2. CSI 2264: characterizing accretion-burst dominated light curves for young stars in NGC 2264

    International Nuclear Information System (INIS)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Carey, Sean; Baglin, Annie; Alencar, Silvia; Hillenbrand, Lynne A.; Carpenter, John; Findeisen, Krzysztof; Venuti, Laura; Bouvier, Jerome; Turner, Neal J.; Plavchan, Peter; Terebey, Susan; Morales-Calderón, María; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Hartmann, Lee

    2014-01-01

    Based on more than four weeks of continuous high-cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high-quality, multi-wavelength light curves for young stellar objects whose optical variability is dominated by short-duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief—several hours to one day—brightenings at optical and near-infrared wavelengths with amplitudes generally in the range of 5%-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a 30 day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u – g versus g – r color-color diagram with the largest UV excesses. These stars also have large Hα equivalent widths, and either centrally peaked, lumpy Hα emission profiles or profiles with blueshifted absorption dips associated with disk or stellar winds. Light curves of this type have been predicted for stars whose accretion is dominated by Rayleigh-Taylor instabilities at the boundary between their magnetosphere and inner circumstellar disk, or where magneto-rotational instabilities modulate the accretion rate from the inner disk. Among the stars with the largest UV excesses or largest Hα equivalent widths, light curves with this type of variability greatly outnumber light curves with relatively smooth sinusoidal variations associated with long-lived hot spots. We provide quantitative statistics for the average duration and strength of the accretion bursts and for the fraction of the accretion luminosity associated with these bursts.

  3. Theoretical red edge of the RR Lyrae Gap. II. Dependence of the red edge on luminosity and composition, and observational consequences

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1977-01-01

    The theoretical location of the red edge of the RR Lyrae Gap is computed for two luminosities and two compositions. An increase in luminosity or an increase in helium abundance decreases the effective temperature of the red edge. A comparison of the width of the instability strip with observations indicates that Yapprox. =0.3. The effects of convection on the light curves, velocity curves, pulsation periods, and overall structure of the models are small

  4. The Kepler Light Curves of AGN: A Detailed Analysis

    Science.gov (United States)

    Smith, Krista Lynne; Mushotzky, Richard F.; Boyd, Patricia T.; Malkan, Matt; Howell, Steve B.; Gelino, Dawn M.

    2018-04-01

    We present a comprehensive analysis of 21 light curves of Type 1 active galactic nuclei (AGN) from the Kepler spacecraft. First, we describe the necessity and development of a customized pipeline for treating Kepler data of stochastically variable sources like AGN. We then present the light curves, power spectral density functions (PSDs), and flux histograms. The light curves display an astonishing variety of behaviors, many of which would not be detected in ground-based studies, including switching between distinct flux levels. Six objects exhibit PSD flattening at characteristic timescales that roughly correlate with black hole mass. These timescales are consistent with orbital timescales or free-fall accretion timescales. We check for correlations of variability and high-frequency PSD slope with accretion rate, black hole mass, redshift, and luminosity. We find that bolometric luminosity is anticorrelated with both variability and steepness of the PSD slope. We do not find evidence of the linear rms–flux relationships or lognormal flux distributions found in X-ray AGN light curves, indicating that reprocessing is not a significant contributor to optical variability at the 0.1%–10% level.

  5. Multiwavelength light curve parameters of Cepheid variables

    Directory of Open Access Journals (Sweden)

    Bhardwaj Anupam

    2017-01-01

    Full Text Available We present a comparative analysis of theoretical and observed light curves of Cepheid variables using Fourier decomposition. The theoretical light curves at multiple wavelengths are generated using stellar pulsation models for chemical compositions representative of Cepheids in the Galaxy and Magellanic Clouds. The observed light curves at optical (VI, near-infrared (JHKs and mid-infrared (3.6 & 4.5-μm bands are compiled from the literature. We discuss the variation of light curve parameters as a function of period, wavelength and metallicity. Theoretical and observed Fourier amplitude parameters decrease with increase in wavelength while the phase parameters increase with wavelength. We find that theoretical amplitude parameters obtained using canonical mass-luminosity levels exhibit a greater offset with respect to observations when compared to non-canonical relations. We also discuss the impact of variation in convective efficiency on the light curve structure of Cepheid variables. The increase in mixing length parameter results in a zero-point offset in bolometric mean magnitudes and reduces the systematic large difference in theoretical amplitudes with respect to observations.

  6. Light extraction block with curved surface

    Science.gov (United States)

    Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.

    2016-03-22

    Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.

  7. Gamma-ray pulsar physics: gap-model populations and light-curve analyses in the Fermi era

    International Nuclear Information System (INIS)

    Pierbattista, M.

    2010-01-01

    This thesis research focusses on the study of the young and energetic isolated ordinary pulsar population detected by the Fermi gamma-ray space telescope. We compared the model expectations of four emission models and the LAT data. We found that all the models fail to reproduce the LAT detections, in particular the large number of high E objects observed. This inconsistency is not model dependent. A discrepancy between the radio-loud/radio-quiet objects ratio was also found between the observed and predicted samples. The L γ α E 0.5 relation is robustly confirmed by all the assumed models with particular agreement in the slot gap (SG) case. On luminosity bases, the intermediate altitude emission of the two pole caustic SG model is favoured. The beaming factor f Ω shows an E dependency that is slightly visible in the SG case. Estimates of the pulsar orientations have been obtained to explain the simultaneous gamma and radio light-curves. By analysing the solutions we found a relation between the observed energy cutoff and the width of the emission slot gap. This relation has been theoretically predicted. A possible magnetic obliquity α alignment with time is rejected -for all the models- on timescale of the order of 10 6 years. The light-curve morphology study shows that the outer magnetosphere gap emission (OGs) are favoured to explain the observed radio-gamma lag. The light curve moment studies (symmetry and sharpness) on the contrary favour a two pole caustic SG emission. All the model predictions suggest a different magnetic field layout with an hybrid two pole caustic and intermediate altitude emission to explain both the pulsar luminosity and light curve morphology. The low magnetosphere emission mechanism of the polar cap model, is systematically rejected by all the tests done. (author) [fr

  8. Interpretation of eclipsing light curves of dwarf novae

    International Nuclear Information System (INIS)

    Matvienko, A.N.; Cherepashchuk, A.M.; Yagola, A.G.

    1988-01-01

    The method for interpretation of eclipsing light curves of dwarf novae is proposed, taking into account the influence of the hot spot situated in the outer part of the disk-like envelope surrounding a white dwarf. This method is applied to the analysis of the eclipsing light curves of the system Z Cha in the quiet and active stages. It is shown that the optical luminosity of the hot spot in the system Z Cha in the active stage is 3-5 times greater than that in the quiet stage. Radius of the disk-like envelope in the active stage is more than twice greater than that in the quiet stage

  9. PAIR INSTABILITY SUPERNOVAE: LIGHT CURVES, SPECTRA, AND SHOCK BREAKOUT

    International Nuclear Information System (INIS)

    Kasen, Daniel; Woosley, S. E.; Heger, Alexander

    2011-01-01

    For the initial mass range (140 M sun sun ) stars die in a thermonuclear runaway triggered by the pair-production instability. The supernovae they make can be remarkably energetic (up to ∼10 53 erg) and synthesize considerable amounts of radioactive isotopes. Here we model the evolution, explosion, and observational signatures of representative pair instability supernovae (PI SNe) spanning a range of initial masses and envelope structures. The predicted light curves last for hundreds of days and range in luminosity from very dim to extremely bright (L ∼ 10 44 erg s -1 ). The most massive events are bright enough to be seen at high redshift, but the extended light curve duration (∼1 yr)-prolonged by cosmological time-dilation-may make it difficult to detect them as transients. A more promising approach may be to search for the brief and luminous outbreak occurring when the explosion shock wave first reaches the stellar surface. Using a multi-wavelength radiation-hydrodynamics code we calculate that, in the rest frame, the shock breakout transients of PI SNe reach luminosities of 10 45 -10 46 erg s -1 , peak at wavelengths ∼30-170 A, and last for several hours. We discuss how observations of the light curves, spectra, and breakout emission can be used to constrain the mass, radius, and metallicity of the progenitor.

  10. Aspherical Supernovae: Effects on Early Light Curves

    Science.gov (United States)

    Afsariardchi, Niloufar; Matzner, Christopher D.

    2018-04-01

    Early light from core-collapse supernovae, now detectable in high-cadence surveys, holds clues to a star and its environment just before it explodes. However, effects that alter the early light have not been fully explored. We highlight the possibility of nonradial flows at the time of shock breakout. These develop in sufficiently nonspherical explosions if the progenitor is not too diffuse. When they do develop, nonradial flows limit ejecta speeds and cause ejecta–ejecta collisions. We explore these phenomena and their observational implications using global, axisymmetric, nonrelativistic FLASH simulations of simplified polytropic progenitors, which we scale to representative stars. We develop a method to track photon production within the ejecta, enabling us to estimate band-dependent light curves from adiabatic simulations. Immediate breakout emission becomes hidden as an oblique flow develops. Nonspherical effects lead the shock-heated ejecta to release a more constant luminosity at a higher, evolving color temperature at early times, effectively mixing breakout light with the early light curve. Collisions between nonradial ejecta thermalize a small fraction of the explosion energy; we will address emission from these collisions in a subsequent paper.

  11. Conceptual design of the PANDA luminosity monitor and reconstruction strategy to measure the width of the X(3872) state

    Energy Technology Data Exchange (ETDEWEB)

    Randriamalala, Tsitohaina

    2012-04-19

    The PANDA experiment has a great potential to test with high precision QCD in the low momentum transfer region using an antiproton beam of unprecedented quality. The resonance scan method will be used to determine the lineshape of specific hadronic states. It requires a precise knowledge of the luminosity. This thesis develops the conceptual design of the PANDA luminosity monitor and a scan simulation to determine the width resolution of the X(3872) state. The luminosity monitor concept is based on the reconstruction of elastically scattered antiprotons from the interaction region. Monte Carlo performance studies of the detector were carried out. The implementation test was done using a detector prototype instrumented at the COSY accelerator and testing it with proton beam. The studies show that a precision of better than 3% on the luminosity and a width resolution for the X(3872) of about 2% can be achieved.

  12. Light-Curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi Pulsars

    Science.gov (United States)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-01-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of a on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from

  13. Characterizing the V-band light-curves of hydrogen-rich type II supernovae

    DEFF Research Database (Denmark)

    Anderson, Joseph P.; González-Gaitán, Santiago; Hamuy, Mario

    2014-01-01

    a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the "plateau" stage, through to the brightest events which...

  14. THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA, 92697-4575 (United States); Bennert, Vardha N. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Canalizo, Gabriela [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Filippenko, Alexei V.; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gates, Elinor L. [Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Malkan, Matthew A.; Treu, Tommaso [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Pancoast, Anna [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Sand, David J. [Texas Tech University, Physics Department, Box 41051, Lubbock, TX 79409-1051 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Boulevard, Pasadena, CA 91109 (United States); Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Assef, Roberto J. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Bae, Hyun-Jin [Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of); Brewer, Brendon J. [Department of Statistics, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, MC 661, Greenbelt, MD 20771 (United States); and others

    2015-04-15

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hβ line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad Hβ line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad Hβ width and luminosity, demonstrating that the broad-line region “breathes” on short timescales of days to weeks in response to continuum variations. We also find that broad Hβ velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad Hβ velocity shifted by ∼250 km s{sup −1} over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.

  15. Galaxy luminosity function and Tully-Fisher relation: reconciled through rotation-curve studies

    International Nuclear Information System (INIS)

    Cattaneo, Andrea; Salucci, Paolo; Papastergis, Emmanouil

    2014-01-01

    The relation between galaxy luminosity L and halo virial velocity v vir required to fit the galaxy luminosity function differs from the observed Tully-Fisher relation between L and disk speed v rot . Because of this, the problem of reproducing the galaxy luminosity function and the Tully-Fisher relation simultaneously has plagued semianalytic models since their inception. Here we study the relation between v rot and v vir by fitting observational average rotation curves of disk galaxies binned in luminosity. We show that the v rot -v vir relation that we obtain in this way can fully account for this seeming inconsistency. Therefore, the reconciliation of the luminosity function with the Tully-Fisher relation rests on the complex dependence of v rot on v vir , which arises because the ratio of stellar mass to dark matter mass is a strong function of halo mass.

  16. Chromospheric scaling laws, width-luminosity correlations, and the Wilson-Bappu effect

    International Nuclear Information System (INIS)

    Ayres, T.R.

    1979-01-01

    Simple scaling laws are developed to explain the thickness and mean electron density of late-type stellar chromospheres in an effort to understand why the emission cores of effectively thick resonance lines such as Ca II H and K broaden with increasing stellar luminosity (the Wilson-Bappu effect). It is shown that stellar chromospheres become thicker in mass column density as stellar gravity g decreases and that the mean chromospheric electric density n/sub e/ decreases if the chromospheric heating dF/dm is constant with height and if the total heating F/sup tot/ is independent of g. It is also shown that chromospheres becomes thicker and the mean electron density becomes larger than the total chromospheric heating increases. The predicted behavior of the K 1 minimum separation and full width at half-maximum of the Ca II emission core (W 0 ) based on the derived scaling laws agree quantitatively with the observed correlations of these widths with fundamental stellar parameters, particularly surface gravity. In addition, the predicted behavior of the K 2 peak separation and base emission width with increasing chromospheric heating is consistent with the behavior of the Ca II emission core shapes in solar plages. The analytical arguments suggest that the Wilson-Bappu effect is largely a consequence of hydrostatic equilibrium rather than chromospheric dynamics

  17. The X-Ray Light Curve of the Very Luminous Supernova SN 1978K in NGC 1313

    Science.gov (United States)

    Schlegel, Eric M.; Petre, R.; Colbert, E. J. M.

    1996-01-01

    We present the 0.5-2.0 keV light curve of the X-ray luminous supernova SN 1978K in NGC 1313, based on six ROSAT observations spanning 1990 July to t994 July. SN 1978K is one of a few supernovae or supernova remnants that are very luminous (˜1039-1040 ergs s-1) in the X-ray, optical, and radio bands, and the first, at a supernova age of 10-20 yr, for which sufficient data exist to create an X-ray light curve. The X-ray flux is approximately constant over the 4 yr sampled by our observations, which were obtained 12-16 yr after the initial explosion. Three models exist to explain the large X-ray luminosity: pulsar input, a reverse shock running back into the expanding debris of the supernova, and the outgoing shock crushing of cloudlets in the debris field. Based upon calculations of Chevalier & Fransson, a pulsar cannot provide sufficient energy to produce the soft X-ray luminosity. Based upon the models and the light curve to date, it is not possible to discern the evolutionary phase of the supernova.

  18. Characterization of Type Ia Supernova Light Curves Using Principal Component Analysis of Sparse Functional Data

    Science.gov (United States)

    He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.

    2018-04-01

    With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.

  19. Timescale stretch parameterization of Type Ia supernova B-band light curves

    International Nuclear Information System (INIS)

    Goldhaber, G.; Groom, D.E.; Kim, A.; Aldering, G.; Astier, P.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fruchter, A.S.; Goobar, A.; Hook, I.; Irwin, M.; Kim, M.; Knop, R.A.; Lidman, C.; McMahon, R.; Nugent, P.E.; Pain, R.; Panagia, N.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.A.; York, T.

    2001-01-01

    R-band intensity measurements along the light curve of Type Ia supernovae discovered by the Cosmology Project (SCP) are fitted in brightness to templates allowing a free parameter the time-axis width factor w identically equal to s times (1+z). The data points are then individually aligned in the time-axis, normalized and K-corrected back to the rest frame, after which the nearly 1300 normalized intensity measurements are found to lie on a well-determined common rest-frame B-band curve which we call the ''composite curve.'' The same procedure is applied to 18 low-redshift Calan/Tololo SNe with Z < 0.11; these nearly 300 B-band photometry points are found to lie on the composite curve equally well. The SCP search technique produces several measurements before maximum light for each supernova. We demonstrate that the linear stretch factor, s, which parameterizes the light-curve timescale appears independent of z, and applies equally well to the declining and rising parts of the light curve. In fact, the B band template that best fits this composite curve fits the individual supernova photometry data when stretched by a factor s with chi 2/DoF ∼ 1, thus as well as any parameterization can, given the current data sets. The measurement of the data of explosion, however, is model dependent and not tightly constrained by the current data. We also demonstrate the 1 + z light-cure time-axis broadening expected from cosmological expansion. This argues strongly against alternative explanations, such as tired light, for the redshift of distant objects

  20. EXPLORING THE POTENTIAL DIVERSITY OF EARLY TYPE IA SUPERNOVA LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Morozova, Viktoriya S., E-mail: piro@obs.carnegiescience.edu [Theoretical Astrophysics, California Institute of Technology, 1200 E California Boulevard, M/C 350-17, Pasadena, CA 91125 (United States)

    2016-07-20

    During the first several days after explosion, Type Ia supernova light curves probe the outer layers of the exploding star, and therefore provide important clues for identifying their progenitors. We investigate how both the shallow {sup 56}Ni distribution and the presence of circumstellar material shape these early light curves. This is performed using a series of numerical experiments with parameterized properties for systematic exploration. Although not all of the considered models may be realized in nature (and indeed there are arguments why some of them should not occur), the spirit of this work is to provide a broader exploration of the diversity of possibilities. We find that shallower {sup 56}Ni leads to steeper, bluer light curves. Differences in the shape of the rise can introduce errors in estimating the explosion time, and thus impact efforts to infer upper limits on the progenitor or companion radius from a lack of observed shock cooling emission. Circumstellar material can lead to significant luminosity during the first few days, but its presence can be difficult to identify depending on the degree of nickel mixing. In some cases, the hot emission of circumstellar material may even lead to a signature similar to an interaction with a companion, and thus in the future additional diagnostics should be gathered for properly assessing early light curves.

  1. Supernovae with two peaks in the optical light curve and the signature of progenitors with low-mass extended envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Piro, Anthony L. [Theoretical Astrophysics, California Institute of Technology, 1200 East California Boulevard, M/C 350-17, Pasadena, CA 91125 (United States)

    2014-06-20

    Early observations of supernova light curves are powerful tools for shedding light on the pre-explosion structures of their progenitors and their mass-loss histories just prior to explosion. Some core-collapse supernovae that are detected during the first days after the explosion prominently show two peaks in the optical bands, including the R and I bands, where the first peak appears to be powered by the cooling of shocked surface material and the second peak is clearly powered by radioactive decay. Such light curves have been explored in detail theoretically for SN 1993J and 2011dh, where it was found that they may be explained by progenitors with extended, low-mass envelopes. Here, we generalize these results. We first explore whether any double-peaked light curve of this type can be generated by a progenitor with a 'standard' density profile, such as a red supergiant or a Wolf-Rayet star. We show that a standard progenitor (1) cannot produce a double-peaked light curve in the R and I bands and (2) cannot exhibit a fast drop in the bolometric luminosity as is seen after the first peak. We then explore the signature of a progenitor with a compact core surrounded by extended, low-mass material. This may be a hydrostatic low-mass envelope or material ejected just prior to the explosion. We show that it naturally produces both of these features. We use this result to provide simple formulae to estimate (1) the mass of the extended material from the time of the first peak, (2) the extended material radius from the luminosity of the first peak, and (3) an upper limit on the core radius from the luminosity minimum between the two peaks.

  2. Dependence on supernovae light-curve processing in void models

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); De Rossi, Maria E., E-mail: derossi@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2014-06-02

    In this work, we show that when supernova Ia (SN Ia) data sets are used to put constraints on the free parameters of inhomogeneous models, certain extra information regarding the light-curve fitter used in the supernovae Ia luminosity fluxes processing should be taken into account. We found that the size of the void as well as other parameters of these models might be suffering extra degenerations or additional systematic errors due to the fitter. A recent proposal to relieve the tension between the results from Planck satellite and SNe Ia is re-analyzed in the framework of these subjects.

  3. Luminosity-velocity diagrams for Virgo Cluster spirals. I - Inner rotation curves

    Science.gov (United States)

    Woods, David; Fahlman, Gregory G.; Madore, Barry F.

    1990-01-01

    Optical rotation curves are presented for the innermost portions of nine spiral galaxies in the Virgo Cluster. The emission-line (H-alpha and forbidden N II) velocity data are to be used in combination with new CCD photometry to construct luminosity-velocity diagrams, in a continuing investigation of an apparent initial linear branch and its potential as a distance indicator. Compared to recent H I data, the present optical rotation curves generally show systematically steeper inner gradients. This effect is ascribed to the poorer resolution of the H I data and/or to holes in the gas distribution.

  4. Photoelectic BV Light Curves of Algol and the Interpretations of the Light Curves

    Directory of Open Access Journals (Sweden)

    Ho-Il Kim

    1985-06-01

    Full Text Available Standardized B and V photoelectric light curves of Algol are made with the observations obtained during 1982-84 with the 40-cm and the 61-cm reflectors of Yonsei University Observatory. These light curves show asymmetry between ascending and descending shoulders. The ascending shoulder is 0.02 mag brighter than descending shoulder in V light curve and 0.03 mag in B light curve. These asymmetric light curves are interpreted as the result of inhomogeneous energy distribution on the surface of one star of the eclipsing pair rather than the result of gaseous stream flowing from KOIV to B8V star. The 180-year periodicity, so called great inequality, are most likely the result proposed by Kim et al. (1983 that the abrupt and discrete mass losses of cooler component may be the cause of this orbital change. The amount of mass loss deduced from these discrete period changes turned out to be of the order of 10^(-6 - 10^(-5 Msolar.

  5. Using Curved Crystals to Study Terrace-Width Distributions.

    Science.gov (United States)

    Einstein, Theodore L.

    Recent experiments on curved crystals of noble and late transition metals (Ortega and Juurlink groups) have renewed interest in terrace width distributions (TWD) for vicinal surfaces. Thus, it is timely to discuss refinements of TWD analysis that are absent from the standard reviews. Rather than by Gaussians, TWDs are better described by the generalized Wigner surmise, with a power-law rise and a Gaussian decay, thereby including effects evident for weak step repulsion: skewness and peak shifts down from the mean spacing. Curved crystals allow analysis of several mean spacings with the same substrate, so that one can check the scaling with the mean width. This is important since such scaling confirms well-established theory. Failure to scale also can provide significant insights. Complicating factors can include step touching (local double-height steps), oscillatory step interactions mediated by metallic (but not topological) surface states, short-range corrections to the inverse-square step repulsion, and accounting for the offset between adjacent layers of almost all surfaces. We discuss how to deal with these issues. For in-plane misoriented steps there are formulas to describe the stiffness but not yet the strength of the elastic interstep repulsion. Supported in part by NSF-CHE 13-05892.

  6. The Physics of Type Ia Supernova Light Curves. I. Analytic Results and Time Dependence

    International Nuclear Information System (INIS)

    Pinto, Philip A.; Eastman, Ronald G.

    2000-01-01

    We develop an analytic solution of the radiation transport problem for Type Ia supernovae (SNe Ia) and show that it reproduces bolometric light curves produced by more detailed calculations under the assumption of a constant-extinction coefficient. This model is used to derive the thermal conditions in the interior of SNe Ia and to study the sensitivity of light curves to various properties of the underlying supernova explosions. Although the model is limited by simplifying assumptions, it is adequate for demonstrating that the relationship between SNe Ia maximum-light luminosity and rate of decline is most easily explained if SNe Ia span a range in mass. The analytic model is also used to examine the size of various terms in the transport equation under conditions appropriate to maximum light. For instance, the Eulerian and advective time derivatives are each shown to be of the same order of magnitude as other order v/c terms in the transport equation. We conclude that a fully time-dependent solution to the transport problem is needed in order to compute SNe Ia light curves and spectra accurate enough to distinguish subtle differences of various explosion models. (c) 2000 The American Astronomical Society

  7. Development and Performance Evaluation of Light Shelves Using Width-Adjustable Reflectors

    Directory of Open Access Journals (Sweden)

    Heangwoo Lee

    2018-01-01

    Full Text Available In recent years, there has been an increase in the consumption of energy for lighting purposes, which has led to an increase in the number of studies being conducted on this subject. Most studies have focused on light shelves, which are daylighting systems used for reducing the lighting energy required for the interiors of buildings. However, the existing light shelves cannot actively deal with external environmental factors, which often lead to an infringement of the right to light during the night when the performance of the light shelf deteriorates. Therefore, in this study, we propose a light shelf with a width-adjustable reflector and verify its validity using a testbed. The reflector of the proposed light shelf system is modularized so that the length can be adjusted in stages. The optimum width of the light shelf is calculated in terms of the energy reduction and uniformity ratio improvement, and the obtained optimum width is varied depending on the season. We find that the width-adjustable reflector can save 20% and 21.6% more lighting energy than light shelves with fixed reflector widths of 0.3 m and 0.6 m, respectively.

  8. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  9. Simulating Supernova Light Curves

    International Nuclear Information System (INIS)

    Even, Wesley Paul; Dolence, Joshua C.

    2016-01-01

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth's atmosphere.

  10. Relationship Between Crack Growth Resistance KR Curve and Specimen Width for 2060 - T8E30 Lithium Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Tong Di Hua

    2016-01-01

    Full Text Available KR crack growth resistance curve can be used to predict crack propagation behavior, estimate the crack component bearing capacity after the crack, so KR curve research occupies very important position in the fracture mechanics. Based on crack growth resistance KR test curve of 2060 - T8E30 lithium aluminum alloy under the same thickness for different width, studies have shown that under the same thickness, the influence of the width on the resistance curve of crack propagation can be neglected. Empirical equation of resistance curve of crack extension of the smaller width specimen is given. Extending the fitting equation to that of larger width, it can be found that it is highly coincided with the experimental results.

  11. The Origin and Evolution of the Infrared Light Curve of SN2010jl

    Science.gov (United States)

    Dwek, Eli; Sarangi, Arkaprabha; Arendt, Richard; Fox, Ori; Kallman, Timothy; Kazanas, Demosthenes

    2018-01-01

    SN2010jl is a luminous core-collapse supernova (CCSN) of Type IIn that is surrounded by a dense circumstellar medium (CSM). The supernova (SN) luminosity vastly exceeds the available power from radiactive elements in the ejecta, and is powered by the interaction of the SN shock wave with the ambient medium. Upper limits on the UV and near-IR (NIR) emission from pre-explosion images of the region suggest that any progenitor star was hidden by pre-existing CSM dust. After day ~80, the SN spectrum shows the development of an IR excess above the extrapolated UVO emission arising from the shocked CSM. This IR component is attributed to thermal emission from dust.After day ~300, the light curve exhibits a rise in the NIR luminosity, concurrent with a steep decline at UVO wavelengths. Ruling out any possible contribution of SN-condensed dust to the IR light curve, we show that the early IR emission arises from the pre-existing CSM dust that survived the flash of radiation from the shock breakout. The late IR emission arises from newly-formed CSM dust that condensed in the cooling dust-free postshock gas of the advancing SN shock wave. Our analysis presents the first detailed modeling of dust formation in a cooling postshock environment, and provides important insights into the interaction of the SN shock wave with the CSM.

  12. Exquisite Nova Light Curves from the Solar Mass Ejection Imager (SMEI)

    Science.gov (United States)

    Hounsell, R.; Bode, M. F.; Hick, P. P.; Buffington, A.; Jackson, B. V.; Clover, J. M.; Shafter, A. W.; Darnley, M. J.; Mawson, N. R.; Steele, I. A.; Evans, A.; Eyres, S. P. S.; O'Brien, T. J.

    2010-11-01

    We present light curves of three classical novae (CNe; KT Eridani, V598 Puppis, V1280 Scorpii) and one recurrent nova (RS Ophiuchi) derived from data obtained by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. SMEI provides near complete skymap coverage with precision visible-light photometry at 102 minute cadence. The light curves derived from these skymaps offer unprecedented temporal resolution around, and especially before, maximum light, a phase of the eruption normally not covered by ground-based observations. They allow us to explore fundamental parameters of individual objects including the epoch of the initial explosion, the reality and duration of any pre-maximum halt (found in all three fast novae in our sample), the presence of secondary maxima, speed of decline of the initial light curve, plus precise timing of the onset of dust formation (in V1280 Sco) leading to estimation of the bolometric luminosity, white dwarf mass, and object distance. For KT Eri, Liverpool Telescope SkyCamT data confirm important features of the SMEI light curve and overall our results add weight to the proposed similarities of this object to recurrent rather than to CNe. In RS Oph, comparison with hard X-ray data from the 2006 outburst implies that the onset of the outburst coincides with extensive high-velocity mass loss. It is also noted that two of the four novae we have detected (V598 Pup and KT Eri) were only discovered by ground-based observers weeks or months after maximum light, yet these novae reached peak magnitudes of 3.46 and 5.42, respectively. This emphasizes the fact that many bright novae per year are still overlooked, particularly those of the very fast speed class. Coupled with its ability to observe novae in detail even when relatively close to the Sun in the sky, we estimate that as many as five novae per year may be detectable by SMEI.

  13. THREE FUNDAMENTAL PERIODS IN AN 87 YEAR LIGHT CURVE OF THE SYMBIOTIC STAR MWC 560

    Energy Technology Data Exchange (ETDEWEB)

    Leibowitz, Elia M.; Formiggini, Liliana, E-mail: elia@astro.tau.ac.il [The Wise Observatory and the School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2015-08-15

    We construct a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of three basic clocks of the periods P1 = 19,000 days, P2 = 1943 days, and P3 = 722 days. These periods can plausibly, and consistently with the observations, be attributed to three physical mechanisms in the system: the working of a solar-like magnetic dynamo cycle in the outer layers of the giant star of the system, the binary orbit cycle, and the sidereal rotation cycle of the giant star. MWC 560 is the seventh symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of the current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems.

  14. THREE FUNDAMENTAL PERIODS IN AN 87 YEAR LIGHT CURVE OF THE SYMBIOTIC STAR MWC 560

    International Nuclear Information System (INIS)

    Leibowitz, Elia M.; Formiggini, Liliana

    2015-01-01

    We construct a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of three basic clocks of the periods P1 = 19,000 days, P2 = 1943 days, and P3 = 722 days. These periods can plausibly, and consistently with the observations, be attributed to three physical mechanisms in the system: the working of a solar-like magnetic dynamo cycle in the outer layers of the giant star of the system, the binary orbit cycle, and the sidereal rotation cycle of the giant star. MWC 560 is the seventh symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of the current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems

  15. Reverberation Mapping of High-Luminosity Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Shai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Brandt, William N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Department of Physics, Pennsylvania State University, University Park, PA (United States); Maoz, Dan; Netzer, Hagai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Shemmer, Ohad, E-mail: shai@wise.tau.ac.il [Department of Physics, University of North Texas, Denton, TX (United States)

    2017-10-30

    Over the past three decades reverberation mapping (RM) has been applied to about 100 AGNs. Their broad line region (BLR) sizes were measured and yielded mass estimates of the black holes in their center. However, very few attempts were carried out for high-luminosity quasars, at luminosities higher than 10{sup 46} erg/sec in the optical. Most of these attempts failed since RM of such quasars is difficult due to a number of reasons, mostly due to the long time needed to monitor these objects. During the past two decades we carried out a RM campaign on six high-luminosity quasars. This contribution presents some of the final light curves of that RM campaign in which we measured the BLR size in C iv of three of the objects (S5 0836+71, SBS 1116+603, and SBS 1425+606). We present the C iv BLR size and luminosity relation over eight orders of magnitude in luminosity, pushing the luminosity limit to its highest point so far.

  16. IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES

    International Nuclear Information System (INIS)

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Wood-Vasey, W. Michael; Blondin, Stephane; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin

    2009-01-01

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013 +0.066 -0.068 (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R V = 3.1), and MLCS2k2 (R V = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 V = 3.1 overestimates host-galaxy extinction while R V ∼ 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2σ, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  17. A COMPREHENSIVE ANALYSIS OF SWIFT/X-RAY TELESCOPE DATA. IV. SINGLE POWER-LAW DECAYING LIGHT CURVES VERSUS CANONICAL LIGHT CURVES AND IMPLICATIONS FOR A UNIFIED ORIGIN OF X-RAYS

    International Nuclear Information System (INIS)

    Liang Enwei; Lue Houjun; Hou Shujin; Zhang Binbin; Zhang Bing

    2009-01-01

    By systematically analyzing the Swift/XRT light curves detected before 2009 July, we find 19 light curves that monotonously decay as a single power law (SPL) with an index of 1 ∼ 1.7 from tens (or hundreds) of seconds to ∼10 5 s post the gamma-ray burst (GRB) trigger. They are apparently different from the canonical light curves characterized by a shallow-to-normal decay transition. We compare the observations of the prompt gamma rays and the X-rays for these two samples of GRBs (SPL vs. canonical). No statistical difference is found in the prompt gamma-ray properties for the two samples. The X-ray properties of the two samples are also similar, although the SPL sample tends to have a slightly lower neutral hydrogen absorption column for the host galaxies and a slightly larger energy release compared with the canonical sample. The SPL X-ray Telescope (XRT) light curves in the burst frame gradually merge into a conflux, and their luminosities at 10 5 s are normally distributed at log L/ergs s -1 = 45.6 ± 0.5. The normal decay segment of the canonical XRT light curves has the same feature. Similar to the normal decay segment, the SPL light curves satisfy the closure relations and therefore can be roughly explained with external shock models. In the scenario that the X-rays are the afterglows of the GRB fireball, our results indicate that the shallow decay would be due to energy injection into the fireball and the total energy budget after injection for both samples of GRBs is comparable. More intriguing, we find that a prior X-ray emission model proposed by Yamazaki is more straightforward to interpret the observed XRT data. We show that the zero times (T 0 ) of the X-rays are 10 2 -10 5 s prior to the GRB trigger for the canonical sample, and satisfy a log-normal distribution. The negligible T 0 's of the SPL sample are consistent with being the tail of T 0 distributions at low end, suggesting that the SPL sample and the canonical sample may be from a same

  18. Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Fei [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Green, Paul J.; Pancoast, Anna; MacLeod, Chelsea L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Morganson, Eric; Shen, Yue [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Brandt, W. N.; Grier, C. J. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Rix, H.-W. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Protopapas, Pavlos [Institute for Applied Computational Science, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Scott, Caroline [Astrophysics, Imperial College London, Blackett Laboratory, London SW7 2AZ (United Kingdom); Burgett, W. S.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu HI 96822 (United States); and others

    2017-02-20

    We study the time lags between the continuum emission of quasars at different wavelengths, based on more than four years of multi-band ( g , r , i , z ) light curves in the Pan-STARRS Medium Deep Fields. As photons from different bands emerge from different radial ranges in the accretion disk, the lags constrain the sizes of the accretion disks. We select 240 quasars with redshifts of z ≈ 1 or z ≈ 0.3 that are relatively emission-line free. The light curves are sampled from day to month timescales, which makes it possible to detect lags on the scale of the light crossing time of the accretion disks. With the code JAVELIN , we detect typical lags of several days in the rest frame between the g band and the riz bands. The detected lags are ∼2–3 times larger than the light crossing time estimated from the standard thin disk model, consistent with the recently measured lag in NGC 5548 and microlensing measurements of quasars. The lags in our sample are found to increase with increasing luminosity. Furthermore, the increase in lags going from g − r to g − i and then to g − z is slower than predicted in the thin disk model, particularly for high-luminosity quasars. The radial temperature profile in the disk must be different from what is assumed. We also find evidence that the lags decrease with increasing line ratios between ultraviolet Fe ii lines and Mg ii, which may point to changes in the accretion disk structure at higher metallicity.

  19. A new approach to the analysis of Mira light curves

    International Nuclear Information System (INIS)

    Mennessier, M.O.; Barthes, D.; Mattei, J.A.

    1990-01-01

    Two different but complementary methods for predicting Mira luminosities are presented. One method is derived from a Fourier analysis, it requires performing deconvolution, and its results are not certain due to the inherent instability of deconvolution problems. The other method is a learning method utilizing artificial intelligence techniques where a light curve is presented as an ordered sequence of pseudocycles, and rules are learned by linking the characteristics of several consecutive pseudocycles to one characteristic of the future cycle. It is observed that agreement between these methods is obtainable when it is possible to eliminate similar false frequencies from the preliminary power spectrum and to improve the degree of confidence in the rules

  20. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA

    International Nuclear Information System (INIS)

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Cho, Richard; Contreras, Maria; Jha, Saurabh; Matheson, Tom; Modjaz, Maryam; Rest, Armin; Michael Wood-Vasey, W.; Barton, Elizabeth J.; Bragg, Ann; Briceno, Cesar; Ciupik, Larry; Dendy, Kristi-Concannon

    2009-01-01

    We present multiband photometry of 185 type-Ia supernovae (SNe Ia), with over 11,500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously observed and reduced nearby SNe Ia (z ∼< 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of ∼<0.02 mag in BVRIr'i' and ∼<0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SNe Ia are sufficiently distinct from other SNe Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.

  1. PERIOD ESTIMATION FOR SPARSELY SAMPLED QUASI-PERIODIC LIGHT CURVES APPLIED TO MIRAS

    Energy Technology Data Exchange (ETDEWEB)

    He, Shiyuan; Huang, Jianhua Z.; Long, James [Department of Statistics, Texas A and M University, College Station, TX (United States); Yuan, Wenlong; Macri, Lucas M., E-mail: lmacri@tamu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX (United States)

    2016-12-01

    We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequency parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period–luminosity relations.

  2. Low mass SN Ia and the late light curve

    International Nuclear Information System (INIS)

    Colgate, S.A.; Fryer, C.L.

    1995-01-01

    The late bolometric light curves of type Ia supernovae, when measured accurately over several years, show an exponential decay with a 56d half-life over a drop in luminosity of 8 magnitudes (10 half-lives). The late-time light curve is thought to be governed by the decay of Co 56 , whose 77d half-life must then be modified to account for the observed decay time. Two mechanisms, both relying upon the positron fraction of the Co 56 decay, have been proposed to explain this modification. One explanation requires a large amount of emission at infra-red wavelengths where it would not be detected. The other explanation has proposed a progressive transparency or leakage of the high energy positrons (Colgate, Petschek and Kriese, 1980). For the positrons to leak out of the expanding nebula at the required rate necessary to produce the modified 56d exponential, the mass of the ejecta from a one foe (10 51 erg in kinetic energy) explosion must be small, M ejec = 0.4M circle-dot with M ejec ∝ KE 0.5 . Thus, in this leakage explanation, any reasonable estimate of the total energy of the explosion requires that the ejected mass be very much less than the Chandrasekhar mass of 1.4M circle-dot . This is very difficult to explain with the ''canonical'' Chandrasekhar-mass thermonuclear explosion that disintegrates the original white dwarf star. This result leads us to pursue alternate mechanisms of type Ia supernovae. These mechanisms include sub-Chandrasekhar thermonuclear explosions and the accretion induced collapse of Chandrasekhar mass white dwarfs. We will summarize the advantages and disadvantages of both mechanisms with considerable detail spent on our new accretion induced collapse simulations. These mechanisms lead to lower Ni 56 production and hence result in type Ia supernovae with luminosities decreased down to ∼ 50% that predicted by the ''standard'' model

  3. Automated Blazar Light Curves Using Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Spencer James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-27

    This presentation describes a problem and methodology pertaining to automated blazar light curves. Namely, optical variability patterns for blazars require the construction of light curves and in order to generate the light curves, data must be filtered before processing to ensure quality.

  4. A Correlation Between the Intrinsic Brightness and Average Decay Rate of Gamma-Ray Burst X-Ray Afterglow Light Curves

    Science.gov (United States)

    Racusin, J. L.; Oates, S. R.; De Pasquale, M.; Kocevski, D.

    2016-01-01

    We present a correlation between the average temporal decay (alpha X,avg, greater than 200 s) and early-time luminosity (LX,200 s) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the gamma-ray trigger. The luminosity â€" average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation.

  5. SNaX: A Database of Supernova X-Ray Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Mathias; Dwarkadas, Vikram V., E-mail: Mathias_Ross@msn.com, E-mail: vikram@oddjob.uchicago.edu [Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, ERC 569, Chicago, IL 60637 (United States)

    2017-06-01

    We present the Supernova X-ray Database (SNaX), a compilation of the X-ray data from young supernovae (SNe). The database includes the X-ray fluxes and luminosities of young SNe, from days to years after outburst. The original goal and intent of this study was to present a database of Type IIn SNe (SNe IIn), which we have accomplished. Our ongoing goal is to expand the database to include all SNe for which published data are available. The database interface allows one to search for SNe using various criteria, plot all or selected data points, and download both the data and the plot. The plotting facility allows for significant customization. There is also a facility for the user to submit data that can be directly incorporated into the database. We include an option to fit the decay of any given SN light curve with a power-law. The database includes a conversion of most data points to a common 0.3–8 keV band so that SN light curves may be directly compared with each other. A mailing list has been set up to disseminate information about the database. We outline the structure and function of the database, describe its various features, and outline the plans for future expansion.

  6. SNaX: A Database of Supernova X-Ray Light Curves

    International Nuclear Information System (INIS)

    Ross, Mathias; Dwarkadas, Vikram V.

    2017-01-01

    We present the Supernova X-ray Database (SNaX), a compilation of the X-ray data from young supernovae (SNe). The database includes the X-ray fluxes and luminosities of young SNe, from days to years after outburst. The original goal and intent of this study was to present a database of Type IIn SNe (SNe IIn), which we have accomplished. Our ongoing goal is to expand the database to include all SNe for which published data are available. The database interface allows one to search for SNe using various criteria, plot all or selected data points, and download both the data and the plot. The plotting facility allows for significant customization. There is also a facility for the user to submit data that can be directly incorporated into the database. We include an option to fit the decay of any given SN light curve with a power-law. The database includes a conversion of most data points to a common 0.3–8 keV band so that SN light curves may be directly compared with each other. A mailing list has been set up to disseminate information about the database. We outline the structure and function of the database, describe its various features, and outline the plans for future expansion.

  7. ELECTROMAGNETIC EMISSION FROM LONG-LIVED BINARY NEUTRON STAR MERGER REMNANTS. II. LIGHT CURVES AND SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Daniel M. [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D-14476 Potsdam-Golm (Germany); Ciolfi, Riccardo, E-mail: daniel.siegel@aei.mpg.de, E-mail: riccardo.ciolfi@unitn.it [Physics Department, University of Trento, Via Sommarive 14, I-38123 Trento (Italy)

    2016-03-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality thanks to the ground-based advanced LIGO/Virgo GW detector network. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission up to ∼10{sup 7} s. Light curves and spectra are computed for a wide range of post-merger physical properties. We present X-ray afterglow light curves corresponding to the “standard” and the “time-reversal” scenario for SGRBs (prompt emission associated with the merger or with the collapse of the long-lived NS). The light curve morphologies include single and two-plateau features with timescales and luminosities that are in good agreement with Swift observations. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario, the detection of which would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient peaking in the X-ray band at ∼10{sup 2}–10{sup 4} s after the BNS merger with luminosities of L{sub X} ∼ 10{sup 46}–10{sup 48} erg s{sup −1}. This signal represents a very promising EM counterpart to the GW emission from BNS mergers.

  8. Ultraviolet light curves of U Geminorum and VW Hydri

    International Nuclear Information System (INIS)

    Wu, C.-C.; Panek, R.J.; Holm, A.V.; Schiffer, F.H. III

    1982-01-01

    Ultraviolet light curves have been obtained for the quiescent dwarf novae U Gem and VW Hyi. The amplitude of the hump associated with the accretion hot spot is much smaller in the UV than in the visible. This implies that the bright spot temperature is roughly 12000 K if it is optically thick. A hotter spot would have to be optically thin in the near UV. The flux distribution of U Gem in quiescence cannot be fitted by model spectra of steady state, viscous accretion disks. The absolute luminosity, the flux distribution, and the far UV spectrum suggest that the primary star is visible in the far UV. The optical-UV flux distribution of VW Hyi could be matched roughly by the authors' model accretion disks, but the fitting is poorly constrained due to the uncertainty in its distance. (Auth.)

  9. The Evolution of the Type Ia Supernova Luminosity Function

    NARCIS (Netherlands)

    Shen, K.J.; Toonen, S.; Graur, O.

    2017-01-01

    Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia

  10. SN 2015as: a low-luminosity Type IIb supernova without an early light-curve peak

    Science.gov (United States)

    Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, A.; Sahu, D. K.; Tomasella, L.; Tartaglia, L.; Singh, Mridweeka; Dastidar, Raya; Srivastav, S.; Ochner, P.; Brown, Peter J.; Anupama, G. C.; Benetti, S.; Cappellaro, E.; Kumar, Brajesh; Kumar, Brijesh; Pandey, S. B.

    2018-05-01

    We present results of the photometric (from 3 to 509 d post-explosion) and spectroscopic (up to 230 d post-explosion) monitoring campaign of the He-rich Type IIb supernova (SN) 2015as. The (B - V) colour evolution of SN 2015as closely resemble those of SN 2008ax, suggesting that SN 2015as belongs to the SN IIb subgroup that does not show the early, short-duration photometric peak. The light curve of SN 2015as reaches the B-band maximum about 22 d after the explosion, at an absolute magnitude of -16.82 ± 0.18 mag. At ˜75 d after the explosion, its spectrum transitions from that of a SN II to a SN Ib. P Cygni features due to He I lines appear at around 30 d after explosion, indicating that the progenitor of SN 2015as was partially stripped. For SN 2015as, we estimate a 56Ni mass of ˜0.08 M⊙ and ejecta mass of 1.1-2.2 M⊙, which are similar to the values inferred for SN 2008ax. The quasi-bolometric analytical light-curve modelling suggests that the progenitor of SN 2015as has a modest mass (˜0.1 M⊙), a nearly compact (˜0.05 × 1013 cm) H envelope on top of a dense, compact (˜2 × 1011 cm) and a more massive (˜1.2 M⊙) He core. The analysis of the nebular phase spectra indicates that ˜0.44 M⊙ of O is ejected in the explosion. The intensity ratio of the [Ca II]/[O I] nebular lines favours either a main-sequence progenitor mass of ˜15 M⊙ or a Wolf-Rayet star of 20 M⊙.

  11. LCC: Light Curves Classifier

    Science.gov (United States)

    Vo, Martin

    2017-08-01

    Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio). Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.

  12. Use of supernovae light curves for testing the expansion hypothesis and other cosmological relations

    International Nuclear Information System (INIS)

    Rust, B.W.

    1974-01-01

    This thesis is primarily concerned with a test of the expansion hypothesis based on the relation Δt/sub obs/ = (1 + V/sub r//c)Δt/sub int/ where Δt/sub int/ is the time lapse characterizing some phenomenon in a distant galaxy, Δt/sub obs/ is the observed time lapse and V/sub r/ is the symbolic velocity of recession. If the red shift is a Doppler effect, the observed time lapse should be lengthened by the same factor as the wave length of the light. Many authors have suggested type I supernovae for such a test because of their great luminosity and the uniformity of their light curves, but apparently the test has heretofore never actually been performed. Thirty-six light curves were gathered from the literature and one (SN1971i) was measured. All of the light curves were reduced to a common (m/sub pg/) photometric system. The comparison time lapse, Δt/sub c/, was taken to be the time required for the brightness to fall from 0.5 m below peak to 2.5 m below peak. The straight line regression of Δt/sub c/ on V/sub r/ gives a correlation coefficient significant at the 93 percent level, and the simple static Euclidean hypothesis is rejected at that level. The regression line also deviates from the prediction of the classical expansion hypothesis. Better agreement was obtained using the chronogeometric theory of I. E. Segal ( []972 Astron. and Astrophys. 18, 143), but the scatter in the present data makes it impossible to distinguish between these alternate hypotheses at the 95 percent confidence level. The question of how many additional light curves would be needed to give definite tests is addressed. It is shown that at the present rate of supernova discoveries, only a few more years would be required to obtain the necessary data if light curves are systematically measured for the more distant supernovae. (Diss. Abstr. Int., B)

  13. Reflected Light Curves of Extrasolar Planets

    Science.gov (United States)

    Green, D.; Matthews, J.; Kuschnig, R.; Seager, S.

    The planned launches of ultra-precise photometric satellites such as MOST, COROT and MONS should provide the first opportunity to study the reflected light curves from extrasolar planets. To predict the capabilities of these missions, we have constructed a series of models of such light curves, improving upon the Monte Carlo simulations by Seager et al. (2000). These models include more realistic features such limb darkening of the star and broad band photometry. For specific models, the resulting planet light curves exhibit unique behavior with the variation of radius, inclination and presence or absence of clouds.

  14. a new approach of Analysing GRB light curves

    International Nuclear Information System (INIS)

    Varga, B.; Horvath, I.

    2005-01-01

    We estimated the T xx quantiles of the cumulative GRB light curves using our recalculated background. The basic information of the light curves was extracted by multivariate statistical methods. The possible classes of the light curves are also briefly discussed

  15. Deep-learnt classification of light curves

    DEFF Research Database (Denmark)

    Mahabal, Ashish; Gieseke, Fabian; Pai, Akshay Sadananda Uppinakudru

    2017-01-01

    Astronomy light curves are sparse, gappy, and heteroscedastic. As a result standard time series methods regularly used for financial and similar datasets are of little help and astronomers are usually left to their own instruments and techniques to classify light curves. A common approach is to d...

  16. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    Energy Technology Data Exchange (ETDEWEB)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken’ichi; Blinnikov, Sergei [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sorokina, Elena [Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, 119234 Moscow (Russian Federation); Kozyreva, Alexandra, E-mail: alexey.tolstov@ipmu.jp [The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2017-08-10

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.

  17. TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Narayan, Gautham; Kirshner, Robert P.

    2011-01-01

    We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances. An improved BAYESN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical model by sampling the global probability density of parameters describing individual SNe and the population. We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction A V and the ratio of total-to-selective dust absorption R V . For SNe with low dust extinction, A V ∼ V ∼ 2.5-2.9, while at high extinctions, A V ∼> 1, low values of R V < 2 are favored. The NIR luminosities are excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak luminosities, and thus provide independent information on distances. The combination of NIR and optical data constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%. Using cross-validation, we estimate an rms distance modulus prediction error of 0.11 mag for SNe with optical and NIR data versus 0.15 mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for improving their utility as precise and accurate cosmological distance indicators.

  18. Light Curve Analysis of SAO23229

    Directory of Open Access Journals (Sweden)

    Ho-Il Kim

    1993-06-01

    Full Text Available We have made UBV light curves of a newly discovered eclipsing binary, SAO23229 at Sobaeksan Astronomy Observatory. We determined a minimum light time of HJD2448636.1170+/-0.0005 that is 3 minutes later than predicted time, and founda peculiar light variation at phase 0.75 that may not be secondary eclipse. Orbital period of SAO23229 would be 4.2 days rather than 2.1 days. Our analysis of the light curves shows that SAO23229 has a detached configuration consisting of two almost identical F type main sequence stars.

  19. An Alternate Light Curve Solution of AR Lacertae

    Directory of Open Access Journals (Sweden)

    Hong Suh Park

    1984-09-01

    Full Text Available Photoelectric UBV light curves of AR Lacertae made in one season during 1981-82 are presented. Although the shape of the light curves in the outside eclipses show a strong distortion, the scatter of observations as well as phase coverage are better than those previously available. Fourier coefficients are derived from the V-light curve and observed curve successfully rectified to the Russell model. Light curve solutions are computed and the geometrical and physical parameters of AR Lac are derived as as = 0.812, ag = 0.341, j = 86°3, Ls = 0.372, Lg = 0.628, k = 0.53, Xs = 0.85, Xg = 0.4.

  20. Classification of ASKAP Vast Radio Light Curves

    Science.gov (United States)

    Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.

    2012-01-01

    The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.

  1. The nuclear fluctuation width and the method of maxima in excitation curves

    International Nuclear Information System (INIS)

    Burjan, V.

    1988-01-01

    The method of counting maxima of excitation curves in the region of the occurrence of nuclear cross section fluctuations is extended to the case of the more realistic maxima defined as a sequence of five points instead of the simpler and commonly used case of a sequence of three points of an excitation curve. The dependence of the coefficient b (5) (κ), relating the number of five-point maxima and the mean level width Γ of the compound nucleus, on the relative distance K of excitation curve points is calculated. The influence of the random background on the coefficient b (5) (κ) is discussed and a comparison with the properties of the three-point coefficient b (3) (κ) is made - also in connection with the contribution of the random background. The calculated values of b (5) (κ) are well reproduced by the data obtained from the analysis of artificial excitation curves. (orig.)

  2. SiFTO: An Empirical Method for Fitting SN Ia Light Curves

    Science.gov (United States)

    Conley, A.; Sullivan, M.; Hsiao, E. Y.; Guy, J.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Hardin, D.; Howell, D. A.; Hook, I. M.; Pain, R.; Perrett, K.; Pritchet, C. J.; Regnault, N.

    2008-07-01

    We present SiFTO, a new empirical method for modeling Type Ia supernova (SN Ia) light curves by manipulating a spectral template. We make use of high-redshift SN data when training the model, allowing us to extend it bluer than rest-frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. We compare SiFTO to other published light-curve models by applying them to the same set of SN photometry, and demonstrate that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best-fit luminosity distance relationship. We further demonstrate that when SiFTO and SALT2 are trained on the same data set the cosmological results agree. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.

  3. TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M.; Chornock, R.; Berger, E.; Challis, P.; Drout, M.; Kirshner, R. P.; Lunnan, R.; Marion, G. H.; Margutti, R.; McKinnon, R.; Milisavljevic, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gezari, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Betancourt, M. [Department of Statistics, University of Warwick, Coventry (United Kingdom); Foley, R. J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Narayan, G. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Rest, A. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Kankare, E.; Mattila, S. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, 21500 Piikkiö (Finland); Smartt, S. J., E-mail: nsanders@cfa.harvard.edu [Astrophysics Research Centre, School of Mathematics and Physics, Queens University, BT7 1NN, Belfast (United Kingdom); and others

    2015-02-01

    In recent years, wide-field sky surveys providing deep multiband imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SNe): systematic light-curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 yr and classified using both spectroscopy and machine-learning-based photometric techniques. We develop and apply a new Bayesian model for the full multiband evolution of each light curve in the sample. We find no evidence of a subpopulation of fast-declining explosions (historically referred to as ''Type IIL'' SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for SN cosmology, offering a standardizable candle good to an intrinsic scatter of ≲ 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light-curve properties and an expanded grid of progenitor properties are needed to enable robust progenitor inferences from multiband light-curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide-field transient searches.

  4. Common Envelope Light Curves. I. Grid-code Module Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Galaviz, Pablo; Marco, Orsola De; Staff, Jan E.; Iaconi, Roberto [Department of Physics and Astronomy, Macquarie University, Sydney, NSW (Australia); Passy, Jean-Claude, E-mail: Pablo.Galaviz@me.com [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2017-04-01

    The common envelope (CE) binary interaction occurs when a star transfers mass onto a companion that cannot fully accrete it. The interaction can lead to a merger of the two objects or to a close binary. The CE interaction is the gateway of all evolved compact binaries, all stellar mergers, and likely many of the stellar transients witnessed to date. CE simulations are needed to understand this interaction and to interpret stars and binaries thought to be the byproduct of this stage. At this time, simulations are unable to reproduce the few observational data available and several ideas have been put forward to address their shortcomings. The need for more definitive simulation validation is pressing and is already being fulfilled by observations from time-domain surveys. In this article, we present an initial method and its implementation for post-processing grid-based CE simulations to produce the light curve so as to compare simulations with upcoming observations. Here we implemented a zeroth order method to calculate the light emitted from CE hydrodynamic simulations carried out with the 3D hydrodynamic code Enzo used in unigrid mode. The code implements an approach for the computation of luminosity in both optically thick and optically thin regimes and is tested using the first 135 days of the CE simulation of Passy et al., where a 0.8  M {sub ⊙} red giant branch star interacts with a 0.6  M {sub ⊙} companion. This code is used to highlight two large obstacles that need to be overcome before realistic light curves can be calculated. We explain the nature of these problems and the attempted solutions and approximations in full detail to enable the next step to be identified and implemented. We also discuss our simulation in relation to recent data of transients identified as CE interactions.

  5. Optical and IR light curves of VV Puppis

    International Nuclear Information System (INIS)

    Szkody, P.; Bailey, J.A.; Hough, J.H.

    1983-01-01

    We present optical (0.36 to 0.6 μm) light curves with time resolutions of seconds and infrared (IR) (1.25 to 2.2 μm) light curves with time resolutions of minutes for VV Puppis during a high state. The optical light curves show a single hump with largest amplitude in the V filter, while the IR light curves show a double hump sinusoidal variation. Flickering is evident in both the optical and IR light curves, with the largest amplitude in optical B light. Through subtraction of the low state fluxes from our high state values, we obtain a flux distribution of the accretion column which peaks at 0.55 μm and becomes #betta# 2 in the IR, consistent with current cyclotron models. Comparison of the observed IR variations throughout the orbit with the expected variations due to an M4 star heated by an accretion column at an inclination of 66 0 suggests that the IR light is a combination of the secondary star plus contributions from two emitting poles. (author)

  6. On Some Statistical Properties of GRBs with Measured Redshifts Having Peaks in Optical Light Curves

    Directory of Open Access Journals (Sweden)

    Grigorii Beskin

    2013-01-01

    Full Text Available We studied the subset of optical light curves of gamma-ray bursts with measured redshifts and well-sampled R band data that have clearly detected peaks. Among 43 such events, 11 are promptoptical peaks (P, coincident with gamma-ray activity, 22 are purely afterglows (A, and 10 more carrythe signatures of an underlying activity (A(U. We studied pair correlations of their gamma-ray andoptical parameters, e.g. total energetics, peak optical luminosities, and durations. The main outcomeof our study is the detection of source frame correlations between both optical peak luminosity and total energy and the redshift for classes A and A(U, and the absence of such a correlation for class Pevents. This result seems to provide evidence of the cosmological evolution of a medium around the burst defining class A and A(U energetics, and the absence of cosmological evolution of the internal properties of GRB engines. We also discuss some other prominent correlations.

  7. Deep-learnt classification of light curves

    DEFF Research Database (Denmark)

    Mahabal, Ashish; Gieseke, Fabian; Pai, Akshay Sadananda Uppinakudru

    2017-01-01

    is to derive statistical features from the time series and to use machine learning methods, generally supervised, to separate objects into a few of the standard classes. In this work, we transform the time series to two-dimensional light curve representations in order to classify them using modern deep......Astronomy light curves are sparse, gappy, and heteroscedastic. As a result standard time series methods regularly used for financial and similar datasets are of little help and astronomers are usually left to their own instruments and techniques to classify light curves. A common approach...... learning techniques. In particular, we show that convolutional neural networks based classifiers work well for broad characterization and classification. We use labeled datasets of periodic variables from CRTS survey and show how this opens doors for a quick classification of diverse classes with several...

  8. The evolution of temperature and bolometric luminosity in Type II supernovae

    Science.gov (United States)

    Faran, T.; Nakar, E.; Poznanski, D.

    2018-01-01

    In this work, we present a uniform analysis of the temperature evolution and bolometric luminosity of a sample of 29 Type II supernovae (SNe), by fitting a blackbody model to their multiband photometry. Our sample includes only SNe with high quality multiband data and relatively well-sampled time coverage. Most of the SNe in our sample were detected less than a week after explosion so their light curves cover the evolution both before and after recombination starts playing a role. We use this sample to study the signature of hydrogen recombination, which is expected to appear once the observed temperature drops to ≈7000 K. Theory predicts that before recombination starts affecting the light curve, both the luminosity and the temperature should drop relatively fast, following a power law in time. Once the recombination front reaches inner parts of the outflow, it sets the observed temperature to be nearly constant, and slows the decline of the luminosity (or even leads to a re-brightening). We compare our data to analytic studies and find strong evidence for the signature of recombination. We also find that the onset of the optical plateau in a given filter, is effectively the time at which the blackbody peak reaches the central wavelength of the filter, as it cools, and it does not correspond to the time at which recombination starts affecting the emission.

  9. A Study of Precataclysmic Binaries Through Theoretic Modeling of Light Curves and Spectra

    Science.gov (United States)

    Mitrofanova, A. A.; Shimansky, V. V.; Borisov, N. V.

    2017-06-01

    The article presents results of three pre-cataclysmic binaries (PN G068.1+11.0, TW Crv and RE J2013+4002) investigation. Spectroscopic and photometric observations were obtained on BTA and Zeiss-1000 of SAO RAS and on RTT-150. We used the modeling of light curves and spectra to determine the fundamental parameters for all three systems. The PN G068.1+11.0 parameters were obtained with the use of the evolutionary tracks for the nuclei of planetary nebulae of different masses. According to the results of the study, it was found that the secondary components of PN G068.1+11.0 and TW Crv have luminosity excess, but secondary component of RE J2013+4002 doesn't have one.

  10. Type Ia supernovae yielding distances with 3-4% precision

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Patrick L. [Univ. of California, Berkeley, CA (United States); Filippenko, Alexei V. [Univ. of California, Berkeley, CA (United States); Burke, David L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hicken, Malcolm [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zheng, Weikang [Univ. of California, Berkeley, CA (United States)

    2015-01-26

    The luminosities of Type Ia supernovae (SN), the thermonuclear explosions of white dwarf stars, vary systematically with their intrinsic color and light-curve decline rate. These relationships have been used to calibrate their luminosities to within ~0.14–0.20 mag from broadband optical light curves, yielding individual distances accurate to ~7–10%. Here we identify a subset of SN Ia that erupt in environments having high ultraviolet surface brightness and star-formation surface density. When we apply a steep model extinction law, these SN can be calibrated to within ~0.065–0.075 mag, corresponding to ~3–4% in distance — the best yet with SN Ia by a substantial margin. The small scatter suggests that variations in only one or two progenitor properties account for their light-curve-width/color/luminosity relation.

  11. Manipulating the retrieved width of stored light pulses

    International Nuclear Information System (INIS)

    Chen Yongfan; Wang Shihhao; Wang Changyi; Yu, Ite A.

    2005-01-01

    We have systematically studied the method proposed by Patnaik et al. [Phys. Rev. A 69, 035803 (2004)] that manipulates the retrieval of stored light pulses. The measured probe pulse width of the retrieval is inversely proportional to the intensity of the reading field. We also show that the method does not introduce any phase shift or jump into the retrieved pulses. Our study demonstrates that the distortion at the output of the light storage can be corrected by manipulating the retrieval process and the phase information of the stored pulses can remain intact during the process

  12. SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William [Spitzer Science Center (SSC), California Institute of Technology, Pasadena, CA 91125 (United States); Marley, Mark S. [NASA Ames Research Center, Space Sciences and Astrobiology Division, MS245-3, Moffett Field, CA 94035 (United States); Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Simon, Amy A. [NASA Goddard Space Flight Center, Solar System Exploration Division (690.0), 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Wong, Michael H. [University of California, Department of Astronomy, Berkeley CA 94720-3411 (United States)

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISE archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.

  13. The hidden X-ray breaks in afterglow light curves

    International Nuclear Information System (INIS)

    Curran, P. A.; Wijers, R. A. M. J.; Horst, A. J. van der; Starling, R. L. C.

    2008-01-01

    Gamma-Ray Burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences for the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as standard candles.Here we address the issue of X-ray breaks which are possibly 'hidden' and hence the light curves are misinterpreted as being single power-laws. We show how a number of precedents, including GRB 990510 and GRB 060206, exist for such hidden breaks and how, even with the well sampled light curves of the Swift era, these breaks may be left misidentified. We do so by synthesising X-ray light curves and finding general trends via Monte Carlo analysis. Furthermore, in light of these simulations, we discuss how to best identify achromatic breaks in afterglow light curves via multi-wavelength analysis

  14. Gamma-Ray Light Curves from Pulsar Magnetospheres with Finite Conductivity

    Science.gov (United States)

    Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Contopoulos, I.

    2012-01-01

    The Fermi Large Area Telescope has provided an unprecedented database for pulsar emission studies that includes gamma-ray light curves for over 100 pulsars. Modeling these light curves can reveal and constrain the geometry of the particle accelerator, as well as the pulsar magnetic field structure. We have constructed 3D magnetosphere models with finite conductivity, that bridge the extreme vacuum and force-free solutions used in previous light curves modeling. We are investigating the shapes of pulsar gamma-ray light curves using these dissipative solutions with two different approaches: (l) assuming geometric emission patterns of the slot gap and outer gap, and (2) using the parallel electric field provided by the resistive models to compute the trajectories and . emission of the radiating particles. The light curves using geometric emission patterns show a systematic increase in gamma-ray peak phase with increasing conductivity, introducing a new diagnostic of these solutions. The light curves using the model electric fields are very sensitive to the conductivity but do not resemble the observed Fermi light curves, suggesting that some screening of the parallel electric field, by pair cascades not included in the models, is necessary

  15. LIGHT and LUMINOSITY, from Einstein to LHC

    CERN Multimedia

    CERN. Geneva; Prof. ROSSI, Lucio

    2015-01-01

    After an introduction on the concept of light in physics, this talk will focus on CERN’s High Luminosity LHC project, aiming at extending the discovery potential of CERN’s flagship accelerator by increasing its “luminosity” (ie the number of particles that can be squeezed inside the accelerator to maximize the number of collisions). To achieve this objective, many new technologies are being developed at CERN and many collaborating institutes worldwide, especially in the field of superconductivity. Lucio Rossi, the main speaker, is the head of the HL-LHC project, based at CERN. Giorgio Apollinari, Director for the LHC Accelerator Research Program (LARP) will speak through a videoconference from Fermilab (USA). The event is webcast live and will be followed by Fermilab and other institutes in the USA.

  16. Determination of minimum flood flow for regeneration of floodplain forest from inundated forest width-stage curve

    Directory of Open Access Journals (Sweden)

    Song-hao Shang

    2010-09-01

    Full Text Available Floods are essential for the regeneration and growth of floodplain forests in arid and semiarid regions. However, river flows, and especially flood flows, have decreased greatly with the increase of water diversion from rivers and/or reservoir regulation, resulting in severe deterioration of floodplain ecosystems. Estimation of the flood stage that will inundate the floodplain forest is necessary for the forest's restoration or protection. To balance water use for economic purposes and floodplain forest protection, the inundated forest width method is proposed for estimating the minimum flood stage for floodplain forests from the inundated forest width-stage curve. The minimum flood stage is defined as the breakpoint of the inundated forest width-stage curve, and is determined directly or analytically from the curve. For the analytical approach, the problem under consideration is described by a multi-objective optimization model, which can be solved by the ideal point method. Then, the flood flow at the minimum flood stage (minimum flood flow, which is useful for flow regulation, can be calculated from the stage-discharge curve. In order to protect the forest in a river floodplain in a semiarid area in Xinjiang subject to reservoir regulation upstream, the proposed method was used to determine the minimum flood stage and flow for the forest. Field survey of hydrology, topography, and forest distribution was carried out at typical cross sections in the floodplain. Based on the survey results, minimum flood flows for six typical cross sections were estimated to be between 306 m3/s and 393 m3/s. Their maximum, 393 m3/s, was considered the minimum flood flow for the study river reach. This provides an appropriate flood flow for the protection of floodplain forest and can be used in the regulation of the upstream reservoir.

  17. Solar-like Oscillations in Low-luminosity Red Giants: First Results from Kepler

    DEFF Research Database (Denmark)

    Bedding, T. R.; Huber, D.; Stello, D.

    2010-01-01

    We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30 minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from t...

  18. EXTRACTING PERIODIC TRANSIT SIGNALS FROM NOISY LIGHT CURVES USING FOURIER SERIES

    Energy Technology Data Exchange (ETDEWEB)

    Samsing, Johan [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States)

    2015-07-01

    We present a simple and powerful method for extracting transit signals associated with a known transiting planet from noisy light curves. Assuming the orbital period of the planet is known and the signal is periodic, we illustrate that systematic noise can be removed in Fourier space at all frequencies by only using data within a fixed time frame with a width equal to an integer number of orbital periods. This results in a reconstruction of the full transit signal, which on average is unbiased despite no prior knowledge of either the noise or the transit signal itself being used in the analysis. The method therefore has clear advantages over standard phase folding, which normally requires external input such as nearby stars or noise models for removing systematic components. In addition, we can extract the full orbital transit signal (360°) simultaneously, and Kepler-like data can be analyzed in just a few seconds. We illustrate the performance of our method by applying it to a dataset composed of light curves from Kepler with a fake injected signal emulating a planet with rings. For extracting periodic transit signals, our presented method is in general the optimal and least biased estimator and could therefore lead the way toward the first detections of, e.g., planet rings and exo-trojan asteroids.

  19. EVEREST: Pixel Level Decorrelation of K2 Light Curves

    Science.gov (United States)

    Luger, Rodrigo; Agol, Eric; Kruse, Ethan; Barnes, Rory; Becker, Andrew; Foreman-Mackey, Daniel; Deming, Drake

    2016-10-01

    We present EPIC Variability Extraction and Removal for Exoplanet Science Targets (EVEREST), an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation to remove systematics introduced by the spacecraft’s pointing error and a Gaussian process to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0-7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than {K}p≈ 13, and within a factor of two of the Kepler precision for fainter targets. We perform cross-validation and transit injection and recovery tests to validate the pipeline, and compare our light curves to the other de-trended light curves available for download at the MAST High Level Science Products archive. We find that EVEREST achieves the highest average precision of any of these pipelines for unsaturated K2 stars. The improved precision of these light curves will aid in exoplanet detection and characterization, investigations of stellar variability, asteroseismology, and other photometric studies. The EVEREST pipeline can also easily be applied to future surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets. The EVEREST light curves and the source code used to generate them are freely available online.

  20. THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES

    International Nuclear Information System (INIS)

    Drout, Maria R.; Soderberg, Alicia M.; Gal-Yam, Avishay; Arcavi, Iair; Green, Yoav; Cenko, S. Bradley; Fox, Derek B.; Leonard, Douglas C.; Sand, David J.; Moon, Dae-Sik

    2011-01-01

    We present detailed optical photometry for 25 Type Ibc supernovae (SNe Ibc) within d ≈ 150 Mpc obtained with the robotic Palomar 60 inch telescope in 2004-2007. This study represents the first uniform, systematic, and statistical sample of multi-band SNe Ibc light curves available to date. We correct the light curves for host galaxy extinction using a new technique based on the photometric color evolution, namely, we show that the (V – R) color of extinction-corrected SNe Ibc at Δt ≈ 10 days after V-band maximum is tightly distributed, ((V – R) V10 ) = 0.26 ± 0.06 mag. Using this technique, we find that SNe Ibc typically suffer from significant host galaxy extinction, (E(B – V)) ≈ 0.4 mag. A comparison of the extinction-corrected light curves for helium-rich (Type Ib) and helium-poor (Type Ic) SNe reveals that they are statistically indistinguishable, both in luminosity and decline rate. We report peak absolute magnitudes of (M R ) = –17.9 ± 0.9 mag and (M R ) = –18.3 ± 0.6 mag for SNe Ib and Ic, respectively. Focusing on the broad-lined (BL) SNe Ic, we find that they are more luminous than the normal SNe Ibc sample, (M R ) = –19.0 ± 1.1 mag, with a probability of only 1.6% that they are drawn from the same population of explosions. By comparing the peak absolute magnitudes of SNe Ic-BL with those inferred for local engine-driven explosions (GRB-SN 1998bw, XRF-SN 2006aj, and SN 2009bb) we find a 25% probability that relativistic SNe are drawn from the overall SNe Ic-BL population. Finally, we fit analytic models to the light curves to derive typical 56 Ni masses of M Ni ≈ 0.2 and 0.5 M ☉ for SNe Ibc and SNe Ic-BL, respectively. With reasonable assumptions for the photospheric velocities, we further extract kinetic energy and ejecta mass values of M ej ≈ 2 M ☉ and E K ≈ 10 51 erg for SNe Ibc, while for SNe Ic-BL we find higher values, M ej ≈ 5 M ☉ and E K ≈ 10 52 erg. We discuss the implications for the progenitors of SNe Ibc

  1. On the mean profiles of radio pulsars - II. Reconstruction of complex pulsar light curves and other new propagation effects

    Science.gov (United States)

    Hakobyan, H. L.; Beskin, V. S.; Philippov, A. A.

    2017-08-01

    Our previous paper outlined the general aspects of the theory of radio light curve and polarization formation for pulsars. We predicted the one-to-one correspondence between the tilt of the linear polarization position angle of the the circular polarization. However, some of the radio pulsars indicate a clear deviation from that correlation. In this paper, we apply the theory of the radio wave propagation in the pulsar magnetosphere for the analysis of individual effects leading to these deviations. We show that within our theory the circular polarization of a given mode can switch its sign, without the need to introduce a new radiation mode or other effects. Moreover, we show that the generation of different emission modes on different altitudes can explain pulsars, that presumably have the X-O-X light-curve pattern, different from what we predict. General properties of radio emission within our propagation theory are also discussed. In particular, we calculate the intensity patterns for different radiation altitudes and present light curves for different observer viewing angles. In this context we also study the light curves and polarization profiles for pulsars with interpulses. Further, we explain the characteristic width of the position angle curves by introducing the concept of a wide emitting region. Another important feature of radio polarization profiles is the shift of the position angle from the centre, which in some cases demonstrates a weak dependence on the observation frequency. Here we demonstrate that propagation effects do not necessarily imply a significant frequency-dependent change of the position angle curve.

  2. Exploring Algorithms for Stellar Light Curves With TESS

    Science.gov (United States)

    Buzasi, Derek

    2018-01-01

    The Kepler and K2 missions have produced tens of thousands of stellar light curves, which have been used to measure rotation periods, characterize photometric activity levels, and explore phenomena such as differential rotation. The quasi-periodic nature of rotational light curves, combined with the potential presence of additional periodicities not due to rotation, complicates the analysis of these time series and makes characterization of uncertainties difficult. A variety of algorithms have been used for the extraction of rotational signals, including autocorrelation functions, discrete Fourier transforms, Lomb-Scargle periodograms, wavelet transforms, and the Hilbert-Huang transform. In addition, in the case of K2 a number of different pipelines have been used to produce initial detrended light curves from the raw image frames.In the near future, TESS photometry, particularly that deriving from the full-frame images, will dramatically further expand the number of such light curves, but details of the pipeline to be used to produce photometry from the FFIs remain under development. K2 data offers us an opportunity to explore the utility of different reduction and analysis tool combinations applied to these astrophysically important tasks. In this work, we apply a wide range of algorithms to light curves produced by a number of popular K2 pipeline products to better understand the advantages and limitations of each approach and provide guidance for the most reliable and most efficient analysis of TESS stellar data.

  3. Interpretation of photometric observations of R Coronae Borealis. Light curves

    International Nuclear Information System (INIS)

    Pugach, A.F.

    1990-01-01

    The calculations confirm the 'reptive hypothesis' of light variations of R CrB. The central point of the hypothesis is an assertion of infinite expansion of an elementary dust cloud. The calculations for different masses of the dust cloud provide a set of elementary light curves. Superposition of the curves yields a complex light curve. The comparison with the observed minima of 1972 has been performed

  4. Probing Millisecond Pulsar Emission Geometry Using Light Curves From the Fermi Large Area Telescope

    Science.gov (United States)

    Venter, Christo; Harding, Alice; Guillemot, L.

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.

  5. Luminosity and Redshift dependence of quasar spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Daniel E. Vanden Berk et al.

    2004-03-09

    Using a large sample of quasar spectra from the SDSS, we examine the composite spectral trends of quasars as functions of both redshift and luminosity, independently of one another. Aside from the well known Baldwin effect (BE)--the decrease of line equivalent width with luminosity--the average spectral properties are remarkably similar. Host galaxy contamination and the BE are the primary causes for apparent changes in the average spectral slope of the quasars. The BE is detected for most emission lines, including the Balmer lines, but with several exceptions including NV1240A. Emission line shifts of several lines are associated with the BE. The BE is mainly a function of luminosity, but also partly a function of redshift in that line equivalent widths become stronger with redshift. Some of the complex iron features change with redshift, particularly near the small blue bump region.

  6. Light Curve Variations of AR Lacertae

    Directory of Open Access Journals (Sweden)

    Il-Seong Nha

    1991-12-01

    Full Text Available Sixteen unitary Light curves of AR Lac in B and V are made at Yonsei University Observatory in the period of 1980-1988. Some overview findings of light variations are made. (1 The light variations outside eclipse follow none of the wave migration patterns reported by previous investigators. (2 Complicated shapes outside eclipse are apparently much reduced in the light curves of 1983-1984. This suggests that, in the future, AR Lac has a chance to attain a normal state with mo complicated interactions. (3 The depths of the primary and the secondary mid-eclipses are changing year-to-year. (4 The K0 star, the larger component, has brightened by 0.m14 V, while the G2 star has shown a fluctuation of about 0.m05 in V. (5 The B-V values at primary mid-eclipse have no correlation with the depth variations. (6 Independently of the increase of maximum brightness, the B-V colors in the non-eclipsed phases changed slightly over the years.

  7. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Denney, Kelly D.; Vestergaard, Marianne; Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W.; Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Li Weidong; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-01-01

    We present an updated and revised analysis of the relationship between the Hβ broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hβ time lag, which is assumed to yield the average Hβ BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R BLR -L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of α= 0.533 +0.035 -0.033 , consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 ± 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R BLR -L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  8. Testing and Improving the Luminosity Relations for Gamma-Ray Bursts

    Science.gov (United States)

    Collazzi, Andrew C.

    2012-01-01

    Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of "standard candle” where standard candle is meant in the usual sense that luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, methods are employed to do just that. First, generalized forms of two tests are performed on the luminosity relations. All the luminosity relations pass one of these tests, and all but two pass the other. Even with this failure, redundancies in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the "Firmani relation” is shown to have poorer accuracy than first advertised. It is also shown to be derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a luminosity indicator (Epeak) are measured. The result is an irreducible systematic error of 28%. Finally, the work concludes with a discussion about the impact of the work and the future of GRB luminosity relations.

  9. Modelling the KIC8462852 light curves: compatibility of the dips and secular dimming with an exocomet interpretation

    Science.gov (United States)

    Wyatt, M. C.; van Lieshout, R.; Kennedy, G. M.; Boyajian, T. S.

    2018-02-01

    This paper shows how the dips and secular dimming in the KIC8462852 light curve can originate in circumstellar material distributed around a single elliptical orbit (e.g. exocomets). The expected thermal emission and wavelength dependent dimming is derived for different orbital parameters and geometries, including dust that is optically thick to stellar radiation, and for a size distribution of dust with realistic optical properties. We first consider dust distributed evenly around the orbit, then show how to derive its uneven distribution from the optical light curve and to predict light curves at different wavelengths. The fractional luminosity of an even distribution is approximately the level of dimming times stellar radius divided by distance from the star at transit. Non-detection of dust thermal emission for KIC8462852 thus provides a lower limit on the transit distance to complement the 0.6 au upper limit imposed by 0.4 d dips. Unless the dust distribution is optically thick, the putative 16 per cent century-long secular dimming must have disappeared before the WISE 12 μm measurement in 2010, and subsequent 4.5 μm observations require transits at >0.05 au. However, self-absorption of thermal emission removes these constraints for opaque dust distributions. The passage of dust clumps through pericentre is predicted to cause infrared brightening lasting tens of days and dimming during transit, such that total flux received decreases at wavelengths dimming levels than seen for KIC8462852 are more common in the Galactic population and may be detected in future transit surveys.

  10. Far-infrared luminosities of Markarian starburst galaxies

    International Nuclear Information System (INIS)

    Deutsch, L.K.; Willner, S.P.

    1986-01-01

    Total far-infrared luminosities have been calculated from measured IRAS fluxes for a sample of optically selected galaxies and for a comparison sample of spiral galaxies. The starburst galaxies are notably more luminous in the far-infrared and have higher dust color temperatures than the comparison galaxies. The far-infrared light dominates the total luminosity of the starburst galaxies, and a significant amount of dust must be present. The far-infrared emission correlates well with total blue luminosity, nuclear blue luminosity, and nuclear H-alpha luminosity. The dust that produces the far-infrared light is probably heated predominantly by B rather than by O stars. 30 references

  11. LONG-TERM LIGHT CURVE OF HIGHLY VARIABLE PROTOSTELLAR STAR GM CEP

    International Nuclear Information System (INIS)

    Xiao Limin; Kroll, Peter; Henden, Arne A.

    2010-01-01

    We present data from the archival plates at Harvard College Observatory and Sonneberg Observatory showing the field of the solar-type pre-main-sequence star GM Cep. A total of 186 magnitudes of GM Cep have been measured on these archival plates, with 176 in blue sensitivity, six in visible, and four in red. We combine our data with data from the literature and from the American Association of Variable Star Observers to depict the long-term light curves of GM Cep in both B and V wavelengths. The light curves span from 1895 until now, with two densely sampled regions (1935-1945 in the B band, and 2006 until now in the V band). The long-term light curves do not show any fast rise behavior as predicted by an accretion mechanism. Both the light curves and the magnitude histograms confirm the conclusion that the light curves are dominated by dips (possibly from extinction) superposed on some quiescence state, instead of outbursts caused by accretion flares. Our result excludes the possibility of GM Cep being a FUor, EXor, or McNeil's Nebula-type star. Several special cases of T Tauri stars were checked, but none of these light curves were compatible with that of GM Cep. The lack of periodicity in the light curve excludes the possibility of GM Cep being a KH 15D system.

  12. A GLOBAL MODEL OF THE LIGHT CURVES AND EXPANSION VELOCITIES OF TYPE II-PLATEAU SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Pejcha, Ondřej [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08540 (United States); Prieto, Jose L., E-mail: pejcha@astro.princeton.edu [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441 Santiago (Chile)

    2015-02-01

    We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of Type II-Plateau supernovae based on their expansion velocities and photometric measurements. We apply the method to a sample of 26 well-observed, nearby supernovae with published light curves and velocities. We simultaneously fit ∼230 velocity and ∼6800 mag measurements distributed over 21 photometric passbands spanning wavelengths from 0.19 to 2.2 μm. The light-curve differences among the Type II-Plateau supernovae are well modeled by assuming different rates of photospheric radius expansion, which we explain as different density profiles of the ejecta, and we argue that steeper density profiles result in flatter plateaus, if everything else remains unchanged. The steep luminosity decline of Type II-Linear supernovae is due to fast evolution of the photospheric temperature, which we verify with a successful fit of SN 1980K. Eliminating the need for theoretical supernova atmosphere models, we obtain self-consistent relative distances, reddenings, and nickel masses fully accounting for all internal model uncertainties and covariances. We use our global fit to estimate the time evolution of any missing band tailored specifically for each supernova, and we construct spectral energy distributions and bolometric light curves. We produce bolometric corrections for all filter combinations in our sample. We compare our model to the theoretical dilution factors and find good agreement for the B and V filters. Our results differ from the theory when the I, J, H, or K bands are included. We investigate the reddening law toward our supernovae and find reasonable agreement with standard R{sub V}∼3.1 reddening law in UBVRI bands. Results for other bands are inconclusive. We make our fitting code publicly available.

  13. VizieR Online Data Catalog: V346 Cen multiwavelength light curves (Mayer+, 2016)

    Science.gov (United States)

    Mayer, P.; Harmanec, P.; Wolf, M.; Nemravova, J.; Prsa, A.; Fremat, Y.; Zejda, M.; Liska, J.; Jurysek, J.; Honkova, K.; Masek, M.

    2016-06-01

    We present photographic light curves from O'Connell (1939, Publications of the Riverview College Observatory, 2, 5), uvby light curves from Gimenez et al. (1986A&AS...66...45G), BVR light curves from 0.6 m reflector with a CCD camera, Mt. John, New Zealand, green light curve from Sonnar 4/135mm telephoto lens with a CCD ATIK16IC camera, Sutherland, South Africa and BVRI light curves from 0.3m Meade Schmidt-Cassegrain reflector with a CCD camera. (5 data files).

  14. SPOTTED STAR LIGHT CURVES WITH ENHANCED PRECISION

    International Nuclear Information System (INIS)

    Wilson, R. E.

    2012-01-01

    The nearly continuous timewise coverage of recent photometric surveys is free of the large gaps that compromise attempts to follow starspot growth and decay as well as motions, thereby giving incentive to improve computational precision for modeled spots. Due to the wide variety of star systems in the surveys, such improvement should apply to light/velocity curve models that accurately include all the main phenomena of close binaries and rotating single stars. The vector fractional area (VFA) algorithm that is introduced here represents surface elements by small sets of position vectors so as to allow accurate computation of circle-triangle overlap by spherical geometry. When computed by VFA, spots introduce essentially no noticeable scatter in light curves at the level of one part in 10,000. VFA has been put into the Wilson-Devinney light/velocity curve program and all logic and mathematics are given so as to facilitate entry into other such programs. Advantages of precise spot computation include improved statistics of spot motions and aging, reduced computation time (intrinsic precision relaxes needs for grid fineness), noise-free illustration of spot effects in figures, and help in guarding against false positives in exoplanet searches, where spots could approximately mimic transiting planets in unusual circumstances. A simple spot growth and decay template quantifies time profiles, and specifics of its utilization in differential corrections solutions are given. Computational strategies are discussed, the overall process is tested in simulations via solutions of synthetic light curve data, and essential simulation results are described. An efficient time smearing facility by Gaussian quadrature can deal with Kepler mission data that are in 30 minute time bins.

  15. The low-luminosity end of the radius-luminosity relationship for active galactic nuclei

    DEFF Research Database (Denmark)

    Bentz, M.C.; Denney, K.D.; Vestergaard, Marianne

    2013-01-01

    fit to the relationship using a Bayesian analysis finds a slope of , consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy...... with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create "AGN-free" images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new...... results help support the possibility that the R-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts....

  16. Application of Geodetic VLBI Data to Obtaining Long-Term Light Curves for Astrophysics

    Science.gov (United States)

    Kijima, Masachika

    2010-01-01

    The long-term light curve is important to research on binary black holes and disk instability in AGNs. The light curves have been drawn mainly using single dish data provided by the University of Michigan Radio Observatory and the Metsahovi Radio Observatory. Hence, thus far, we have to research on limited sources. I attempt to draw light curves using VLBI data for those sources that have not been monitored by any observatories with single dish. I developed software, analyzed all geodetic VLBI data available at the IVS Data Centers, and drew the light curves at 8 GHz. In this report, I show the tentative results for two AGNs. I compared two light curves of 4C39.25, which were drawn based on single dish data and on VLBI data. I confirmed that the two light curves were consistent. Furthermore, I succeeded in drawing the light curve of 0454-234 with VLBI data, which has not been monitored by any observatory with single dish. In this report, I suggest that the geodetic VLBI archive data is useful to obtain the long-term light curves at radio bands for astrophysics.

  17. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Rebull, Luisa; Carey, Sean [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Kepler Science Office, Mountain View, CA 94035 (United States); Hillenbrand, Lynne A.; Carpenter, John [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Terebey, Susan [Department of Physics and Astronomy, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Morales-Calderón, Maria [Centro de Astrobiología, Dpto. de Astrofísica, INTA-CSIC, P.O. BOX 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana [Departamento de Física—ICEx—UFMG, Av. Antônio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil); Bouvier, Jerome; Venuti, Laura [Université de Grenoble, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), F-38000 Grenoble (France); Hartmann, Lee; Calvet, Nuria [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI:48105 (United States); Micela, Giusi; Flaccomio, Ettore [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134, Palermo (Italy); Song, Inseok [Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602-2451 (United States); Gutermuth, Rob, E-mail: stauffer@ipac.caltech.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2016-03-15

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.

  18. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    International Nuclear Information System (INIS)

    Sanders, N. E.; Soderberg, A. M.; Betancourt, M.

    2015-01-01

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST

  19. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Betancourt, M., E-mail: nsanders@cfa.harvard.edu [Department of Statistics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-02-10

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.

  20. Rectification of light refraction in curved waveguide arrays.

    Science.gov (United States)

    Longhi, Stefano

    2009-02-15

    An "optical ratchet" for discretized light in photonic lattices, which enables observing rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically curved zigzag waveguide arrays is proposed.

  1. GRB 120422A: a Low-Luminosity Gamma-Ray Burst Driven by a Central Engine

    Science.gov (United States)

    Zhang, Bin-Bin; Fan, Yi-Zhong; Shen, Rong-Feng; Xu, Dong; Zhang, Fu-Wen; Wei, Da-Ming; Burrows, David N.; Zhang, Bing; Gehrels, Neil

    2012-01-01

    GRB 120422A is a low-luminosity gamma-ray burst (GRB) associated with a bright supernova, which distinguishesitself by its relatively short T(sub 90) (approximately 5 s) and an energetic and steep-decaying X-ray tail. We analyze the Swift BurstAlert Telescope and X-ray Telescope data and discuss the physical implications. We show that the steep declineearly in the X-ray light curve can be interpreted as the curvature tail of a late emission episode around 58-86 s,with a curved instantaneous spectrum at the end of the emission episode. Together with the main activity in thefirst 20 s and the weak emission from 40 s to 60 s, the prompt emission is variable, which points to a centralengine origin in contrast to a shock-breakout origin, which is used to interpret some other nearby low-luminosity supernova GRBs. Both the curvature effect model and interpreting the early shallow decay as the coasting externalforward shock emission in a wind medium provide a constraint on the bulk Lorentz factor to be around several.Comparing the properties ofGRB 120422A and other supernova GRBs,we find that themain criterion to distinguish engine-driven GRBs from shock-breakout GRBs is the time-averaged -ray luminosity. Engine-driven GRBs likelyhave a luminosity above approximately 10(sup 48) erg s(sup -1).

  2. Multiperiodicity in the light curve of Alpha Orionis

    International Nuclear Information System (INIS)

    Karovska, M.

    1987-01-01

    Alpha Ori, a supergiant star classified as M2 Iab, is characterized by pronounced variability encompassing most of its observed parameters. Variability on two different time scales has been observed in the light and velocity curves: a long period variation of about 6 years and superposed on this, irregular fluctuations having a time scale of several hundred days. This paper reports the results of Fourier analysis of more than 60- years of AAVSO (American Association of Variable Stars Observers) data which suggest a multiperiodicity in the light curve of α Ori

  3. Luminosity function of high redshift quasars

    International Nuclear Information System (INIS)

    Vaucher, B.G.

    1982-01-01

    Data from ten different emission-line surveys are included in a study of the luminosity function of high redshift quasars. Five of the surveys are analyzed through microdensitometric techniques and the data for new quasars are given. The uncertainties in magnitudes, redshifts, and line equivalent widths are assessed and found to be +-0.3 mag. +-0.04 in z and approx. 30%, respectively. Criteria for selecting the redshift range 1.8 less than or equal to z - 1 Mpc - 1 for each of two cosmologies (q 0 = 1 and q 0 = 0). For either cosmology, the function exhibits a steep increase with magnitude at high luminosities and a gentler increase at intermediate luminosities. Data from the new surveys indicate a possible turnover at the faint end of the distribution. Total volume densities of quasars are computed for each of three extrapolations of the trend of the data to low luminosities. These densities are compared to those of active galaxies and field galaxies

  4. Rectification of light refraction in curved waveguide arrays

    OpenAIRE

    Longhi, S.

    2010-01-01

    An 'optical ratchet' for discretized light in photonic lattices, which enables to observe rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically-curved zigzag waveguide arrays is proposed.

  5. Light-Curve Diagnosis of a Hot Spot for Accretion-Disk Models

    OpenAIRE

    FUKUE, Jun

    2003-01-01

    Light curves of a hot spot rotating in a relativistic Keplerian disk were found to be periodic with typically two peaks, originating from a gravitational focusing effect and a Doppler boost. On the other hand, we found that light curves of a hot spot spirally infalling in a sub-Keplerian advective disk are aperiodic with typically a single peak, originating from a gravitational focusing effect or a Doppler boost. Such a difference in the light curves of a hot spot can discriminate background ...

  6. Light Curve Solution of the Contact Binary AW UMa

    Directory of Open Access Journals (Sweden)

    J. H. Jeong

    1997-12-01

    Full Text Available A total of 1088 observations (272 in B,272 in V, 272 in R, and 272 in I were made from January to February in 1995 at Chungbuk National University observatory(CbNUO. We constructed BVRI light curves with our data. The photometric solution of these light curves was obtained by means of the Wilson-Devinney method. Our result was compared with those by previous investigators.

  7. Gamma-Ray Pulsar Light Curves as Probes of Magnetospheric Structure

    Science.gov (United States)

    Harding, A. K.

    2016-01-01

    The large number of gamma-ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the gamma-ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modeling will continue to be a powerful tool for constraining the pulsar magnetosphere physics.

  8. QUEST1 Variability Survey. III. Light Curve Catalog Update

    Science.gov (United States)

    Rengstorf, A. W.; Thompson, D. L.; Mufson, S. L.; Andrews, P.; Honeycutt, R. K.; Vivas, A. K.; Abad, C.; Adams, B.; Bailyn, C.; Baltay, C.; Bongiovanni, A.; Briceño, C.; Bruzual, G.; Coppi, P.; Della Prugna, F.; Emmet, W.; Ferrín, I.; Fuenmayor, F.; Gebhard, M.; Hernández, J.; Magris, G.; Musser, J.; Naranjo, O.; Oemler, A.; Rosenzweig, P.; Sabbey, C. N.; Sánchez, Ge.; Sánchez, Gu.; Schaefer, B.; Schenner, H.; Sinnott, J.; Snyder, J. A.; Sofia, S.; Stock, J.; van Altena, W.

    2009-03-01

    This paper reports an update to the QUEST1 (QUasar Equatorial Survey Team, Phase 1) Variability Survey (QVS) light curve catalog, which links QVS instrumental magnitude light curves to Sloan Digital Sky Survey (SDSS) objects and photometry. In the time since the original QVS catalog release, the overlap between publicly available SDSS data and QVS data has increased by 8% in sky coverage and 16,728 in number of matched objects. The astrometric matching and the treatment of SDSS masks have been refined for the updated catalog. We report on these improvements and present multiple bandpass light curves, global variability information, and matched SDSS photometry for 214,941 QUEST1 objects. Based on observations obtained at the Llano del Hato National Astronomical Observatory, operated by the Centro de Investigaciones de Astronomía for the Ministerio de Ciencia y Tecnologia of Venezuela.

  9. Explosions and light curves of supernovae

    International Nuclear Information System (INIS)

    Gaffet, B.

    1975-01-01

    The models developed to explain supernovae explosions are reviewed. The first one is thermonuclear explosion (simple or preceded by an implosion phase); the neutrino emission which results of such an explosion can have an important dynamical effect, according as the star is opaque or transparent to them; another theory involves the radiation pressure of the pulsar which is formed in the center of the star. The origin of the supernovae brightness is also uncertain: the initial heat due to the explosion does not seem to be sufficient; the brightness can result from the diffusion of the heat through the ejected matter or can be transported more rapidly by a shock wave. A model in which the heat is produced by the pulsar seems compatible with most observations (shapes of the brightness curves and the continuum spectra, expansion velocities, temperature and luminosity at the peak, total kinetic energy) [fr

  10. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Denney, Kelly D.; Vestergaard, Marianne [Dark Cosmology Center, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Bennert, Vardha N. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Canalizo, Gabriela [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Filippenko, Alexei V.; Li Weidong [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Gates, Elinor L. [University of California Observatories/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Peyton Hall - Ivy Lane, Princeton, NJ 08544 (United States); Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Treu, Tommaso [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Woo, Jong-Hak, E-mail: bentz@chara.gsu.edu [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of)

    2013-04-20

    We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  11. The period-luminosity relation for Cepheids

    International Nuclear Information System (INIS)

    Brodie, J.P.

    1980-01-01

    Numerical simulations of the empirical determination of the period-luminosity-colour relation for classical Cepheids are presented. In this study the quantitative effects of random errors, reddening, sample size and the presence of both colour and period cut-offs (imposed by the finite extent of the instability strip) on the observational redetermination of the original relation are evaluated. Both random errors in the photometry and correlated errors in the reddening corrections are shown to have systematic effects. Especially sensitive to these errors is the colour coefficient in the period-luminosity-colour relation, where the ratio of the error to the width of the instability strip is the determining factor. With present observations only broad confidence limits can be placed on present knowledge of the intrinsic period-luminosity-colour relation and/or its variations from galaxy to galaxy. (author)

  12. DETERMINATION OF THE INTRINSIC LUMINOSITY TIME CORRELATION IN THE X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Dainotti, Maria Giovanna; Petrosian, Vahe'; Singal, Jack; Ostrowski, Michal

    2013-01-01

    Gamma-ray bursts (GRBs), which have been observed up to redshifts z ≈ 9.5, can be good probes of the early universe and have the potential to test cosmological models. Dainotti's analysis of GRB Swift afterglow light curves with known redshifts and a definite X-ray plateau shows an anti-correlation between the rest-frame time when the plateau ends (the plateau end time) and the calculated luminosity at that time (or approximately an anti-correlation between plateau duration and luminosity). Here, we present an update of this correlation with a larger data sample of 101 GRBs with good light curves. Since some of this correlation could result from the redshift dependences of these intrinsic parameters, namely, their cosmological evolution, we use the Efron-Petrosian method to reveal the intrinsic nature of this correlation. We find that a substantial part of the correlation is intrinsic and describe how we recover it and how this can be used to constrain physical models of the plateau emission, the origin of which is still unknown. The present result could help to clarify the debated nature of the plateau emission

  13. Exquisite Nova Light Curves from the Solar Mass Ejection Imager (SMEI)

    OpenAIRE

    Hounsell, R.; Bode, M. F.; Hick, P. P.; Buffington, A.; Jackson, B. V.; Clover, J. M.; Shafter, A. W.; Darnley, M. J.; Mawson, N. R.; Steele, I. A.; Evans, A.; Eyres, S. P. S.; O'Brien, T. J.

    2010-01-01

    We present light curves of three classical novae (KT Eridani, V598 Puppis, V1280 Scorpii) and one recurrent nova (RS Ophiuchi) derived from data obtained by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. SMEI provides near complete sky-map coverage with precision visible-light photometry at 102-minute cadence. The light curves derived from these sky maps offer unprecedented temporal resolution around, and especially before, maximum light, a phase of the nova eruption n...

  14. TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Friedman, Andrew S.; Kirshner, Robert P.; Wood-Vasey, W. Michael

    2009-01-01

    We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHK s SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are σ(M J ) = 0.17 ± 0.03, σ(M H ) = 0.11 ± 0.03, and σ(M Ks ) = 0.19 ± 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000kms -1 is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.

  15. Infrared and optical light curves of EX Hydrae and VW Hydri

    International Nuclear Information System (INIS)

    Sherrington, M.R.; Lawson, P.A.; King, A.R.; Jameson, R.F.

    1980-01-01

    Optical and infrared light curves of EX Hya (V and K) and VW Hyi (J and K) are presented. The infrared colours imply very large discs for these systems. It is also found for EX Hya that the structure of the light curves is non-repeatable. (author)

  16. RHIC Proton Luminosity and Polarization Improvement

    International Nuclear Information System (INIS)

    Zhang, S. Y.

    2014-01-01

    The RHIC proton beam polarization can be improved by raising the Booster scraping, which also helps to reduce the RHIC transverse emittance, and therefore to improve the luminosity. By doing this, the beam-beam effect would be enhanced. Currently, the RHIC working point is constrained between 2/3 and 7/10, the 2/3 resonance would affect intensity and luminosity lifetime, and the working point close to 7/10 would enhance polarization decay in store. Run 2013 shows that average polarization decay is merely 1.8% in 8 hours, and most fills have the luminosity lifetime better than 14 hours, which is not a problem. Therefore, even without beam-beam correction, there is room to improve for RHIC polarization and luminosity. The key to push the Booster scraping is to raise the Booster input intensity; for that, two approaches can be used. The first is to extend the LINAC tank 9 pulse width, which has been successfully applied in run 2006. The second is to raise the source temperature, which has been successfully applied in run 2006 and run 2012.

  17. QUASARS ARE NOT LIGHT BULBS: TESTING MODELS OF QUASAR LIFETIMES WITH THE OBSERVED EDDINGTON RATIO DISTRIBUTION

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Hernquist, Lars

    2009-01-01

    We use the observed distribution of Eddington ratios as a function of supermassive black hole (BH) mass to constrain models of quasar/active galactic nucleus (AGN) lifetimes and light curves. Given the observed (well constrained) AGN luminosity function, a particular model for AGN light curves L(t) or, equivalently, the distribution of AGN lifetimes (time above a given luminosity t(>L)) translates directly and uniquely (without further assumptions) to a predicted distribution of Eddington ratios at each BH mass. Models for self-regulated BH growth, in which feedback produces a self-regulating 'decay' or 'blowout' phase after the AGN reaches some peak luminosity/BH mass and begins to expel gas and shut down accretion, make specific predictions for the light curves/lifetimes, distinct from, e.g., the expected distribution if AGN simply shut down by gas starvation (without feedback) and very different from the prediction of simple phenomenological 'light bulb' scenarios. We show that the present observations of the Eddington ratio distribution, spanning nearly 5 orders of magnitude in Eddington ratio, 3 orders of magnitude in BH mass, and redshifts z = 0-1, agree well with the predictions of self-regulated models, and rule out phenomenological 'light bulb' or pure exponential models, as well as gas starvation models, at high significance (∼5σ). We also compare with observations of the distribution of Eddington ratios at a given AGN luminosity, and find similar good agreement (but show that these observations are much less constraining). We fit the functional form of the quasar lifetime distribution and provide these fits for use, and show how the Eddington ratio distributions place precise, tight limits on the AGN lifetimes at various luminosities, in agreement with model predictions. We compare with independent estimates of episodic lifetimes and use this to constrain the shape of the typical AGN light curve, and provide simple analytic fits to these for use in

  18. Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration-Luminosity Phase Space

    Science.gov (United States)

    Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James

    2017-11-01

    The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.

  19. Calculating luminosity for a coupled Tevatron lattice

    International Nuclear Information System (INIS)

    Holt, J.A.; Martens, M.A.; Michelotti, L.; Goderre, G.

    1995-05-01

    The traditional formula for calculating luminosity assumes an uncoupled lattice and makes use of one-degree-of-freedom lattice functions, β H and β v , for relating transverse beam widths to emittances. Strong coupling requires changing this approach. It is simplest to employ directly the linear normal form coordinates of the one turn map. An equilibrium distribution in phase space is expressed as a function of the Jacobian's eigenvectors and beam size parameters or emittances. Using the equilibrium distributions an expression for the luminosity was derived and applied to the Tevatron lattice, which was coupled due to a quadrupole roll

  20. Intensive Monitoring Survey of Nearby Galaxies (IMSNG): Catching Early Light Curves of Supernovae

    Science.gov (United States)

    Im, Myungshin; IMSNG Team

    2018-01-01

    SNe light curves have been used to study the expansion history of the universe, and a lot of efforts have gone into understanding the overall shape of the radioactively powered light curve. However, we still have little direct observational evidence for the theorized SN progenitor systems. Recent studies suggest that the light curve of a supernova shortly after its explosion (world. Through this survey, we expect to catch the very early precursor emission as faint as R=21 mag (~0.1 Rsun for the progenitor). This poster outlines this project, and present a few scientific highlights, such as the early light curve of SN 2015F in NGC 2442.

  1. Light curves for ''bump Cepheids'' computed with a dynamically zoned pulsation code

    International Nuclear Information System (INIS)

    Adams, T.F.; Castor, J.E.; Davis, C.G.

    1978-01-01

    The dynamically zoned pulsation code developed by Castor, Davis, and Davison has been used to recalculate the Goddard model and to calculate three other Cepheid models with the same period (9.8 days). This family of models shows how the bumps and other features of the light and velocity curves change as the mass is varied at constant period. This study, with a code that is capable of producing reliable light curves, shows again that the light and velocity curves for 9.8-day Cepheid models with standard homogeneous compositions do not show bumps like those that are observed unless the mass is significantly lower than the ''evolutionary mass.'' The light and velocity curves for the Goddard model presented here are similar to those computed independently by Fischel, Sparks, and Karp. They should be useful as standards for future investigators

  2. Early light curves for Type Ia supernova explosion models

    Science.gov (United States)

    Noebauer, U. M.; Kromer, M.; Taubenberger, S.; Baklanov, P.; Blinnikov, S.; Sorokina, E.; Hillebrandt, W.

    2017-12-01

    Upcoming high-cadence transient survey programmes will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synthetic light curves, calculated with the radiation hydrodynamical approach STELLA for a number of different explosion models, specifically focusing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.

  3. An Anthropology of Luminosity

    DEFF Research Database (Denmark)

    Bille, Mikkel; Sørensen, Tim Flohr

    2007-01-01

    of luminosity in the practice of day-to-day activities. The article surveys an array of past conceptions of light within philosophy, natural science and more recent approaches to light in the fields of anthropology and material culture studies. A number of implications are discussed, and by way of three case...

  4. REFLECTED LIGHT CURVES, SPHERICAL AND BOND ALBEDOS OF JUPITER- AND SATURN-LIKE EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Dyudina, Ulyana; Kopparla, Pushkar; Ingersoll, Andrew P.; Yung, Yuk L. [Division of Geological and Planetary Sciences, 150-21 California Institute of Technology, Pasadena, CA 91125 (United States); Zhang, Xi [University of California Santa Cruz 1156 High Street, Santa Cruz, CA 95064 (United States); Li, Liming [Department of Physics, University of Houston, Houston, TX 77204 (United States); Dones, Luke [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder CO 80302 (United States); Verbiscer, Anne, E-mail: ulyana@gps.caltech.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States)

    2016-05-10

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet’s phase. These observations cover broadbands at 0.59–0.72 and 0.39–0.5 μ m, and narrowbands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24–0.28 μ m. We simulate the images of the planets with a ray-tracing model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ∼1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating.

  5. Generalized Fermat's principle and action for light rays in a curved spacetime

    Science.gov (United States)

    Frolov, Valeri P.

    2013-09-01

    We start with formulation of the generalized Fermat’s principle for light propagation in a curved spacetime. We apply Pontryagin’s minimum principle of the optimal control theory and obtain an effective Hamiltonian for null geodesics in a curved spacetime. We explicitly demonstrate that dynamical equations for this Hamiltonian correctly reproduce null geodesic equations. Other forms of the action for light rays in a curved spacetime are also discussed.

  6. The determination of the number of light neutrino species

    International Nuclear Information System (INIS)

    Rademakers, A.A.

    1991-01-01

    The hadronic decays of the Z 0 boson in e + e - collisions have been studied with the DELPHI detector at LEP at ten different center-of-mass energies around the Z 0 peak. The total in integrated luminosity, in 1989, was 573nb -1 . The Z 0 resonance line-shape has been measured using about 11000 selected hadronic events. The selection efficiency was (92.0 ± 1.1)% and the uncertainty on the luminosity measurement was estimated to be 2.4%. The normalized hadronic cross sections were fitted to the model independent formula by Borelli et al. to obtain the Z 0 mass and width, the Born peak cross section and the number of light neutrino species. from the analysis of leptonic events the ratio of hadronic over leptonic partial widths was obtained. Using this ratio and assuming lepton universality the hadronic and leptonic partial widths as well as the sum of the partial widths of invisible Z 0 decays could be determined. The results are in good agreement with the Standard Model with a large top-quark mass. They also agree very well with the measurements of the other LEP experiments. (author). 59 refs.; 43 figs.; 15 tabs

  7. Intrinsic width and luminosity function of the M92 main sequence

    International Nuclear Information System (INIS)

    Sandage, A.; Katem, B.

    1983-01-01

    Measurements of B and V magnitudes of approx.475 identified stars in the magnitude interval 18.0 - 4 is too low. The luminosity function, obtained from the present data, is compared with that determined earlier by Tayler, by Hartwick, by van den Bergh, and with Fukuoka and Simoda, with good agreement. The evidence favors that phi(M/sub v/) flattens fainter than M/sub v/approx. =+6 as predicted in some dynamical models, due to loss of low mass stars

  8. Devil in the Details: Investigating Astrophysical Phenomena with Kepler Light Curves

    Science.gov (United States)

    Jenkins, Jon Michael; SOC, Kepler; SO, Kepler; Kepler Science Team

    2011-05-01

    The light curves produced by the Kepler photometer are unprecedented in their photometric precision, completeness, and contiguity. Moreover, although Kepler was designed to detect 100 ppm changes in brightness corresponding to transits of Earth-size planets crossing Sun-size stars, the Kepler light curves preserve intrinsic intensity variations across a large dynamic range, including those of RR Lyrae stars, which can increase their brightness by more than a factor of two over a few hours. The large dynamic range and phenomenal photometric precision of Kepler promises to revolutionize the study of intrinsic stellar variability and a wide variety of variable stars on timescales from minutes to several years. In this paper, we describe the science pipeline processing that produces the uncorrected and the systematic error-corrected light curves, and give examples of residual instrumental artifacts that can be found in the data, such as those caused by thermal changes due to the position of the spacecraft with relation to the sun or heaters cycling on and off on various spacecraft components (which can change the shape of the telescope and alter its focus), as well as examples of processing artifacts that can occur. We also describe algorithms in development that promise to improve our ability to identify and remove instrumental signatures and further reduce the incidence of processing artifacts in the archival light curves, thereby increasing the usability of the corrected light curves for astrophysical investigations. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by the NASA Science Mission Directorate.

  9. THE IMPORTANCE OF {sup 56}Ni IN SHAPING THE LIGHT CURVES OF TYPE II SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Nakar, Ehud; Poznanski, Dovi [The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Katz, Boaz [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2016-06-01

    What intrinsic properties shape the light curves of SNe II? To address this question we derive observational measures that are robust (i.e., insensitive to detailed radiative transfer) and constrain the contribution from {sup 56}Ni as well as a combination of the envelope mass, progenitor radius, and explosion energy. By applying our methods to a sample of SNe II from the literature, we find that a {sup 56}Ni contribution is often significant. In our sample, its contribution to the time-weighted integrated luminosity during the photospheric phase ranges between 8% and 72% with a typical value of 30%. We find that the {sup 56}Ni relative contribution is anti-correlated with the luminosity decline rate. When added to other clues, this in turn suggests that the flat plateaus often observed in SNe II are not a generic feature of the cooling envelope emission, and that without {sup 56}Ni many of the SNe that are classified as II-P would have shown a decline rate that is steeper by up to 1 mag/100 days. Nevertheless, we find that the cooling envelope emission, and not {sup 56}Ni contribution, is the main driver behind the observed range of decline rates. Furthermore, contrary to previous suggestions, our findings indicate that fast decline rates are not driven by lower envelope masses. We therefore suggest that the difference in observed decline rates is mainly a result of different density profiles of the progenitors.

  10. Light and velocity curve bumps for BW Vulpeculae

    International Nuclear Information System (INIS)

    Pesnell, W.D.; Cox, A.N.

    1980-01-01

    Bumps in the light and radial velocity curves of the Beta Cephei star BW Vulpeculae were modeled. Two mechanisms, a resonance phenomena and non-linear pulsations, were investigated. The resonance condition was clearly not fulfilled, the calculated period ratio being approximately 0.60, where a value of 0.50 L +- 0.03 is required for resonance. In the non-linear calculation, the bump appears, with the correct phase, but was found at an amplitude that is too large. Further, the light curve does not show any bump-like feature. The cause of the bump is the large spurious boost given the star's velocity field by the solution methods. The calculated periods of the stellar models are shorter than those of previous calculations, enhancing the possibility that these stars pulsate in a radial fundamental mode

  11. Mass estimates from optical-light curves for binary X-ray sources

    International Nuclear Information System (INIS)

    Avni, Y.

    1978-01-01

    The small amplitude variations with orbital phase of the optical light from X-ray binaries are caused by the changing geometrical aspect of the primary as seen by a fixed observer. The shape and the amplitude of the light curve depends on the stellar masses and on the orbital elements. The light curve can, therefore, be used to determine, or set limits on, the parameters of the binary system. A self-consistent procedure for the calculation of the light curve can be formulated if the primary is formulated if the primary is uniformly rotating at an angular velocity equal to the angular velocity of its orbital revolution in a circular orbit, and if the primary is in a hydrostatic and radiative equilibrium in the co-rotating frame. When the primary is further approximated to be centrally condensed, the above set of assumptions is called the standard picture. The standard picture is described, its validity discussed and its application to various systems reviewed. (C.F.)

  12. Luminosity measurement at CMS

    International Nuclear Information System (INIS)

    Karacheban, Olena

    2017-10-01

    Luminosity is a key quantity of any collider, since it allows for the determination of the absolute cross sections from the observed rates in a detector. Since the Higgs boson discovery in 2012, the highest priority at the Large Hadron Collider (LHC) has been given to an accurate understanding of the electroweak scale and a search for new physics. Precise luminosity measurements in such conditions are of crucial importance, as they determine the precision of any physics cross section measurement. To increase the production of particles of interest, usually of low cross section, the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 x 10 34 cm -2 s -1 was reached with 10 11 protons per bunch and a bunch spacing of 25 ns. In such conditions radiation hard detectors with extremely fast response time are required, especially for instrumentation near the beam. The Compact Muon Solenoid experiment is equipped with three online luminometers, which fulfill the listed requirements: the Fast Beam Conditions Monitor (BCM1F), the Pixel Luminosity Telescope (PLT) and the Forward Hadron calorimeter (HF). The BCM1F was upgraded during LS1 from 8 to 24 diamond sensors and is read out by a dedicated fast ASIC. The back-end comprises a deadtime-less histogramming unit, with 6.25 ns bin width and analog-to-digital converters with 2 ns sampling time in the VME standard. A microTCA system with better time resolution is in development. Particles originating from collisions and machine induced background arrive with 12 ns time difference. Because of its excellent time resolution BCM1F measures separately both luminosity and machine induced background particles. The performance of the detector in the first running period and radiation damage monitoring of the sensors and electronics chain form the first part of this thesis. Calibration of the luminometers at the LHC is done using van der Meer (Vd

  13. Luminosity measurement at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Karacheban, Olena

    2017-10-15

    Luminosity is a key quantity of any collider, since it allows for the determination of the absolute cross sections from the observed rates in a detector. Since the Higgs boson discovery in 2012, the highest priority at the Large Hadron Collider (LHC) has been given to an accurate understanding of the electroweak scale and a search for new physics. Precise luminosity measurements in such conditions are of crucial importance, as they determine the precision of any physics cross section measurement. To increase the production of particles of interest, usually of low cross section, the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 x 10{sup 34} cm{sup -2} s{sup -1} was reached with 10{sup 11} protons per bunch and a bunch spacing of 25 ns. In such conditions radiation hard detectors with extremely fast response time are required, especially for instrumentation near the beam. The Compact Muon Solenoid experiment is equipped with three online luminometers, which fulfill the listed requirements: the Fast Beam Conditions Monitor (BCM1F), the Pixel Luminosity Telescope (PLT) and the Forward Hadron calorimeter (HF). The BCM1F was upgraded during LS1 from 8 to 24 diamond sensors and is read out by a dedicated fast ASIC. The back-end comprises a deadtime-less histogramming unit, with 6.25 ns bin width and analog-to-digital converters with 2 ns sampling time in the VME standard. A microTCA system with better time resolution is in development. Particles originating from collisions and machine induced background arrive with 12 ns time difference. Because of its excellent time resolution BCM1F measures separately both luminosity and machine induced background particles. The performance of the detector in the first running period and radiation damage monitoring of the sensors and electronics chain form the first part of this thesis. Calibration of the luminometers at the LHC is done using

  14. LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Yasuda, Naoki; Fukugita, Masataka

    2010-01-01

    The sample of 137 low-redshift type Ia supernovae (SNe Ia) with 0.05 ≤ z ≤ 0.3 obtained from the Sloan Digital Sky Survey (SDSS)-II supernova survey for the southern equatorial stripe of 300 deg 2 is used to derive the luminosity functions (LFs) of SNe Ia and of their host galaxies in the g, r, i passbands. We show that the LF of SNe Ia host galaxies matches well with that of galaxies in the general field, suggesting that the occurrence of SNe Ia does not favor a particular type of galaxy but is predominantly proportional to the luminosity of galaxies. The evidence is weak that the SNe rate varies with the color of host galaxies. The only evidence that points to possible correlation between the SN rate and star formation activity is that the SN rate in late-type galaxies is higher than that in early-type galaxies by 31% ± 35%. In our low-redshift sample, the component of type Ia SN rate that is proportional to star formation activity is not evident in the integrated SN rate, while our observation is compatible with the current two-component models. The sample contains eight SNe Ia whose host galaxies were not identified, but it is shown that their occurrence is consistent with them occurring in low-luminous galaxies beyond the survey. The LF of SNe Ia is approximately Gaussian with the full width at half-maximum being a factor of σ = 0.24 mag or 1.67 in luminosity. The Gaussian distribution becomes tighter if the ratio of extinction to reddening, R V , is lower than the characteristic value for the Milky Way and if luminosity is corrected for the light-curve shape. The average color excess is ∼0.07 mag, which is significantly smaller than reddening expected for field galaxies. This color excess does not vary with the distance of the SNe from the center of the host galaxy to 15 kpc. This suggests that the major part of the color excess appears to be either intrinsic or reddening that arises in the immediate environment of SNe, rather than interstellar

  15. New Light Curves and Analysis of the Overcontact Binaries PP Lac and DK Sge

    Science.gov (United States)

    Sanders, S. J.; Hargis, J. R.; Bradstreet, D. H.

    2004-12-01

    As a by-product of the ongoing work with the Catalog and AtLas of Eclipsing Binaries database (CALEB; Bradstreet et al. 2004), several hundred eclipsing binary systems have been identified that have either unpublished or poor quality light curves. We present new V & Rc light curves for the overcontact systems PP Lac and DK Sge, both chosen because their deep eclipses (peak-to-peak amplitudes of nearly 0.7 mag) help constrain the light curve modelling. Data were obtained using the 41-cm telescope at the Eastern University Observatory equipped with an SBIG ST-10XME CCD. PP Lac (P= 0.40116 d) is a W-type contact binary with only one previously published light curve (Dumont & Maraziti 1990), but the data are sparse and almost non-existent at primary eclipse. Modelling of these data gave varying results; the published mass ratios differ by nearly 0.3. Our data confirms the noted differing eclipse depths but we find the primary eclipse to be total. We present a new light curve solution using Binary Maker 3 (Bradstreet & Steelman 2002) and Wilson-Devinney, finding the mass ratio to be well-constrained by the duration of total eclipse. A period study will be presented using previously existing and newly derived times of minimum light. DK Sge (P=0.62182 d) appears to be an A-type contact binary with no published light curve. The eclipses are partial, with the primary eclipse being deeper by about 0.08 mag. The maxima show evidence of a slight asymmetry, although the light curve appears to be repeatable over the 1 month of observations. We present the first light curve solution using Binary Maker 3 and Wilson-Devinney, but have limited mass ratio constraints due to the absence of radial velocity data. A period study will be presented using previously existing and newly derived times of minimum light.

  16. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    OpenAIRE

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced t...

  17. NEPTUNE'S DYNAMIC ATMOSPHERE FROM KEPLER K2 OBSERVATIONS: IMPLICATIONS FOR BROWN DWARF LIGHT CURVE ANALYSES.

    Science.gov (United States)

    Simon, Amy A; Rowe, Jason F; Gaulme, Patrick; Hammel, Heidi B; Casewell, Sarah L; Fortney, Jonathan J; Gizis, John E; Lissauer, Jack J; Morales-Juberias, Raul; Orton, Glenn S; Wong, Michael H; Marley, Mark S

    2016-02-01

    Observations of Neptune with the Kepler Space Telescope yield a 49 day light curve with 98% coverage at a 1 minute cadence. A significant signature in the light curve comes from discrete cloud features. We compare results extracted from the light curve data with contemporaneous disk-resolved imaging of Neptune from the Keck 10-m telescope at 1.65 microns and Hubble Space Telescope visible imaging acquired nine months later. This direct comparison validates the feature latitudes assigned to the K2 light curve periods based on Neptune's zonal wind profile, and confirms observed cloud feature variability. Although Neptune's clouds vary in location and intensity on short and long timescales, a single large discrete storm seen in Keck imaging dominates the K2 and Hubble light curves; smaller or fainter clouds likely contribute to short-term brightness variability. The K2 Neptune light curve, in conjunction with our imaging data, provides context for the interpretation of current and future brown dwarf and extrasolar planet variability measurements. In particular we suggest that the balance between large, relatively stable, atmospheric features and smaller, more transient, clouds controls the character of substellar atmospheric variability. Atmospheres dominated by a few large spots may show inherently greater light curve stability than those which exhibit a greater number of smaller features.

  18. Light Curve Simulation Using Spacecraft CAD Models and Empirical Material Spectral BRDFS

    Science.gov (United States)

    Willison, A.; Bedard, D.

    This paper presents a Matlab-based light curve simulation software package that uses computer-aided design (CAD) models of spacecraft and the spectral bidirectional reflectance distribution function (sBRDF) of their homogenous surface materials. It represents the overall optical reflectance of objects as a sBRDF, a spectrometric quantity, obtainable during an optical ground truth experiment. The broadband bidirectional reflectance distribution function (BRDF), the basis of a broadband light curve, is produced by integrating the sBRDF over the optical wavelength range. Colour-filtered BRDFs, the basis of colour-filtered light curves, are produced by first multiplying the sBRDF by colour filters, and integrating the products. The software package's validity is established through comparison of simulated reflectance spectra and broadband light curves with those measured of the CanX-1 Engineering Model (EM) nanosatellite, collected during an optical ground truth experiment. It is currently being extended to simulate light curves of spacecraft in Earth orbit, using spacecraft Two-Line-Element (TLE) sets, yaw/pitch/roll angles, and observer coordinates. Measured light curves of the NEOSSat spacecraft will be used to validate simulated quantities. The sBRDF was chosen to represent material reflectance as it is spectrometric and a function of illumination and observation geometry. Homogeneous material sBRDFs were obtained using a goniospectrometer for a range of illumination and observation geometries, collected in a controlled environment. The materials analyzed include aluminum alloy, two types of triple-junction photovoltaic (TJPV) cell, white paint, and multi-layer insulation (MLI). Interpolation and extrapolation methods were used to determine the sBRDF for all possible illumination and observation geometries not measured in the laboratory, resulting in empirical look-up tables. These look-up tables are referenced when calculating the overall sBRDF of objects, where

  19. EXPLORING THE VARIABLE SKY WITH LINEAR. III. CLASSIFICATION OF PERIODIC LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Palaversa, Lovro; Eyer, Laurent; Rimoldini, Lorenzo [Observatoire Astronomique de l' Université de Genève, 51 chemin des Maillettes, CH-1290 Sauverny (Switzerland); Ivezić, Željko; Loebman, Sarah; Hunt-Walker, Nicholas; VanderPlas, Jacob; Westman, David; Becker, Andrew C. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Ruždjak, Domagoj; Sudar, Davor; Božić, Hrvoje [Hvar Observatory, Faculty of Geodesy, Kačićeva 26, 10000 Zagreb (Croatia); Galin, Mario [Faculty of Geodesy, Kačićeva 26, 10000 Zagreb (Croatia); Kroflin, Andrea; Mesarić, Martina; Munk, Petra; Vrbanec, Dijana [Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb (Croatia); Sesar, Branimir [Division of Physics, Mathematics, and Astronomy, Caltech, Pasadena, CA 91125 (United States); Stuart, J. Scott [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420-9108 (United States); Srdoč, Gregor, E-mail: lovro.palaversa@unige.ch [Saršoni 90, 51216 Viškovo (Croatia); and others

    2013-10-01

    We describe the construction of a highly reliable sample of ∼7000 optically faint periodic variable stars with light curves obtained by the asteroid survey LINEAR across 10,000 deg{sup 2} of the northern sky. The majority of these variables have not been cataloged yet. The sample flux limit is several magnitudes fainter than most other wide-angle surveys; the photometric errors range from ∼0.03 mag at r = 15 to ∼0.20 mag at r = 18. Light curves include on average 250 data points, collected over about a decade. Using Sloan Digital Sky Survey (SDSS) based photometric recalibration of the LINEAR data for about 25 million objects, we selected ∼200,000 most probable candidate variables with r < 17 and visually confirmed and classified ∼7000 periodic variables using phased light curves. The reliability and uniformity of visual classification across eight human classifiers was calibrated and tested using a catalog of variable stars from the SDSS Stripe 82 region and verified using an unsupervised machine learning approach. The resulting sample of periodic LINEAR variables is dominated by 3900 RR Lyrae stars and 2700 eclipsing binary stars of all subtypes and includes small fractions of relatively rare populations such as asymptotic giant branch stars and SX Phoenicis stars. We discuss the distribution of these mostly uncataloged variables in various diagrams constructed with optical-to-infrared SDSS, Two Micron All Sky Survey, and Wide-field Infrared Survey Explorer photometry, and with LINEAR light-curve features. We find that the combination of light-curve features and colors enables classification schemes much more powerful than when colors or light curves are each used separately. An interesting side result is a robust and precise quantitative description of a strong correlation between the light-curve period and color/spectral type for close and contact eclipsing binary stars (β Lyrae and W UMa): as the color-based spectral type varies from K4 to F5, the

  20. Using Light Curves to Characterize Size and Shape of Pseudo-Debris

    Science.gov (United States)

    Rodriquez, Heather M.; Abercromby, Kira J.; Jarvis, Kandy S.; Barker, Edwin

    2006-01-01

    Photometric measurements were collected for a new study aimed at estimating orbital debris sizes based on object brightness. To obtain a size from optical measurements the current practice is to assume an albedo and use a normalized magnitude to calculate optical size. However, assuming a single albedo value may not be valid for all objects or orbit types; material type and orientation can mask an object s true optical cross section. This experiment used a CCD camera to record data, a 300 W Xenon, Ozone Free collimated light source to simulate solar illumination, and a robotic arm with five degrees of freedom to move the piece of simulated debris through various orientations. The pseudo-debris pieces used in this experiment originate from the European Space Operations Centre s ESOC2 ground test explosion of a mock satellite. A uniformly illuminated white ping-pong ball was used as a zero-magnitude reference. Each debris piece was then moved through specific orientations and rotations to generate a light curve. This paper discusses the results of five different object-based light curves as measured through an x-rotation. Intensity measurements, from which each light curve was generated, were recorded in five degree increments from zero to 180 degrees. Comparing light curves of different shaped and sized pieces against their characteristic length establishes the start of a database from which an optical size estimation model will be derived in the future.

  1. RADIOACTIVELY POWERED RISING LIGHT CURVES OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Piro, Anthony L.

    2012-01-01

    The rising luminosity of the recent, nearby supernova 2011fe shows a quadratic dependence with time during the first ≈0.5-4 days. In addition, studies of the composite light curves formed from stacking together many Type Ia supernovae (SNe Ia) have found similar power-law indices for the rise, but may also show some dispersion that may indicate diversity. I explore what range of power-law rises are possible due to the presence of radioactive material near the surface of the exploding white dwarf (WD). I summarize what constraints such a model places on the structure of the progenitor and the distribution and velocity of ejecta. My main conclusion is that for the inferred explosion time for SN 2011fe, its rise requires an increasing mass fraction X 56 ≈ (4-6) × 10 –2 of 56 Ni distributed between a depth of ≈10 –2 and 0.3 M ☉ below the WD's surface. Radioactive elements this shallow are not found in simulations of a single C/O detonation. Scenarios that may produce this material include helium-shell burning during a double-detonation ignition, a gravitationally confined detonation, and a subset of deflagration to detonation transition models. In general, the power-law rise can differ from quadratic depending on the details of the velocity, density, and radioactive deposition gradients in a given event. Therefore, comparisons of this work with observed bolometric rises of SNe Ia would place strong constraints on the properties of the shallow outer layers, providing important clues for identifying the elusive progenitors of SNe Ia.

  2. X-ray heating and the optical light curve of HZ Herculis

    International Nuclear Information System (INIS)

    Perrenod, S.C.; Shields, G.A.

    1975-01-01

    We discuss theoretically the optical light curve of HZ Her, the binary companion of the pulsed X-ray source Her X-1. Using model stellar atmospheres, we construct light curves that are in agreement with UBV photometry of HZ Her except for the sharpness of the minimum. Unlike previous authors, we find that heating of the photosphere of HZ Her by the observed X-ray flux is sufficient to explain the amplitude of the light variations in each color, if the X-ray emission persists at HZ Her throughout the 35-day ON-OFF CYCLE. We rule out a corona surrounding HZ Her as the source of the extra light near minimum, and we also rule out a model wherein the extra light is caused by a stellar wind that electron-scatters optical light emitted by the photosphere of the hot side of the star

  3. Progenitors of low-luminosity Type II-Plateau supernovae

    Science.gov (United States)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2018-01-01

    The progenitors of low-luminosity Type II-Plateau supernovae (SNe II-P) are believed to be red supergiant (RSG) stars, but there is much disparity in the literature concerning their mass at core collapse and therefore on the main sequence. Here, we model the SN radiation arising from the low-energy explosion of RSG stars of 12, 25 and 27 M⊙ on the main sequence and formed through single star evolution. Despite the narrow range in ejecta kinetic energy (2.5-4.2 × 1050 erg) in our model set, the SN observables from our three models are significantly distinct, reflecting the differences in progenitor structure (e.g. surface radius, H-rich envelope mass and He-core mass). Our higher mass RSG stars give rise to Type II SNe that tend to have bluer colours at early times, a shorter photospheric phase, and a faster declining V-band light curve (LC) more typical of Type II-linear SNe, in conflict with the LC plateau observed for low-luminosity SNe II. The complete fallback of the CO core in the low-energy explosions of our high-mass RSG stars prevents the ejection of any 56Ni (nor any core O or Si), in contrast to low-luminosity SNe II-P, which eject at least 0.001 M⊙ of 56Ni. In contrast to observations, Type II SN models from higher mass RSGs tend to show an H α absorption that remains broad at late times (due to a larger velocity at the base of the H-rich envelope). In agreement with the analyses of pre-explosion photometry, we conclude that low-luminosity SNe II-P likely arise from low-mass rather than high-mass RSG stars.

  4. Precision of MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Benes, Petr; Bergmann, Benedikt; Biskup, Bartolomej; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek [IEAP CTU in Prague (Czech Republic); Asbah, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Kladiva, Edward [IEP SAS Kosice (Slovakia)

    2015-07-01

    A network consisting of MPX detectors based on Medipix2 silicon pixel devices were originally adapted for measuring the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. We demonstrate that the MPX network, which consists of 16 MPX detectors, is a self-contained luminosity monitor system. As the MPX detectors are collecting data independently of the ATLAS data-recording chain, they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors close enough to the primary interaction point are used to perform van der Meer calibration scans with good precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s)=8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The variations of the MPX luminosity measurements around the fitted curve lead to a relative uncertainty on the luminosity measurement below 0.3% for one minute time intervals.

  5. New limb-darkening coefficients for modeling binary star light curves

    Science.gov (United States)

    Van Hamme, W.

    1993-01-01

    We present monochromatic, passband-specific, and bolometric limb-darkening coefficients for a linear as well as nonlinear logarithmic and square root limb-darkening laws. These coefficients, including the bolometric ones, are needed when modeling binary star light curves with the latest version of the Wilson-Devinney light curve progam. We base our calculations on the most recent ATLAS stellar atmosphere models for solar chemical composition stars with a wide range of effective temperatures and surface gravitites. We examine how well various limb-darkening approximations represent the variation of the emerging specific intensity across a stellar surface as computed according to the model. For binary star light curve modeling purposes, we propose the use of a logarithmic or a square root law. We design our tables in such a manner that the relative quality of either law with respect to another can be easily compared. Since the computation of bolometric limb-darkening coefficients first requires monochromatic coefficients, we also offer tables of these coefficients (at 1221 wavelength values between 9.09 nm and 160 micrometer) and tables of passband-specific coefficients for commonly used photometric filters.

  6. Estimation of error on the cross-correlation, phase and time lag between evenly sampled light curves

    Science.gov (United States)

    Misra, R.; Bora, A.; Dewangan, G.

    2018-04-01

    Temporal analysis of radiation from Astrophysical sources like Active Galactic Nuclei, X-ray Binaries and Gamma-ray bursts provides information on the geometry and sizes of the emitting regions. Establishing that two light-curves in different energy bands are correlated, and measuring the phase and time-lag between them is an important and frequently used temporal diagnostic. Generally the estimates are done by dividing the light-curves into large number of adjacent intervals to find the variance or by using numerically expensive simulations. In this work we have presented alternative expressions for estimate of the errors on the cross-correlation, phase and time-lag between two shorter light-curves when they cannot be divided into segments. Thus the estimates presented here allow for analysis of light-curves with relatively small number of points, as well as to obtain information on the longest time-scales available. The expressions have been tested using 200 light curves simulated from both white and 1 / f stochastic processes with measurement errors. We also present an application to the XMM-Newton light-curves of the Active Galactic Nucleus, Akn 564. The example shows that the estimates presented here allow for analysis of light-curves with relatively small (∼ 1000) number of points.

  7. The Radio Light Curve of the Gamma-Ray Nova in V407 CYG: Thermal Emission from the Ionized Symbiotic Envelope, Devoured from Within by the Nova Blast

    Science.gov (United States)

    Chomiuk, Laura; Krauss, Miriam I.; Rupen, Michael P.; Nelson, Thomas; Roy, Nirupam; Sokoloski, Jennifer L.; Mukai, Koji; Munari, Ulisse; Mioduszewski, Amy; Weston, Jeninfer; hide

    2012-01-01

    We present multi-frequency radio observations of the 2010 nova event in the symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array (VLA) and spanning 1.45 GHz and 17.770 days following discovery. This nova.the first ever detected in gamma rays.shows a radio light curve dominated by the wind of the Mira giant companion, rather than the nova ejecta themselves. The radio luminosity grewas the wind became increasingly ionized by the nova outburst, and faded as the wind was violently heated from within by the nova shock. This study marks the first time that this physical mechanism has been shown to dominate the radio light curve of an astrophysical transient. We do not observe a thermal signature from the nova ejecta or synchrotron emission from the shock, due to the fact that these components were hidden behind the absorbing screen of the Mira wind. We estimate a mass-loss rate for the Mira wind of .Mw approximately equals 10(exp -6) Solar mass yr(exp -1). We also present the only radio detection of V407 Cyg before the 2010 nova, gleaned from unpublished 1993 archival VLA data, which shows that the radio luminosity of the Mira wind varies by a factor of 20 even in quiescence. Although V407 Cyg likely hosts a massive accreting white dwarf, making it a candidate progenitor system for a Type Ia supernova, the dense and radially continuous circumbinary material surrounding V407 Cyg is inconsistent with observational constraints on the environments of most Type Ia supernovae.

  8. Large Magellanic Cloud Near-infrared Synoptic Survey. V. Period–Luminosity Relations of Miras

    International Nuclear Information System (INIS)

    Yuan, Wenlong; Macri, Lucas M.; He, Shiyuan; Huang, Jianhua Z.; Kanbur, Shashi M.; Ngeow, Chow-Choong

    2017-01-01

    We study the near-infrared properties of 690 Mira candidates in the central region of the Large Magellanic Cloud, based on time-series observations at JHK s . We use densely sampled I -band observations from the OGLE project to generate template light curves in the near-infrared and derive robust mean magnitudes at those wavelengths. We obtain near-infrared Period–Luminosity relations for oxygen-rich Miras with a scatter as low as 0.12 mag at K s . We study the Period–Luminosity–Color relations and the color excesses of carbon-rich Miras, which show evidence for a substantially different reddening law.

  9. The performance of the CDF luminosity monitor

    CERN Document Server

    Acosta, D; Konigsberg, J; Korytov, A; Mitselmakher, G; Necula, V; Nomerotski, A; Pronko, A; Sukhanov, A; Safonov, A; Tsybychev, D; Wang, S M; Wong, M

    2002-01-01

    We describe the initial performance of the detector used for the luminosity measurement in the CDF experiment in Run II at the Tevatron. The detector consists of low-mass gaseous Cherenkov counters with high light yield (approx 100 photoelectrons) and monitors the process of inelastic pp-bar scattering. It allows for several methods of precise luminosity measurements at peak instantaneous luminosities of 2x10 sup 3 sup 2 cm sup - sup 2 s sup - sup 1 , corresponding to an average of six pp-bar interactions per bunch crossing.

  10. Light curve analysis of the late type binary V523 Cassiopeiae

    Directory of Open Access Journals (Sweden)

    Latković O.

    2009-01-01

    Full Text Available We present the analysis of V and R light curves of the late type contact binary V523 Cas for the season of 2006. These observations make part of the monitoring program aimed at studying the long-term light curve variability in this system. Our results confirm that the system is in an over contact configuration, and include a bright spot in the neck region of the cooler and larger primary. We compare these results with the previous solution, obtained for the season 2005 dataset and discuss the differences.

  11. Width and partial widths of unstable particles in the light of the Nielsen identities

    International Nuclear Information System (INIS)

    Grassi, P.A.; Sirlin, A.; Kniehl, B.A.; Hamburg Univ.

    2001-09-01

    Fundamental properties of unstable particles, including mass, width, and partial widths, are examined on the basis of the Nielsen identities (NI) that describe the gauge dependence of Green functions. In particular, we prove that the pole residues and associated definitions of branching ratios and partial widths are gauge independent to all orders. A simpler, previously discussed definition of branching ratios and partial widths is found to be gauge independent through next-to-next-to-leading order. It is then explained how it may be modified in order to extend the gauge independence to all orders. We also show that the physical scattering amplitude is the most general combination of self-energy, vertex, and box contributions that is gauge independent for arbitrary s, discuss the analytical properties of the NI functions, and exhibit explicitly their one-loop expressions in the Z-γ sector of the Standard Model. (orig.)

  12. Width and partial widths of unstable particles in the light of the Nielsen identities

    International Nuclear Information System (INIS)

    Grassi, Pietro A.; Kniehl, Bernd A.; Sirlin, Alberto

    2002-01-01

    Fundamental properties of unstable particles, including mass, width, and partial widths, are examined on the basis of the Nielsen identities (NI) that describe the gauge dependence of Green functions. In particular, we prove that the pole residues and associated definitions of branching ratios and partial widths are gauge independent to all orders. A simpler, previously discussed definition of branching ratios and partial widths is found to be gauge independent through next-to-next-to-leading order. It is then explained how it may be modified in order to extend the gauge independence to all orders. We also show that the physical scattering amplitude is the most general combination of self-energy, vertex, and box contributions that is gauge independent for arbitrary s, discuss the analytical properties of the NI functions, and exhibit explicitly their one-loop expressions in the Z-γ sector of the standard model

  13. Fourier techniques for an analysis of eclipsing binary light curves. Pt. 6b

    International Nuclear Information System (INIS)

    Demircan, O.

    1980-01-01

    This is a continuation of a previous paper which appeared in this journal (Demircan, 1980b) and aims at ascertaining some other relations between the integral transforms of the light curves of eclipsing binary systems. The appropriate use of these relations should facilitate the numerical computations for an analysis of eclipsing binary light curves by different Fourier techniques. (orig.)

  14. Four-colour photometry of eclipsing binaries. XXXII. Light curves of V1031 Orionis

    International Nuclear Information System (INIS)

    Clausen, J.V.; Nordstroem, B.; Andersen, J.; Nordstroem, B.; Andersen, J.

    1989-01-01

    Complete uvby light curves are presented for the bright, southern, A-type triple system V1031 Orionis which consists of two well-separated eclipsing components in a circular orbit and a third component at an angular distance of about 0.16 sec. The light curves contain 1280 points in each colour, obtained from 1980 to 1983

  15. Four-colour photometry of eclipsing binaries. XXXII. Light curves of V1031 Orionis

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J V; Nordstroem, B; Andersen, J [Copenhagen Univ. Observatory, (DK); Nordstroem, B; Andersen, J [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (US)

    1989-12-01

    Complete uvby light curves are presented for the bright, southern, A-type triple system V1031 Orionis which consists of two well-separated eclipsing components in a circular orbit and a third component at an angular distance of about 0.16 sec. The light curves contain 1280 points in each colour, obtained from 1980 to 1983.

  16. SUPERLUMINOUS SUPERNOVAE POWERED BY MAGNETARS: LATE-TIME LIGHT CURVES AND HARD EMISSION LEAKAGE

    International Nuclear Information System (INIS)

    Wang, S. Q.; Wang, L. J.; Dai, Z. G.; Wu, X. F.

    2015-01-01

    Recently, research performed by two groups has revealed that the magnetar spin-down energy injection model with full energy trapping can explain the early-time light curves of SN 2010gx, SN 2013dg, LSQ12dlf, SSS120810, and CSS121015 but fails to fit the late-time light curves of these superluminous supernovae (SLSNe). These results imply that the original magnetar-powered model is challenged in explaining these SLSNe. Our paper aims to simultaneously explain both the early- and late-time data/upper limits by considering the leakage of hard emissions. We incorporate quantitatively the leakage effect into the original magnetar-powered model and derive a new semianalytical equation. Comparing the light curves reproduced by our revised magnetar-powered model with the observed data and/or upper limits of these five SLSNe, we found that the late-time light curves reproduced by our semianalytical equation are in good agreement with the late-time observed data and/or upper limits of SN 2010gx, CSS121015, SN 2013dg, and LSQ12dlf and the late-time excess of SSS120810, indicating that the magnetar-powered model might be responsible for these SLSNe and that the gamma-ray and X-ray leakages are unavoidable when the hard photons were down-Comptonized to softer photons. To determine the details of the leakage effect and unveil the nature of SLSNe, more high-quality bolometric light curves and spectra of SLSNe are required

  17. Closed Paths of Light Trapped in a Closed Fermat Curve

    Science.gov (United States)

    Dana-Picard, Thierry; Naiman, Aaron

    2002-01-01

    Geometric constructions have previously been shown that can be interpreted as rays of light trapped either in polygons or in conics, by successive reflections. The same question, trapping light in closed Fermat curves, is addressed here. Numerical methods are used to study the behaviour of the reflection points of a triangle when the degree of the…

  18. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Walkowicz, Lucianne M. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08534 (United States); Basri, Gibor [Astronomy Department, University of California at Berkeley, Hearst Field Annex, Berkeley, CA 94720 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  19. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    International Nuclear Information System (INIS)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-01-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  20. EXTRASOLAR STORMS: PRESSURE-DEPENDENT CHANGES IN LIGHT-CURVE PHASE IN BROWN DWARFS FROM SIMULTANEOUS HST AND SPITZER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Apai, Dániel; Karalidi, Theodora [Department of Astronomy, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, Naval Air Station, Moffett Field, Mountain View, CA 94035 (United States); Flateau, Davin [Department of Planetary Sciences, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Showman, Adam P. [Department of Planetary Sciences, University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States); Metchev, Stanimir [The University of Western Ontario, Department of Physics and Astronomy, Centre for Planetary Science and Exploration, 1151 Richmond St., London, ON N6A 3K7 (Canada); Buenzli, Esther [Institute for Astronomy, ETH Zürich Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Radigan, Jacqueline [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Lowrance, Patrick J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Burgasser, Adam J., E-mail: haoyang@email.arizona.edu, E-mail: apai@arizona.edu [Center for Astrophysics and Space Science, University of California, San Diego, La Jolla, CA 92093 (United States)

    2016-07-20

    We present Spitzer /Infrared Array Camera Ch1 and Ch2 monitoring of six brown dwarfs during eight different epochs over the course of 20 months. For four brown dwarfs, we also obtained simulataneous Hubble Space Telescope ( HST )/WFC3 G141 grism spectra during two epochs and derived light curves in five narrowband filters. Probing different pressure levels in the atmospheres, the multiwavelength light curves of our six targets all exhibit variations, and the shape of the light curves evolves over the timescale of a rotation period, ranging from 1.4 to 13 hr. We compare the shapes of the light curves and estimate the phase shifts between the light curves observed at different wavelengths by comparing the phase of the primary Fourier components. We use state-of-the-art atmosphere models to determine the flux contribution of different pressure layers to the observed flux in each filter. We find that the light curves that probe higher pressures are similar and in phase, but are offset and often different from the light curves that probe lower pressures. The phase differences between the two groups of light curves suggest that the modulations seen at lower and higher pressures may be introduced by different cloud layers.

  1. Photometric light curves for seven rapidly-rotating K dwarfs in the Pleiades and Alpha Persei clusters

    Science.gov (United States)

    Stauffer, John R.; Schild, Rudolph A.; Baliunas, Sallie L.; Africano, John L.

    1987-01-01

    Light curves and period estimates were obtained for several Pleiades and Alpha Persei cluster K dwarfs which were identified as rapid rotators in earlier spectroscopic studies. A few of the stars have previously-published light curves, making it possible to study the long-term variability of the light-curve shapes. The general cause of the photometric variability observed for these stars is an asymmetric distribution of photospheric inhomogeneities (starspots). The presence of these inhomogeneities combined with the rotation of the star lead to the light curves observed. The photometric periods derived are thus identified with the rotation period of the star, making it possible to estimate equatorial rotational velocities for these K dwarfs. These data are of particular importance because the clusters are sufficiently young that stars of this mass should have just arrived on the main sequence. These data could be used to estimate the temperatures and sizes of the spot groups necessary to produce the observed light curves for these stars.

  2. Orbital Signatures from Observed Light Curves of Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Variability in active galactic nuclei is observed in UV to X-ray emission based light curves. This could be attributed to orbital signatures of the plasma that constitutes the accretion flow on the putative disk or in the developing jet close to the inner region of the central black hole. We discuss some theoretical ...

  3. A Composite Light Curve Model of the Symbiotic Nova PU Vul (1979

    Directory of Open Access Journals (Sweden)

    Kato M.

    2012-06-01

    Full Text Available PU Vul (1979 is a symbiotic nova that shows a long-lasting flat optical peak followed by a slow decline. We made a quasi-evolution model for outbursts on a 0.6 M⊙ white dwarf consisting of a series of static solutions with optically-thin winds. Our theoretical models reproduce well the observed visual/UV light curves as well as the new estimates of the temperature and radius of the hot component. We also modeled the light curve of the 1980 and 1994 eclipses as the total eclipse occulted by a pulsating M-giant companion star. In the second eclipse, the visual magnitude is dominated by nebular emission which is possibly ejected from the hot component between 1990 to 2000. We have quantitatively estimated three components of emission, i.e., the white dwarf, companion and nebular, and made a composite light curve that represents well the evolution of the PU Vul outburst.

  4. Searching for transits in the WTS with the difference imaging light curves

    Science.gov (United States)

    Zendejas Dominguez, Jesus

    2013-12-01

    The search for exo-planets is currently one of the most exiting and active topics in astronomy. Small and rocky planets are particularly the subject of intense research, since if they are suitably located from their host star, they may be warm and potentially habitable worlds. On the other hand, the discovery of giant planets in short-period orbits provides important constraints on models that describe planet formation and orbital migration theories. Several projects are dedicated to discover and characterize planets outside of our solar system. Among them, the Wide-Field Camera Transit Survey (WTS) is a pioneer program aimed to search for extra-solar planets, that stands out for its particular aims and methodology. The WTS has been in operation since August 2007 with observations from the United Kingdom Infrared Telescope, and represents the first survey that searches for transiting planets in the near-infrared wavelengths; hence the WTS is designed to discover planets around M-dwarfs. The survey was originally assigned about 200 nights, observing four fields that were selected seasonally (RA = 03, 07, 17 and 19h) during a year. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. For the most complete field (19h-1145 epochs) in the survey, we produce an alternative set of light curves by using the method of difference imaging, which is a photometric technique that has shown important advantages when used in crowded fields. A quantitative comparison between the photometric precision achieved with both methods is carried out in this work. We remove systematic effects using the sysrem algorithm, scale the error bars on the light curves, and perform a comparison of the corrected light curves. The results show that the aperture photometry light curves provide slightly better precision for objects with J detect transits in the WTS light curves, we use a modified version of the box

  5. THE RADIO LIGHT CURVE OF THE GAMMA-RAY NOVA IN V407 CYG: THERMAL EMISSION FROM THE IONIZED SYMBIOTIC ENVELOPE, DEVOURED FROM WITHIN BY THE NOVA BLAST

    Energy Technology Data Exchange (ETDEWEB)

    Chomiuk, Laura; Krauss, Miriam I.; Rupen, Michael P.; Roy, Nirupam; Mioduszewski, Amy [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Nelson, Thomas [School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Sokoloski, Jennifer L.; Weston, Jennifer [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Mukai, Koji [CRESST and X-ray Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Munari, Ulisse [INAF Astronomical Observatory of Padova, I-36012 Asiago (VI) (Italy); O' Brien, Tim J. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Eyres, Stewart P. S. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Bode, Michael F., E-mail: chomiuk@pa.msu.edu [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom)

    2012-12-20

    We present multi-frequency radio observations of the 2010 nova event in the symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array (VLA) and spanning 1-45 GHz and 17-770 days following discovery. This nova-the first ever detected in gamma rays-shows a radio light curve dominated by the wind of the Mira giant companion, rather than the nova ejecta themselves. The radio luminosity grew as the wind became increasingly ionized by the nova outburst, and faded as the wind was violently heated from within by the nova shock. This study marks the first time that this physical mechanism has been shown to dominate the radio light curve of an astrophysical transient. We do not observe a thermal signature from the nova ejecta or synchrotron emission from the shock, due to the fact that these components were hidden behind the absorbing screen of the Mira wind. We estimate a mass-loss rate for the Mira wind of M-dot{sub w} approx. 10{sup -6} M{sub Sun} yr{sup -1}. We also present the only radio detection of V407 Cyg before the 2010 nova, gleaned from unpublished 1993 archival VLA data, which shows that the radio luminosity of the Mira wind varies by a factor of {approx}>20 even in quiescence. Although V407 Cyg likely hosts a massive accreting white dwarf, making it a candidate progenitor system for a Type Ia supernova, the dense and radially continuous circumbinary material surrounding V407 Cyg is inconsistent with observational constraints on the environments of most Type Ia supernovae.

  6. Orbital Light Curves of UU Aquarii in Stunted Outburst

    Science.gov (United States)

    Robertson, J. W.; Honeycutt, R. K.; Henden, A. A.; Campbell, R. T.

    2018-02-01

    Stunted outbursts are ∼0.ͫ6 eruptions, typically lasting 5–10 days, which are found in some novalike cataclysmic variables, including UU Aqr. The mechanism responsible for stunted outbursts is uncertain but is likely related to an accretion disk instability or to variations in the mass transfer rate. A campaign to monitor the eclipse light curves in UU Aqr has been conducted in order to detect any light curve distortions due to the appearance of a hot spot on the disk at the location of the impact point of the accretion stream. If stunted outbursts are due to a temporary mass transfer enhancement, then predictable deformations of the orbital light curve are expected to occur during such outbursts. This study used 156 eclipses on 135 nights during the years 2000–2012. During this interval, random samples found the system to be in stunted outbursts 4%–5% of the time, yielding ∼7 eclipses obtained during some stage of stunted outburst. About half of the eclipses obtained during stunted outbursts showed clear evidence for hot spot enhancement, providing strong evidence that the stunted outbursts in UU Aqr are associated with mass transfer variations. The other half of the eclipses during stunted outburst showed little or no evidence for hot spot enhancement. Furthermore, there were no systematic changes in the hot spot signature as stunted outbursts progressed. Therefore, we have tentatively attributed the changes in hot spot visibility during stunted outburst to random blobby accretion, which likely further modulates the strength of the accretion stream on orbital timescales.

  7. Infrared rotational light curves on Jupiter induced by wave activities and cloud patterns andimplications on brown dwarfs

    Science.gov (United States)

    Ge, Huazhi; Zhang, Xi; Fletcher, Leigh; Orton, Glenn S.; Sinclair, James Andrew; Fernandes,, Joshua; Momary, Thomas W.; Warren, Ari; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya

    2017-10-01

    Many brown dwarfs exhibit infrared rotational light curves with amplitude varying from a fewpercent to twenty percent (Artigau et al. 2009, ApJ, 701, 1534; Radigan et al. 2012, ApJ, 750,105). Recently, it was claimed that weather patterns, especially planetary-scale waves in thebelts and cloud spots, are responsible for the light curves and their evolutions on brown dwarfs(Apai et al. 2017, Science, 357, 683). Here we present a clear relationship between the direct IRemission maps and light curves of Jupiter at multiple wavelengths, which might be similar withthat on cold brown dwarfs. Based on infrared disk maps from Subaru/COMICS and VLT/VISIR,we constructed full maps of Jupiter and rotational light curves at different wavelengths in thethermal infrared. We discovered a strong relationship between the light curves and weatherpatterns on Jupiter. The light curves also exhibit strong multi-bands phase shifts and temporalvariations, similar to that detected on brown dwarfs. Together with the spectra fromTEXES/IRTF, our observations further provide detailed information of the spatial variations oftemperature, ammonia clouds and aerosols in the troposphere of Jupiter (Fletcher et al. 2016,Icarus, 2016 128) and their influences on the shapes of the light curves. We conclude that waveactivities in Jupiter’s belts (Fletcher et al. 2017, GRL, 44, 7140), cloud holes, and long-livedvortices such as the Great Red Spot and ovals control the shapes of IR light curves and multi-wavelength phase shifts on Jupiter. Our finding supports the hypothesis that observed lightcurves on brown dwarfs are induced by planetary-scale waves and cloud spots.

  8. Large Magellanic Cloud Near-infrared Synoptic Survey. V. Period–Luminosity Relations of Miras

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenlong; Macri, Lucas M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); He, Shiyuan; Huang, Jianhua Z. [Department of Statistics, Texas A and M University, College Station, TX 77843 (United States); Kanbur, Shashi M. [Department of Physics, The State University of New York at Oswego, Oswego, NY 13126 (United States); Ngeow, Chow-Choong, E-mail: lmacri@tamu.edu [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China)

    2017-10-01

    We study the near-infrared properties of 690 Mira candidates in the central region of the Large Magellanic Cloud, based on time-series observations at JHK{sub s}. We use densely sampled I -band observations from the OGLE project to generate template light curves in the near-infrared and derive robust mean magnitudes at those wavelengths. We obtain near-infrared Period–Luminosity relations for oxygen-rich Miras with a scatter as low as 0.12 mag at K{sub s}. We study the Period–Luminosity–Color relations and the color excesses of carbon-rich Miras, which show evidence for a substantially different reddening law.

  9. Setup of a LED light-pulser system for the OLYMPUS experiment; Aufbau eines LED-Lichtpulsersystems fuer das OLYMPUS-Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Waqaas

    2011-12-15

    The aim of this thesis consists in the construction and test of an external light-calibration system based on light-emitting diodes (LED) for the application at the symmetric Moller/Bhabha (SYMB) luminosity monitor. In chapter 2 the theoretical foundations of the OLYMPUS experiment, especially of the SYMB luminosity monitor are explained. Thereafter in chapter 3 the details of the setup of the OLYMPUS experiment and the fundamental properties of the SYMB detectors are discussed. In chapter 4 the whole concept of the LED light-pulser system is treated. In chapter 5 then test measurements with the ready LED light-pulser system are described. Thereby the light source shall be optimized in the shape that thereafter light pulses with short signal width are producable. Also different measurements for the unique characterization of the systems are performed. In chapter 6 light-intensity measurements during the operation of the LED light-pulser system are described.

  10. Effects of Galaxy collisions on the structure and evolution of Galaxy clusters. I. Mass and luminosity functions and background light

    International Nuclear Information System (INIS)

    Miller, G.E.; Department of Astronomy, University of Texas at Austin)

    1983-01-01

    The role of galaxy collisions in controlling the form of the galaxy mass and luminosity functions and in creating a diffuse background light is investigated by means of a direct computer simulation. Galaxy collisions are treated in a realistic manner, including both galaxy mergers and tidal encounters. A large number of theoretical studies of a galaxy collisions were consulted to formulate the basic input physics of collision cross sections. Despite this large number of studies, there remains considerable uncertainty in the effects of a collision on a galaxy due mainly to our lack of knowledge of the orbital distribution of matter in galaxies. To improve this situation, some methods of semiempirical calibration are suggested: for example, a survey of background light in clusters of different richness and morphological classes. If real galaxies are represented by galaxy models where the bulk of the matter is on radial, rather than circular, orbits, then tidal collisions are more damaging and there are a number of interesting effects: Repeated tidal encounters lead to galaxy mass and luminosity functions which are largely independent of model parameters and the initial galaxy mass function. It appears unlikely that the form of the average present-day luminosity function characteristic of both field and cluster galaxies is due to collisions, but certain observed deviations from the average found by Heiligman and Turner and by Dressler may be a signature of collisions, in particular a flat faint-end slope. The amount of luminous matter stripped from the galaxies in the simulations agrees with the amount of diffuse background light seen in the Coma Cluster

  11. Type IIP supernova light curves affected by the acceleration of red supergiant winds

    Science.gov (United States)

    Moriya, Takashi J.; Förster, Francisco; Yoon, Sung-Chul; Gräfener, Götz; Blinnikov, Sergei I.

    2018-05-01

    We introduce the first synthetic light-curve model set of Type IIP supernovae exploded within circumstellar media in which the acceleration of the red supergiant winds is taken into account. Because wind acceleration makes the wind velocities near the progenitors low, the density of the immediate vicinity of the red supergiant supernova progenitors can be higher than that extrapolated by using a constant terminal wind velocity. Therefore, even if the mass-loss rate of the progenitor is relatively low, it can have a dense circumstellar medium at the immediate stellar vicinity and the early light curves of Type IIP supernovae are significantly affected by it. We adopt a simple β velocity law to formulate the wind acceleration. We provide bolometric and multicolour light curves of Type IIP supernovae exploding within such accelerated winds from the combinations of three progenitors, 12-16 M⊙; five β, 1-5; seven mass-loss rates, 10-5-10-2 M⊙ yr-1; and four explosion energies, (0.5-2) × 1051 erg. All the light-curve models are available at https://goo.gl/o5phYb. When the circumstellar density is sufficiently high, our models do not show a classical shock breakout as a consequence of the interaction with the dense and optically thick circumstellar media. Instead, they show a delayed `wind breakout', substantially affecting early light curves of Type IIP supernovae. We find that the mass-loss rates of the progenitors need to be 10-3-10-2 M⊙ yr-1 to explain typical rise times of 5-10 d in Type IIP supernovae assuming a dense circumstellar radius of 1015 cm.

  12. SIMULATED PERFORMANCE OF TIMESCALE METRICS FOR APERIODIC LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Findeisen, Krzysztof; Hillenbrand, Lynne [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Cody, Ann Marie, E-mail: krzys@astro.caltech.edu [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States)

    2015-01-10

    Aperiodic variability is a characteristic feature of young stars, massive stars, and active galactic nuclei. With the recent proliferation of time-domain surveys, it is increasingly essential to develop methods to quantify and analyze aperiodic variability. We develop three timescale metrics that have been little used in astronomy—Δm-Δt plots, peak-finding, and Gaussian process regression—and present simulations comparing their effectiveness across a range of aperiodic light curve shapes, characteristic timescales, observing cadences, and signal to noise ratios. We find that Gaussian process regression is easily confused by noise and by irregular sampling, even when the model being fit reflects the process underlying the light curve, but that Δm-Δt plots and peak-finding can coarsely characterize timescales across a broad region of parameter space. We make public the software we used for our simulations, both in the spirit of open research and to allow others to carry out analogous simulations for their own observing programs.

  13. SIMULATED PERFORMANCE OF TIMESCALE METRICS FOR APERIODIC LIGHT CURVES

    International Nuclear Information System (INIS)

    Findeisen, Krzysztof; Hillenbrand, Lynne; Cody, Ann Marie

    2015-01-01

    Aperiodic variability is a characteristic feature of young stars, massive stars, and active galactic nuclei. With the recent proliferation of time-domain surveys, it is increasingly essential to develop methods to quantify and analyze aperiodic variability. We develop three timescale metrics that have been little used in astronomy—Δm-Δt plots, peak-finding, and Gaussian process regression—and present simulations comparing their effectiveness across a range of aperiodic light curve shapes, characteristic timescales, observing cadences, and signal to noise ratios. We find that Gaussian process regression is easily confused by noise and by irregular sampling, even when the model being fit reflects the process underlying the light curve, but that Δm-Δt plots and peak-finding can coarsely characterize timescales across a broad region of parameter space. We make public the software we used for our simulations, both in the spirit of open research and to allow others to carry out analogous simulations for their own observing programs

  14. Flare Characteristics from X-ray Light Curves

    Science.gov (United States)

    Gryciuk, M.; Siarkowski, M.; Sylwester, J.; Gburek, S.; Podgorski, P.; Kepa, A.; Sylwester, B.; Mrozek, T.

    2017-06-01

    A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS- Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single ("elementary") flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16 - 1.51 keV, 1.51 - 15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue - the SphinX Flare Catalogue - which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.

  15. REVISITING EVIDENCE OF CHAOS IN X-RAY LIGHT CURVES: THE CASE OF GRS 1915+105

    Energy Technology Data Exchange (ETDEWEB)

    Mannattil, Manu; Gupta, Himanshu; Chakraborty, Sagar, E-mail: mmanu@iitk.ac.in, E-mail: hiugupta@iitk.ac.in, E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016 (India)

    2016-12-20

    Nonlinear time series analysis has been widely used to search for signatures of low-dimensional chaos in light curves emanating from astrophysical bodies. A particularly popular example is the microquasar GRS 1915+105, whose irregular but systematic X-ray variability has been well studied using data acquired by the Rossi X-ray Timing Explorer . With a view to building simpler models of X-ray variability, attempts have been made to classify the light curves of GRS 1915+105 as chaotic or stochastic. Contrary to some of the earlier suggestions, after careful analysis, we find no evidence for chaos or determinism in any of the GRS 1915+105 classes. The dearth of long and stationary data sets representing all the different variability classes of GRS 1915+105 makes it a poor candidate for analysis using nonlinear time series techniques. We conclude that either very exhaustive data analysis with sufficiently long and stationary light curves should be performed, keeping all the pitfalls of nonlinear time series analysis in mind, or alternative schemes of classifying the light curves should be adopted. The generic limitations of the techniques that we point out in the context of GRS 1915+105 affect all similar investigations of light curves from other astrophysical sources.

  16. Scintillating fiber tracking at high luminosities using Visible Light Photon counter readout

    International Nuclear Information System (INIS)

    Atac, M.

    1995-11-01

    This paper reviews the research work on the Visible Light Photon Counters (VLPC) that have been developed for the scintillating fiber tracking at high luminosity colliders and high rate fixed target experiments. The devices originated from the joint work between UCLA and Rockwell International Science Center. The VLPCs are capable of counting photons very efficiently down to a single photon level with high avalanche gain, producing pulses at very high rates with very short rise times. Due to small gain dispersions they can be used in counting photons with high quantum efficiencies, therefore they are excellent devices for charged particle tracking using small diameter scintillating plastic fibers. In this paper, fiber tracking for the CDF and D0 upgrades and a possible usage of the VLPC readout for the experiment E803 at Fermilab will be discussed

  17. A Semiautomatic Pipeline for Be Star Light Curves

    Science.gov (United States)

    Rímulo, L. R.; Carciofi, A. C.; Rivinius, T.; Okazaki, A.

    2016-11-01

    Observational and theoretical studies from the last decade have shown that the Viscous Decretion Disk (VDD) scenario, in which turbulent viscosity is the physical mechanism responsible for the transport of material and angular momentum ejected from the star to the outer regions of the disk, is the only viable model for explaining the circumstellar disks of Be stars. In the α-disk approach applied to the VDD, the dimensionless parameter α is a measure of the turbulent viscosity. Recently, combining the time-dependent evolution of a VDD α-disk with non-LTE radiative transfer calculations, the first measurement of the α parameter was made, for the disk dissipation of the Be star ω CMa. It was found that α≍ 1 for that Be disk. The main motivation of this present work is the statistical determination of the α parameter. For this purpose, we present a pipeline that will allow the semiautomatic determination of the α parameter of several dozens of light curves of Be stars available from photometric surveys, In this contribution, we describe the pipeline, outlining the main staps required for the semiautomatic analysis of light curves

  18. THE BLACK HOLE MASS-GALAXY LUMINOSITY RELATIONSHIP FOR SLOAN DIGITAL SKY SURVEY QUASARS

    International Nuclear Information System (INIS)

    Salviander, S.; Shields, G. A.; Bonning, E. W.

    2015-01-01

    We investigate the relationship between the mass of the central supermassive black hole, M BH , and the host galaxy luminosity, L gal , in a sample of quasars from the Sloan Digital Sky Survey Data Release 7. We use composite quasar spectra binned by black hole mass and redshift to assess galaxy features that would otherwise be overwhelmed by noise in individual spectra. The black hole mass is calculated using the photoionization method, and the host galaxy luminosity is inferred from the depth of the Ca II H+K features in the composite spectra. We evaluate the evolution in the M BH -L gal relationship by examining the redshift dependence of Δ log M BH , the offset in M BH from the local M BH -L gal relationship. There is little systematic trend in Δ log M BH out to z = 0.8. Using the width of the [O III] emission line as a proxy for the stellar velocity dispersion, σ * , we find agreement of our derived host luminosities with the locally observed Faber-Jackson relation. This supports the utility of the width of the [O III] line as a proxy for σ * in statistical studies

  19. Luminosity change in DQ Herculis

    International Nuclear Information System (INIS)

    Nelson, M.R.; Olson, E.C.

    1976-01-01

    The 1975 observations show a dramatic change in the UBV light curves of the eclipsing binary DQ Her (nova 1934). Since 1954, the B light outside eclipse has dimmed approximately 0.5 mag and the light at primary minimum has dimmed approximately 1.3 mag. Simple analysis of the light curves allows one to conclude that (1) the eclipsed light has fallen approximately 20 percent while the light which is constant with orbital phase has dropped approximately 75 percent; (2) the time over which most of the change in the eclipsed light occurred is less than approximately 0.7 years; (3) light loss at mid-eclipse is approximately 0.94; and (4) the mass of the secondary star is less than 0.4 M/sub solar mass/. The changes provide indirect evidence that the mass transfer rate is not constant in time. Near-infrared data are also presented which show a reversal of the trend seen in the UBV light curves of greater eclipse depth with longer wavelength

  20. Unified treatment of the luminosity distance in cosmology

    International Nuclear Information System (INIS)

    Yoo, Jaiyul; Scaccabarozzi, Fulvio

    2016-01-01

    Comparing the luminosity distance measurements to its theoretical predictions is one of the cornerstones in establishing the modern cosmology. However, as shown in Biern and Yoo, its theoretical predictions in literature are often plagued with infrared divergences and gauge-dependences. This trend calls into question the sanity of the methods used to derive the luminosity distance. Here we critically investigate four different methods—the geometric approach, the Sachs approach, the Jacobi mapping approach, and the geodesic light cone (GLC) approach to modeling the luminosity distance, and we present a unified treatment of such methods, facilitating the comparison among the methods and checking their sanity. All of these four methods, if exercised properly, can be used to reproduce the correct description of the luminosity distance.

  1. Unified treatment of the luminosity distance in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaiyul; Scaccabarozzi, Fulvio, E-mail: jyoo@physik.uzh.ch, E-mail: fulvio@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Zürich (Switzerland)

    2016-09-01

    Comparing the luminosity distance measurements to its theoretical predictions is one of the cornerstones in establishing the modern cosmology. However, as shown in Biern and Yoo, its theoretical predictions in literature are often plagued with infrared divergences and gauge-dependences. This trend calls into question the sanity of the methods used to derive the luminosity distance. Here we critically investigate four different methods—the geometric approach, the Sachs approach, the Jacobi mapping approach, and the geodesic light cone (GLC) approach to modeling the luminosity distance, and we present a unified treatment of such methods, facilitating the comparison among the methods and checking their sanity. All of these four methods, if exercised properly, can be used to reproduce the correct description of the luminosity distance.

  2. On the Luminosity Distance and the Hubble Constant

    OpenAIRE

    Yuri Heymann

    2013-01-01

    By differentiating luminosity distance with respect to time using its standard formula we find that the peculiar velocity is a time varying velocity of light. Therefore, a new definition of the luminosity distance is provided such that the peculiar velocity is equal to c. Using this definition a Hubble constant H0 = 67.3 km s−1 Mpc−1 is obtained from supernovae data.

  3. A method for the rapid generation of nonsequential light-response curves of chlorophyll fluorescence.

    Science.gov (United States)

    Serôdio, João; Ezequiel, João; Frommlet, Jörg; Laviale, Martin; Lavaud, Johann

    2013-11-01

    Light-response curves (LCs) of chlorophyll fluorescence are widely used in plant physiology. Most commonly, LCs are generated sequentially, exposing the same sample to a sequence of distinct actinic light intensities. These measurements are not independent, as the response to each new light level is affected by the light exposure history experienced during previous steps of the LC, an issue particularly relevant in the case of the popular rapid light curves. In this work, we demonstrate the proof of concept of a new method for the rapid generation of LCs from nonsequential, temporally independent fluorescence measurements. The method is based on the combined use of sample illumination with digitally controlled, spatially separated beams of actinic light and a fluorescence imaging system. It allows the generation of a whole LC, including a large number of actinic light steps and adequate replication, within the time required for a single measurement (and therefore named "single-pulse light curve"). This method is illustrated for the generation of LCs of photosystem II quantum yield, relative electron transport rate, and nonphotochemical quenching on intact plant leaves exhibiting distinct light responses. This approach makes it also possible to easily characterize the integrated dynamic light response of a sample by combining the measurement of LCs (actinic light intensity is varied while measuring time is fixed) with induction/relaxation kinetics (actinic light intensity is fixed and the response is followed over time), describing both how the response to light varies with time and how the response kinetics varies with light intensity.

  4. Light curve of type I supernovae

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.; Kriese, J.T.

    1980-01-01

    Calculations of the intermediate and late time luminosity of type I supernovae based on 100% efficiency for optical emission of energy deposited by the Ni 56 decay chain give good agreement with observations provided M/sub ej/ v -2 = (2.2 +- 0.5) x 10 17 M. s 2 cm -2 where M/sub ej/ is the ejected mass an v is the expansion velocity. Account must be taken of the escape of both gamma rays and positrons. These two escape processes as well as the early luminosity peak as calculated by Colgate and McKee are all consistent with the same value of M/sub ej//v 2

  5. Eclipsing binary stars with extreme light curve asymmetries mined from large astronomical surveys

    Directory of Open Access Journals (Sweden)

    Papageorgiou Athanasios

    2017-01-01

    Full Text Available The O’Connell effect is one of the most perplexing challenges in binary studies as it has not been convincingly explained. Furthermore, a simple method to obtain essential parameters for eclipsing binaries exhibiting this effect and to extract information describing the asymmetry in the light curve maxima is needed. We have developed an automated program that characterizes the morphology of light curves by depth of both minima, height of both maxima and curvature outside the eclipses.

  6. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Photometric Observation and Light Curve Analysis of Binary System ER-Orionis ... February to April 2008 with the 51 cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. ... Articles are also visible in Web of Science immediately.

  7. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    Science.gov (United States)

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  8. THE LUMINOSITY PROFILES OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Donzelli, C. J.; Muriel, H.; Madrid, J. P.

    2011-01-01

    We have derived detailed R-band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag arcsec -2 . Light profiles were initially fitted with a Sersic's R 1/n model, but we found that 205 (∼48%) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n ∼ 1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCG luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter (∼0.2 mag) than single profile BCGs. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M R = -23.8 ± 0.6 mag for single profile BCGs and M R = -24.0 ± 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best-fit slope of the Kormendy relation for the whole sample is a = 3.13 ± 0.04. However, when fitted separately, single and double profile BCGs show different slopes: a single = 3.29 ± 0.06 and a double = 2.79 ± 0.08. Also, the logarithmic slope of the metric luminosity α is higher in double profile BCGs (α double = 0.65 ± 0.12) than in single profile BCGs (α single = 0.59 ± 0.14). The mean isophote outer ellipticity (calculated at μ ∼ 24 mag arcsec -2 ) is higher in double profile BCGs (e double = 0.30 ± 0.10) than in single profile BCGs (e single = 0.26 ± 0.11). Similarly, the mean absolute value of inner minus outer ellipticity is also higher in double profile BCGs. From a

  9. Candidate Binary Trojan and Hilda Asteroids from Rotational Light Curves

    Science.gov (United States)

    Sonnett, Sarah M.; Mainzer, Amy K.; Grav, Tommy; Masiero, Joseph R.; Bauer, James M.; Kramer, Emily A.

    2017-10-01

    Jovian Trojans (hereafter, Trojans) are asteroids in stable orbits at Jupiter's L4 and L5 Lagrange points, and Hilda asteroids are inwards of the Trojans in 3:2 mean-motion resonance with Jupiter. Due to their special dynamical properties, observationally constraining the formation location and dynamical histories of Trojans and HIldas offers key input for giant planet migration models. A fundamental parameter in assessing formation location is the bulk density - with low-density objects associated with an ice-rich formation environment in the outer solar system and high-density objects typically linked to the warmer inner solar system. Bulk density can only be directly measured during a close fly-by or by determining the mutual orbits of binary asteroid systems. With the aim of determining densities for a statistically significant sample of Trojans and Hildas, we are undertaking an observational campaign to confirm and characterize candidate binary asteroids published in Sonnett et al. (2015). These objects were flagged as binary candidates because their large NEOWISE brightness variations imply shapes so elongated that they are not likely explained by a singular equilibrium rubble pile and instead may be two elongated, gravitationally bound asteroids. We are obtaining densely sampled rotational light curves of these possible binaries to search for light curve features diagnostic of binarity and to determine the orbital properties of any confirmed binary systems by modeling the light curve. We compare the We present an update on this follow-up campaign and comment on future steps.

  10. Precision measurement of the mass and width of the W boson at CDF

    International Nuclear Information System (INIS)

    Malik, Sarah Alam

    2009-01-01

    A precision measurement of the mass and width of the W boson is presented. The W bosons are produced in proton antiproton collisions occurring at a centre of mass energy of 1.96 TeV at the Tevatron accelerator. The data used for the analyses is collected by the Collider Detector at Fermilab (CDF) and corresponds to an average integrated luminosity of 350 pb -1 for the W width analysis for the electron and muon channels and an average integrated luminosity of 2350 pb -1 for the W mass analysis. The mass and width of the W boson is extracted by fitting to the transverse mass distribution, with the peak of the distribution being most sensitive to the mass and the tail of the distribution sensitive to the width. The W width measurement in the electron and muon channels is combined to give a final result of 2032 ± 73 MeV. The systematic uncertainty on the W mass from the recoil of the W boson against the initial state gluon radiation is discussed. A systematic study of the recoil in Z → e + e - events where one electron is reconstructed in the central calorimeter and the other in the plug calorimeter and its effect on the W mass is presented for the first time in this thesis.

  11. KEPLER ECLIPSING BINARY STARS. III. CLASSIFICATION OF KEPLER ECLIPSING BINARY LIGHT CURVES WITH LOCALLY LINEAR EMBEDDING

    International Nuclear Information System (INIS)

    Matijevič, Gal; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Bloemen, Steven; Barclay, Thomas

    2012-01-01

    We present an automated classification of 2165 Kepler eclipsing binary (EB) light curves that accompanied the second Kepler data release. The light curves are classified using locally linear embedding, a general nonlinear dimensionality reduction tool, into morphology types (detached, semi-detached, overcontact, ellipsoidal). The method, related to a more widely used principal component analysis, produces a lower-dimensional representation of the input data while preserving local geometry and, consequently, the similarity between neighboring data points. We use this property to reduce the dimensionality in a series of steps to a one-dimensional manifold and classify light curves with a single parameter that is a measure of 'detachedness' of the system. This fully automated classification correlates well with the manual determination of morphology from the data release, and also efficiently highlights any misclassified objects. Once a lower-dimensional projection space is defined, the classification of additional light curves runs in a negligible time and the method can therefore be used as a fully automated classifier in pipeline structures. The classifier forms a tier of the Kepler EB pipeline that pre-processes light curves for the artificial intelligence based parameter estimator.

  12. GR 290 (ROMANO’S STAR). II. LIGHT HISTORY AND EVOLUTIONARY STATE

    International Nuclear Information System (INIS)

    Polcaro, V. F.; Nesci, R.; Chieffi, A.; Viotti, R. F.; Maryeva, O.; Calabresi, M.; Haver, R.; Galleti, S.; Gualandi, R.; Mills, O. F.; Osborn, W. H.; Pasquali, A.; Rossi, C.; Vasilyeva, T.

    2016-01-01

    We have investigated the past light history of the luminous variable star GR 290 (M33/V532, Romano’s Star) in the M33 galaxy, and collected new spectrophotometric observations in order to analyze links between this object, the LBV category, and the Wolf–Rayet stars of the nitrogen sequence. We have built the historical light curve of GR 290 back to 1901, from old observations of the star found in several archival plates of M33. These old recordings together with published and new data on the star allowed us to infer that for at least half a century the star was in a low luminosity state, with B ≃ 18–19, most likely without brighter luminosity phases. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing toward the 1992–1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands and that the B – V color index has been constant within ±0.1 m despite the 1.5 m change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992–94 was equivalent to late-B-type, while, during 2002–2014, it varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the He ii 4686 Å emission line, the strength of the 4600–4700 Å lines’ blend, and the spectral type. From a model analysis of the spectra collected during the whole 2002–2014 period, we find that the Rosseland radius R 2/3 , changed between the minimum and maximum luminosity phases by a factor of three while T eff varied between about 33,000 and 23,000 K. We confirm that the bolometric luminosity of the star has not been constant, but has increased by a factor of ∼1.5 between minimum and maximum luminosity, in phase with the apparent luminosity variations. Presently

  13. GR 290 (ROMANO’S STAR). II. LIGHT HISTORY AND EVOLUTIONARY STATE

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V. F.; Nesci, R.; Chieffi, A.; Viotti, R. F. [INAF-IAPS, Via del Fosso del Cavaliere, 100, I-00133 Roma (Italy); Maryeva, O. [Special Astrophysical Observatory of the Russian Academy of Science, Nizhnii Arkhyz, 369167 (Russian Federation); Calabresi, M.; Haver, R. [ARA, Via Carlo Emanuele I, 12A, I-00185 Roma (Italy); Galleti, S.; Gualandi, R. [INAF—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Mills, O. F.; Osborn, W. H. [Yerkes Observatory, 373 W. Geneva Street, Williams Bay, WI 53115 (United States); Pasquali, A. [Astronomisches Rechen-Institut, Zentrum für Astronomie, Universität Heidelberg, Mönchhofstrasse 12-14, D-69120 Heidelberg (Germany); Rossi, C. [Università La Sapienza, Pza A.Moro 5, I-00185 Roma (Italy); Vasilyeva, T., E-mail: vitofrancesco.polcaro@iaps.inaf.it [Pulkovo Astronomical Observatory, 196140, Saint-Petersburg, Pulkovskoye chaussee 65/1 (Russian Federation)

    2016-06-01

    We have investigated the past light history of the luminous variable star GR 290 (M33/V532, Romano’s Star) in the M33 galaxy, and collected new spectrophotometric observations in order to analyze links between this object, the LBV category, and the Wolf–Rayet stars of the nitrogen sequence. We have built the historical light curve of GR 290 back to 1901, from old observations of the star found in several archival plates of M33. These old recordings together with published and new data on the star allowed us to infer that for at least half a century the star was in a low luminosity state, with B ≃ 18–19, most likely without brighter luminosity phases. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing toward the 1992–1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands and that the B – V color index has been constant within ±0.1{sup m} despite the 1.5{sup m} change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992–94 was equivalent to late-B-type, while, during 2002–2014, it varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the He ii 4686 Å emission line, the strength of the 4600–4700 Å lines’ blend, and the spectral type. From a model analysis of the spectra collected during the whole 2002–2014 period, we find that the Rosseland radius R {sub 2/3}, changed between the minimum and maximum luminosity phases by a factor of three while T {sub eff} varied between about 33,000 and 23,000 K. We confirm that the bolometric luminosity of the star has not been constant, but has increased by a factor of ∼1.5 between minimum and maximum luminosity, in phase with the apparent luminosity

  14. CYCLIC VARIATIONS OF ORBITAL PERIOD AND LONG-TERM LUMINOSITY IN CLOSE BINARY RT ANDROMEDAE

    International Nuclear Information System (INIS)

    Manzoori, Davood

    2009-01-01

    Solutions of standard VR light curves for the eclipsing binary RT And were obtained using the PHOEBE program (ver. 0.3a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass-luminosity diagram. Times of minima data ( O - C curve ) were analyzed using the method of Kalimeris et al. A cyclic variation in the orbital period and brightness, with timescales of about 11.89 and 12.50 yr were found, respectively. This is associated with a magnetic activity cycle modulating the orbital period of RT And via the Applegate mechanism. To check the consistency of the Applegate model, we have estimated some related parameters of the RT And system. The calculated parameters were in accordance with those estimated by Applegate for other similar systems, except B, the subsurface magnetic field of which shows a rather high value for RT And.

  15. SHOCK BREAKOUT AND EARLY LIGHT CURVES OF TYPE II-P SUPERNOVAE OBSERVED WITH KEPLER

    International Nuclear Information System (INIS)

    Garnavich, P. M.; Tucker, B. E.; Rest, A.; Shaya, E. J.; Olling, R. P.; Kasen, D; Villar, A.

    2016-01-01

    We discovered two transient events in the Kepler field with light curves that strongly suggest they are type II-P supernovae (SNe II-P). Using the fast cadence of the Kepler observations we precisely estimate the rise time to maximum for KSN2011a and KSN2011d as 10.5 ± 0.4 and 13.3 ± 0.4 rest-frame days, respectively. Based on fits to idealized analytic models, we find the progenitor radius of KSN2011a (280 ± 20 R ⊙ ) to be significantly smaller than that for KSN2011d (490 ± 20 R ⊙ ), but both have similar explosion energies of 2.0 ± 0.3 × 10 51 erg. The rising light curve of KSN2011d is an excellent match to that predicted by simple models of exploding red supergiants (RSG). However, the early rise of KSN2011a is faster than the models predict, possibly due to the supernova shock wave moving into pre-existing wind or mass-loss from the RSG. A mass-loss rate of 10 −4 M ⊙ yr −1 from the RSG can explain the fast rise without impacting the optical flux at maximum light or the shape of the post-maximum light curve. No shock breakout emission is seen in KSN2011a, but this is likely due to the circumstellar interaction suspected in the fast rising light curve. The early light curve of KSN2011d does show excess emission consistent with model predictions of a shock breakout. This is the first optical detection of a shock breakout from a SNe II-P

  16. Lyα EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION

    International Nuclear Information System (INIS)

    Kobayashi, Masakazu A. R.; Totani, Tomonori; Nagashima, Masahiro

    2010-01-01

    We present theoretical predictions of the UV continuum luminosity function (UV LF) and Lyα equivalent width (EW) distribution of Lyα emitters (LAEs) in the framework of the hierarchical clustering model of galaxy formation. The model parameters for the LAEs were determined by fitting to the observed Lyα LF at z = 5.7 in our previous study, and the fit indicates that extinction of Lyα photons by dust is significantly less effective than that of UV continuum photons, implying a clumpy dust distribution in the interstellar medium. We then compare the predictions about UV LFs and EW distributions with a variety of observations at z∼ 3-6, allowing no more free parameters and paying careful attention to the selection conditions of LAEs in each survey. We find that the predicted UV LFs and EW distributions are in nice agreement with observed data, and especially, our model naturally reproduces the existence of large EW LAEs (∼> 240 A) without introducing Pop III stars or top-heavy initial mass function. We show that both the stellar population (young age and low metallicity) and extinction by clumpy dust are the keys to reproducing large EW LAEs. The evidence of EW enhancement by clumpy dust is further strengthened by the quantitative agreement between our model and recent observations about a positive correlation between EW and extinction. The observed trend that brighter LAEs in the UV continuum tend to have smaller mean EW is also reproduced, and the clumpy dust plays an important role again for this trend. We suggested in our previous study that the transmission of the intergalactic medium for Lyα emission rapidly decreases from z ∼ 6 to 7 by fitting to Lyα LFs, and this evidence is quantitatively strengthened by the comparison with the UV LF and EW distribution at z ∼ 6.6.

  17. Photometric Observation and Light Curve Analysis of Binary System ...

    Indian Academy of Sciences (India)

    Abstract. Photometric observations of the over-contact binary ER ORI were performed during November 2007 and February to April 2008 with the 51cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. We used these data to obtain the light curves ...

  18. VizieR Online Data Catalog: Praesepe members light curves (Kovacs+, 2014)

    Science.gov (United States)

    Kovacs, G.; Hartman, J. D.; Bakos, G. A.; Quinn, S. N.; Penev, K.; Latham, D. W.; Bhatti, W.; Csubry, Z.; de Val-Borro, M.

    2014-07-01

    Light curves used in the time series analysis of Praesepe are presented. There are 381 light curves on instrumental Sloan r' magnitude scale with the zero points determined by the 2MASS magnitudes according to Eq. (1) of the paper. We present two types of magnitudes: a) external parameter decorrelated (EPD) and b), the ones obtained after the application of a trend filtering algorithm (TFA) on the EPD time series. These two methods are briefly described in the paper and in detail in the references therein. Here we just note that both methods are intended to filter out systematics due to environmental effects (instrumental, weather, etc.). For TFA filtering we used 600 templates and did not apply signal reconstruction. (5 data files).

  19. A unique UV flare in the optical light curve of the quasar J004457.9+412344

    Directory of Open Access Journals (Sweden)

    Hatzidimitriou D.

    2012-12-01

    Full Text Available We found that the nova candidate J004457.9+412344 is a radio-quiet quasar at z ∼ 2. Its optical long-term light curve, covering more than half a century, shows quasar typical flux variations superimposed by a spectacular single flare lasting more than one year (observer frame. We could not find comparable light curves among the several thousand catalogued radio-quiet quasars in the stripe 82 of the Sloan Digital Sky Survey. The decreasing part of the flare light curve roughly follows a power law t−5/3. The quasar spectrum, the total energy of the flare, and the decline of the light curve are consistent with the tidal disruption of a ∼10 Mʘ giant star by a supermassive black hole of a few 108 Mʘ. We argue that the alternative explanation by gravitational microlensing is less likely, though it cannot be definitely excluded.

  20. Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Yun-A Jo

    2016-12-01

    Full Text Available An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs. We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV. We also found that peak luminosity is positively correlated with peak energy.

  1. Machine Learning Techniques for Stellar Light Curve Classification

    Science.gov (United States)

    Hinners, Trisha A.; Tat, Kevin; Thorp, Rachel

    2018-07-01

    We apply machine learning techniques in an attempt to predict and classify stellar properties from noisy and sparse time-series data. We preprocessed over 94 GB of Kepler light curves from the Mikulski Archive for Space Telescopes (MAST) to classify according to 10 distinct physical properties using both representation learning and feature engineering approaches. Studies using machine learning in the field have been primarily done on simulated data, making our study one of the first to use real light-curve data for machine learning approaches. We tuned our data using previous work with simulated data as a template and achieved mixed results between the two approaches. Representation learning using a long short-term memory recurrent neural network produced no successful predictions, but our work with feature engineering was successful for both classification and regression. In particular, we were able to achieve values for stellar density, stellar radius, and effective temperature with low error (∼2%–4%) and good accuracy (∼75%) for classifying the number of transits for a given star. The results show promise for improvement for both approaches upon using larger data sets with a larger minority class. This work has the potential to provide a foundation for future tools and techniques to aid in the analysis of astrophysical data.

  2. Red light-induced shift of the fluence-response curve for first positive curvature of maize [Zea mays] coleoptiles

    International Nuclear Information System (INIS)

    Hofmann, E.; Schäfer, E.

    1987-01-01

    The fluence-response curve for first positive phototropic curvture of dark-grown maize coleoptiles is shifted to ten-fold higher fluences if the coieoptiles are irradiated with red light 2 h prior to the phototropic induction with blue light. Fluence-response curves for this red-induced shift were obtained with unilateral red irradiations 2 h prior to inductive blue pulses of different fluences. They differ significantly depending on whether the red light was given from the same side as or the opposite side to the respective inductive blue pulse, thus demonstrating that the red light effect is a local response of the coleoptile. The fluence-response curves for an inductive blue pulse in the ascending part were compared with those for an inductive blue pulse in the descending part of the fluence-response curve for blue light induced phototropism. They are quite different in threshold of red light sensitivity and shape for irradiations from both the same and the opposite sides. This offers evidence for the hypothesis that at least two different photosystems are involved in phototropism, and that they are modulated differently by a red light preirradiation. All these fluence-response curves indicate that it is possible to increase the response in the coleoptile, if the red light preirradiation is given opposite to the inductive blue pulse. This is supported by blue light fluence-response curves obtained after a weak unilateral red preirradiation. (author)

  3. Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Narayan, G.; Kirshner, R. P.

    2011-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.

  4. The detonation of a sub-Chandrasekhar-mass white dwarf at the origin of the low-luminosity Type Ia supernova 1999by

    Science.gov (United States)

    Blondin, Stéphane; Dessart, Luc; Hillier, D. John

    2018-03-01

    While Chandrasekhar-mass (MCh) models with a low 56Ni yield can match the peak luminosities of fast-declining, 91bg-like Type Ia supernovae (SNe Ia), they systematically fail to reproduce their faster light-curve evolution. Here, we illustrate the impact of a low ejecta mass on the radiative display of low-luminosity SNe Ia, by comparing a sub-MCh model resulting from the pure central detonation of a C-O white dwarf (WD) to an MCh delayed-detonation model with the same 56Ni yield of 0.12 M⊙. Our sub-MCh model from a 0.90 M⊙ WD progenitor has a ˜5 d shorter rise time in the integrated UV-optical-IR (uvoir) luminosity, as well as in the B band, and a ˜20 per cent higher peak uvoir luminosity (˜1 mag brighter peak MB). This sub-MCh model also displays bluer maximum-light colours due to the larger specific heating rate, and larger post-maximum uvoir and B-band decline rates. The luminosity decline at nebular times is also more pronounced, reflecting the enhanced escape of gamma rays resulting from the lower density of the progenitor WD. The deficit of stable nickel in the innermost ejecta leads to a notable absence of forbidden lines of [Ni II] in the nebular spectra. In contrast, the MCh model displays a strong line due to [Ni II] 1.939 μm, which could in principle serve to distinguish between different progenitor scenarios. Our sub-MCh model offers an unprecedented agreement with optical and near-infrared observations of the 91bg-like SN 1999by, making a strong case for a WD progenitor significantly below the Chandrasekhar-mass limit for this event and other low-luminosity SNe Ia.

  5. The 1.4 GHZ light curve of GRB 970508

    NARCIS (Netherlands)

    Galama, TJ; Wijers, RAMJ; Groot, PJ; Strom, RG; De Bruyn, AG; Kouveliotou, C; Robinson, CR; van Paradus, J

    1998-01-01

    We report on Westerbork 1.4 GHz radio observations of the radio counterpart to gamma-ray burst GRB 970508, between 0.80 and 138 days after this event. The 1.4 GHz light curve shows a transition from optically thick to thin emission between 39 and 54 days after the event. We derive the slope p of the

  6. Fourier analysis of the light curves of eclipsing variables. XV

    International Nuclear Information System (INIS)

    Demircan, O.

    1978-01-01

    A new general expression for the theoretical moments Asub(2m) of the light curves of eclipsing systems has been presented in the form of infinite series expansion. In this expansion, the terms have been given as the product of two different polynomials which satisfy certain three-term recursion formulae, and the coefficients diminish rapidly with increasing number of terms. Thus, the numerical values of the theoretical moments Asub(2m) can be generated recursively up to four significant figures for any given set of eclipse elements. This can be utilized to solve the eclipse elements in two ways: (i) with an indirect method, (ii) with a direct method as minimization to the observational moments Asub(2m) (area fitting). The procedures for obtaining the elements of any eclipsing system consisting of spherical stars have been automated by making use of the new expression for the moments Asub(2m) of the light curves. The theoretical functions f 0 , f 2 , f 4 , f 6 , g 2 and g 4 which are the functions of a and c 0 , have been used to solve the eclipse elements from the observed photometric data. The closed-form expressions for the functions f 2 , f 4 and f 6 have also been derived in terms of Kopal's I-integrals. The automated methods for obtaining the eclipse elements from one minimum alone have been tested on the light curves of YZ (21) Cassiopeiae under the spherical model assumptions. The results of these applications are given. (Auth.)

  7. On the temporal fluctuations of pulsating auroral luminosity

    International Nuclear Information System (INIS)

    Yamamoto, Tatsundo

    1988-01-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations

  8. UBV Light Curves of AR Lacertae During 1980-'81 and 1981-'82

    Directory of Open Access Journals (Sweden)

    Il-Seong Nha

    1985-12-01

    Full Text Available The UBV observations of the brightest RE CVn-type eclipsing binary star AR Lac were made at four observatories, two in Korea and two in the U.S. in the 1980-81 and 1981-82 seasons. As a result of the cooperation, two light curves in the yellow and in the blue were completed for each observing seasons. Ultraviolet observations were also made at three of the four observatories. The orbital period of AR Lac apparantly decreased around 1977. An analysis of our yellow light curves together with five other yellow curves available in the literature since 1975 shows that there seems no periodicity in the migration of the distortion waves. There is a gradual decrease of at least 0.m1 between 1976 and 1982 in the brightness of the cooler component if one assumes that the hotter component is constant.

  9. LATE-TIME LIGHT CURVES OF TYPE II SUPERNOVAE: PHYSICAL PROPERTIES OF SUPERNOVAE AND THEIR ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Fabbri, Joanna; Barlow, Michael J.; Wesson, Roger [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Clayton, Geoffrey C.; Andrews, Jennifer E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Gallagher, Joseph S. [Department of Mathematics, Physics, and Computer Science, Raymond Walters College, 9555 Plain field Rd., Blue Ash, OH 45236 (United States); Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD 21204 (United States); Ercolano, Barbara [Universitaets-Sternwarte Muenchen, Scheinerstr. 1, 81679 Muenchen (Germany); Welch, Douglas, E-mail: otsuka@stsci.edu, E-mail: otsuka@asiaa.sinica.edu.tw [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

    2012-01-01

    We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days {approx}300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate {sup 56}Ni masses for our targets (0.5-14 Multiplication-Sign 10{sup -2} M{sub Sun }) from the bolometric light curve of each of days {approx}150-300 using SN 1987A as a standard (7.5 Multiplication-Sign 10{sup -2} M{sub Sun }). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm{sup -3}) and SNe 2003gd and 2004et have densities more typical of the interstellar medium ({approx}1 cm{sup -3}). We analyze the sample as a whole in the context of physical properties derived in prior work. The {sup 56}Ni mass appears well correlated with progenitor mass with a slope of 0

  10. Type Ia supernova Hubble residuals and host-galaxy properties

    International Nuclear Information System (INIS)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2014-01-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  11. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE

    International Nuclear Information System (INIS)

    Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de; Moraga, Tania; González-Gaitán, Santiago; Gutiérrez, Claudia P.; Phillips, Mark M.; Morrell, Nidia I.; Thomas-Osip, Joanna; Suntzeff, Nicholas B.; Maza, José; González, Luis; Antezana, Roberto; Wishnjewski, Marina; Krisciunas, Kevin; Krzeminski, Wojtek; McCarthy, Patrick; Anderson, Joseph P.; Stritzinger, Maximilian; Folatelli, Gastón

    2016-01-01

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values

  12. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de; Moraga, Tania; González-Gaitán, Santiago; Gutiérrez, Claudia P. [Millennium Institute of Astrophysics, Universidad de Chile (Chile); Phillips, Mark M.; Morrell, Nidia I.; Thomas-Osip, Joanna [Carnegie Observatories, Las Campanas Observatory, Casilla 60, La Serena (Chile); Suntzeff, Nicholas B. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Maza, José; González, Luis; Antezana, Roberto; Wishnjewski, Marina [Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Krisciunas, Kevin [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Krzeminski, Wojtek [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); McCarthy, Patrick [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago (Chile); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University (Denmark); Folatelli, Gastón, E-mail: lgalbany@das.uchile.cl [Instituto de Astrofísica de La Plata (IALP, CONICET) (Argentina); and others

    2016-02-15

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.

  13. Corot 310266512: A Light Curve With Primary, Secondary And Tertiary Eclipses

    Directory of Open Access Journals (Sweden)

    Fernández Fernández Javier

    2015-01-01

    Full Text Available We present the photometric study of an interesting target in the CoRoT exoplanet database: CoRoT 310266512. Its light curve shows primary, secondary and tertiary eclipses that suggests the presence of at least three celestial bodies. The primary and secondary eclipses have the same orbital period, 7.42 days, and the tertiary eclipse has an orbital period of 3.27 days. Two of the tertiary eclipses fall within a primary eclipse and a secondary eclipse. The properties of the light curve indicate the presence of two physically separated systems. The primary and secondary eclipses corresponds to a binary system (System I. The tertiary eclipses correspond to a star-planet system or a star-dwarf system (System II. Some parameters of these two systems are obtained from JKTEBOP [1] program.

  14. Preparation of Kepler light curves for asteroseismic analyses

    DEFF Research Database (Denmark)

    García, R.A.; Hekker, Saskia; Stello, Dennis

    2011-01-01

    The Kepler mission is providing photometric data of exquisite quality for the asteroseismic study of different classes of pulsating stars. These analyses place particular demands on the pre-processing of the data, over a range of time-scales from minutes to months. Here, we describe processing...... procedures developed by the Kepler Asteroseismic Science Consortium to prepare light curves that are optimized for the asteroseismic study of solar-like oscillating stars in which outliers, jumps and drifts are corrected....

  15. New methods for deriving cometary secular light curves: C/1995 O1 (Hale-Bopp) revisited

    Science.gov (United States)

    Womack, Maria; Lastra, Nathan; Harrington, Olga; Curtis, Anthony; Wierzchos, Kacper; Ruffini, Nicholas; Charles, Mentzer; Rabson, David; Cox, Timothy; Rivera, Isabel; Micciche, Anthony

    2017-10-01

    We present an algorithm for reducing scatter and increasing precision in a comet light curve. As a demonstration, we processed apparent magnitudes of comet Hale-Bopp from 16 highly experienced observers (archived with the International Comet Quarterly), correcting for distance from Earth and phase angle. Different observers tend to agree on the difference in magnitudes of an object at different distances, but the magnitude reported by observer is shifted relative to that of another for an object at a fixed distance. We estimated the shifts using a self-consistent statistical approach, leading to a sharper light curve and improving the precision of the measured slopes. The final secular lightcurve for comet Hale-Bopp ranges from -7 au (pre-perihelion) to +8 au (post-perihelion) and is the best secular light curve produced to date for this “great” comet. We discuss Hale-Bopp’s lightcurve evolution and possibly related physical implications, and potential usefulness of this light curve for comparisons with other future bright comets. We also assess the appropriateness of using secular lightcurves to characterize dust production rates in Hale-Bopp and other dust-rich comets. M.W. acknowledges support from NSF grant AST-1615917.

  16. Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows

    Science.gov (United States)

    MacFadyen, Andrew

    2010-01-01

    The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.

  17. The Peculiar Light Curve of J1415+1320: A Case Study in Extreme Scattering Events

    Science.gov (United States)

    Vedantham, H. K.; Readhead, A. C. S.; Hovatta, T.; Koopmans, L. V. E.; Pearson, T. J.; Blandford, R. D.; Gurwell, M. A.; Lähteenmäki, A.; Max-Moerbeck, W.; Pavlidou, V.; Ravi, V.; Reeves, R. A.; Richards, J. L.; Tornikoski, M.; Zensus, J. A.

    2017-08-01

    The radio light curve of J1415+1320 (PKS 1413+135) shows time-symmetric and recurring U-shaped features across the centimeter-wave and millimeter-wave bands. The symmetry of these features points to lensing by an intervening object as the cause. U-shaped events in radio light curves in the centimeter-wave band have previously been attributed to Extreme scattering events (ESE). ESEs are thought to be the result of lensing by compact plasma structures in the Galactic interstellar medium, but the precise nature of these plasma structures remains unknown. Since the strength of a plasma lens evolves with wavelength λ as {λ }2, the presence of correlated variations at over a wide wavelength range casts doubt on the canonical ESE interpretation for J1415+1320. In this paper, we critically examine the evidence for plasma lensing in J1415+1320. We compute limits on the lensing strength and the associated free-free opacity of the putative plasma lenses. We compare the observed and model ESE light curves, and also derive a lower limit on the lens distance based on the effects of parallax due to the Earth’s orbit around the Sun. We conclude that plasma lensing is not a viable interpretation for J1415+1320's light curves and that symmetric U-shaped features in the radio light curves of extragalactic sources do not present prima facie evidence for ESEs. The methodology presented here is generic enough to be applicable to any plasma-lensing candidate.

  18. DETERMINATION OF THE LIGHT CURVE OF THE ARTIFICIAL SATELLITE BY ITS ROTATION PATH AS PREPARATION TO THE INVERSE PROBLEM SOLUTION

    OpenAIRE

    Pavlenko, Daniil

    2012-01-01

    Developing the algorithm of estimation of the rotational parameters of the artificial satellite by its light curve, we face the necessity to compute test light curves for various initially given types of rotation and specific features of lighting of the satellite. In the present study the algorithm of creation of such light curves with the simulation method and the obtained result are described.

  19. Ensemble Learning Method for Outlier Detection and its Application to Astronomical Light Curves

    Science.gov (United States)

    Nun, Isadora; Protopapas, Pavlos; Sim, Brandon; Chen, Wesley

    2016-09-01

    Outlier detection is necessary for automated data analysis, with specific applications spanning almost every domain from financial markets to epidemiology to fraud detection. We introduce a novel mixture of the experts outlier detection model, which uses a dynamically trained, weighted network of five distinct outlier detection methods. After dimensionality reduction, individual outlier detection methods score each data point for “outlierness” in this new feature space. Our model then uses dynamically trained parameters to weigh the scores of each method, allowing for a finalized outlier score. We find that the mixture of experts model performs, on average, better than any single expert model in identifying both artificially and manually picked outliers. This mixture model is applied to a data set of astronomical light curves, after dimensionality reduction via time series feature extraction. Our model was tested using three fields from the MACHO catalog and generated a list of anomalous candidates. We confirm that the outliers detected using this method belong to rare classes, like Novae, He-burning, and red giant stars; other outlier light curves identified have no available information associated with them. To elucidate their nature, we created a website containing the light-curve data and information about these objects. Users can attempt to classify the light curves, give conjectures about their identities, and sign up for follow up messages about the progress made on identifying these objects. This user submitted data can be used further train of our mixture of experts model. Our code is publicly available to all who are interested.

  20. Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves

    Science.gov (United States)

    Wakeford, H. R.; Sing, D. K.; Evans, T.; Deming, D.; Mandell, A.

    2016-03-01

    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 μm probe primarily the H2O absorption band at 1.4 μm, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as Rp/R*, which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts {δ }λ (λ ) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.

  1. H α AS A LUMINOSITY CLASS DIAGNOSTIC FOR K- AND M-TYPE STARS

    International Nuclear Information System (INIS)

    Jennings, Jeff; Levesque, Emily M.

    2016-01-01

    We have identified the H α absorption feature as a new spectroscopic diagnostic of luminosity class in K- and M-type stars. From high-resolution spectra of 19 stars with well-determined physical properties (including effective temperatures and stellar radii), we measured equivalent widths for H α and the Ca ii triplet and examined their dependence on both luminosity class and stellar radius. H α shows a strong relation with both luminosity class and radius that extends down to late M spectral types. This behavior in H α has been predicted as a result of the density-dependent overpopulation of the metastable 2s level in hydrogen, an effect that should become dominant for Balmer line formation in non-LTE conditions. We conclude that this new metallicity-insensitive diagnostic of luminosity class in cool stars could serve as an effective means of discerning between populations such as Milky Way giants and supergiant members of background galaxies.

  2. H α AS A LUMINOSITY CLASS DIAGNOSTIC FOR K- AND M-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Jeff [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Levesque, Emily M., E-mail: emsque@uw.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2016-04-20

    We have identified the H α absorption feature as a new spectroscopic diagnostic of luminosity class in K- and M-type stars. From high-resolution spectra of 19 stars with well-determined physical properties (including effective temperatures and stellar radii), we measured equivalent widths for H α and the Ca ii triplet and examined their dependence on both luminosity class and stellar radius. H α shows a strong relation with both luminosity class and radius that extends down to late M spectral types. This behavior in H α has been predicted as a result of the density-dependent overpopulation of the metastable 2s level in hydrogen, an effect that should become dominant for Balmer line formation in non-LTE conditions. We conclude that this new metallicity-insensitive diagnostic of luminosity class in cool stars could serve as an effective means of discerning between populations such as Milky Way giants and supergiant members of background galaxies.

  3. The Carnegie Supernova Project I. Analysis of stripped-envelope supernova light curves

    Science.gov (United States)

    Taddia, F.; Stritzinger, M. D.; Bersten, M.; Baron, E.; Burns, C.; Contreras, C.; Holmbo, S.; Hsiao, E. Y.; Morrell, N.; Phillips, M. M.; Sollerman, J.; Suntzeff, N. B.

    2018-02-01

    Stripped-envelope (SE) supernovae (SNe) include H-poor (Type IIb), H-free (Type Ib), and He-free (Type Ic) events thought to be associated with the deaths of massive stars. The exact nature of their progenitors is a matter of debate with several lines of evidence pointing towards intermediate mass (MinitCarnegie Supernova Project (CSP-I) that are unparalleled in terms of photometric accuracy and wavelength range. Light-curve parameters are estimated through the fits of an analytical function and trends are searched for among the resulting fit parameters. Detailed inspection of the dataset suggests a tentative correlation between the peak absolute B-band magnitude and Δm15(B), while the post maximum light curves reveals a correlation between the late-time linear slope and Δm15. Making use of the full set of optical and near-IR photometry, combined with robust host-galaxy extinction corrections, comprehensive bolometric light curves are constructed and compared to both analytic and hydrodynamical models. This analysis finds consistent results among the two different modeling techniques and from the hydrodynamical models we obtained ejecta masses of 1.1-6.2M⊙, 56Ni masses of 0.03-0.35M⊙, and explosion energies (excluding two SNe Ic-BL) of 0.25-3.0 × 1051 erg. Our analysis indicates that adopting κ = 0.07 cm2 g-1 as the mean opacity serves to be a suitable assumption when comparing Arnett-model results to those obtained from hydrodynamical calculations. We also find that adopting He I and O I line velocities to infer the expansion velocity in He-rich and He-poor SNe, respectively, provides ejecta masses relatively similar to those obtained by using the Fe II line velocities, although the use of Fe II as a diagnostic does imply higher explosion energies. The inferred range of ejecta masses are compatible with intermediate mass (MZAMS ≤ 20M⊙) progenitor stars in binary systems for the majority of SE SNe. Furthermore, our hydrodynamical modeling of the

  4. Testing the stationarity of white dwarf light-curves

    International Nuclear Information System (INIS)

    Molnar, L; Kollath, Z; Plachy, E; Paparo, M

    2009-01-01

    Long period white dwarfs show changes in their frequency spectra from one observing season to another, i.e. their light-curves cannot be considered as stationary multiperiodic variations on long timescales. However, due to the complex frequency spectra of these stars and the narrow frequency spacing, it is still unknown, what the shortest time scale is, where real physical modulation exists. We present tests on artificial data, resembling the observations, using time-frequency distributions (TFDs), Fourier-analysis and the analytical signal method.

  5. Light Higgs production at the Compton Collider

    International Nuclear Information System (INIS)

    Jikia, G.; Soeldner-Rembold, S.

    2000-01-01

    We have studied the production of a light Higgs boson with a mass of 120 GeV in photon-photon collisions at a Compton collider. The event generator for the backgrounds to a Higgs signal due to b-barb and c-barc heavy quark pair production in polarized γγ collisions is based on a complete next-to-leading order (NLO) perturbative QCD calculation. For J z = 0 the large double-logarithmic corrections up to four loops are also included. It is shown that the two-photon width of the Higgs boson can be measured with high statistical accuracy of about 2% for integrated γγ luminosity in the hard part of the spectrum of 40 fb -1 . As a result the total Higgs boson width can be calculated in a model independent way to an accuracy of about 14%

  6. Light Higgs production at a photon collider

    CERN Document Server

    Söldner-Rembold, S

    2001-01-01

    We present a preliminary study of the production of a light Higgs boson with a mass between 120 and 160 GeV in photon-photon collisions at a Compton collider. The event generator for the backgrounds to a Higgs signal due to b-barb and c-barc heavy quark pair production in polarized gamma gamma collisions is based on a complete next-to-leading order (NLO) perturbative QCD calculation. For J sub z =0 the large double-logarithmic corrections up to four loops are also included. It is shown that the two-photon width of the Higgs boson can be measured with high statistical accuracy of about 2-10% for integrated gamma gamma luminosity in the hard part of the spectrum of 43 fb sup - sup 1. From this result the total Higgs boson width can be derived in a model independent way.

  7. Human Adolescent Phase Response Curves to Bright White Light.

    Science.gov (United States)

    Crowley, Stephanie J; Eastman, Charmane I

    2017-08-01

    Older adolescents are particularly vulnerable to circadian misalignment and sleep restriction, primarily due to early school start times. Light can shift the circadian system and could help attenuate circadian misalignment; however, a phase response curve (PRC) to determine the optimal time for receiving light and avoiding light is not available for adolescents. We constructed light PRCs for late pubertal to postpubertal adolescents aged 14 to 17 years. Participants completed 2 counterbalanced 5-day laboratory sessions after 8 or 9 days of scheduled sleep at home. Each session included phase assessments to measure the dim light melatonin onset (DLMO) before and after 3 days of free-running through an ultradian light-dark (wake-sleep) cycle (2 h dim [~20 lux] light, 2 h dark). In one session, intermittent bright white light (~5000 lux; four 20-min exposures) was alternated with 10 min of dim room light once per day for 3 consecutive days. The time of light varied among participants to cover the 24-h day. For each individual, the phase shift to bright light was corrected for the free-run derived from the other laboratory session with no bright light. One PRC showed phase shifts in response to light start time relative to the DLMO and another relative to home sleep. Phase delay shifts occurred around the hours corresponding to home bedtime. Phase advances occurred during the hours surrounding wake time and later in the afternoon. The transition from delays to advances occurred at the midpoint of home sleep. The adolescent PRCs presented here provide a valuable tool to time bright light in adolescents.

  8. Effects of curved midline and varying width on the description of the effective diffusivity of Brownian particles

    Science.gov (United States)

    Chávez, Yoshua; Chacón-Acosta, Guillermo; Dagdug, Leonardo

    2018-05-01

    Axial diffusion in channels and tubes of smoothly-varying geometry can be approximately described as one-dimensional diffusion in the entropy potential with a position-dependent effective diffusion coefficient, by means of the modified Fick–Jacobs equation. In this work, we derive analytical expressions for the position-dependent effective diffusivity for two-dimensional asymmetric varying-width channels, and for three-dimensional curved midline tubes, formed by straight walls. To this end, we use a recently developed theoretical framework using the Frenet–Serret moving frame as the coordinate system (2016 J. Chem. Phys. 145 074105). For narrow tubes and channels, an effective one-dimensional description reducing the diffusion equation to a Fick–Jacobs-like equation in general coordinates is used. From this last equation, one can calculate the effective diffusion coefficient applying Neumann boundary conditions.

  9. Analysis of the width-w non-adjacent form in conjunction with hyperelliptic curve cryptography and with lattices☆

    Science.gov (United States)

    Krenn, Daniel

    2013-01-01

    In this work the number of occurrences of a fixed non-zero digit in the width-w non-adjacent forms of all elements of a lattice in some region (e.g. a ball) is analysed. As bases, expanding endomorphisms with eigenvalues of the same absolute value are allowed. Applications of the main result are on numeral systems with an algebraic integer as base. Those come from efficient scalar multiplication methods (Frobenius-and-add methods) in hyperelliptic curves cryptography, and the result is needed for analysing the running time of such algorithms. The counting result itself is an asymptotic formula, where its main term coincides with the full block length analysis. In its second order term a periodic fluctuation is exhibited. The proof follows Delange’s method. PMID:23805020

  10. B and V photoelectric photometry and light curve solution of the interacting binary systems HI Puppis, BL Eridani and SY Horologii

    International Nuclear Information System (INIS)

    Kern, J.R.

    1985-01-01

    The first photoelectric observations of the eclipsing binary systems HI Puppis, BL Eridani, and SY Horologii were obtained and complete B and V light curves are presented. Improved light elements were derived for all three systems. The light curves of HI Puppis were analyzed by the three different computer models of Wilson and Devinney (1971), Binnendijk (1977), and Wood (1971) to get the geometrical and photometric elements of the system. HI Puppis, whose light curves show a total eclipse at secondary minimum, is shown to be a classic A-Type W Ursae Majoris system. The geometrical and photometric elements of BL Eridani were obtained from the analysis of the light curves using the method of Wilson and Devinney. The asymmetric nature of the light curve is treated as being due to the presence of an underluminous starspot on the primary component. The light curves of BL Eri show secondary eclipse to be total. The system is found to be a near contact system with the primary component filling its Roche lobe and the secondary nearly filling its lobe with a fill-out ratio of approximately 1.0. The light curves of SY Horologii were also subjected to the model of Wilson and Devinney. Both primary and secondary eclipses are partial

  11. IMAGING STARSPOT EVOLUTION ON KEPLER TARGET KIC 5110407 USING LIGHT-CURVE INVERSION

    International Nuclear Information System (INIS)

    Roettenbacher, Rachael M.; Monnier, John D.; Harmon, Robert O.; Barclay, Thomas; Still, Martin

    2013-01-01

    The Kepler target KIC 5110407, a K-type star, shows strong quasi-periodic light curve fluctuations likely arising from the formation and decay of spots on the stellar surface rotating with a period of 3.4693 days. Using an established light-curve inversion algorithm, we study the evolution of the surface features based on Kepler space telescope light curves over a period of two years (with a gap of .25 years). At virtually all epochs, we detect at least one large spot group on the surface causing a 1%-10% flux modulation in the Kepler passband. By identifying and tracking spot groups over a range of inferred latitudes, we measured the surface differential rotation to be much smaller than that found for the Sun. We also searched for a correlation between the 17 stellar flares that occurred during our observations and the orientation of the dominant surface spot at the time of each flare. No statistically significant correlation was found except perhaps for the very brightest flares, suggesting that most flares are associated with regions devoid of spots or spots too small to be clearly discerned using our reconstruction technique. While we may see hints of long-term changes in the spot characteristics and flare statistics within our current data set, a longer baseline of observation will be needed to detect the existence of a magnetic cycle in KIC 5110407.

  12. THE LICK AGN MONITORING PROJECT: PHOTOMETRIC LIGHT CURVES AND OPTICAL VARIABILITY CHARACTERISTICS

    International Nuclear Information System (INIS)

    Walsh, Jonelle L.; Bentz, Misty C.; Barth, Aaron J.; Minezaki, Takeo; Sakata, Yu; Yoshii, Yuzuru; Baliber, Nairn; Bennert, Vardha Nicola; Street, Rachel A.; Treu, Tommaso; Li Weidong; Filippenko, Alexei V.; Stern, Daniel; Brown, Timothy M.; Canalizo, Gabriela; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Woo, Jong-Hak

    2009-01-01

    The Lick AGN Monitoring Project targeted 13 nearby Seyfert 1 galaxies with the intent of measuring the masses of their central black holes using reverberation mapping. The sample includes 12 galaxies selected to have black holes with masses roughly in the range 10 6 -10 7 M sun , as well as the well-studied active galactic nucleus (AGN) NGC 5548. In conjunction with a spectroscopic monitoring campaign, we obtained broadband B and V images on most nights from 2008 February through 2008 May. The imaging observations were carried out by four telescopes: the 0.76 m Katzman Automatic Imaging Telescope, the 2 m Multicolor Active Galactic Nuclei Monitoring telescope, the Palomar 60 inch (1.5 m) telescope, and the 0.80 m Tenagra II telescope. Having well-sampled light curves over the course of a few months is useful for obtaining the broad-line reverberation lag and black hole mass, and also allows us to examine the characteristics of the continuum variability. In this paper, we discuss the observational methods and the photometric measurements, and present the AGN continuum light curves. We measure various variability characteristics of each of the light curves. We do not detect any evidence for a time lag between the B- and V-band variations, and we do not find significant color variations for the AGNs in our sample.

  13. The GO Cygni system: photoelectric observations and light curves analysis

    International Nuclear Information System (INIS)

    Rovithis, P.; Rovithis-Livaniou, H.; Niarchos, P.G.

    1990-01-01

    Photoelectric observations, in B and V, of the system GO Cygni obtained during 1985 at the Kryonerion Astronomical Station of the National Observatory of Greece are given. The corresponding light curves (typical β Lyrae) are analysed using Frequency Domain techniques. New photoelectric and absolute elements for the system are given, and its period was found to continue its increasing

  14. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  15. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    Science.gov (United States)

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  16. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  17. A Data-driven Study of RR Lyrae Near-IR Light Curves: Principal Component Analysis, Robust Fits, and Metallicity Estimates

    Science.gov (United States)

    Hajdu, Gergely; Dékány, István; Catelan, Márcio; Grebel, Eva K.; Jurcsik, Johanna

    2018-04-01

    RR Lyrae variables are widely used tracers of Galactic halo structure and kinematics, but they can also serve to constrain the distribution of the old stellar population in the Galactic bulge. With the aim of improving their near-infrared photometric characterization, we investigate their near-infrared light curves, as well as the empirical relationships between their light curve and metallicities using machine learning methods. We introduce a new, robust method for the estimation of the light-curve shapes, hence the average magnitudes of RR Lyrae variables in the K S band, by utilizing the first few principal components (PCs) as basis vectors, obtained from the PC analysis of a training set of light curves. Furthermore, we use the amplitudes of these PCs to predict the light-curve shape of each star in the J-band, allowing us to precisely determine their average magnitudes (hence colors), even in cases where only one J measurement is available. Finally, we demonstrate that the K S-band light-curve parameters of RR Lyrae variables, together with the period, allow the estimation of the metallicity of individual stars with an accuracy of ∼0.2–0.25 dex, providing valuable chemical information about old stellar populations bearing RR Lyrae variables. The methods presented here can be straightforwardly adopted for other classes of variable stars, bands, or for the estimation of other physical quantities.

  18. The EB factory project. I. A fast, neural-net-based, general purpose light curve classifier optimized for eclipsing binaries

    International Nuclear Information System (INIS)

    Paegert, Martin; Stassun, Keivan G.; Burger, Dan M.

    2014-01-01

    We describe a new neural-net-based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as the Large Synoptic Survey Telescope. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together with a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98% and a false-positive rate of 2% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes, including RR Lyrae, Mira, and delta Scuti. However, the classifier currently has difficulty discriminating between different sub-classes of eclipsing binaries, and suffers a relatively low (∼60%) retrieval rate for multi-mode delta Cepheid stars. We find that it is imperative to train the classifier's neural network with exemplars that include the full range of light curve quality to which the classifier will be expected to perform; the classifier performs well on noisy light curves only when trained with noisy exemplars. The classifier source code, ancillary programs, a trained neural net, and a guide for use, are provided.

  19. Supernova light-curve fitters and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio (IAFE), CC 67, Suc. 28, 1428 Buenos Aires (Argentina)

    2011-01-24

    We show that when a procedure is made to remove the tension between a supernova Ia (SN Ia) data set and observations from BAO and CMB, there might be the case where the same SN Ia set built with two different light-curve fitters behaves as two separate and distinct supernova sets, and the tension found by some authors between supernova sets actually could be due to tension or inconsistency between fitters. We also show that the information of the fitter used in an SN Ia data set could be relevant to determine whether phantom type models are favored or not when such a set is combined with the BAO/CMB joint parameter.

  20. Supernova light-curve fitters and dark energy

    International Nuclear Information System (INIS)

    Bengochea, Gabriel R.

    2011-01-01

    We show that when a procedure is made to remove the tension between a supernova Ia (SN Ia) data set and observations from BAO and CMB, there might be the case where the same SN Ia set built with two different light-curve fitters behaves as two separate and distinct supernova sets, and the tension found by some authors between supernova sets actually could be due to tension or inconsistency between fitters. We also show that the information of the fitter used in an SN Ia data set could be relevant to determine whether phantom type models are favored or not when such a set is combined with the BAO/CMB joint parameter.

  1. Modification of redshift and luminosity by voids in the expanding universe

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Humitaka

    1985-03-01

    Propagation of light in a clumpy universe is examined for redshift and luminosity. Taking a spherical void model and Swiss Chesse model, the modification is found to be the third order of (Hrsub(b)/c) for the redshift and the first order of it for the luminosity, rsub(b) being the radius of a void or a Swiss Cheese hole.

  2. Type II Supernova Light Curves and Spectra from the CfA

    Science.gov (United States)

    Hicken, Malcolm; Friedman, Andrew S.; Blondin, Stephane; Challis, Peter; Berlind, Perry; Calkins, Mike; Esquerdo, Gil; Matheson, Thomas; Modjaz, Maryam; Rest, Armin; Kirshner, Robert P.

    2017-11-01

    We present multiband photometry of 60 spectroscopically confirmed supernovae (SNe): 39 SNe II/IIP, 19 IIn, 1 IIb, and 1 that was originally classified as a IIn but later as a Ibn. Of these, 46 have only optical photometry, 6 have only near-infrared (NIR) photometry, and 8 have both optical and NIR. The median redshift of the sample is 0.016. We also present 195 optical spectra for 48 of the 60 SN. There are 26 optical and 2 NIR light curves of SNe II/IIP with redshifts z> 0.01, some of which may give rise to useful distances for cosmological applications. All photometry was obtained between 2000 and 2011 at the Fred Lawrence Whipple Observatory (FLWO), via the 1.2 m and 1.3 m PAIRITEL telescopes for the optical and NIR, respectively. Each SN was observed in a subset of the u\\prime {UBVRIr}\\prime I\\prime {{JHK}}s bands. There are a total of 2932 optical and 816 NIR light curve points. Optical spectra were obtained using the FLWO 1.5 m Tillinghast telescope with the FAST spectrograph and the MMT Telescope with the Blue Channel Spectrograph. Our photometry is in reasonable agreement with select samples from the literature: two-thirds of our star sequences have average V offsets within ±0.02 mag and roughly three-quarters of our light curves have average differences within ±0.04 mag. The data from this work and the literature will provide insight into SN II explosions, help with developing methods for photometric SN classification, and contribute to their use as cosmological distance indicators.

  3. Absolute Distances to Nearby Type Ia Supernovae via Light Curve Fitting Methods

    Science.gov (United States)

    Vinkó, J.; Ordasi, A.; Szalai, T.; Sárneczky, K.; Bányai, E.; Bíró, I. B.; Borkovits, T.; Hegedüs, T.; Hodosán, G.; Kelemen, J.; Klagyivik, P.; Kriskovics, L.; Kun, E.; Marion, G. H.; Marschalkó, G.; Molnár, L.; Nagy, A. P.; Pál, A.; Silverman, J. M.; Szakáts, R.; Szegedi-Elek, E.; Székely, P.; Szing, A.; Vida, K.; Wheeler, J. C.

    2018-06-01

    We present a comparative study of absolute distances to a sample of very nearby, bright Type Ia supernovae (SNe) derived from high cadence, high signal-to-noise, multi-band photometric data. Our sample consists of four SNe: 2012cg, 2012ht, 2013dy and 2014J. We present new homogeneous, high-cadence photometric data in Johnson–Cousins BVRI and Sloan g‧r‧i‧z‧ bands taken from two sites (Piszkesteto and Baja, Hungary), and the light curves are analyzed with publicly available light curve fitters (MLCS2k2, SNooPy2 and SALT2.4). When comparing the best-fit parameters provided by the different codes, it is found that the distance moduli of moderately reddened SNe Ia agree within ≲0.2 mag, and the agreement is even better (≲0.1 mag) for the highest signal-to-noise BVRI data. For the highly reddened SN 2014J the dispersion of the inferred distance moduli is slightly higher. These SN-based distances are in good agreement with the Cepheid distances to their host galaxies. We conclude that the current state-of-the-art light curve fitters for Type Ia SNe can provide consistent absolute distance moduli having less than ∼0.1–0.2 mag uncertainty for nearby SNe. Still, there is room for future improvements to reach the desired ∼0.05 mag accuracy in the absolute distance modulus.

  4. VizieR Online Data Catalog: Blazars equivalent widths and radio luminosity (Landt+, 2004)

    Science.gov (United States)

    Landt, H.; Padovani, P.; Perlman, E. S.; Giommi, P.

    2004-07-01

    Blazars are currently separated into BL Lacertae objects (BL Lacs) and flat spectrum radio quasars based on the strength of their emission lines. This is performed rather arbitrarily by defining a diagonal line in the Ca H&K break value-equivalent width plane, following Marcha et al. (1996MNRAS.281..425M). We readdress this problem and put the classification scheme for blazars on firm physical grounds. We study ~100 blazars and radio galaxies from the Deep X-ray Radio Blazar Survey (DXRBS, Cat. and ) and 2-Jy radio survey and find a significant bimodality for the narrow emission line [OIII]{lambda}5007. This suggests the presence of two physically distinct classes of radio-loud active galactic nuclei (AGN). We show that all radio-loud AGN, blazars and radio galaxies, can be effectively separated into weak- and strong-lined sources using the [OIII]{lambda}5007-[OII]{lambda}3727 equivalent width plane. This plane allows one to disentangle orientation effects from intrinsic variations in radio-loud AGN. Based on DXRBS, the strongly beamed sources of the new class of weak-lined radio-loud AGN are made up of BL Lacs at the ~75 per cent level, whereas those of the strong-lined radio-loud AGN include mostly (~97 per cent) quasars. (4 data files).

  5. Statistical analysis of the W Cyg light curve

    International Nuclear Information System (INIS)

    Klyus, I.A.

    1983-01-01

    A statistical analysis of the light curve of W Cygni has been carried out. The process of brightness variations brightness of the star is shown to be a stationary stochastic one. The hypothesis of stationarity of the process was checked at the significance level of α=0.05. Oscillations of the brightness with average durations of 131 and 250 days have been found. It is proved that oscillations are narrow-band noise, i.e. cycles. Peaks on the power spectrum corresponding to these cycles exceed 99% confidence interval. It has been stated that the oscillations are independent

  6. Constraints on the gamma-ray burst luminosity function from Pioneer Venus Orbiter and BATSE observations

    NARCIS (Netherlands)

    Ulmer, A.; Wijers, R.A.M.J.; Fenimore, E.E.

    1995-01-01

    We examine the width of the gamma ray burst luminosity function through the distribution of Gamma Ray Burst (GRB) peak fluxes as detected by the Pioneer Venus Orbiter (PVO) and the Burst and Transient Source Experiment (BATSE). The strength of the analysis is greatly enhanced by using a merged

  7. DETERMINISTIC COMPONENTS IN THE LIGHT CURVE AMPLITUDE OF Y OPH

    International Nuclear Information System (INIS)

    Pop, Alexandru; Turcu, Vlad; Vamos, Calin

    2010-01-01

    About two decades after the discovery of the amplitude decline of the light curve of the classical Cepheid Y Oph, its study is resumed using an increased amount of homogenized data and an extended time base. In our approach, the investigation of different time series concerning the light curve amplitude of Y Oph is not only the reason for the present study, but also a stimulus for developing a coherent methodology for studying long- and short-term variability phenomena in variable stars, taking into account the details of concrete observing conditions: amount of data, data sampling, time base, and individual errors of observational data. The statistical significance of this decreasing trend was estimated by assuming its linearity. We approached the decision-making process by formulating adequate null and alternative hypotheses, and testing the value of the regression line slope for different data sets via Monte Carlo simulations. A variability analysis, through various methods, of the original data and of the residuals obtained after removing the linear trend was performed. We also proposed a new statistical test, based on amplitude spectrum analysis and Monte Carlo simulations, intended to evaluate how detectible is a given (linear) trend in well-defined observing conditions: the trend detection probability. The main conclusion of our study on Y Oph is that, even if the false alarm probability is low enough to consider the decreasing trend to be statistically significant, the available data do not allow us to obtain a reasonably powerful test. We are able to confirm the light curve amplitude decline, and the order of magnitude of its slope with a better statistical substantiation. According to the obtained values of the trend detection probability, it seems that the trend we are dealing with is marked by a low detectibility. Our attempt to find signs of possible variability phenomena at shorter timescales ended by emphasizing the relative constancy of our data

  8. Discovery of 1-5 Hz flaring at high luminosity in SAX J1808.4-3658

    Energy Technology Data Exchange (ETDEWEB)

    Bult, Peter; Van der Klis, Michiel, E-mail: p.m.bult@uva.nl [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2014-07-10

    We report the discovery of a 1-5 Hz X-ray flaring phenomenon observed at >30 mCrab near peak luminosity in the 2008 and 2011 outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658 in observations with the Rossi X-ray Timing Explorer. In each of the two outbursts this high luminosity flaring is seen for ∼3 continuous days and switches on and off on a timescale of 1-2 hr. The flaring can be seen directly in the light curve, where it shows sharp spikes of emission at quasi-regular separation. In the power spectrum it produces a broad noise component, which peaks at 1-5 Hz. The total 0.05-10 Hz variability has a fractional rms amplitude of 20%-45%, well in excess of the 8%-12% rms broadband noise usually seen in power spectra of SAX J1808.4-3658. We perform a detailed timing analysis of the flaring and study its relation to the 401 Hz pulsations. We find that the pulse amplitude varies proportionally with source flux through all phases of the flaring, indicating that the flaring is likely due to mass density variations created at or outside the magnetospheric boundary. We suggest that this 1-5 Hz flaring is a high mass accretion rate version of the 0.5-2 Hz flaring which is known to occur at low luminosity (<13 mCrab), late in the tail of outbursts of SAX J1808.4-3658. We propose the dead-disk instability, previously suggested as the mechanism for the 0.5-2 Hz flaring, as a likely mechanism for the high luminosity flaring reported here.

  9. The second-order luminosity-redshift relation in a generic inhomogeneous cosmology

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Marozzi, Giovanni; Veneziano, Gabriele; Nugier, Fabien

    2012-01-01

    After recalling a general non-perturbative expression for the luminosity-redshift relation holding in a recently proposed 'geodesic light-cone' gauge, we show how it can be transformed to phenomenologically more convenient gauges in which cosmological perturbation theory is better understood. We present, in particular, the complete result on the luminosity-redshift relation in the Poisson gauge up to second order for a fairly generic perturbed cosmology, assuming that appreciable vector and tensor perturbations are only generated at second order. This relation provides a basic ingredient for the computation of the effects of stochastic inhomogeneities on precision dark-energy cosmology whose results we have anticipated in a recent letter. More generally, it can be used in connection with any physical information carried by light-like signals traveling along our past light-cone

  10. Luminosity monitor

    International Nuclear Information System (INIS)

    Underwood, D. G.

    1998-01-01

    Luminosity monitors are needed in each experiment doing spin physics at RHIC. They concentrate on the luminosity aspects here because, for example, with a 10 -3 raw asymmetry in an experiment, an error of 10 -4 in the luminosity is as significant as a 10% polarization error. Because luminosity is a property of how two beams overlap, the luminosity at an interaction region must be measured at that interaction region in order to be relevant to the experiment at that interaction region. The authors will have to do the physics and the luminosity measurements by using labels on the event sums according to the polarization labels on the colliding bunches. Most likely they will not have independent polarization measurement on each bunch, but only on all the filled bunches in a ring, or perhaps all the bunches that are actually used in an experiment. Most analyses can then be handled by using the nine combinations gotten from three kinds of bunches in each ring, +, - and empty bunches. The empty bunches are needed to measure beam-gas background, (and some, like six in a row, are needed for the beam abort). Much of the difficulty comes from the fact that they must use a physics process to represent the luminosity. This process must have kinematic and geometric cuts both to reduce systematics such as beam-gas backgrounds, and to make it representative of the part of the interaction diamond from which the physics events come

  11. ATLAS Higgs Physics Prospects at the High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00218105; The ATLAS collaboration

    2016-01-01

    The High-Luminosity Large Hadron Collider will provide an unprecedented opportunity to study the properties of the Higgs boson and eventually probe for new physics beyond the Standard Model. The large anticipated data sample will allow for more precise investigations of topics already studied with earlier data samples, as well as for studies of processes that are accessible only with the much larger statistics. Rates and signal strengths will be measured for a variety of Higgs-boson production and decay modes, allowing extraction of the Higgs boson couplings. Particular final states will allow differential cross-sections to be measured for all production modes, and for studies of the Higgs width and CP properties, as well as the tensor structure of its coupling to bosons. An important part of the High-Luminosity LHC experimental program will be investigations of the Higgs self-coupling, which is accessible via studies of di-Higgs production. In this note the projections of the ATLAS physics reach in the Higgs...

  12. ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Waszczak, Adam [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Chang, Chan-Kao; Cheng, Yu-Chi; Ip, Wing-Huen; Kinoshita, Daisuke [Institute of Astronomy, National Central University, Jhongli, Taiwan (China); Ofek, Eran O. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot (Israel); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Masci, Frank; Helou, George [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Levitan, David; Prince, Thomas A.; Kulkarni, Shrinivas, E-mail: waszczak@caltech.edu [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-09-15

    We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ∼53,000 fitted periods. By this method we find that 9033 of our light curves (of ∼8300 unique asteroids) have “reliable” periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these “reliable” periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ∼2 g cm{sup −3}, while C types have a lower limit of between 1 and 2 g cm{sup −3}. These results are in agreement with previous density estimates. For 5–20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types’ differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric rms

  13. Performance of the new high precision luminosity monitor of DELPHI

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.; Benvenuti, A.C.; Giordano, V.; Guerzoni, M.; Navarria, F.L.; Perrotta, A.; Camporesi, T.; Obraztsov, V.; Paganoni, M.; Vallazza, E.; Bozzo, M.; Cereseto, R.; Barreira, G.; Espirito Santo, M.C.; Maio, A.; Onofre, A.; Peralta, L.; Pimenta, M.; Tome, B.; Carling, H.; Falk, E.; Hedberg, V.; Jarlskog, G.; Kronkvist, I.; Bonesini, M.; Chignoli, F.; Ferrari, P.; Gumenyuk, S.; Leoni, R.; Mazza, R.; Negri, P.; Petrovykh, L.; Terranova, F.; Dharmasiri, D.R.; Nossum, B.; Read, A.L.; Skaali, B.; Rohne, O.; Castellani, L.; Pegoraro, M.; Fenyuk, A.; Ivanyushenkov, I.; Karyukhin, A.; Konopliannikov, A.; Shalanda, N.; Sen'ko, V.; Vlasov, E.; Zaitsev, A.; Bigi, M.; Cassio, V.; Gamba, D.; Gouz, I.; Migliore, E.; Romero, A.; Simonetti, L.; Trapani, P.P.; Bari, M.; Della Ricca, G.; Lanceri, L.; Poropat, P.; Prest, M.

    1997-01-01

    The STIC calorimeter was installed in the DELPHI detector in 1994. The main goal is to measure the luminosity with an accuracy better than 0.1%. The calorimeter was built using the ''Shashlik'' technique. The light is collected by wavelength shifting fibers and readout by phototetrodes that can operate inside the magnetic field. The detector performance during the 1994-1995 data taking is presented. The different contributions to the systematic error on the luminosity measurement are discussed. (orig.)

  14. M DWARFS IN SLOAN DIGITAL SKY SURVEY STRIPE 82: PHOTOMETRIC LIGHT CURVES AND FLARE RATE ANALYSIS

    International Nuclear Information System (INIS)

    Kowalski, Adam F.; Hawley, Suzanne L.; Hilton, Eric J.; Becker, Andrew C.; Sesar, Branimir; West, Andrew A.; Bochanski, John J.

    2009-01-01

    We present a flare rate analysis of 50,130 M dwarf light curves in Sloan Digital Sky Survey Stripe 82. We identified 271 flares using a customized variability index to search ∼2.5 million photometric observations for flux increases in the u and g bands. Every image of a flaring observation was examined by eye and with a point-spread function-matching and image subtraction tool to guard against false positives. Flaring is found to be strongly correlated with the appearance of Hα in emission in the quiet spectrum. Of the 99 flare stars that have spectra, we classify eight as relatively inactive. The flaring fraction is found to increase strongly in stars with redder colors during quiescence, which can be attributed to the increasing flare visibility and increasing active fraction for redder stars. The flaring fraction is strongly correlated with |Z| distance such that most stars that flare are within 300 pc of the Galactic plane. We derive flare u-band luminosities and find that the most luminous flares occur on the earlier-type m dwarfs. Our best estimate of the lower limit on the flaring rate (averaged over Stripe 82) for flares with Δu ≥ 0.7 mag on stars with u -1 deg -2 but can vary significantly with the line of sight.

  15. A powerful test for weak periodic signals with unknown light curve shape in sparse data

    International Nuclear Information System (INIS)

    Jager De, O.C.; Raubenheimer, B.C.; Swanepoel, J.W.H.

    1989-01-01

    A problem with most tests for periodicity is that they are powerful enough to detect only certain kinds of periodic shapes in the case of weak signals. This causes a selection effect with the identification of weak periodic signals. A new test for uniformity called the H-test is derived for which the probability distribution is an exponential function. This test is shown to have a very good power against most light curve shapes encountered in X- and γ-ray Astronomy and therefore makes the detection of sources with a larger variety of shapes possible. The use of the H-test is suggested if no a priori information about the light curve shape is available. It is also shown how the probability distribution of the test statistics changes when a periodicity search is conducted using very small steps in the period or frequency range. The flux sensitivity for various light curve shapes is also derived for a few tests and this flux is on average a minimum for the H-test

  16. AGAINST THE WIND: RADIO LIGHT CURVES OF TYPE IA SUPERNOVAE INTERACTING WITH LOW-DENSITY CIRCUMSTELLAR SHELLS

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Chelsea E.; Nugent, Peter E.; Kasen, Daniel N., E-mail: chelseaharris@berkeley.edu [Astronomy Department, University of California Berkeley, Berkeley, CA (United States)

    2016-06-01

    For decades a wide variety of observations spanning the radio through optical and on to the X-ray have attempted to uncover signs of type Ia supernovae (SNe Ia) interacting with a circumstellar medium (CSM). The goal of these studies is to constrain the nature of the hypothesized SN Ia mass-donor companion. A continuous CSM is typically assumed when interpreting observations of interaction. However, while such models have been successfully applied to core-collapse SNe, the assumption of continuity may not be accurate for SNe Ia, because shells of CSM could be formed by pre-supernova eruptions (novae). In this work, we model the interaction of SNe with a spherical, low-density, finite-extent CSM and create a suite of synthetic radio synchrotron light curves. We find that CSM shells produce sharply peaked light curves. We also identify a fiducial set of models that obey a common evolution and can be used to generate radio light curves for an interaction with an arbitrary shell. The relations obeyed by the fiducial models can be used to deduce CSM properties from radio observations; we demonstrate this by applying them to the nondetections of SN 2011fe and SN 2014J. Finally, we explore a multiple shell CSM configuration and describe its more complicated dynamics and the resultant radio light curves.

  17. Light Curve Stability and Period Behavior of the Contact Binary TZ ...

    Indian Academy of Sciences (India)

    J. Astrophys. Astr. (2013) 34, 329–339 c Indian Academy of Sciences. Light Curve Stability and Period Behavior of the Contact. Binary TZ Boo. M. M. Elkhateeb1,2 & M. I. Nouh1,2,∗. 1National Research Institute of Astronomy and Geophysics, 11421 Helwan, Cairo, Egypt. 2Physics Department, College of Science, Northern ...

  18. Light Curve Periodic Variability of Cyg X-1 using Jurkevich Method ...

    Indian Academy of Sciences (India)

    Abstract. The Jurkevich method is a useful method to explore periodic- ity in the unevenly sampled observational data. In this work, we adopted the method to the light curve of Cyg X-1 from 1996 to 2012, and found that there is an interesting period of 370 days, which appears in both low/hard and high/soft states.

  19. KIC 4552982: outbursts and pulsations in the longest-ever pseudo-continuous light curve of a ZZ Ceti

    Directory of Open Access Journals (Sweden)

    Bell K. J.

    2015-01-01

    Full Text Available KIC 4552982 was the first ZZ Ceti (hydrogen-atmosphere pulsating white dwarf identified to lie in the Kepler field, resulting in the longest pseudo-continuous light curve ever obtained for this type of variable star. In addition to the pulsations, this light curve exhibits stochastic episodes of brightness enhancement unlike any previously studied white dwarf phenomenon. We briefly highlight the basic outburst and pulsation properties in these proceedings.

  20. LUCID Upgrade for ATLAS Luminosity Measurement in Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00444244; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor, LUCID, and its read-out electronics have been completely rebuilt for the LHC Run II in order to cope with a higher center of mass energy ($\\sqrt{s}$=13 TeV) and the 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive $^{207}$Bi sources that produce internal-conversion electrons with energy above the Cherenkov threshold in quartz. The new electronics can count signals with amplitude above a predefined threshold (hits) as well as the integrated pulseheight of the signals, which makes it possible to measure luminosity with complementary methods. The new detector, calibration system and electronics will be described, together with the results of the 2015 luminosity measurement.

  1. THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy

    International Nuclear Information System (INIS)

    Burns, Christopher R.; Persson, S. E.; Madore, Barry F.; Freedman, Wendy L.; Stritzinger, Maximilian; Phillips, M. M.; Boldt, Luis; Campillay, Abdo; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Kattner, ShiAnne; Contreras, Carlos; Suntzeff, Nicholas B.

    2011-01-01

    In providing an independent measure of the expansion history of the universe, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia supernovae (SNe Ia) in the near-infrared bands Y and J. These can be used to construct rest-frame i-band light curves which, when compared to a low-z sample, yield distance moduli that are less sensitive to extinction and/or decline-rate corrections than in the optical. However, working with NIR observed and i-band rest-frame photometry presents unique challenges and has necessitated the development of a new set of observational tools in order to reduce and analyze both the low-z and high-z CSP sample. We present in this paper the methods used to generate uBVgriYJH light-curve templates based on a sample of 24 high-quality low-z CSP SNe. We also present two methods for determining the distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the Hubble flow is used to calibrate these methods. We then apply the method and derive distances to seven galaxies that are so nearby that their motions are not dominated by the Hubble flow.

  2. Light and Color Curve Properties of Type Ia Supernovae: Theory Versus Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hoeflich, P.; Hsiao, E. Y. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Ashall, C. [Astrophysics Research Institute, Liverpool John Moore University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Burns, C. R. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Diamond, T. R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Phillips, M. M. [Carnegie Observatories, Las Campanas Observatory, Casilla 601 La Serena (Chile); Sand, D. [Physics and Astronomy Department, Texas Tech University, Box 41051, Lubbock, TX 79409-1051 (United States); Stritzinger, M. D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000, Aarhus (Denmark); Suntzeff, N.; Krisciunas, K.; Wang, L. [The G.P. and C. Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Contreras, C.; Morrell, N., E-mail: phoeflich77@gmail.com [Departamento de Física, Universidad Técnica Federico Santa Maria, Ava España 1680, Casilla 110-V, Valparaiso (Chile)

    2017-09-01

    We study the optical light curve (LC) relations of Type Ia supernovae (SNe Ia) for their use in cosmology using high-quality photometry published by the Carnegie Supernova Project (CSP-I). We revisit the classical luminosity decline rate (Δ m {sub 15}) relation and the Lira relation, as well as investigate the time evolution of the ( B − V ) color and B ( B − V ), which serves as the basis of the color–stretch relation and Color–MAgnitude Intercept Calibrations (CMAGIC). Our analysis is based on explosion and radiation transport simulations for spherically symmetric delayed-detonation models (DDT) producing normal-bright and subluminous SNe Ia. Empirical LC relations can be understood as having the same physical underpinnings, i.e., opacities, ionization balances in the photosphere, and radioactive energy deposition changing with time from below to above the photosphere. Some three to four weeks past maximum, the photosphere recedes to {sup 56}Ni-rich layers of similar density structure, leading to a similar color evolution. An important secondary parameter is the central density ρ {sub c} of the WD because at higher densities, more electron-capture elements are produced at the expense of {sup 56}Ni production. This results in a Δ m {sub 15} spread of 0.1 mag in normal-bright and 0.7 mag in subluminous SNe Ia and ≈0.2 mag in the Lira relation. We show why color–magnitude diagrams emphasize the transition between physical regimes and enable the construction of templates that depend mostly on Δ m {sub 15} with little dispersion in both the CSP-I sample and our DDT models. This allows intrinsic SN Ia variations to be separated from the interstellar reddening characterized by E ( B − V ) and R {sub B}. Invoking different scenarios causes a wide spread in empirical relations, which may suggest one dominant scenario.

  3. Light and Color Curve Properties of Type Ia Supernovae: Theory Versus Observations

    International Nuclear Information System (INIS)

    Hoeflich, P.; Hsiao, E. Y.; Ashall, C.; Burns, C. R.; Diamond, T. R.; Phillips, M. M.; Sand, D.; Stritzinger, M. D.; Suntzeff, N.; Krisciunas, K.; Wang, L.; Contreras, C.; Morrell, N.

    2017-01-01

    We study the optical light curve (LC) relations of Type Ia supernovae (SNe Ia) for their use in cosmology using high-quality photometry published by the Carnegie Supernova Project (CSP-I). We revisit the classical luminosity decline rate (Δ m 15 ) relation and the Lira relation, as well as investigate the time evolution of the ( B − V ) color and B ( B − V ), which serves as the basis of the color–stretch relation and Color–MAgnitude Intercept Calibrations (CMAGIC). Our analysis is based on explosion and radiation transport simulations for spherically symmetric delayed-detonation models (DDT) producing normal-bright and subluminous SNe Ia. Empirical LC relations can be understood as having the same physical underpinnings, i.e., opacities, ionization balances in the photosphere, and radioactive energy deposition changing with time from below to above the photosphere. Some three to four weeks past maximum, the photosphere recedes to 56 Ni-rich layers of similar density structure, leading to a similar color evolution. An important secondary parameter is the central density ρ c of the WD because at higher densities, more electron-capture elements are produced at the expense of 56 Ni production. This results in a Δ m 15 spread of 0.1 mag in normal-bright and 0.7 mag in subluminous SNe Ia and ≈0.2 mag in the Lira relation. We show why color–magnitude diagrams emphasize the transition between physical regimes and enable the construction of templates that depend mostly on Δ m 15 with little dispersion in both the CSP-I sample and our DDT models. This allows intrinsic SN Ia variations to be separated from the interstellar reddening characterized by E ( B − V ) and R B . Invoking different scenarios causes a wide spread in empirical relations, which may suggest one dominant scenario.

  4. Type Ia Supernova Light Curve Inference: Hierarchical Models for Nearby SN Ia in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.

    2010-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.

  5. Influence of doping location and width of dimethylquinacridone on the performance of organic light emitting devices

    International Nuclear Information System (INIS)

    Li Jingze; Yahiro, Masayuki; Ishida, Kenji; Matsushige, Kazumi

    2005-01-01

    The influence of doping location and width of fluorescent dimethylquinacridone (DMQA) molecules on the performance of organic light emitting devices has been systematically investigated. While the doped zone is located at the interface of the hole transport layer (HTL) and the light emitting layer (EML), doping in the HTL leads to significant improvement of the external quantum efficiency relative to the undoped device, whereas the efficiency is lower than that of doping in the EML. This phenomenon is explained according to the electroluminescence (EL) process of the doped DMQA, which is dominated by Foerster energy transfer. Additionally, a device with dual doping in both HTL and EML exhibits the highest efficiency. The EL and photoluminescence spectra are also dependent on the doping sites

  6. A Direct Measurement of the $W$ Decay Width

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Troy [Univ. of College, London (United Kingdom)

    2008-08-01

    A direct measurement of the W boson total decay width is presented in proton-antiproton collisions at √s = 1.96 TeV using data collected by the CDF II detector. The measurement is made by fitting a simulated signal to the tail of the transverse mass distribution in the electron and muon decay channels. An integrated luminosity of 350 pb-1 is used, collected between February 2002 and August 2004. Combining the results from the separate decay channels gives the decay width as 2.038 ± 0.072 GeV in agreement with the theoretical prediction of 2.093 ± 0.002 GeV. A system is presented for the management of detector calibrations using a relational database schema. A description of the implementation and monitoring of a procedure to provide general users with a simple interface to the complete set of calibrations is also given.

  7. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    Science.gov (United States)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  8. Bound states in curved quantum waveguides

    International Nuclear Information System (INIS)

    Exner, P.; Seba, P.

    1987-01-01

    We study free quantum particle living on a curved planar strip Ω of a fixed width d with Dirichlet boundary conditions. It can serve as a model for electrons in thin films on a cylindrical-type substrate, or in a curved quantum wire. Assuming that the boundary of Ω is infinitely smooth and its curvature decays fast enough at infinity, we prove that a bound state with energy below the first transversal mode exists for all sufficiently small d. A lower bound on the critical width is obtained using the Birman-Schwinger technique. (orig.)

  9. LHC Luminosity Performance

    CERN Document Server

    AUTHOR|(CDS)2091107; Fuchsberger, Kajetan; Papotti, Giulia

    This thesis adresses several approaches with the common goal of assessing, understanding and improving the luminosity of the Large Hadron Collider (LHC). To better exploit existing margins for maximum luminosity while fulfilling the requirements of the LHC experiments, new techniques for luminosity levelling are studied and developed to an operational state, such as changing the crossing angle or $\\beta^*$ (beam size) at the interaction points with the beams in collisions. In 2017 LHC operation, the crossing angle reduction in collisions improved the integrated luminosity by $\\mathrm{\\sim} 2\\,\\mathrm{fb^{-1}}$ ($\\mathrm{\\sim} 4\\,\\mathrm{\\%}$ of the yearly production). For additional diagnostics, a new method for measuring beam sizes and orbits for each circulating bunch using the luminosity measurement during beam separation scans is shown. The results of these Emittance Scans improved the understanding of the LHC luminosity reach and of the orbit offsets introduced by beam-beam long-range effects.

  10. Light Curve Periodic Variability of Cyg X-1 using Jurkevich Method

    Indian Academy of Sciences (India)

    The Jurkevich method is a useful method to explore periodicity in the unevenly sampled observational data. In this work, we adopted the method to the light curve of Cyg X-1 from 1996 to 2012, and found that there is an interesting period of 370 days, which appears in both low/hard and high/soft states. That period may be ...

  11. Searching for transits in the Wide Field Camera Transit Survey with difference-imaging light curves

    NARCIS (Netherlands)

    Zendejas, Dominguez J.; Koppenhoefer, J.; Saglia, R.; Birkby, J.L.; Hodgkin, S.; Kovács, G.; Pinfield, D.; Sipocz, B.; Barrado, D.; Bender, R.; Burgo, del C.; Cappetta, M.; Martín, E.; Nefs, B.; Riffeser, A.; Steele, P.

    2013-01-01

    The Wide Field Camera Transit Survey is a pioneer program aiming at for searching extra-solar planets in the near-infrared. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. We produce an alternative set of light

  12. Analysis of the width-[Formula: see text] non-adjacent form in conjunction with hyperelliptic curve cryptography and with lattices.

    Science.gov (United States)

    Krenn, Daniel

    2013-06-17

    In this work the number of occurrences of a fixed non-zero digit in the width-[Formula: see text] non-adjacent forms of all elements of a lattice in some region (e.g. a ball) is analysed. As bases, expanding endomorphisms with eigenvalues of the same absolute value are allowed. Applications of the main result are on numeral systems with an algebraic integer as base. Those come from efficient scalar multiplication methods (Frobenius-and-add methods) in hyperelliptic curves cryptography, and the result is needed for analysing the running time of such algorithms. The counting result itself is an asymptotic formula, where its main term coincides with the full block length analysis. In its second order term a periodic fluctuation is exhibited. The proof follows Delange's method.

  13. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0

    Science.gov (United States)

    Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Shields, J. V.; Will, D.; Britt, C.; Perzanowski, D.; Pojmański, G.

    2017-10-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is working toward imaging the entire visible sky every night to a depth of V˜ 17 mag. The present data covers the sky and spans ˜2-5 years with ˜100-400 epochs of observation. The data should contain some ˜1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. The V band photometry is obtained using a two-pixel (16.″0) radius aperture and is calibrated against the APASS catalog. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.

  14. LUCID Upgrade for ATLAS Luminosity Measurement in Run II.

    CERN Document Server

    Ucchielli, Giulia; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor LUCID and its read-out electronics has been completely rebuilt for the 2015 LHC run in order to cope with a higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive Bi$^{207}$ sources that produces internal conversion electrons above the Cherenkov threshold in quartz. The new electronics can count particle hits above a threshold but also the integrated pulseheight of the signals from the particles which makes it possible to measure luminosity with new methods. The new detector, calibration system and electronics will be covered by the contribution as well as the results of the luminosity measurements with the detector in 2015.

  15. The Discovery of Ellipsoidal Variations in the Kepler Light Curve of HAT-P-7

    OpenAIRE

    Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Fortney, Jonathan J.; Jenkins, Jon; Rowe, Jason F.; Koch, David; Borucki, William J.

    2010-01-01

    We present an analysis of the early Kepler observations of the previously discovered transiting planet HAT-P-7b. The light curve shows the transit of the star, the occultation of the planet, and the orbit phase-dependent light from the planet. In addition, phase-dependent light from the star is present, known as "ellipsoidal variations". The very nearby planet (only 4 stellar radii away) gravitationally distorts the star and results in a flux modulation twice per orbit. The ellipsoidal variat...

  16. Latest Results on the CP-violating weak phase $\\phi_{\\textrm{s}}$ and the decay width difference $\\Delta \\Gamma_{\\textrm{s}}$ from the CMS Experiment

    CERN Document Server

    Behera, Prafulla

    2017-01-01

    The decay $\\textrm{B}_{\\textrm{s}}^{0} \\to \\textrm{J}/\\psi \\phi(1020) \\to \\mu^{+}\\mu^{-}K^{+}K^{-}$ is used to measure the CP-violating weak phase $\\phi_{\\textrm{s}}$ and the decay width difference $\\Delta \\Gamma_{\\textrm{s}}$ of the B$_{\\textrm{s}}^{0}$\\ light and heavy mass eigenstates with the CMS detector at the LHC. The analysis is performed using an integrated luminosity of 19.7 fb$^{-1}$ collected in pp collisions at a centre-of-mass energy of 8 TeV corresponds to a total of 49 200 reconstructed B$_{s}^{0}$ decays. A time-dependent and flavour-tagged angular analysis is performed. The weak phase is measured to be $\\phi_{\\textrm{s}} = - 0.075 \\pm 0.097 (\\textrm{stat.}) \\pm 0.031 (\\textrm{syst.})$ rad, and the decay width difference is $\\Delta \\Gamma_{s} = 0.095 \\pm 0.013 (\\textrm{stat.}) \\pm 0.007 (\\textrm{syst.}) ~\\textrm{ps}^{-1}$

  17. Oscillatory patterns in the light curves of five long-term monitored type 1 active galactic nuclei

    Science.gov (United States)

    Kovačević, Andjelka B.; Pérez-Hernández, Ernesto; Popović, Luka Č.; Shapovalova, Alla I.; Kollatschny, Wolfram; Ilić, Dragana

    2018-04-01

    New combined data of five well-known type 1 active galactic nuclei (AGNs) are probed with a novel hybrid method in a search for oscillatory behaviour. Additional analysis of artificial light curves obtained from the coupled oscillatory models gives confirmation for detected periods that could have a physical background. We find periodic variations in the long-term light curves of 3C 390.3, NGC 4151 and NGC 5548, and E1821 + 643, with correlation coefficients larger than 0.6. We show that the oscillatory patterns of two binary black hole candidates, NGC 5548 and E1821 + 643, correspond to qualitatively different dynamical regimes of chaos and stability, respectively. We demonstrate that the absence of oscillatory patterns in Arp 102B could be the result of a weak coupling between oscillatory mechanisms. This is the first good evidence that 3C 390.3 and Arp 102B, categorized as double-peaked Balmer line objects, have qualitative different dynamics. Our analysis shows a novelty in the oscillatory dynamical patterns of the light curves of these type 1 AGNs.

  18. PyTranSpot: A tool for multiband light curve modeling of planetary transits and stellar spots

    Science.gov (United States)

    Juvan, Ines G.; Lendl, M.; Cubillos, P. E.; Fossati, L.; Tregloan-Reed, J.; Lammer, H.; Guenther, E. W.; Hanslmeier, A.

    2018-02-01

    Several studies have shown that stellar activity features, such as occulted and non-occulted starspots, can affect the measurement of transit parameters biasing studies of transit timing variations and transmission spectra. We present PyTranSpot, which we designed to model multiband transit light curves showing starspot anomalies, inferring both transit and spot parameters. The code follows a pixellation approach to model the star with its corresponding limb darkening, spots, and transiting planet on a two dimensional Cartesian coordinate grid. We combine PyTranSpot with a Markov chain Monte Carlo framework to study and derive exoplanet transmission spectra, which provides statistically robust values for the physical properties and uncertainties of a transiting star-planet system. We validate PyTranSpot's performance by analyzing eleven synthetic light curves of four different star-planet systems and 20 transit light curves of the well-studied WASP-41b system. We also investigate the impact of starspots on transit parameters and derive wavelength dependent transit depth values for WASP-41b covering a range of 6200-9200 Å, indicating a flat transmission spectrum.

  19. Determination of the Ds0(2317) width with the PANDA detector

    International Nuclear Information System (INIS)

    Mertens, Marius Christian

    2012-01-01

    The D s0 *(2317) meson which was discovered at BaBar in 2003 has the interesting properties of a surprisingly narrow width and a mass just below the DK threshold. Different theoretical models try to explain the nature of its properties. A precise knowledge of the width is an important criterion to evaluate these models. However, only an upper limit of 3.8 MeV is known so far. A suitable method to determine the width of particles which are significantly narrower than the experimental mass resolution is to measure the production cross section as a function of the center of mass energy. The shape of this excitation function allows to deduce the width. At PANDA, the measurement of the production cross section will be possible in antiproton-proton collisions. The PANDA experiment at the future FAIR facility is designed to combine precisely adjustable beam momenta and high luminosities which make it an excellent tool for this kind of measurement. In the following we will describe the experimental procedure to carry out this measurement with the PANDA detector in order to achieve a resolution in the order of 0.1 MeV for the width of the D s0 *(2317).

  20. Spotted star light curve numerical modeling technique and its application to HII 1883 surface imaging

    Science.gov (United States)

    Kolbin, A. I.; Shimansky, V. V.

    2014-04-01

    We developed a code for imaging the surfaces of spotted stars by a set of circular spots with a uniform temperature distribution. The flux from the spotted surface is computed by partitioning the spots into elementary areas. The code takes into account the passing of spots behind the visible stellar limb, limb darkening, and overlapping of spots. Modeling of light curves includes the use of recent results of the theory of stellar atmospheres needed to take into account the temperature dependence of flux intensity and limb darkening coefficients. The search for spot parameters is based on the analysis of several light curves obtained in different photometric bands. We test our technique by applying it to HII 1883.

  1. An Empirical Fitting Method for Type Ia Supernova Light Curves: A Case Study of SN 2011fe

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, WeiKang; Filippenko, Alexei V., E-mail: zwk@astro.berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-03-20

    We present a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe Ia). We find that a variant broken-power-law function provides a good fit, with the simple assumption that the optical emission is approximately the blackbody emission of the expanding fireball. This function is mathematically analytic and is derived directly from the photospheric velocity evolution. When deriving the function, we assume that both the blackbody temperature and photospheric velocity are constant, but the final function is able to accommodate these changes during the fitting procedure. Applying it to the case study of SN 2011fe gives a surprisingly good fit that can describe the light curves from the first-light time to a few weeks after peak brightness, as well as over a large range of fluxes (∼5 mag, and even ∼7 mag in the g band). Since SNe Ia share similar light-curve shapes, this fitting method has the potential to fit most other SNe Ia and characterize their properties in large statistical samples such as those already gathered and in the near future as new facilities become available.

  2. Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2015-01-01

    The beam monitoring and luminosity systems of the CMS experiment are enhanced by several new and upgraded sub-detectors to match the challenges of the LHC operation and physics program at increased energy and higher luminosity. A dedicated pixelated luminosity telescope is installed for a fast and precise luminosity measurement. This detector measures coincidences between several three-layer telescopes of silicon pixel detectors to arrive at luminosity for each colliding LHC bunch pair. An upgraded fast beam conditions monitor measures the particle flux using single crystalline diamond sensors. It is equipped with a dedicated front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background, thus serving as online luminosity measurement. A new beam-halo monitor at larger radius exploits Cerenkov light from fused silica to provide direction sensitivity and excellent time resolution to separate incoming and outgoing particles....

  3. The diverse broad-band light-curves of Swift GRBs reproduced with the cannonball model

    CERN Document Server

    Dado, Shlomo; De Rújula, A

    2009-01-01

    Two radiation mechanisms, inverse Compton scattering (ICS) and synchrotron radiation (SR), suffice within the cannonball (CB) model of long gamma ray bursts (LGRBs) and X-ray flashes (XRFs) to provide a very simple and accurate description of their observed prompt emission and afterglows. Simple as they are, the two mechanisms and the burst environment generate the rich structure of the light curves at all frequencies and times. This is demonstrated for 33 selected Swift LGRBs and XRFs, which are well sampled from early time until late time and well represent the entire diversity of the broad band light curves of Swift LGRBs and XRFs. Their prompt gamma-ray and X-ray emission is dominated by ICS of glory light. During their fast decline phase, ICS is taken over by SR which dominates their broad band afterglow. The pulse shape and spectral evolution of the gamma-ray peaks and the early-time X-ray flares, and even the delayed optical `humps' in XRFs, are correctly predicted. The canonical and non-canonical X-ra...

  4. BINARY CANDIDATES IN THE JOVIAN TROJAN AND HILDA POPULATIONS FROM NEOWISE LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Sonnett, S.; Mainzer, A.; Masiero, J.; Bauer, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T., E-mail: Sarah.Sonnett@jpl.nasa.gov [Planetary Science Institute, Tucson, AZ (United States)

    2015-02-01

    Determining the binary fraction for a population of asteroids, particularly as a function of separation between the two components, helps describe the dynamical environment at the time the binaries formed, which in turn offers constraints on the dynamical evolution of the solar system. We searched the NEOWISE archival data set for close and contact binary Trojans and Hildas via their diagnostically large light curve amplitudes. We present 48 out of 554 Hilda and 34 out of 953 Trojan binary candidates in need of follow-up to confirm their large light curve amplitudes and subsequently constrain the binary orbit and component sizes. From these candidates, we calculate a preliminary estimate of the binary fraction without confirmation or debiasing of 14%-23% for Trojans larger than ∼12 km and 30%-51% for Hildas larger than ∼4 km. Once the binary candidates have been confirmed, it should be possible to infer the underlying, debiased binary fraction through estimation of survey biases.

  5. To High Luminosity and beyond!

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    This week marks a major milestone for the High Luminosity LHC (HL-LHC - see here) project, as it moves from the design study to the machine construction phase. HL-LHC will extend the LHC’s discovery potential, increasing luminosity by a factor of 10 beyond the original design value and allowing the scientific community to study new phenomena.    Composer Domenico Vicinanza (left) directs the musical performance of sonified LHC data during a special Hi-Lumi event (see box). The green light was given during the 5th Joint HiLumi LHC-LARP annual meeting that took place at CERN from 26 to 30 October 2015. The meeting saw the participation of more than 230 experts from all over the world to discuss the results and achievements of the HiLumi LHC Design Study. During the week, these experts approved the first version of the HL-LHC Technical Design Report – the document that, following the Preliminary Design Report issued in 2014, describes in detail how the LHC upgrade progra...

  6. Hong's grading for evaluating anterior chamber angle width.

    Science.gov (United States)

    Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul

    2012-11-01

    To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.

  7. CHARACTERIZATION OF THE X-RAY LIGHT CURVE OF THE {gamma} Cas-LIKE B1e STAR HD 110432

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Myron A. [Catholic University of America, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lopes de Oliveira, Raimundo [Departamento de Fisica, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 Sao Cristovao, SE (Brazil); Motch, Christian, E-mail: msmith@stsci.edu [Observatoire Astronomique, Universite de Strasbourg, CNRS UMR 7550, 11 rue de l' Universite, F-67000 Strasbourg (France)

    2012-08-10

    HD 110432 (BZ Cru; B1Ve) is the brightest member of a small group of '{gamma} Cas analogs' that emit copious hard X-ray flux, punctuated by ubiquitous 'flares'. To characterize the X-ray time history of this star, we made a series of six RXTE multi-visit observations in 2010 and an extended observation with the XMM-Newton in 2007. We analyzed these new light curves along with three older XMM-Newton observations from 2002 to 2003. Distributed over five months, the RXTE observations were designed to search for long X-ray modulations over a few months. These observations indeed suggest the presence of a long cycle with P Almost-Equal-To 226 days and an amplitude of a factor of two. We also used X-ray light curves constructed from XMM-Newton observations to characterize the lifetimes, strengths, and interflare intervals of 1615 flare-like events in the light curves. After accounting for false positive events, we infer the presence of 955 (2002-2003) and 386 (2007) events we identified as flares. Similarly, as a control we measured the same attributes for an additional group of 541 events in XMM-Newton light curves of {gamma} Cas, which, after a similar correction, yielded 517 flares. We found that the flare properties of HD 110432 are mostly similar to our control group. In both cases the distribution of flare strengths are best fit with log-linear relations. Both the slopes of these distributions and the flaring frequencies themselves exhibit modest fluctuations. We discovered that some flares in the hard X-ray band of HD 110432 were weak or unobserved in the soft band and vice versa. The light curves also occasionally show rapid curve drop-offs that are sustained for hours. We discuss the existence of the long cycle and these flare properties in the backdrop of two rival scenarios to produce hard X-rays, a magnetic star-disk interaction, and the accretion of blobs onto a secondary white dwarf.

  8. The Infrared Light Curve of SN 2011fe in M101 and the Distance to M101

    OpenAIRE

    Matheson, T.; Joyce, R. R.; Allen, L. E.; Saha, A.; Silva, D. R.; Wood-Vasey, W. M.; Adams, J. J.; Anderson, R. E.; Beck, T. L.; Bentz, M. C.; Bershady, M. A.; Binkert, W. S.; Butler, K.; Camarata, M. A.; Eigenbrot, A.

    2012-01-01

    We present near infra-red light curves of supernova (SN) 2011fe in M101, including 34 epochs in H band starting fourteen days before maximum brightness in the B-band. The light curve data were obtained with the WIYN High-Resolution Infrared Camera (WHIRC). When the data are calibrated using templates of other Type Ia SNe, we derive an apparent H-band magnitude at the epoch of B-band maximum of 10.85 \\pm 0.04. This implies a distance modulus for M101 that ranges from 28.86 to 29.17 mag, depend...

  9. Fourier analysis of the light curves of eclipsing variables, XXIV

    International Nuclear Information System (INIS)

    Edalati, M.T.

    1978-01-01

    The aim of the present paper will be to evaluate numerically Jacobian and other functions which have been discussed in more detail in a previous paper of this series, and also choose the most convenient moments to obtain a good determination for the unknown eclipse parameters a and c 0 . More than 12 different pairs of g-functions for real values of m have been investigated numerically and diagrammatically. The behaviour of g-functions depends but very little on different combination of the moments, and related diagrams are approximately the same as g 2 and g 4 . The behaviour of the vanishing Jacobian, arising from different pairs of g-functions for real values of m>= 0 . Accordingly, the author obtains the optimum combination of the moments (i.e., A 6 , A 7 , A 8 and A 9 ) in g-functions g 7 and g 8 . It has been noted that the behaviour of the g-functions which depend on the combinations of the higher order moments (i.e., m>= 5) have been ruled out, because the proportional error of the moments Asub(2m) increases with increasing values of real m. The automated method has been tested successfully on the light curve of RT Per. Finally, a comparison is given of the elements of RT Per arising from two different pairs of g-functions, i.e. g 2 , g 4 and g 7 , g 8 for the light curves analysis. (Auth.)

  10. High-precision 2MASS JHK{sub s} light curves and other data for RR Lyrae star SDSS J015450 + 001501: Strong constraints for nonlinear pulsation models

    Energy Technology Data Exchange (ETDEWEB)

    Szabó, Róbert; Ivezić, Željko; Kiss, László L.; Kolláth, Zoltán [Konkoly Observatory, MTA CSFK, Konkoly Thege Miklós út 15-17, H-1121 Budapest (Hungary); Jones, Lynne; Becker, Andrew C.; Davenport, James R. A. [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Sesar, Branimir [Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA 91125 (United States); Cutri, Roc M., E-mail: rszabo@konkoly.hu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-01-01

    We present and discuss an extensive data set for the non-Blazhko ab-type RR Lyrae star SDSS J015450+001501, including optical Sloan Digital Sky Survey ugriz light curves and spectroscopic data, LINEAR and Catalina Sky Survey unfiltered optical light curves, and infrared Two Micron All Sky Survey (2MASS) JHK{sub s} and Wide-field Infrared Survey Explorer W1 and W2 light curves. Most notable is that light curves obtained by 2MASS include close to 9000 photometric measures collected over 3.3 yr and provide an exceedingly precise view of near-infrared variability. These data demonstrate that static atmosphere models are insufficient to explain multiband photometric light-curve behavior and present strong constraints for nonlinear pulsation models for RR Lyrae stars. It is a challenge to modelers to produce theoretical light curves that can explain data presented here, which we make publicly available.

  11. Efficient dye-sensitized solar cells from curved silicate microsheet caged TiO2 photoanodes. An avenue of enhancing light harvesting

    International Nuclear Information System (INIS)

    Wang, Zubin; Tang, Qunwei; He, Benlin; Chen, Haiyan; Yu, Liangmin

    2015-01-01

    Graphical abstract: - Highlights: • Curved silicate microsheets are incorporated with TiO 2 for light harvesting in DSSC • The optical matching between silicate and TiO 2 is superior to light reflection. • The curved silicate can hinder the recombination reaction of electrons with I 3 − . • The DSSC with TiO 2 /curved silicate photoanode shows an efficiency of 9.22% - Abstract: Enhancement of light harvesting has been a persistent objective for elevating dye excitation and therefore power conversion efficiency of dye-sensitized solar cells (DSSCs). Here we launch a strategy of markedly enhancing light harvesting by caging TiO 2 nanoparticles with curved silica microsheets. The results show that the strategy is versatile in suppressing the recombination reaction of electrons with I 3 − species in liquid electrolyte. Due to the superior reflective behaviors of curved silica microsheets, an optimal efficiency of 9.22% is recorded under simulated air mass 1.5 global sunlight on the DSSC in comparison with 6.51% and 7.51% from pristine TiO 2 and planar silicate microsheet incorporated TiO 2 photoanode based solar cells, respectively. This strategy is also believed to be applicable to other solar cells such as perovskite solar cells and quantum dot-sensitized solar cells.

  12. APSIDAL MOTION AND A LIGHT CURVE SOLUTION FOR 13 LMC ECCENTRIC ECLIPSING BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zasche, P.; Wolf, M.; Vraštil, J.; Pilarcik, L. [Astronomical Institute, Charles University in Prague, Faculty of Mathematics and Physics, CZ-180 00 Praha 8, V Holešovičkách 2 (Czech Republic)

    2015-12-15

    New CCD observations for 13 eccentric eclipsing binaries from the Large Magellanic Cloud were carried out using the Danish 1.54 m telescope located at the La Silla Observatory in Chile. These systems were observed for their times of minimum and 56 new minima were obtained. These are needed for accurate determination of the apsidal motion. Besides that, in total 436 times of minimum were derived from the photometric databases OGLE and MACHO. The O – C diagrams of minimum timings for these B-type binaries were analyzed and the parameters of the apsidal motion were computed. The light curves of these systems were fitted using the program PHOEBE, giving the light curve parameters. We derived for the first time relatively short periods of the apsidal motion ranging from 21 to 107 years. The system OGLE-LMC-ECL-07902 was also analyzed using the spectra and radial velocities, resulting in masses of 6.8 and 4.4 M{sub ⊙} for the eclipsing components. For one system (OGLE-LMC-ECL-20112), the third-body hypothesis was also used to describe the residuals after subtraction of the apsidal motion, resulting in a period of about 22 years. For several systems an additional third light was also detected, which makes these systems suspect for triplicity.

  13. Physical Parameters of Late Type Spiral Galaxies - III. Mass and Mass to Luminosity Ratio of NGC 7793

    Directory of Open Access Journals (Sweden)

    Chang-Ha Kim

    1986-12-01

    Full Text Available The mass distribution and other related quantities were calculated by fitting the observed rotation curve(Davoust and de Vaucouleur 1980 to Brandt and Belton's mass distribution model. One of n values for mass model is determined as 1.5(Vm = 95 km/s and two pairs of them are determined as 0.8(Vm = 95 km/s and 2.0 and 0.8(Vm = 55 km/s and 2.0 because f the hump in observed rotation curve. Total masses and integrated mass to luminosity ratios are 1.8 x 10^10*Msolar, 1.5 x 10^10*Msolar, 1.4 x 10^10*Msolar, and 6.57, 5.33, 5.26 for three cases according to n values. Integrated mass to luminosity ratio in Holmberg radius is 3.44, 3.26, 3.00 in good agreement with the typical value of Sd type suggested by Faber and Gallagher(1979. Presented halo masses which are fifty percent of total masses and halo mass to luminosity ratios given as 75.83, 53.50, 58.75 are values less than Turner's(1976.

  14. LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE WITH SUBSTANTIAL MASS LOSS USING THE NEW OPEN-SOURCE SUPERNOVA EXPLOSION CODE (SNEC)

    International Nuclear Information System (INIS)

    Morozova, Viktoriya; Renzo, Mathieu; Ott, Christian D.; Clausen, Drew; Couch, Sean M.; Ellis, Justin; Roberts, Luke F.; Piro, Anthony L.

    2015-01-01

    We present the SuperNova Explosion Code (SNEC), an open-source Lagrangian code for the hydrodynamics and equilibrium-diffusion radiation transport in the expanding envelopes of supernovae. Given a model of a progenitor star, an explosion energy, and an amount and distribution of radioactive nickel, SNEC generates the bolometric light curve, as well as the light curves in different broad bands assuming blackbody emission. As a first application of SNEC, we consider the explosions of a grid of 15 M ⊙ (at zero-age main sequence, ZAMS) stars whose hydrogen envelopes are stripped to different extents and at different points in their evolution. The resulting light curves exhibit plateaus with durations of ∼20–100 days if ≳1.5–2 M ⊙ of hydrogen-rich material is left and no plateau if less hydrogen-rich material is left. If these shorter plateau lengths are not seen for SNe IIP in nature, it suggests that, at least for ZAMS masses ≲20 M ⊙ , hydrogen mass loss occurs as an all or nothing process. This perhaps points to the important role binary interactions play in generating the observed mass-stripped supernovae (i.e., Type Ib/c events). These light curves are also unlike what is typically seen for SNe IIL, arguing that simply varying the amount of mass loss cannot explain these events. The most stripped models begin to show double-peaked light curves similar to what is often seen for SNe IIb, confirming previous work that these supernovae can come from progenitors that have a small amount of hydrogen and a radius of ∼500 R ⊙

  15. LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE WITH SUBSTANTIAL MASS LOSS USING THE NEW OPEN-SOURCE SUPERNOVA EXPLOSION CODE (SNEC)

    Energy Technology Data Exchange (ETDEWEB)

    Morozova, Viktoriya; Renzo, Mathieu; Ott, Christian D.; Clausen, Drew; Couch, Sean M.; Ellis, Justin; Roberts, Luke F. [TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Piro, Anthony L., E-mail: morozvs@tapir.caltech.edu [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2015-11-20

    We present the SuperNova Explosion Code (SNEC), an open-source Lagrangian code for the hydrodynamics and equilibrium-diffusion radiation transport in the expanding envelopes of supernovae. Given a model of a progenitor star, an explosion energy, and an amount and distribution of radioactive nickel, SNEC generates the bolometric light curve, as well as the light curves in different broad bands assuming blackbody emission. As a first application of SNEC, we consider the explosions of a grid of 15 M{sub ⊙} (at zero-age main sequence, ZAMS) stars whose hydrogen envelopes are stripped to different extents and at different points in their evolution. The resulting light curves exhibit plateaus with durations of ∼20–100 days if ≳1.5–2 M{sub ⊙} of hydrogen-rich material is left and no plateau if less hydrogen-rich material is left. If these shorter plateau lengths are not seen for SNe IIP in nature, it suggests that, at least for ZAMS masses ≲20 M{sub ⊙}, hydrogen mass loss occurs as an all or nothing process. This perhaps points to the important role binary interactions play in generating the observed mass-stripped supernovae (i.e., Type Ib/c events). These light curves are also unlike what is typically seen for SNe IIL, arguing that simply varying the amount of mass loss cannot explain these events. The most stripped models begin to show double-peaked light curves similar to what is often seen for SNe IIb, confirming previous work that these supernovae can come from progenitors that have a small amount of hydrogen and a radius of ∼500 R{sub ⊙}.

  16. A UNIFORM SEARCH FOR SECONDARY ECLIPSES OF HOT JUPITERS IN KEPLER Q2 LIGHT CURVES

    International Nuclear Information System (INIS)

    Coughlin, J. L.; López-Morales, M.

    2012-01-01

    In this paper, we present the results of searching the Kepler Q2 public data set for the secondary eclipses of 76 hot Jupiter planet candidates from the list of 1235 candidates published by Borucki et al. This search has been performed by modeling both the Kepler pre-search data conditioned light curves and new light curves produced via our own photometric pipeline. We derive new stellar and planetary parameters for each system, while calculating robust errors for both. We find 16 systems with 1σ-2σ, 14 systems with 2σ-3σ, and 6 systems with >3σ confidence level secondary eclipse detections in at least one light curve produced via the Kepler pre-search data conditioned light curve or our own pipeline; however, results can vary depending on the light curve modeled and whether eccentricity is allowed to vary or not. We estimate false alarm probabilities of 31%, 10%, and 6% for the 1σ-2σ, 2σ-3σ, and >3σ confidence intervals, respectively. Comparing each secondary eclipse result to theoretical expectations, we find that the majority of detected planet candidates emit more light than expected owing to thermal blackbody emission in the optical Kepler bandpass, and present a trend of increasing excess emission with decreasing maximum effective planetary temperature. These results agree with previously published optical secondary eclipse data for other hot Jupiters. We explore modeling biases, significant planetary albedos, non-local thermodynamic equilibrium or other thermal emission, significant internal energy generation, and misidentification of brown dwarfs, low-mass stars, or stellar blends as possible causes of both the excess emission and its correlation with expected planetary temperature. Although we find that no single cause is able to explain all of the planet candidates, significant planetary albedos, with a general trend of increasing planetary albedos with decreasing atmospheric temperatures, are able to explain most of the systems. Identifying

  17. THE INFRARED LIGHT CURVE OF SN 2011fe IN M101 AND THE DISTANCE TO M101

    International Nuclear Information System (INIS)

    Matheson, T.; Joyce, R. R.; Allen, L. E.; Saha, A.; Silva, D. R.; Binkert, W. S.; Butler, K.; Everett, M.; Wood-Vasey, W. M.; Adams, J. J.; Anderson, R. E.; Beck, T. L.; Bentz, M. C.; Bershady, M. A.; Eigenbrot, A.; Gallagher, J. S.; Camarata, M. A.; Garnavich, P. M.; Glikman, E.; Harbeck, D.

    2012-01-01

    We present near-infrared light curves of supernova (SN) 2011fe in M101, including 34 epochs in H band starting 14 days before maximum brightness in the B band. The light curve data were obtained with the WIYN High-Resolution Infrared Camera. When the data are calibrated using templates of other Type Ia SNe, we derive an apparent H-band magnitude at the epoch of B-band maximum of 10.85 ± 0.04. This implies a distance modulus for M101 that ranges from 28.86 to 29.17 mag, depending on which absolute calibration for Type Ia SNe is used.

  18. THE INFRARED LIGHT CURVE OF SN 2011fe IN M101 AND THE DISTANCE TO M101

    Energy Technology Data Exchange (ETDEWEB)

    Matheson, T.; Joyce, R. R.; Allen, L. E.; Saha, A.; Silva, D. R.; Binkert, W. S.; Butler, K.; Everett, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Wood-Vasey, W. M. [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT-PACC), University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Adams, J. J. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Anderson, R. E.; Beck, T. L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Bershady, M. A.; Eigenbrot, A.; Gallagher, J. S. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Camarata, M. A. [Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515 (United States); Garnavich, P. M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Glikman, E. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Harbeck, D., E-mail: matheson@noao.edu [WIYN Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); and others

    2012-07-20

    We present near-infrared light curves of supernova (SN) 2011fe in M101, including 34 epochs in H band starting 14 days before maximum brightness in the B band. The light curve data were obtained with the WIYN High-Resolution Infrared Camera. When the data are calibrated using templates of other Type Ia SNe, we derive an apparent H-band magnitude at the epoch of B-band maximum of 10.85 {+-} 0.04. This implies a distance modulus for M101 that ranges from 28.86 to 29.17 mag, depending on which absolute calibration for Type Ia SNe is used.

  19. Absolute luminosity measurements with the LHCb detector at the LHC

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Brisbane, S; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Caicedo Carvajal, J M; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Constantin, F; Conti, G; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Almagne, B; D'Ambrosio, C; David, P; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Deissenroth, M; Del Buono, L; Deplano, C; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Eames, C; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; d'Enterria, D G; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hofmann, W; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koblitz, S; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kukulak, S; Kumar, R; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Luisier, J; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Mclean, C; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nardulli, J; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Nies, S; Niess, V; Nikitin, N; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B; Palacios, J; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Pie Valls, B; Pietrzyk, B; Pilar, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; du Pree, T; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shao, B; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skottowe, H P; Skwarnicki, T; Smith, A C; Smith, N A; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Styles, N; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vervink, K; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Voong, D; Vorobyev, A; Voss, H; Wacker, K; Wandernoth, S; Wang, J; Ward, D R; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5\\% in the absolute lumi...

  20. GLOBAL MAPPING OF EARTH-LIKE EXOPLANETS FROM SCATTERED LIGHT CURVES

    International Nuclear Information System (INIS)

    Kawahara, Hajime; Fujii, Yuka

    2010-01-01

    Scattered lights from terrestrial exoplanets provide valuable information about their planetary surface. Applying the surface reconstruction method proposed by Fujii et al. to both diurnal and annual variations of scattered light, we develop a reconstruction method of land distribution with both longitudinal and latitudinal resolutions. We find that one can recover a global map of an idealized Earth-like planet on the following assumptions: (1) cloudlessness, (2) a face-on circular orbit, (3) known surface types and their reflectance spectra, (4) lack of atmospheric absorption, (5) known rotation rate, (6) a static map, and (7) the absence of a moon. Using the dependence of light curves on planetary obliquity, we also show that the obliquity can be measured by adopting the χ 2 minimization or the extended information criterion. We demonstrate the feasibility of our methodology by applying it to a multi-band photometry of a cloudless model Earth with future space missions such as the occulting ozone observatory (O3). We conclude that future space missions can estimate both the surface distribution and the obliquity at least for cloudless Earth-like planets within 5 pc.

  1. Effect of stellar activity on the high precision transit light curve

    Directory of Open Access Journals (Sweden)

    Oshagh, M.

    2015-01-01

    Full Text Available Stellar activity features such as spots and plages can create difficulties in determining planetary parameters through spectroscopic and photometric observations. The overlap of a transiting planet and a stellar spot, for instance, can produce anomalies in the transit light curve that may lead to inaccurate estimation of the transit duration, depth, and timing. Such inaccuracies can affect the precise derivation of the planet’s radius. In this talk we will present the results of a quantitative study on the effects of stellar spots on high precision transit light curves. We show that spot anomalies can lead to the estimate of a planet radius that is 4% smaller than the real value. The effects on the transit duration can also be of the order of 4%, longer or shorter. Depending on the size and distribution of spots, anomalies can also produce transit timing variations with significant amplitudes. For instance, TTVs with signal amplitudes of 200 seconds can be produced by spots as large as the largest sunspot. Finally, we examine the impact of active regions on the transit depth measurements in different wavelengths, in order to probe the impact of this effect on transmission spectroscopy measurements. We show that significant (up to 10% underestimation/overestimation of the planet-to-star radius ratio can be measured, especially in the short wavelength regime.

  2. EVIDENCE FOR A CORRELATION BETWEEN THE Si II λ4000 WIDTH AND TYPE Ia SUPERNOVA COLOR

    International Nuclear Information System (INIS)

    Nordin, J.; Oestman, L.; Goobar, A.; Balland, C.; Lampeitl, H.; Nichol, R. C.; Sako, M.; Schneider, D. P.; Smith, M.; Sollerman, J.; Wheeler, J. C.

    2011-01-01

    We study the pseudo-equivalent width of the Si II λ4000 feature of Type Ia supernovae (SNe Ia) in the redshift range 0.0024 ≤ z ≤ 0.634. We find that this spectral indicator correlates with the light curve color excess (SALT2c) as well as previously defined spectroscopic subclasses (Branch types) and the evolution of the Si II λ6150 velocity, i.e., the so-called velocity gradient. Based on our study of 55 objects from different surveys, we find indications that the Si II λ4000 spectral indicator could provide important information to improve cosmological distance measurements with SNe Ia.

  3. Multi-messenger Light Curves from Gamma-Ray Bursts in the Internal Shock Model

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Mauricio [Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, OH 43210 (United States); Heinze, Jonas; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, D-15738 Zeuthen (Germany); Murase, Kohta, E-mail: bustamanteramirez.1@osu.edu, E-mail: walter.winter@desy.de, E-mail: jonas.heinze@desy.de, E-mail: murase@psu.edu [Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, University Park, PA16802 (United States)

    2017-03-01

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma-rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure can be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.

  4. Multi-messenger light curves from gamma-ray bursts in the internal shock model

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Mauricio [Ohio State Univ., Columbus, OH (United States). Center for Cosmology and AstroParticle Physics (CCAPP); Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Murase, Kohta [Pennsylvania State Univ., University Park, PA (United States). Center for Particle and Gravitational Astrophysics; Pennsylvania State Univ., University Park, PA (United States). Dept. of Astronomy and Astrophysics; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2016-06-15

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure tend to be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.

  5. Household transitions to energy efficient lighting

    International Nuclear Information System (INIS)

    Mills, Bradford; Schleich, Joachim

    2014-01-01

    New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The ‘rebound’ effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on ILs accelerated the pace of transition to CFLs and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with CFLs or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions. - Highlights: • EU ban on ILs has fostered transitions to energy efficient lighting • Energy efficient, environmentally friendly, and durable lighting preferences make CFL and LED transitions more likely • Indicators of greater lighting needs are associated with higher propensities to replace ILs with CFLs and LEDs • For residential lighting, the rebound effect manifests itself through increases in luminosity • In IL to CLF transitions luminosity increases are lower with higher levels of education

  6. Luminosity monitor at PEP

    International Nuclear Information System (INIS)

    Fox, J.D.; Franklin, M.E.B.

    1981-02-01

    The luminosity monitor system utilized by the MKII Detector and by the PEP operators is described. This system processes information from 56 photomultipliers and calculates independent luminosities for each of the 3 colliding bunches in PEP. Design considerations, measurement techniques, and sources of error in the luminosity measurement are discussed

  7. Temporal Evolution of the Gamma-ray Burst Afterglow Spectrum for an Observer: GeV–TeV Synchrotron Self-Compton Light Curve

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Takuma; Fujita, Yutaka [Department of Earth and Space Science, Osaka University, Osaka, 560-0043 (Japan); To, Sho; Asano, Katsuaki, E-mail: fukushima@vega.ess.sci.osaka-u.ac.jp, E-mail: fujita@vega.ess.sci.osaka-u.ac.jp, E-mail: tosho@icrr.u-tokyo.ac.jp, E-mail: asanok@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan)

    2017-08-01

    We numerically simulate the gamma-ray burst (GRB) afterglow emission with a one-zone time-dependent code. The temporal evolutions of the decelerating shocked shell and energy distributions of electrons and photons are consistently calculated. The photon spectrum and light curves for an observer are obtained taking into account the relativistic propagation of the shocked shell and the curvature of the emission surface. We find that the onset time of the afterglow is significantly earlier than the previous analytical estimate. The analytical formulae of the shock propagation and light curve for the radiative case are also different from our results. Our results show that even if the emission mechanism is switching from synchrotron to synchrotron self-Compton, the gamma-ray light curves can be a smooth power law, which agrees with the observed light curve and the late detection of a 32 GeV photon in GRB 130427A. The uncertainty of the model parameters obtained with the analytical formula is discussed, especially in connection with the closure relation between spectral index and decay index.

  8. Periodicity Analysis of X-ray Light Curves of SS 433

    Science.gov (United States)

    Wang, Jun-yi; Lu, Xiang-long; Zhao, Qiu-wen; Dong, Dian-qiao; Lao, Bao-qiang; Lu, Yang; Wei, Yan-heng; Wu, Xiao-cong; An, Tao

    2017-01-01

    SS 433 is sofar the unique X-ray binary that has the simultaneously detected orbital period, super-orbital period, and nutation period, as well as a bidirectional spiral jet. The study on its X-ray light variability is helpful for understanding the dynamic process of the system, and the correlations between the different wavebands. In this paper, two time-series analysis techniques, i.e., the Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periods in the Swift/BAT (Burst Alert Telescope) (15-50 keV) and RXTE/ASM (Rose X-ray Timing Explorer/All Sky Monitor) (1.5-3, 3- 4, and 5-12 keV) light curves of SS 433, and the Monte Carlo simulation is performed for the obtained periodical components. For the 15-50 keV energy band, five significant periodical components are detected, which are P1(∼6.29 d), P2 (∼6.54 d), P3 (∼13.08 d), P4 (∼81.50 d), and P5 (∼162.30 d). For the 3-5 and 5-12 keV energy bands, the periodical components P3 (∼13 d) and P5 (∼162 d) are detected in both energy bands. However, for the 1.5-3 keV energy band, no significant periodic signal is detected. P5 is the strongest periodic signal in the power spectrum for all the energy bands of 3-5, 5-12, and 15-50 keV, and it is consistent with the previous result obtained from the study of optical light curves. Furthermore, in combination with the radio spiral jet of SS 433, it is suggested that the X-ray and optical variability of P5 (∼162 d) is probably related to the precession of its relativistic jet. The high correlation between the X-ray and optical light curves may also imply that the X-ray and optical radiations are of the same physical origin. P3 shows a good agreement with the orbital period (∼13.07 d) obtained by the previous study, and P2 and P4 are respectively the high-frequency harmonics of P3 and P5. P1 is detected only in the power spectrum of the 15-50 keV energy band, and it is consistent with the nutation period of the system. As

  9. PROPERTIES OF THE MOLECULAR CORES OF LOW LUMINOSITY OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Tien-Hao; Lai, Shih-Ping [Institute of Astronomy, National Tsing Hua University (NTHU), Hsinchu 30013, Taiwan (China); Belloche, Arnaud; Wyrowski, Friedrich [Max-Planck-Institut für Radioastronomie (MPIfR), Bonn (Germany); Hung, Chao-Ling, E-mail: slai@phys.nthu.edu.tw, E-mail: shawinchone@gmail.com [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2015-04-01

    We present a survey toward 16 low luminosity objects (LLOs with an internal luminosity, L{sub int}, lower than 0.2 L{sub ⊙}) with N{sub 2}H{sup +} (1–0), N{sub 2}H{sup +} (3–2), N{sub 2}D{sup +} (3–2), HCO{sup +} (3–2), and HCN (3–2) using the Arizona Radio Observatory Kitt Peak 12 m Telescope and Submillimeter Telescope. Our goal is to probe the nature of these faint protostars which are believed to be either very low mass or extremely young protostars. We find that the N{sub 2}D{sup +}/N{sub 2}H{sup +} column density ratios of LLOs are similar to those of typical starless cores and Class 0 objects. The N{sub 2}D{sup +}/N{sub 2}H{sup +} column density ratios are relatively high (>0.05) for LLOs with kinetic temperatures less than 10 K in our sample. The distribution of N{sub 2}H{sup +} (1–0) line widths spreads between that of starless cores and young Class 0 objects. If we use the line width as a dynamic evolutionary indicator, LLOs are likely young Class 0 protostellar sources. We further use the optically thick tracers, HCO{sup +} (3–2) and HCN (3–2), to probe the infall signatures of our targets. We derive the asymmetry parameters from both lines and estimate the infall velocities by fitting the HCO{sup +} (3–2) spectra with two-layer models. As a result, we identify eight infall candidates based on the infall velocities and seven candidates have infall signatures supported by asymmetry parameters from at least one of HCO{sup +} (3–2) and HCN (3–2)

  10. Human phase response curve to a 1 h pulse of bright white light

    Science.gov (United States)

    St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W

    2012-01-01

    The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n= 18) or dim background light (n= 18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting. PMID:22547633

  11. Emergence of curved light-cones in a class of inhomogeneous Luttinger liquids

    Directory of Open Access Journals (Sweden)

    Jérôme Dubail, Jean-Marie Stéphan, Pasquale Calabrese

    2017-09-01

    Full Text Available The light-cone spreading of entanglement and correlation is a fundamental and ubiquitous feature of homogeneous extended quantum systems. Here we point out that a class of inhomogenous Luttinger liquids (those with a uniform Luttinger parameter $K$ at low energy display the universal phenomenon of curved light cones: gapless excitations propagate along the geodesics of the metric $ds^2=dx^2+v(x^2 d\\tau^2$, with $v(x$ being the calculable spatial dependent velocity induced by the inhomogeneity. We confirm our findings with explicit analytic and numerical calculations both in- and out-of-equilibrium for a Tonks-Girardeau gas in a harmonic potential and in lattice systems with artificially tuned hamiltonian density.

  12. Remarks on the maximum luminosity

    Science.gov (United States)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  13. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    International Nuclear Information System (INIS)

    Mosher, J.; Sako, M.; Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N.; Kessler, R.; Frieman, J. A.; Marriner, J.; Biswas, R.; Kuhlmann, S.; Schneider, D. P.

    2014-01-01

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ∼120 low-redshift (z < 0.1) SNe Ia, ∼255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ∼290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w input – w recovered ) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is –0.014 ± 0.007.

  14. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J. [Pennsylvania U.; Guy, J. [LBL, Berkeley; Kessler, R. [Chicago U., KICP; Astier, P. [Paris U., VI-VII; Marriner, J. [Fermilab; Betoule, M. [Paris U., VI-VII; Sako, M. [Pennsylvania U.; El-Hage, P. [Paris U., VI-VII; Biswas, R. [Argonne; Pain, R. [Paris U., VI-VII; Kuhlmann, S. [Argonne; Regnault, N. [Paris U., VI-VII; Frieman, J. A. [Fermilab; Schneider, D. P. [Penn State U.

    2014-08-29

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.

  15. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals.

    Science.gov (United States)

    Sabino, C P; Garcez, A S; Núñez, S C; Ribeiro, M S; Hamblin, M R

    2015-08-01

    Antimicrobial photodynamic therapy (APDT) combined with endodontic treatment has been recognized as an alternative approach to complement conventional root canal disinfection methods on bacterial biofilms. We developed an in  vitro model of bioluminescent Candida albicans biofilm inside curved dental root canals and investigated the microbial reduction produced when different light delivery methods are employed. Each light delivery method was evaluated in respect to the light distribution provided inside curved root canals. After conventional endodontic preparation, teeth were sterilized before canals were contaminated by a bioluminescent strain of C. albicans (CEC789). Methylene blue (90 μM) was introduced into the canals and then irradiated (λ = 660 nm, P = 100 mW, beam diameter = 2 mm) with laser tip either in contact with pulp chamber or within the canal using an optical diffuser fiber. Light distribution was evaluated by CCD camera, and microbial reduction was monitored through bioluminescence imaging. Our findings demonstrated that the bioluminescent C. albicans biofilm model had good reproducibility and uniformity. Light distribution in dental tissue was markedly dependent on the light delivery system, and this strategy was directly related to microbial destruction. Both light delivery systems performed significant fungal inactivation. However, when irradiation was performed with optical diffuser fiber, microbial burden reduction was nearly 100 times more effective. Bioluminescence is an interesting real-time analysis to endodontic C. albicans biofilm inactivation. APDT showed to be an effective way to inactivate C. albicans biofilms. Diffuser fibers provided optimized light distribution inside curved root canals and significantly increased APDT efficiency.

  16. Secondary eclipses in the CoRoT light curves

    Directory of Open Access Journals (Sweden)

    Belmonte Juan Antonio

    2013-04-01

    Full Text Available We identify and characterize secondary eclipses in the original light curves of published CoRoT planets using uniform detection and evaluation criteria. Our analysis is based on a Bayesian statistics: the eclipse search is carried out using Bayesian model selection, and the characterization of the plausible eclipse candidates using Bayesian parameter estimation. We discover statistically significant eclipse events for two planets, CoRoT-6b and CoRoT-11b, and for one brown dwarf, CoRoT-15b. We also find marginally significant eclipse events passing our plausibility criteria for CoRoT-3b, 13b, 18b, and 21b, and confirm the previously published CoRoT-1b and CoRoT-2b eclipses.

  17. An Anthropology of Luminosity: The Agency of Light

    DEFF Research Database (Denmark)

    Bille, Mikkel; Sørensen, Tim Flohr

    2007-01-01

    This article addresses the relationship between light, material culture and social experiences. It argues that understanding light as a powerful social agent, in its relationship with people, things, colours, shininess and places, may facilitate an appreciation of the active social role...... studies it is argued that light may be used as a tool for exercising social intimacy and inclusion, of shaping moral spaces and hospitality, and orchestrating movement, while working as a metaphor as well as a material agent in these social negotiations. The social comprehension of light is a means...... of understanding social positions in ways that may be real or imagined, but are bound up on the social and cultural associations of certain lightscapes....

  18. Logistic characteristics of phonon transport in silicon thin film: the S-curve

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa; Mansoor, S. Bin

    2013-10-01

    The logistic characteristics of the averaged heat flux are investigated across the thin film incorporating the S-curve. Temporal behaviour of the heat flux vector is computed using the Boltzmann transport equation. The dispersion relations are introduced to account for the frequency dependent phonon transport across the film. The influence of film width on the characteristics of the averaged heat flux is also examined. It is found that temporal behaviour of the averaged heat flux follows the S-curve. The S-curve characteristics change for different film widths. The time to reach 95% steady value of the averaged heat flux is short for the film with small widths, which is attributed to the ballistic behaviour of phonons in the film.

  19. Logistic characteristics of phonon transport in silicon thin film: the S-curve

    International Nuclear Information System (INIS)

    Yilbas, B.S.; Mansoor, S. Bin

    2013-01-01

    The logistic characteristics of the averaged heat flux are investigated across the thin film incorporating the S-curve. Temporal behaviour of the heat flux vector is computed using the Boltzmann transport equation. The dispersion relations are introduced to account for the frequency dependent phonon transport across the film. The influence of film width on the characteristics of the averaged heat flux is also examined. It is found that temporal behaviour of the averaged heat flux follows the S-curve. The S-curve characteristics change for different film widths. The time to reach 95% steady value of the averaged heat flux is short for the film with small widths, which is attributed to the ballistic behaviour of phonons in the film

  20. A rapid technique for estimating the depth and width of a two-dimensional plate from self-potential data

    International Nuclear Information System (INIS)

    Mehanee, Salah; Smith, Paul D; Essa, Khalid S

    2011-01-01

    Rapid techniques for self-potential (SP) data interpretation are of prime importance in engineering and exploration geophysics. Parameters (e.g. depth, width) estimation of the ore bodies has also been of paramount concern in mineral prospecting. In many cases, it is useful to assume that the SP anomaly is due to an ore body of simple geometric shape and to use the data to determine its parameters. In light of this, we describe a rapid approach to determine the depth and horizontal width of a two-dimensional plate from the SP anomaly. The rationale behind the scheme proposed in this paper is that, unlike the two- (2D) and three-dimensional (3D) SP rigorous source current inversions, it does not demand a priori information about the subsurface resistivity distribution nor high computational resources. We apply the second-order moving average operator on the SP anomaly to remove the unwanted (regional) effect, represented by up to a third-order polynomial, using filters of successive window lengths. By defining a function F at a fixed window length (s) in terms of the filtered anomaly computed at two points symmetrically distributed about the origin point of the causative body, the depth (z) corresponding to each half-width (w) is estimated by solving a nonlinear equation in the form ξ(s, w, z) = 0. The estimated depths are then plotted against their corresponding half-widths on a graph representing a continuous curve for this window length. This procedure is then repeated for each available window length. The depth and half-width solution of the buried structure is read at the common intersection of these various curves. The improvement of this method over the published first-order moving average technique for SP data is demonstrated on a synthetic data set. It is then verified on noisy synthetic data, complicated structures and successfully applied to three field examples for mineral exploration and we have found that the estimated depth is in good agreement with

  1. Study of the mass-luminosity in binary stars

    International Nuclear Information System (INIS)

    Gimenez, A.; Zamorano, J.

    1986-01-01

    The results of a study of the mass-luminosity relation for main-sequence stars are presented as obtained from the latest data provided by the analysis of eclipsing and visual binary systems. The derived numerical values are discussed in light of their practical use and possible parametrizations indicated by internal structure homologous models. Finally, the astrophysical significance of our results is evaluated and they are compared to available theoretical models. (author)

  2. Light curve solutions and study of roles of magnetic fields in period variations of the UV Leo system

    Directory of Open Access Journals (Sweden)

    D Manzoori

    2009-12-01

    Full Text Available The solutions of photometric BV light curves for the Algol like system UV Leo were obtained using Wilson-Devinney code. The physical and orbital parameters along with absolute dimensions of the system were determined. It has been found that to best fit the V light curve of the system, assumptions of three dark spots were necessary two on the secondary and one on the primary. The absolute visual magnitudes (Mv of the individual components i.e., primary and secondary were estimated to 4.41 and 4.43, respectively, through the color curve analysis. The period analysis of the system presented elsewhere, indicated a cyclic period change of 12 yr duration, which was attributed to magnetic activity cycle, as a main cause of period variation in the system, through the Applegate mechanism. To verify the Applegate model I preformed calculations of some related parameters barrowed from Apllegate and Kalimeris. Values of all the calculated parameters were in accordance to those obtained for similar systems by Applegate. The differential magnitudes Δ B and Δ V, along with corresponding values of Δ(B-V color index. The cyclic variations in brightness are quite clear. There are three predictions of Applegate's theory concerning effects of cyclic magnetic changes on the period variations, which can be checked through the observations, these are as follows: I The long term variations in mean brightness (at outside of eclipses and cyclic changes of orbital period, vary with the same period. II The active star gets bluer as it gets brightened and/or the brightness and color variations are to be in phase. III Changes in luminosity due to changes in quadrupole moment should be of the order 0.1 mag. All the above mentioned predictions of Applegate’s theory are verified. These results combined with cyclic character of P(E presented elsewhere and also consistency of parameters which are obtained in this paper, led me to conclude that one the main causes of period

  3. Luminosity on development and flowering of Dendrobium nobile Lindl.

    Directory of Open Access Journals (Sweden)

    Yara Brito Chaim Jardim Rosa

    2014-09-01

    Full Text Available This study, conducted at Jardinocultura area of Faculdade de Ciências Agrárias of UFGD during the period from September of 2010 to August of 2011, had as aim evaluate the cultivation and flowering of Dendrobium nobile Lindl., under five levels of luminosity (83, 104, 115, 154 e 237 μmol m-2 s-1 . During 12 months the plants were irrigated and fertilized with NPK 10-10-10 and after this period they were evaluated for the number, length and diameter of pseudobulbs, being calculated the increments in relation to initial data. At flowering time it was counted the total buds, reproductive buds, vegetative buds and undifferentiated buds and registered the anthesis at each light intensity. The experimental was arranged at completely randomized design with five treatments and seven replicates with two plants and the averages were compared by Tukey test at 5% probability. All the lighting conditions were favorable to the D. nobile cultivation, being registered increases of 36,7%, 16,0% e 16,2% in the number, diameter and length of pseudobulbs, respectively. The largest number of reproductive buds was observed at 104 μmol m-2 s-1. D. nobile can be cultivated in the light conditions varying between 83 and 237 μmol m-2 s-1, recommending the luminosity of 104 μmol m-2 s-1 to promote their flowering.

  4. Performance of the Pixel Luminosity Telescope for Luminosity Measurement at CMS during Run 2

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors arranged into "telescopes", each consisting of three planes. It was installed during LS1 at the beginning of 2015 and has been providing online and offline luminosity measurements throughout Run 2. The online bunch-by-bunch luminosity measurement employs the "fast-or" capability of the pixel readout chip (PSI46) to identify events where a hit is registered in all three sensors in a telescope corresponding primarily to tracks originating from the interaction point. In addition, the full pixel information is read out at a lower rate, allowing for the calculation of corrections to the online luminosity from effects such as the miscounting of tracks not originating from the interaction point and detector efficiency. In this talk, we will present results from 2016 running and preliminary 2017 results, including commissioning and operational history, luminosity calibration using Va...

  5. Performance of the Pixel Luminosity Telescope for Luminosity Measurement at CMS during Run2

    CERN Document Server

    Lujan, Paul Joseph

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors arranged into telescopes, each consisting of three sensor planes. It was installed in CMS at the beginning of 2015 and has been providing online and offline luminosity measurements throughout Run 2 of the LHC. The online bunch-by-bunch luminosity measurement employs the fast-or capability of the pixel readout chip to identify events where a hit is registered in all three sensors in a telescope, corresponding primarily to tracks originating from the interaction point. In addition, the full pixel information is read out at a lower rate, allowing for the calculation of corrections to the online luminosity from effects such as the miscounting of tracks not originating from the interaction point and detector efficiency. This paper presents results from the 2016 running of the PLT, including commissioning and operational history, luminosity calibration using Van der Meer scans, and...

  6. Higgs boson width from off-shell production and decay to ZZ

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Constraints on the total Higgs boson width, Gamma_H, are presented using off-shell production and decay to ZZ in the 4l and 2l2nu final states. The analysis is based on data collected in 2012 by the CMS experiment at the LHC, corresponding to an integrated luminosity of L = 19.7/fb at a centre-of-mass energy of 8 TeV. The combined analysis of the 4l and 2l2nu events at high mass with the 4l measurement of the Higgs boson peak at 125.6 GeV leads to an upper limit on the Higgs boson width of Gamma_H < 4.2 x Gamma_H(SM) at the 95% confidence level, assuming Gamma_H(SM) = 4.15 MeV. This result considerably improves over previous experimental constraints from direct measurements at the Higgs resonance peak.

  7. Fractal Property in the Light Curve of BL Lac Object S5 0716+714

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, we compile the historical R-band data of S5 0716+714 from literature and obtain its fractal dimension by using a fractal method and then simulate the data with the Weierstrass–Mandelbrot (W–M) function. It is considered that the light curve has a fractal property.

  8. Helical Tomography of an Accretion Disk by Superhump Light Curves of the 2001 Outburst of WZ Sagittae

    Science.gov (United States)

    Osaki, Yoji

    2003-06-01

    A new method for analyzing complex superhump light curves for the 2001 outburst of WZ Sagittae is proposed. The complexity arises because intrinsically time-varying and non-axisymmetric distributions of superhump light sources are coupled with the aspect effects around the binary orbital phase because of its high orbital inclination. The new method can disentangle these complexities by separating the non-axisymmetric spatial distribution in the disk from the time variation with the superhump period. It may be called a helical tomography of an accretion disk because it can reconstruct a series of disk images (i.e., disk's azimuthal structures) at different superhump phases. The power spectral data of superhump light curves of the 2001 outburst of WZ Sge by Patterson et al. (2002, PASP, 114, 721) are now interpreted under a new light based on the concept of helical tomography, and the azimuthal wave numbers of various frequency modes are identified. In particular, a frequen! cy component, nω0 - Ω, where ω0 and Ω are the orbital frequency and a low frequency of the apsidal precession of the eccentric disk, is understood as an (n - 1)-armed traveling wave in the disk. A vigorous excitation of a wave component of cos(2Θ - 3ω0t) in the first week of the superhump era of WZ Sge, where Θ is the azimuthal angle, supports Lubow's (1991, AAA 54.064.175) theory of non-linear wave coupling of the eccentric Lindblad resonance for the superhump phenomenon. This method can in principle be applied to other SU UMa stars with high orbital inclination if light curves are fully covered over the beat cycle.

  9. Process based model sheds light on climate sensitivity of Mediterranean tree-ring width

    Directory of Open Access Journals (Sweden)

    R. Touchan

    2012-03-01

    Full Text Available We use the process-based VS (Vaganov-Shashkin model to investigate whether a regional Pinus halepensis tree-ring chronology from Tunisia can be simulated as a function of climate alone by employing a biological model linking day length and daily temperature and precipitation (AD 1959–2004 from a climate station to ring-width variations. We check performance of the model on independent data by a validation exercise in which the model's parameters are tuned using data for 1982–2004 and the model is applied to generate tree-ring indices for 1959–1981. The validation exercise yields a highly significant positive correlation between the residual chronology and estimated growth curve (r=0.76 p<0.0001, n=23. The model shows that the average duration of the growing season is 191 days, with considerable variation from year to year. On average, soil moisture limits tree-ring growth for 128 days and temperature for 63 days. Model results depend on chosen values of parameters, in particular a parameter specifying a balance ratio between soil moisture and precipitation. Future work in the Mediterranean region should include multi-year natural experiments to verify patterns of cambial-growth variation suggested by the VS model.

  10. Phenomenology of enhanced light quark Yukawa couplings and the W{sup ±}h charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Felix [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University, Mainz, 55099 (Germany)

    2017-02-15

    I propose the measurement of the W{sup ±}h charge asymmetry as a consistency test for the Standard Model (SM) Higgs, which is sensitive to enhanced Yukawa couplings of the first and second generation quarks. I present a collider analysis for the charge asymmetry in the same-sign lepton final state, pp→W{sup ±}h→(ℓ{sup ±}ν)(ℓ{sup ±}νjj), aimed at discovery significance for the SM W{sup ±}h production mode in each charge channel with 300 fb{sup −1} of 14 TeV LHC data. Using this decay mode, I estimate the statistical precision on the charge asymmetry should reach 0.4% with 3 ab{sup −1} luminosity, enabling a strong consistency test of the SM Higgs hypothesis. I also discuss direct and indirect constraints on light quark Yukawa couplings from direct and indirect probes of the Higgs width as well as Tevatron and Large Hadron Collider Higgs data. While the main effect from enhanced light quark Yukawa couplings is a rapid increase in the total Higgs width, such effects could be mitigated in a global fit to Higgs couplings, leaving the W{sup ±}h charge asymmetry as a novel signature to test directly the Higgs couplings to light quarks.

  11. Radial dependence of surface streamer-channel luminosity: experimental evidence of Gaussian radiative profiles in Ar and N2

    International Nuclear Information System (INIS)

    Šimek, M; Ambrico, P F

    2012-01-01

    Radial distributions of electronically excited species produced during surface streamer propagation were obtained by applying the Abel inverse transform to projected luminosities of single streamers. The streamers were generated in an argon and nitrogen surface coplanar dielectric barrier discharge at atmospheric pressure and their magnified microscopic images were registered with high time resolution. Selected regions of the projected luminosities were processed by the Abel inverse transform procedure based on the Hankel–Fourier method assuming cylindrical symmetry of the streamer channel. Projected as well as Abel-inverted profiles were fitted by Gaussian functions. It is shown that the projected profiles, in addition to the Abel-inverted ones, can be well approximated by the sum of two coaxial Gaussians with two different half-widths and weights. The sharper Gaussian component with higher weight characterizes the radial dependence of the primary cathode-directed streamer-channel luminosity. The second (broader) Gaussian component probably originates either from the pre-breakdown Townsend phase or from the second wave propagating towards the anode. (paper)

  12. The High Luminosity LHC Project

    Science.gov (United States)

    Rossi, Lucio

    The High Luminosity LHC is one of the major scientific project of the next decade. It aims at increasing the luminosity reach of LHC by a factor five for peak luminosity and a factor ten in integrated luminosity. The project, now fully approved and funded, will be finished in ten years and will prolong the life of LHC until 2035-2040. It implies deep modifications of the LHC for about 1.2 km around the high luminosity insertions of ATLAS and CMS and relies on new cutting edge technologies. We are developing new advanced superconducting magnets capable of reaching 12 T field; superconducting RF crab cavities capable to rotate the beams with great accuracy; 100 kA and hundred meter long superconducting links for removing the power converter out of the tunnel; new collimator concepts, etc... Beside the important physics goals, the High Luminosity LHC project is an ideal test bed for new technologies for the next hadron collider for the post-LHC era.

  13. Near-IR period-luminosity relations for pulsating stars in ω Centauri (NGC 5139)

    Science.gov (United States)

    Navarrete, C.; Catelan, M.; Contreras Ramos, R.; Alonso-García, J.; Gran, F.; Dékány, I.; Minniti, D.

    2017-08-01

    Aims: The globular cluster ω Centauri (NGC 5139) hosts hundreds of pulsating variable stars of different types, thus representing a treasure trove for studies of their corresponding period-luminosity (PL) relations. Our goal in this study is to obtain the PL relations for RR Lyrae and SX Phoenicis stars in the field of the cluster, based on high-quality, well-sampled light curves in the near-infrared (IR). Methods: Observations were carried out using the VISTA InfraRed CAMera (VIRCAM) mounted on the Visible and Infrared Survey Telescope for Astronomy (VISTA). A total of 42 epochs in J and 100 epochs in KS were obtained, spanning 352 days. Point-spread function photometry was performed using DoPhot and DAOPHOT crowded-field photometry packages in the outer and inner regions of the cluster, respectively. Results: Based on the comprehensive catalog of near-IR light curves thus secured, PL relations were obtained for the different types of pulsators in the cluster, both in the J and KS bands. This includes the first PL relations in the near-IR for fundamental-mode SX Phoenicis stars. The near-IR magnitudes and periods of Type II Cepheids and RR Lyrae stars were used to derive an updated true distance modulus to the cluster, with a resulting value of (m - M)0 = 13.708 ± 0.035 ± 0.10 mag, where the error bars correspond to the adopted statistical and systematic errors, respectively. Adding the errors in quadrature, this is equivalent to a heliocentric distance of 5.52 ± 0.27 kpc. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, with the VISTA telescope (project ID 087.D-0472, PI R. Angeloni).

  14. Observations and light curve solutions of four ultrashort-period binaries

    Directory of Open Access Journals (Sweden)

    Kjurkchieva D.

    2016-01-01

    Full Text Available The paper presents light curve solutions of our observations of four new ultrashort-period eclipsing binaries with MS components. Two of them have periods almost at the upper limit (0.22 days of the ultrashort-period binaries, while the periods of around 0.18 days of CSS J171508.5+350658 and CSS J214633.8+120016 are amongst the shortest known orbital periods. CSS J171410.0+ 445850, CSS J214633.8+120016 and CSS J224326.0+154532 are over contact binaries with fill out factors around 0.25 while CSS J171508.5+350658 is a semidetached system. The two targets with shortest periods consist of M dwarfs.

  15. Spotted star mapping by light curve inversion: Tests and application to HD 12545

    Science.gov (United States)

    Kolbin, A. I.; Shimansky, V. V.

    2013-06-01

    A code for mapping the surfaces of spotted stars is developed. The concept of the code is to analyze rotational-modulated light curves. We simulate the process of reconstruction for the star surface and the results of simulation are presented. The reconstruction atrifacts caused by the ill-posed nature of the problem are deduced. The surface of the spotted component of system HD 12545 is mapped using the procedure.

  16. WASP-36b: A NEW TRANSITING PLANET AROUND A METAL-POOR G-DWARF, AND AN INVESTIGATION INTO ANALYSES BASED ON A SINGLE TRANSIT LIGHT CURVE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A. M. S.; Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Smalley, B.; Southworth, J. [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom); Collier Cameron, A. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, Fife, KY16 9SS (United Kingdom); Gillon, M.; Jehin, E. [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout, 17 Bat. B5C, Liege 1 (Belgium); Lendl, M.; Queloz, D.; Triaud, A. H. M. J.; Pepe, F.; Segransan, D.; Udry, S. [Observatoire de Geneve, Universite de Geneve, 51 Chemin des Maillettes, 1290 Sauverny (Switzerland); West, R. G. [Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Barros, S. C. C.; Pollacco, D. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University, University Road, Belfast, BT7 1NN (United Kingdom); Street, R. A., E-mail: amss@astro.keele.ac.uk [Las Cumbres Observatory, 6740 Cortona Drive Suite 102, Goleta, CA 93117 (United States)

    2012-04-15

    We report the discovery, from WASP and CORALIE, of a transiting exoplanet in a 1.54 day orbit. The host star, WASP-36, is a magnitude V = 12.7, metal-poor G2 dwarf (T{sub eff} = 5959 {+-} 134 K), with [Fe/H] =-0.26 {+-} 0.10. We determine the planet to have mass and radius, respectively, 2.30 {+-} 0.07 and 1.28 {+-} 0.03 times that of Jupiter. We have eight partial or complete transit light curves, from four different observatories, which allow us to investigate the potential effects on the fitted system parameters of using only a single light curve. We find that the solutions obtained by analyzing each of these light curves independently are consistent with our global fit to all the data, despite the apparent presence of correlated noise in at least two of the light curves.

  17. Flare colours and luminosities

    International Nuclear Information System (INIS)

    Cristaldi, S.; Rodono, M.

    1975-01-01

    Flare colours determined from simultaneous UBV observations made at Catania Observatory and from sequential UBV observations made at McDonald Observatory are presented. They fit fairly well with the theoretical colours computed according to the Gurzadian's (1970) non-thermal model. Only part of the observed flare colours are consistent with the solar type models by Gershberg (1967) and Kunkel (1970). From a B-band patrol of UV Cet-type stars carried out from 1967 to 1972, some quantitative estimates of flare frequencies and luminosities and their average contributions to the stellar radiation are given. The corresponding parameters for the Sun, which were estimated from 'white light' flare activity, are also given for comparison. The Sun and V 1216 Sgr can be regarded as low-activity flare stars of the type found by Kunkel (1973). (Auth.)

  18. Spectral optimization simulation of white light based on the photopic eye-sensitivity curve

    International Nuclear Information System (INIS)

    Dai, Qi; Hao, Luoxi; Lin, Yi; Cui, Zhe

    2016-01-01

    Spectral optimization simulation of white light is studied to boost maximum attainable luminous efficacy of radiation at high color-rendering index (CRI) and various color temperatures. The photopic eye-sensitivity curve V(λ) is utilized as the dominant portion of white light spectra. Emission spectra of a blue InGaN light-emitting diode (LED) and a red AlInGaP LED are added to the spectrum of V(λ) to match white color coordinates. It is demonstrated that at the condition of color temperature from 2500 K to 6500 K and CRI above 90, such white sources can achieve spectral efficacy of 330–390 lm/W, which is higher than the previously reported theoretical maximum values. We show that this eye-sensitivity-based approach also has advantages on component energy conversion efficiency compared with previously reported optimization solutions

  19. Spectral optimization simulation of white light based on the photopic eye-sensitivity curve

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qi, E-mail: qidai@tongji.edu.cn [College of Architecture and Urban Planning, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Key Laboratory of Ecology and Energy-saving Study of Dense Habitat (Tongji University), Ministry of Education, 1239 Siping Road, Shanghai 200092 (China); Hao, Luoxi; Lin, Yi; Cui, Zhe [College of Architecture and Urban Planning, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Key Laboratory of Ecology and Energy-saving Study of Dense Habitat (Tongji University), Ministry of Education, 1239 Siping Road, Shanghai 200092 (China)

    2016-02-07

    Spectral optimization simulation of white light is studied to boost maximum attainable luminous efficacy of radiation at high color-rendering index (CRI) and various color temperatures. The photopic eye-sensitivity curve V(λ) is utilized as the dominant portion of white light spectra. Emission spectra of a blue InGaN light-emitting diode (LED) and a red AlInGaP LED are added to the spectrum of V(λ) to match white color coordinates. It is demonstrated that at the condition of color temperature from 2500 K to 6500 K and CRI above 90, such white sources can achieve spectral efficacy of 330–390 lm/W, which is higher than the previously reported theoretical maximum values. We show that this eye-sensitivity-based approach also has advantages on component energy conversion efficiency compared with previously reported optimization solutions.

  20. Luminosity class of neutron reflectometers

    Energy Technology Data Exchange (ETDEWEB)

    Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru

    2016-10-21

    The formulas that relate neutron fluxes at reflectometers with differing q-resolutions are derived. The reference luminosity is defined as a maximum flux for measurements with a standard resolution. The methods of assessing the reference luminosity of neutron reflectometers are presented for monochromatic and white beams, which are collimated with either double diaphragm or small angle Soller systems. The values of the reference luminosity for unified parameters define luminosity class of reflectometers. The luminosity class characterizes (each operation mode of) the instrument by one number and can be used to classify operating reflectometers and optimize designed reflectometers. As an example the luminosity class of the neutron reflectometer NR-4M (reactor WWR-M, Gatchina) is found for four operation modes: 2.1 (monochromatic non-polarized beam), 1.9 (monochromatic polarized beam), 1.5 (white non-polarized beam), 1.1 (white polarized beam); it is shown that optimization of measurements may increase the flux at the sample up to two orders of magnitude with monochromatic beams and up to one order of magnitude with white beams. A fan beam reflectometry scheme with monochromatic neutrons is suggested, and the expected increase in luminosity is evaluated. A tuned-phase chopper with a variable TOF resolution is recommended for reflectometry with white beams.

  1. Luminosity measurement at AMY

    International Nuclear Information System (INIS)

    Kurihara, Y.

    1995-01-01

    A precise measurement of a luminosity is required by experiments with high statistics. The largest sources of a systematic error of a luminosity measurement are an alignment of the tube chambers which measure a polar angle of Bhabha events and a higher order correction for the Bhabha cross section calculation. We describe a resent study for these uncertainties and how to reduce the systematic errors from these sources. The total systematic error of the luminosity measurement of 1.8% can be reduced to 1.0% by this study. (author)

  2. Direct measurement of the W boson decay width in proton-antiproton collisions at √s = 1.96-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun-jie [Univ. of Maryland, College Park, MD (United States)

    2004-01-01

    This dissertation describes a direct measurement of the W boson total decay width, ΓW, using the D0 detector at the Fermilab Tevatron Collider. The measurement uses an integrated luminosity of 177.3 pb-1 data, collected during the 2002-2003 run. The width is determined from the shape of the transverse mass distribution, MT, by fitting the data in the tail region 100 < MT < 200 GeV. The result if ΓW = 2.011 ± 0.093(stat) ± 0.107(syst) GeV.

  3. LHC Report: spring cleaning over, bunches of luminosity

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Scrubbing was completed on Wednesday 13 April. The run had seen over 1000 bunches per beam successfully circulating at 450 GeV. Measurements showed that electron cloud activity in the cold regions had been suppressed. A decrease of vacuum activity in the warm regions demonstrated that the cleaning had also achieved the required results there. As discussed in the last Bulletin, the scrubbing was performed with high intensity bunches with 50 nanosecond spacing. Given the potential luminosity performance with this spacing (more bunches, higher bunch intensity from the injectors) and in the light of the results of the scrubbing run, the decision was taken to continue the 2011 physics run with this bunch spacing.   A few issues with 50 nanosecond spacing had to be resolved when standard operations for luminosity production resumed. Once things had been tidied up, stable beams were provided for the experiments, firstly with 228 bunches per beam and then with 336 bunches per beam. The 336 bunch fill that w...

  4. Light curve of the CX Cep eclipsing binary system and characteristics of a Wolf-Rayet star

    International Nuclear Information System (INIS)

    Lipunova, N.A.; Cherepashchuk, A.M.

    1982-01-01

    The photoelectric B, V, R observations of the eclipsing Wolf-Rayet binary CX Cep (WN 5 + 08V, V approximately equal to 12sup(m),1, p approximately equal to 2sup(d),127) have been carried out. The physical characteristics of the WN 5 star, the core radius r 0 =(4.5+-2.5) Rsub(S) (Rsub(S) is the Sun radius) and the brightness temperature of the core Tsub(b)>50 000 K, are determined from the analysis of the light curve lambdasub(eff) approximately equal to 6 000 A. These characteristics are close to those of the WN 5 star in the eclipsing Wolf-Rayet binary V 444 Cyg. The results of the interpretation of the light curves of two eclipsing Wolf-Rayet binaries (V 444 Cyg and CX Cep) confirm the conclusions of the modern theory of evolution of massive close binary systems [ru

  5. The low-luminosity stellar mass function

    International Nuclear Information System (INIS)

    Kroupa, Pavel; Tout, C.A.; Gilmore, Gerard

    1990-01-01

    The stellar mass function for low-mass stars is constrained using the stellar luminosity function and the slope of the mass-luminosity relation. We investigate the range of mass functions for stars with absolute visual magnitude fainter than M V ≅ +5 which are consistent with both the local luminosity function and the rather poorly determined mass-absolute visual magnitude relation. Points of inflexion in the mass-luminosity relation exist because of the effects of H - , H 2 and of other molecules on the opacity and equation of state. The first two of these correspond to absolute magnitudes M V ≅ +7 and M V ≅ +12, respectively, at which structure is evident in the stellar luminosity function (a flattening and a maximum, respectively). Combining the mass-luminosity relation which shows these inflexion points with a peaked luminosity function, we test smooth mass functions in the mass range 0.9-0.1 the solar mass. (author)

  6. AEOLUS: A MARKOV CHAIN MONTE CARLO CODE FOR MAPPING ULTRACOOL ATMOSPHERES. AN APPLICATION ON JUPITER AND BROWN DWARF HST LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Karalidi, Theodora; Apai, Dániel; Schneider, Glenn; Hanson, Jake R. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Pasachoff, Jay M., E-mail: tkaralidi@email.arizona.edu [Hopkins Observatory, Williams College, 33 Lab Campus Drive, Williamstown, MA 01267 (United States)

    2015-11-20

    Deducing the cloud cover and its temporal evolution from the observed planetary spectra and phase curves can give us major insight into the atmospheric dynamics. In this paper, we present Aeolus, a Markov chain Monte Carlo code that maps the structure of brown dwarf and other ultracool atmospheres. We validated Aeolus on a set of unique Jupiter Hubble Space Telescope (HST) light curves. Aeolus accurately retrieves the properties of the major features of the Jovian atmosphere, such as the Great Red Spot and a major 5 μm hot spot. Aeolus is the first mapping code validated on actual observations of a giant planet over a full rotational period. For this study, we applied Aeolus to J- and H-band HST light curves of 2MASS J21392676+0220226 and 2MASS J0136565+093347. Aeolus retrieves three spots at the top of the atmosphere (per observational wavelength) of these two brown dwarfs, with a surface coverage of 21% ± 3% and 20.3% ± 1.5%, respectively. The Jupiter HST light curves will be publicly available via ADS/VIZIR.

  7. The mass of the black hole in 1A 0620-00, revisiting the ellipsoidal light curve modelling

    Science.gov (United States)

    van Grunsven, Theo F. J.; Jonker, Peter G.; Verbunt, Frank W. M.; Robinson, Edward L.

    2017-12-01

    The mass distribution of stellar-mass black holes can provide important clues to supernova modelling, but observationally it is still ill constrained. Therefore, it is of importance to make black hole mass measurements as accurate as possible. The X-ray transient 1A 0620-00 is well studied, with a published black hole mass of 6.61 ± 0.25 M⊙, based on an orbital inclination i of 51.0° ± 0.9°. This was obtained by Cantrell et al. (2010) as an average of independent fits to V-, I- and H-band light curves. In this work, we perform an independent check on the value of i by re-analysing existing YALO/SMARTS V-, I- and H-band photometry, using different modelling software and fitting strategy. Performing a fit to the three light curves simultaneously, we obtain a value for i of 54.1° ± 1.1°, resulting in a black hole mass of 5.86 ± 0.24 M⊙. Applying the same model to the light curves individually, we obtain 58.2° ± 1.9°, 53.6° ± 1.6° and 50.5° ± 2.2° for V-, I- and H-band, respectively, where the differences in best-fitting i are caused by the contribution of the residual accretion disc light in the three different bands. We conclude that the mass determination of this black hole may still be subject to systematic effects exceeding the statistical uncertainty. Obtaining more accurate masses would be greatly helped by continuous phase-resolved spectroscopic observations simultaneous with photometry.

  8. 2015: International Year of Light

    CERN Multimedia

    Paola Catapano

    2015-01-01

    The year 2015, a century after the publication of Einstein’s Theory of General Relativity in 1915, has been proclaimed the International Year of Light and light-based technologies by the UN General Assembly. CERN is taking this opportunity to communicate informationabout the High Luminosity LHC project and CERN’s involvement in the SESAME synchrotron project in Jordan. In addition, light has been chosen as the main theme of CERN’s participation in the 2015 Researchers’ Night.   “Light” as “luminosity” will be the underlying theme of the communication campaign launched to increase awareness of CERN’s High Luminosity LHC (HL-LHC). By increasing the luminosity of the LHC by a factor of 10, the ambitious project aims at extending the discovery potential of CERN’s flagship accelerator. The challenging upgrade requires a number of key technological breakthroughs, including innovative high-field supercond...

  9. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    CERN Document Server

    Guthoff, Moritz

    2017-01-01

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A pixelated luminosity detector counts coincidences in several three layer telescopes of silicon pixel detectors to measure the luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point.The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background.A new beam-halo monitor at larger radius exploits Cerenkov light produced by relativistic charged particles in fused quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules...

  10. Luminosity measurement at CMS

    CERN Document Server

    Karacheban, Olena

    2017-01-01

    Luminosity is a key quantity of any collider, since it allows for the determinationof the absolute cross sections from the observed rates in a detector. Since theHiggs boson discovery in 2012, the highest priority at the Large Hadron Collider(LHC) has been given to an accurate understanding of the electroweak scale anda search for new physics. Precise luminosity measurements in such conditions areof crucial importance, as they determine the precision of any physics cross sectionmeasurement.To increase the production of particles of interest, usually of low cross section,the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 × 1034 cm−2 s−1was reached with 1011 protons per bunch and a bunch spacing of 25 ns. In suchconditions radiation hard detectors with extremely fast response time are required,especially for instrumentation near the beam.The Compact Muon Solenoid experiment is equipped with three online luminomet...

  11. An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data

    International Nuclear Information System (INIS)

    Lott, B.; Escande, L.; Larsson, S.; Ballet, J.

    2012-01-01

    Here, we present a method enabling the creation of constant-uncertainty/constant-significance light curves with the data of the Fermi-Large Area Telescope (LAT). The adaptive-binning method enables more information to be encapsulated within the light curve than with the fixed-binning method. Although primarily developed for blazar studies, it can be applied to any sources. Furthermore, this method allows the starting and ending times of each interval to be calculated in a simple and quick way during a first step. The reported mean flux and spectral index (assuming the spectrum is a power-law distribution) in the interval are calculated via the standard LAT analysis during a second step. In the absence of major caveats associated with this method Monte-Carlo simulations have been established. We present the performance of this method in determining duty cycles as well as power-density spectra relative to the traditional fixed-binning method.

  12. The Measurement of the Number of Light Neutrino Species at LEP

    CERN Document Server

    Mele, Salvatore

    2015-01-01

    Within weeks of the start of the data taking at the LEP accelerator, the ALEPH, DELPHI, L3 and OPAL experiments were able to confirm the existence of just three light neutrino species. This measurement relies on the Standard Model relation between the ‘invisible’ width of the Z-boson and the cross-sections for Z-boson production and subsequent decay into hadrons. The full data sample collected by the experiments at and around the Z-boson resonance allows a high-precision measurement of the number of light neutrino species as 2.9840 ± 0.0082. The uncertainty is mostly due to the understanding of the low-angle Bhabha scattering process used to determine the experimental luminosity. This result is independently confirmed by the elegant direct observation of the process, through the detection of an initial-state-radiation photon in otherwise empty detectors. This result confirms expectations from the existence of three charged leptons species, and contributes to the fields of astrophysics and cosmology. A...

  13. Measurements of the top-quark decay width and mass at CDF using the template method.

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jian [Univ. of Chicago, IL (United States)

    2012-05-10

    Measurements of the top quark decay width and mass are presented using the tt events produced in p p collisions at Fermilab's Tevatron collider and collected by the CDF II detector. A data sample corresponding to 4.3 fb-1 of integrated luminosity is used for the top quark width measurement. Two estimators, the reconstructed top quark mass and the mass of hadronically decaying W boson that comes from the top-quark decay are reconstructed for each event and compared with templates of different input top quark widths and deviations from nominal CDF jet energy scale (ΔJES) to perform a simultaneous fit for both parameters. ΔJES is used for the in situ calibration of the jet energy scale at CDF. By applying a Feldman-Cousins limit-setting approach, we establish an upper limit at 95% confidence level (CL) of Γtop < 7.6 GeV and a two-sided 68% CL interval of (0.3 GeV, 4.4) GeV assuming a top quark mass of 172.5 GeV/c2, which are consistent with the standard model prediction. The measurement of the top quark mass uses a data sample of tt events in 5.7 fb-1 of integrated luminosity collected by the same detector. Candidate events in the top quark mass measurement are required to have large missing transverse energy, no identified charged leptons, and four, five, or six jets with at least one jet tagged as coming from a b quark. This analysis considers events from the semileptonic tt decay channel, including events that contain tau leptons. The measurement is based on a multidimensional template method, in a similar way to the top quark width measurement, and the top quark mass is measured to be Mtop = 172.32 ± 2.37 ± 0.98 GeV/c2 .

  14. Fast and Robust Nanocellulose Width Estimation Using Turbidimetry.

    Science.gov (United States)

    Shimizu, Michiko; Saito, Tsuguyuki; Nishiyama, Yoshiharu; Iwamoto, Shinichiro; Yano, Hiroyuki; Isogai, Akira; Endo, Takashi

    2016-10-01

    The dimensions of nanocelluloses are important factors in controlling their material properties. The present study reports a fast and robust method for estimating the widths of individual nanocellulose particles based on the turbidities of their water dispersions. Seven types of nanocellulose, including short and rigid cellulose nanocrystals and long and flexible cellulose nanofibers, are prepared via different processes. Their widths are calculated from the respective turbidity plots of their water dispersions, based on the theory of light scattering by thin and long particles. The turbidity-derived widths of the seven nanocelluloses range from 2 to 10 nm, and show good correlations with the thicknesses of nanocellulose particles spread on flat mica surfaces determined using atomic force microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High Luminosity LHC Project Description

    CERN Document Server

    Apollinari, Giorgio; Rossi, Lucio

    2014-01-01

    The High Luminosity LHC (HL-LHC) is a novel configuration of the Large Hadron Collider, aiming at increasing the luminosity by a factor five or more above the nominal LHC design, to allow increasing the integrated luminosity, in the high luminosity experiments ATLAS and CMS, from the 300 fb-1 of the LHC original design up to 3000 fb-1 or more. This paper contains a short description of the main machine parameters and of the main equipment that need to be developed and installed. The preliminary cost evaluation and the time plan are presented, too. Finally, the international collaboration that is supporting the project, the governance and the project structure are discussed, too.

  16. Thermodynamics and luminosities of rainbow black holes

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Benrong [Physics Teaching and Research section, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu (China); Wang, Peng; Yang, Haitang, E-mail: mubenrong@uestc.edu.cn, E-mail: pengw@scu.edu.cn, E-mail: hyanga@scu.edu.cn [Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, No. 24 South Section 1 Yihuan Road, Chengdu (China)

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  17. Measurements of Mass, Width and Gauge Couplings of the W Boson at LEP

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; Alessandro, R D; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    We report on measurements of mass and total decay width of the W boson and of triple-gauge-boson couplings, $\\gamma$WW and ZWW, with the L3 detector at LEP. W-pair events produced in $\\EE$ interactions between $161\\GeV$ and $172\\GeV$ centre-of-mass energy are selected in a data sample corresponding to a total luminosity of 21.2~pb$^{-1}$. The mass and total decay width of the W boson are determined to be $\\MW=80.75^{+0.26}_{-0.27}~(exp.)\\pm0.03~(\\mat hrm{LEP})\\GeV$ and $\\GW=1.74^{+0.88}_{-0.78}~(stat.)\\pm0.25~(syst.)\\Ge V$, respectively. Limits on anomalous triple-gauge-boson couplings, $\\gamma$WW and ZWW, are determined, in particular $-1.5<\\dZ<1.9$ (95\\% CL), excluding vanishing ZWW coupling at more than 95\\% confidence level.

  18. VizieR Online Data Catalog: Ji light curves of WTS-2 (Birkby+, 2014)

    Science.gov (United States)

    Birkby, J. L.; Cappetta, M.; Cruz, P.; Koppenhoefer, J.; Ivanyuk, O.; Mustill, A. J.; Hodgkin, S. T.; Pinfield, D. J.; Sipocz, B.; Kovacs, G.; Saglia, R.; Pavlenko, Y.; Barrado, D.; Bayo, A.; Campbell, D.; Catalan, S.; Fossati, L.; Galvez-Ortiz, M.-C.; Kenworthy, M.; Lillo-Box, J.; Martin, E. L.; Mislis, D.; de Mooij, E. J. W.; Nefs, S. V.; Snellen, I. A. G.; Stoev, H.; Zendejas, J.; Del Burgo, C.; Barnes, J.; Goulding, N.; Haswell, C. A.; Kuznetsov, M.; Lodieu, N.; Murgas, F.; Palle, E.; Solano, E.; Steele, P.; Tata, R.

    2015-07-01

    The infrared light curves of the WTS were generated from time series photometry taken with the WFCAM imager mounted at the prime focus of UKIRT. In order to confirm the transit of WTS-2 b and to help constrain the transit model, on 2010 July 18 we obtained further time series photometry in the Sloan i band using the Wide Field Camera (WFC) on the 2.5m Isaac Newton Telescope (INT) at Roque de Los Muchachos, La Palma. (2 data files).

  19. Effects of forward and backward transitions in light intensities in tau-illuminance curves of the rat motor activity rhythm under constant dim light.

    Science.gov (United States)

    Cambras, Trinitat; Díez-Noguera, Antoni

    2012-07-01

    Circadian rhythms are strongly influenced by light intensity, the effects of which may persist beyond the duration of light exposure (aftereffects). Here, the authors constructed period-illuminance curves for the motor activity circadian rhythm of male and female rats by recording the effects of a series of small upward and downward steps in light intensity (illuminance ranging between .01 lux of dim red light and 1 lux of white light) on their activity. In all cases, stepwise changes were made in five logarithmic steps (irradiance: dim red light: .692 µW/cm(2) and white light: .006, .016, .044, .12, and .315 µW/cm(2), corresponding, respectively, to .02, .05, .14, .13, and 1 lux measured at cage level), with changes in intensity every 2 wks. One group of rats (DLD) started in dim red light, moved up to 1 lux white light, and then back down to the original light intensity. Another group (LDL) started at 1 lux, moved down to .01 lux, and then back up to the original intensity. Motor activity data were recorded throughout the experiment and tau values, the percentage of variance explained by the rhythm, and the mean motor activity for each stage and group were calculated. The results show differences in the dynamics of tau values between the DLD and LDL groups and between males and females. In the LDL group, the tau values of both males and females were dependent on light intensity, and were similar for the forward and backward transitions. In other words, no aftereffects were found, and no differences were detected between males and females. In the DLD group, however, differences were found between males and females. Males had a tau value of 24 h 20 min under dim red light, 25 h 40 min under 1 lux, and 24 h 50 min on return to dim red light. It is noticeable that the tau values of the backward branch of the illuminance curve contradicted classical predictions, since at .38 and .14 lux the tau values were shorter than those found under the same intensities after

  20. Luminosity distance for Born-Infeld electromagnetic waves propagating in a cosmological magnetic background

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, Matias; Bengochea, Gabriel R; Ferraro, Rafael, E-mail: aiello@iafe.uba.ar, E-mail: gabriel@iafe.uba.ar, E-mail: ferraro@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

    2008-06-15

    Born-Infeld electromagnetic waves interacting with a static magnetic background in an expanding universe are studied. The non-linear character of Born-Infeld electrodynamics modifies the relation between the energy flux and the distance to the source, which gains a new dependence on the redshift that is governed by the background field. We compute the luminosity distance as a function of the redshift and compare with Maxwellian curves for supernovae type Ia.

  1. Gamma-ray Burst X-ray Flares Light Curve Fitting

    Science.gov (United States)

    Aubain, Jonisha

    2018-01-01

    Gamma Ray Bursts (GRBs) are the most luminous explosions in the Universe. These electromagnetic explosions produce jets demonstrated by a short burst of prompt gamma-ray emission followed by a broadband afterglow. There are sharp increases of flux in the X-ray light curves known as flares that occurs in about 50% of the afterglows. In this study, we characterized all of the X-ray afterglows that were detected by the Swift X-ray Telescope (XRT), whether with flares or without. We fit flares to the Norris function (Norris et al. 2005) and power laws with breaks where necessary (Racusin et al. 2009). After fitting the Norris function and power laws, we search for the residual pattern detected in prompt GRB pulses (Hakkila et al. 2014, 2015, 2017), that may indicate a common signature of shock physics. If we find the same signature in flares and prompt pulses, it provides insight into what causes them, as well as, how these flares are produced.

  2. Luminosity Measurements with the ATLAS Detector

    CERN Document Server

    Maettig, Stefan; Pauly, T

    For almost all measurements performed at the Large Hadron Collider (LHC) one crucial ingredient is the precise knowledge about the integrated luminosity. The determination and precision on the integrated luminosity has direct implications on any cross-section measurement, and its instantaneous measurement gives important feedback on the conditions at the experimental insertions and on the accelerator performance. ATLAS is one of the main experiments at the LHC. In order to provide an accurate and reliable luminosity determination, ATLAS uses a variety of different sub-detectors and algorithms that measure the luminosity simultaneously. One of these sub-detectors are the Beam Condition Monitors (BCM) that were designed to protect the ATLAS detector from potentially dangerous beam losses. Due to its fast readout and very clean signals this diamond detector is providing in addition since May 2011 the official ATLAS luminosity. This thesis describes the calibration and performance of the BCM as a luminosity detec...

  3. SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Lelli, Federico; McGaugh, Stacy S. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Schombert, James M., E-mail: federico.lelli@case.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2016-12-01

    We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6  μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i   mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii)  V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.

  4. Luminosity measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The measurement of the luminosity delivered by the LHC is pivotal for several key physics analyses. During the first three years of running, tremendous steps forwards have been made in the comprehension of the subtleties related to luminosity monitoring and calibration, which led to an unprecedented accuracy at a hadron collider. The detectors and corresponding algorithms employed to estimate online and offline the luminosity in CMS are described. Details are given concerning the procedure based on the Van der Meer scan technique that allowed a very precise calibration of the luminometers from the determination of the LHC beams parameters. What is being prepared in terms of detector and online software upgrades for the next LHC run is also summarized.

  5. GRB 090313 AND THE ORIGIN OF OPTICAL PEAKS IN GAMMA-RAY BURST LIGHT CURVES: IMPLICATIONS FOR LORENTZ FACTORS AND RADIO FLARES

    International Nuclear Information System (INIS)

    Melandri, A.; Kobayashi, S.; Mundell, C. G.; Guidorzi, C.; Bersier, D.; Steele, I. A.; Smith, R. J.; De Ugarte Postigo, A.; Pooley, G.; Yoshida, M.; Castro-Tirado, A. J.; Gorosabel, J.; Kubanek, P.; Sota, A.; JelInek, M.; Gomboc, A.; Bremer, M.; Winters, J. M.; De Gregorio-Monsalvo, I.; GarcIa-Appadoo, D.

    2010-01-01

    We use a sample of 19 gamma-ray bursts (GRBs) that exhibit single-peaked optical light curves to test the standard fireball model by investigating the relationship between the time of the onset of the afterglow and the temporal rising index. Our sample includes GRBs and X-ray flashes for which we derive a wide range of initial Lorentz factors (40 e and show that values derived from the early time light-curve properties are consistent with published typical values derived from other afterglow studies. We produce expected radio light curves by predicting the temporal evolution of the expected radio emission from forward and reverse shock components, including synchrotron self-absorption effects at early time. Although a number of GRBs in this sample do not have published radio measurements, we demonstrate the effectiveness of this method in the case of Swift GRB 090313, for which millimetric and centimetric observations were available, and conclude that future detections of reverse-shock radio flares with new radio facilities such as the EVLA and ALMA will test the low-frequency model and provide constraints on magnetic models.

  6. Search for Invisibly Decaying Higgs Bosons with Large Decay Width Using the OPAL Detector at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostu, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Bailari, T.; Barlow, R.J.; Batly, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A., Jr.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, M.; Schumacher, M.; Seuster, R.; Shears, T.G.; shen, B.C.; sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2007-01-01

    This paper describes a topological search for an invisibly decaying Higgs boson,H, produced via the Bjorken process (e+e- -> HZ). The analysis is based on data recorded using the OPAL detector at LEP at centre-of-mass energies from 183 to 209 GeV corresponding to a total integrated luminosity of 629pb-1. In the analysis only hadronic decays of the Z boson are considered. A scan over Higgs boson masses from 1 to 120 GeV and decay widths from 1 to 3000 GeV revealed no indication for a signal in the data. From a likelihood ratio of expected signal and Standard Model background we determine upper limits on cross-section times branching ratio to an invisible final state. For moderate Higgs boson decay widths, these range from about 0.07pb Mh = 60GeV) to 0.57pb (Mh = 114GeV). For decay widths above 200GeV the upper limits are of the order of 0.15pb. The results can be interpreted in general scenarios predicting a large invisible decay width of the Higgs boson. As an example we interpret the results in the so-called...

  7. Luminosity monitoring and measurement at CDF

    International Nuclear Information System (INIS)

    Cronin-Hennessy, D.; Beretvas, A.; Derwent, P.F.

    2000-01-01

    Using two telescopes of beam-beam counters, CDF (Collider Detector at Fermilab) has measured the luminosity to an accuracy of 4.1% (3.6%) in run Ib (Ia). For run Ib (Ia) the average luminosity was 9.1(3.3)x10 30 cm -2 s -1 . For a typical data set the integrated luminosity was 86.47 (19.65) pb -1 in run Ib (Ia) resulting in a total integrated luminosity of 106.1±4.1 pb -1 . This paper shows how we have determined the accuracy of our results

  8. Recurrence network measures for hypothesis testing using surrogate data: Application to black hole light curves

    Science.gov (United States)

    Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.

    2018-01-01

    Recurrence networks and the associated statistical measures have become important tools in the analysis of time series data. In this work, we test how effective the recurrence network measures are in analyzing real world data involving two main types of noise, white noise and colored noise. We use two prominent network measures as discriminating statistic for hypothesis testing using surrogate data for a specific null hypothesis that the data is derived from a linear stochastic process. We show that the characteristic path length is especially efficient as a discriminating measure with the conclusions reasonably accurate even with limited number of data points in the time series. We also highlight an additional advantage of the network approach in identifying the dimensionality of the system underlying the time series through a convergence measure derived from the probability distribution of the local clustering coefficients. As examples of real world data, we use the light curves from a prominent black hole system and show that a combined analysis using three primary network measures can provide vital information regarding the nature of temporal variability of light curves from different spectroscopic classes.

  9. First study of the CP-violating phase and decay-width difference in Bs 0→ψ(2S)ϕ decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Everse, LA; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J.E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M-O.; Van Beuzekom, Martin; Bezshyiko, I.; Bifani, S.; Billoir, P.; Bird, T.D.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, C.R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N Y; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J. M.; Paula, L.E.; De Serio, M.; De Simone, P.; Dean, C-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T. M.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.A.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Carvalho-Gaspar, M.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T. J.; Ghez, Ph; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.Q.; Gorelov, I. V.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.J.; He, J.; Head-Gordon, Teresa; Heister, A.J.G.A.M.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D. E.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M. H.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.M.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G. D.; Lai, A.; Lambert, D.M.; Lanfranchi, G.; Langenbruch, C.; Latham, T. E.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. P.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, S.C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli-Boneschi, F.; Martinez-Santos, D.; Martinez-Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; Meadows, B. T.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M. N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, Karl; von Müller, L.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J G; Otalora Goicochea, J. M.; Otto, E.A.; Owen, R.P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.L.; Parker, W.S; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, D.A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, M. E.; Price, J.D.; Prisciandaro, J.; Pritchard, C.A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, Y.W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, J.S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, L.E.T.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, R. H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; de Souza, D.K.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl-Zeng, J.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevenson-Moore, P.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M. N.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, N.T.M.T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, M.A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel-Plandsoen, M.M.; Velthuis, M.J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, John; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M.P.; Williams, M.; Williams, T.; Wilson, J.F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.J.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhu, X.; Zhukov, V.; Zucchelli, S.

    2016-01-01

    A time-dependent angular analysis of Bs 0→ψ(2S)ϕ decays is performed using data recorded by the LHCb experiment. The data set corresponds to an integrated luminosity of 3.0fb−1 collected during Run 1 of the LHC. The CP-violating phase and decay-width difference of the Bs 0 system are measured to be

  10. Luminosity Optimization Feedback in the SLC

    International Nuclear Information System (INIS)

    1999-01-01

    The luminosity optimization at the SLC has been limited by the precision with which one can measure the micron size beams at the Interaction Point. Ten independent tuning parameters must be adjusted. An automated application has been used to scan each parameter over a significant range and set the minimum beam size as measured with a beam-beam deflection scan. Measurement errors limited the accuracy of this procedure and degraded the resulting luminosity. A new luminosity optimization feedback system has been developed using novel dithering techniques to maximize the luminosity with respect to the 10 parameters, which are adjusted one at a time. Control devices are perturbed around nominal setpoints, while the averaged readout of a digitized luminosity monitor measurement is accumulated for each setting. Results are averaged over many pulses to achieve high precision and then fitted to determine the optimal setting. The dithering itself causes a small loss in luminosity, but the improved optimization is expected to significantly enhance the performance of the SLC. Commissioning results are reported

  11. Towards a measurement of the two-photon decay width of the Higgs boson at a photon collider

    International Nuclear Information System (INIS)

    Moenig, K.; Rosca, A.

    2007-05-01

    A study of the measurement of the two photon decay width times the branching ratio of a Higgs boson with the mass of 120 GeV in photon-photon collisions is presented, assuming a γγ integrated luminosity of 80 fb -1 in the high energy part of the spectrum. The analysis is based on the reconstruction of the Higgs events produced in the γγ→H process, followed by the decay f the Higgs into a b anti b pair. A statistical error of the measurement of the two-photon width, Γ(H→γγ), times the branching ratio of the Higgs boson, BR(H →b anti b) is found to be 2.1 % for one year of data taking. (orig.)

  12. A simple transformation for converting CW-OSL curves to LM-OSL curves

    DEFF Research Database (Denmark)

    Bulur, E.

    2000-01-01

    A simple mathematical transformation is introduced to convert from OSL decay curves obtained in the conventional way to those obtained using a linear modulation technique based on a linear increase of the stimulation light intensity during OSL measurement. The validity of the transformation...... was tested by the IR-stimulated luminescence curves from feldspars, recorded using both the conventional and the linear modulation techniques. The transformation was further applied to green-light-stimulated OSL from K and Na feldspars. (C) 2000 Elsevier Science Ltd. All rights reserved....

  13. LHC luminosity upgrade detector challenges

    CERN Multimedia

    CERN. Geneva; de Roeck, Albert; Bortoletto, Daniela; Wigmans, Richard; Riegler, Werner; Smith, Wesley H

    2006-01-01

    LHC luminosity upgrade: detector challenges The upgrade of the LHC machine towards higher luminosity (1035 cm -2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: • Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) • Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector developments (lectures 2-4) • Electronics, trigger and data acquisition challenges (lecture 5) Note: the much more ambitious LHC energy upgrade will not be covered

  14. Non-regularized inversion method from light scattering applied to ferrofluid magnetization curves for magnetic size distribution analysis

    International Nuclear Information System (INIS)

    Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.

    2014-01-01

    A numerical inversion method known from the analysis of light scattering by colloidal dispersions is now applied to magnetization curves of ferrofluids. The distribution of magnetic particle sizes or dipole moments is determined without assuming that the distribution is unimodal or of a particular shape. The inversion method enforces positive number densities via a non-negative least squares procedure. It is tested successfully on experimental and simulated data for ferrofluid samples with known multimodal size distributions. The created computer program MINORIM is made available on the web. - Highlights: • A method from light scattering is applied to analyze ferrofluid magnetization curves. • A magnetic size distribution is obtained without prior assumption of its shape. • The method is tested successfully on ferrofluids with a known size distribution. • The practical limits of the method are explored with simulated data including noise. • This method is implemented in the program MINORIM, freely available online

  15. The luminosity of galactic components and morphological segregation

    International Nuclear Information System (INIS)

    Solanes, J. M.; Salvador-Sole, E.; Sanroma, M.

    1989-01-01

    The luminosities of the bulge and disk components of disk galaxies are analyzed, and the possible correlation of these luminosities with morphological type and local density is explored. Galaxies of different types are found to be located in distinct bands in the bulge-to-disk luminosity ratio vs total luminosity diagram, allowing the determination of the typical bulge luminosity function of disk galaxies of different types from their respective total luminosity functions, along with a better characterization of morphological segregation among disk galaxies. No evidence for any bulge luminosity segregation is found, and disks appear to be less luminous with increasing local density. 33 refs

  16. Testing the nature of the supermassive black hole candidate in SgrA* with light curves and images of hot spots

    International Nuclear Information System (INIS)

    Li, Zilong; Kong, Lingyao; Bambi, Cosimo

    2014-01-01

    General relativity makes clear predictions about the spacetime geometry around black holes. In the near future, new facilities will have the capability to explore the metric around SgrA*, the supermassive black hole candidate at the center of our Galaxy, and to open a new window to test the Kerr black hole hypothesis. In this paper, we compute light curves and images associated with compact emission regions (hot spots) orbiting around Kerr and non-Kerr black holes. We study how the analysis of the properties of the radiation emitted by a hot spot can be used to test the Kerr nature of SgrA*. We find that the sole observation of the hot spot light curve can at most constrain a combination of the black hole spin and of possible deviations from the Kerr solution. This happens because the same orbital frequency around a Kerr black hole can be found for a non-Kerr object with a different spin parameter. Second order corrections in the light curve due to the background geometry are typically too small to be identified. While the observation of the hot spot centroid track can potentially bound possible deviations from the Kerr solution, that is out of reach for the near future for the Very Large Telescope Interferometer instrument GRAVITY. The Kerr black hole hypothesis could really be tested in the case of the discovery of a radio pulsar in a compact orbit around SgrA*. Radio observations of such a pulsar would provide precise estimates of the mass and the spin of SgrA*, and the combination of these measurements (probing the weak field) with the hot spot light curve information (probing the strong field) may constrain/find possible deviations from the Kerr solution with quite good precision.

  17. Testing the nature of the supermassive black hole candidate in SgrA* with light curves and images of hot spots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zilong; Kong, Lingyao; Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 200433 Shanghai (China)

    2014-06-01

    General relativity makes clear predictions about the spacetime geometry around black holes. In the near future, new facilities will have the capability to explore the metric around SgrA*, the supermassive black hole candidate at the center of our Galaxy, and to open a new window to test the Kerr black hole hypothesis. In this paper, we compute light curves and images associated with compact emission regions (hot spots) orbiting around Kerr and non-Kerr black holes. We study how the analysis of the properties of the radiation emitted by a hot spot can be used to test the Kerr nature of SgrA*. We find that the sole observation of the hot spot light curve can at most constrain a combination of the black hole spin and of possible deviations from the Kerr solution. This happens because the same orbital frequency around a Kerr black hole can be found for a non-Kerr object with a different spin parameter. Second order corrections in the light curve due to the background geometry are typically too small to be identified. While the observation of the hot spot centroid track can potentially bound possible deviations from the Kerr solution, that is out of reach for the near future for the Very Large Telescope Interferometer instrument GRAVITY. The Kerr black hole hypothesis could really be tested in the case of the discovery of a radio pulsar in a compact orbit around SgrA*. Radio observations of such a pulsar would provide precise estimates of the mass and the spin of SgrA*, and the combination of these measurements (probing the weak field) with the hot spot light curve information (probing the strong field) may constrain/find possible deviations from the Kerr solution with quite good precision.

  18. LUCID A Cherenkov Tube Based Detector for Monitoring the ATLAS Experiment Luminosity

    CERN Document Server

    Sbrizzi, A

    2007-01-01

    The LUCID (LUminosity Cherenkov Integrating Detector) apparatus is composed by two symmetric arms deployed at about 17 m from the ATLAS interaction point. The purpose of this detector, which will be installed in january 2008, is to monitor the luminosity delivered by the LHC machine to the ATLAS experiment. An absolute luminosity calibration is needed and it will be provided by a Roman Pot type detector with the two arms placed at about 240 m from the interaction point. Each arm of the LUCID detector is based on an aluminum vessel containing 20 Cherenkov tubes, 15 mm diameter and 1500 mm length, filled with C4F10 radiator gas at 1.5 bar. The Cherenkov light generated by charged particles above the threshold is collected by photomultiplier tubes (PMT) directly placed at the tubes end. The challenging aspect of this detector is its readout in an environment characterized by the high dose of radiation (about 0.7 Mrad/year at 10^33cm^2 s^-1) it must withstand. In order to fulfill these radiation hardness requirem...

  19. Light Curve and SED Modeling of the Gamma-Ray Binary 1FGL J1018.6–5856: Constraints on the Orbital Geometry and Relativistic Flow

    Energy Technology Data Exchange (ETDEWEB)

    An, Hongjun; Romani, Roger W., E-mail: hjan@chungbuk.ac.kr [Department of Physics/KIPAC, Stanford University, Stanford, CA 94305-4060 (United States)

    2017-04-01

    We present broadband spectral energy distributions and light curves of the gamma-ray binary 1FGL J1018.6−5856 measured in the X-ray and the gamma-ray bands. We find that the orbital modulation in the low-energy gamma-ray band is similar to that in the X-ray band, suggesting a common spectral component. However, above a GeV the orbital light curve changes significantly. We suggest that the GeV band contains significant flux from a pulsar magnetosphere, while the X-ray to TeV light curves are dominated by synchrotron and Compton emission from an intrabinary shock (IBS). We find that a simple one-zone model is inadequate to explain the IBS emission, but that beamed Synchrotron-self Compton radiation from adiabatically accelerated plasma in the shocked pulsar wind can reproduce the complex multiband light curves, including the variable X-ray spike coincident with the gamma-ray maximum. The model requires an inclination of ∼50° and an orbital eccentricity of ∼0.35, consistent with the limited constraints from existing optical observations. This picture motivates searches for pulsations from the energetic young pulsar powering the wind shock.

  20. NEAR-INFRARED LIGHT CURVES OF THE BROWN DWARF ECLIPSING BINARY 2MASS J05352184-0546085: CAN SPOTS EXPLAIN THE TEMPERATURE REVERSAL?

    International Nuclear Information System (INIS)

    Gomez Maqueo Chew, Yilen; Stassun, Keivan G.; Prsa, Andrej; Mathieu, Robert D.

    2009-01-01

    We present near-infrared JHK S light curves for the double-lined eclipsing binary system Two Micron All Sky Survey J05352184 - 0546085, in which both components have been shown to be brown dwarfs with an age of ∼1 Myr. We analyze these light curves together with the previously published I C -band light curve and radial velocities to provide refined measurements of the system's physical parameters. The component masses and radii are here determined with an accuracy of ∼6.5% and ∼1.5%, respectively. In addition, we confirm the previous surprising finding that the primary brown dwarf has a cooler effective temperature than its lower mass companion. Next, we perform a detailed study of the residual variations in the out-of-eclipse phases of the light curves to ascertain the properties of any inhomogeneities (e.g., spots) on the surfaces of the brown dwarfs. Our analysis reveals two low-amplitude (∼0.02 mag) periodic signals, one attributable to the rotation of the primary with a period of 3.293 ± 0.001 d and the other to the rotation of the secondary with a period of 14.05 ± 0.05 d. Both periods are consistent with the measured vsin i and radii. Finally, we explore the effects on the derived physical parameters of the system when spots are included in the modeling of the light curves. The observed low-amplitude rotational modulations are well fitted by cool spots covering a small fraction (∼<10%) of the brown dwarfs' surfaces. Such small spots negligibly affect the physical properties of the brown dwarfs, and thus by themselves cannot explain the primary's unexpectedly low surface temperature. To mimic the observed ∼200 K suppression of the primary's temperature, our model requires that the primary possesses a very large spot coverage fraction of ∼65%. These spots must in addition be symmetrically distributed on the primary's surface so as not to produce photometric variations larger than observed. Altogether, a spot configuration in which the primary

  1. Luminosity lifetime in the Tevatron

    International Nuclear Information System (INIS)

    Jackson, G.; Finley, D.; Johnson, R.P.; Kerns, Q.; McCarthy, J.; Siemann, R.; Zhang, P.

    1988-01-01

    Since the inauguration of colliding proton-antiproton operations in 1987, the Tevatron has exhibited luminosity lifetimes shorter than expected. During a typical colliding beam storage period, called a store, luminosity is calculated periodically by measuring the charge and emittances of each bunch. The growth of the transverse bunch emittances is the dominant cause of luminosity deterioration. Throughout, this period, the position spectrum of the bunches exhibited betatron signals larger than expected from Schottky noise. A model assuming externally driven betatron oscillations explains both the betatron signals and the emittance growth. A program is underway to improve the Tevatron luminosity lifetime. The abort kickers have been identified as sources of emittance growth, and some quadrupole power supplies are further candidates. Because the horizontal dispersion through the RF cavities is nonzero, RF phase noise has been investigated. Noise in the main dipole regulation circuit has also been studied. 13 refs., 4 figs

  2. Supervised detection of anomalous light curves in massive astronomical catalogs

    International Nuclear Information System (INIS)

    Nun, Isadora; Pichara, Karim; Protopapas, Pavlos; Kim, Dae-Won

    2014-01-01

    The development of synoptic sky surveys has led to a massive amount of data for which resources needed for analysis are beyond human capabilities. In order to process this information and to extract all possible knowledge, machine learning techniques become necessary. Here we present a new methodology to automatically discover unknown variable objects in large astronomical catalogs. With the aim of taking full advantage of all information we have about known objects, our method is based on a supervised algorithm. In particular, we train a random forest classifier using known variability classes of objects and obtain votes for each of the objects in the training set. We then model this voting distribution with a Bayesian network and obtain the joint voting distribution among the training objects. Consequently, an unknown object is considered as an outlier insofar it has a low joint probability. By leaving out one of the classes on the training set, we perform a validity test and show that when the random forest classifier attempts to classify unknown light curves (the class left out), it votes with an unusual distribution among the classes. This rare voting is detected by the Bayesian network and expressed as a low joint probability. Our method is suitable for exploring massive data sets given that the training process is performed offline. We tested our algorithm on 20 million light curves from the MACHO catalog and generated a list of anomalous candidates. After analysis, we divided the candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts were principally due to air mass variation, seasonal variation, bad calibration, or instrumental errors and were consequently removed from our outlier list and added to the training set. After retraining, we selected about 4000 objects, which we passed to a post-analysis stage by performing a cross-match with all publicly available catalogs. Within these candidates we identified certain known

  3. Supervised Detection of Anomalous Light Curves in Massive Astronomical Catalogs

    Science.gov (United States)

    Nun, Isadora; Pichara, Karim; Protopapas, Pavlos; Kim, Dae-Won

    2014-09-01

    The development of synoptic sky surveys has led to a massive amount of data for which resources needed for analysis are beyond human capabilities. In order to process this information and to extract all possible knowledge, machine learning techniques become necessary. Here we present a new methodology to automatically discover unknown variable objects in large astronomical catalogs. With the aim of taking full advantage of all information we have about known objects, our method is based on a supervised algorithm. In particular, we train a random forest classifier using known variability classes of objects and obtain votes for each of the objects in the training set. We then model this voting distribution with a Bayesian network and obtain the joint voting distribution among the training objects. Consequently, an unknown object is considered as an outlier insofar it has a low joint probability. By leaving out one of the classes on the training set, we perform a validity test and show that when the random forest classifier attempts to classify unknown light curves (the class left out), it votes with an unusual distribution among the classes. This rare voting is detected by the Bayesian network and expressed as a low joint probability. Our method is suitable for exploring massive data sets given that the training process is performed offline. We tested our algorithm on 20 million light curves from the MACHO catalog and generated a list of anomalous candidates. After analysis, we divided the candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts were principally due to air mass variation, seasonal variation, bad calibration, or instrumental errors and were consequently removed from our outlier list and added to the training set. After retraining, we selected about 4000 objects, which we passed to a post-analysis stage by performing a cross-match with all publicly available catalogs. Within these candidates we identified certain known

  4. Study on the transmission efficiency of curved neutron guide

    International Nuclear Information System (INIS)

    Wang Hongli; Zhang Li; Guo Liping; Yang Tonghua; Zhao Zhixiang

    2004-01-01

    Monte-Carlo simulation program NGT2002 is used to study the transmission efficiency of curved neutron guide from character wavelength, film reflectivity, film material, geometry adjustment error, gap between guides and guide fabricate error, the authors get the transmission efficiency curves of the Ni, supper mirror curved neutron guides, also we have a discuss of how to choose the curved neutron guide's character wavelength. By the simulation results, the authors determine the proper film reflectivity value, guide horizontal geometry adjustment error range, optimized gap value between guide elements and guide width fabricate geometry error range. (authors)

  5. The Effect of an Offset Polar Cap Dipolar Magnetic Field on the Modeling of the Vela Pulsar's Gamma-Ray Light Curves

    Science.gov (United States)

    Barnard, M.; Venter, C.; Harding, A. K.

    2016-01-01

    We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter epsilon), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to epsilon equals 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle alpha equals 78 plus or minus 1 degree and observer angle zeta equals 69 plus 2 degrees or minus 1 degree. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of epsilon are favored for the offset-PC dipole field when assuming constant emissivity, and larger epsilon values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with alpha and zeta being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes.

  6. On the type Ia supernovae 2007on and 2011iv: evidence for Chandrasekhar-mass explosions at the faint end of the luminosity-width relationship

    Science.gov (United States)

    Ashall, C.; Mazzali, P. A.; Stritzinger, M. D.; Hoeflich, P.; Burns, C. R.; Gall, C.; Hsiao, E. Y.; Phillips, M. M.; Morrell, N.; Foley, Ryan J.

    2018-06-01

    Radiative transfer models of two transitional type Ia supernovae (SNe Ia) have been produced using the abundance stratification technique. These two objects - designated SN 2007on and SN 2011iv - both exploded in the same galaxy, NGC 1404, which allows for a direct comparison. SN 2007on synthesized 0.25 M_{⊙} of 56Ni and was less luminous than SN 2011iv, which produced 0.31 M_{⊙} of 56Ni. SN 2007on had a lower central density (ρc) and higher explosion energy (Ekin ˜1.3 ± 0.3 × 1051erg) than SN 2011iv, and it produced less nuclear statistical equilibrium (NSE) elements (0.06 M_{⊙}). Whereas, SN 2011iv had a larger ρc, which increased the electron capture rate in the lowest velocity regions, and produced 0.35 M_{⊙} of stable NSE elements. SN 2011iv had an explosion energy of ˜Ekin ˜0.9 ± 0.2 × 1051erg. Both objects had an ejecta mass consistent with the Chandrasekhar mass (Ch-mass), and their observational properties are well described by predictions from delayed-detonation explosion models. Within this framework, comparison to the sub-luminous SN 1986G indicates SN 2011iv and SN 1986G have different transition densities (ρtr) but similar ρc. Whereas SN 1986G and SN 2007on had a similar ρtr but different ρc. Finally, we examine the colour-stretch parameter sBV versus Lmax relation and determine that the bulk of SNe Ia (including the sub-luminous ones) are consistent with Ch-mass delayed-detonation explosions, where the main parameter driving the diversity is ρtr. We also find ρc to be driving the second-order scatter observed at the faint end of the luminosity-width relationship.

  7. CLIC Luminosity Monitoring

    CERN Document Server

    Apyan, Armen; Gschwendtner, Edda; Lefevre, Thibault; Tygier, Sam; Appleby, Robert B

    2012-01-01

    The CLIC post-collision line is designed to transport the un-collided beams and the products of the collided beams with a total power of 14 MW to the main beam dump. Luminosity monitoring for CLIC is based on high energy muons produced by beamstrahlung photons in the main dump. Threshold Cherenkov counters are proposed for the detection of these muons. The expected rates and layout for these detectors is presented. Another method for luminosity monitoring is to directly detect the beamstrahlung photons in the post-collision line. Full Monte Carlo simulation has been performed to address its feasibility.

  8. Characterizing high-energy light curves of Fermi/Lat GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, Jarred [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-21

    A systematic analysis of the light curves of Gamma-Ray Burst (GRBs) with redshift and detected at high-energy (> 100 MeV) by Fermi/LAT has never been done before our work, because there were only a handful of detections. Now we have 20 of those, which we can use to characterize the GRBs in their rest frame. We compared a characteristic decay times Tc of GRBs with redshifts using the new “Pass 8” data, and used a Crystal Ball function to parametrize GRB characteristics. An unexpected anti-correlation between Tc and the peak flux was observed. This means that brighter peaked GRBs have shorter durations. There is also no correlation between the Tc and the decay index, which makes the anti-correlation with brightness more clear. This results appears to be consistent with the External Shock model, which is one of the competing hypothesis on the origin of the high-energy emission. We did not observe any bimodality, which is seen in GRBs at lower energies.

  9. Vaporization of comet nuclei: Light curves and life times

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, J J [Harvard Univ., Cambridge, MA (USA). Center for Astrophysics; A' Hearn, M F [Maryland Univ., College Park (USA)

    1979-10-01

    The authors have examined the effects of vaporization from the nucleus of a comet and show that a latitude dependence of vaporization can, in some cases, explain asymmetries in commetary light curves. They also find that a non-uniform distribution of solar radiation over a comet can considerably shorten the vaporization lifetime compared to the results normally obtained by assuming that the nuclear surface is isothermal. Independent of any latitude effects, comets with CO/sub 2/-dominated nuclei and with periherlion distances less than 0.5 AU have vaporization lifetimes less than or comparable to their dynamical ejection times. This may explain the observed deficit of comets with small perihelion distances. Similarly comets with CO/sub 2/-dominated nuclei and perihelia near Jupiter's orbit have vaporization lifetimes that are shorter than the time for capture into short-period orbits. They suggest, therefore, that at least some new comets are composed in large part of CO/sub 2/, while only H/sub 2/O-dominated comets, with lower vaporization rates, can survive to be captured into short-period orbits.

  10. "TNOs are Cool": A survey of the trans-Neptunian region. XII. Thermal light curves of Haumea, 2003 VS2 and 2003 AZ84 with Herschel/PACS

    Science.gov (United States)

    Santos-Sanz, P.; Lellouch, E.; Groussin, O.; Lacerda, P.; Müller, T. G.; Ortiz, J. L.; Kiss, C.; Vilenius, E.; Stansberry, J.; Duffard, R.; Fornasier, S.; Jorda, L.; Thirouin, A.

    2017-08-01

    Context. Time series observations of the dwarf planet Haumea and the Plutinos 2003 VS2 and 2003 AZ84 with Herschel/PACS are presented in this work. Thermal emission of these trans-Neptunian objects (TNOs) were acquired as part of the "TNOs are Cool" Herschel Space Observatory key programme. Aims: We search for the thermal light curves at 100 and 160 μm of Haumea and 2003 AZ84, and at 70 and 160 μm for 2003 VS2 by means of photometric analysis of the PACS data. The goal of this work is to use these thermal light curves to obtain physical and thermophysical properties of these icy Solar System bodies. Methods: When a thermal light curve is detected, it is possible to derive or constrain the object thermal inertia, phase integral and/or surface roughness with thermophysical modeling. Results: Haumea's thermal light curve is clearly detected at 100 and 160 μm. The effect of the reported dark spot is apparent at 100 μm. Different thermophysical models were applied to these light curves, varying the thermophysical properties of the surface within and outside the spot. Although no model gives a perfect fit to the thermal observations, results imply an extremely low thermal inertia (0.73) for Haumea's surface. We note that the dark spot region appears to be only weakly different from the rest of the object, with modest changes in thermal inertia and/or phase integral. The thermal light curve of 2003 VS2 is not firmly detected at 70 μm and at 160 μm but a thermal inertia of (2 ± 0.5) MKS can be derived from these data. The thermal light curve of 2003 AZ84 is not firmly detected at 100 μm. We apply a thermophysical model to the mean thermal fluxes and to all the Herschel/PACS and Spitzer/MIPS thermal data of 2003 AZ84, obtaining a close to pole-on orientation as the most likely for this TNO. Conclusions: For the three TNOs, the thermal inertias derived from light curve analyses or from the thermophysical analysis of the mean thermal fluxes confirm the generally small

  11. Energy scaling of the "heartbeat" pulse width of GRS 1915+105, IGR J17091-3624, and MXB 1730-335 from Rossi-XTE observations

    Science.gov (United States)

    Maselli, A.; Capitanio, F.; Feroci, M.; Massa, F.; Massaro, E.; Mineo, T.

    2018-04-01

    We investigate some key aspects of the "heartbeat" variability consisting of series of bursts with a slow rise and a fast decay, thus far detected only in GRS 1915+105, IGR J17091-3624, and MXB 1730-335. A previous analysis based on BeppoSAX data of GRS 1915+105 revealed a hard-X delay (HXD), that is a lag of the burst rise at higher energies with respect to lower ones; this leads to narrower pulse widths, w, at higher energies. We here use some light curves of Rossi-XTE observations of GRS 1915+105 for a deeper analysis of this effect and search for its presence in those extracted from some IGR J17091-3624 and MXB 1730-335 observations performed with the same satellite. Our results show that, at variance with GRS 1915+105, no HXD is evident in the light curves of MXB 1730-335 and only a marginal HXD may be argued for IGR J17091-3624. For GRS 1915+105 we find a decreasing trend of the pulse width with energy following a power law w = A ṡ E-s with an index s ≈ 0.8. Furthermore, we confirm the increase of the HXD with the recurrence time Trec of the bursts in each series that was already found in previous works using BeppoSAX data. Based on a spectral analysis of these three sources we conclude that the differences highlighted in the properties of the "heartbeat" variability are probably related to the different accreting compact object and the eventual presence of a corona in these binary interacting systems.

  12. Photometric light curves for ten rapidly rotating stars in Alpha Persei, the Pleiades, and the field

    Science.gov (United States)

    Prosser, Charles F.; Schild, Rudolph E.; Stauffer, John R.; Jones, Burton F.

    1993-01-01

    We present the results from a photometric monitoring program of ten rapidly rotating stars observed during 1991 using the FLWO 48-in. telescope. Brightness variations for an additional six cluster stars observed with the Lick 40-in. telescope are also given. The periods and light curves for seven Alpha Persei members, two Pleiades members, and one naked T Tauri field star are reported.

  13. Dissolution glow curve in LLD

    International Nuclear Information System (INIS)

    Haverkamp, U.; Wiezorek, C.; Poetter, R.

    1990-01-01

    Lyoluminescence dosimetry is based upon light emission during dissolution of previously irradiated dosimetric materials. The lyoluminescence signal is expressed in the dissolution glow curve. These curves begin, depending on the dissolution system, with a high peak followed by an exponentially decreasing intensity. System parameters that influence the graph of the dissolution glow curve, are, for example, injection speed, temperature and pH value of the solution and the design of the dissolution cell. The initial peak does not significantly correlate with the absorbed dose, it is mainly an effect of the injection. The decay of the curve consists of two exponential components: one fast and one slow. The components depend on the absorbed dose and the dosimetric materials used. In particular, the slow component correlates with the absorbed dose. In contrast to the fast component the argument of the exponential function of the slow component is independent of the dosimetric materials investigated: trehalose, glucose and mannitol. The maximum value, following the peak of the curve, and the integral light output are a measure of the absorbed dose. The reason for the different light outputs of various dosimetric materials after irradiation with the same dose is the differing solubility. The character of the dissolution glow curves is the same following irradiation with photons, electrons or neutrons. (author)

  14. SDSS J14584479+3720215: A BENCHMARK JHK{sub S} BLAZAR LIGHT CURVE FROM THE 2MASS CALIBRATION SCANS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Ruan, John J.; Becker, Andrew C. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Macleod, Chelsea L. [Physics Department, The United States Naval Academy, 572c Holloway Road, Annapolis, MD 21402 (United States); Cutri, Roc M., E-mail: jrad@astro.washington.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-04-10

    Active galactic nuclei (AGNs) are well-known to exhibit flux variability across a wide range of wavelength regimes, but the precise origin of the variability at different wavelengths remains unclear. To investigate the relatively unexplored near-IR (NIR) variability of the most luminous AGNs, we conduct a search for variability using well sampled JHK{sub s}-band light curves from the Two Micron All Sky Survey (2MASS) calibration fields. Our sample includes 27 known quasars with an average of 924 epochs of observation over three years, as well as one spectroscopically confirmed blazar (SDSS J14584479+3720215) with 1972 epochs of data. This is the best-sampled NIR photometric blazar light curve to date, and it exhibits correlated, stochastic variability that we characterize with continuous auto-regressive moving average (CARMA) models. None of the other 26 known quasars had detectable variability in the 2MASS bands above the photometric uncertainty. A blind search of the 2MASS calibration field light curves for active galactic nucleus (AGN) candidates based on fitting CARMA(1,0) models (damped-random walk) uncovered only seven candidates. All seven were young stellar objects within the ρ Ophiuchus star forming region, five with previous X-ray detections. A significant γ-ray detection (5σ) for the known blazar using 4.5 yr of Fermi photon data is also found. We suggest that strong NIR variability of blazars, such as seen for SDSS J14584479+3720215, can be used as an efficient method of identifying previously unidentified γ-ray blazars, with low contamination from other AGNs.

  15. The eight superconducting quadrupoles for the ISR high-luminosity insertion

    International Nuclear Information System (INIS)

    Billan, J.; Henrichsen, K.N.; Laeger, H.; Lebrun, Ph.; Perin, R.; Pichler, S.; Pugin, P.; Resegotti, L.; Rohmig, P.; Tortschanoff, T.; Verdier, A.; Walckiers, L.; Wolf, R.

    1980-01-01

    Eight superconducting quadrupoles for a high-luminosity insertion in the ISR have been produced by industrial firms according to CERN design and manufacturing specifications, and assembled and tested at CERN. The horizontal cylindrical cryostats, which contain windings and steel yoke in a boiling helium bath, have a 173 mm warm bore. For 31 GeV beam energy, the maximum operating gradient on the quadrupole axis is 43 T m -1 and the maximum field in the windings is 5.5 T. Sextupole windings provide a linear variation of the gradient of up to 4 % over the bore width and dodecapole windings trim the field pattern as a function of excitation. This paper reports about production history, acceptance tests, and performance. The results of magnetic measurements are also summarized. The insertion will be installed into the ISR as from August 1980. (Auth.)

  16. Measurement of the W boson Mass and Width in $e^{+}e^{-}$ Collisions at LEP

    CERN Document Server

    Schael, S; Brunelière, R; De Bonis, I; Décamp, D; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Barklow, T; Buchmüller, O L; Cattaneo, M; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Teubert, F; Valassi, A; Videau, I; Badaud, F; Dessagne, S; Falvard, A; Fayolle, D; Gay, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Pascolo, J M; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, E; Vayaki, A; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F; Rougé, A; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Thompson, A S; Wasserbaech, S; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Cameron, W; Davies, G; Dornan, P J; Girone, M; Marinelli, N; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Sloan, T; Smizanska, M; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Blumenschein, U; Hölldorfer, F; Jakobs, K; Kayser, F; Müller, A S; Renk, B; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Coyle, P; Curtil, C; Ealet, A; Fouchez, D; Payre, P; Tilquin, A; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, R; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Serin, L; Veillet, J J; Azzurri, P; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, F; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Spagnolo, P; Tenchini, R; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D E; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Trabelsi, A; Tuchming, B; Vallage, B; Litke, A M; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, C; Hess, J; Ngac, A; Prange, G; Borean, C; Giannini, G; He, H; Pütz, J; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu, S L; Wu, X; Zobernig, G; Dissertori, G

    2006-01-01

    The mass of the W boson is determined from the direct reconstruction of its decays into purely hadronic and semi-leptonic events in e+e- collisions at LEP. The data sample corresponds to an integrated luminosity of 683 inverse picobarns collected with the ALEPH detector at centre-of-mass energies up to 209 GeV. To minimise any effect from colour reconnection a new procedure is adopted in which low energy particles are not considered in the mass determination from the purely hadronic channel. The combined result from all channels is Mw = 80.440+-0.043(stat.)+-0.024(syst.)+-0.009(FSI)+-0.009(LEP) GeV/c**2 where FSI represents the possible effects of final state interactions in the purely hadronic channel. From two-parameter fits to the W mass and width, the W width is found to be Gw = 2.14+-0.09(stat.)+-0.04(syst.)+-0.05(FSI)+-0.01(LEP) GeV

  17. Online luminosity measurement at BES III

    International Nuclear Information System (INIS)

    Song Wenbo; Fu Chengdong; Mo Xiaohu; He Kanglin; Zhu Kejun; Li Fei; Zhao Shujun

    2010-01-01

    As a crucial parameter of both accelerator and detector, the realization of online luminosity measurement is of great importance. Several methods of luminosity measurement are recapitulated and the emphasis is laid on the algorithm of using e + e - and γγ final states. Taking into account the status at the beginning of the joint commissioning of detector and accelerator, the information from end cap electromagnetic calorimeter is used to select the good event. With the help of online Event filter, the luminosity is calculated and the monitoring of online cross section of hadron is realized. The preliminary results indicate that the online luminosity measurement is stable and its role for machine tuning and monitoring of the overall running status is indispensable. (authors)

  18. ISOTROPIC LUMINOSITY INDICATORS IN A COMPLETE AGN SAMPLE

    International Nuclear Information System (INIS)

    Diamond-Stanic, Aleksandar M.; Rieke, George H.; Rigby, Jane R.

    2009-01-01

    The [O IV] λ25.89 μm line has been shown to be an accurate indicator of active galactic nucleus (AGN) intrinsic luminosity in that it correlates well with hard (10-200 keV) X-ray emission. We present measurements of [O IV] for 89 Seyfert galaxies from the unbiased revised Shapley-Ames (RSA) sample. The [O IV] luminosity distributions of obscured and unobscured Seyferts are indistinguishable, indicating that their intrinsic AGN luminosities are quite similar and that the RSA sample is well suited for tests of the unified model. In addition, we analyze several commonly used proxies for AGN luminosity, including [O III] λ5007 A, 6 cm radio, and 2-10 keV X-ray emission. We find that the radio luminosity distributions of obscured and unobscured AGNs show no significant difference, indicating that radio luminosity is a useful isotropic luminosity indicator. However, the observed [O III] and 2-10 keV luminosities are systematically smaller for obscured Seyferts, indicating that they are not emitted isotropically.

  19. MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Bergmann, Benedikt; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel [IEAP CTU in Prague (Czech Republic); Ashba, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Bekhouche, Khaled [Biskra University (Algeria); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Lipniacka, Anna [Bergen University (Norway)

    2016-07-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s) =8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX luminosity measurements are below 0.3% for one minute intervals.

  20. Theoretical light curve for the recurrent nova RS Ophiuchi - Determination of the white dwarf mass, composition, and distance

    International Nuclear Information System (INIS)

    Kato, M.

    1991-01-01

    Sequences of steady mass-loss solutions are constructed for the envelopes on a white dwarf with mass 1.33, 1.35, 1.36, 1.37, and 1.377 solar mass as models of the decay phase of novae. The envelopes are assumed to have a uniform chemical composition with X = 0.73, 0.6, 0.52, 0.44, 0.33, and 0.11 for hydrogen and Z = 0.02 for heavy elements by weight. An excellent agreement with the observed light curves of UV and optical is obtained in the models with a white dwarf mass of 1.36 solar mass with hydrogen content X = 0.52, and 1.37 solar mass with X = 0.6. The distance of RS Oph is obtained to be 1.6 kpc from the comparison between the theoretical and observed light curves. The success of this wind model is a strong indication from the theoretical point of view that RS Oph is a thermonuclear runaway event. 31 refs

  1. Diagnostic capability of optic nerve head rim width and retinal nerve fiber thickness in open-angle glaucoma.

    Science.gov (United States)

    Di Staso, Silvio; Agnifili, Luca; Di Staso, Federico; Climastone, Hilary; Ciancaglini, Marco; Scuderi, Gian Luca

    2018-03-01

    This study was performed to test the diagnostic capability of the minimum rim width compared to peripapillary retinal nerve fiber layer thickness in patients with glaucoma. A case control, observer masked study, was conducted. Minimum rim width and retinal nerve fiber layer thickness were assessed using the patient-specific axis traced between fovea-to-Bruch's membrane opening center axis. For both minimum rim width and retinal nerve fiber layer thickness, the regionalization in six sectors (nasal, superior-nasal, superior-temporal, temporal, inferior-temporal, and inferior-nasal) was analyzed. Eyes with at least one sector with value below the 5% or 1% normative limit of the optical coherence tomography normative database were classified as glaucomatous. The area under the receiver operator characteristic curve, the accuracy, sensitivity, specificity, and predictive positive and negative values were calculated for both minimum rim width and retinal nerve fiber layer thickness. A total of 118 eyes of 118 Caucasian subjects (80 eyes with open-angle glaucoma and 38 control eyes) were enrolled in the study. Accuracy, sensitivity, and specificity were 79.7%, 77.5%, and 84.2%, respectively, for minimum rim width and 84.7%, 82.5%, and 89.5% for retinal nerve fiber layer thickness. The positive predictive values were 0.91% and 0.94% for minimum rim width and retinal nerve fiber layer thickness, respectively, whereas the negative predictive values were 0.64% and 0.70%. The area under the receiver operator characteristic curve was 0.892 for minimum rim width and 0.938 for retinal nerve fiber layer thickness. Our results indicated that the sector analysis based on Bruch's membrane opening and fovea to disk alignment is able to detect glaucomatous defects, and that Bruch's membrane opening minimum rim width and retinal nerve fiber layer thickness showed equivalent diagnostic ability.

  2. VizieR Online Data Catalog: SNe II light curves & spectra from the CfA (Hicken+, 2017)

    Science.gov (United States)

    Hicken, M.; Friedman, A. S.; Blondin, S.; Challis, P.; Berlind, P.; Calkins, M.; Esquerdo, G.; Matheson, T.; Modjaz, M.; Rest, A.; Kirshner, R. P.

    2018-01-01

    Since all of the optical photometry reported here was produced as part of the CfA3 and CfA4 processing campaigns, see Hicken+ (2009, J/ApJ/700/331) and Hicken+ (2012, J/ApJS/200/12) for greater details on the instruments, observations, photometry pipeline, calibration, and host-galaxy subtraction used to create the CfA SN II light curves. (8 data files).

  3. Light-curve Modulation of Low-mass Stars in K2. I. Identification of 481 Fast Rotators in the Solar Neighborhood

    Science.gov (United States)

    Saylor, Dicy; Lepine, Sebastien; Crossfield, Ian; Petigura, Erik A.

    2018-01-01

    The K2 mission is targeting large numbers of nearby (d 40 mas yr‑1, V < 20). Additionally, the mission is targeting low-mass, high proper motion stars associated with the local (d < 500 pc) Galactic halo population also selected from SUPERBLINK. K2 campaigns 0 through 8 monitored a total of 26,518 of these cool main-sequence stars. We used the auto-correlation function to search for fast rotators by identifying short-period photometric modulations in the K2 light curves. We identified 481 candidate fast rotators with rotation periods <4 days that show light-curve modulations consistent with starspots. Their kinematics show low average transverse velocities, suggesting that they are part of the young disk population. A subset (13) of the fast rotators is found among those targets with colors and kinematics consistent with the local Galactic halo population and may represent stars spun up by tidal interactions in close binary systems. We further demonstrate that the M dwarf fast rotators selected from the K2 light curves are significantly more likely to have UV excess and discuss the potential of the K2 mission to identify new nearby young GKM dwarfs on the basis of their fast rotation rates. Finally, we discuss the possible use of local halo stars as fiducial, non-variable sources in the Kepler fields.

  4. SOAP-T: a tool to study the light curve and radial velocity of a system with a transiting planet and a rotating spotted star

    Science.gov (United States)

    Oshagh, M.; Boisse, I.; Boué, G.; Montalto, M.; Santos, N. C.; Bonfils, X.; Haghighipour, N.

    2013-01-01

    We present an improved version of SOAP named "SOAP-T", which can generate the radial velocity variations and light curves for systems consisting of a rotating spotted star with a transiting planet. This tool can be used to study the anomalies inside transit light curves and the Rossiter-McLaughlin effect, to better constrain the orbital configuration and properties of planetary systems and the active zones of their host stars. Tests of the code are presented to illustrate its performance and to validate its capability when compared with analytical models and real data. Finally, we apply SOAP-T to the active star, HAT-P-11, observed by the NASA Kepler space telescope and use this system to discuss the capability of this tool in analyzing light curves for the cases where the transiting planet overlaps with the star's spots. The tool's public interface is available at http://www.astro.up.pt/resources/soap-t/

  5. KECK SPECTROSCOPY OF LYMAN-BREAK GALAXIES AND ITS IMPLICATIONS FOR THE UV-CONTINUUM AND Lyα LUMINOSITY FUNCTIONS AT z > 6

    International Nuclear Information System (INIS)

    Jiang Linhua; Egami, Eiichi; Walth, Gregory; Kashikawa, Nobunari; Matsuda, Yuichi; Shimasaku, Kazuhiro; Nagao, Tohru; Ota, Kazuaki; Ouchi, Masami

    2011-01-01

    We present Keck spectroscopic observations of z > 6 Lyman-break galaxy (LBG) candidates in the Subaru Deep Field (SDF). The candidates were selected as i'-dropout objects down to z' = 27 AB magnitudes from an ultra-deep SDF z'-band image. With the Keck spectroscopy we identified 19 LBGs with prominent Lyα emission lines at 6 ≤ z ≤ 6.4. The median value of the Lyα rest-frame equivalent widths (EWs) is ∼50 Å, with four EWs >100 Å. This well-defined spectroscopic sample spans a UV-continuum luminosity range of –21.8 ≤ M UV ≤ –19.5 (0.6 ∼ 5 L* UV ) and a Lyα luminosity range of (0.3-3) × 10 43 erg s –1 (0.3-3 L* Lyα ). We derive the UV and Lyα luminosity functions (LFs) from our sample at (z) ∼ 6.2 after we correct for sample incompleteness. We find that our measurement of the UV LF is consistent with the results of previous studies based on photometric LBG samples at 5 6.

  6. Triggered lightning return stroke luminosity to 1 km in two optical bands

    Science.gov (United States)

    Carvalho, F. L.; Uman, M. A.; Jordan, D. M.; Wilkes, R.; Kotovsky, D. A.; Hare, B.

    2017-12-01

    Measured luminosity waveforms are presented and analyzed as a function of time and channel height using two types of avalanche photodiodes (APDs) for 19 triggered-lightning return strokes during summer 2016. APD type I had an optical bandwidth from 200 nm to 1,000 nm, with peak response at 600 nm (green light), and APD type II had an optical bandwidth from 400 nm to 1,000 nm with a peak response at 800 nm (red light). Ten channel heights ranging from 0 to 1 km (in 100 m increments) were observed by both types of APDs, 20 total, and measured the luminosity in vertical channel slices of approximately 3 m. For APD type I, the return stroke luminosity waveforms generally decay faster following its singular initial peak (IP) than the waveforms recorded by APD type II. APD type II waveforms often exhibit a second maxima (SM) following the IP. Although the wave shapes recorded by each APD type diverge after the IP, the risetime of the initial luminosity wave front preceding the IP for both types of APDs agrees well. The divergence in the luminosity wave shapes following the IP indicates that APD type II is capable of recording spectral lines that are excited or enhanced after the IP more effectively than APD type I. In addition, the SM/IP ratio increases as a function of channel height, indicating that the spectral range better captured by APD type II is more predominant at the top of the channel than at the bottom. Finally, because APD type II responds better to longer wavelengths than APD type I, and because the SM occurs a few microseconds after the IP (at the channel-bottom), we conjecture that the SM following the IP is a consequence of spectral lines excited during the cooling of the channel, following the initial high-temperature/pressure stage. Our data suggests that the initial optical radiation during the return stroke is dominated by ionized atomic species (e.g. four NII lines between 450 and 600 nm, better captured by APD type I) radiated at higher

  7. CORRELATION BETWEEN GROUP LOCAL DENSITY AND GROUP LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xinfa [School of Science, Nanchang University, Jiangxi 330031 (China); Yu Guisheng [Department of Natural Science, Nanchang Teachers College, Jiangxi 330103 (China)

    2012-11-10

    In this study, we investigate the correlation between group local number density and total luminosity of groups. In four volume-limited group catalogs, we can conclude that groups with high luminosity exist preferentially in high-density regions, while groups with low luminosity are located preferentially in low-density regions, and that in a volume-limited group sample with absolute magnitude limit M{sub r} = -18, the correlation between group local number density and total luminosity of groups is the weakest. These results basically are consistent with the environmental dependence of galaxy luminosity.

  8. Precision luminosity measurements at LHCb

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-12-05

    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy $\\sqrt{s}$. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for $\\sqrt{s}$ = 2.76, 7 and 8 TeV (proton-proton collisions) and for $\\sqrt{s_{NN}}$ = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at $\\sqrt{s}$ = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determin...

  9. Luminosity performance reach after LS1

    International Nuclear Information System (INIS)

    Herr, W.

    2012-01-01

    Based on past experience (2010/2011), in particular expected limitations from beam-beam effects, and taking into account the expected beam quality from the LHC injectors, the peak and integrated luminosity at top energy is discussed for different scenarios (e.g. bunch spacing, beta*). In particular it will be shown which are the key parameters to reach the nominal luminosity and it is also shown that peak luminosities two times larger than nominal (or higher) are possible. Possible test in 2012 are discussed

  10. Detector Performance and Upgrade Plans of the Pixel Luminosity Telescope for Online per-Bunch Luminosity Measurement at CMS

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors. It was installed during LS1 and has been providing luminosity measurements throughout Run 2. The online bunch-by-bunch luminosity measurement employs the "fast-or" capability of the pixel readout chip (PSI46) to quickly identify likely tracks at the full 40MHz interaction rate. In addition, the full pixel information is read out at a lower rate, allowing for more detailed offline analysis. In this talk, we will present details of the commissioning, performance and operational history of the currently installed hardware and upgrade plans for LS2.

  11. SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT

    International Nuclear Information System (INIS)

    Folatelli, Gastón; Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellón, Sergio; Roth, Miguel; Hamuy, Mario; Anderson, Joseph P.; Krzeminski, Wojtek; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E.; Prieto, José L.; Suntzeff, Nicholas B.; Krisciunas, Kevin

    2013-01-01

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of ≈0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a ≈2σ-3σ correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines

  12. SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellon, Sergio; Roth, Miguel [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Hamuy, Mario; Anderson, Joseph P. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Krzeminski, Wojtek [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Prieto, Jose L. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Ln., Princeton, NJ 08544 (United States); Suntzeff, Nicholas B.; Krisciunas, Kevin, E-mail: gaston.folatelli@ipmu.jp [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); and others

    2013-08-10

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of Almost-Equal-To 0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a Almost-Equal-To 2{sigma}-3{sigma} correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.

  13. Operational results from the LHC luminosity monitors

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, R.; Ratti, A.; Matis, H.S.; Stezelberger, T.; Turner, W.C.; Yaver, H.; Bravin, E.

    2011-03-28

    The luminosity monitors for the high luminosity regions in the LHC have been operating to monitor and optimize the luminosity since 2009. The device is a gas ionization chamber inside the neutral particle absorber 140 m from the interaction point and monitors showers produced by high energy neutral particles from the collisions. It has the ability to resolve the bunch-by-bunch luminosity as well as to survive the extreme level of radiation in the nominal LHC operation. We present operational results of the device during proton and lead ion operations in 2010 and make comparisons with measurements of experiments. The Large Hadron Collider (LHC) at CERN can accelerate proton and lead ion beams to 7 TeV and 547 TeV and produce collisions of these particles. Luminosity measures performance of the LHC and is particularly important for experiments in high luminosity interaction points (IPs), ATLAS (IP1) and CMS (IP5). To monitor and optimize the luminosities of these IPs, BRAN (Beam RAte Neutral) detectors [1, 2] have been installed and operating since the beginning of the 2009 operation [3]. A neutral particle absorber (TAN) protects the D2 separation dipole from high energy forward neutral particles produced in the collisions [4]. These neutral particles produce electromagnetic and hadronic showers inside the TAN and their energy flux is proportional to the collision rate and hence to the luminosity. The BRAN detector is an Argon gas ionization chamber installed inside the TANs on both sides of the IP1 and IP5 and monitors the relative changes in the luminosity by detecting the ionization due to these showers. When the number of collisions per bunch crossing (multiplicity) is small, the shower rate inside the TAN is also proportional to the luminosity. Hence, the detector is designed to operate by measuring either the shower rate (counting mode for low and intermediate luminosities) or the average shower flux (pulse height mode for high luminosities). The detector is

  14. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH SHORT-DURATION PERIODIC FLUX DIPS IN THEIR LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Plavchan, Peter; Carey, Sean [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); McGinnis, Pauline; Alencar, Silvia H. P. [Departamento de Física—ICEx—UFMG, Av. Antônio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil); Hillenbrand, Lynne A.; Carpenter, John [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Terebey, Susan [Department of Physics and Astronomy, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Morales-Calderón, María [Centro de Astrobiología, Dpto. de Astrofísica, INTA-CSIC, PO BOX 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); Bouvier, Jerome; Venuti, Laura [Université de Grenoble, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Hartmann, Lee; Calvet, Nuria [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105 (United States); Micela, Giusi; Flaccomio, Ettore [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134, Palermo (Italy); Song, Inseok [Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602–2451 (United States); Gutermuth, Rob, E-mail: stauffer@ipac.caltech.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2015-04-15

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow periodic flux dips. All of these stars have infrared excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHMs generally less than 1 day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected in successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard “disk-locking” models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSOs in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel-flow accretion columns arising near the inner disk wall.

  15. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH SHORT-DURATION PERIODIC FLUX DIPS IN THEIR LIGHT CURVES

    International Nuclear Information System (INIS)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Plavchan, Peter; Carey, Sean; McGinnis, Pauline; Alencar, Silvia H. P.; Hillenbrand, Lynne A.; Carpenter, John; Turner, Neal J.; Terebey, Susan; Morales-Calderón, María; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob

    2015-01-01

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow periodic flux dips. All of these stars have infrared excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHMs generally less than 1 day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected in successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard “disk-locking” models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSOs in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel-flow accretion columns arising near the inner disk wall

  16. properties and luminosity functions

    Directory of Open Access Journals (Sweden)

    Hektor Monteiro

    2007-01-01

    Full Text Available In this article, we present an investigation of a sample of 1072 stars extracted from the Villanova Catalog of Spectroscopically Identified White Dwarfs (2005 on-line version, studying their distribution in the Galaxy, their physical properties and their luminosity functions. The distances and physical properties of the white dwarfs are determined through interpolation of their (B-V or (b-y colors in model grids. The solar position relative to the Galactic plane, luminosity function, as well as separate functions for each white dwarf spectral type are derived and discussed. We show that the binary fraction does not vary significantly as a function of distance from the Galactic disk out to 100 pc. We propose that the formation rates of DA and non-DAs have changed over time and/or that DAs evolve into non-DA types. The luminosity functions for DAs and DBs have peaks possibly related to a star burst event.

  17. LUMINOSITY DISCREPANCY IN THE EQUAL-MASS, PRE-MAIN-SEQUENCE ECLIPSING BINARY PAR 1802: NON-COEVALITY OR TIDAL HEATING?

    International Nuclear Information System (INIS)

    Gómez Maqueo Chew, Yilen; Stassun, Keivan G.; Hebb, Leslie; Prša, Andrej; Stempels, Eric; Barnes, Rory; Heller, René; Mathieu, Robert D.

    2012-01-01

    Parenago 1802, a member of the ∼1 Myr Orion Nebula Cluster, is a double-lined, detached eclipsing binary in a 4.674 day orbit, with equal-mass components (M 2 /M 1 = 0.985 ± 0.029). Here we present extensive VI C JHK S light curves (LCs) spanning ∼15 yr, as well as a Keck/High Resolution Echelle Spectrometer (HIRES) optical spectrum. The LCs evince a third light source that is variable with a period of 0.73 days, and is also manifested in the high-resolution spectrum, strongly indicating the presence of a third star in the system, probably a rapidly rotating Classical T Tauri star. We incorporate this third light into our radial velocity and LC modeling of the eclipsing pair, measuring accurate masses (M 1 = 0.391 ± 0.032 and M 2 = 0.385 ± 0.032 M ☉ ), radii (R 1 = 1.73 ± 0.02 and R 2 = 1.62 ± 0.02 R ☉ ), and temperature ratio (T eff,1 /T eff,2 = 1.0924 ± 0.0017). Thus, the radii of the eclipsing stars differ by 6.9% ± 0.8%, the temperatures differ by 9.2% ± 0.2%, and consequently the luminosities differ by 62% ± 3%, despite having masses equal to within 3%. This could be indicative of an age difference of ∼3 × 10 5 yr between the two eclipsing stars, perhaps a vestige of the binary formation history. We find that the eclipsing pair is in an orbit that has not yet fully circularized, e = 0.0166 ± 0.003. In addition, we measure the rotation rate of the eclipsing stars to be 4.629 ± 0.006 days; they rotate slightly faster than their 4.674 day orbit. The non-zero eccentricity and super-synchronous rotation suggest that the eclipsing pair should be tidally interacting, so we calculate the tidal history of the system according to different tidal evolution theories. We find that tidal heating effects can explain the observed luminosity difference of the eclipsing pair, providing an alternative to the previously suggested age difference.

  18. LUMINOSITY DISCREPANCY IN THE EQUAL-MASS, PRE-MAIN-SEQUENCE ECLIPSING BINARY PAR 1802: NON-COEVALITY OR TIDAL HEATING?

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Maqueo Chew, Yilen; Stassun, Keivan G.; Hebb, Leslie [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Prsa, Andrej [Department of Astronomy and Astrophysics, Villanova University, Villanova, PA 19085 (United States); Stempels, Eric [Department of Astronomy and Space Physics, Uppsala University, SE-752 67 Uppsala (Sweden); Barnes, Rory [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Heller, Rene [Leibniz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam (Germany); Mathieu, Robert D., E-mail: yilen.gomez@vanderbilt.edu [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2012-01-20

    Parenago 1802, a member of the {approx}1 Myr Orion Nebula Cluster, is a double-lined, detached eclipsing binary in a 4.674 day orbit, with equal-mass components (M{sub 2}/M{sub 1} = 0.985 {+-} 0.029). Here we present extensive VI{sub C} JHK{sub S} light curves (LCs) spanning {approx}15 yr, as well as a Keck/High Resolution Echelle Spectrometer (HIRES) optical spectrum. The LCs evince a third light source that is variable with a period of 0.73 days, and is also manifested in the high-resolution spectrum, strongly indicating the presence of a third star in the system, probably a rapidly rotating Classical T Tauri star. We incorporate this third light into our radial velocity and LC modeling of the eclipsing pair, measuring accurate masses (M{sub 1} = 0.391 {+-} 0.032 and M{sub 2} = 0.385 {+-} 0.032 M{sub Sun }), radii (R{sub 1} = 1.73 {+-} 0.02 and R{sub 2} = 1.62 {+-} 0.02 R{sub Sun }), and temperature ratio (T{sub eff,1}/T{sub eff,2} = 1.0924 {+-} 0.0017). Thus, the radii of the eclipsing stars differ by 6.9% {+-} 0.8%, the temperatures differ by 9.2% {+-} 0.2%, and consequently the luminosities differ by 62% {+-} 3%, despite having masses equal to within 3%. This could be indicative of an age difference of {approx}3 Multiplication-Sign 10{sup 5} yr between the two eclipsing stars, perhaps a vestige of the binary formation history. We find that the eclipsing pair is in an orbit that has not yet fully circularized, e = 0.0166 {+-} 0.003. In addition, we measure the rotation rate of the eclipsing stars to be 4.629 {+-} 0.006 days; they rotate slightly faster than their 4.674 day orbit. The non-zero eccentricity and super-synchronous rotation suggest that the eclipsing pair should be tidally interacting, so we calculate the tidal history of the system according to different tidal evolution theories. We find that tidal heating effects can explain the observed luminosity difference of the eclipsing pair, providing an alternative to the previously suggested age

  19. Luminosity Monitoring in ATLAS with MPX Detectors

    CERN Document Server

    AUTHOR|(CDS)2086061

    2013-01-01

    The ATLAS-MPX detectors are based on the Medipix2 silicon devices designed by CERN for the detection of multiple types of radiation. Sixteen such detectors were successfully operated in the ATLAS detector at the LHC and collected data independently of the ATLAS data-recording chain from 2008 to 2013. Each ATLAS-MPX detector provides separate measurements of the bunch-integrated LHC luminosity. An internal consistency for luminosity monitoring of about 2% was demonstrated. In addition, the MPX devices close to the beam are sensitive enough to provide relative-luminosity measurements during van der Meer calibration scans, in a low-luminosity regime that lies below the sensitivity of the ATLAS calorimeter-based bunch-integrating luminometers. Preliminary results from these luminosity studies are presented for 2012 data taken at $\\sqrt{s}=8$ TeV proton-proton collisions.

  20. Optical light curve of GRB 121011A: a textbook for the onset of GRB afterglow in a mixture of ISM and wind-type medium

    International Nuclear Information System (INIS)

    Xin, Li-Ping; Wei, Jian-Yan; Qiu, Yu-Lei; Deng, Jin-Song; Wang, Jing; Han, Xu-Hui

    2016-01-01

    We report the optical observations of GRB 121011A by the 0.8m TNT facility at Xinglong observatory, China. The light curve of the optical afterglow shows a smooth and featureless bump during the epoch of ∼130 s and ∼5000 s with a rising index of 1.57 ± 0.28 before the break time of 539 ± 44 s, and a decaying index of about 1.29 ± 0.07 up to the end of our observations. Moreover, the X-ray light curve decays in a single power-law with a slope of about 1.51 ± 0.03 observed by XRT onboard Swift from 100 s to about 10 000 s after the burst trigger. The featureless optical light curve could be understood as an onset process under the external-shock model. The typical frequency has been below or near the optical one before the deceleration time, and the cooling frequency is located between the optical and X-ray wavelengths. The external medium density has a transition from a mixed stage of ISM and wind-type medium before the peak time to the ISM at the later phase. The joint-analysis of X-ray and optical light curves shows that the emissions from both frequencies are consistent with the prediction of the standard afterglow model without any energy injections, indicating that the central engine has stopped its activity and does not restart anymore after the prompt phase. (paper)

  1. VizieR Online Data Catalog: Lick AGN monitoring 2011: light curves (Barth+, 2015)

    Science.gov (United States)

    Barth, A. J.; Bennert, V. N.; Canalizo, G.; Filippenko, A. V.; Gates, E. L.; Greene, J. E.; Li, W.; Malkan, M. A.; Pancoast, A.; Sand, D. J.; Stern, D.; Treu, T.; Woo, J.-H.; Assef, R. J.; Bae, H.-J.; Brewer, B. J.; Cenko, S. B.; Clubb, K. I.; Cooper, M. C.; Diamond-Stanic, A. M.; Hiner, K. D.; Honig, S. F.; Hsiao, E.; Kandrashoff, M. T.; Lazarova, M. S.; Nierenberg, A. M.; Rex, J.; Silverman, J. M.; Tollerud, E. J.; Walsh, J. L.

    2015-05-01

    This project was allocated 69 nights at the Lick 3m Shane telescope, distributed between 2011 March 27 and June 13. Observations were conducted using the Kast double spectrograph (3440-5515Å on the blue side and 5410-8200Å on the red side). In order to extend our light curves for two AGNs, we also requested additional observations from other observers using the Kast spectrograph: Mrk 50 from 2011 January through March, and Zw 229-015 in June and July. For Zw 229-015, three additional observations were taken 20-23 days after the end of our main campaign. See section 3. (2 data files).

  2. Detectors and luminosity for hadron colliders

    International Nuclear Information System (INIS)

    Diebold, R.

    1983-01-01

    Three types of very high energy hadron-hadron coliders are discussed in terms of the trade-off between energy and luminosity. The usable luminosity depends both on the physics under study and the rate capabilities of the detector

  3. A Doubly-Curved Piezoelectric Composite with 1-3 Connectivity for Underwater Transducer Applications

    Science.gov (United States)

    Zhang, Yanjun; Wang, Likun; Qin, Lei; Liao, Qingwei; Zhong, Chao

    2018-03-01

    Aim to increase the horizontal and vertical beam width of the high frequency transducer simultaneously, we present a doubly-curved 1-3 piezoelectric composite element. It consists of 54% piezoelectric ceramic volume fraction and two phases polymer matrix. The finite element analysis (FEA) is used to evaluate the dynamic response of composite. Electroacoustic response in water was measured for the doubly-curved composite being considered as underwater transducer. An underwater transducer was fabricated using the doubly-curved 1-3 piezoelectric composite element. The -3 dB full angle beam width of transducer is approximately 106° and 36° in the horizontal and vertical plane respectively. Both the FEA simulations and experimental results show the potential of a broad covered area of the composite transducer in underwater environment.

  4. Stability of skyrmions on curved surfaces in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elias, R.G.; Altbir, D. [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Fonseca, J.M. [Universidade Federal de Viçosa, Departamento de Física, Avenida Peter Henry Rolfs s/n, 36570-000 Viçosa, MG (Brazil)

    2015-10-01

    We study the stability and energetics associated to skyrmions appearing as excitations on curved surfaces. Using a continuum model we show that the presence of cylindrically radial and azimuthal fields destabilize the skyrmions that appear in the absence of an external field. Weak fields generate fractional skyrmions while strong magnetic fields yield stable 2π-skyrmions, which have their widths diminished by the magnetic field strength. Under azimuthal fields vortex appears as stable state on the curved surface. - Highlights: • Stability of skyrmions on curved surfaces in the presence of a magnetic field. • Weak fields can destabilize skyrmions. • Strong magnetic fields yield the appearing of 2π-skyrmions. • The width of skyrmions is determined by the curvature and magnetic field strength. • Under azimuthal fields vortex appears as stable states.

  5. Induction of DNA-protein cross-linking in Chinese hamster cells by monochromatic 365 and 405 NM ultraviolet light

    International Nuclear Information System (INIS)

    Han, A.; Peak, M.J.; Peak, J.G.

    1984-01-01

    The survival, the induction of DNA-protein cross-linking, and the number of T4-endonuclease sensitive sites were measured in Chinese hamster cells that had been irradiated with 365 and 405 nm monochromatic light. The survival measurements show that cells are somewhat less sensitive to 405 nm light than to 365 nm light. The difference is expressed predominantly in the shoulder widths of the survival curves, whereas the slopes of the two curves are about the same. Induction of pyrimidine dimers, as indicated by the number of endonuclease-sensitive sites, after exposures that produce about 10% survival is very low at 365 nm (approx. 4 endonuclease sites per 2 x 10 8 daltons), while no dimers are detected at 405 nm. In contrast, DNA-protein cross-links are induced rather effectively at either wavelength even after exposures that result in a relatively high survival (60-20%). These measurements support the conclusion that lethality in mammalian cells after irradiations with 365 or 405 nm light is caused by a nondimer damage, possibly DNA-protein cross-links. (author)

  6. One-phase and two-phase homologous curves for coolant pumps of the pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The single-phase pump characteristics are an essential feature for operational transients studies, for example, the shut-down and start-up of pump. These parameters, in terms of the homologous curves, set up the complete performance of the pump and are input for transients and accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the single-phase and two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  7. History of the sun's luminosity, 0 to 460,000 BP, based on the geologic record in light of recent climate theory

    International Nuclear Information System (INIS)

    Viecelli, J.A.

    1980-01-01

    A solar luminosity index extending 460,000 years into the past is computed from ocean surface temperatures derived from the geologic record. It is estimated that the sun's luminosity fluctuated between 2% above to 5% below the current value over this period. The index shows pulses occurring at intervals of 75,000 to 120,000 years

  8. Optimal fractionation for the radiotherapy of tumour cells possessing wide-shouldered survival curves

    International Nuclear Information System (INIS)

    Wheldon, T.E.

    1979-01-01

    A recent publication (Zeitz, L., and McDonald, J.M., 1978, Br. J. Radiol., vol. 51, 637) has considered the use of in vitro survival curves in the evaluation of different treatment schedules. Several studies of oxygenated melanoma cell have demonstrated a wider than average shoulder width for the survival curves. It is possible that hypoxia reduces the width of this shoulder. Theoretical cell survival probabilities were calculated for each of the four treatment schedules considered by Zeitz and McDonald. The calculations were based on hypothetical survival curves for anoxic melanoma cells with the shoulder either fully retained or completely abolished. No allowance was made for either re-population or re-oxygenation. The advantage of small doses per fraction was demonstrated for both types of survival curve. Re-oxygenation during therapy could therefore mean that a non-uniform treatment schedule is the appropriate choice for this type of tumour. (U.K.)

  9. The BaBar Light Pulser System

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P

    2004-03-18

    The BABAR experiment and the PEP-II e{sup +}e{sup -} collider at SLAC in California started taking data in May 1999. The aim of the experiment is to study CP violation in the B meson system. A central part of the BABAR detector is the CsI(Tl) electromagnetic calorimeter. To make precision measurements with a calorimeter in a high luminosity environment requires that the crystals are well calibrated and continually monitored for radiation damage. However, this should not impact the total integrated luminosity. To achieve this goal a fiber-optic light pulser system was designed. The light sources chosen were xenon flash lamps. A novel light distribution method was developed using an array of graded index microlenses. Initial results from performance studies are presented.

  10. Missing mass from low-luminosity stars

    International Nuclear Information System (INIS)

    Hawkins, M.R.S.

    1986-01-01

    Results from a deep photometric survey for low-luminosity stars show a turnup to the luminosity function at faint magnitudes, and reopen the possibility that the missing mass in the solar neighbourhood is made up of stars after all. (author)

  11. A Multi-year Search for Transits of Proxima Centauri. I. Light Curves Corresponding to Published Ephemerides

    Science.gov (United States)

    Blank, David L.; Feliz, Dax; Collins, Karen A.; White, Graeme L.; Stassun, Keivan G.; Curtis, Ivan A.; Hart, Rhodes; Kielkopf, John F.; Nelson, Peter; Relles, Howard; Stockdale, Christopher; Jayawardene, Bandupriya; Pennypacker, Carlton R.; Shankland, Paul; Reichart, Daniel E.; Haislip, Joshua B.; Kouprianov, Vladimir V.

    2018-06-01

    Proxima Centauri has become the subject of intense study since the radial-velocity (RV) discovery by Anglada-Escudé et al. of a planet orbiting this nearby M dwarf every ∼11.2 days. If Proxima Centauri b transits its host star, independent confirmation of its existence is possible, and its mass and radius can be measured in units of the stellar host mass and radius. To date, there have been three independent claims of possible transit-like event detections in light curve observations obtained by the MOST satellite (in 2014–15), the Bright Star Survey Telescope telescope in Antarctica (in 2016), and the Las Campanas Observatory (in 2016). The claimed possible detections are tentative, due in part to the variability intrinsic to the host star, and in the case of the ground-based observations, also due to the limited duration of the light curve observations. Here, we present preliminary results from an extensive photometric monitoring campaign of Proxima Centauri, using telescopes around the globe and spanning from 2006 to 2017, comprising a total of 329 observations. Considering our data that coincide directly and/or phased with the previously published tentative transit detections, we are unable to independently verify those claims. We do, however, verify the previously reported ubiquitous and complex variability of the host star. We discuss possible interpretations of the data in light of the previous claims, and we discuss future analyses of these data that could more definitively verify or refute the presence of transits associated with the RV-discovered planet.

  12. The hamster clock phase-response curve from summerlike light:dark cycles and its role in daily and seasonal timekeeping.

    Science.gov (United States)

    Alleva, John J; Alleva, Frederic R

    2002-11-01

    We address the subject of entrainment of the hamster clock by the day:night cycle in summer when the sun sets after 6 PM and rises before 6 AM (nights cycles were simulated by 6 light:dark (LD) cycles with D estrus and wheel running in hamsters. The onset of estrus was observed every 4 d in the same hamsters as a phase marker of their 24 h clock. On the day before an experimental estrus, preceded and followed by control onsets, a dark period was imposed to cover a putative 6 PM-6 AM light-sensitive period (LSP). This was scanned with a light pulse (and periodic 5 sec bell alarms) lasting 5-240 min. Shifts in onset of estrus on the next day were plotted vs. the end of the light pulse for PM times ("dusk") and its onset for AM times ("dawn"). The resulting phase shifts from the six SLDs were similar, permitting their combination into a single phase-response curve (PRC) of 1605 shifts. This SLD composite PRC rose at 10:15 PM, peaked at 2 AM (81 min advanced shift), fell linearly to 5:55 AM, and then abruptly to normal at 6 AM (no shift). Peak shift was unaffected by light pulse duration or intensity, or hamster age. The SLD composite PRC lacked the 6 PM-9 PM curve of delayed shifts present in reported PRCs from LD 12 h:12 h and DD. However, a two-pulse experiment showed that all light from 6 PM to L-off was needed to block (balance) the advancing action of a 5 min morning light pulse, thereby maintaining entrainment. A working hypothesis to explain daily entrainment and seasonal fertility in the golden hamster is illustrated. A nomenclature for labeling the phases of the hamster clock (circadian time) is proposed.

  13. Luminosity enhancements at SLAC

    International Nuclear Information System (INIS)

    Coward, D.H.

    1984-04-01

    Several ideas are discussed that have been proposed to improve the luminosity at the SPEAR and PEP electron-positron storage rings and to insure good luminosity at the SLAC Linear Collider. There have been two proposals studied recently for SPEAR: a Microbeta insertion using Samarium Cobalt permanent magnets, and a Minibeta insertion using conventional quadrupole magnets. The notations Microbeta and minibeta used here are somewhat arbitrary since the front faces of the first quadrupole magnets for both insertions are at nearly the same distance from the interaction point

  14. Resolving single bubble sonoluminescence flask width

    OpenAIRE

    Arakeri, Vijay H

    1998-01-01

    Single bubble sonoluminescence (SBSL), first studied and observed by Gaitan et al., is the of light emission from a single gas bubble trapped at the pressure maximum of a resonant sound field in a liquid medium, generally water. One of the most striking aspects of SBSL was the estimated optical flash width being less than 50 picoseconds (ps)3; this upper estimate was based on the relative response of a SBSL flash in comparison to a 34 ps laser pulse using a microchannel platephotomultiplier ...

  15. Fast luminosity monitor at LEP

    International Nuclear Information System (INIS)

    Bini, C.; De Pedis, D.; De Zorzi, G.; Diambrini-Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1994-01-01

    In 1990 the LEP-5 experiment measured luminosity at LEP by detecting the single bremsstrahlung photons emitted in the e + e - collisions. In 1991 the experiment was upgraded to exploit the intrinsic high speed of the method which allows luminosity measurement of the single bunches of LEP. In this paper the LEP-5 upgrade is described and the results of a test performed are discussed. ((orig.))

  16. Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping

    Science.gov (United States)

    Sluse, D.; Tewes, M.

    2014-11-01

    The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.

  17. Wavefronts, light rays and caustic of a circular wave reflected by an arbitrary smooth curve

    International Nuclear Information System (INIS)

    Marciano-Melchor, Magdalena; Silva-Ortigoza, Ramón; Montiel-Piña, Enrique; Román-Hernández, Edwin; Santiago-Santiago, José Guadalupe; Silva-Ortigoza, Gilberto; Rosado, Alfonso; Suárez-Xique, Román

    2011-01-01

    The aim of the present work is to obtain expressions for both the wavefront train and the caustic associated with the light rays reflected by an arbitrary smooth curve after being emitted by a point light source located at an arbitrary position in the two-dimensional free space. To this end, we obtain an expression for the k-function associated with the general integral of Stavroudis to the eikonal equation that describes the evolution of the reflected light rays. The caustic is computed by using the definitions of the critical and caustic sets of the two-dimensional map that describes the evolution of an arbitrary wavefront associated with the general integral. The general results are applied to circular and parabolic mirrors. The main motivation to carry out this research is to establish, in future work, the caustic touching theorem in a two-dimensional optical medium and to study the diffraction problem by using the k-function concept. Both problems are important in the computation of the image of an arbitrary object under reflection and refraction

  18. MPX Detectors as LHC Luminosity Monitor

    CERN Document Server

    Sopczak, Andre; Asbah, Nedaa; Bergmann, Benedikt; Bekhouche, Khaled; Caforio, Davide; Campbell, Michael; Heijne, Erik; Leroy, Claude; Lipniacka, Anna; Nessi, Marzio; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Soueid, Paul; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek

    2015-01-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at sqrt(s) = 8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX lum...

  19. Altered luminosity functions for relativistically beamed objects. II - Distribution of Lorentz factors and parent populations with complex luminosity functions

    International Nuclear Information System (INIS)

    Urry, C.M.; Padovani, P.

    1991-01-01

    In a previous paper, Urry and Shafer (1984) showed that the observed luminosity function (LF) of objects that have part or all of their emission relativistically beamed was a double power law, flat at the faint end and steep at the bright end, so that the ratio of beamed sources to parents was a strong function of luminosity. These calculations are extended here for more realistic LFs required for actual tests of a unified theory of AGN. The observed LF of the beam-dominated objects is generally flatter than the parent LF, so that the number density ratio is a strong function of luminosity and can easily be greater than unity at high luminosities, even for gradual low-luminosity cutoffs in the parent LF. Several characteristic break points can be identified depending on the details of the parent LF. The calculations can be used to test unified theories by predicting the observed LF for aligned objects from the LF of the proposed parent population. 6 refs

  20. OLYMPUS luminosity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ates, Ozgur [Hampton University, Hampton, Virginia (United States); Collaboration: OLYMPUS-Collaboration

    2013-07-01

    The OLYMPUS experiment at DESY has been measuring the ratio of positron-proton and electron-proton elastic scattering cross sections to quantify the effect of two-photon exchange, which is widely considered to be responsible for the discrepancy between measurements of the proton electric to magnetic form factor ratio with the Rosenbluth and polarization transfer methods. In order to control the systematic uncertainties to the percent level, the luminosities are monitored redundantly with high precision by measuring the rates for symmetric Moller and Bhabha scattering, and by measuring the ep-elastic count rates at forward angles and low momentum transfer with tracking telescopes based on GEM (Gas Electron Multiplier) and MWPC (Multi Wire Proportional Chamber) technology. During two data taking periods, performances of GEM and MWPC luminosity monitors are presented.

  1. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Guthoff, Moritz

    2017-02-11

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A dedicated pixelated luminosity detector measures coincidences in several three-layer telescopes of silicon pixel detectors to arrive at a luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point. The upgraded fast beam conditions monitor measures the particle flux using 24 two-pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background. A new beam-halo monitor at larger radius exploits Cherenkov light produced by relativistic charged particles in fuzed quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules with high bandwidth digitizers developed in both VME and microTCA standards for per bunch beam measurements and gain monitoring. All new and upgraded sub-detectors have been taking data from the first day of LHC operation in April 2015. Results on their commissioning and essential characteristics using data since the start-up of LHC will be presented.

  2. Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Poehlsen, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Dugad, Shashikant; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Kim, Tae Jeong; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Kovalskyi, Dmytro; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Vuosalo, Carl; Woods, Nathaniel

    2014-09-07

    Constraints are presented on the total width of the recently discovered Higgs boson, Gamma_H, using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 inverse-femtobarns at a centre-of-mass energy $\\sqrt{s}$ = 7 TeV and 19.7 inverse-femtobarns at $\\sqrt{s}$ = 8 TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of $\\Gamma_H$ less than 22 MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass.

  3. Observations and light curve solutions of the eclipsing binaries USNO-B1.0 1395-0370184 and USNO-B1.0 1395-0370731

    Directory of Open Access Journals (Sweden)

    Kjurkchieva D.

    2016-01-01

    Full Text Available We present follow-up photometric observations in Sloan filters g', i' of the newly discovered eclipsing stars USNO-B1.0 1395-0370184 and USNO-B1.0 1395-0370731. Our data revealed that their orbital periods are considerably bigger than the previous values. This result changed the classification of USNO-B1.0 1395-0370184 from ultrashort-period binary (P=0.197 d to short-period system (P=0.251 d. The light curve solutions of our observations revealed that USNOB1.0 1395-0370184 and USNO-B1.0 1395-0370731 are overcontact binaries in which components are K dwarfs, close in masses and radii. The light curve distortions were reproduced by cool spots with angular radius of around 20°.

  4. Light echoes - Type II supernovae

    International Nuclear Information System (INIS)

    Schaefer, B.E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This