WorldWideScience

Sample records for lidar beam angle

  1. Multi-Beam Surface Lidar for Lunar and Planetary Mapping

    Science.gov (United States)

    Bufton, Jack L.; Garvin, James B.

    1998-01-01

    Surface lidar techniques are now being demonstrated in low Earth orbit with a single beam of pulsed laser radiation at 1064 nm that profiles the vertical structure of Earth surface landforms along the nadir track of a spacecraft. In addition, a profiling laser altimeter, called MOLA, is operating in elliptical Martian orbit and returning surface topography data. These instruments form the basis for suggesting an improved lidar instrument that employs multiple beams for extension of sensor capabilities toward the goal of true, 3-dimensional mapping of the Moon or other similar planetary surfaces. In general the lidar waveform acquired with digitization of a laser echo can be used for laser distance measurement (i.e. range-to-the-surface) by time-of-flight measurement and for surface slope and shape measurements by examining the detailed lidar waveform. This is particularly effective when the intended target is the lunar surface or another planetary body free of any atmosphere. The width of the distorted return pulse is a first order measure of the surface incidence angle, a combination of surface slope and laser beam pointing. Assuming an independent and absolute (with respect to inertial space) measurement of laser beam pointing on the spacecraft, it is possible to derive a surface slope with-respect-to the mean planetary surface or its equipotential gravity surface. Higher-order laser pulse distortions can be interpreted in terms of the vertical relief of the surface or reflectivity variations within the area of the laser beam footprint on the surface.

  2. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging lidar

    Science.gov (United States)

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry; Ho, Cheng

    2002-09-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data on various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  3. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR

    International Nuclear Information System (INIS)

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry L.; Ho, Cheng

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  4. Impact of pitch angle fluctuations on airborne lidar forward sensing along the flight direction

    Science.gov (United States)

    Sergeevich Gurvich, Alexander; Alexeevich Kulikov, Victor

    2017-10-01

    Airborne lidar forward sensing along the flight direction can serve for notification of clear air turbulence (CAT) and help to prevent injuries or fatal air accidents. The validation of this concept was presented in the framework of the DELICAT (DEmonstration of LIdar-based CAT detection) project. However, the strong variations in signal level, which were observed during the DELICAT measurements but not explained, sometimes indicated the need of a better understanding the observational errors due to geometrical factors. In this paper, we discuss possible error sources pertinent to this technique, related to fluctuations of the flight parameters, which may lead to strong signal variations caused by the random deviations of the sensing beam from the forward flight trajectory. We analyze the variations in backscattered lidar signal caused by fluctuations of the most important forward-sensing flight parameter, the pitch angle. The fluctuation values considered in the paper correspond to the error limits of the compensational gyro platform used in civil aviation. The part of the pitch angle fluctuations not compensated for by the beam-steering device in the presence of aerosol concentration variations can lead to noticeable signal variations that can be mistakenly attributed to wind shear, turbulence, or fast evolution of the aerosol layer. We formulate the criteria that allow the recognition of signal variations caused by pitch angle fluctuations. Influence of these fluctuations is shown to be stronger for aerosol variations on smaller vertical scales. An example of DELICAT observations indicating a noticeable pitch angle fluctuation impact is presented.

  5. Impact of pitch angle fluctuations on airborne lidar forward sensing along the flight direction

    Directory of Open Access Journals (Sweden)

    A. S. Gurvich

    2017-10-01

    Full Text Available Airborne lidar forward sensing along the flight direction can serve for notification of clear air turbulence (CAT and help to prevent injuries or fatal air accidents. The validation of this concept was presented in the framework of the DELICAT (DEmonstration of LIdar-based CAT detection project. However, the strong variations in signal level, which were observed during the DELICAT measurements but not explained, sometimes indicated the need of a better understanding the observational errors due to geometrical factors. In this paper, we discuss possible error sources pertinent to this technique, related to fluctuations of the flight parameters, which may lead to strong signal variations caused by the random deviations of the sensing beam from the forward flight trajectory. We analyze the variations in backscattered lidar signal caused by fluctuations of the most important forward-sensing flight parameter, the pitch angle. The fluctuation values considered in the paper correspond to the error limits of the compensational gyro platform used in civil aviation. The part of the pitch angle fluctuations not compensated for by the beam-steering device in the presence of aerosol concentration variations can lead to noticeable signal variations that can be mistakenly attributed to wind shear, turbulence, or fast evolution of the aerosol layer. We formulate the criteria that allow the recognition of signal variations caused by pitch angle fluctuations. Influence of these fluctuations is shown to be stronger for aerosol variations on smaller vertical scales. An example of DELICAT observations indicating a noticeable pitch angle fluctuation impact is presented.

  6. Study on the influence of attitude angle on lidar wind measurement results

    Science.gov (United States)

    Han, Xiaochen; Dou, Peilin; Xue, Yangyang

    2017-11-01

    When carrying on wind profile measurement of offshore wind farm by shipborne Doppler lidar technique, the ship platform often produces motion response under the action of ocean environment load. In order to measure the performance of shipborne lidar, this paper takes two lidar wind measurement results as the research object, simulating the attitude of the ship in the ocean through the three degree of freedom platform, carrying on the synchronous observation test of the wind profile, giving an example of comparing the wind measurement data of two lidars, and carrying out the linear regression statistical analysis for all the experimental correlation data. The results show that the attitude angle will affect the precision of the lidar, The influence of attitude angle on the accuracy of lidar is uncertain. It is of great significance to the application of shipborne Doppler lidar wind measurement technology in the application of wind resources assessment in offshore wind power projects.

  7. Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation.

    Science.gov (United States)

    Roy, G; Bissonnette, L R

    2001-09-20

    Backscatter and depolarization lidar measurements from clouds and precipitation are reported as functions of the elevation angle of the pointing lidar direction. We recorded the data by scanning the lidar beam (Nd:YAG) at a constant angular speed of ~3.5 degrees /s while operating at a repetition rate of 10 Hz. We show that in rain there is an evident and at times spectacular dependence on the elevation angle. That dependence appears to be sensitive to raindrop size. We have developed a three-dimensional polarization-dependent ray-tracing algorithm to calculate the backscatter and the depolarization ratio by large nonspherical droplets. We have applied it to raindrop shapes derived from existing static and dynamic (oscillating) models. We show that many of the observed complex backscatter and depolarization features can be interpreted to a good extent by geometrical optics. These results suggest that there is a definite need for more extensive calculations of the scattering phase matrix elements for large deformed raindrops as functions of the direction of illumination. Obvious applications are retrieval of information on the liquid-solid phase of precipitation and on the size and the vibration state of raindrops.

  8. Three-beam aerosol backscatter correlation lidar for wind profiling

    Science.gov (United States)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  9. Beam-beam collisions and crossing angles in RHIC

    International Nuclear Information System (INIS)

    Peggs, S.

    1999-01-01

    This paper evaluates the strength of head on and parasitic beam-beam collisions in RHIC when the crossing angle is zero. A non-zero crossing angle is not required in normal operation with 120 bunches, thanks to the early separation of the two beams. The RHIC lattice is shown to easily accommodate even conservatively large crossing angles, for example in beam dynamics studies, or in future operational upgrades to as many as 360 bunches per ring. A modest loss in luminosity is incurred when gold ions collide at an angle after 10 hours of storage

  10. LIDAR COMBINED SCANNING UNIT

    Directory of Open Access Journals (Sweden)

    V. V. Elizarov

    2016-11-01

    Full Text Available Subject of Research. The results of lidar combined scanning unit development for locating leaks of hydrocarbons are presented The unit enables to perform high-speed scanning of the investigated space in wide and narrow angle fields. Method. Scanning in a wide angular field is produced by one-line scanning path by means of the movable aluminum mirror with a frequency of 20Hz and amplitude of 20 degrees of swing. Narrowband scanning is performed along a spiral path by the deflector. The deflection of the beam is done by rotation of the optical wedges forming part of the deflector at an angle of ±50. The control function of the scanning node is performed by a specialized software product written in C# programming language. Main Results. This scanning unit allows scanning the investigated area at a distance of 50-100 m with spatial resolution at the level of 3 cm. The positioning accuracy of the laser beam in space is 15'. The developed scanning unit gives the possibility to browse the entire investigated area for the time not more than 1 ms at a rotation frequency of each wedge from 50 to 200 Hz. The problem of unambiguous definition of the beam geographical coordinates in space is solved at the software level according to the rotation angles of the mirrors and optical wedges. Lidar system coordinates are determined by means of GPS. Practical Relevance. Development results open the possibility for increasing the spatial resolution of scanning systems of a wide range of lidars and can provide high positioning accuracy of the laser beam in space.

  11. Eye-safe diode laser Doppler lidar with a MEMS beam-scanner

    DEFF Research Database (Denmark)

    Hu, Qi; Pedersen, Christian; Rodrigo, Peter John

    2016-01-01

    We present a novel Doppler lidar that employs a cw diode laser operating at 1.5 μm and a micro-electro-mechanical-system scanning mirror (MEMS-SM). In this work, two functionalities of the lidar system are demonstrated. Firstly, we describe the capability to effectively steer the lidar probe beam...

  12. Wide-angle imaging LIDAR (WAIL): a ground-based instrument for monitoring the thickness and density of optically thick clouds

    International Nuclear Information System (INIS)

    Love, Steven P.; Davis, A.B.; Rohde, C.A.; Ho, Cheng

    2001-01-01

    Traditional lidar provides little information on dense clouds beyond the range to their base (ceilometry), due to their extreme opacity. At most optical wavelengths, however, laser photons are not absorbed but merely scattered out of the beam, and thus eventually escape the cloud via multiple scattering, producing distinctive extended space- and time-dependent patterns which are, in essence, the cloud's radiative Green functions. These Green functions, essentially 'movies' of the time evolution of the spatial distribution of escaping light, are the primary data products of a new type of lidar: Wide Angle Imaging Lidar (WAIL). WAIL data can be used to infer both optical depth and physical thickness of clouds, and hence the cloud liquid water content. The instrumental challenge is to accommodate a radiance field varying over many orders of magnitude and changing over widely varying time-scales. Our implementation uses a high-speed microchannel plate/crossed delay line imaging detector system with a 60-degree full-angle field of view, and a 532 nm doubled Nd:YAG laser. Nighttime field experiments testing various solutions to this problem show excellent agreement with diffusion theory, and retrievals yield plausible values for the optical and geometrical parameters of the observed cloud decks.

  13. Flow tilt angles near forest edges - Part 2: Lidar anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Bingöl, Ferhat

    2010-01-01

    to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by assuming zero tilt angle at high altitudes. Contrary to mast-based instruments, the lidar measures the wind field with the exact same...... alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are potentially slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct, and a requirement for homogeneous flow...

  14. 3D turbulence measurements using three intersecting Doppler LiDAR beams: validation against sonic anemometry

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2013-04-01

    Nowadays communities of researchers and industry in the wind engineering and meteorology sectors demand extensive and accurate measurements of atmospheric boundary layer turbulence for a better understanding of its role in a wide range of onshore and offshore applications: wind resource evaluation, wind turbine wakes, meteorology forecast, pollution and urban climate studies, etc. Atmospheric turbulence has been traditionally investigated through sonic anemometers installed on meteorological masts. However, the setup and maintenance of instrumented masts is generally very costly and the available location for the measurements is limited by the fixed position and height of the facility. In order to overcome the above-mentioned shortcomings, a measurement technique is proposed, based on the reconstruction of the three-dimensional velocity vector from simultaneous measurements of three intersecting Doppler wind LiDARs. This measuring technique presents the main advantage of being able to measure the wind velocity at any point in space inside a very large volume, which can be set and optimized for each test. Furthermore, it is very flexible regarding its transportation, installation and operation in any type of terrain. On the other hand, LiDAR measurements are strongly affected by the aerosol concentration in the air, precipitation, and the spatial and temporal resolution is poorer than that of a sonic anemometer. All this makes the comparison between these two kinds of measurements a complex task. The accuracy of the technique has been assessed by this study against sonic anemometer measurements carried out at different heights on the KNMI's meteorological mast at Cabauw's experimental site for atmospheric research (CESAR) in the Netherlands. An early uncertainty analysis shows that one of the most important parameters to be taken into account is the relative angles between the intersecting laser beams, i.e., the position of each LiDAR on the terrain and their

  15. Turbulence measurement with a two-beam nacelle lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Sathe, Ameya; Mioullet, A.

    The analysis of the turbulence intensity measurement is performed for a lidar measuring horizontally with two beams. First the turbulence intensity measured by such a system was evaluated theoretically. The Mann model of turbulence was used to evaluate the true value of the turbulence intensity...... of the wind speed and the main effects of the lidar measurement principles on turbulence intensity measurement were modeled: - A lidar senses the wind speed over the probe volume acting as a low pass-filter and thus cannot resolve high frequency turbulence; - The horizontal wind speed is retrieved from...... the combination of the radial speeds measured along two line-of-sights with different orientations; this results in the contamination of the lidar turbulence intensity measurement from the transverse component of the wind field. Secondly, the theoretical results were compared to experimental measurements. A two...

  16. Telescope aperture optimization for spacebased coherent wind lidar

    Science.gov (United States)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  17. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Iversen, Theis Faber Quist; Hu, Qi

    2014-01-01

    it either transmits throughor reflects off a polarization splitter. The room-temperature switching timebetween the two LOS is measured to be in the order of 100μs in one switchdirection but 16 ms in the opposite transition. Radial wind speedmeasurement (at 33 Hz rate) while the lidar beam is repeatedly...... the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering isimplemented optically with no moving parts by means of a controllableliquid-crystal retarder (LCR). The LCR switches the polarization betweentwo orthogonal linear states of the lidar beam so...

  18. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    the so-called whitebox approach. It consists mainly in calibrating the lidar primary measurementsof line-of-sight velocities. The line-of-sight velocity is the projection of the wind vector onto the laser beam propagation path. The calibration is performed in situ, by comparing the lidar velocity...... measurements to a reference quantity itself traceable to the international standards of units. The uncertainty of the line-ofsight velocity measurements was assessed using a normative methodology (GUM) which is based on the law of propagation of uncertainties. The generic calibration procedure was applied...... to two commercially developed nacelle lidars systems, the Avent 5-beam Demonstrator and the ZephIR Dual Mode lidars. Further, the lineof-sight positioning quantities such as inclination angles or beam trajectory werealso calibrated and their uncertainties assessed. Calibration results were of high...

  19. Assessing Structure and Condition of Temperate And Tropical Forests: Fusion of Terrestrial Lidar and Airborne Multi-Angle and Lidar Remote Sensing

    Science.gov (United States)

    Saenz, Edward J.

    Forests provide vital ecosystem functions and services that maintain the integrity of our natural and human environment. Understanding the structural components of forests (extent, tree density, heights of multi-story canopies, biomass, etc.) provides necessary information to preserve ecosystem services. Increasingly, remote sensing resources have been used to map and monitor forests globally. However, traditional satellite and airborne multi-angle imagery only provide information about the top of the canopy and little about the forest structure and understory. In this research, we investigative the use of rapidly evolving lidar technology, and how the fusion of aerial and terrestrial lidar data can be utilized to better characterize forest stand information. We further apply a novel terrestrial lidar methodology to characterize a Hemlock Woolly Adelgid infestation in Harvard Forest, Massachusetts, and adapt a dynamic terrestrial lidar sampling scheme to identify key structural vegetation profiles of tropical rainforests in La Selva, Costa Rica.

  20. Automatic learning-based beam angle selection for thoracic IMRT

    International Nuclear Information System (INIS)

    Amit, Guy; Marshall, Andrea; Purdie, Thomas G.; Jaffray, David A.; Levinshtein, Alex; Hope, Andrew J.; Lindsay, Patricia; Pekar, Vladimir

    2015-01-01

    Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationally efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume

  1. Summary of Working Group I - beam-beam instability with crossing angle

    International Nuclear Information System (INIS)

    Chen, T.

    1995-06-01

    This report is a summary report from a panel addressing the problem of beam-beam instability in colliding beams at finite crossing angles. This problem arises in the process of increasing luminosity in large circular particle factories. The primary means of increasing luminosity comes down to increasing the number of bunches in each beam, while decreasing the spacing between bunches. This situation favors finite crossing angle collision schemes. However such schemes allow synchro-betatron coupling, as transverse and longitudinal energies are mixed. The authors summarize their discussions on this problem, and the present state of experience with such schemes

  2. UAV-borne lidar with MEMS mirror-based scanning capability

    Science.gov (United States)

    Kasturi, Abhishek; Milanovic, Veljko; Atwood, Bryan H.; Yang, James

    2016-05-01

    Firstly, we demonstrated a wirelessly controlled MEMS scan module with imaging and laser tracking capability which can be mounted and flown on a small UAV quadcopter. The MEMS scan module was reduced down to a small volume of smartphone via Bluetooth while flying on a drone, and could project vector content, text, and perform laser based tracking. Also, a "point-and-range" LiDAR module was developed for UAV applications based on low SWaP (Size, Weight and Power) gimbal-less MEMS mirror beam-steering technology and off-the-shelf OEM LRF modules. For demonstration purposes of an integrated laser range finder module, we used a simple off-the-shelf OEM laser range finder (LRF) with a 100m range, +/-1.5mm accuracy, and 4Hz ranging capability. The LRFs receiver optics were modified to accept 20° of angle, matching the transmitter's FoR. A relatively large (5.0mm) diameter MEMS mirror with +/-10° optical scanning angle was utilized in the demonstration to maintain the small beam divergence of the module. The complete LiDAR prototype can fit into a small volume of battery. The MEMS mirror based LiDAR system allows for ondemand ranging of points or areas within the FoR without altering the UAV's position. Increasing the LRF ranging frequency and stabilizing the pointing of the laser beam by utilizing the onboard inertial sensors and the camera are additional goals of the next design.

  3. Local beam angle optimization with linear programming and gradient search

    International Nuclear Information System (INIS)

    Craft, David

    2007-01-01

    The optimization of beam angles in IMRT planning is still an open problem, with literature focusing on heuristic strategies and exhaustive searches on discrete angle grids. We show how a beam angle set can be locally refined in a continuous manner using gradient-based optimization in the beam angle space. The gradient is derived using linear programming duality theory. Applying this local search to 100 random initial angle sets of a phantom pancreatic case demonstrates the method, and highlights the many-local-minima aspect of the BAO problem. Due to this function structure, we recommend a search strategy of a thorough global search followed by local refinement at promising beam angle sets. Extensions to nonlinear IMRT formulations are discussed. (note)

  4. Simulation on a limited angle beam gamma ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Jung, Sung Hee; Moon, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Limited angle beam tomography was introduced in the medical field more than two decades ago, where it was mainly used for cardiovascular diagnostics. Later, it was also used to trace multiphase flows. In these studies, the detection systems were fixed and a scanning electron beam was rapidly swept across an xray target using deflection coils. Thus very fast scanning was possible in these studies, but their geometry resulted in a heavy and bulky system because of a complex control system and vacuum tube. Because of its heavy hardware, limited angle beam tomography has remained as indoor equipment. If the source section is replaced by a gamma ray source, limited angle beam tomography will have a very light source device. In addition, limited angle beam tomography with a gamma ray source can be designed using an open type portable gantry because it does not need a vacuum guide for an electron beam. There is a lot of need for a portable tomographic system but so far no definitive solution has been created. The inspection of industrial on-line pipes, wood telephone poles, and cultural assets are some application areas. This study introduces limited angle beam gamma ray tomography, its simulation, and image reconstruction results. Image reconstruction was performed on the virtual experimental data from a Monte Carlo simulation. Image reconstruction algorithms that are known to be useful for limited angle data were applied and their results compared

  5. A simple three dimensional wide-angle beam propagation method

    Science.gov (United States)

    Ma, Changbao; van Keuren, Edward

    2006-05-01

    The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

  6. The e-Beam Sustained Laser Technology for Space-based Doppler Wind Lidar

    Science.gov (United States)

    Brown, M. J.; Holman, W.; Robinson, R. J.; Schwarzenberger, P. M.; Smith, I. M.; Wallace, S.; Harris, M. R.; Willetts, D. V.; Kurzius, S. C.

    1992-01-01

    An overview is presented of GEC Avionics activities relating to the Spaceborne Doppler Wind Lidar. In particular, the results of design studies into the use of an e-beam sustained CO2 laser for spaceborne applications, and experimental work on a test bed system are discussed.

  7. Noncoplanar Beam Angle Class Solutions to Replace Time-Consuming Patient-Specific Beam Angle Optimization in Robotic Prostate Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Rossi, Linda; Breedveld, Sebastiaan; Aluwini, Shafak; Heijmen, Ben

    2015-01-01

    Purpose: To investigate development of a recipe for the creation of a beam angle class solution (CS) for noncoplanar prostate stereotactic body radiation therapy to replace time-consuming individualized beam angle selection (iBAS) without significant loss in plan quality, using the in-house “Erasmus-iCycle” optimizer for fully automated beam profile optimization and iBAS. Methods and Materials: For 30 patients, Erasmus-iCycle was first used to generate 15-, 20-, and 25-beam iBAS plans for a CyberKnife equipped with a multileaf collimator. With these plans, 6 recipes for creation of beam angle CSs were investigated. Plans of 10 patients were used to create CSs based on the recipes, and the other 20 to independently test them. For these tests, Erasmus-iCycle was also used to generate intensity modulated radiation therapy plans for the fixed CS beam setups. Results: Of the tested recipes for CS creation, only 1 resulted in 15-, 20-, and 25-beam noncoplanar CSs without plan deterioration compared with iBAS. For the patient group, mean differences in rectum D 1cc , V 60GyEq , V 40GyEq , and D mean between 25-beam CS plans and 25-beam plans generated with iBAS were 0.2 ± 0.4 Gy, 0.1% ± 0.2%, 0.2% ± 0.3%, and 0.1 ± 0.2 Gy, respectively. Differences between 15- and 20-beam CS and iBAS plans were also negligible. Plan quality for CS plans relative to iBAS plans was also preserved when narrower planning target volume margins were arranged and when planning target volume dose inhomogeneity was decreased. Using a CS instead of iBAS reduced the computation time by a factor of 14 to 25, mainly depending on beam number, without loss in plan quality. Conclusions: A recipe for creation of robust beam angle CSs for robotic prostate stereotactic body radiation therapy has been developed. Compared with iBAS, computation times decreased by a factor 14 to 25. The use of a CS may avoid long planning times without losses in plan quality

  8. Noncoplanar Beam Angle Class Solutions to Replace Time-Consuming Patient-Specific Beam Angle Optimization in Robotic Prostate Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Linda, E-mail: l.rossi@erasmusmc.nl; Breedveld, Sebastiaan; Aluwini, Shafak; Heijmen, Ben

    2015-07-15

    Purpose: To investigate development of a recipe for the creation of a beam angle class solution (CS) for noncoplanar prostate stereotactic body radiation therapy to replace time-consuming individualized beam angle selection (iBAS) without significant loss in plan quality, using the in-house “Erasmus-iCycle” optimizer for fully automated beam profile optimization and iBAS. Methods and Materials: For 30 patients, Erasmus-iCycle was first used to generate 15-, 20-, and 25-beam iBAS plans for a CyberKnife equipped with a multileaf collimator. With these plans, 6 recipes for creation of beam angle CSs were investigated. Plans of 10 patients were used to create CSs based on the recipes, and the other 20 to independently test them. For these tests, Erasmus-iCycle was also used to generate intensity modulated radiation therapy plans for the fixed CS beam setups. Results: Of the tested recipes for CS creation, only 1 resulted in 15-, 20-, and 25-beam noncoplanar CSs without plan deterioration compared with iBAS. For the patient group, mean differences in rectum D{sub 1cc}, V{sub 60GyEq}, V{sub 40GyEq}, and D{sub mean} between 25-beam CS plans and 25-beam plans generated with iBAS were 0.2 ± 0.4 Gy, 0.1% ± 0.2%, 0.2% ± 0.3%, and 0.1 ± 0.2 Gy, respectively. Differences between 15- and 20-beam CS and iBAS plans were also negligible. Plan quality for CS plans relative to iBAS plans was also preserved when narrower planning target volume margins were arranged and when planning target volume dose inhomogeneity was decreased. Using a CS instead of iBAS reduced the computation time by a factor of 14 to 25, mainly depending on beam number, without loss in plan quality. Conclusions: A recipe for creation of robust beam angle CSs for robotic prostate stereotactic body radiation therapy has been developed. Compared with iBAS, computation times decreased by a factor 14 to 25. The use of a CS may avoid long planning times without losses in plan quality.

  9. Beam angle selection for intensity-modulated radiotherapy (IMRT) treatment of unresectable pancreatic cancer: are noncoplanar beam angles necessary?

    Science.gov (United States)

    Chang, D S; Bartlett, G K; Das, I J; Cardenes, H R

    2013-09-01

    External beam radiation therapy with concurrent chemotherapy (CRT) is widely used for the treatment of unresectable pancreatic cancer. Noncoplanar (NCP) 3D conformal radiotherapy (3DCRT) and coplanar (CP) IMRT have been reported to lower the radiation dose to organs at risk (OARs). The purpose of this article is to examine the utility of noncoplanar beam angles in IMRT for the management of pancreatic cancer. Sixteen patients who were treated with CRT for unresectable adenocarcinoma of the pancreatic head or neck were re-planned using CP and NCP beams in 3DCRT and IMRT with the Varian Eclipse treatment planning system. Compared to CP IMRT, NCP IMRT had similar target coverage with slightly increased maximum point dose, 5,799 versus 5,775 cGy (p = 0.008). NCP IMRT resulted in lower mean kidney dose, 787 versus 1,210 cGy (p kidney dose, but did not improve other dose-volume criteria. The use of NCP beam angles is preferred only in patients with risk factors for treatment-related kidney dysfunction.

  10. In situ beam angle measurement in a multi-wafer high current ion implanter

    International Nuclear Information System (INIS)

    Freer, B.S.; Reece, R.N.; Graf, M.A.; Parrill, T.; Polner, D.

    2005-01-01

    Direct, in situ measurement of the average angle and angular content of an ion beam in a multi-wafer ion implanter is reported for the first time. A new type of structure and method are described. The structures are located on the spinning disk, allowing precise angular alignment to the wafers. Current that passes through the structures is known to be within a range of angles and is detected behind the disk. By varying the angle of the disk around two axes, beam current versus angle is mapped and the average angle and angular spread are calculated. The average angle measured in this way is found to be consistent with that obtained by other techniques, including beam centroid offset and wafer channeling methods. Average angle of low energy beams, for which it is difficult to use other direct methods, is explored. A 'pencil beam' system is shown to give average angle repeatability of 0.13 deg. (1σ) or less, for two low energy beams under normal tuning variations, even though no effort was made to control the angle

  11. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform.

    Science.gov (United States)

    Morales, Jesús; Plaza-Leiva, Victoria; Mandow, Anthony; Gomez-Ruiz, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso

    2018-01-30

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley's K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL.

  12. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform

    Science.gov (United States)

    Plaza-Leiva, Victoria; Serón, Javier

    2018-01-01

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley’s K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL. PMID:29385705

  13. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading.

    Science.gov (United States)

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-06-20

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

  14. Improved Beam Angle Arrangement in Intensity Modulated Proton Therapy Treatment Planning for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Cao, Wenhua; Lim, Gino J.; Li, Yupeng; Zhu, X. Ronald; Zhang, Xiaodong

    2015-01-01

    Purpose: This study investigates potential gains of an improved beam angle arrangement compared to a conventional fixed gantry setup in intensity modulated proton therapy (IMPT) treatment for localized prostate cancer patients based on a proof of principle study. Materials and Methods: Three patients with localized prostate cancer retrospectively selected from our institution were studied. For each patient, IMPT plans were designed using two, three and four beam angles, respectively, obtained from a beam angle optimization algorithm. Those plans were then compared with ones using two lateral parallel-opposed beams according to the conventional planning protocol for localized prostate cancer adopted at our institution. Results: IMPT plans with two optimized angles achieved significant improvements in rectum sparing and moderate improvements in bladder sparing against those with two lateral angles. Plans with three optimized angles further improved rectum sparing significantly over those two-angle plans, whereas four-angle plans found no advantage over three-angle plans. A possible three-beam class solution for localized prostate patients was suggested and demonstrated with preserved dosimetric benefits because individually optimized three-angle solutions were found sharing a very similar pattern. Conclusions: This study has demonstrated the potential of using an improved beam angle arrangement to better exploit the theoretical dosimetric benefits of proton therapy and provided insights of selecting quality beam angles for localized prostate cancer treatment

  15. Dosimetric Comparison of Manual and Beam Angle Optimization of Gantry Angles in IMRT

    International Nuclear Information System (INIS)

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-01-01

    Dosimetric comparison of manual beam angle selection (MBS) and beam angle optimization (BAO) for IMRT plans is investigated retrospectively for 15 head and neck and prostate patients. The head and neck and prostate had planning target volumes (PTVs) ranging between 96.0 and 319.9 cm 3 and 153.6 and 321.3 cm 3 , whereas OAR ranged between 8.3 and 47.8 cm 3 and 68.3 and 469.2 cm 3 , respectively. In MBS, a standard coplanar 7-9 fields equally spaced gantry angles were used. In BAO, the selection of gantry angle was optimized by the algorithm for the same number of beams. The optimization and dose-volume constraints were kept the same for both techniques. Treatment planning was performed on the Eclipse treatment planning system. Our results showed that the dose-volume histogram for PTV are nearly identical in both techniques but BAO provided superior sparing of the organs at risk compared with the MBS. Also, MBS produced statistically significant higher monitor units (MU) and segments than the BAO; 13.1 ± 6.6% (p = 0.012) and 10.4 ± 13.6% (p = 0.140), and 14.6 ± 5.6% (p = 1.003E-5) and 12.6 ± 7.4% (p = 0.76E-3) for head and neck and prostate cases, respectively. The reduction in MU translates into the reduction in total body and integral dose. It is concluded that BAO provides advantage over MBS for most intenisty-modulated radiation therapy cases.

  16. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  17. Polarization dependence in ELNES: Influence of probe convergence, collector aperture and electron beam incidence angle

    International Nuclear Information System (INIS)

    Le Bosse, J.C.; Epicier, T.; Jouffrey, B.

    2006-01-01

    The differential scattering cross section in electron energy loss near edge spectroscopy (ELNES) generally depends on the orientation of the Q wave vector transferred from the incident electron to an atomic core electron. In the case where the excited atom belongs to a threefold, fourfold or sixfold main rotation axis, the dipole cross section depends on the angle of Q with respect to this axis. In this paper, we restrict to this situation called dichroism. Furthermore, if we take into account the relativistic effects due to the high incident electron velocity, this dipole cross section also depends on the angle of Q with respect to the electron beam axis. It is due to these dependences that the shape of measured electron energy loss spectra varies with the electron beam incidence, the collector aperture, the incident beam convergence and the incident electron energy. The existence of a particular beam incidence angle for which the scattering cross section becomes independent of collection and beam convergence semi-angles is clearly underscored. Conversely, it is shown that EELS spectra do not depend on the beam incidence angle for a set of particular values of collection and convergence semi-angles. Particularly, in the case of a parallel incident beam, there is a collection semi-angle (often called magic angle) for which the cross section becomes independent of the beam orientation. This magic angle depends on the incident beam kinetic energy. If the incident electron velocity V is small compared with the light velocity c, this magic angle is about 3.975θ E (θ E is the scattering angle). It decreases to 0 when V approaches c. These results are illustrated in the case of the K boron edge in the boron nitride

  18. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning

    International Nuclear Information System (INIS)

    Li Yongjie; Yao Dezhong; Yao, Jonathan; Chen Wufan

    2005-01-01

    Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated

  19. An angled nano-tunnel fabricated on poly(methyl methacrylate) by a focused ion beam

    International Nuclear Information System (INIS)

    Her, Eun Kyu; Chung, Hee-Suk; Oh, Kyu Hwan; Moon, Myoung-Woon

    2009-01-01

    Angled nano-scale tunnels with high aspect ratio were fabricated on poly(methyl methacrylate) (PMMA) using a focused ion beam (FIB). The fabrication parameters such as ion fluence, incidence angle, and acceleration voltage of the Ga + ion beam were first studied on the PMMA surface to explore the formation of the nano-scale configurations such as nano-holes and cones with diameter in the range of 50-150 nm at an ion beam acceleration voltage of 5-20 kV. It was also found that the PMMA surface exposed to FIB was changed into an amorphous graphitic structure. Angled nano-scale tunnels were fabricated with high aspect ratio of 700-1500 nm in depth and 60 nm in mean diameter at an ion beam acceleration voltage of 5 kV and under a specific ion beam current. The angle of the nano-tunnels was found to follow the incident angle of the ion beam tilted from 0 0 to 85 0 , which has the potential for creating a mold for anisotropic adhesives by mimicking the hairs on a gecko's feet.

  20. Characterizing the combinatorial beam angle selection problem

    Science.gov (United States)

    Bangert, Mark; Ziegenhein, Peter; Oelfke, Uwe

    2012-10-01

    The beam angle selection (BAS) problem in intensity-modulated radiation therapy is often interpreted as a combinatorial optimization problem, i.e. finding the best combination of η beams in a discrete set of candidate beams. It is well established that the combinatorial BAS problem may be solved efficiently with metaheuristics such as simulated annealing or genetic algorithms. However, the underlying parameters of the optimization process, such as the inclusion of non-coplanar candidate beams, the angular resolution in the space of candidate beams, and the number of evaluated beam ensembles as well as the relative performance of different metaheuristics have not yet been systematically investigated. We study these open questions in a meta-analysis of four strategies for combinatorial optimization in order to provide a reference for future research related to the BAS problem in intensity-modulated radiation therapy treatment planning. We introduce a high-performance inverse planning engine for BAS. It performs a full fluence optimization for ≈3600 treatment plans per hour while handling up to 50 GB of dose influence data (≈1400 candidate beams). For three head and neck patients, we compare the relative performance of a genetic, a cross-entropy, a simulated annealing and a naive iterative algorithm. The selection of ensembles with 5, 7, 9 and 11 beams considering either only coplanar or all feasible candidate beams is studied for an angular resolution of 5°, 10°, 15° and 20° in the space of candidate beams. The impact of different convergence criteria is investigated in comparison to a fixed termination after the evaluation of 10 000 beam ensembles. In total, our simulations comprise a full fluence optimization for about 3000 000 treatment plans. All four combinatorial BAS strategies yield significant improvements of the objective function value and of the corresponding dose distributions compared to standard beam configurations with equi

  1. Characterizing the combinatorial beam angle selection problem

    International Nuclear Information System (INIS)

    Bangert, Mark; Ziegenhein, Peter; Oelfke, Uwe

    2012-01-01

    The beam angle selection (BAS) problem in intensity-modulated radiation therapy is often interpreted as a combinatorial optimization problem, i.e. finding the best combination of η beams in a discrete set of candidate beams. It is well established that the combinatorial BAS problem may be solved efficiently with metaheuristics such as simulated annealing or genetic algorithms. However, the underlying parameters of the optimization process, such as the inclusion of non-coplanar candidate beams, the angular resolution in the space of candidate beams, and the number of evaluated beam ensembles as well as the relative performance of different metaheuristics have not yet been systematically investigated. We study these open questions in a meta-analysis of four strategies for combinatorial optimization in order to provide a reference for future research related to the BAS problem in intensity-modulated radiation therapy treatment planning. We introduce a high-performance inverse planning engine for BAS. It performs a full fluence optimization for ≈3600 treatment plans per hour while handling up to 50 GB of dose influence data (≈1400 candidate beams). For three head and neck patients, we compare the relative performance of a genetic, a cross-entropy, a simulated annealing and a naive iterative algorithm. The selection of ensembles with 5, 7, 9 and 11 beams considering either only coplanar or all feasible candidate beams is studied for an angular resolution of 5°, 10°, 15° and 20° in the space of candidate beams. The impact of different convergence criteria is investigated in comparison to a fixed termination after the evaluation of 10 000 beam ensembles. In total, our simulations comprise a full fluence optimization for about 3000 000 treatment plans. All four combinatorial BAS strategies yield significant improvements of the objective function value and of the corresponding dose distributions compared to standard beam configurations with equi

  2. Individualized Selection of Beam Angles and Treatment Isocenter in Tangential Breast Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Penninkhof, Joan, E-mail: j.penninkhof@erasmusmc.nl [Department of Radiation Oncology, Erasmus M.C. Cancer Institute, Rotterdam (Netherlands); Spadola, Sara [Department of Radiation Oncology, Erasmus M.C. Cancer Institute, Rotterdam (Netherlands); Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, Bologna (Italy); Breedveld, Sebastiaan; Baaijens, Margreet [Department of Radiation Oncology, Erasmus M.C. Cancer Institute, Rotterdam (Netherlands); Lanconelli, Nico [Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, Bologna (Italy); Heijmen, Ben [Department of Radiation Oncology, Erasmus M.C. Cancer Institute, Rotterdam (Netherlands)

    2017-06-01

    Purpose and Objective: Propose a novel method for individualized selection of beam angles and treatment isocenter in tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: For each patient, beam and isocenter selection starts with the fully automatic generation of a large database of IMRT plans (up to 847 in this study); each of these plans belongs to a unique combination of isocenter position, lateral beam angle, and medial beam angle. The imposed hard planning constraint on patient maximum dose may result in plans with unacceptable target dose delivery. Such plans are excluded from further analyses. Owing to differences in beam setup, database plans differ in mean doses to organs at risk (OARs). These mean doses are used to construct 2-dimensional graphs, showing relationships between: (1) contralateral breast dose and ipsilateral lung dose; and (2) contralateral breast dose and heart dose (analyzed only for left-sided). The graphs can be used for selection of the isocenter and beam angles with the optimal, patient-specific tradeoffs between the mean OAR doses. For 30 previously treated patients (15 left-sided and 15 right-sided tumors), graphs were generated considering only the clinically applied isocenter with 121 tangential beam angle pairs. For 20 of the 30 patients, 6 alternative isocenters were also investigated. Results: Computation time for automatic generation of 121 IMRT plans took on average 30 minutes. The generated graphs demonstrated large variations in tradeoffs between conflicting OAR objectives, depending on beam angles and patient anatomy. For patients with isocenter optimization, 847 IMRT plans were considered. Adding isocenter position optimization next to beam angle optimization had a small impact on the final plan quality. Conclusion: A method is proposed for individualized selection of beam angles in tangential breast IMRT. This may be especially important for patients with cardiac risk factors or an

  3. Intra–cavity generation of Bessel–like beams with longitudinally dependent cone angles

    CSIR Research Space (South Africa)

    Litvin, IA

    2010-02-01

    Full Text Available The authors report on two resonator systems for producing Bessel–like beams with longitudinally dependent cone angles (LDBLBs). Such beams have extended propagation distances as compared to conventional Bessel– Gauss beams, with a far field pattern...

  4. Direct measurement of the beam deflection angle using the axial B-dot field

    Directory of Open Access Journals (Sweden)

    Xiaozhong He

    2011-05-01

    Full Text Available Beam position monitors are an important diagnostics tool for particle accelerator operation and related beam dynamics research. The measurement of the beam deflection angle, or moving direction of a charged particle beam with respect to the beam pipe axis, can provide useful additional information. Beam monitors sensitive to the beam’s azimuthal B-dot field (sometimes referred as B dots are used to measure the displacement (position of the beam centroid, as the beam generates a dipole term of the azimuthal magnetic field. Similarly, a dipole term of the axial magnetic field will be generated by the beam moving in a direction not parallel to the axis of the beam pipe. In this paper, a new method using the axial B-dot field is presented to measure the beam deflection angle directly, including the theoretical background. Simulations using the MAFIA numerical code have been performed, demonstrating a good agreement to the new established analytical model.

  5. Impact of beam angle choice on pencil beam scanning breath-hold proton therapy for lung lesions

    DEFF Research Database (Denmark)

    Gorgisyan, Jenny; Perrin, Rosalind; Lomax, Antony J

    2017-01-01

    INTRODUCTION: The breath-hold technique inter alia has been suggested to mitigate the detrimental effect of motion on pencil beam scanned (PBS) proton therapy dose distributions. The aim of this study was to evaluate the robustness of incident proton beam angles to day-to-day anatomical variation...

  6. Modeling and analysis of Off-beam lidar returns from thick clouds, snow, and sea ice

    International Nuclear Information System (INIS)

    Varnai, T.; Cahalan, R. F.

    2009-01-01

    A group of recently developed lidar (laser ranging and detection) systems can detect signals returning from several wide field-of-views, allowing them to observe the way laser pulses spread in thick media. The new capability enabled accurate measurements of cloud geometrical thickness and promises improved measurements of internal cloud structure as well as snow and sea ice thickness. This paper presents a brief overview of radiation transport simulation techniques and data analysis methods that were developed for multi-view lidar applications and for and considering multiple scattering effects in single-view lidar data. In discussing methods for simulating the three-dimensional spread of lidar pulses, we present initial results from Phase 3 of the Intercomparison of 3-D Radiation Codes (I3RC) project. The results reveal some differences in the capabilities of participating models, while good agreement among several models provides consensus results suitable for testing future models. Detailed numerical results are available at the I3RC web site at http://i3rc.gsfc.nasa. gov. In considering data analysis methods, we focus on the Thickness from Off-beam Returns (THOR) lidar. THOR proved successful in measuring the geometrical thickness of optically thick clouds; here we focus on its potential for retrieving the vertical profile of scattering coefficient in clouds and for measuring snow thickness. Initial observations suggest considerable promise but also reveal some limitations, for example that the maximum retrievable snow thickness drops from about 0.5 m in pristine areas to about 0.15 m in polluted regions. (authors)

  7. Doppler lidar sensor for precision navigation in GPS-deprived environment

    Science.gov (United States)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-05-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  8. Beam dynamics of the interaction region solenoid in a linear collider due to a crossing angle

    Directory of Open Access Journals (Sweden)

    P. Tenenbaum

    2003-06-01

    Full Text Available Future linear colliders may require a nonzero crossing angle between the two beams at the interaction point (IP. This requirement in turn implies that the beams will pass through the strong interaction region solenoid with an angle, and thus that the component of the solenoidal field perpendicular to the beam trajectory is nonzero. The interaction of the beam and the solenoidal field in the presence of a crossing angle will cause optical effects not observed for beams passing through the solenoid on axis; these effects include dispersion, deflection of the beam, and synchrotron radiation effects. For a purely solenoidal field, the optical effects which are relevant to luminosity exactly cancel at the IP when the influence of the solenoid’s fringe field is taken into account. Beam size growth due to synchrotron radiation in the solenoid is proportional to the fifth power of the product of the solenoidal field, the length of the solenoid, and the crossing angle. Examples based on proposed linear collider detector solenoid configurations are presented.

  9. Multiangle lidar observations of the Atmosphere

    Science.gov (United States)

    Lalitkumar Prakash, Pawar; Choukiker, Yogesh Kumar; Raghunath, K.

    2018-04-01

    Atmospheric Lidars are used extensively to get aerosol parameters like backscatter coefficient, backscatter ratio etc. National Atmospheric Research Laboratory, Gadanki (13°N, 79°E), India has a powerful lidar which has alt-azimuth capability. Inversion method is applied to data from observations of lidar system at different azimuth and elevation angles. Data Analysis is described and Observations in 2D and 3D format are discussed. Presence of Cloud and the variation of backscatter parameters are seen in an interesting manner.

  10. Practical model for the calculation of multiply scattered lidar returns

    International Nuclear Information System (INIS)

    Eloranta, E.W.

    1998-01-01

    An equation to predict the intensity of the multiply scattered lidar return is presented. Both the scattering cross section and the scattering phase function can be specified as a function of range. This equation applies when the cloud particles are larger than the lidar wavelength. This approximation considers photon trajectories with multiple small-angle forward-scattering events and one large-angle scattering that directs the photon back toward the receiver. Comparisons with Monte Carlo simulations, exact double-scatter calculations, and lidar data demonstrate that this model provides accurate results. copyright 1998 Optical Society of America

  11. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  12. Multiangle lidar observations of the Atmosphere

    Directory of Open Access Journals (Sweden)

    Lalitkumar Prakash Pawar

    2018-01-01

    Full Text Available Atmospheric Lidars are used extensively to get aerosol parameters like backscatter coefficient, backscatter ratio etc. National Atmospheric Research Laboratory, Gadanki (13°N, 79°E, India has a powerful lidar which has alt-azimuth capability. Inversion method is applied to data from observations of lidar system at different azimuth and elevation angles. Data Analysis is described and Observations in 2D and 3D format are discussed. Presence of Cloud and the variation of backscatter parameters are seen in an interesting manner.

  13. Self-healing of Bessel-like beams with longitudinally dependent cone angles

    International Nuclear Information System (INIS)

    Litvin, I; Burger, L; Forbes, A

    2015-01-01

    Bessel beams have been extensively studied, but to date have been created over a finite region inside the laboratory. Recently Bessel-like beams with longitudinally dependent cone angles have been introduced allowing for a potentially infinite quasi non-diffracting propagation region. Here we show that such beams can self-heal. Moreover, in contrast to Bessel beams where the self-healing distance is constant, here the self-healing distance is dependent on where the obstruction is placed in the field, with the distance increasing as the Bessel-like beam propagates farther. We outline the theoretical concept for this self-healing and confirm it experimentally. (paper)

  14. Development of atmospheric polarization LIDAR System

    International Nuclear Information System (INIS)

    Ghalumyan, A.S.; Ghazaryan, V.R.

    2016-01-01

    LIDAR (Light Detection And Ranging) system sensitive to the polarization of the backscattered signal is being developed in Yerevan Physics Institute. The system is designed primarily for remote sensing of the atmospheric electric fields. At present, the system is being tuned for measuring vertical atmospheric backscatter profiles of aerosols and hydrometeors, analyze the depolarization ratio of elastic backscattered laser beams and investigate the influence of external factors on the beam polarization. In this paper, we describe the complete LIDAR system – the laser transmitter, receiving telescope and the polarization separator. The data acquisition and processing techniques are also described. (author)

  15. Demonstration of coherent Doppler lidar for navigation in GPS-denied environments

    Science.gov (United States)

    Amzajerdian, Farzin; Hines, Glenn D.; Pierrottet, Diego F.; Barnes, Bruce W.; Petway, Larry B.; Carson, John M.

    2017-05-01

    A coherent Doppler lidar has been developed to address NASA's need for a high-performance, compact, and cost-effective velocity and altitude sensor onboard its landing vehicles. Future robotic and manned missions to solar system bodies require precise ground-relative velocity vector and altitude data to execute complex descent maneuvers and safe, soft landing at a pre-designated site. This lidar sensor, referred to as a Navigation Doppler Lidar (NDL), meets the required performance of the landing missions while complying with vehicle size, mass, and power constraints. Operating from up to four kilometers altitude, the NDL obtains velocity and range precision measurements reaching 2 cm/sec and 2 meters, respectively, dominated by the vehicle motion. Terrestrial aerial vehicles will also benefit from NDL data products as enhancement or replacement to GPS systems when GPS is unavailable or redundancy is needed. The NDL offers a viable option to aircraft navigation in areas where the GPS signal can be blocked or jammed by intentional or unintentional interference. The NDL transmits three laser beams at different pointing angles toward the ground to measure range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. The three line-of-sight measurements are then combined in order to determine the three components of the vehicle velocity vector and its altitude relative to the ground. This paper describes the performance and capabilities that the NDL demonstrated through extensive ground tests, helicopter flight tests, and onboard an autonomous rocket-powered test vehicle while operating in closedloop with a guidance, navigation, and control (GN and C) system.

  16. Initial multi-parameter detection of atmospheric metal layers by Beijing Na–K lidar

    International Nuclear Information System (INIS)

    Jiao, Jing; Yang, Guotao; Wang, Jihong; Cheng, Xuewu; Du, Lifang; Wang, Zelong; Gong, Wei

    2017-01-01

    Beijing Na–K lidar has been started running in 2010. This lidar has two laser beams: one dye laser emits a 589-nm laser beam for Na layer detection; the other dye laser emits a 770-nm laser beam for K layer detection. Under similar conditions, the echo signal of K layer is only about 2 orders of magnitude smaller than that of Na layer. This lidar has a sufficient Signal Noise Ratio (SNR). The structure and details of potassium layer can be effectively distinguished from a single original echo. Several examples of co-observation of density of Na and K layer showed some different results with previous studies. This lidar not only can supplement the lack of Na and K layer observation at this latitude region, but also provide evidence for the atmospheric sciences and space environment monitoring. - Highlights: • Full-band dual-beam lidar at 40°N. • Detecting sodium and potassium layer simultaneously. • Providing a supplement to the study of atmospheric metal layers and evidence for atmospheric sciences and space and atmospheric sciences and space environment monitoring.

  17. Freestanding nanostructures via reactive ion beam angled etching

    Directory of Open Access Journals (Sweden)

    Haig A. Atikian

    2017-05-01

    Full Text Available Freestanding nanostructures play an important role in optical and mechanical devices for classical and quantum applications. Here, we use reactive ion beam angled etching to fabricate optical resonators in bulk polycrystalline and single crystal diamond. Reported quality factors are approximately 30 000 and 286 000, respectively. The devices show uniformity across 25 mm samples, a significant improvement over comparable techniques yielding freestanding nanostructures.

  18. Behavior of Double-Web Angles Beam to column connections

    Science.gov (United States)

    Fakih, K. Al; Chin, S. C.; Doh, S. I.

    2018-04-01

    This paper contains the study performed on the behavior of double-web angles by using finite element analysis computer package known as “Abaqus”. The aim of this present study was simulating the behavior of double-web angles (DWA) steel connections. The purpose of this article is to provide the basis for the fastest and most economical design and analysis and to ensure the required steel connection strength. This study, started used review method of behavior of steel beam-to-column bolted connections. Two models of different cross-section were examined under the effect of concentrated load and different boundary conditions. In all the studied case, material nonlinearity was accounted. A sample study on DWA connections was carried out using both material and geometric nonlinearities. This object will be of great value to anyone who wants to better understand the behavior of the steel beam to column connection. The results of the study have a field of reference for future research for members of the development of the steel connection approach with simulation model design.

  19. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  20. Laser safety in design of near-infrared scanning LIDARs

    Science.gov (United States)

    Zhu, X.; Elgin, D.

    2015-05-01

    3D LIDARs (Light Detection and Ranging) with 1.5μm nanosecond pulse lasers have been increasingly used in different applications. The main reason for their popularity is that these LIDARs have high performance while at the same time can be made eye-safe. Because the laser hazard effect on eyes or skin at this wavelength region (industrial mining applications. We have incorporated the laser safety requirements in the LIDAR design and conducted laser safety analysis for different operational scenarios. While 1.5μm is normally said to be the eye-safe wavelength, in reality a high performance 3D LIDAR needs high pulse energy, small beam size and high pulse repetition frequency (PRF) to achieve long range, high resolution and high density images. The resulting radiant exposure of its stationary beam could be many times higher than the limit for a Class 1 laser device. Without carefully choosing laser and scanning parameters, including field-of-view, scan speed and pattern, a scanning LIDAR can't be eye- or skin-safe based only on its wavelength. This paper discusses the laser safety considerations in the design of eye-safe scanning LIDARs, including laser pulse energy, PRF, beam size and scanning parameters in two basic designs of scanning mechanisms, i.e. galvanometer based scanner and Risley prism based scanner. The laser safety is discussed in terms of device classification, nominal ocular hazard distance (NOHD) and safety glasses optical density (OD).

  1. An Innovative Concept for Spacebased Lidar Measurement of Ocean Carbon Biomass

    Science.gov (United States)

    Hu, Yongxiang; Behrenfeld, Michael; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; hide

    2015-01-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30Âdeg off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  2. Investigation of the microstructures of ion beams emitted from PF-1000 at different angles to the Z-axis

    Energy Technology Data Exchange (ETDEWEB)

    Skladnik-Sadowska, E.; Czaus, K.; Malinowski, K.; Kwiatkowski, R.; Zebrowski, J. [The Andrzej Soltan Institute for Nuclear Studies, IPJ, 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [The Andrzej Soltan Institute for Nuclear Studies, IPJ, 0R-400 Otwock-Swierk (Poland)] [Institute of Plasma Physics and Laser Microfusion, IPPLM, 01-497 Warsaw (Poland); Paduch, M.; Scholz, M. [Institute of Plasma Physics and Laser Microfusion, IPPLM, 01-497 Warsaw (Poland); Kubes, P. [Czech Technical University, CVUT, 166-27 Prague (Czech Republic); Garkusha, I.E. [Institute of Plasma Physics, NSC KIPT, 61-108 Kharkov (Ukraine); Talebitaher, A. [Plasma Radiation Sources Laboratory, NIE NTU, 637616 Singapore (Singapore)

    2011-07-01

    The paper describes diagnostics of fast ion beams emitted from the large PF-1000 facility operated at 21-27 kV, 290-480 kJ. The use was made of pinhole cameras equipped with PM-355 nuclear track detectors and placed at different angles to the discharge axis. The ion measurements performed at 0 degree angle, as well as those at 60 degrees angle showed a complex spatial structure of the fast ion beams. The ion measurements, which were for the first time performed in the upstream direction (at 180 degrees angle), have proved that some fast deuteron beams are emitted also in the upstream direction. This document is composed of a paper and a poster. (authors)

  3. Angle-Beam Shear Wave Scattering from Buried Crack-like Defects in Bonded Specimens (Postprint)

    Science.gov (United States)

    2017-02-01

    defects: such as understanding the scattering behavior of fatigue cracks emanating from fastener holes in aluminum structural components [2]. Angle...Ultrasonic NDE techniques using angle-beam wedges coupled to PZT transducers have also been utilized in measuring the depth of surface-breaking cracks

  4. Modelling lidar volume-averaging and its significance to wind turbine wake measurements

    Science.gov (United States)

    Meyer Forsting, A. R.; Troldborg, N.; Borraccino, A.

    2017-05-01

    Lidar velocity measurements need to be interpreted differently than conventional in-situ readings. A commonly ignored factor is “volume-averaging”, which refers to lidars not sampling in a single, distinct point but along its entire beam length. However, especially in regions with large velocity gradients, like the rotor wake, can it be detrimental. Hence, an efficient algorithm mimicking lidar flow sampling is presented, which considers both pulsed and continous-wave lidar weighting functions. The flow-field around a 2.3 MW turbine is simulated using Detached Eddy Simulation in combination with an actuator line to test the algorithm and investigate the potential impact of volume-averaging. Even with very few points discretising the lidar beam is volume-averaging captured accurately. The difference in a lidar compared to a point measurement is greatest at the wake edges and increases from 30% one rotor diameter (D) downstream of the rotor to 60% at 3D.

  5. Initial Development Work for the Cloud-Aerosol Multi-Angle Lidar

    Data.gov (United States)

    National Aeronautics and Space Administration — Initiate development of a cost-effective off-nadir cloud-aerosol lidar instrument to enable data synergy with passive sensors (imagers, polarimeters) and models...

  6. Large-angle adjustable coherent atomic beam splitter by Bragg scattering

    NARCIS (Netherlands)

    Koolen, A.E.A.; Jansen, G.T.; Domen, K.F.E.M.; Beijerinck, H.C.W.; Leeuwen, van K.A.H.

    2002-01-01

    Using a "monochromatic" (single-axial-velocity) and slow (250 m/s) beam of metastable helium atoms, we realize up to eighth-order Bragg scattering and obtain a splitting angle of 6 mrad at low laser power (3 mW). This corresponds to a truly macroscopic separation of 12 mm on the detector. For

  7. Light Detection and Ranging (LIDAR) From Space - Laser Altimeters

    Science.gov (United States)

    Sun, Xiaoli

    2016-01-01

    Light detection and ranging, or lidar, is like radar but atoptical wavelengths. The principle of operation and theirapplications in remote sensing are similar. Lidars havemany advantages over radars in instrument designs andapplications because of the much shorter laser wavelengthsand narrower beams. The lidar transmitters and receiveroptics are much smaller than radar antenna dishes. Thespatial resolution of lidar measurement is much finer thanthat of radar because of the much smaller footprint size onground. Lidar measurements usually give a better temporalresolution because the laser pulses can be much narrowerthan radio frequency (RF) signals. The major limitation oflidar is the ability to penetrate clouds and ground surfaces.

  8. Lidar signal-to-noise ratio improvements: Considerations and techniques

    Science.gov (United States)

    Hassebo, Yasser Y.

    The primary objective of this study is to improve lidar signal-to-noise ratio (SNR) and hence extend attainable lidar ranges through reduction of the sky background noise (BGP), which dominates other sources of noise in daytime operations. This is particularly important for Raman lidar techniques where the Raman backscattered signal of interest is relatively weak compared with the elastic backscatter lidars. Two approaches for reduction of sky background noise are considered: (1) Improvements in lidar SNR by optimization of the design of the lidar receiver were examined by a series of simulations. This part of the research concentrated on biaxial lidar systems, where overlap between laser beam and receiver field of view (FOV) is an important aspect of noise considerations. The first optimized design evolved is a wedge shaped aperture. While this design has the virtue of greatly reducing background light, it is difficult to implement practically, requiring both changes in area and position with lidar range. A second more practical approach, which preserves some of the advantages of the wedge design, was also evolved. This uses a smaller area circular aperture optimally located in the image plane for desired ranges. Simulated numerical results for a biaxial lidar have shown that the best receiver parameters selection is one using a small circular aperture (field stop) with a small telescope focal length f, to ensure the minimum FOV that accepts all return signals over the entire lidar range while at the same time minimizing detected BGP and hence maximizing lidar SNR and attainable lidar ranges. The improvement in lidar SNR was up to 18%. (2) A polarization selection technique was implemented to reduce sky background signal for linearly polarized monostatic elastic backscatter lidar measurements. The technique takes advantage of naturally occurring polarization properties in scattered sky light, and then ensures that both the lidar transmitter and receiver track and

  9. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  10. Pointing Verification Method for Spaceborne Lidars

    Directory of Open Access Journals (Sweden)

    Axel Amediek

    2017-01-01

    Full Text Available High precision acquisition of atmospheric parameters from the air or space by means of lidar requires accurate knowledge of laser pointing. Discrepancies between the assumed and actual pointing can introduce large errors due to the Doppler effect or a wrongly assumed air pressure at ground level. In this paper, a method for precisely quantifying these discrepancies for airborne and spaceborne lidar systems is presented. The method is based on the comparison of ground elevations derived from the lidar ranging data with high-resolution topography data obtained from a digital elevation model and allows for the derivation of the lateral and longitudinal deviation of the laser beam propagation direction. The applicability of the technique is demonstrated by using experimental data from an airborne lidar system, confirming that geo-referencing of the lidar ground spot trace with an uncertainty of less than 10 m with respect to the used digital elevation model (DEM can be obtained.

  11. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  12. Measuring contact angle and meniscus shape with a reflected laser beam.

    Science.gov (United States)

    Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K

    2014-01-01

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.

  13. Polarimetric LIDAR with FRI sampling for target characterization

    Science.gov (United States)

    Wijerathna, Erandi; Creusere, Charles D.; Voelz, David; Castorena, Juan

    2017-09-01

    Polarimetric LIDAR is a significant tool for current remote sensing applications. In addition, measurement of the full waveform of the LIDAR echo provides improved ranging and target discrimination, although, data storage volume in this approach can be problematic. In the work presented here, we investigated the practical issues related to the implementation of a full waveform LIDAR system to identify polarization characteristics of multiple targets within the footprint of the illumination beam. This work was carried out on a laboratory LIDAR testbed that features a flexible arrangement of targets and the ability to change the target polarization characteristics. Targets with different retardance characteristics were illuminated with a linearly polarized laser beam and the return pulse intensities were analyzed by rotating a linear analyzer polarizer in front of a high-speed detector. Additionally, we explored the applicability and the limitations of applying a sparse sampling approach based on Finite Rate of Innovations (FRI) to compress and recover the characteristic parameters of the pulses reflected from the targets. The pulse parameter values extracted by the FRI analysis were accurate and we successfully distinguished the polarimetric characteristics and the range of multiple targets at different depths within the same beam footprint. We also demonstrated the recovery of an unknown target retardance value from the echoes by applying a Mueller matrix system model.

  14. COHERENT LIDAR SYSTEM BASED ON A SEMICONDUCTOR LASER AND AMPLIFIER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a compact, reliable and low-cost coherent LIDAR (Light Detection And Ranging) system for remote wind-speed determination, determination of particle concentration, and/or temperature based on an all semiconductor light source and related methods. The present...... invention provides a coherent LIDAR system comprising a semiconductor laser for emission of a measurement beam of electromagnetic radiation directed towards a measurement volume for illumination of particles in the measurement volume, a reference beam generator for generation of a reference beam, a detector...... for generation of a detector signal by mixing of the reference beam with light emitted from the particles in the measurement volume illuminated by the measurement beam, and a signal processor for generating a velocity signal corresponding to the velocity of the particles based on the detector signal....

  15. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Zhang, Yupeng; Yang, Yongying; Zhou, Yudi; Luo, Jing; Bai, Jian; Shen, Yibing; Wang, Kaiwei; Liu, Chong; Su, Lin; Yang, Liming

    2016-04-04

    A field-widened Michelson interferometer (FWMI), which is intended as the spectroscopic discriminator in ground-based high-spectral-resolution lidar (HSRL) for atmospheric aerosol detection, is described in this paper. The structure, specifications and design of the developed prototype FWMI are introduced, and an experimental approach is proposed to optimize the FWMI assembly and evaluate its comprehensive characteristic simultaneously. Experimental results show that, after optimization process, the peak-to-valley (PV) value and root-mean-square (RMS) value of measured OPD variation for the FWMI are 0.04λ and 0.008λ respectively among the half divergent angle range of 1.5 degree. Through an active locking technique, the frequency of the FWMI can be locked to the laser transmitter with accuracy of 27 MHz for more than one hour. The practical spectral discrimination ratio (SDR) for the developed FWMI is evaluated to be larger than 86 if the divergent angle of incident beam is smaller than 0.5 degree. All these results demonstrate the great potential of the developed FWMI as the spectroscopic discriminator for HSRLs, as well as the feasibility of the proposed design and optimization process. This paper is expected to provide a good entrance for the lidar community in future HSRL developments using the FWMI technique.

  16. Measurement of dynamic wedge angles and beam profiles by means of MRI ferrous sulphate gel dosimetry

    Science.gov (United States)

    Bengtsson, Magnus; Furre, Torbjørn; Rødal, Jan; Skretting, Arne; Olsen, Dag R.

    1996-02-01

    The purpose of this study is to examine the possible value of measuring the dose distribution in dynamic wedge photon beams using ferrous sulphate gel phantoms analysed by MRI. The wedge angles and dose profiles were measured for a field size of and for dynamic wedge angles of , , and using a 15 MV photon beam generated from a Clinac 2100 CD (Varian). The dose profiles obtained from MRI ferrous sulphate gel were in good agreement with the dose measurements performed with a diode detector array. Also, the wedge angles determined from the MRI ferrous sulphate gel agreed well with the values obtained by using film dosimetry and with calculations by use of TMS (treatment planning system) (Helax, Uppsala, Sweden). The study demonstrated that MRI ferrous sulphate gel dosimetry is an adequate tool for measurements of some beam characteristics of dynamic radiation fields.

  17. SU-E-T-49: Automatic Beam Angle Determination for Lung IMRT Planning Using a Beam Configuration Atlas

    International Nuclear Information System (INIS)

    Yuan, L; Yin, F; Sheng, Y; Wu, Q J.; Ge, Y; Li, Y

    2014-01-01

    Purpose: To present a technique to automatically determine beam angle configurations for lung IMRT planning based on the patient-specific anatomy and tumor geometry. Methods: The relationship between individual patient anatomy and proper beam configurations was learned from high quality clinical plans in three steps. First, a beam configuration atlas was obtained by classifying 60 lung IMRT plans into 6 beam configuration clusters based on a dissimilarity measure defined between different beam configurations. A beam configuration template was extracted from each cluster to form an atlas. Second, a beam efficiency index map (EI map) was constructed to characterize the geometry of the tumor relative to the lungs, the body and other OARs along each candidate beam direction. Finally, the EI maps of the clinical cases and the cluster assignments of their beam configurations were paired to train a Bayesian classification model. This technique was validated by leave-one-out cross validation with 16 cases randomly selected from the original dataset. An IMRT plan (autobeam plan) for each test case was generated using the beam configuration template according to the cluster assignment given by the model and was compared with the corresponding clinical plan. Results: The dosimetric parameters (mean±S.D. in percentage of prescription dose) in the auto-beam plans and in the clinical plans, respectively, and the p-values by a paired ttest (in parenthesis) are: lung Dmean: 16.3±9.3, 18.6±7.4 (0.48), esophagus Dmean: 28.4±18, 30.7±19.3 (0.02), Heart Dmean: 21.5±17.5,21.1±17.2 (0.76), Spinal Cord D2%: 48±23, 51.2±21.8 (0.01), PTV dose homogeneity (D2%–D99%): 22±27.4, 20.4±12.8 (0.10).The dose reductions by the autobeam plans in esophagus Dmean and cord D02 are statistically significant but the differences (<4%) may not be clinically significant. The other dosimetric parameters are not statistically different. Conclusion: Plans generated by the automatic beam angle

  18. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power.

  19. Ultra-fast fluence optimization for beam angle selection algorithms

    Science.gov (United States)

    Bangert, M.; Ziegenhein, P.; Oelfke, U.

    2014-03-01

    Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ~ 4 s. BAS runs including FOs for 1000 different beam ensembles take ~ 15-70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.

  20. Ultra-fast fluence optimization for beam angle selection algorithms

    International Nuclear Information System (INIS)

    Bangert, M; Ziegenhein, P; Oelfke, U

    2014-01-01

    Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ∼ 4 s. BAS runs including FOs for 1000 different beam ensembles take ∼ 15–70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.

  1. Lidar Remote Sensing for Industry and Environment Monitoring

    Science.gov (United States)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  2. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    DEFF Research Database (Denmark)

    Mann, Jakob; Cariou, J.-P.; Courtney, Michael

    2008-01-01

    Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence mea...... measurements with lidars. The results show a very good correlation between the lidar and the sonic times series. The variance of the velocity measured by the Mar is attenuated due to spatial filtering, and the amount of attenuation can be predicted theoretically.......Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence...

  3. Numerical modeling of optical coherent transient processes with complex configurations - II. Angled beams with arbitrary phase modulations

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen; Barber, Zeb W.; Randall Babbitt, Wm.

    2004-01-01

    This work is a continuation of the development of the theoretical model for optical coherent transient (OCT) processes with complex configurations. A theoretical model for angled beams with arbitrary phase modulation has been developed based on the model presented in our previous work for the angled beam geometry. A numerical tool has been devised to simulate the OCT processes involving angled beams with the frequency detuning, chirped, and phase-modulated laser pulses. The simulations for pulse shaping and arbitrary waveform generation (AWG) using OCT processes have been performed. The theoretical analysis of programming and probe schemes for pulse shaper and AWG is also presented including the discussions on the rephasing condition and the phase compensation. The results from the analysis, the simulation, and the experiment show very good agreement

  4. TH-EF-BRB-05: 4pi Non-Coplanar IMRT Beam Angle Selection by Convex Optimization with Group Sparsity Penalty

    International Nuclear Information System (INIS)

    O’Connor, D; Nguyen, D; Voronenko, Y; Yin, W; Sheng, K

    2016-01-01

    Purpose: Integrated beam orientation and fluence map optimization is expected to be the foundation of robust automated planning but existing heuristic methods do not promise global optimality. We aim to develop a new method for beam angle selection in 4π non-coplanar IMRT systems based on solving (globally) a single convex optimization problem, and to demonstrate the effectiveness of the method by comparison with a state of the art column generation method for 4π beam angle selection. Methods: The beam angle selection problem is formulated as a large scale convex fluence map optimization problem with an additional group sparsity term that encourages most candidate beams to be inactive. The optimization problem is solved using an accelerated first-order method, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The beam angle selection and fluence map optimization algorithm is used to create non-coplanar 4π treatment plans for several cases (including head and neck, lung, and prostate cases) and the resulting treatment plans are compared with 4π treatment plans created using the column generation algorithm. Results: In our experiments the treatment plans created using the group sparsity method meet or exceed the dosimetric quality of plans created using the column generation algorithm, which was shown superior to clinical plans. Moreover, the group sparsity approach converges in about 3 minutes in these cases, as compared with runtimes of a few hours for the column generation method. Conclusion: This work demonstrates the first non-greedy approach to non-coplanar beam angle selection, based on convex optimization, for 4π IMRT systems. The method given here improves both treatment plan quality and runtime as compared with a state of the art column generation algorithm. When the group sparsity term is set to zero, we obtain an excellent method for fluence map optimization, useful when beam angles have already been selected. NIH R43CA183390, NIH R01CA

  5. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  6. Uncertainty of power curve measurement with a two-beam nacelle-mounted lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael Stephen; Friis Pedersen, Troels

    2015-01-01

    Nacelle lidars are attractive for offshore measurements since they can provide measurements of the free wind speed in front of the turbine rotor without erecting a met mast, which significantly reduces the cost of the measurements. Nacelle-mounted pulsed lidars with two lines of sight (LOS) have...... lies between 1 and 2% for the wind speed range between cut-in and rated wind speed. Finally, the lidar was mounted on the nacelle of a wind turbine in order to perform a power curve measurement. The wind speed was simultaneously measured with a mast-top mounted cup anemometer placed two rotor diameters...... lidar was less than 10% larger on average than that obtained with the mast mounted cup anemometer. Copyright © 2015 John Wiley & Sons, Ltd....

  7. Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Mikkelsen, Torben; Courtney, Michael

    averaging is done in two steps: 1) the weighted averaging of the wind speed in the probe volume of the laser beam; 2) the averaging of the wind speeds occurring on the circular path described by the conically scanning lidar. Therefore the standard deviation measured by a lidar resolves only the turbulence...... of a continuous wave, conically scanning Zephir lidar. First, the wind speed standard deviation measured by such a lidar gives on average 80% of the standard deviation measured by a cup anemometer. This difference is due to the spatial averaging inherently made by a cw conically scanning lidar. The spatial...

  8. Lidar-Observed Stress Vectors and Veer in the Atmospheric Boundary Layer

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, Edward G.

    2013-01-01

    This study demonstrates that a pulsed wind lidar is a reliable instrument for measuring angles between horizontal vectors of significance in the atmospheric boundary layer. Three different angles are considered: the wind turning, the angle between the stress vector and the mean wind direction......, and the angle between the stress vector and the vertical gradient of the mean velocity vector. The latter is assumed to be zero by the often applied turbulent-viscosity hypothesis, so that the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where...... the Coriolis force is negligible, this is supposedly a good approximation. High-resolution large-eddy simulation data show that this is indeed the case even beyond the surface layer. In contrast, through analysis of WindCube lidar measurements supported by sonic measurements, the study shows that it is only...

  9. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  10. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill; Shamim, Atif; Sharawi, Mohammad Said

    2017-01-01

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  11. Doubly-scattered-radiation contribution to Lidar returns from fog, evaluated by means of a simple geometrical approach

    International Nuclear Information System (INIS)

    Bruscaglioni, P.; Ismaelli, A.

    1978-01-01

    The contribution of doubly scattered radiation to the return of a monostatic Lidar, used for measurement of atmospheric visibility, is evaluated by means of a simple geometrical scheme. A very narrow laser beam is considered, to obtain an expression of the ratio D/S of doubly scattered power to singly scattered power. This assumption allows an easy consideration of any angle of scattering and the introduction of time into the calculations. Numerical computations are performed for several models of fog. Our results are similar, though a little lower, than the results of other theoretical treatments of this problem based on different assumptions. (author)

  12. Angle Performance on Optima XE

    International Nuclear Information System (INIS)

    David, Jonathan; Satoh, Shu

    2011-01-01

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  13. Object Classification Using Airborne Multispectral LiDAR Data

    Directory of Open Access Journals (Sweden)

    PAN Suoyan

    2018-02-01

    Full Text Available Airborne multispectral LiDAR system,which obtains surface geometry and spectral data of objects,simultaneously,has become a fast effective,large-scale spatial data acquisition method.Multispectral LiDAR data are characteristics of completeness and consistency of spectrum and spatial geometric information.Support vector machine (SVM,a machine learning method,is capable of classifying objects based on small samples.Therefore,by means of SVM,this paper performs land cover classification using multispectral LiDAR data. First,all independent point cloud with different wavelengths are merged into a single point cloud,where each pixel contains the three-wavelength spectral information.Next,the merged point cloud is converted into range and intensity images.Finally,land-cover classification is performed by means of SVM.All experiments were conducted on the Optech Titan multispectral LiDAR data,containing three individual point cloud collected by 532 nm,1024 nm,and 1550 nm laser beams.Experimental results demonstrate that ①compared to traditional single-wavelength LiDAR data,multispectral LiDAR data provide a promising solution to land use and land cover applications;②SVM is a feasible method for land cover classification of multispectral LiDAR data.

  14. Evaluation of three lidar scanning strategies for turbulence measurements

    DEFF Research Database (Denmark)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia

    2016-01-01

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u,...

  15. A method for selection of beam angles robust to intra-fractional motion in proton therapy of lung cancer

    DEFF Research Database (Denmark)

    Casares-Magaz, Oscar; Toftegaard, Jakob; Muren, Ludvig P.

    2014-01-01

    that are robust to patient-specific patterns of intra-fractional motion. Material and methods. Using four-dimensional computed tomography (4DCT) images of three lung cancer patients we evaluated the impact of the WEPL changes on target dose coverage for a series of coplanar single-beam plans. The plans were...... reduction was associated with the mean difference between the WEPL and the phase-averaged WEPL computed for all beam rays across all possible gantry-couch angle combinations. Results. The gantry-couch angle maps showed areas of both high and low WEPL variation, with overall quite similar patterns yet...... presented a 4DCT-based method to quantify WEPL changes during the breathing cycle. The method identified proton field gantry-couch angle combinations that were either sensitive or robust to WEPL changes. WEPL variations along the beam path were associated with target under-dosage....

  16. iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans

    International Nuclear Information System (INIS)

    Breedveld, Sebastiaan; Storchi, Pascal R. M.; Voet, Peter W. J.; Heijmen, Ben J. M.

    2012-01-01

    Purpose: To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles. Methods: A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives. The higher an objective priority is, the higher the probability that the corresponding objective will be met. Beam directions are selected from an input set of candidate directions. Input sets can be restricted, e.g., to allow only generation of coplanar plans, or to avoid collisions between patient/couch and the gantry in a noncoplanar setup. Obtaining clinically feasible calculation times was an important design criterium for development of iCycle. This could be realized by sequentially adding beams to the treatment plan in an iterative procedure. Each iteration loop starts with selection of the optimal direction to be added. Then, a Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes all so far selected directions, using a previously published algorithm for multicriterial optimization of fluence profiles for a fixed beam arrangement Breedveld et al.[Phys. Med. Biol. 54, 7199-7209 (2009)]. To select the next direction, each not yet selected candidate direction is temporarily added to the plan and an optimization problem, derived from the Lagrangian obtained from the just performed optimization for establishing the Pareto-optimal plan, is solved. For each patient, a single one-beam, two-beam, three-beam, etc. Pareto-optimal plan is generated until addition of beams does no longer result in significant plan quality improvement. Plan generation with iCycle is fully automated. Results: Performance and characteristics of iCycle are demonstrated by generating plans for a maxillary sinus case, a cervical cancer patient, and a

  17. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  18. High energy electron radiography system design and simulation study of beam angle-position correlation and aperture effect on the images

    International Nuclear Information System (INIS)

    Zhao, Quantang; Cao, S.C.; Liu, M.; Sheng, X.K.; Wang, Y.R.; Zong, Y.; Zhang, X.M.; Jing, Y.; Cheng, R.; Zhao, Y.T.; Zhang, Z.M.; Du, Y.C.; Gai, W.

    2016-01-01

    A beam line dedicated to high-energy electron radiography experimental research with linear achromat and imaging lens systems has been designed. The field of view requirement on the target and the beam angle-position correlation correction can be achieved by fine-tuning the fields of the quadrupoles used in the achromat in combination with already existing six quadrupoles before the achromat. The radiography system is designed by fully considering the space limitation of the laboratory and the beam diagnostics devices. Two kinds of imaging lens system, a quadruplet and an octuplet system are integrated into one beam line with the same object plane and image plane but with different magnification factor. The beam angle-position correlation on the target required by the imaging lens system and the aperture effect on the images are studied with particle tracking simulation. It is shown that the aperture position is also correlated to the beam angle-position on the target. With matched beam on the target, corresponding aperture position and suitable aperture radius, clear pictures can be imaged by both lens systems. The aperture is very important for the imaging. The details of the beam optical requirements, optimized parameters and the simulation results are presented.

  19. Calibration report for Avent 5-beam Demonstrator lidar

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael

    Nacelle-based profiling LiDARs may be the future of power performance assessment. Due to their large rotor size, single-point measurements are insufficient to quantify the power modern wind turbines can harness. The available energy in the wind indeed varies with heights. Improving power performa...

  20. Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma

    International Nuclear Information System (INIS)

    Wang Xiaochun; Zhang Xiaodong; Dong Lei; Liu, Helen; Gillin, Michael; Ahamad, Anesa; Ang Kian; Mohan, Radhe

    2005-01-01

    Purpose: To determine the effectiveness of noncoplanar beam configurations and the benefit of plans using fewer but optimally placed beams designed by a parallelized multiple-resolution beam angle optimization (PMBAO) approach. Methods and Materials: The PMBAO approach uses a combination of coplanar and noncoplanar beam configurations for intensity-modulated radiation therapy (IMRT) treatment planning of paranasal sinus cancers. A smaller number of beams (e.g. 3) are first used to explore the solution space to determine the best and worst beam directions. The results of this exploration are then used as a starting point for determining an optimum beam orientation configuration with more beams (e.g. 5). This process is parallelized using a message passing interface, which greatly reduces the overall computation time for routine clinical practice. To test this approach, treatment for 10 patients with paranasal sinus cancer was planned using a total of 5 beams from a pool of 46 possible beam angles. The PMBAO treatment plans were also compared with IMRT plans designed using 9 equally spaced coplanar beams, which is the standard approach in our clinic. Plans with these two different beam configurations were compared with respect to dose conformity, dose heterogeneity, dose-volume histograms, and doses to organs at risk (i.e., eyes, optic nerve, optic chiasm, and brain). Results: The noncoplanar beam configuration was superior in most paranasal sinus carcinoma cases. The target dose homogeneity was better using a PMBAO 5-beam configuration. However, the dose conformity using PMBAO was not improved and was case dependent. Compared with the 9-beam configuration, the PMBAO configuration significantly reduced the mean dose to the eyes and optic nerves and the maximum dose to the contralateral optical path (e.g. the contralateral eye and optic nerve). The maximum dose to the ipsilateral eye and optic nerve was also lower using the PMBAO configuration than using the 9-beam

  1. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Wu Songhua

    2016-01-01

    Full Text Available Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA. In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  2. Measuring the beaming angle of GRB 030329 by fitting the rebrightenings in its multiband afterglow

    International Nuclear Information System (INIS)

    Deng Wei; Huang Yongfeng; Kong Siwei

    2010-01-01

    Multiple rebrightenings have been observed in the multiband afterglow of GRB 030329. In particular, a marked and quick rebrightening occurred at about t ∼ 1.2 x 10 5 s. Energy injection from late and slow shells seems to be the best interpretation for these rebrightenings. Usually it is assumed that the energy is injected into the whole external shock. However, in the case of GRB 030329, the rebrightenings are so quick that the usual consideration fails to give a satisfactory fit to the observed light curves. Actually, since these late/slow shells freely coast in the wake of the external shock, they should be cold and may not expand laterally. The energy injection then should only occur at the central region of the external shock. Considering this effect, we numerically re-fit the quick rebrightenings observed in GRB 030329. By doing this, we were able to derive the beaming angle of the energy injection process. Our result, with a relative residual of only 5% - 10% during the major rebrightening, is better than any previous modeling. The derived energy injection angle is about 0.035. We assume that these late shells are ejected by the central engine via the same mechanism as those early shells that produce the prompt gamma-ray burst. The main difference is that their velocities are much slower, so that they catch up with the external shock relatively late and are manifested as the observed quick rebrightenings. If this were true, then the derived energy injection angle can give a good measure of the beaming angle of the prompt γ-ray emission. Our study may hopefully provide a novel method to measure the beaming angle of gamma-ray bursts. (research papers)

  3. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    International Nuclear Information System (INIS)

    Mann, J; Courtney, M S; Mikkelsen, T; Wagner, R; Lindeloew, P; Sjoeholm, M; Enevoldsen, K; Cariou, J-P; Parmentier, R

    2008-01-01

    Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence measurements with lidars. The results show a very good correlation between the lidar and the sonic times series. The variance of the velocity measured by the lidar is attenuated due to spatial filtering, and the amount of attenuation can be predicted theoretically

  4. A fixed angle double mirror filter for preparing a pink undulator beam at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Dufresne, E.; Sanchez, T.; Nurushev, T.; Clarke, R.; Dierker, S.B.

    2000-01-01

    Recent advances in X-ray Photon Correlation Spectroscopy (XPCS) use the full bandwidth of an undulator harmonic in order to maximize the coherent flux for small angle X-ray scattering experiments. X-ray mirrors and filters are typically used to select a given harmonic of the spectrum. At the University of Michigan/Howard University/Lucent Technologies, Bell Labs, Collaborative Access Team (MHATT-CAT) undulator beamline of the Advanced Photon Source, we have designed a fixed-angle Double Mirror Filter which will provide a 'pink beam' (i.e., 2-3% bandwidth) for XPCS experiments. This device uses two small mirrors which vertically reflect a 0.1 mmx0.1 mm white beam in a symmetric geometry. The doubly reflected beam propagates parallel to the incident white beam, but is offset vertically by 35 mm. Using the standard offset of the APS allows one to stop the white beam with a standard APS beam stop. In this report, we will describe our design considerations for this instrument. We also report the results of preliminary tests of the performance. The mirrors preserve the transverse coherence of the source, and filter the undulator spectrum as expected

  5. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    Directory of Open Access Journals (Sweden)

    Liu Jiqiao

    2016-01-01

    Full Text Available An all-fiber airborne pulsed coherent Doppler lidar (CDL prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  6. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    Science.gov (United States)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-01

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity

  7. A feasibility study of Dynamic Phantom scanner for quality assurance of photon beam profiles at various gantry angles.

    Science.gov (United States)

    Zhang, Yunkai; Hsi, Wen C; Chu, James C H; Bernard, Damian B; Abrams, Ross A

    2005-01-01

    The effect of gantry rotation on beam profiles of photon and electron beams is an important issue in quality assurance for radiotherapy. To address variations in the profiles of photon and electron beams at different gantry angles, a Dynamic Phantom scanner composed of a 20 x 12 x 6 cm3 scanning Lucite block was designed as a cross-beam-profile scanner. To our knowledge, differences between scanned profiles acquired at different gantry angles with a small size Lucite block and those acquired a full-size (60 x 60 x 50 cm3) water phantom have not been previously investigated. We therefore performed a feasibility study for a first prototype Dynamic Phantom scanner without a gantry attachment mount. Radiation beams from a Varian LINAC 21EX and 2100C were used. Photon beams (6 MV and 18 MV) were shaped by either collimator jaws or a Varian 120 Multileaf (MLC) collimator, and electron beams (6 MeV, 12 MeV, and 20 MeV) were shaped by a treatment cone. To investigate the effect on profiles by using a Lucite block, a quantitative comparison of scanned profiles with the Dynamic Phantom and a full-size water phantom was first performed at a 0 degrees gantry angle for both photon and electron beams. For photon beam profiles defined by jaws at 1.0 cm and 5.0 cm depths of Lucite (i.e., at 1.1 cm and 5.7 cm depth of water), a good agreement (less than 1% variation) inside the field edge was observed between profiles scanned with the Dynamic Phantom and with a water phantom. The use of Lucite in the Dynamic Phantom resulted in reduced penumbra width (about 0.5 mm out of 5 mm to 8mm) and reduced (1% to 2%) scatter dose beyond the field edges for both 6 MV and 18 MV beams, compared with the water phantom scanner. For profiles of the MLC-shaped 6 MV photon beam, a similar agreement was observed. For profiles of electron beams scanned at 2.9 cm depth of Lucite (i.e., at 3.3 cm depth of water), larger disagreements in profiles (3% to 4%) and penumbra width (3 mm to 4 mm out of 12 mm

  8. Mapping wetlands in Nova Scotia with multi-beam RADARSAT-2 Polarimetric SAR, optical satellite imagery, and Lidar data

    Science.gov (United States)

    Jahncke, Raymond; Leblon, Brigitte; Bush, Peter; LaRocque, Armand

    2018-06-01

    Wetland maps currently in use by the Province of Nova Scotia, namely the Department of Natural Resources (DNR) wetland inventory map and the swamp wetland classes of the DNR forest map, need to be updated. In this study, wetlands were mapped in an area southwest of Halifax, Nova Scotia by classifying a combination of multi-date and multi-beam RADARSAT-2 C-band polarimetric SAR (polSAR) images with spring Lidar, and fall QuickBird optical data using the Random Forests (RF) classifier. The resulting map has five wetland classes (open-water/marsh complex, open bog, open fen, shrub/treed fen/bog, swamp), plus lakes and various upland classes. Its accuracy was assessed using data from 156 GPS wetland sites collected in 2012 and compared to the one obtained with the current wetland map of Nova Scotia. The best overall classification was obtained using a combination of Lidar, RADARSAT-2 HH, HV, VH, VV intensity with polarimetric variables, and QuickBird multispectral (89.2%). The classified image was compared to GPS validation sites to assess the mapping accuracy of the wetlands. It was first done considering a group consisting of all wetland classes including lakes. This showed that only 69.9% of the wetland sites were correctly identified when only the QuickBird classified image was used in the classification. With the addition of variables derived from lidar, the number of correctly identified wetlands increased to 88.5%. The accuracy remained the same with the addition of RADARSAT-2 (88.5%). When we tested the accuracy for identifying wetland classes (e.g. marsh complex vs. open bog) instead of grouped wetlands, the resulting wetland map performed best with either QuickBird and Lidar, or QuickBird, Lidar, and RADARSAT-2 (66%). The Province of Nova Scotia's current wetland inventory and its associated wetland classes (aerial-photo interpreted) were also assessed against the GPS wetland sites. This provincial inventory correctly identified 62.2% of the grouped wetlands

  9. Experimental study of crossing angle collision

    International Nuclear Information System (INIS)

    Chen, T.; Rice, D.; Rubin, D.; Sagan, D.; Tigner, M.

    1993-01-01

    The non-linear coupling due to the beam-beam interaction with crossing angle has been studied. The major effect of a small (∼12mrad) crossing angle is to excite 5Q x ±Q s =integer coupling resonance family on large amplitude particles, which results in bad lifetime. On the CESR, a small crossing angle (∼2.4mr) was created at the IP and a reasonable beam-beam tune-shift was achieved. The decay rate of the beam is measured as a function of horizontal tune with and without crossing angle. The theoretical analysis, simulation and experimental measurements have a good agreement. The resonance strength as a function of crossing angle is also measured

  10. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    ., Nuruzzaman [Hampton Univ., Hampton, VA (United States)

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  11. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    Science.gov (United States)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-02-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.

  12. Optimization of the beam crossing angle at the ILC for e+e‑ and γ γ collisions

    Science.gov (United States)

    Telnov, V. I.

    2018-03-01

    At this time, the design of the International Linear Collider (ILC) is optimized for e+e‑ collisions; the photon collider (γ γ and >=) is considered as an option. Unexpected discoveries, such as the diphoton excess digamma(750) seen at the LHC, could strongly motivate the construction of a photon collider. In order to enable the γ γ collision option, the ILC design should be compatible with it from the very beginning. In this paper, we discuss the problem of the beam crossing angle. In the ILC technical design [1], this angle is 14 mrad, which is just enough to provide enough space for the final quadrupoles and outgoing beams. For γ γ collisions, the crossing angle must be larger because the low-energy electrons that result from multiple Compton scattering get large disruption angles in collisions with the opposing electron beam and some deflection in the solenoidal detector field. For a 2E0=500 GeV collider, the required crossing angle is about 25 mrad. In this paper, we consider the factors that determine the crossing angle as well as its minimum permissible value that does not yet cause a considerable reduction of the γ γ luminosity. It is shown that the best solution is to increase the laser wavelength from the current 1 μm (which is optimal for 2E0=500 GeV) to 2 μm as this makes possible achieving high γ γ luminosities at a crossing angle of 20 mrad, which is also quite comfortable for e+e‑ collisions, does not cause any degradation of the e+e‑ luminosity and opens the possibility for a more energetic future collider in the same tunnel (e.g., CLIC). Moreover, the 2 μm wavelength is optimal for a 2E0 = 1 TeV collider, e.g., a possible ILC energy upgrade. Please consider this paper an appeal to increase the ILC crossing angle from 14 to 20 mrad.

  13. Aerosol Retrievals from Proposed Satellite Bistatic Lidar Observations: Algorithm and Information Content

    Science.gov (United States)

    Alexandrov, M. D.; Mishchenko, M. I.

    2017-12-01

    Accurate aerosol retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. We suggested to address this ill-posedness by flying a bistatic lidar system. Such a system would consist of formation flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and an additional platform hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar. Thus, bistatic lidar observations will be free of deficiencies affecting both monostatic lidar measurements (caused by the highly limited information content) and passive photopolarimetric measurements (caused by vertical integration and surface reflection).We present a preliminary aerosol retrieval algorithm for a bistatic lidar system consisting of a high spectral resolution lidar (HSRL) and an additional receiver flown in formation with it at a scattering angle of 165 degrees. This algorithm was applied to synthetic data generated using Mie-theory computations. The model/retrieval parameters in our tests were the effective radius and variance of the aerosol size distribution, complex refractive index of the particles, and their number concentration. Both mono- and bimodal aerosol mixtures were considered. Our algorithm allowed for definitive evaluation of error propagation from measurements to retrievals using a Monte Carlo technique, which involves random distortion of the observations and statistical characterization of the resulting retrieval errors. Our tests demonstrated that supplementing a conventional monostatic HSRL with an additional receiver dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols.

  14. Implant Angle Monitor System of MC3-II

    International Nuclear Information System (INIS)

    Sato, Fumiaki; Sano, Makoto; Nakaoka, Hiroaki; Fujii, Yoshito; Kudo, Tetuya; Nakanishi, Makoto; Koike, Masazumi; Fujino, Yasushi

    2008-01-01

    Precise implant angle control is required for the latest generation of ion implanters to meet further shrink semiconductor device requirements. Especially, the highest angle accuracy is required for Halo implant process of Logic devices. The Halo implant angle affects the device performance, because slight differences of beam divergence change the overlap profile towards the extension. Additionally, twist angle accuracy is demanded in case of channeling angle implant. Therefore monitoring beam angles and wafer twist angles is important. A new monitoring system for the MC3-II, SEN Corp.'s single wafer type medium current implanter has been developed. This paper describes the angle control performance and monitoring system of the MC3-II. For the twist angle control, we developed a wafer notch angle monitor. The system monitors the wafer notch image on the platen. And the notch angle variation is calculated by using image processing method. It is also able to adjust the notch angle according to the angle error. For the tilt angle control, we developed a vertical beam profile monitor. The monitor system can detect beam profile of vertical directions with horizontally scanning beam. It also measures beam angles of a tilt direction to a wafer. The system configuration and sample beam data are presented.

  15. Lidar to lidar calibration phase 1

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents a feasibility study of a lidar to lidar (L2L) calibration procedure. Phase one of the project was conducted at Høvsøre, Denmark. Two windcubes were placed next to the 116m met mast and different methods were applied to obtain the sensing height error of the lidars. The purpose...... is to find the most consistent method and use it in a potential lidar to lidar calibration procedure....

  16. Wide-angle full-vector beam propagation method based on an alternating direction implicit preconditioner

    Science.gov (United States)

    Chui, Siu Lit; Lu, Ya Yan

    2004-03-01

    Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.

  17. Coherent Doppler lidar for automated space vehicle rendezvous, stationkeeping and capture

    Science.gov (United States)

    Bilbro, James A.

    1991-01-01

    The inherent spatial resolution of laser radar makes ladar or lidar an attractive candidate for Automated Rendezvous and Capture application. Previous applications were based on incoherent lidar techniques, requiring retro-reflectors on the target vehicle. Technology improvements (reduced size, no cryogenic cooling requirement) have greatly enhanced the construction of coherent lidar systems. Coherent lidar permits the acquisition of non-cooperative targets at ranges that are limited by the detection capability rather than by the signal-to-noise ratio (SNR) requirements. The sensor can provide translational state information (range, velocity, and angle) by direct measurement and, when used with any array detector, also can provide attitude information by Doppler imaging techniques. Identification of the target is accomplished by scanning with a high pulse repetition frequency (dependent on the SNR). The system performance is independent of range and should not be constrained by sun angle. An initial effort to characterize a multi-element detection system has resulted in a system that is expected to work to a minimum range of 1 meter. The system size, weight and power requirements are dependent on the operating range; 10 km range requires a diameter of 3 centimeters with overall size at 3 x 3 x 15 to 30 cm, while 100 km range requires a 30 cm diameter.

  18. Lidar to lidar calibration phase 2

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the results from phase 2 of a lidar to lidar (L2L) calibration procedure. Phase two of the project included two measurement campaigns conducted at given sites. The purpose was to find out if the lidar-to-lidar calibration procedure can be conducted with similar results...

  19. Wind field reconstruction from nacelle-mounted lidar short-range measurements

    Directory of Open Access Journals (Sweden)

    A. Borraccino

    2017-05-01

    Full Text Available Profiling nacelle lidars probe the wind at several heights and several distances upstream of the rotor. The development of such lidar systems is relatively recent, and it is still unclear how to condense the lidar raw measurements into useful wind field characteristics such as speed, direction, vertical and longitudinal gradients (wind shear. In this paper, we demonstrate an innovative method to estimate wind field characteristics using nacelle lidar measurements taken within the induction zone. Model-fitting wind field reconstruction techniques are applied to nacelle lidar measurements taken at multiple distances close to the rotor, where a wind model is combined with a simple induction model. The method allows robust determination of free-stream wind characteristics. The method was applied to experimental data obtained with two different types of nacelle lidar (five-beam Demonstrator and ZephIR Dual Mode. The reconstructed wind speed was within 0.5 % of the wind speed measured with a mast-top-mounted cup anemometer at 2.5 rotor diameters upstream of the turbine. The technique described in this paper overcomes measurement range limitations of the currently available nacelle lidar technology.

  20. Coaxial direct-detection lidar-system

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a coaxial direct-detection LIDAR system for measuring velocity, temperature and/or particulate density. The system comprises a laser source for emitting a laser light beam having a lasing center frequency along an emission path. The system further comprises an optical....... Finally, the system comprises a detector system arranged to receive the return signal from the optical delivery system, the detector system comprising a narrowband optical filter and a detector, the narrowband optical filter having a filter center frequency of a pass-band, wherein the center lasing...... frequency and/or the center filter frequency may be scanned. The invention further relates to an aircraft airspeed measurement device, and a wind turbine airspeed measurement device comprising the LIDAR system....

  1. EFFECTS OF X-RAY BEAM ANGLE AND GEOMETRIC DISTORTION ON WIDTH OF EQUINE THORACOLUMBAR INTERSPINOUS SPACES USING RADIOGRAPHY AND COMPUTED TOMOGRAPHY

    DEFF Research Database (Denmark)

    Djernaes, Julie D.; Nielsen, Jon V.; Berg, Lise C.

    2017-01-01

    The widths of spaces between the thoracolumbar processi spinosi (interspinous spaces) are frequently assessed using radiography in sports horses; however effects of varying X-ray beam angles and geometric distortion have not been previously described. The aim of this prospective, observational...... study was to determine whether X-ray beam angle has an effect on apparent widths of interspinous spaces. Thoracolumbar spine specimens were collected from six equine cadavers and left-right lateral radiographs and sagittal and dorsal reconstructed computed tomographic (CT) images were acquired...... measurements. Effect of geometric distortion was evaluated by comparing the interspinous space in radiographs with sagittal and dorsal reconstructed CT images. A total of 49 interspinous spaces were sampled, yielding 274 measurements. X-ray beam angle significantly affected measured width of interspinous...

  2. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design

    International Nuclear Information System (INIS)

    Lee, Pei-Yi; Jiang, Shiang-Huei; Liu, Yuan-Hao

    2014-01-01

    The 7 Li(p,xn) 7 Be nuclear reaction, based on the low-energy protons, could produce soft neutrons for accelerator-based boron neutron capture therapy (AB-BNCT). Based on the fact that the induced neutron field is relatively divergent, the relationship between the incident angle of proton beam and the neutron beam quality was evaluated in this study. To provide an intense epithermal neutron beam, a beam-shaping assembly (BSA) was designed. And a modified Snyder head phantom was used in the calculations for evaluating the dosimetric performance. From the calculated results, the intensity of epithermal neutrons increased with the increase in proton incident angle. Hence, either the irradiation time or the required proton current can be reduced. When the incident angle of 2.5-MeV proton beam is 120 deg., the required proton current is ∼13.3 mA for an irradiation time of half an hour. The results of this study show that the BSA designs can generate neutron beams with good intensity and penetrability. Using a 20-mA, 2.5-MeV proton beam as the source, the required irradiation time, to induce 60 RBE-Gy of maximum tumour dose, is less than half an hour in any proton beam alignments. On the premise that the dosimetric performances are similar, the intensity of epithermal neutrons can be increased by using non-collinear (e.g. 90 deg., 120 deg.) incident protons. Thus, either the irradiation time or the required proton current can be reduced. The use of 120 deg. BSA model shows the possibility to reduce the required proton current to ∼13.3 mA when the goal of irradiation time is 30 min. The decrease of required proton beam current certainly will make the use of lithium target much easier. In June 2013, a 5-MeV, 30-mA radio frequency quadruple (RFQ) accelerator for BNCT was built at INFN-LNL (Legnaro National Laboratories, Italy), which shows a possibility to build a suitable RFQ accelerator for the authors' design. In addition, a 2.5-MeV, 30-mA Tandem accelerator was

  3. A time-space synchronization of coherent Doppler scanning lidars for 3D measurements of wind fields

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola

    initiates the laser pulse emission and acquisition of the backscattered light, while the two servo motors conduct the scanner head rotation that provides means to direct the laser pulses into the atmosphere. By controlling the rotation of the three motors from the motion controller the strict......-dimensional flow field by emitting the laser beams from the three spatially separated lidars, directing them to intersect, and moving the beam intersection over an area of interest. Each individual lidar was engineered to be powered by two real servo motors, and one virtual stepper motor. The stepper motor...... synchronization and time control of the emission, steering and acquisition were achieved, resulting that the complete lidar measurement process is controlled from the single hardware component. The system was formed using a novel approach, in which the master computer simultaneously coordinates the remote lidars...

  4. Estimating Turbulence Statistics and Parameters from Lidar Measurements. Remote Sensing Summer School

    DEFF Research Database (Denmark)

    Sathe, Ameya

    This report is prepared as a written contribution to the Remote Sensing Summer School, that is organized by the Department of Wind Energy, Technical University of Denmark. It provides an overview of the state-of-the-art with regards to estimating turbulence statistics from lidar measurements...... configuration. The so-called velocity Azimuth Display (VAD) and the Doppler Beam Swinging (DBS) methods of post processing the lidar data are investigated in greater details, partly due to their wide use in commercial lidars. It is demonstrated that the VAD or DBS techniques result in introducing significant...

  5. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning

    Science.gov (United States)

    Tahir, Bilal A.; Bragg, Chris M.; Wild, Jim M.; Swinscoe, James A.; Lawless, Sarah E.; Hart, Kerry A.; Hatton, Matthew Q.; Ireland, Rob H.

    2017-09-01

    To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging (3He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment 3He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving  ⩾20 Gy (V20) were compared with plans that minimised 3He MRI defined functional lung receiving  ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of 3He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3% p  =  0.04) and 0.2% (range: 0 to 4.1%; p  =  0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised 3He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields.

  6. A precise narrow-beam filter infrared radiometer and its use with lidar in the ARM Program

    International Nuclear Information System (INIS)

    Platt, C.M.R.

    1992-05-01

    The first six months of the grant (December 1991--May 1992) have been taken up with the design and specification for the new narrow-beam radiometer. The radiometer will be built and tested at the Division of Atmospheric Research over the next three months. Improved algorithms for obtaining cloud extinction have also been developed. It is proposed during 1993 to use the radiometer in conjunction with a new CSIRO 3-wavelength lidar in the ARM PROBE experiment at Kavieng, New Guinea, which is a test mission under tropical conditions for the ARM CART Tropical West Pacific site, and is part of the TOGA COARE experiment. During the latter part of 1992, the radiometer will be tested thoroughly and tested at the Division of Atmospheric Research, Aspendale

  7. A feasibility study of the Dynamic Phantom scanner for quality assurance of beam profiles at various gantry angles

    Science.gov (United States)

    Zhang, Yunkai; Hsi, Wen C.; Chu, James C.H.; Bernard, Damian B.; Abrams, Ross A.

    2005-01-01

    The effect of gantry rotation on beam profiles of photon and electron beams is an important issue in quality assurance for radiotherapy. To address variations in the profiles of photon and electron beams at different gantry angles, a Dynamic Phantom scanner composed of a 20×12×6 cm3 scanning Lucite block was designed as a cross‐beam‐profile scanner. To our knowledge, differences between scanned profiles acquired at different gantry angles with a small size Lucite block and those acquired a full‐size (60×60×50 cm3) water phantom have not been previously investigated. We therefore performed a feasibility study for a first prototype Dynamic Phantom scanner without a gantry attachment mount. Radiation beams from a Varian LINAC 21EX and 2100C were used. Photon beams (6 MV and 18 MV) were shaped by either collimator jaws or a Varian 120 Multileaf (MLC) collimator, and electron beams (6 MeV, 12 MeV, and 20 MeV) were shaped by a treatment cone. To investigate the effect on profiles by using a Lucite block, a quantitative comparison of scanned profiles with the Dynamic Phantom and a full‐size water phantom was first performed at a 0° gantry angle for both photon and electron beams. For photon beam profiles defined by jaws at 1.0 cm and 5.0 cm depths of Lucite (i.e., at 1.1 cm and 5.7 cm depth of water), a good agreement (less than 1% variation) inside the field edge was observed between profiles scanned with the Dynamic Phantom and with a water phantom. The use of Lucite in the Dynamic Phantom resulted in reduced penumbra width (about 0.5 mm out of 5 mm to 8 mm) and reduced (1% to 2%) scatter dose beyond the field edges for both 6 MV and 18 MV beams, compared with the water phantom scanner. For profiles of the MLC‐shaped 6 MV photon beam, a similar agreement was observed. For profiles of electron beams scanned at 2.9 cm depth of Lucite (i.e., at 3.3 cm depth of water), larger disagreements in profiles (3% to 4%) and penumbra width (3 mm to 4 mm out of 12 mm

  8. Calibration of a multi-beam Laser System by using a TLS-generated Reference

    Directory of Open Access Journals (Sweden)

    M. Gordon

    2013-10-01

    Full Text Available Rotating multi-beam LIDARs mounted on moving platforms have become very successful for many applications such as autonomous navigation, obstacle avoidance or mobile mapping. To obtain accurate point coordinates, a precise calibration of such a LIDAR system is required. For the determination of the corresponding parameters we propose a calibration scheme which exploits the information of 3D reference point clouds captured by a terrestrial laser scanning (TLS device. It is assumed that the accuracy of this point clouds is considerably higher than that from the multi-beam LIDAR and that the data represent faces of man-made objects at different distances. After extracting planes in the reference data sets, the point-plane-incidences of the measured points and the reference planes are used to formulate the implicit constraints. We inspect the Velodyne HDL-64E S2 system as the best-known representative for this kind of sensor system. The usability and feasibility of the calibration procedure is demonstrated with real data sets representing building faces (walls, roof planes and ground. Beside the improvement of the point accuracy by considering the calibration results, we test the significance of the parameters related to the sensor model and consider the uncertainty of measurements w.r.t. the measured distances. The Velodyne returns two kinds of measurements – distances and encoder angles. To account for this, we perform a variance component estimation to obtain realistic standard deviations for the observations.

  9. Multistatic Aerosol Cloud Lidar in Space: A Theoretical Perspective

    Science.gov (United States)

    Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.

    2016-01-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170deg can dramatically increase the information content of the

  10. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  11. Variable angle asymmetric cut monochromator

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS

  12. Wide Angle Imaging Lidar (WAIL): Theory of Operation and Results from Cross-Platform Validation at the ARM Southern Great Plains Site

    Science.gov (United States)

    Polonsky, I. N.; Davis, A. B.; Love, S. P.

    2004-05-01

    WAIL was designed to determine physical and geometrical characteristics of optically thick clouds using the off-beam component of the lidar return that can be accurately modeled within the 3D photon diffusion approximation. The theory shows that the WAIL signal depends not only on the cloud optical characteristics (phase function, extinction and scattering coefficients) but also on the outer thickness of the cloud layer. This makes it possible to estimate the mean optical and geometrical thicknesses of the cloud. The comparison with Monte Carlo simulation demonstrates the high accuracy of the diffusion approximation for moderately to very dense clouds. During operation WAIL is able to collect a complete data set from a cloud every few minutes, with averaging over horizontal scale of a kilometer or so. In order to validate WAIL's ability to deliver cloud properties, the LANL instrument was deployed as a part of the THickness from Off-beam Returns (THOR) validation IOP. The goal was to probe clouds above the SGP CART site at night in March 2002 from below (WAIL and ARM instruments) and from NASA's P3 aircraft (carrying THOR, the GSFC counterpart of WAIL) flying above the clouds. The permanent cloud instruments we used to compare with the results obtained from WAIL were ARM's laser ceilometer, micro-pulse lidar (MPL), millimeter-wavelength cloud radar (MMCR), and micro-wave radiometer (MWR). The comparison shows that, in spite of an unusually low cloud ceiling, an unfavorable observation condition for WAIL's present configuration, cloud properties obtained from the new instrument are in good agreement with their counterparts obtained by other instruments. So WAIL can duplicate, at least for single-layer clouds, the cloud products of the MWR and MMCR together. But WAIL does this with green laser light, which is far more representative than microwaves of photon transport processes at work in the climate system.

  13. Optimal starting gantry angles using equiangular-spaced beams with intensity modulated radiation therapy for prostate cancer on RTOG 0126: A clinical study of 5 and 7 fields

    International Nuclear Information System (INIS)

    Potrebko, Peter S.; McCurdy, Boyd M.C.; Butler, James B.; El-Gubtan, Adel S.; Nugent, Zoann

    2007-01-01

    Background and Purpose: To investigate the effects of starting gantry angle and number of equiangular-spaced beams for prostate cancer radiotherapy on the Radiation Therapy Oncology Group (RTOG) 0126 protocol using intensity-modulated radiation therapy (IMRT). Materials and methods: Ten localized prostate cancer patients were prescribed to 79.2 Gy in 44 fractions. Static IMRT plans using five and seven equiangular-spaced beams were generated. The starting gantry angles were incremented by 5 o resulting in 15 (5 beams) and 11 (7 beams) plans per patient. Constant target coverage was ensured for all plans in order to isolate the variation in the rectal and bladder metrics as a function of starting gantry angle. Results: The variation with starting gantry angle in rectal metrics using 5 beams was statistically significant (p o and 50 o . Statistically insignificant differences were observed for the bladder metrics using 5 beams. There was little dosimetric variation in the rectal and bladder metrics with 7 beams. Nearly equivalent rectal V 75 Gy was achieved between 5 optimal equiangular-spaced beams starting at 20 o (class solution) and 7 equiangular-spaced beams starting at 0 o for most patients. Conclusions: The use of an optimal starting gantry angle for 5 equiangular-spaced beams, as indicated by a class solution in this study, will facilitate rectal sparing and can produce plans that are equivalent to those employing 7 equiangular-spaced beams

  14. Achieving highly efficient and broad-angle polarization beam filtering using epsilon-near-zero metamaterials mimicked by metal-dielectric multilayers

    Science.gov (United States)

    Wu, Feng

    2018-03-01

    We report a highly efficient and broad-angle polarization beam filter at visible wavelengths using an anisotropic epsilon-near-zero metamaterial mimicked by a multilayer composed of alternative subwavelength magnesium fluoride and silver layers. The underlying physics can be explained by the dramatic difference between two orthogonal polarizations' iso-frequency curves of anisotropic epsilon-near-zero metamaterials. Transmittance for two orthogonal polarization waves and the polarization extinction ratio are calculated via the transfer matrix method to assess the comprehensive performance of the proposed polarization beam filter. From the simulation results, the proposed polarization beam filter is highly efficient (the polarization extinction ratio is far larger than two orders of magnitude) and has a broad operating angle range (ranging from 30° to 75°). Finally, we show that the proper tailoring of the periodic number enables us to obtain high comprehensive performance of the proposed polarization beam filter.

  15. Lidars for oceanological research: criteria for comparison, main limitations, perspectives

    Science.gov (United States)

    Feigels, Victor I.

    1992-12-01

    The paper contains a comparative analysis and discussion of resultant recommendations for the optimization of an airborne lidar's parameters, with application to modern lidar systems as employed in various countries for the ocean and continental shelf research. As criteria for the systems comparison in different remote sensing conditions (aircraft altitude, depth, day/night, zenithal sun angle, sea-water attenuation coefficient, receiver optical system's field of view (FOV), laser wavelength, etc.,) Sakitt's D-index of discriminability is used. We demonstrate the optical signal, as determined by the following process: reflecting from boundary -- backscattering in the atmosphere -- secondary reflecting from boundary, to be the cause for limiting the distance of underwater measurements. Some estimates for the bottom depth values to be achieved by a `super-lidar' are presented.

  16. Retrieval of Droplet size Density Distribution from Multiple field of view Cross polarized Lidar Signals: Theory and Experimental Validation

    Science.gov (United States)

    2016-06-02

    Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...Gilles Roy, Luc Bissonnette, Christian Bastille, and Gilles Vallee Multiple-field-of-view (MFOV) secondary-polarization lidar signals are used to...use secondary polarization. A mathematical relation among the PSD, the lidar fields of view, the scattering angles, and the angular depolarization

  17. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar.

    Science.gov (United States)

    Liu, Dong; Hostetler, Chris; Miller, Ian; Cook, Anthony; Hair, Johnathan

    2012-01-16

    High spectral resolution lidars (HSRLs) have shown great value in aircraft aerosol remote sensing application and are planned for future satellite missions. A compact, robust, quasi-monolithic tilted field-widened Michelson interferometer is being developed as the spectral discrimination filter for an second-generation HSRL(HSRL-2) at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid arm and an air arm. Piezo stacks connect the air arm mirror to the body of the interferometer and can tune the interferometer within a small range. The whole interferometer is tilted so that the standard Michelson output and the reflected complementary output can both be obtained. In this paper, the transmission ratio is proposed to evaluate the performance of the spectral filter for HSRL. The transmission ratios over different types of system imperfections, such as cumulative wavefront error, locking error, reflectance of the beam splitter and anti-reflection coatings, system tilt, and depolarization angle are analyzed. The requirements of each imperfection for good interferometer performance are obtained.

  18. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    International Nuclear Information System (INIS)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-01-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre–Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of ~15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles. - Highlights: • Scattering of orbital angular momentum (OAM) laser beam by dielectric

  19. Complex terrain and wind lidars

    Energy Technology Data Exchange (ETDEWEB)

    Bingoel, F.

    2009-08-15

    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar can be of the order of 3-4% in moderately-complex terrain and up to 10% in complex terrain. The findings were based on experiments involving collocated lidars and meteorological masts, together with flow calculations over the same terrains. The lidar performance was also simulated with the commercial software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to approx6h. At the forest edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17 deg.. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method. The SCADIS model worked better than the LINCOM model at the forest edge but the model reported closer results to the measurements at upwind than the downwind and this should be

  20. Special Relativity Corrections for Space-Based Lidars

    Science.gov (United States)

    RaoGudimetla, Venkata S.; Kavaya, Michael J.

    1999-01-01

    The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.

  1. A Study on Factors Affecting Airborne LiDAR Penetration

    Directory of Open Access Journals (Sweden)

    Wei-Chen Hsu

    2015-01-01

    Full Text Available This study uses data from different periods, areas and parameters of airborne LiDAR (light detection and ranging surveys to understand the factors that influence airborne LiDAR penetration rate. A discussion is presented on the relationships between these factors and LiDAR penetration rate. The results show that the flight height above ground level (AGL does not have any relationship with the penetration rate. There are some factors that should have larger influence. For example, the laser is affected by a wet ground surface by reducing the number of return echoes. The field of view (FOV has a slightly negative correlation with the penetration rate, which indicates that the laser incidence angle close to zero should achieve the best penetration. The vegetation cover rate also shows a negative correlation with the penetration rate, thus bare ground and reduced vegetation in the aftermath of a typhoon also cause high penetration rate. More return echoes could be extracted from the full-waveform system, thereby effectively improving the penetration rate. This study shows that full-waveform LiDAR is an effective method for increasing the number of surface reflected echoes. This study suggests avoiding LiDAR survey employment directly following precipitation to prevent laser echo reduction.

  2. Optical Interference Coatings Design Contest 2013: angle-independent color mirror and shortwave infrared/midwave infrared dichroic beam splitter.

    Science.gov (United States)

    Hendrix, Karen; Kruschwitz, Jennifer D T; Keck, Jason

    2014-02-01

    An angle-independent color mirror and an infrared dichroic beam splitter were the subjects of a design contest held in conjunction with the 2013 Optical Interference Coatings topical meeting of the Optical Society of America. A total of 17 designers submitted 63 designs, 22 for Problem A and 41 for Problem B. The submissions were created through a wide spectrum of design approaches and optimization strategies. Michael Trubetskov and Weidong Shen won the first contest by submitting color mirror designs with a zero color difference (ΔE00) between normal incidence and all other incidence angles up to 60° as well as the thinnest design. Michael Trubetskov also won the second contest by submitting beam-splitter designs that met the required transmission while having the lowest mechanical coating stress and thinnest design. Fabien Lemarchand received the second-place finish for the beam-splitter design. The submitted designs are described and evaluated.

  3. A verification scenario of nuclear plus interference scattering effects using neutron incident angle distribution to the wall in beam-injected deuterium plasmas

    International Nuclear Information System (INIS)

    Sugiyama, Shota; Matsuura, Hideaki; Uchiyama, Daisuke; Sawada, Daisuke; Watanabe, Tsuguhiro; Goto, Takuya; Mitarai, Osamu

    2015-01-01

    A verification scenario of knock-on tail formation in the deuteron distribution function due to nuclear plus interference scattering is presented by observing the incident angle distribution of neutrons in a vacuum vessel. Assuming a knock-on tail created in a "3He-beam-injected deuterium plasma, the incident angle distribution and energy spectra of the neutrons produced by fusion reactions between 1-MeV and thermal deuterons are evaluated. The relation between the neutron incident angle to the vacuum vessel and neutron energy is examined in the case of anisotropic neutron emission due to knock-on tail formation in neutral-beam-injected plasmas. (author)

  4. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    Science.gov (United States)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  5. Raster Vs. Point Cloud LiDAR Data Classification

    Science.gov (United States)

    El-Ashmawy, N.; Shaker, A.

    2014-09-01

    Airborne Laser Scanning systems with light detection and ranging (LiDAR) technology is one of the fast and accurate 3D point data acquisition techniques. Generating accurate digital terrain and/or surface models (DTM/DSM) is the main application of collecting LiDAR range data. Recently, LiDAR range and intensity data have been used for land cover classification applications. Data range and Intensity, (strength of the backscattered signals measured by the LiDAR systems), are affected by the flying height, the ground elevation, scanning angle and the physical characteristics of the objects surface. These effects may lead to uneven distribution of point cloud or some gaps that may affect the classification process. Researchers have investigated the conversion of LiDAR range point data to raster image for terrain modelling. Interpolation techniques have been used to achieve the best representation of surfaces, and to fill the gaps between the LiDAR footprints. Interpolation methods are also investigated to generate LiDAR range and intensity image data for land cover classification applications. In this paper, different approach has been followed to classifying the LiDAR data (range and intensity) for land cover mapping. The methodology relies on the classification of the point cloud data based on their range and intensity and then converted the classified points into raster image. The gaps in the data are filled based on the classes of the nearest neighbour. Land cover maps are produced using two approaches using: (a) the conventional raster image data based on point interpolation; and (b) the proposed point data classification. A study area covering an urban district in Burnaby, British Colombia, Canada, is selected to compare the results of the two approaches. Five different land cover classes can be distinguished in that area: buildings, roads and parking areas, trees, low vegetation (grass), and bare soil. The results show that an improvement of around 10 % in the

  6. Remote Sensing of Sub-Surface Suspended Sediment Concentration by Using the Range Bias of Green Surface Point of Airborne LiDAR Bathymetry

    Directory of Open Access Journals (Sweden)

    Xinglei Zhao

    2018-04-01

    Full Text Available Suspended sediment concentrations (SSCs have been retrieved accurately and effectively through waveform methods by using green-pulse waveforms of airborne LiDAR bathymetry (ALB. However, the waveform data are commonly difficult to analyze. Thus, this paper proposes a 3D point-cloud method for remote sensing of SSCs in calm waters by using the range biases of green surface points of ALB. The near water surface penetrations (NWSPs of green lasers are calculated on the basis of the green and reference surface points. The range biases (ΔS are calculated by using the corresponding NWSPs and beam-scanning angles. In situ measured SSCs (C and range biases (ΔS are used to establish an empirical C-ΔS model at SSC sampling stations. The SSCs in calm waters are retrieved by using the established C-ΔS model. The proposed method is applied to a practical ALB measurement performed by Optech Coastal Zone Mapping and Imaging LiDAR. The standard deviations of the SSCs retrieved by the 3D point-cloud method are less than 20 mg/L.

  7. Reduction of the divergence angle of an incident beam to enhance the demagnification factor of a two-stage acceleration lens in a gas ion nanobeam system of several tens of keV

    Science.gov (United States)

    Ishii, Yasuyuki; Kojima, Takuji

    2018-04-01

    The demagnification factor of a two-stage acceleration lens in a gas ion nanobeam system that produces ion beams with energies in the order of 10 keV was enhanced in this study so that a hydrogen ion beam with a diameter of 115 nm could be produced. The reduction of the divergence angle of the incident beam into the two-stage acceleration lens is the effective method for enhancing the demagnification factor. The divergence angle has been gradually reduced by firstly introducing the preacceleration electrodes to control the divergence angle, namely divergence-angle-control electrodes, and secondly replacing an anode with a modified anode that possesses a Pierce electrode, both of which were in an ion source directly connected to the lens. In this study, the divergence angle of less than 3.6 × 10-4 rad that was previously used to produce a 160-nm hydrogen ion beam with the energy of 46 keV by the above procedure was numerically determined using an ion beam extraction simulation code. The determined minimum divergence angle of the incident ion beam was calculated to be 2.0 × 10-4 rad, which was about half of the previously obtained divergence angle; this was used to experimentally form a hydrogen beam with a diameter of 115 ± 10 nm and the energy of 47 keV. The demagnification factor was estimated to be 1,739 using the newly formed hydrogen beam, which was similar to the simulation result.

  8. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    Science.gov (United States)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard

  9. Strategies for lidar characterization of particulates from point and area sources

    Science.gov (United States)

    Wojcik, Michael D.; Moore, Kori D.; Martin, Randal S.; Hatfield, Jerry

    2010-10-01

    Use of ground based remote sensing technologies such as scanning lidar systems (light detection and ranging) has gained traction in characterizing ambient aerosols due to some key advantages such as wide area of regard (10 km2), fast response time, high spatial resolution (University, in conjunction with the USDA-ARS, has developed a three-wavelength scanning lidar system called Aglite that has been successfully deployed to characterize particle motion, concentration, and size distribution at both point and diffuse area sources in agricultural and industrial settings. A suite of massbased and size distribution point sensors are used to locally calibrate the lidar. Generating meaningful particle size distribution, mass concentration, and emission rate results based on lidar data is dependent on strategic onsite deployment of these point sensors with successful local meteorological measurements. Deployment strategies learned from field use of this entire measurement system over five years include the characterization of local meteorology and its predictability prior to deployment, the placement of point sensors to prevent contamination and overloading, the positioning of the lidar and beam plane to avoid hard target interferences, and the usefulness of photographic and written observational data.

  10. The Use of Sun Elevation Angle for Stereogrammetric Boreal Forest Height in Open Canopies

    Science.gov (United States)

    Montesano, Paul M.; Neigh, Christopher; Sun, Guoqing; Duncanson, Laura Innice; Van Den Hoek, Jamon; Ranson, Kenneth Jon

    2017-01-01

    Stereogrammetry applied to globally available high resolution spaceborne imagery (HRSI; less than 5 m spatial resolution) yields fine-scaled digital surface models (DSMs) of elevation. These DSMs may represent elevations that range from the ground to the vegetation canopy surface, are produced from stereoscopic image pairs (stereo pairs) that have a variety of acquisition characteristics, and have been coupled with lidar data of forest structure and ground surface elevation to examine forest height. This work explores surface elevations from HRSI DSMs derived from two types of acquisitions in open canopy forests. We (1) apply an automated mass-production stereogrammetry workflow to along-track HRSI stereo pairs, (2) identify multiple spatially coincident DSMs whose stereo pairs were acquired under different solar geometry, (3) vertically co-register these DSMs using coincident spaceborne lidar footprints (from ICESat-GLAS) as reference, and(4) examine differences in surface elevations between the reference lidar and the co-registered HRSI DSMs associated with two general types of acquisitions (DSM types) from different sun elevation angles. We find that these DSM types, distinguished by sun elevation angle at the time of stereo pair acquisition, are associated with different surface elevations estimated from automated stereogrammetry in open canopy forests. For DSM values with corresponding reference ground surface elevation from spaceborne lidar footprints in open canopy northern Siberian Larix forests with slopes less than10, our results show that HRSI DSM acquired with sun elevation angles greater than 35deg and less than 25deg (during snow-free conditions) produced characteristic and consistently distinct distributions of elevation differences from reference lidar. The former include DSMs of near-ground surfaces with root mean square errors less than 0.68 m relative to lidar. The latter, particularly those with angles less than 10deg, show distributions with

  11. Comparisons of Simultaneously Acquired Airborne Sfm Photogrammetry and Lidar

    Science.gov (United States)

    Larsen, C. F.

    2014-12-01

    Digital elevation models (DEMs) created using images from a consumer DSLR camera are compared against simultaneously acquired LiDAR on a number of airborne mapping projects across Alaska, California and Utah. The aircraft used is a Cessna 180, and is equipped with the University of Alaska Geophysical Institute (UAF-GI) scanning airborne LiDAR system. This LiDAR is the same as described in Johnson et al, 2013, and is the principal instrument used for NASA's Operation IceBridge flights in Alaska. The system has been in extensive use since 2009, and is particularly well characterized with dozens of calibration flights and a careful program of boresight angle determination and monitoring. The UAF-GI LiDAR has a precision of +/- 8 cm and accuracy of +/- 15 cm. The photogrammetry DEM simultaneously acquired with the LiDAR relies on precise shutter timing using an event marker input to the IMU associated with the LiDAR system. The photo positions are derived from the fully coupled GPS/IMU processing, which samples at 100 Hz and is able to directly calculate the antenna to image plane offset displacements from the full orientation data. This use of the GPS/IMU solution means that both the LiDAR and Cessna 180 photogrammetry DEM share trajectory input data, however no orientation data nor ground control is used for the photorammetry processing. The photogrammetry DEMs are overlaid on the LiDAR point cloud and analyzed for horizontal shifts or warps relative to the LiDAR. No warping or horizontal shifts have been detectable for a number of photogrammetry DEMs. Vertical offsets range from +/- 30 cm, with a typical standard deviation about that mean of 10 cm or better. LiDAR and photogrammetry function inherently differently over trees and brush, and direct comparisons between the two methods show much larger differences over vegetated areas. Finally, the differences in flight patterns associated with the two methods will be discussed, highlighting the photogrammetry

  12. Atmospheric Boundary Layer temperature and humidity from new-generation Raman lidar

    Science.gov (United States)

    Froidevaux, Martin; Higgins, Chad; Simeonov, Valentin; Pardyjak, Eric R.; Parlange, Marc B.

    2010-05-01

    Mixing ratio and temperature data, obtained with EPFL Raman lidar during the TABLE-08 experiment are presented. The processing methods will be discussed along with fundamental physics. An independent calibration is performed at different distances along the laser beam, demonstrating that the multi-telescopes design of the lidar system is reliable for field application. The maximum achievable distance as a function of time and/or space averaging will also be discussed. During the TABLE-08 experiment, different type of lidar measurements have been obtained including: horizontal and vertical time series, as well as boundary layer "cuts", during day and night. The high resolution data, 1s in time and 1.25 m in space, are used to understand the response of the atmosphere to variations in surface variability.

  13. Novel short-pulse laser diode source for high-resolution 3D flash lidar

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-06-01

    Imaging based on laser illumination is present in various fields of applications such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified the recent years. Among the various technologies currently studied, automotive lidars are a fast-growing one due to their accuracy to detect a wide range of objects at distances up to a few hundreds of meters in various weather conditions. First commercialized devices for ADAS were laser scanners. Since then, new architectures have recently appeared such as solid-state lidar and flash lidar that offer a higher compactness, robustness and a cost reduction. Flash lidars are based on time-of-flight measurements, with the particularity that they do not require beam scanners because only one short laser pulse with a large divergence is used to enlighten the whole scene. Depth of encountered objects can then be recovered from measurement of echoed light at once, hence enabling real-time 3D mapping of the environment. This paper will bring into the picture a cutting edge laser diode source that can deliver millijoule pulses as short as 12 ns, which makes them highly suitable for integration in flash lidars. They provide a 100-kW peak power highly divergent beam in a footprint of 4x5 cm2 (including both the laser diode and driver) and with a 30-% electrical-to-optical efficiency, making them suitable for integration in environments in which compactness and power consumption are a priority. Their emission in the range of 800-1000 nm is considered to be eye safe when taking into account the high divergence of the output beam. An overview of architecture of these state-of-the-art pulsed laser diode sources will be given together with some solutions for their integration in 3D mapping systems. Future work leads will be discussed for miniaturization of the laser diode and drastic cost reduction.

  14. Simultaneous navigation of multiple Pareto surfaces, with an application to multicriteria IMRT planning with multiple beam angle configurations.

    Science.gov (United States)

    Craft, David; Monz, Michael

    2010-02-01

    To introduce a method to simultaneously explore a collection of Pareto surfaces. The method will allow radiotherapy treatment planners to interactively explore treatment plans for different beam angle configurations as well as different treatment modalities. The authors assume a convex optimization setting and represent the Pareto surface for each modality or given beam set by a set of discrete points on the surface. Weighted averages of these discrete points produce a continuous representation of each Pareto surface. The authors calculate a set of Pareto surfaces and use linear programming to navigate across the individual surfaces, allowing switches between surfaces. The switches are organized such that the plan profits in the requested way, while trying to keep the change in dose as small as possible. The system is demonstrated on a phantom pancreas IMRT case using 100 different five beam configurations and a multicriteria formulation with six objectives. The system has intuitive behavior and is easy to control. Also, because the underlying linear programs are small, the system is fast enough to offer real-time exploration for the Pareto surfaces of the given beam configurations. The system presented offers a sound starting point for building clinical systems for multicriteria exploration of different modalities and offers a controllable way to explore hundreds of beam angle configurations in IMRT planning, allowing the users to focus their attention on the dose distribution and treatment planning objectives instead of spending excessive time on the technicalities of delivery.

  15. Coherent lidar wind measurements from the Space Station base using 1.5 m all-reflective optics

    Science.gov (United States)

    Bilbro, J. W.; Beranek, R. G.

    1987-01-01

    This paper discusses the space-based measurement of atmospheric winds from the point of view of the requirements of the optical system of a coherent CO2 lidar. A brief description of the measurement technique is given and a discussion of previous study results provided. The telescope requirements for a Space Station based lidar are arrived at through discussions of the desired system sensitivity and the need for lag angle compensation.

  16. A map for the thick beam-beam interaction

    International Nuclear Information System (INIS)

    Irwin, J.; Chen, T.

    1995-01-01

    The authors give a closed-form expression for the thick beam-beam interaction for a small disruption parameter, as typical in electron-positron storage rings. The dependence on transverse angle and position of the particle trajectory as well as the longitudinal position of collision and the waist-modified shape of the beam distribution are included. Large incident angles, as are present for beam-halo particles or for large crossing-angle geometry, are accurately represented. The closed-form expression is well approximated by polynomials times the complex error function. Comparisons with multi-slice representations show even the first order terms are more accurate than a five slice representation, saving a factor of 5 in computation time

  17. Geometrical determinations of IMRT photon pencil-beam path in radiotherapy wedges and limit divergence angle with the Anisotropic Analytic Algorithm (AAA

    Directory of Open Access Journals (Sweden)

    Francisco Casesnoves

    2014-08-01

    Full Text Available Purpose: Static wedge filters (WF are commonly used in radiation therapy, forward and/or inverse planning. We calculated the exact 2D/3D geometrical pathway of the photon-beam through the usual alloy WF, in order to get a better dose related to the beam intensity attenuation factor(s, after the beam has passed through the WF. The objective was to provide general formulation into the Anisotropic Analytical Algorithm (AAA model coordinates system (depending on collimator/wedge angles that also can be applied to other models. Additionally, second purpose of this study was to develop integral formulation for 3D wedge exponential factor with statistical approximations, with introduction for the limit angle/conformal wedge.Methods: The radiotherapy model used to develop this mathematical task is the classical superposition-convolution algorithm, AAA (developed by Ulmer and Harder. We worked with optimal geometrical approximations to make the computational IMRT calculations quicker/reduce the planning-system time. Analytic geometry/computational-techniques to carry out simulations (for standard wedges are detailed/developed sharply. Integral developments/integral-statistical approximations are explained. Beam-divergence limit Angle for optimal wedge filtration formulas is calculated/sketched, with geometrical approximations. Fundamental trigonometry is used for this purpose.Results: Extent simulation tables for WF of 15º, 30º, 45º, and 60º are shown with errors. As a result, it is possible to determine the best individual treatment dose distribution for each patient. We presented these basic simulations/numerical examples for standard manufacturing WF of straight sloping surface, to check the accuracy/errors of the calculations. Simulations results give low RMS/Relative Error values (formulated for WF of 15º, 30º, 45º, and 60º.Conclusion: We obtained a series of formulas of analytic geometry for WF that can be applied for any particular dose

  18. Elimination of importance factors for clinically accurate selection of beam orientations, beam weights and wedge angles in conformal radiation therapy

    International Nuclear Information System (INIS)

    Bedford, James L.; Webb, Steve

    2003-01-01

    A method of simultaneously optimizing beam orientations, beam weights, and wedge angles for conformal radiotherapy is presented. This method removes the need for importance factors by optimizing one objective only, subject to a set of rigid constraints. This facilitates the production of inverse solutions which, without trial-and-error modification of importance factors, precisely satisfy the specified constraints. The algorithm minimizes an objective function which is based upon the single objective to be optimized, but which is forced to an artificially high value when the constraints are not met, so that only satisfactory solutions are allowed. Due to the complex nature of the objective function space, including multiple local minima separated by large regions of plateau, a random search technique equivalent to fast simulated annealing is used for producing inverse plans. To illustrate the novel features of the new algorithm, a simulation is first presented, for the case of a cylindrical phantom. The morphology of the objective function space is shown to be significantly different for the new algorithm, compared to that for a conventional quadratic objective function. Clinical cases for prostate and craniopharyngioma are then presented. For the prostate case, the objective is to reduce irradiated rectal volume. Three-field, four-field, and six-field optimizations, with or without orientation optimization, are shown to provide solutions which are consistent with previously reported plans and class solutions. For the craniopharyngioma case, which involves the use of a high-precision stereotactic conformal technique, the objective is to reduce the irradiated volume of normal brain. Practically feasible beam angles are produced which, compared to a standard plan, provide a small but worthwhile sparing of normal brain. The algorithm is thereby shown to be robust and suitable for clinical application

  19. Handling data redundancy in helical cone beam reconstruction with a cone-angle-based window function and its asymptotic approximation

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang

    2007-01-01

    A cone-angle-based window function is defined in this manuscript for image reconstruction using helical cone beam filtered backprojection (CB-FBP) algorithms. Rather than defining the window boundaries in a two-dimensional detector acquiring projection data for computed tomographic imaging, the cone-angle-based window function deals with data redundancy by selecting rays with the smallest cone angle relative to the reconstruction plane. To be computationally efficient, an asymptotic approximation of the cone-angle-based window function is also given and analyzed in this paper. The benefit of using such an asymptotic approximation also includes the avoidance of functional discontinuities that cause artifacts in reconstructed tomographic images. The cone-angle-based window function and its asymptotic approximation provide a way, equivalent to the Tam-Danielsson-window, for helical CB-FBP reconstruction algorithms to deal with data redundancy, regardless of where the helical pitch is constant or dynamically variable during a scan. By taking the cone-parallel geometry as an example, a computer simulation study is conducted to evaluate the proposed window function and its asymptotic approximation for helical CB-FBP reconstruction algorithm to handle data redundancy. The computer simulated Forbild head and thorax phantoms are utilized in the performance evaluation, showing that the proposed cone-angle-based window function and its asymptotic approximation can deal with data redundancy very well in cone beam image reconstruction from projection data acquired along helical source trajectories. Moreover, a numerical study carried out in this paper reveals that the proposed cone-angle-based window function is actually equivalent to the Tam-Danielsson-window, and rigorous mathematical proofs are being investigated

  20. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  1. Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen; Randall Babbitt, Wm.

    2004-01-01

    We present a theoretical model for optical coherent transient (OCT) processes based on Maxwell-Bloch equations for angled beam geometry. This geometry is critical in various OCT applications where the desired coherence outputs need to be spatially separated from the rest of the field. The model takes into account both the local interactions between inhomogeneously broadened two-level atoms and the laser fields, and the field propagation in optically thick media. Under the small-angle condition, the spatial dimensions transversing to the main propagation direction were treated with spatial Fourier transform to make the numerical computations for the practical settings confined within a reasonable time frame. The simulations for analog correlators and continuous processing based on stimulated photon echo have been performed using the simulator developed using the theory

  2. Mitigating Uncertainty from Vegetation Spatial Complexity with Highly Portable Lidar

    Science.gov (United States)

    Paynter, I.; Schaaf, C.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.

    2015-12-01

    To fully utilize the excellent spatial coverage and temporal resolution offered by satellite resources for estimating ecological variables, fine-scale observations are required for comparison, calibration and validation. Lidar instruments have proved effective in estimating the properties of vegetation components of ecosystems, but they are often challenged by occlusion, especially in structurally complex and spatially fragmented ecosystems such as tropical forests. Increasing the range of view angles, both horizontally and vertically, by increasing the number of scans, can mitigate occlusion. However these scans must occur within the window of temporal stability for the ecosystem and vegetation property being measured. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The ability to acquire many scans within narrow windows of temporal stability for ecological variables has facilitated the more complete investigation of ecosystem structural characteristics, and their expression as a function of view angle. The lightweight CBL has facilitated the use of alternative deployment platforms including towers, trams and masts, allowing analysis of the vertical structure of ecosystems, even in highly enclosed environments such as the sub-canopy of tropical forests where aerial vehicles cannot currently operate. We will present results from view angle analyses of lidar surveys of tropical rainforest in La Selva, Costa Rica where the CBL was deployed at heights up to 10m in Carbono long-term research plots utilizing a portable mast, and on a 25m stationary tower; and temperate forest at Harvard Forest, Massachusetts, USA, where the CBL has been deployed biannually at long-term research plots of hardwood and hemlock, as well as at heights of up to 25m utilizing a

  3. The influence of incident beam's angle offset of Fourier transform infrared spectrometer on the spectrum measurement explored with synchrotron radiation

    International Nuclear Information System (INIS)

    Chen Wenhao; Chen Min; Xiao Tiqiao

    2011-01-01

    Effects of the incident angle offset on FT-IR spectra are investigated in this paper. The simulated FT-IR spectra are obtained by Fourier inverse transform. The results show that this frequency shift varies with the angle offset of the incident beam in FT-IR. As an example,the factors that affect the angle of incident IR light at SSRF are analyzed. According to performance specifications of the IR beamline, requirements of the optical component installation precision and position drift of the light source are given. (authors)

  4. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    Science.gov (United States)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  5. Observations of movement dynamics of flying insects using high resolution lidar

    DEFF Research Database (Denmark)

    Kirkeby, Carsten Thure; Wellenreuther, Maren; Brydegaard, Mikkel

    2016-01-01

    insects (wing size cross-section) moved across the field and clustered near the light trap around 22:00 local time, while larger insects (wing size >2.5 mm2 in cross-section) were most abundant near the lidar beam before 22:00 and then moved towards the light trap between 22:00 and 23:30. We......Insects are fundamental to ecosystem functioning and biodiversity, yet the study of insect movement, dispersal and activity patterns remains a challenge. Here we present results from a novel high resolution laser-radar (lidar) system for quantifying flying insect abundance recorded during one...

  6. Asymmetric-cut variable-incident-angle monochromator.

    Science.gov (United States)

    Smither, R K; Graber, T J; Fernandez, P B; Mills, D M

    2012-03-01

    A novel asymmetric-cut variable-incident-angle monochromator was constructed and tested in 1997 at the Advanced Photon Source of Argonne National Laboratory. The monochromator was originally designed as a high heat load monochromator capable of handling 5-10 kW beams from a wiggler source. This was accomplished by spreading the x-ray beam out on the surface an asymmetric-cut crystal and by using liquid metal cooling of the first crystal. The monochromator turned out to be a highly versatile monochromator that could perform many different types of experiments. The monochromator consisted of two 18° asymmetrically cut Si crystals that could be rotated about 3 independent axes. The first stage (Φ) rotates the crystal around an axis perpendicular to the diffraction plane. This rotation changes the angle of the incident beam with the surface of the crystal without changing the Bragg angle. The second rotation (Ψ) is perpendicular to the first and is used to control the shape of the beam footprint on the crystal. The third rotation (Θ) controls the Bragg angle. Besides the high heat load application, the use of asymmetrically cut crystals allows one to increase or decrease the acceptance angle for crystal diffraction of a monochromatic x-ray beam and allows one to increase or decrease the wavelength bandwidth of the diffraction of a continuum source like a bending-magnet beam or a normal x-ray-tube source. When the monochromator is used in the doubly expanding mode, it is possible to expand the vertical size of the double-diffracted beam by a factor of 10-15. When this was combined with a bending magnet source, it was possible to generate an 8 keV area beam, 16 mm wide by 26 mm high with a uniform intensity and parallel to 1.2 arc sec that could be applied in imaging experiments.

  7. Flow tilt angles near forest edges - Part 1: Sonic anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Larsen, Klaus Steenberg

    2010-01-01

    distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies......-flow angles were assumed for neutral flow, the data was interpreted in relation to upstream and downstream forest edges. Uncertainties caused by flow distortion, vertical misalignment and limited sampling time (statistical uncertainty) were evaluated and found to be highly significant. Since the attack angle...... balance, unless all terms in the carbon dioxide conservation equation can be precisely estimated....

  8. Latest Performance Results from the FONT5 Intra-train Beam Position and Angle Feedback System at ATF2

    CERN Document Server

    Christian, G B; Bett, D R; Blaskovic Kraljevic, N; Burrows, P N; Davis, M R; Gerbershagen, A; Perry, C; Constance, B; Resta-Lopez, J

    2012-01-01

    A prototype Interaction Point beam-based feedback system for future electron-positron colliders, such as the International Linear Collider, has been designed and tested on the extraction line of the KEK Accelerator Test Facility (ATF). The FONT5 intra-train feedback system aims to stabilize the beam orbit by correcting both the position and angle jitter in the vertical plane on bunch-tobunch time scales, providing micron-level stability at the entrance to the ATF2 final-focus system. The system comprises three stripline beam position monitors (BPMs) and two stripline kickers, custom low-latency analogue front-end BPM processors, a custom FPGA-based digital processing board with fast ADCs, and custom kickerdrive amplifiers. The latest results from beam tests at ATF2 will be presented, including the system latency and correction performance.

  9. Full two-dimensional rotor plane inflow measurements by a spinner-integrated wind lidar

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Pedersen, Anders Tegtmeier; Angelou, Nikolas

    2013-01-01

    Introduction Wind turbine load reduction and power performance optimization via advanced control strategies is an active area in the wind energy community. In particular, feed-forward control using upwind inflow measurements by lidar (light detection and ranging) remote sensing instruments has...... novel full two-dimensional radial inflow measurements. Approach In order to achieve full two-dimensional radial inflow measurements, a special laser beam scanner has been developed at the DTU Wind Energy Department. It is based on two rotating prisms that each deviate the beam by 15°, resulting......, a proof-of-concept trial with a blade mounted lidar was performed during the measurement campaign and is reported in a separate EWEA 2013 contribution. Conclusion The study presented here is the novel full two-dimensional continuation of the previous inflow measurements on a circle presented in the paper...

  10. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.

    1997-01-01

    detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  11. Luminosity Anti-leveling with Crossing Angle (MD 1669)

    CERN Document Server

    Gorzawski, Arkadiusz; Ponce, Laurette; Salvachua Ferrando, Belen Maria; Wenninger, Jorg; CERN. Geneva. ATS Department

    2016-01-01

    A significant fraction of the LHC luminosity ($\\sim$30\\% in 2016) is lost due to the presence (and necessity) of the crossing angles at the IPs. At the LHC the crossing angle is typically set to a value that provides sufficient separation of the beams at the start of fills for the peak bunch intensities. As the bunch intensity decays during a fill, it is possible to reduce the crossing angle and recover some luminosity. A smooth crossing angle reduction procedure must be developed to take advantage of this option during stable beam operation. During this MD a smooth procedure for luminosity leveling with crossing angle was tested. It was demonstrated that the orbit was well controlled, beam losses were low and the offset leveled experiments ALICE and LHCb were not affected by crossing angle leveling in ATLAS and CMS.

  12. Individual tree crown modeling and change detection from airborne lidar data

    NARCIS (Netherlands)

    Xiao, W.; Xu, Sudan; Oude Elberink, S.J.; Vosselman, G.

    2016-01-01

    Light detection and ranging (lidar) provides a promising way of detecting changes of trees in three-dimensional (3-D) because laser beams can penetrate through the foliage and therefore provide full coverage of trees. The aim is to detect changes in trees in urban areas using multitemporal airborne

  13. Quantifying Wave Breaking Shape and Type in the Surf-Zone Using LiDAR

    Science.gov (United States)

    Albright, A.; Brodie, K. L.; Hartzell, P. J.; Glennie, C. L.

    2017-12-01

    Waves change shape as they shoal and break across the surf-zone, ultimately dissipating and transferring their energy into turbulence by either spilling or plunging. This injection of turbulence and changes in wave shape can affect the direction of sediment transport at the seafloor, and ultimately lead to morphological evolution. Typical methods for collecting wave data in the surf-zone include in-situ pressure gauges, velocimeters, ultrasonic sensors, and video imagery. Drawbacks to these data collection methods are low spatial resolution of point measurements, reliance on linear theory to calculate sea-surface elevations, and intensive computations required to extract wave properties from stereo 2D imagery. As a result, few field measurements of the shapes of plunging and/or spilling breakers exist, and existing knowledge is confined to results of laboratory studies. We therefore examine the use of a multi-beam scanning Light Detection and Ranging (LiDAR) remote sensing instrument with the goal of classifying the breaking type of propagating waves in the surf-zone and quantitatively determining wave morphometric properties. Data were collected with a Velodyne HDL-32E LiDAR scanner (360° vertical field of view) mounted on an arm of the Coastal Research Amphibious Buggy (CRAB) at the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. Processed laser scan data are used to visualize the lifecycle of a wave (shoaling, breaking, broken) and identify wave types (spilling, plunging, non-breaking) as they pass beneath the scanner. For each rotation of the LiDAR scanner, the point cloud data are filtered, smoothed, and detrended in order to identify individual waves and measure their properties, such as speed, height, period, upward/downward slope, asymmetry, and skewness. The 3D nature of point cloud data is advantageous for research, because it enables viewing from any angle. In our analysis, plan views are used to separate individual waves

  14. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  15. Constraints on Short, Hard Gamma-Ray Burst Beaming Angles from Gravitational Wave Observations

    Science.gov (United States)

    Williams, D.; Clark, J. A.; Williamson, A. R.; Heng, I. S.

    2018-05-01

    The first detection of a binary neutron star merger, GW170817, and an associated short gamma-ray burst confirmed that neutron star mergers are responsible for at least some of these bursts. The prompt gamma-ray emission from these events is thought to be highly relativistically beamed. We present a method for inferring limits on the extent of this beaming by comparing the number of short gamma-ray bursts (SGRBs) observed electromagnetically with the number of neutron star binary mergers detected in gravitational waves. We demonstrate that an observing run comparable to the expected Advanced LIGO (aLIGO) 2016–2017 run would be capable of placing limits on the beaming angle of approximately θ \\in (2\\buildrel{\\circ}\\over{.} 88,14\\buildrel{\\circ}\\over{.} 15), given one binary neutron star detection, under the assumption that all mergers produce a gamma-ray burst, and that SGRBs occur at an illustrative rate of {{ \\mathcal R }}grb}=10 {Gpc}}-3 {yr}}-1. We anticipate that after a year of observations with aLIGO at design sensitivity in 2020, these constraints will improve to θ \\in (8\\buildrel{\\circ}\\over{.} 10,14\\buildrel{\\circ}\\over{.} 95), under the same efficiency and SGRB rate assumptions.

  16. Modeling and simulations of new electrostatically driven, bimorph actuator for high beam steering micromirror deflection angles

    Science.gov (United States)

    Walton, John P.; Coutu, Ronald A.; Starman, LaVern

    2015-02-01

    There are numerous applications for micromirror arrays seen in our everyday lives. From flat screen televisions and computer monitors, found in nearly every home and office, to advanced military weapon systems and space vehicles, each application bringing with it a unique set of requirements. The microelectromechanical systems (MEMS) industry has researched many ways micromirror actuation can be accomplished and the different constraints on performance each design brings with it. This paper investigates a new "zipper" approach to electrostatically driven micromirrors with the intent of improving duel plane beam steering by coupling large deflection angles, over 30°, and a fast switching speed. To accomplish this, an extreme initial deflection is needed which can be reached using high stress bimorph beams. Currently this requires long beams and high voltage for the electrostatic pull in or slower electrothermal switching. The idea for this "zipper" approach is to stack multiple beams of a much shorter length and allow for the deflection of each beam to be added together in order to reach the required initial deflection height. This design requires much less pull-in voltage because the pull-in of one short beam will in turn reduce the height of the all subsequent beams, making it much easier to actuate. Using modeling and simulation software to characterize operations characteristics, different bimorph cantilever beam configurations are explored in order to optimize the design. These simulations show that this new "zipper" approach increases initial deflection as additional beams are added to the assembly without increasing the actuation voltage.

  17. Pointing Knowledge for SPARCLE and Space-Based Doppler Wind Lidars in General

    Science.gov (United States)

    Emmitt, G. D.; Miller, T.; Spiers, G.

    1999-01-01

    The SPAce Readiness Coherent Lidar Experiment (SPARCLE) will fly on a space shuttle to demonstrate the use of a coherent Doppler wind lidar to accurately measure global tropospheric winds. To achieve the LOS (Line of Sight) accuracy goal of approx. m/s, the lidar system must be able to account for the orbiter's velocity (approx. 7750 m/s) and the rotational component of the earth's surface motion (approx. 450 m/s). For SPARCLE this requires knowledge of the attitude (roll, pitch and yaw) of the laser beam axis within an accuracy of 80 microradians. (approx. 15 arcsec). Since SPARCLE can not use a dedicated star tracker from its earth-viewing orbiter bay location, a dedicated GPS/INS (Global Positioning System/Inertial Navigation System) will be attached to the lidar instrument rack. Since even the GPS/INS has unacceptable drifts in attitude information, the SPARCLE team has developed a way to periodically scan the instrument itself to obtain less than 10 microradian (2 arcsec) attitude knowledge accuracy that can then be used to correct the GPS/INS output on a 30 minute basis.

  18. Simulation of beam-splitter made of metamaterials with angle spatial distribution of constitutive parameters based on transformation optics for THz frequency range

    International Nuclear Information System (INIS)

    Gurvitz, E A; Vozianova, A V; Khodzitsky, M K

    2014-01-01

    New approach to design beam splitter on basis of the transformation optics using angle constitutive parameters distribution of medium was proposed. The beam splitter was numerically simulated by COMSOL Multiphysics for terahertz frequency range. The numerical simulations were carried out for ideal and reduced constitutive parameters of medium for the case of TM plane wave

  19. Estimating Elevation Angles From SAR Crosstalk

    Science.gov (United States)

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  20. Making lidar more photogenic: creating band combinations from lidar information

    Science.gov (United States)

    Stoker, Jason M.

    2010-01-01

    Over the past five to ten years the use and applicability of light detection and ranging (lidar) technology has increased dramatically. As a result, an almost exponential amount of lidar data is being collected across the country for a wide range of applications, and it is currently the technology of choice for high resolution terrain model creation, 3-dimensional city and infrastructure modeling, forestry and a wide range of scientific applications (Lin and Mills, 2010). The amount of data that is being delivered across the country is impressive. For example, the U.S. Geological Survey’s (USGS) Center for Lidar Information Coordination and Knowledge (CLICK), which is a National repository of USGS and partner lidar point cloud datasets (Stoker et al., 2006), currently has 3.5 percent of the United States covered by lidar, and has approximately another 5 percent in the processing queue. The majority of data being collected by the commercial sector are from discrete-return systems, which collect billions of lidar points in an average project. There are also a lot of discussions involving a potential National-scale Lidar effort (Stoker et al., 2008).

  1. LHC Report: playing with angles

    CERN Multimedia

    Mike Lamont for the LHC team

    2016-01-01

    Ready (after a machine development period), steady (running), go (for a special run)!   The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...

  2. Measurement of defects on the wall by use of the inclination angle of laser slit beam and position tracking algorithm of camera

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hwan; Yoon, Ji Sup; Jung, Jae Hoo; Hong, Dong Hee; Park, Gee Yong

    2001-01-01

    In this paper, a method of measuring the size of defects on the wall and restructuring the defect image is proposed based on the estimation algorithm of a camera orientation which uses the declination angle of the line slit beam. To reconstruct the image, an algorithm of estimating the horizontally inclined angle of CCD camera is presented. This algorithm adopts a 3-dimensional coordinate transformation of the image plane where both the LASER beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect can be reconstructed into the image which is obtained by a camera normal to the wall. From the result of a series of experiment shows that the measuring accuracy of the defect is within 0.5% error bound of real defect size under 30 degree of the horizontally inclined angle. Also, the accuracy is deteriorates with the error rate of 1% for every 10 degree increase of the horizontally inclined angle. The estimation error increases in the range of 30{approx}50 degree due to the existence of dead zone of defect depth, and defect length can not be measured due to the disappearance of image data above 70 degree. In case of under water condition, the measuring accuracy is also influenced due to the changed field of view of both the camera and the laser slit beam caused by the refraction rate in the water. The proposed algorithm provides the method of reconstructing the image taken at any arbitrary camera orientation into the image which is obtained by a camera normal to the wall and thus it enables the accurate measurement of the defect lengths only by using a single camera and a laser slit beam.

  3. Multi-angle polarimeter inter-comparison: the PODEX and ACEPOL field campaigns

    Science.gov (United States)

    Knobelspiesse, K. D.; Tan, Q.; Redemann, J.; Cairns, B.; Diner, D. J.; Ferrare, R. A.; van Harten, G.; Hasekamp, O. P.; Kalashnikova, O. V.; Martins, J. V.; Yorks, J. E.; Seidel, F. C.

    2017-12-01

    A multi-angle polarimeter has been proposed for the NASA Aerosol-Cloud-Ecosystem (ACE) mission, recommended by the National Research Council's Decadal Survey. Such instruments are uncommon in orbit, and there is a great diversity of prototype instrument characteristics. For that reason, NASA funded two field campaigns where airborne polarimeter prototypes were deployed on the high altitude ER-2 aircraft. The first field campaign, POlarimeter DEfinition EXperiment (PODEX), was carried out in southern California in early 2013. Three polarimeters participated: the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). PACS, on its first deployment, suffered detector problems, while AirMSPI and RSP performed within expectations. Initial comparisons of AirMSPI and RSP observations found Degree of Linear Polarization (DoLP) biases. Following corrections to both instrument's calibration and/or geolocation techniques, these issues have improved. We will present the details of this comparison. The recent ACEPOL mission returned to southern California in October-November with a larger compliment of multi-angle polarimeters. This included AirMSPI and RSP, like in PODEX. Additional polarimetric instruments included AirHARP (Airborne HyperAngular Rainbow Polarimeter, a successor to PACS) and SPEX Airborne (SPectropolarimeter for Planetary Exploration). Two Lidars were also deployed: The High Spectral Resolution Lidar -2 (HSRL-2) and the Cloud Physics Lidar (CPL). While data processing is still underway, we will describe the objectives of this campaign and give a preview of what to expect in subsequent analysis.

  4. Remote detection and recognition of bio-aerosols by laser-induced fluorescense lidar: practical implementation and field tests

    Science.gov (United States)

    Boreysho, Anatoly; Savin, Andrey; Morozov, Alexey; Konyaev, Maxim; Konovalov, Konstantin

    2007-06-01

    Recognition of aerosol clouds material at some significant distance is now a key requirement for the wide range of applications. The elastic backscatter lidar have demonstrated high capabilities in aerosol remote detection, cloud real-time mapping at very long distances for low-concentration natural aerosols as well as artificial ones [1]. However, recognition ability is required to make them more relevant. Laser-induced fluorescence (LIF) looks very promising with respect to the recognition problem. New approach based on mobile lidar complex [2] equipped by spectrally-and range-resolved LIF-sensor is described as well as some results of field tests. The LIF-sensor consists of four-harmonics Nd:YAG laser equipped by an output expander to provide final beam divergence camera collimated with the lidar scanning direction. The LIF-lidar is mounted on a truck-based platform (20-feet container) as a part of multi-purpose mobile lidar complex and adjusted for field conditions.

  5. Full-Scale Field Test of a Blade-Integrated Dual-Telescope Wind Lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Sjöholm, Mikael; Angelou, Nikolas

    . Simultaneously, data regarding wind speed, rotational speed, and pitch angle recorded by the turbine was logged as well as data from a nearby met mast. The encouraging results of this first campaign include wind speed measurements at 20 Hz data rate along the rotor plane, acquired during the co...... in the top and bottom of the rotor plane. Conclusion We present here what we believe is the first successful wind speed measurements from a dual-telescope lidar installed on the blade of an operating wind turbine. The full-scale field test performed in the summer of 2012 has clearly demonstrated...... the possibility of integrating lidar telescopes into turbine blades as well as the capability of the lidar to measure the required wind speeds and to operate in the challenging environment of a rotating spinner and vibrating blade. The use of two separate telescopes allows a direct measurement of the blade’s AOA...

  6. Research on the space-borne coherent wind lidar technique and the prototype experiment

    Science.gov (United States)

    Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao

    2016-10-01

    Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.

  7. Development of Acacia Glulam Wood Exterior Beam-to-Column Connection with Angles and Steel Rods System

    Directory of Open Access Journals (Sweden)

    Simanta Djoni

    2017-01-01

    Full Text Available In this paper, two models (M9B1 and M9B2 connection types of acacia glulam wood exterior beam-to-column connections with angles and steel rod system have been developed. Both models have been tested experimentally under monotonic static and cyclic loadings. The behaviour of each model under static and cyclic loadings, maximum displacement, maximum moment, equivalent viscous damping ratio, stiffness degradation, rotational stiffness and ductility have been observed. From the test results it can be concluded that the behaviour of the connections were influenced by the number of bearing steel rods at the beam, wood quality, and thickness of the angles. The M9B1 connection type has more flexibility than the M9B2 connection type. Three dimensional finite element analyses considering anisotropic plasticity have been conducted for both models. It can be concluded that in M9B1 connection type, the tensile forces due to the moment are received by the combination of tensile steel rods and bearing force in the steel rod and wood around it. Overall performance of M9B2 connection type is better than that of M9B1 connection type because the former has higher initial stiffness and higher rotational ductility than the later.

  8. Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon

    International Nuclear Information System (INIS)

    Chen, J.; Sekiguchi, T.; Xie, R.; Ahmet, P.; Chikyo, T.; Yang, D.; Ito, S.; Yin, F.

    2005-01-01

    Recombination activity of small-angle grain boundaries (SA GBs) in multicrystalline silicon (mc-Si) was studied by means of electron-beam-induced current (EBIC) technique. In the as-grown mc-Si, the EBIC contrasts of special Σ and random GBs were weak at both 300 and 100 K, whereas those of SA GBs were weak (<3%) at 300 K and strong (30-40%) at 100 K. In the contaminated mc-Si, SA GBs showed stronger EBIC contrast than Σ and R GBs at 300 K. It is indicated that SA GBs possess high density of shallow levels and are easily contaminated with Fe compared to other GBs

  9. Computer simulation of the beam-beam interaction at a crossing angle

    International Nuclear Information System (INIS)

    Piwinski, A.

    1985-01-01

    The simulation is done for protons in HERA which was first designed with a crossing angle. Although the assumed space charge parameter is relatively small many resonances can be seen after 50000 revolutions, i.e. about 1 second of storage time. The dependence on the crossing angle and on the order of the satellite resonances is investigated

  10. Prediction of Canopy Heights over a Large Region Using Heterogeneous Lidar Datasets: Efficacy and Challenges

    Directory of Open Access Journals (Sweden)

    Ranjith Gopalakrishnan

    2015-08-01

    Full Text Available Generating accurate and unbiased wall-to-wall canopy height maps from airborne lidar data for large regions is useful to forest scientists and natural resource managers. However, mapping large areas often involves using lidar data from different projects, with varying acquisition parameters. In this work, we address the important question of whether one can accurately model canopy heights over large areas of the Southeastern US using a very heterogeneous dataset of small-footprint, discrete-return airborne lidar data (with 76 separate lidar projects. A unique aspect of this effort is the use of nationally uniform and extensive field data (~1800 forested plots from the Forest Inventory and Analysis (FIA program of the US Forest Service. Preliminary results are quite promising: Over all lidar projects, we observe a good correlation between the 85th percentile of lidar heights and field-measured height (r = 0.85. We construct a linear regression model to predict subplot-level dominant tree heights from distributional lidar metrics (R2 = 0.74, RMSE = 3.0 m, n = 1755. We also identify and quantify the importance of several factors (like heterogeneity of vegetation, point density, the predominance of hardwoods or softwoods, the average height of the forest stand, slope of the plot, and average scan angle of lidar acquisition that influence the efficacy of predicting canopy heights from lidar data. For example, a subset of plots (coefficient of variation of vegetation heights <0.2 significantly reduces the RMSE of our model from 3.0–2.4 m (~20% reduction. We conclude that when all these elements are factored into consideration, combining data from disparate lidar projects does not preclude robust estimation of canopy heights.

  11. A LIDAR-Based Tree Canopy Characterization under Simulated Uneven Road Condition: Advance in Tree Orchard Canopy Profile Measurement

    Directory of Open Access Journals (Sweden)

    Yue Shen

    2017-01-01

    Full Text Available In real outdoor canopy profile detection, the accuracy of a LIDAR scanner to measure canopy structure is affected by a potentially uneven road condition. The level of error associated with attitude angles from undulations in the ground surface can be reduced by developing appropriate correction algorithm. This paper proposes an offline attitude angle offset correction algorithm based on a 3D affine coordinate transformation. The validity of the correction algorithm is verified by conducting an indoor experiment. The experiment was conducted on an especially designed canopy profile measurement platform. During the experiment, an artificial tree and a tree-shaped carved board were continuously scanned at constant laser scanner travel speed and detection distances under simulated bumpy road conditions. Acquired LIDAR laser scanner raw data was processed offline by exceptionally developed MATLAB program. The obtained results before and after correction method show that the single attitude angle offset correction method is able to correct the distorted data points in tree-shaped carved board profile measurement, with a relative error of 5%, while the compound attitude angle offset correction method is effective to reduce the error associated with compound attitude angle deviation from the ideal scanner pose, with relative error of 7%.

  12. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    Science.gov (United States)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    Field measurements of the wake flow produced from the interaction between atmospheric boundary layer and a wind turbine are performed with three wind LiDARs. The tested wind turbine is a 2 MW Enercon E-70 located in Collonges, Switzerland. First, accuracy of mean values and frequency resolution of the wind measurements are surveyed as a function of the number of laser rays emitted for each measurement. Indeed, measurements performed with one single ray allow maximizing sampling frequency, thus characterizing wake turbulence. On the other hand, if the number of emitted rays is increased accuracy of mean wind is increased due to the longer sampling period. Subsequently, two-dimensional measurements with a single LiDAR are carried out over vertical sections of the wind turbine wake and mean wake flow is obtained by averaging 2D measurements consecutively performed. The high spatial resolution of the used LiDAR allows characterizing in details velocity defect present in the central part of the wake and its downstream recovery. Single LiDAR measurements are also performed by staring the laser beam at fixed directions for a sampling period of about ten minutes and maximizing the sampling frequency in order to characterize wake turbulence. From these tests wind fluctuation peaks are detected in the wind turbine wake at blade top-tip height for different downstream locations. The magnitude of these turbulence peaks is generally reduced by moving downstream. This increased turbulence level at blade top-tip height observed for a real wind turbine has been already detected from previous wind tunnel tests and Large Eddy simulations, thus confirming the presence of a source of dangerous fatigue loads for following wind turbines within a wind farm. Furthermore, the proper characterization of wind fluctuations through LiDAR measurements is proved by the detection of the inertial subrange from spectral analysis of these velocity signals. Finally, simultaneous measurements with two

  13. Influence of eye size and beam entry angle on dose to non-targeted tissues of the eye during stereotactic x-ray radiosurgery of AMD

    International Nuclear Information System (INIS)

    Cantley, Justin L; Bolch, Wesley E; Hanlon, Justin; Chell, Erik; Lee, Choonsik; Smith, W Clay

    2013-01-01

    Age-related macular degeneration is a leading cause of vision loss for the elderly population of industrialized nations. The IRay® Radiotherapy System, developed by Oraya® Therapeutics, Inc., is a stereotactic low-voltage irradiation system designed to treat the wet form of the disease. The IRay System uses three robotically positioned 100 kVp collimated photon beams to deliver an absorbed dose of up to 24 Gy to the macula. The present study uses the Monte Carlo radiation transport code MCNPX to assess absorbed dose to six non-targeted tissues within the eye—total lens, radiosensitive tissues of the lens, optic nerve, distal tip of the central retinal artery, non-targeted portion of the retina, and the ciliary body-–all as a function of eye size and beam entry angle. The ocular axial length was ranged from 20 to 28 mm in 2 mm increments, with the polar entry angle of the delivery system varied from 18° to 34° in 2° increments. The resulting data showed insignificant variations in dose for all eye sizes. Slight variations in the dose to the optic nerve and the distal tip of the central retinal artery were noted as the polar beam angle changed. An increase in non-targeted retinal dose was noted as the entry angle increased, while the dose to the lens, sensitive volume of the lens, and ciliary body decreased as the treatment polar angle increased. Polar angles of 26° or greater resulted in no portion of the sensitive volume of the lens receiving an absorbed dose of 0.5 Gy or greater. All doses to non-targeted structures reported in this study were less than accepted thresholds for post-procedure complications. (paper)

  14. Influence of eye size and beam entry angle on dose to non-targeted tissues of the eye during stereotactic x-ray radiosurgery of AMD

    Science.gov (United States)

    Cantley, Justin L.; Hanlon, Justin; Chell, Erik; Lee, Choonsik; Smith, W. Clay; Bolch, Wesley E.

    2013-10-01

    Age-related macular degeneration is a leading cause of vision loss for the elderly population of industrialized nations. The IRay® Radiotherapy System, developed by Oraya® Therapeutics, Inc., is a stereotactic low-voltage irradiation system designed to treat the wet form of the disease. The IRay System uses three robotically positioned 100 kVp collimated photon beams to deliver an absorbed dose of up to 24 Gy to the macula. The present study uses the Monte Carlo radiation transport code MCNPX to assess absorbed dose to six non-targeted tissues within the eye—total lens, radiosensitive tissues of the lens, optic nerve, distal tip of the central retinal artery, non-targeted portion of the retina, and the ciliary body--all as a function of eye size and beam entry angle. The ocular axial length was ranged from 20 to 28 mm in 2 mm increments, with the polar entry angle of the delivery system varied from 18° to 34° in 2° increments. The resulting data showed insignificant variations in dose for all eye sizes. Slight variations in the dose to the optic nerve and the distal tip of the central retinal artery were noted as the polar beam angle changed. An increase in non-targeted retinal dose was noted as the entry angle increased, while the dose to the lens, sensitive volume of the lens, and ciliary body decreased as the treatment polar angle increased. Polar angles of 26° or greater resulted in no portion of the sensitive volume of the lens receiving an absorbed dose of 0.5 Gy or greater. All doses to non-targeted structures reported in this study were less than accepted thresholds for post-procedure complications.

  15. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  16. Beam-beam force and storage ring parameters

    International Nuclear Information System (INIS)

    Herrera, J.C.

    1979-01-01

    The fundamental aspects of the beam--beam force as it occurs in Intersecting Storage Rings are reported. The way in which the effect of the beam--particle electromagnetic force (weak--strong interaction) is different in the case of unbunched proton beams which cross each other at an angle (as in the ISR and in ISABELLE) is shown, as compared to the case of electron--positron beams where bunches collide head-on

  17. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  18. Bessel-like beams with z-dependent cone angles

    CSIR Research Space (South Africa)

    Belyi, VN

    2009-08-01

    Full Text Available beams (keeping the transverse profile at any distances). This new type of beams can be obtained in optical system composed of lens axicon doublet and conical lens. An experimental set-up for producing such beams is realized. It is shown that depending...

  19. Eye safety report 1 (dual wavelength). Human risk analysis simulator for space lidars

    International Nuclear Information System (INIS)

    Schulmeister, K.; Mellerio, J.; Sonneck, G.

    2001-09-01

    This report contains the results of a risk study for a satellite based lidar mission that uses two different laser wavelengths to measure atmospheric properties. A lidar can be considered as a laser radar and is an acronym for light detection and ranging. The lidar measures properties of the atmosphere by analysis of laser radiation that is directed back to the lidar. As only part of the laser radiation is scattered ir absorbed by the atmosphere, the remaining laser radiation emitted from the spacecraft is incident on the earth's surface, where it might lead to injuries, especially to the eye, if biological thresholds are exceeded. For the analysed mission there is no hazard to the skin, only a potential one to the eye. Because the footprint of the satellite's laser beam on the surface of the earth is so small and it moves so fast, the chance of the naked eye being exposed to the laser is small. Because of the magnification provided by an optical instrument, and the concomitant reduction in the field of view, the probability of exposure of an eye that is using such an instrument decreases with increasing optical power. However, because an increased optical power implies increased diameter of the light gathering optics, the laser energy delivered to an eye increases with instrument size so that if exposure did occur, the probability of delivering energy to the eye that exceeds the threshold for damage increases. There are thus two conflicting processes at work for viewing with optical instruments: an increase in diameter increases the energy delivered but reduces the probability of lidar beam interception. Energy delivered to the eye is such that damage thresholds will not be exceeded for naked eye viewing or for the use of small optical instruments. Exposure via telescopes with diameter larger than 12 cm could result in retinal damage of the exposed eye. (author)

  20. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-05-01

    Full Text Available We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m−1 to 1.6e-4 m−1 and particle backscatter coefficient (between 1.1e-05 m−1sr−1 and 1.7e-06 m−1sr−1 in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr and summer (33 ± 10 sr. The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  1. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    Science.gov (United States)

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-05-18

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.

  2. An All-Fiber, Modular, Compact Wind Lidar for Wind Sensing and Wake Vortex Applications

    Science.gov (United States)

    Prasad, Narasimha S.; Sibell, Russ; Vetorino, Steve; Higgins, Richard; Tracy, Allen

    2015-01-01

    This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.

  3. The design, development, and test of balloonborne and groundbased lidar systems. Volume 3: Groundbased lidar systems

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Robertie, N. F.

    1991-06-01

    This is Volume 3 of a three volume final report on the design, development and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the August 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.

  4. Range Information Characterization of the Hokuyo UST-20LX LIDAR Sensor

    Directory of Open Access Journals (Sweden)

    Matthew A. Cooper

    2018-05-01

    Full Text Available This paper presents a study on the data measurements that the Hokuyo UST-20LX Laser Rangefinder produces, which compiles into an overall characterization of the LiDAR sensor relative to indoor environments. The range measurements, beam divergence, angular resolution, error effect due to some common painted and wooden surfaces, and the error due to target surface orientation are analyzed. It was shown that using a statistical average of sensor measurements provides a more accurate range measurement. It was also shown that the major source of errors for the Hokuyo UST-20LX sensor was caused by something that will be referred to as “mixed pixels”. Additional error sources are target surface material, and the range relative to the sensor. The purpose of this paper was twofold: (1 to describe a series of tests that can be performed to characterize various aspects of a LIDAR system from a user perspective, and (2 present a detailed characterization of the commonly-used Hokuyo UST-20LX LIDAR sensor.

  5. Spatially-Resolved Ion Trajectory Measurements During Cl2 Reactive Ion Beam Etching and Ar Ion Beam Etching

    International Nuclear Information System (INIS)

    Vawter, G. Allen; Woodworth, Joseph R.; Zubrzycki, Walter J.

    1999-01-01

    The angle of ion incidence at the etched wafer location during RIBE and IBE using Cl 2 , Ar and O 2 ion beams has been characterized using an ion energy and angle analyzer. Effects of beam current and accelerator grid bias on beam divergence and the spatial uniformity of the spread of incident angles are measured. It is observed that increased total beam current can lead to reduced current density at the sample stage due to enhanced beam divergence at high currents. Results are related to preferred etch system design for uniform high-aspect-ratio etching across semiconductor wafers

  6. Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality

    Science.gov (United States)

    Ullrich, A.; Pfennigbauer, M.

    2016-05-01

    LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.

  7. Evaluation of turbulence measurement techniques from a single Doppler lidar

    Directory of Open Access Journals (Sweden)

    T. A. Bonin

    2017-08-01

    Full Text Available Measurements of turbulence are essential to understand and quantify the transport and dispersal of heat, moisture, momentum, and trace gases within the planetary boundary layer (PBL. Through the years, various techniques to measure turbulence using Doppler lidar observations have been proposed. However, the accuracy of these measurements has rarely been validated against trusted in situ instrumentation. Herein, data from the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA are used to verify Doppler lidar turbulence profiles through comparison with sonic anemometer measurements. For 17 days at the end of the experiment, a single scanning Doppler lidar continuously cycled through different turbulence measurement strategies: velocity–azimuth display (VAD, six-beam scans, and range–height indicators (RHIs with a vertical stare.Measurements of turbulence kinetic energy (TKE, turbulence intensity, and stress velocity from these techniques are compared with sonic anemometer measurements at six heights on a 300 m tower. The six-beam technique is found to generally measure turbulence kinetic energy and turbulence intensity the most accurately at all heights (r2  ≈  0.78, showing little bias in its observations (slope of  ≈  0. 95. Turbulence measurements from the velocity–azimuth display method tended to be biased low near the surface, as large eddies were not captured by the scan. None of the methods evaluated were able to consistently accurately measure the shear velocity (r2 =  0.15–0.17. Each of the scanning strategies assessed had its own strengths and limitations that need to be considered when selecting the method used in future experiments.

  8. Field test of an all-semiconductor laser-based coherent continuous-wave Doppler lidar for wind energy applications

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Dellwik, Ebba; Hu, Qi

    -produced all-semiconductor laser. The instrument is a coherent continuous-wave lidar with two fixed-focus telescopes for launching laser beams in two different directions. The alternation between the telescopes is achieved by a novel switching technique without any moving parts. Here, we report results from...... signal strength from external atmospheric parameters such as relative humidity and concentrations of atmospheric particles is discussed. This novel lidar instrument design seems to offer a promising low-cost alternative for prevision remote sensing of wind turbine inflow....

  9. Electron beam based transversal profile measurements of intense ion beams

    International Nuclear Information System (INIS)

    El Moussati, Said

    2014-01-01

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  10. Validation of long-range scanning lidars deployed around the Høvsøre Test Station

    DEFF Research Database (Denmark)

    Lea, Guillaume; Courtney, Michael

    This report describes validation tests performed on the long-range scanning lidars prior to deployment in the RUNE campaign. Position and speed accuracy tests have been performed at a range of 5km from the Høvsøre met mast. This range is typical of ranges for near-coastal resource measurements....... The accuracy of the beam positioning was checked by comparing the predicted position to the position found from hard-target returns from the mast. Radial speeds measured by the lidar were also found to be in close agreement with the mast measured wind speeds projected in the line of sight direction....

  11. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  12. LiDAR Vegetation Investigation and Signature Analysis System (LVISA)

    Science.gov (United States)

    Höfle, Bernhard; Koenig, Kristina; Griesbaum, Luisa; Kiefer, Andreas; Hämmerle, Martin; Eitel, Jan; Koma, Zsófia

    2015-04-01

    lacks behind. We propose a novel concept, the LiDAR Vegetation Investigation and Signature Analysis System (LVISA), which shall enhance sharing of i) reference datasets of single vegetation objects with rich reference data (e.g., plant species, basic plant morphometric information) and ii) approaches for information extraction (e.g., single tree detection, tree species classification based on waveform LiDAR features). We will build an extensive LiDAR data repository for supporting the development and benchmarking of LiDAR-based object information extraction. The LiDAR Vegetation Investigation and Signature Analysis System (LVISA) uses international web service standards (Open Geospatial Consortium, OGC) for geospatial data access and also analysis (e.g., OGC Web Processing Services). This will allow the research community identifying plant object specific vegetation features from LiDAR data, while accounting for differences in LiDAR systems (e.g., beam divergence), settings (e.g., point spacing), and calibration techniques. It is the goal of LVISA to develop generic 3D information extraction approaches, which can be seamlessly transferred to other datasets, timestamps and also extraction tasks. The current prototype of LVISA can be visited and tested online via http://uni-heidelberg.de/lvisa. Video tutorials provide a quick overview and entry into the functionality of LVISA. We will present the current advances of LVISA and we will highlight future research and extension of LVISA, such as integrating low-cost LiDAR data and datasets acquired by highly temporal scanning of vegetation (e.g., continuous measurements). Everybody is invited to join the LVISA development and share datasets and analysis approaches in an interoperable way via the web-based LVISA geoportal.

  13. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities

    International Nuclear Information System (INIS)

    Fondevila, Damian; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Monica; Dosoretz, Bernardo

    2008-01-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (α max ) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining α max , which is a function of the thickness of the barrier (t E ) and the equilibrium tenth-value layer (TVL e ) of the shielding material for the nominal energy of the beam. It can be seen that α max increases for increasing TVL e (hence, beam energy) and decreases for increasing t E , with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation

  14. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities.

    Science.gov (United States)

    Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo

    2008-05-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.

  15. High-energy, 2µm laser transmitter for coherent wind LIDAR

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Kavaya, Michael J.; Koch, Grady J.

    2017-11-01

    A coherent Doppler lidar at 2μm wavelength has been built with higher output energy (300 mJ) than previously available. The laser transmitter is based on the solid-state Ho:Tm:LuLiF, a NASA Langley Research Center invented laser material for higher extraction efficiency. This diode pumped injection seeded MOPA has a transform limited line width and diffraction limited beam quality. NASA Langley Research Center is developing coherent wind lidar transmitter technology at eye-safe wavelength for satellite-based observation of wind on a global scale. The ability to profile wind is a key measurement for understanding and predicting atmospheric dynamics and is a critical measurement for improving weather forecasting and climate modeling. We would describe the development and performance of an engineering hardened 2μm laser transmitter for coherent Doppler wind measurement from ground/aircraft/space platform.

  16. Cotton phenotyping with lidar from a track-mounted platform

    Science.gov (United States)

    French, Andrew N.; Gore, Michael A.; Thompson, Alison

    2016-05-01

    High-Throughput Phenotyping (HTP) is a discipline for rapidly identifying plant architectural and physiological responses to environmental factors such as heat and water stress. Experiments conducted since 2010 at Maricopa, Arizona with a three-fold sensor group, including thermal infrared radiometers, active visible/near infrared reflectance sensors, and acoustic plant height sensors, have shown the validity of HTP with a tractor-based system. However, results from these experiments also show that accuracy of plant phenotyping is limited by the system's inability to discriminate plant components and their local environmental conditions. This limitation may be overcome with plant imaging and laser scanning which can help map details in plant architecture and sunlit/shaded leaves. To test the capability for mapping cotton plants with a laser system, a track-mounted platform was deployed in 2015 over a full canopy and defoliated cotton crop consisting of a scanning LIDAR driven by Arduinocontrolled stepper motors. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at 0.1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). These tests showed that an autonomous LIDAR platform can reduce HTP logistical problems and provide the capability to accurately map cotton plants and cotton bolls. A prototype track-mounted platform was developed to test the use of LIDAR scanning for High- Throughput Phenotyping (HTP). The platform was deployed in 2015 at Maricopa, Arizona over a senescent cotton crop. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at cotton bolls.

  17. Upgrading the Arecibo Potassium Lidar Receiver for Meridional Wind Measurements

    Science.gov (United States)

    Piccone, A. N.; Lautenbach, J.

    2017-12-01

    Lidar can be used to measure a plethora of variables: temperature, density of metals, and wind. This REU project is focused on the set up of a semi steerable telescope that will allow the measurement of meridional wind in the mesosphere (80-105 km) with Arecibo Observatory's potassium resonance lidar. This includes the basic design concept of a steering system that is able to turn the telescope to a maximum of 40°, alignment of the mirror with the telescope frame to find the correct focusing, and the triggering and programming of a CCD camera. The CCD camera's purpose is twofold: looking though the telescope and matching the stars in the field of view with a star map to accurately calibrate the steering system and determining the laser beam properties and position. Using LabVIEW, the frames from the CCD camera can be analyzed to identify the most intense pixel in the image (and therefore the brightest point in the laser beam or stars) by plotting average pixel values per row and column and locating the peaks of these plots. The location of this pixel can then be plotted, determining the jitter in the laser and position within the field of view of the telescope.

  18. Precision Beam Parameter Monitoring in a Measurement of the Weak Mixing Angle in Moeller Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, M.S.

    2005-04-11

    A precision measurement of the parity nonconserving left-right asymmetry, A{sub LR}, in Moeller scattering (e{sup -}e{sup -} {yields} e{sup -}e{sup -}) is currently in progress at the Stanford Linear Accelerator Center (SLAC). This experiment, labeled SLAC-E158, scatters longitudinally polarized electrons off atomic electrons in an unpolarized hydrogen target at a Q{sup 2} of 0.03 (GeV/c){sup 2}. The asymmetry, which is the fractional difference in the scattering cross-sections, measures the effective pseudo-scalar weak neutral current coupling, g{sub ee}, governing Moeller scattering. This quantity is in turn proportional to (1/4 - sin{sup 2} {theta}{sub w}), where {theta}{sub w} is the electroweak mixing angle. The goal is to measure the asymmetry to a precision of 1 x 10{sup -8} which corresponds to {delta}(sin{sup 2} {theta}{sub w}) {approx} 0.0007. Since A{sub LR} is a function of the cross-sections, and the cross-sections depend on the beam parameters, the desired precision of A{sub LR} places stringent requirements on the beam parameters. This paper investigates the requirements on the beam parameters and discusses the means by which they are monitored and accounted for.

  19. Simulation of Satellite, Airborne and Terrestrial LiDAR with DART (I):Waveform Simulation with Quasi-Monte Carlo Ray Tracing

    Science.gov (United States)

    Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing

    2016-01-01

    Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.

  20. Dual-beam CRT

    International Nuclear Information System (INIS)

    1975-01-01

    A dual-beam cathode-ray tube having a pair of electron guns and associated deflection means disposed side-by-side on each side of a central axis is described. The electron guns are parallel and the deflection means includes beam centering plates and angled horizontal deflection plates to direct the electron beams toward the central axis, precluding the need for a large-diameter tube neck in which the entire gun structures are angled. Bowing control plates are disposed adjacent to the beam centering plates to minimize trace bowing, and an intergun shield is disposed between the horizontal deflection plates to control and correct display pattern geometry distortion

  1. Wavelength stabilized high pulse power laser diodes for automotive LiDAR

    Science.gov (United States)

    Knigge, A.; Klehr, A.; Wenzel, H.; Zeghuzi, A.; Fricke, J.; Maaßdorf, A.; Liero, A.; Tränkle, G.

    2018-03-01

    Diode lasers generating optical pulses with high peak power and lengths in the nanosecond range are key components of systems for free-space communication, metrology, material processing, spectroscopy, and light detection and ranging (LiDAR) as needed for object detection and autonomous driving. Automotive LiDAR systems demand additionally a good beam quality and low wavelength shift with temperature due to the wide operating temperature span. We present here internally wavelength stabilized lasers emitting ns optical pulses from an emission aperture between 30 μm and 100 μm with peak powers of tens of Watts at wavelengths around 905 nm. The vertical structure based on AlGaAs (confinement and cladding layers) and InGaAs (active quantum well) is especially optimized for pulsed operation with respect to the implementation of a surface Bragg grating with a high reflectivity. The fabricated 6 mm long distributed Bragg reflector (DBR) broad area (BA) lasers are electrically driven by an in-house developed high-speed unit generating 3 to 10 ns long nearly rectangular shaped current pulses with amplitudes of up to 250 A. Such lasers emit optical pulses with a peak power of more than 30 W at 95 A pulse current up to a temperature of 85°C with a wavelength shift as low as 65 pm/K and a lateral beam propagation factor less than 10. The influence of the lateral aperture width and the pulse length on the beam quality will be shown. A monolithic integration of 3 DBR BA lasers on a single chip whose emission can be combined into a single beam raises the output power to more than 100 W.

  2. Steel research using neutron beam techniques. In-situ neutron diffraction, small-angle neutron scattering and residual stress analysis

    International Nuclear Information System (INIS)

    Sueyoshi, Hitoshi; Ishikawa, Nobuyuki; Yamada, Katsumi; Sato, Kaoru; Nakagaito, Tatsuya; Matsuda, Hiroshi; Arakaki, Yu; Tomota, Yo

    2014-01-01

    Recently, the neutron beam techniques have been applied for steel researches and industrial applications. In particular, the neutron diffraction is a powerful non-destructive method that can analyze phase transformation and residual stress inside the steel. The small-angle neutron scattering is also an effective method for the quantitative evaluation of microstructures inside the steel. In this study, in-situ neutron diffraction measurements during tensile test and heat treatment were conducted in order to investigate the deformation and transformation behaviors of TRIP steels. The small-angle neutron scattering measurements of TRIP steels were also conducted. Then, the neutron diffraction analysis was conducted on the high strength steel weld joint in order to investigate the effect of the residual stress distribution on the weld cracking. (author)

  3. Method for more accurate transmittance measurements of low-angle scattering samples using an integrating sphere with an entry port beam diffuser

    International Nuclear Information System (INIS)

    Nilsson, Annica M.; Jonsson, Andreas; Jonsson, Jacob C.; Roos, Arne

    2011-01-01

    For most integrating sphere measurements, the difference in light distribution between a specular reference beam and a diffused sample beam can result in significant errors. The problem becomes especially pronounced in integrating spheres that include a port for reflectance or diffuse transmittance measurements. The port is included in many standard spectrophotometers to facilitate a multipurpose instrument, however, absorption around the port edge can result in a detected signal that is too low. The absorption effect is especially apparent for low-angle scattering samples, because a significant portion of the light is scattered directly onto that edge. In this paper, a method for more accurate transmittance measurements of low-angle light-scattering samples is presented. The method uses a standard integrating sphere spectrophotometer, and the problem with increased absorption around the port edge is addressed by introducing a diffuser between the sample and the integrating sphere during both reference and sample scan. This reduces the discrepancy between the two scans and spreads the scattered light over a greater portion of the sphere wall. The problem with multiple reflections between the sample and diffuser is successfully addressed using a correction factor. The method is tested for two patterned glass samples with low-angle scattering and in both cases the transmittance accuracy is significantly improved.

  4. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    CERN Document Server

    AUTHOR|(CDS)2070952; Valishev, Aleksander; Shatilov, Dmitry

    2015-01-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical β∗ values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  5. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Fartoukh, Stephane [CERN; Valishev, Alexander [Fermilab; Shatilov, Dmitry [BINP, Novosibirsk

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  6. True Orthophoto Generation from Aerial Frame Images and LiDAR Data: An Update

    Directory of Open Access Journals (Sweden)

    Hamid Gharibi

    2018-04-01

    Full Text Available Image spectral and Light Detection and Ranging (LiDAR positional information can be related through the orthophoto generation process. Orthophotos have a uniform scale and represent all objects in their correct planimetric locations. However, orthophotos generated using conventional methods suffer from an artifact known as the double-mapping effect that occurs in areas occluded by tall objects. The double-mapping problem can be resolved through the commonly known true orthophoto generation procedure, in which an occlusion detection process is incorporated. This paper presents a review of occlusion detection methods, from which three techniques are compared and analyzed using experimental results. The paper also describes a framework for true orthophoto production based on an angle-based occlusion detection method. To improve the performance of the angle-based technique, two modifications to this method are introduced. These modifications, which aim at resolving false visibilities reported within the angle-based occlusion detection process, are referred to as occlusion extension and radial section overlap. A weighted averaging approach is also proposed to mitigate the seamline effect and spectral dissimilarity that may appear in true orthophoto mosaics. Moreover, true orthophotos generated from high-resolution aerial images and high-density LiDAR data using the updated version of angle-based methodology are illustrated for two urban study areas. To investigate the potential of image matching techniques in producing true orthophotos and point clouds, a comparison between the LiDAR-based and image-matching-based true orthophotos and digital surface models (DSMs for an urban study area is also presented in this paper. Among the investigated occlusion detection methods, the angle-based technique demonstrated a better performance in terms of output and running time. The LiDAR-based true orthophotos and DSMs showed higher qualities compared to their

  7. Performance characterization of a pressure-tuned wide-angle Michelson interferometric spectral filter for high spectral resolution lidar

    Science.gov (United States)

    Seaman, Shane T.; Cook, Anthony L.; Scola, Salvatore J.; Hostetler, Chris A.; Miller, Ian; Welch, Wayne

    2015-09-01

    High Spectral Resolution Lidar (HSRL) is typically realized using an absorption filter to separate molecular returns from particulate returns. NASA Langley Research Center (LaRC) has designed and built a Pressure-Tuned Wide-Angle Michelson Interferometer (PTWAMI) as an alternate means to separate the two types of atmospheric returns. While absorption filters only work at certain wavelengths and suffer from low photon efficiency due to light absorption, an interferometric spectral filter can be designed for any wavelength and transmits nearly all incident photons. The interferometers developed at LaRC employ an air spacer in one arm, and a solid glass spacer in the other. Field widening is achieved by specific design and selection of the lengths and refractive indices of these two arms. The principal challenge in using such an interferometer as a spectral filter for HSRL aboard aircraft is that variations in glass temperature and air pressure cause changes in the interferometer's optical path difference. Therefore, a tuning mechanism is needed to actively accommodate for these changes. The pressure-tuning mechanism employed here relies on changing the pressure in an enclosed, air-filled arm of the interferometer to change the arm's optical path length. However, tuning using pressure will not adjust for tilt, mirror warpage, or thermally induced wavefront error, so the structural, thermal, and optical behavior of the device must be well understood and optimized in the design and manufacturing process. The PTWAMI has been characterized for particulate transmission ratio, wavefront error, and tilt, and shows acceptable performance for use in an HSRL instrument.

  8. Testing Long-Range Beam-Beam Compensation for the LHC Luminosity Upgrade

    CERN Document Server

    Rijoff, T L

    2012-01-01

    The performance of the Large Hadron Collider (LHC) at CERN and its minimum crossing angle are limited by the effect of long-range beam-beam collisions. A wire compensators can mitigate part of the long-range effects and may allow for smaller crossing angles, or higher beam intensity. A prototype long-range wire compensator could be installed in the LHC by 2014/15. Since the originally reserved position for such a wire compensator is not available for this first step, we explore other possible options. Our investigations consider various longitudinal and transverse locations, different wire shapes, different optics configurations and several crossing angles between the two colliding beams. Simulations are carried out with the weak-strong code BBtrack. New postprocessing tools are introduced to analyse tune footprints and particle stability. In particular, a new method for the Lyapunov coefficient calculation is implemented. Submitted as "Tesi di laurea" at the University of Milano, 2012.

  9. 2015 Lowndes County (GA) Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NOAA OCM Lidar for Lowndes County, GA with the option to Collect Lidar in Cook and Tift Counties, GA Lidar Data Acquisition and Processing Production Task...

  10. 2015 OLC Lidar: Wasco, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Wasco County, WA, study area. The Oregon LiDAR Consortium's Wasco County...

  11. Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data

    International Nuclear Information System (INIS)

    Raach, Steffen; Schlipf, David; Haizmann, Florian; Cheng, Po Wen

    2014-01-01

    Using the inflowing horizontal and vertical wind shears for individual pitch controller is a promising method if blade bending measurements are not available. Due to the limited information provided by a lidar system the reconstruction of shears in real-time is a challenging task especially for the horizontal shear in the presence of changing wind direction. The internal model principle has shown to be a promising approach to estimate the shears and directions in 10 minutes averages with real measurement data. The static model based wind vector field reconstruction is extended in this work taking into account a dynamic reconstruction model based on Taylor's Frozen Turbulence Hypothesis. The presented method provides time series over several seconds of the wind speed, shears and direction, which can be directly used in advanced optimal preview control. Therefore, this work is an important step towards the application of preview individual blade pitch control under realistic wind conditions. The method is tested using a turbulent wind field and a detailed lidar simulator. For the simulation, the turbulent wind field structure is flowing towards the lidar system and is continuously misaligned with respect to the horizontal axis of the wind turbine. Taylor's Frozen Turbulence Hypothesis is taken into account to model the wind evolution. For the reconstruction, the structure is discretized into several stages where each stage is reduced to an effective wind speed, superposed with a linear horizontal and vertical wind shear. Previous lidar measurements are shifted using again Taylor's Hypothesis. The wind field reconstruction problem is then formulated as a nonlinear optimization problem, which minimizes the residual between the assumed wind model and the lidar measurements to obtain the misalignment angle and the effective wind speed and the wind shears for each stage. This method shows good results in reconstructing the wind characteristics of a three

  12. Let’s agree on the casing of Lidar

    Science.gov (United States)

    Deering, Carol; Stoker, Jason M.

    2014-01-01

    Is it lidar, Lidar, LiDAR, LIDAR, LiDar, LiDaR, or liDAR? A comprehensive review of the scientific/technical literature reveals seven different casings of this short form for light detection and ranging. And there could be more.

  13. Developing a portable, autonomous aerosol backscatter lidar for network or remote operations

    Science.gov (United States)

    Strawbridge, K. B.

    2013-03-01

    Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operated continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd : YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an Internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar

  14. Developing a portable, autonomous aerosol backscatter lidar for network or remote operations

    Directory of Open Access Journals (Sweden)

    K. B. Strawbridge

    2013-03-01

    Full Text Available Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operated continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd : YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an Internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network. In addition, the transport of a forest fire plume across the country will be shown as evidenced

  15. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Area 1 (Aroostook), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  16. Balloonborne lidar payloads for remote sensing

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Hurd, A. G.; Rappaport, S. A.; Reidy, W. P.; Rieder, R. J.; Bedo, D. E.; Swirbalus, R. A.

    1994-02-01

    A series of lidar experiments has been conducted using the Atmospheric Balloonborne Lidar Experiment payload (ABLE). These experiments included the measurement of atmospheric Rayleigh and Mie backscatter from near space (approximately 30 km) and Raman backscatter measurements of atmospheric constituents as a function of altitude. The ABLE payload consisted of a frequency-tripled Nd:YAG laser transmitter, a 50 cm receiver telescope, and filtered photodetectors in various focal plane configurations. The payload for lidar pointing, thermal control, data handling, and remote control of the lidar system. Comparison of ABLE performance with that of a space lidar shows significant performance advantages and cost effectiveness for balloonborne lidar systems.

  17. Field Testing of LIDAR-Assisted Feedforward Control Algorithms for Improved Speed Control and Fatigue Load Reduction on a 600-kW Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avishek A.; Bossanyi, Ervin A.; Scholbrock, Andrew K.; Fleming, Paul; Boquet, Mathieu; Krishnamurthy, Raghu

    2015-12-14

    A severe challenge in controlling wind turbines is ensuring controller performance in the presence of a stochastic and unknown wind field, relying on the response of the turbine to generate control actions. Recent technologies such as LIDAR, allow sensing of the wind field before it reaches the rotor. In this work a field-testing campaign to test LIDAR Assisted Control (LAC) has been undertaken on a 600-kW turbine using a fixed, five-beam LIDAR system. The campaign compared the performance of a baseline controller to four LACs with progressively lower levels of feedback using 35 hours of collected data.

  18. Spectral Coherence Along a Lidar-Anemometer Beam

    DEFF Research Database (Denmark)

    Kristensen, Leif; Kirkegaard, Peter; Mann, Jakob

    cannot be predicted realistically. Special emphasis has been placed on the effect of line average along the beam. One section has been devoted to the effect of spectral aliasing, which may cause severe problems in the interpretation of measured data. This work is considered the theoretical background...

  19. Study of Beam-Beam Effects at PEP-II

    International Nuclear Information System (INIS)

    Narsky, I

    2004-01-01

    Using a self-consistent three-dimensional simulation running on parallel supercomputers, we have modeled the beam-beam interaction at the PEP-II asymmetric e + e - collider. To provide guidance for luminosity improvement, we scanned the tunes and currents in both rings and computed their impact on the luminosity and transverse beam sizes. We also studied the effects of colliding the beams with a small crossing angle. Where possible, the code was benchmarked against experimental measurements of luminosity and beam sizes, yielding an acceptable agreement

  20. Orthogonal image pairs coupled with OSMS for noncoplanar beam angle, intracranial, single-isocenter, SRS treatments with multiple targets on the Varian Edge radiosurgery system

    Directory of Open Access Journals (Sweden)

    Jasmine A. Oliver, PhD

    2017-07-01

    Conclusion: Based on our study, CR-induced shifts with the Varian Edge radiosurgery system will not produce noticeable dosimetric effects for SRS treatments. Thus, replacing cone beam CT with orthogonal kV/kV pairs coupled with OSMS at the treatment couch angle could reduce the number of cone beam CT scans that are acquired during a standard SRS treatment while providing an accurate and safe treatment with negligible dosimetric effects on the treatment plan.

  1. Effects of Different LiDAR Intensity Normalization Methods on Scotch Pine Forest Leaf Area Index Estimation

    Directory of Open Access Journals (Sweden)

    YOU Haotian

    2018-02-01

    Full Text Available The intensity data of airborne light detection and ranging (LiDAR are affected by many factors during the acquisition process. It is of great significance for the normalization and application of LiDAR intensity data to study the effective quantification and normalization of the effect from each factor. In this paper, the LiDAR data were normalized with range, angel of incidence, range and angle of incidence based on radar equation, respectively. Then two metrics, including canopy intensity sum and ratio of intensity, were extracted and used to estimate forest LAI, which was aimed at quantifying the effects of intensity normalization on forest LAI estimation. It was found that the range intensity normalization could improve the accuracy of forest LAI estimation. While the angle of incidence intensity normalization did not improve the accuracy and made the results worse. Although the range and incidence angle normalized intensity data could improve the accuracy, the improvement was less than the result of range intensity normalization. Meanwhile, the differences between the results of forest LAI estimation from raw intensity data and normalized intensity data were relatively big for canopy intensity sum metrics. However, the differences were relatively small for the ratio of intensity metrics. The results demonstrated that the effects of intensity normalization on forest LAI estimation were depended on the choice of affecting factor, and the influential level is closely related to the characteristics of metrics used. Therefore, the appropriate method of intensity normalization should be chosen according to the characteristics of metrics used in the future research, which could avoid the waste of cost and the reduction of estimation accuracy caused by the introduction of inappropriate affecting factors into intensity normalization.

  2. Flow tilt angles near forest edges – Part 1: Sonic anemometry

    Directory of Open Access Journals (Sweden)

    E. Dellwik

    2010-05-01

    Full Text Available An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero-flow angles were assumed for neutral flow, the data was interpreted in relation to upstream and downstream forest edges.

    Uncertainties caused by flow distortion, vertical misalignment and limited sampling time (statistical uncertainty were evaluated and found to be highly significant. Since the attack angle distribution of the wind on the sonic anemometer is a function of atmospheric stratification, an instrumental error caused by imperfect flow distortion correction is also a function of the atmospheric stratification. In addition, it is discussed that the sonic anemometers have temperature dependent off-sets. These features of the investigated sonic anemometers make them unsuitable for measuring vertical velocities over highly turbulent forested terrain. By comparing the sonic anemometer results to that of a conically scanning Doppler lidar (Dellwik et al., 2010b, sonic anemometer accuracy for measuring mean flow tilt angles was estimated to between 2° and 3°. Use of planar fit algorithms, where the mean vertical velocity is calculated as the difference between the neutral and non-neutral flow, does not solve this problem of low accuracy and is not recommended.

    Because of the large uncertainties caused by flow distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies at the site.

    Since the mean flow tilt angles do not follow the terrain, an estimate of the vertical advection

  3. Lidar configurations for wind turbine control

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Mann, Jakob

    2016-01-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best...... by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points....

  4. IEA Wind Task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar

    DEFF Research Database (Denmark)

    Clifton, Andrew; Clive, Peter; Gottschall, Julia

    2018-01-01

    IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex...... flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models......, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been...

  5. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  6. Improved Model for Depth Bias Correction in Airborne LiDAR Bathymetry Systems

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2017-07-01

    Full Text Available Airborne LiDAR bathymetry (ALB is efficient and cost effective in obtaining shallow water topography, but often produces a low-accuracy sounding solution due to the effects of ALB measurements and ocean hydrological parameters. In bathymetry estimates, peak shifting of the green bottom return caused by pulse stretching induces depth bias, which is the largest error source in ALB depth measurements. The traditional depth bias model is often applied to reduce the depth bias, but it is insufficient when used with various ALB system parameters and ocean environments. Therefore, an accurate model that considers all of the influencing factors must be established. In this study, an improved depth bias model is developed through stepwise regression in consideration of the water depth, laser beam scanning angle, sensor height, and suspended sediment concentration. The proposed improved model and a traditional one are used in an experiment. The results show that the systematic deviation of depth bias corrected by the traditional and improved models is reduced significantly. Standard deviations of 0.086 and 0.055 m are obtained with the traditional and improved models, respectively. The accuracy of the ALB-derived depth corrected by the improved model is better than that corrected by the traditional model.

  7. Re-Normalization Method of Doppler Lidar Signal for Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nakgyu; Baik, Sunghoon; Park, Seungkyu; Kim, Donglyul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dukhyeon [Hanbat National Univ., Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, we presented a re-normalization method for the fluctuations of Doppler signals from the various noises mainly due to the frequency locking error for a Doppler lidar system. For the Doppler lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter and an iodine filter as the Doppler frequency discriminator. For the Doppler frequency shift measurement, the transmission ratio using the injection-seeded laser is locked to stabilize the frequency. If the frequency locking system is not perfect, the Doppler signal has some error due to the frequency locking error. The re-normalization process of the Doppler signals was performed to reduce this error using an additional laser beam to an Iodine cell. We confirmed that the renormalized Doppler signal shows the stable experimental data much more than that of the averaged Doppler signal using our calibration method, the reduced standard deviation was 4.838 Χ 10{sup -3}.

  8. Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control

    DEFF Research Database (Denmark)

    Schlipf, David; Cheng, Po Wen; Mann, Jakob

    2013-01-01

    - or spinner-based lidar system. If on the one hand, the assumed correlation is overestimated, then the uncorrelated frequencies of the preview will cause unnecessary control action, inducing undesired loads. On the other hand, the benefits of the lidar-assisted controller will not be fully exhausted......, if correlated frequencies are filtered out. To avoid these miscalculations, this work presents a method to model the correlation between lidar systems and wind turbines using Kaimal wind spectra. The derived model accounts for different measurement configurations and spatial averaging of the lidar system......Investigations of lidar-assisted control to optimize the energy yield and to reduce loads of wind turbines have increased significantly in recent years. For this kind of control, it is crucial to know the correlation between the rotor effective wind speed and the wind preview provided by a nacelle...

  9. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    Science.gov (United States)

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2018-03-01

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  10. Study of beam-beam long range compensation with octupoles

    CERN Document Server

    AUTHOR|(CDS)2068329; Pieloni, Tatiana; Buffat, Xavier; Tambasco, Claudia

    2017-01-01

    Long range beam-beam effects are responsible for particle losses and define fundamental operational parameters of colliders (i.e. crossing angles, intensities, emittances, ${\\beta}$${^∗}$). In this study we propose octuple magnets as a possible scheme to efficiently compensate long-range beam-beam interactions with a global correction scheme. The impact and improvements on the dynamic aperture of colliding beams together with estimates of the luminosity potentials are dis- cussed for the HL-LHC upgrade and extrapolations made for the FCC project.

  11. Enhancement of Stereo Imagery by Artificial Texture Projection Generated Using a LIDAR

    Science.gov (United States)

    Veitch-Michaelis, Joshua; Muller, Jan-Peter; Walton, David; Storey, Jonathan; Foster, Michael; Crutchley, Benjamin

    2016-06-01

    Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.

  12. ENHANCEMENT OF STEREO IMAGERY BY ARTIFICIAL TEXTURE PROJECTION GENERATED USING A LIDAR

    Directory of Open Access Journals (Sweden)

    J. Veitch-Michaelis

    2016-06-01

    Full Text Available Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.

  13. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  14. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Tulalip Partnership

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC)to collect Light Detection and Ranging (LiDAR) data on a...

  15. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  16. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  17. Observed Orbit Effects during Long Range Beam-Beam Studies

    CERN Document Server

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2012-01-01

    Possible limitations due to long range beam-beam effects at the LHC have been studied and are presented in this note. With a larger number of bunches and collisions in all interaction points, the crossing angles were reduced to enhance long range beam-beam effects. The analysis of the effects on the dynamic aperture and losses are documented in [1]. This note concentrates on the bunch-by-bunch orbit effects observed during the experiment.

  18. IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar

    Directory of Open Access Journals (Sweden)

    Andrew Clifton

    2018-03-01

    Full Text Available IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been taken to confirm or mitigate the barriers. Task 32 will continue to be a meeting point for the international wind lidar community until at least 2020 and welcomes old and new participants.

  19. SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy

    International Nuclear Information System (INIS)

    Das, I; Andersen, A; Coutinho, L

    2015-01-01

    Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factor (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose

  20. Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence

    Science.gov (United States)

    Cheynet, Etienne; Jakobsen, Jasna Bogunović; Snæbjörnsson, Jónas; Mikkelsen, Torben; Sjöholm, Mikael; Mann, Jakob; Hansen, Per; Angelou, Nikolas; Svardal, Benny

    2016-12-01

    Two synchronized continuous wave scanning lidars are used to study the coherence of the along-wind and across-wind velocity components. The goal is to evaluate the potential of the lidar technology for application in wind engineering. The wind lidars were installed on the Lysefjord Bridge during four days in May 2014 to monitor the wind field in the horizontal plane upstream of the bridge deck. Wind records obtained by five sonic anemometers mounted on the West side of the bridge are used as reference data. Single- and two-point statistics of wind turbulence are studied, with special emphasis on the root-coherence and the co-coherence of turbulence. A four-parameter decaying exponential function has been fitted to the measured co-coherence, and a good agreement is observed between data obtained by the sonic anemometers and the lidars. The root-coherence of turbulence is compared to theoretical models. The analytical predictions agree rather well with the measured coherence for the along-wind component. For increasing wavenumbers, larger discrepancies are, however, noticeable between the measured coherence and the theoretical predictions. The WindScanners are observed to slightly overestimate the integral length scales, which could not be explained by the laser beam averaging effect alone. On the other hand, the spatial averaging effect does not seem to have any significant effect on the coherence.

  1. A coordinated study of 1 h mesoscale gravity waves propagating from Logan to Boulder with CRRL Na Doppler lidars and temperature mapper

    Science.gov (United States)

    Lu, Xian; Chen, Cao; Huang, Wentao; Smith, John A.; Chu, Xinzhao; Yuan, Tao; Pautet, Pierre-Dominique; Taylor, Mike J.; Gong, Jie; Cullens, Chihoko Y.

    2015-10-01

    We present the first coordinated study using two lidars at two separate locations to characterize a 1 h mesoscale gravity wave event in the mesopause region. The simultaneous observations were made with the Student Training and Atmospheric Research (STAR) Na Doppler lidar at Boulder, CO, and the Utah State University Na Doppler lidar and temperature mapper at Logan, UT, on 27 November 2013. The high precision possessed by the STAR lidar enabled these waves to be detected in vertical wind. The mean wave amplitudes are ~0.44 m/s in vertical wind and ~1% in relative temperature at altitudes of 82-107 km. Those in the zonal and meridional winds are 6.1 and 5.2 m/s averaged from 84 to 99 km. The horizontal and vertical wavelengths inferred from the mapper and lidars are ~219 ± 4 and 16.0 ± 0.3 km, respectively. The intrinsic period is ~1.3 h for the airglow layer, Doppler shifted by a mean wind of ~17 m/s. The wave packet propagates from Logan to Boulder with an azimuth angle of ~135° clockwise from north and an elevation angle of ~ 3° from the horizon. The observed phase difference between the two locations can be explained by the traveling time of the 1 h wave from Logan to Boulder, which is about ~2.4 h. The wave polarization relations are examined through the simultaneous quantifications of the three wind components and temperature. This study has developed a systematic methodology for fully characterizing mesoscale gravity waves, inspecting their intrinsic properties and validating the derivation of horizontal wave structures by applying multiple instruments from coordinated stations.

  2. Controlling the crossing angle in the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Garren, A.A.; Johnson, D.E.

    1989-04-01

    The colliding beams in the SSC must cross at a small angle, so that when the bunches pass each other away from the interaction point (IP), they are sufficiently separated to avoid disruptive beam-beam forces. However, the crossing angle is so small that the adjacent quadrupoles must be common to both beams. Only after passing through four common quadrupoles on each side of the IP, are the beams split by vertical dipoles into separate beamlines. In order to make the closed orbits of the two beams cross at a definite angle at the IP (within a range up to 150 μrad), a series of correction dipoles are placed in the insertions. If these dipoles are excited in such a way as to control the closed orbits alone, the dispersion will be mismatched, reaching values of up to 50 cm in the arcs. This mismatch is due to the closed orbit displacements in the interaction region (IR) quadrupoles, causing them to act as bending magnets. Therefore, both the closed orbit and dispersion must be matched simultaneously. Solutions to this problem are presented. 6 figs

  3. On the validity of localized approximations for Bessel beams: All N-Bessel beams are identically equal to zero

    International Nuclear Information System (INIS)

    Gouesbet, Gérard

    2016-01-01

    Localized approximation procedures are efficient ways to evaluate beam shape coefficients of a laser beam. They are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Relying on the concept of N-beams, it is demonstrated that care must be taken when constructing a localized approximation for a Bessel beam, namely a localized Bessel beam is satisfactorily close enough to the intended beam only when the axicon angle is small enough. - Highlights: • Localized approximation has been used to evaluate BSCs of Bessel beams. • N-beam procedure fails to provide a localized approximation for Bessel beams. • Localized approximation should be used only for small axicon angles.

  4. TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering

    NARCIS (Netherlands)

    Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.

    2012-01-01

    We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very

  5. The change in color matches with retinal angle of incidence of the colorimeter beams.

    Science.gov (United States)

    Alpern, M; Kitahara, H; Fielder, G H

    1987-01-01

    Differences between W.D.W. chromaticities of monochromatic lights obtained with all colorimeter beams incident on the retina "off-axis" and those found for lights striking the retina normally have been studied throughout the visible spectrum on 4 normal trichromats. The results are inconsistent with: (i) the assumption in Weale's theories of the Stiles-Crawford hue shift that the sets of absorption spectra of the visual pigments catching normally and obliquely incident photons are identical, and (ii) "self-screening" explanations for the change in color with angle of incidence on the retina. The color matching functions of a protanomalous trichromat are inconsistent with the hypothesis that the absorption spectra of the visual pigments catching normally incident photons in his retina are those catching obliquely incident photons in the normal retina.

  6. Lidar Inter-Comparison Exercise Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Protat, A [Australian Bureau of Meterology; Young, S

    2015-02-01

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for three months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.

  7. KML-Based Access and Visualization of High Resolution LiDAR Topography

    Science.gov (United States)

    Crosby, C. J.; Blair, J. L.; Nandigam, V.; Memon, A.; Baru, C.; Arrowsmith, J. R.

    2008-12-01

    the user as a KML groundoverlay. The KML product enables users to quickly and easily visualize the DEMs in Google Earth. By combining internet-based LiDAR data processing with KML visualization products, users are able to execute computationally intensive data sub-setting, processing and visualization without having local access to computing resources, GIS software, or data processing expertise. Finally, GEON has partnered with the US Geological Survey to generate region-dependant network linked KML visualizations for large volumes of LiDAR derived hillshades of the Northern San Andreas fault system. These data, acquired by the NSF-funded GeoEarthScope project, offer an unprecedented look at active faults in the northern portion of the San Andreas system. Through the region-dependant network linked KML, users can seamlessly access 1 meter hillshades (both 315 and 45 degree sun angles) for the full 1400 square kilometer dataset, without downloading huge volumes of data. This type of data access has great utility for users ranging from earthquake scientists to K-12 educators who wish to introduce cutting edge real world data into their earth science lessons.

  8. Higher-order Bessel like beams with z-dependent cone angles

    CSIR Research Space (South Africa)

    Ismail, Y

    2010-08-01

    Full Text Available .64.81.22. Terms of Use: http://spiedl.org/terms Fig.5: Optical design to generate z-dependent Bessel-like beams 4. CONSIDERING A MATHEMATICAL APPROACH TO EXPLAINING Z-DEPENDENT BLB?S The stationary phase method is implemented in order to confirm... on higher-order z-dependent BLB?s [6]. 5. EXPERIMENTALLY GENERATED Z-DEPENDENT BESSEL-LIKE BEAMS From the above in can be deduced that these beams are Bessel-like hence they are so named z-dependent Bessel-like beams. These beams are produced however...

  9. 2015 OLC Lidar DEM: Wasco, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Wasco County, WA, study area. The Oregon LiDAR Consortium's Wasco County...

  10. SU-E-T-514: Investigating the Dose Distributions of Equiangular Spaced Noncoplanar Beams

    International Nuclear Information System (INIS)

    Mitchell, T; Maxim, P; Hadsell, M; Loo, B

    2015-01-01

    Purpose It has been demonstrated that the use of noncoplanar beams in radiation therapy may Result in dose distributions that are comparable or better than standard coplanar beams [Pugachev, 2001]. A radiation therapy system designed with a noncoplanar beam geometry could allow for a full ring diagnostic quality imaging system to be placed around the patient. Additionally, if the noncoplanar beams were fixed in number and in their angle with respect to the patient’s axial plane, then both treatment and imaging could be achieved concurrently without the need for moving parts, which could greatly reduce treatment times. For such a system to be designed, it is necessary to determine the appropriate number of beams and the beam angles to achieve optimal dose distributions. For simplicity, the beam angles are assumed to be equiangular in the patient’s axial plane, and only the beam angle with respect to the axial plane are varied. This study aims to investigate the dose distributions produced by equiangular noncoplanar beams for multiple beam numbers and beam angles, and to compare these dose distributions with distributions achieved in coplanar volumetric arc therapy (VMAT). Methods Dose distributions produced by noncoplanar beams were calculated using the Varian Eclipse treatment planning system by varying the gantry, collimator, and couch angles to simulate the noncoplanar delivery method. Noncoplanar intensity-modulated (NC-IMRT) beams using 8, 12, and 16 beams with angles varying from 45 degrees to 54 with respect to the patient’s axial plane were studied. Results The NC-IMRT beams produced dose distributions comparable to VMAT plans for a number of treatment sites, and were capable of meeting similar dose-volume histogram constraints. Conclusion This study has demonstrated that a noncoplanar beam delivery method with fixed beam numbers and beam angles is capable of delivering dose distributions comparable to VMAT plans currently in use

  11. Adaptive Data Processing Technique for Lidar-Assisted Control to Bridge the Gap between Lidar Systems and Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schlipf, David; Raach, Steffen; Haizmann, Florian; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew, Krishnamurthy, Raghu; Boquet, Mathieu

    2015-12-14

    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.

  12. Study of mixed phase clouds over west Africa: Ice-crystal corner reflection effects observed with a two-wavelength polarization lidar

    Directory of Open Access Journals (Sweden)

    Veselovskii Igor

    2018-01-01

    Full Text Available Lidar sounding is used for the analysis of possible contribution of the corner reflection (CR effect to the total backscattering in case of ice crystals. Our study is based on observations of mixed phase clouds performed during the SHADOW campaign in Senegal. Mie-Raman lidar allows measurements at 355 nm and 532 nm at 43 dg. off-zenith angle, so the extinction and backscattering Ångström exponents can be evaluated. In some measurements we observed the positive values of backscattering Ångström exponent, which can be attributed to the corner reflection by horizontally oriented ice plates.

  13. Beam-Beam Interaction Studies at LHC

    CERN Document Server

    Schaumann, Michaela; Alemany Fernandez, R

    2011-01-01

    The beam-beam force is one of the most important limiting factors in the performance of a collider, mainly in the delivered luminosity. Therefore, it is essential to measure the effects in LHC. Moreover, adequate understanding of LHC beam-beam interaction is of crucial importance in the design phases of the LHC luminosity upgrade. Due to the complexity of this topic the work presented in this thesis concentrates on the beam-beam tune shift and orbit effects. The study of the Linear Coherent Beam-Beam Parameter at the LHC has been determined with head-on collisions with small number of bunches at injection energy (450 GeV). For high bunch intensities the beam-beam force is strong enough to expect orbit effects if the two beams do not collide head-on but with a crossing angle or with a given offset. As a consequence the closed orbit changes. The closed orbit of an unperturbed machine with respect to a machine where the beam-beam force becomes more and more important has been studied and the results are as well ...

  14. 2015 OLC Lidar: Chelan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in...

  15. Beam angle optimization for intensity-modulated radiation therapy using a guided pattern search method

    International Nuclear Information System (INIS)

    Rocha, Humberto; Dias, Joana M; Ferreira, Brígida C; Lopes, Maria C

    2013-01-01

    Generally, the inverse planning of radiation therapy consists mainly of the fluence optimization. The beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) consists of selecting appropriate radiation incidence directions and may influence the quality of the IMRT plans, both to enhance better organ sparing and to improve tumor coverage. However, in clinical practice, most of the time, beam directions continue to be manually selected by the treatment planner without objective and rigorous criteria. The goal of this paper is to introduce a novel approach that uses beam’s-eye-view dose ray tracing metrics within a pattern search method framework in the optimization of the highly non-convex BAO problem. Pattern search methods are derivative-free optimization methods that require a few function evaluations to progress and converge and have the ability to better avoid local entrapment. The pattern search method framework is composed of a search step and a poll step at each iteration. The poll step performs a local search in a mesh neighborhood and ensures the convergence to a local minimizer or stationary point. The search step provides the flexibility for a global search since it allows searches away from the neighborhood of the current iterate. Beam’s-eye-view dose metrics assign a score to each radiation beam direction and can be used within the pattern search framework furnishing a priori knowledge of the problem so that directions with larger dosimetric scores are tested first. A set of clinical cases of head-and-neck tumors treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the potential of this approach in the optimization of the BAO problem. (paper)

  16. Wind observations above an urban river using a new lidar technique, scintillometry and anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.R. [Department of Meteorology, University of Reading, Reading, RG6 6BB (United Kingdom); Finnish Meteorological Institute, Erik Palmenin aukio 1, Helsinki, 00101 (Finland); Pauscher, L. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Ward, H.C. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB (United Kingdom); Kotthaus, S. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Barlow, J.F., E-mail: j.f.barlow@reading.ac.uk [Department of Meteorology, University of Reading, Reading, RG6 6BB (United Kingdom); Gouvea, M. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom); Lane, S.E. [Department of Meteorology, University of Reading, Reading, RG6 6BB (United Kingdom); Grimmond, C.S.B. [King' s College London, Department of Geography, London, WC2R 2LS (United Kingdom)

    2013-01-01

    Airflow along rivers might provide a key mechanism for ventilation in cities: important for air quality and thermal comfort. Airflow varies in space and time in the vicinity of rivers. Consequently, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D airflow in locations which are difficult to observe with conventional approaches. For three months in the winter and spring of 2011, the airflow above the River Thames in central London was observed using a scanning Doppler lidar, a scintillometer and sonic anemometers. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65-0.68 m s{sup -1}) as comparisons between sonic anemometers (0.35-0.73 m s{sup -1}). Second, the lidar duo-beam operating strategy provided horizontal transects of wind vectors (comparison with scintillometer rmse 1.12-1.63 m s{sup -1}) which revealed mean and turbulent airflow across the river and surrounds; in particular, channelled airflow along the river and changes in turbulence quantities consistent with the roughness changes between built and river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on roads located on riverbanks. -- Highlights: Black-Right-Pointing-Pointer An inter-comparison was made between lidar-derived winds and regular anemometry. Black-Right-Pointing-Pointer A new lidar operating technique was developed. Black-Right-Pointing-Pointer Airflow features above an urban river included channelling of wind.

  17. Wind observations above an urban river using a new lidar technique, scintillometry and anemometry

    International Nuclear Information System (INIS)

    Wood, C.R.; Pauscher, L.; Ward, H.C.; Kotthaus, S.; Barlow, J.F.; Gouvea, M.; Lane, S.E.; Grimmond, C.S.B.

    2013-01-01

    Airflow along rivers might provide a key mechanism for ventilation in cities: important for air quality and thermal comfort. Airflow varies in space and time in the vicinity of rivers. Consequently, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D airflow in locations which are difficult to observe with conventional approaches. For three months in the winter and spring of 2011, the airflow above the River Thames in central London was observed using a scanning Doppler lidar, a scintillometer and sonic anemometers. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65–0.68 m s −1 ) as comparisons between sonic anemometers (0.35–0.73 m s −1 ). Second, the lidar duo-beam operating strategy provided horizontal transects of wind vectors (comparison with scintillometer rmse 1.12–1.63 m s −1 ) which revealed mean and turbulent airflow across the river and surrounds; in particular, channelled airflow along the river and changes in turbulence quantities consistent with the roughness changes between built and river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on roads located on riverbanks. -- Highlights: ► An inter-comparison was made between lidar-derived winds and regular anemometry. ► A new lidar operating technique was developed. ► Airflow features above an urban river included channelling of wind.

  18. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  19. Charactering lidar optical subsystem using four quadrants method

    Science.gov (United States)

    Tian, Xiaomin; Liu, Dong; Xu, Jiwei; Wang, Zhenzhu; Wang, Bangxin; Wu, Decheng; Zhong, Zhiqing; Xie, Chenbo; Wang, Yingjian

    2018-02-01

    Lidar is a kind of active optical remote sensing instruments , can be applied to sound atmosphere with a high spatial and temporal resolution. Many parameter of atmosphere can be get by using different inverse algorithm with lidar backscatter signal. The basic setup of a lidar consist of a transmitter and a receiver. To make sure the quality of lidar signal data, the lidar must be calibrated before being used to measure the atmospheric variables. It is really significant to character and analyze lidar optical subsystem because a well equiped lidar optical subsystem contributes to high quality lidar signal data. we pay close attention to telecover test to character and analyze lidar optical subsystem.The telecover test is called four quadrants method consisting in dividing the telescope aperture in four quarants. when a lidar is well configured with lidar optical subsystem, the normalized signal from four qudrants will agree with each other on some level. Testing our WARL-II lidar by four quadrants method ,we find the signals of the four basically consistent with each other both in near range and in far range. But in detail, the signals in near range have some slight distinctions resulting from overlap function, some signals distinctions are induced by atmospheric instability.

  20. Towards 4d Virtual City Reconstruction from LIDAR Point Cloud Sequences

    Science.gov (United States)

    Józsa, O.; Börcs, A.; Benedek, C.

    2013-05-01

    In this paper we propose a joint approach on virtual city reconstruction and dynamic scene analysis based on point cloud sequences of a single car-mounted Rotating Multi-Beam (RMB) Lidar sensor. The aim of the addressed work is to create 4D spatio-temporal models of large dynamic urban scenes containing various moving and static objects. Standalone RMB Lidar devices have been frequently applied in robot navigation tasks and proved to be efficient in moving object detection and recognition. However, they have not been widely exploited yet for geometric approximation of ground surfaces and building facades due to the sparseness and inhomogeneous density of the individual point cloud scans. In our approach we propose an automatic registration method of the consecutive scans without any additional sensor information such as IMU, and introduce a process for simultaneously extracting reconstructed surfaces, motion information and objects from the registered dense point cloud completed with point time stamp information.

  1. Remote sensing of sulphur dioxide emissions of sea-going vessels through lidar; Zwaveldioxide-uitstoot van zeeschepen op afstand gemeten met lidar

    Energy Technology Data Exchange (ETDEWEB)

    Berkhout, A J.C.; Swart, D P.J.; Van der Hoff, G R; Bergwerff, J B

    2011-12-15

    RIVM developed an instrument to measure from the shore sulphur dioxide emissions of passing sea-going vessels. This instrument uses the lidar technique (Light Detection And Ranging). The instrument uses a laser beam to scan the exhaust plume from a passing ship and determine the emission, unnoticed. It was used from 2006 to 2008 to measure sulphur dioxide emissions from a large number of ships sailing on the Westerscheldt estuary and on the North Sea Canal. The highest measured emission was 37 gram per second. The total emission of sulphur dioxide in the Netherlands has been declining for many years. Since 2006, emissions from ocean shipping are declining as well, but not as fast as those from other sources. Therefore, the contribution from ocean shipping is gaining importance. In 2010, 55 percent of the Dutch sulphur dioxide emissions originated with sea-going vessels. In 1990, this was 21 percent. Sea-going ships are not allowed to use sulphur-rich fuel in territorial waters and at the North Sea. This relatively cheap fuel may be on board, though, for use elsewhere at sea. To what extent ship owners comply with this ban is not known. Traditional measurement methods involve taking fuel samples on board. This requires someone boarding the ship. The crew therefore knows a measurement is taking place and can adjust the type of fuel used. Moreover, with traditional methods, only a few ships per day can be checked. Lidar is not yet recognised as a law enforcement instrument. Therefore, no fines can be imposed based on lidar measurements only. The lidar may be used, though, to identify possible offenders. A law enforcement official may then board that ship to ascertain that the law was breached. When used in this way, the use of the lidar is cost-effective even now. This is because the lidar can measure almost all passing ships. Expensive patrol ships can then be directed to only visit those ships that are the most likely offenders. Moreover, this greatly increases the

  2. The design, development, and test of balloonborne and groundbased lidar systems. Volume 1: Balloonborne coherent CO2 lidar system

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Rappaport, S. A.

    1991-06-01

    This is Volume 1 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 2 describes the flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2, which successfully made atmospheric density backscatter measurements during a flight over White Sands Missile Range. Volume 3 describes groundbased lidar development and measurements, including the design of a telescope dome lidar installation, the design of a transportable lidar shed for remote field sites, and field measurements of atmospheric and cloud backscatter from Ascension Island during SABLE 89 and Terciera, Azores during GABLE 90. In this volume, Volume 1, the design and fabrication of a balloonborne CO2 coherent lidar payload are described. The purpose of this payload is to measure, from altitudes greater than 20 km, the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Minor modifications to the lidar would provide for aerosol velocity measurements to be made. The lidar and payload system design was completed, and major components were fabricated and assembled. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.

  3. Improved Beam Angle Control with SPV Metrology

    International Nuclear Information System (INIS)

    Steeples, K.; Tsidilkovski, E.; Bertuch, A.; Ishida, E.; Agarwal, A.

    2008-01-01

    A method of real-time monitoring of implant angle for state-of-the-art ion implant doping in integrated circuit manufacturing has been developed using Surface Photo Voltage measurements on conventional monitor wafers. Measurement results are analyzed and compared to other techniques.

  4. Semiconductor Laser Wind Lidar for Turbine Control

    DEFF Research Database (Denmark)

    Hu, Qi

    This thesis describes an experimentally oriented study of continuous wave (CW) coherent Doppler lidar system design. The main application is remote wind sensing for active wind turbine control using nacelle mounted lidar systems; and the primary focus is to devise an industrial instrument that can...... historical overview within the topic of wind lidar systems. Both the potential and the challenges of an industrialized wind lidar has been addressed here. Furthermore, the basic concept behind the heterodyne detection and a brief overview of the lidar signal processing is explained; and a simple...... investigation of the telescope truncation and lens aberrations is conducted, both numerically and experimentally. It is shown that these parameters dictate the spatial resolution of the lidar system, and have profound impact on the SNR. In this work, an all-semiconductor light source is used in the lidar design...

  5. The 1996 Leonid shower as studied with a potassium lidar: Observations and inferred meteoroid sizes

    Science.gov (United States)

    Höffner, Josef; von Zahn, Ulf; McNeil, William J.; Murad, Edmond

    1999-02-01

    We report on the observation and analysis of meteor trails that are detected by ground-based lidar tuned to the D1 fine structure line of K. The lidar is located at Kühlungsborn, Germany. The echo profiles are analyzed with a temporal resolution of about 1 s and altitude resolution of 200 m. Identification of meteor trails in the large archive of raw data is performed with help of an automated computer search code. During the peak of the Lenoid meteor shower on the morning of November 17, 1996, we observed seven meteor trails between 0245 and 0445 UT. Their mean altitude was 89.0 km. The duration of observation of individual trails ranges from 3 s to ~30 min. We model the probability of observing a meteor trail by ground-based lidar as a function of both altitude distribution and duration of the trails. These distributions depend on the mass distribution, entry velocity, and entry angle of the meteoroids, on the altitude-dependent chemical and dynamical lifetimes of the released K atom, and on the absolute detection sensitivity of our lidar experiment. From the modeling, we derive the statistical likelihood of detection of trails from meteoroids of a particular size. These bracket quite well the observed trails. The model also gives estimates of the probable size of the meteoroids based on characteristics of individual trails.

  6. Development of lidar techniques for environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Mats

    1996-09-01

    The lidar group in Lund has performed many DIAL measurements with a mobile lidar system that was first described in 1987. The lidar system is based on a Nd:YAG-pumped dye laser. During the last few years the lidar group has focused on fluorescence imaging and mercury measurements in the troposphere. In 1994 we performed two campaigns: one fluorescence imaging measurement campaign outside Avignon, France and one unique lidar campaign at a mercury mine in Almaden, Spain. Both campaigns are described in this thesis. This thesis also describes how the mobile lidar system was updated with the graphical programming language LabVIEW to obtain a user friendly lidar system. The software controls the lidar system and analyses measured data. The measurement results are shown as maps of species concentration. All electronics and the major parts of the program are described. A new graphical technique to estimate wind speed from plumes is also discussed. First measurements have been performed with the new system. 31 refs, 19 figs, 1 tab

  7. Analysis of dislocation loops by means of large-angle convergent beam electron diffraction

    CERN Document Server

    Jäger, C; Morniroli, J P; Jäger, W

    2002-01-01

    Diffusion-induced dislocation loops in GaP and GaAs were analysed by means of large-angle convergent beam electron diffraction (LACBED) and conventional contrast methods of transmission electron microscopy. It is demonstrated that LACBED is perfectly suited for use in analysing dislocation loops. The method combines analyses of the dislocation-induced splitting of Bragg lines in a LACBED pattern for the determination of the Burgers vector with analyses of the loop contrast behaviour in transmission electron microscopy bright-field images during tilt experiments, from which the habit plane of the dislocation loop is determined. Perfect dislocation loops formed by condensation of interstitial atoms or vacancies were found, depending on the diffusion conditions. The loops possess left brace 110 right brace-habit planes and Burgers vectors parallel to (110). The LACBED method findings are compared with results of contrast analyses based on the so-called 'inside-outside' contrast of dislocation loops. Advantages o...

  8. Application of staring lidars to study the dynamics of wind turbine wakes

    Directory of Open Access Journals (Sweden)

    Davide Trabucchi

    2015-11-01

    Full Text Available Standard anemometry or vertical profiling remote sensing are not always a convenient approach to study the dynamics of wind turbines wake. One or more lidar windscanner can be applied for this purpose. In this paper a measurement strategy is presented, which permits the characterization of the wake dynamics using two long range wind lidars operated in a stationary mode. In this approach two pulsed devices are staring with low elevation obliquely across the wake. The lidar beams are supposed to cross each other on the downstream axis of the wake to perform simultaneous measurements in the wake field from side to side. The deflection of the wake is identified fitting a model to the average data. Spectral analysis provide the frequency content of the measurements at different distances from the wake center. This setup was implemented in a full-field measurement campaign where the wake of a multi-MW wind turbine was analysed. The tracking of the wake centre was applied successfully to this measurement. Moreover the spectral analysis showed increased energy content close to the wake lateral edges. This can be connected both to the higher turbulence level due to the tip vorteces and to the large scale dynamics of the wake.

  9. Installation report - Lidar

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Villanueva, Héctor

    The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project.......The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project....

  10. Frequency Stepped Pulse Train Modulated Wind Sensing Lidar

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2011-01-01

    of frequency shifts corresponding to a specific distance. The spatial resolution depends on the repetition rate of the pulses in the pulse train. Directional wind measurements are shown and compared to a CW lidar measurement. The carrier to noise ratio of the FSPT lidar compared to a CW lidar is discussed......In this paper a wind sensing lidar utilizing a Frequency Stepped Pulse Train (FSPT) is demonstrated. One of the advantages in the FSTP lidar is that it enables direct measurement of wind speed as a function of distance from the lidar. Theoretically the FSPT lidar continuously produces measurements...... as is the case with a CW lidar, but at the same time with a spatial resolution, and without the range ambiguity originating from e.g. clouds. The FSPT lidar utilizes a frequency sweeping source for generation of the FSPT. The source generates a pulse train where each pulse has an optical carrier frequency...

  11. Magnetic field pitch angle diagnostic using the motional Stark effect (invited)

    International Nuclear Information System (INIS)

    Levinton, F.M.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Roberts, D.W.

    1990-01-01

    The Stark effect has been employed in a novel technique for obtaining the pitch angle profile and q(r) using polarimetry measurements of the Doppler shifted H α emission from a hydrogen diagnostic neutral beam. As a neutral beam propagates through a plasma, collisions of the beam particles with the background ions and electrons will excite beam atoms, leading to emission of radiation. The motional Stark effect, which arises from the electric field induced in the atom's rest frame due to the beam motion across the magnetic field (E=V beam xB), causes a wavelength splitting of several angstroms and polarization of the emitted radiation. The Δm=±1 transitions, or σ components, from the beam fluorescence are linearly polarized parallel to the direction of the local magnetic field when viewed transverse to the fields. Since the hydrogen beam provides good spatial localization and penetration, the pitch angle can be obtained anywhere in the plasma. A photoelastic modulator (PEM) is used to modulate the linearly polarized light. Depending on the orientation of the PEM, it can measure the sine or cosine of the angle of polarization. Two PEM's are used to measure both components simultaneously. Results of q(r) for both Ohmic and NBI heated discharges have been obtained in the Princeton Beta Experiment (PBX-M) tokamak, with an uncertainty of ∼6% for q(0)

  12. Single beam write and/or replay of spatial heterodyne holograms

    Science.gov (United States)

    Thomas, Clarence E.; Hanson, Gregory R.

    2007-11-20

    A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.

  13. Accelerator test of an improved Angle Detecting Inclined Sensor (ADIS) prototype with beams of {sup 78}Kr and fragments

    Energy Technology Data Exchange (ETDEWEB)

    Connell, J.J., E-mail: james.connell@unh.edu [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Lopate, C. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); McLaughlin, K.R. [Space Science Center and Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States)

    2016-11-21

    The measurement of cosmic rays and Solar energetic particles in space is basic to our understanding of the Galaxy, the Sun, phenomena in the heliosphere and the emerging field of space weather. For these reasons, cosmic ray instruments are common on both scientific spacecraft and operational spacecraft such as weather satellites. Cosmic rays and Solar energetic particles include ions over the full range of elements found in the Solar System. High-resolution measurements of the elemental and isotopic composition require the angle of incidence of these energetic ions be determined to correct for pathlength variation in detectors within an instrument. The Angle Detecting Inclined Sensor (ADIS) system is a simple detector configuration used to determine the angle of incidence of heavy ions in space instruments. ADIS replaces complex position sensing detectors (PSDs) with a system of simple, reliable and robust detectors inclined at an angle to the instrument axis. An ADIS instrument thus offers significant advantages in mass, power, telemetry and cost. In February 2008 an improved ADIS prototype was tested with a 150 MeV/u {sup 78}Kr beam at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). This demonstrated a charge resolution of σ~0.3 e at Kr (Z=36), an exceptional charge resolution for such a simple instrument system.

  14. The design, development, and test of balloonborne and groundbased lidar systems. Volume 2: Flight test of Atmospheric Balloon Lidar Experiment, ABLE 2

    Science.gov (United States)

    Shepherd, O.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.

    1991-06-01

    This is Volume 3 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the Aug. 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks were successfully completed, and recommendations for further lidar measurements and data analysis were made.

  15. Gas analysis within remote porous targets using LIDAR multi-scatter techniques

    Science.gov (United States)

    Guan, Z. G.; Lewander, M.; Grönlund, R.; Lundberg, H.; Svanberg, S.

    2008-11-01

    Light detection and ranging (LIDAR) experiments are normally pursued for range resolved atmospheric gas measurements or for analysis of solid target surfaces using fluorescence of laser-induced breakdown spectroscopy. In contrast, we now demonstrate the monitoring of free gas enclosed in pores of materials, subject to impinging laser radiation, employing the photons emerging back to the surface laterally of the injection point after penetrating the medium in heavy multiple scattering processes. The directly reflected light is blocked by a beam stop. The technique presented is a remote version of the newly introduced gas in scattering media absorption spectroscopy (GASMAS) technique, which so far was pursued with the injection optics and the detector in close contact with the sample. Feasibility measurements of LIDAR-GASMAS on oxygen in polystyrene foam were performed at a distance of 6 m. Multiple-scattering induced delays of the order of 50 ns, which corresponds to 15 m optical path length, were observed. First extensions to a range of 60 m are discussed. Remote observation of gas composition anomalies in snow using differential absorption LIDAR (DIAL) may find application in avalanche victim localization or for leak detection in snow-covered natural gas pipelines. Further, the techniques may be even more useful for short-range, non-intrusive GASMAS measurements, e.g., on packed food products.

  16. Beam-Based Alignment of Magnetic Field in the Fermilab Electron Cooler Cooling Section

    International Nuclear Information System (INIS)

    Seletskiy, S. M.; Tupikov, V.

    2006-01-01

    The Fermilab Electron Cooling Project requires low effective anglular spread of electrons in the cooling section. One of the main components of the effective electron angles is an angle of electron beam centroid with respect to antiproton beam. This angle is caused by the poor quality of magnetic field in the 20 m long cooling section solenoid and by the mismatch of the beam centroid to the entrance of the cooling section. This paper focuses on the beam-based procedure of the alignment of the cooling section field and beam centroid matching. The discussed procedure allows to suppress the beam centroid angles below the critical value of 0.1 mrad

  17. Simulating Wake Vortex Detection with the Sensivu Doppler Wind Lidar Simulator

    Science.gov (United States)

    Ramsey, Dan; Nguyen, Chi

    2014-01-01

    In support of NASA's Atmospheric Environment Safety Technologies NRA research topic on Wake Vortex Hazard Investigation, Aerospace Innovations (AI) investigated a set of techniques for detecting wake vortex hazards from arbitrary viewing angles, including axial perspectives. This technical report describes an approach to this problem and presents results from its implementation in a virtual lidar simulator developed at AI. Threedimensional data volumes from NASA's Terminal Area Simulation System (TASS) containing strong turbulent vortices were used as the atmospheric domain for these studies, in addition to an analytical vortex model in 3-D space. By incorporating a third-party radiative transfer code (BACKSCAT 4), user-defined aerosol layers can be incorporated into atmospheric models, simulating attenuation and backscatter in different environmental conditions and altitudes. A hazard detection algorithm is described that uses a twocomponent spectral model to identify vortex signatures observable from arbitrary angles.

  18. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2-D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, Marijn Floris; Campagnolo, Filippo; Sjöholm, Mikael

    2017-01-01

    to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The duallidar system can provide fully synchronised trajectory scans with sampling timescales ranging from seconds to minutes. First, staring mode measurements were compared to hot-wire probe...... as wake area scans were executed to illustrate the applicability of lidar scanning to the measurement of small-scale wind flow effects. An extensive uncertainty analysis was executed to assess the accuracy of the method. The downsides of lidar with respect to the hotwire probes are the larger measurement...... probe volume, which compromises the ability to measure turbulence, and the possible loss of a small part of the measurements due to hard target beam reflection. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning and the fact that remote sensing...

  19. 2006 MDEQ Camp Shelby, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the acquisition and processing of bare earth lidar data, raw point cloud lidar data, lidar intensity data, and floodmap breaklines...

  20. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  1. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  2. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  3. Lidar using the backscatter amplification effect

    Science.gov (United States)

    Razenkov, Igor A.; Banakh, Victor A.

    2018-04-01

    Experimental data proving the possibility of lidar measurement of the refractive turbulence strength based on the effect of backscatter amplification (BSA) are reported. It is shown that the values of the amplification factor correlate with the variance of random jitter of optical image of an incoherent light source depending on the value of the structure constant of the air refractive index turbulent fluctuations averaged over the probing path. This paper presents the results of measurements of the BSA factor in comparison with the simultaneous measurements of the BSA peak, which is very narrow and only occurs on the laser beam axis. It is constructed the range-time images of the derivative of the amplification factor gives a comprehensive picture of the location of turbulent zones and their temporal dynamics.

  4. Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study

    Science.gov (United States)

    Meng, Bowen; Xing, Lei; Han, Bin; Koong, Albert; Chang, Daniel; Cheng, Jason; Li, Ruijiang

    2013-11-01

    Non-coplanar beams are important for treatment of both cranial and noncranial tumors. Treatment verification of such beams with couch rotation/kicks, however, is challenging, particularly for the application of cone beam CT (CBCT). In this situation, only limited and unconventional imaging angles are feasible to avoid collision between the gantry, couch, patient, and on-board imaging system. The purpose of this work is to develop a CBCT verification strategy for patients undergoing non-coplanar radiation therapy. We propose an image reconstruction scheme that integrates a prior image constrained compressed sensing (PICCS) technique with image registration. Planning CT or CBCT acquired at the neutral position is rotated and translated according to the nominal couch rotation/translation to serve as the initial prior image. Here, the nominal couch movement is chosen to have a rotational error of 5° and translational error of 8 mm from the ground truth in one or more axes or directions. The proposed reconstruction scheme alternates between two major steps. First, an image is reconstructed using the PICCS technique implemented with total-variation minimization and simultaneous algebraic reconstruction. Second, the rotational/translational setup errors are corrected and the prior image is updated by applying rigid image registration between the reconstructed image and the previous prior image. The PICCS algorithm and rigid image registration are alternated iteratively until the registration results fall below a predetermined threshold. The proposed reconstruction algorithm is evaluated with an anthropomorphic digital phantom and physical head phantom. The proposed algorithm provides useful volumetric images for patient setup using projections with an angular range as small as 60°. It reduced the translational setup errors from 8 mm to generally <1 mm and the rotational setup errors from 5° to <1°. Compared with the PICCS algorithm alone, the integration of rigid

  5. SWIMS: a small-angle multiple scattering computer code

    International Nuclear Information System (INIS)

    Sayer, R.O.

    1976-07-01

    SWIMS (Sigmund and WInterbon Multiple Scattering) is a computer code for calculation of the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media. The code uses the tabulated angular distributions of Sigmund and Winterbon for a Thomas-Fermi screened Coulomb potential. The fraction of the incident beam scattered into a cone defined by the polar angle α is computed as a function of α for reduced thicknesses over the range 0.01 less than or equal to tau less than or equal to 10.0. 1 figure, 2 tables

  6. Measurement of activity yields for 12C(#betta#, n)11C, 14N(#betta#, n)13N, and 16O(#betta#, n)15O reactions as a function of electron beam energy and angle from the electron beam using thick target produced bremsstrahlung

    International Nuclear Information System (INIS)

    Piltingsrud, H.V.

    1983-01-01

    The calculation of activity yields from practical photonuclear target systems designed to produce short-lived positron emitting radionuclides for nuclear medicine purposes requires certain basic information. These include a knowledge of the photon source (bremsstrahlung energy spectrum and intensity as a function of angle from the electron beam) and the #betta#, n activation cross section of the secondary target element. A lack of adequate information concerning these parameters motivated the present study in which activity yields for the reactions 12 C(#betta#, n) 11 C, 14 N(#betta#, n) 13 N, and 16 O(#betta#, n) 15 O were measured as a function of energy of and angle from the electron beam between 16 and 30 MeV and 0 0 and 30.5 0 , respectively. The data indicate highly complex relationships between the activity yield and the experimental variables. Also indicated are possible applications of the data to indicate the energy of an electron beam producing a given bremsstrahlung field in which activation measurements are made

  7. Measurement of angle-correlated differential (n,2n) reaction cross section with pencil-beam DV neutron source

    International Nuclear Information System (INIS)

    Takaki, S.; Kondo, K.; Shido, S.; Miyamaru, H.; Murata, I.; Ochiai, Kentaro; Nishitani, Takeo

    2006-01-01

    Angle-correlated differential cross-section for 9 Be(n,2n) reaction has been measured with the coincidence detection technique and a pencil-beam DT neutron source at FNS, JAEA. Energy spectra of two emitted neutrons were obtained for azimuthal and polar direction independently. It was made clear from the experiment that there are noise signals caused by inter-detector scattering. The ratio of the inter-detector scattering components in the detected signals was estimated by MCNP calculation to correct the measured result. By considering the inter-detector scattering components, the total 9 Be(n,2n) reaction cross-section agreed with the evaluated nuclear data within the experimental error. (author)

  8. An isodose shift technique for obliquely incident electron beams

    International Nuclear Information System (INIS)

    Ulin, K.; Sternick, E.S.

    1989-01-01

    It is well known that when an electron beam is incident obliquely on the surface of a phantom, the depth dose curve measured normal to the surface is shifted toward the surface. Based on geometrical arguments alone, the depth of the nth isodose line for an electron beam incident at an angle θ should be equal to the product of cos θ and the depth of the nth isodose line at normal incidence. This method, however, ignores the effects of scatter and can lead to significant errors in isodose placement for beams at large angles of incidence. A semi-empirical functional relationship and a table of isodose shift factors have been developed with which one may easily calculate the depth of any isodose line for beams at incident angles of 0 degree to 60 degree. The isodose shift factors are tabulated in terms of beam energy (6--22 MeV) and isodose line (10%--90%) and are shown to be relatively independent of beam size and incident angle for angles <60 degree. Extensive measurements have been made on a Varian Clinac 2500 linear accelerator with a parallel-plate chamber and polystyrene phantom. The dependence of the chamber response on beam angulation has been checked, and the scaling factor of the polystyrene phantom has been determined to be equal to 1.00

  9. Calibration Methods for a Space Borne Backscatter Lidar

    NARCIS (Netherlands)

    Kunz, G.J.

    1996-01-01

    Lidar returns from cloud decks and from the Earth's surface are useful for calibrating single scatter lidar signals from space. To this end analytical methods (forward and backward) are presented for inverting lidar waveforms in terms of the path integrated lidar retum and the transmission losses

  10. New Generation Lidar Technology and Applications

    Science.gov (United States)

    Spinhirne, James D.

    1999-01-01

    Lidar has been a tool for atmospheric research for several decades. Until recently routine operational use of lidar was not known. Problems have involved a lack of appropriate technology rather than a lack of applications. Within the last few years, lidar based on a new generation of solid state lasers and detectors have changed the situation. Operational applications for cloud and aerosol research applications are now well established. In these research applications, the direct height profiling capability of lidar is typically an adjunct to other types of sensing, both passive and active. Compact eye safe lidar with the sensitivity for ground based monitoring of all significant cloud and aerosol structure and the reliability to operate full time for several years is now in routine use. The approach is known as micro pulse lidar (MPL). For MPL the laser pulse repetition rate is in the kilohertz range and the pulse energies are in the micro-Joule range. The low pulse energy permits the systems to be eye safe and reliable with solid state lasers. A number of MPL systems have been deployed since 1992 at atmospheric research sites at a variety of global locations. Accurate monitoring of cloud and aerosol vertical distribution is a critical measurement for atmospheric radiation. An airborne application of lidar cloud and aerosol profiling is retrievals of parameters from combined lidar and passive sensing involving visible, infrared and microwave frequencies. A lidar based on a large pulse, solid state diode pumped ND:YAG laser has been deployed on the NASA ER-2 high altitude research aircraft along with multi-spectral visible/IR and microwave imaging radiometers since 1993. The system has shown high reliability in an extensive series of experimental projects for cloud remote sensing. The retrieval of cirrus radiation parameters is an effective application for combined lidar and passive sensing. An approved NASA mission will soon begin long term lidar observation of

  11. The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance

    Directory of Open Access Journals (Sweden)

    U. von Zahn

    2000-07-01

    Full Text Available We report on the development and current capabilities of the ALOMAR Rayleigh/Mie/Raman lidar. This instrument is one of the core instruments of the international ALOMAR facility, located near Andenes in Norway at 69°N and 16°E. The major task of the instrument is to perform advanced studies of the Arctic middle atmosphere over altitudes between about 15 to 90 km on a climatological basis. These studies address questions about the thermal structure of the Arctic middle atmosphere, the dynamical processes acting therein, and of aerosols in the form of stratospheric background aerosol, polar stratospheric clouds, noctilucent clouds, and injected aerosols of volcanic or anthropogenic origin. Furthermore, the lidar is meant to work together with other remote sensing instruments, both ground- and satellite-based, and with balloon- and rocket-borne instruments performing in situ observations. The instrument is basically a twin lidar, using two independent power lasers and two tiltable receiving telescopes. The power lasers are Nd:YAG lasers emitting at wavelengths 1064, 532, and 355 nm and producing 30 pulses per second each. The power lasers are highly stabilized in both their wavelengths and the directions of their laser beams. The laser beams are emitted into the atmosphere fully coaxial with the line-of-sight of the receiving telescopes. The latter use primary mirrors of 1.8 m diameter and are tiltable within 30° off zenith. Their fields-of-view have 180 µrad angular diameter. Spectral separation, filtering, and detection of the received photons are made on an optical bench which carries, among a multitude of other optical components, three double Fabry-Perot interferometers (two for 532 and one for 355 nm and one single Fabry-Perot interferometer (for 1064 nm. A number of separate detector channels also allow registration of photons which are produced by rotational-vibrational and rotational Raman scatter on N2 and N2+O2 molecules

  12. The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance

    Directory of Open Access Journals (Sweden)

    U. von Zahn

    Full Text Available We report on the development and current capabilities of the ALOMAR Rayleigh/Mie/Raman lidar. This instrument is one of the core instruments of the international ALOMAR facility, located near Andenes in Norway at 69°N and 16°E. The major task of the instrument is to perform advanced studies of the Arctic middle atmosphere over altitudes between about 15 to 90 km on a climatological basis. These studies address questions about the thermal structure of the Arctic middle atmosphere, the dynamical processes acting therein, and of aerosols in the form of stratospheric background aerosol, polar stratospheric clouds, noctilucent clouds, and injected aerosols of volcanic or anthropogenic origin. Furthermore, the lidar is meant to work together with other remote sensing instruments, both ground- and satellite-based, and with balloon- and rocket-borne instruments performing in situ observations. The instrument is basically a twin lidar, using two independent power lasers and two tiltable receiving telescopes. The power lasers are Nd:YAG lasers emitting at wavelengths 1064, 532, and 355 nm and producing 30 pulses per second each. The power lasers are highly stabilized in both their wavelengths and the directions of their laser beams. The laser beams are emitted into the atmosphere fully coaxial with the line-of-sight of the receiving telescopes. The latter use primary mirrors of 1.8 m diameter and are tiltable within 30° off zenith. Their fields-of-view have 180 µrad angular diameter. Spectral separation, filtering, and detection of the received photons are made on an optical bench which carries, among a multitude of other optical components, three double Fabry-Perot interferometers (two for 532 and one for 355 nm and one single Fabry-Perot interferometer (for 1064 nm. A number of separate detector channels also allow registration of photons which are produced by rotational-vibrational and rotational Raman scatter on N2 and N2

  13. Behavior of Tilted Angle Shear Connectors

    Science.gov (United States)

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  14. Behavior of Tilted Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Koosha Khorramian

    Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  15. 2012 USGS Lidar: Juneau (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for Juneau, Alaska. LiDAR data, and derivative...

  16. Generic methodology for calibrating profiling nacelle lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    Improving power performance assessment by measuring at different heights has been demonstrated using ground-based profiling LIDARs. More recently, nacelle-mounted lidars studies have shown promising capabilities to assess power performance. Using nacelle lidars avoids the erection of expensive me...

  17. Iowa LiDAR Mapping Project

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This is collection level metadata for LAS and ASCII data files from the statewide Iowa Lidar Project. The Iowa Light Detection and Ranging (LiDAR) Project collects...

  18. Properties of horizontally oriented ice crystals observed by polarization lidar over summit, Greenland

    Directory of Open Access Journals (Sweden)

    Neely Ryan R.

    2018-01-01

    Full Text Available A source of error in microphysical retrievals and model simulations is the assumption that clouds are composed of only randomly oriented ice crystals. This assumption is frequently not true, as evidenced by optical phenomena such as parhelia. Here, observations from the Cloud, Aerosol and Polarization Backscatter Lidar at Summit, Greenland are utilized along with other sensors and beam imaging to examine the properties of horizontally oriented ice crystals and the environment conditions in which they occur.

  19. Laser Pulse Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

    Science.gov (United States)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-01-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS)1. GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  20. Clear-air lidar dark band

    Science.gov (United States)

    Girolamo, Paolo Di; Scoccione, Andrea; Cacciani, Marco; Summa, Donato; Schween, Jan H.

    2018-04-01

    This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of HOPE, revealing the presence of a clear-air dark band phenomenon (i.e. the appearance of a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 1064 nm. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site.

  1. Eye safety report 2 (355 nm). Human risk analysis simulator for space lidars

    International Nuclear Information System (INIS)

    Schulmeister, K.; Mellerio, J.; Sonneck, G.

    2001-09-01

    This report contains the results of a risk study for a satellite based lidar mission that uses a laser in the ultraviolet wavelength range to measure atmospheric properties. A lidar can be considered as a laser radar and is an acronym for light detection and ranging. The lidar measures properties of the atmosphere by analysis of laser radiation that is directed back to the lidar. As only part of the laser radiation is scattered or absorbed by the atmosphere, the remaining laser radiation emitted from the spacecraft is incident on the earth's surface, where it might lead to injuries, especially to the eye, if biological thresholds are exceeded. For the analysed mission there is no hazard to the skin, only a potential one to the eye, but only if ocular exposure occurs with very large telescopes. The wavelength of the laser is 355 nm, which is absorbed by the cornea and lens of the eye. That is, it is not focussed onto the retina of the eye as, for instance, visible wavelengths, and therefore comparatively high levels of laser exposure, are needed to produce an injury in the lens and cornea. Because the footprint of the satellite's laser beam on the surface of the earth is so small and it moves so fast, the chance of the naked eye being exposed to the laser is small. Because of the magnification provided by an optical instrument, and the concomitant reduction in the field of view, the probability of exposure of an eye that is using such an instrument decreases with increasing optical power. However, because an increased optical power implies increased diameter of the light gathering optics, the laser energy delivered to an eye increases with instrument size so that if exposure did occur, the probability of delivering energy to the eye that exceeds the thresholds for damage increases. There are thus two conflicting processes at work for viewing with optical instruments: an increase in diameter increases the energy delivered but reduces the probability of lidar beam

  2. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    Science.gov (United States)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  3. Tuning for optimal performance in angle control, uniformity, and energy purity

    International Nuclear Information System (INIS)

    Liebert, Reuel B.; Olson, Joseph C.; Arevalo, Edwin A.; Downey, Daniel F.

    2005-01-01

    Advances in reducing the sizes of device structures and line widths place increasing demands on the accuracy of dopant placement and the control of dopant motion during activation anneals. Serial process high current ion implantation systems seek to produce beams in which the angles are controlled to high precision avoiding the angles introduced by conical structures used for holding wafers on spinning discs in batch systems. However, ion optical corrections and control of incident beam angle, dose uniformity, high throughput and energy purity often present apparently contradictory requirements in machine design. Data is presented to illustrate that tuning procedures can be used to simultaneously optimize angle purity in both x and y planes as well as control energy purity and dose uniformity

  4. 2014 OLC Lidar: Colville, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI, a Quantum Spatial company, has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Colville study area. This study area is...

  5. 2015 OLC Lidar DEM: Chelan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in...

  6. 2015 OLC Lidar: Okanogan WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Okanogan FEMA study area. This study area is located in...

  7. Occurrence and characteristics of mutual interference between LIDAR scanners

    Science.gov (United States)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  8. Methods from Information Extraction from LIDAR Intensity Data and Multispectral LIDAR Technology

    Science.gov (United States)

    Scaioni, M.; Höfle, B.; Baungarten Kersting, A. P.; Barazzetti, L.; Previtali, M.; Wujanz, D.

    2018-04-01

    LiDAR is a consolidated technology for topographic mapping and 3D reconstruction, which is implemented in several platforms On the other hand, the exploitation of the geometric information has been coupled by the use of laser intensity, which may provide additional data for multiple purposes. This option has been emphasized by the availability of sensors working on different wavelength, thus able to provide additional information for classification of surfaces and objects. Several applications ofmonochromatic and multi-spectral LiDAR data have been already developed in different fields: geosciences, agriculture, forestry, building and cultural heritage. The use of intensity data to extract measures of point cloud quality has been also developed. The paper would like to give an overview on the state-of-the-art of these techniques, and to present the modern technologies for the acquisition of multispectral LiDAR data. In addition, the ISPRS WG III/5 on `Information Extraction from LiDAR Intensity Data' has collected and made available a few open data sets to support scholars to do research on this field. This service is presented and data sets delivered so far as are described.

  9. METHODS FROM INFORMATION EXTRACTION FROM LIDAR INTENSITY DATA AND MULTISPECTRAL LIDAR TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    M. Scaioni

    2018-04-01

    Full Text Available LiDAR is a consolidated technology for topographic mapping and 3D reconstruction, which is implemented in several platforms On the other hand, the exploitation of the geometric information has been coupled by the use of laser intensity, which may provide additional data for multiple purposes. This option has been emphasized by the availability of sensors working on different wavelength, thus able to provide additional information for classification of surfaces and objects. Several applications ofmonochromatic and multi-spectral LiDAR data have been already developed in different fields: geosciences, agriculture, forestry, building and cultural heritage. The use of intensity data to extract measures of point cloud quality has been also developed. The paper would like to give an overview on the state-of-the-art of these techniques, and to present the modern technologies for the acquisition of multispectral LiDAR data. In addition, the ISPRS WG III/5 on ‘Information Extraction from LiDAR Intensity Data’ has collected and made available a few open data sets to support scholars to do research on this field. This service is presented and data sets delivered so far as are described.

  10. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  11. Analysis and manipulation of the induced changes in the state of polarization by mirror scanners.

    Science.gov (United States)

    Petrova-Mayor, Anna; Knudsen, Sarah

    2017-05-20

    The induced polarization effects of metal-coated mirrors were studied in the configurations of one- and two-mirror lidar scanners as a function of azimuth and elevation angles. The theoretical results were verified experimentally for three types of mirrors (custom enhanced gold, off-the-shelf protected gold, and protected aluminum). A method was devised and tested to maintain a desired polarization state (linear or circular) of the transmit beam for all pointing directions by means of rotating wave plates in the transmit and detection paths. Alternatively, the mirror coating can be optimized to preserve the linear polarization state of the transmitted beam. The compensation methods will enable ground-based scanning lidars to produce absolutely calibrated depolarization measurements.

  12. 2006 Fulton County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) LAS dataset is a survey of Fulton County. The Fulton County LiDAR Survey project area consists of approximately 690.5 square...

  13. A new approximate algorithm for image reconstruction in cone-beam spiral CT at small cone-angles

    International Nuclear Information System (INIS)

    Schaller, S.; Flohr, T.; Steffen, P.

    1996-01-01

    This paper presents a new approximate algorithm for image reconstruction with cone-beam spiral CT data at relatively small cone-angles. Based on the algorithm of Wang et al., our method combines a special complementary interpolation with filtered backprojection. The presented algorithm has three main advantages over Wang's algorithm: (1) It overcomes the pitch limitation of Wang's algorithm. (2) It significantly improves z-resolution when suitable sampling schemes are applied. (3) It avoids the waste of applied radiation dose inherent to Wang's algorithm. Usage of the total applied dose is an important requirement in medical imaging. Our method has been implemented on a standard workstation. Reconstructions of computer-simulated data of different phantoms, assuming sampling conditions and image quality requirements typical to medical CT, show encouraging results

  14. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  15. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  16. SAR and LIDAR fusion: experiments and applications

    Science.gov (United States)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  17. Peripheral dose outside applicators in electron beams

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    The peripheral dose outside the applicators in electron beams was studied using a Varian 21 EX linear accelerator. To measure the peripheral dose profiles and point doses for the applicator, a solid water phantom was used with calibrated Kodak TL films. Peak dose spot was observed in the 4 MeV beam outside the applicator. The peripheral dose peak was very small in the 6 MeV beam and was ignorable at higher energies. Using the 10 x 10 cm 2 cutout and applicator, the dose peak for the 4 MeV beam was about 12 cm away from the field central beam axis (CAX) and the peripheral dose profiles did not change with depths measured at 0.2, 0.5 and 1 cm. The peripheral doses and profiles were further measured by varying the angle of obliquity, cutout and applicator size for the 4 MeV beam. The local peak dose was increased with about 3% per degree angle of obliquity, and was about 1% of the prescribed dose (angle of obliquity equals zero) at 1 cm depth in the phantom using the 10 x 10 cm 2 cutout and applicator. The peak dose position was also shifted 7 mm towards the CAX when the angle of obliquity was increased from 0 to 15 deg. (note)

  18. A cloud masking algorithm for EARLINET lidar systems

    Science.gov (United States)

    Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina

    2015-04-01

    Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.

  19. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Areas 2 and 3 (Mid-Coastal Cleanup), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  20. Standards – An Important Step for the (Public Use of Lidars

    Directory of Open Access Journals (Sweden)

    Althausen Dietrich

    2016-01-01

    Full Text Available Lidar standards are needed to ensure quality and lidar product control at the interface between lidar manufacturers and lidar users. Meanwhile three lidar standards have been published by German and international standardization organizations. This paper describes the cooperation between the lidar technique inventors, lidar instrument constructors, and lidar product users to establish useful standards. Presently a backscatter lidar standard is elaborated in Germany. Key points of this standard are presented here. Two German standards were already accepted as international standards by the International Organization for Standardization (ISO. Hence, German and international organizations for the establishment of lidar standards are introduced to encourage a cooperative work on lidar standards by lidar scientists.

  1. Turbulence estimation from a continuous-wave scanning lidar (SpinnerLidar)

    DEFF Research Database (Denmark)

    Barnhoorn, J.G.; Sjöholm, Mikael; Mikkelsen, Torben Krogh

    2017-01-01

    out, and 2) the mixing of velocity covariances from other components into the line-of-sight variance measurements. However, turbulence measurements based on upwind horizontal rotor plane scanning of the line-of-sight variance measurements combined with ensemble-averaged Doppler spectra width...... deviations averaged over 10-min sampling periods are compared. Lidar variances are inherently more prone to noise which always yields a positive bias. The 5.3 % higher turbulence level measured by the SpinnerLidar relative to the cup anemometer may equally well be attributed to truncation of turbulent...

  2. Saginaw Bay, MI LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:(NRCS) Saginaw Bay, MI LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01254 Woolpert Order...

  3. Detection of Wind Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control

    Directory of Open Access Journals (Sweden)

    David Schlipf

    2015-11-01

    Full Text Available Recent developments in remote sensing are offering a promising opportunity to rethink conventional control strategies of wind turbines. With technologies such as lidar, the information about the incoming wind field - the main disturbance to the system - can be made available ahead of time. Initial field testing of collective pitch feedforward control shows, that lidar measurements are only beneficial if they are filtered properly to avoid harmful control action. However, commercial lidar systems developed for site assessment are usually unable to provide a usable signal for real time control. Recent research shows, that the correlation between the measurement of rotor effective wind speed and the turbine reaction can be modeled and that the model can be used to optimize a scan pattern. This correlation depends on several criteria such as turbine size, position of the measurements, measurement volume, and how the wind evolves on its way towards the rotor. In this work the longitudinal wind evolution is identified with the line-of-sight measurements of a pulsed lidar system installed on a large commercial wind turbine. This is done by staring directly into the inflowing wind during operation of the turbine and fitting the coherence between the wind at different measurement distances to an exponential model taking into account the yaw misalignment, limitation to line-of-sight measurements and the pulse volume. The identified wind evolution is then used to optimize the scan trajectory of a scanning lidar for lidar-assisted feedforward control in order to get the best correlation possible within the constraints of the system. Further, an adaptive filer is fitted to the modeled correlation to avoid negative impact of feedforward control because of uncorrelated frequencies of the wind measurement. The main results of the presented work are a first estimate of the wind evolution in front of operating wind turbines and an approach which manufacturers of

  4. Holographic Raman lidar

    International Nuclear Information System (INIS)

    Andersen, G.

    2000-01-01

    Full text: We have constructed a Raman lidar system that incorporates a holographic optical element. By resolving just 3 nitrogen lines in the Resonance Raman spectroscopy (RRS) spectrum, temperature fits as good as 1% at altitudes of 20km can be made in 30 minutes. Due to the narrowband selectivity of the HOE, the lidar provides measurements over a continuous 24hr period. By adding a 4th channel to capture the Rayleigh backscattered light, temperature profiles can be extended to 80km

  5. Analysis of dislocation loops by means of large-angle convergent beam electron diffraction

    International Nuclear Information System (INIS)

    Jaeger, Ch; Spiecker, E; Morniroli, J P; Jaeger, W

    2002-01-01

    Diffusion-induced dislocation loops in GaP and GaAs were analysed by means of large-angle convergent beam electron diffraction (LACBED) and conventional contrast methods of transmission electron microscopy. It is demonstrated that LACBED is perfectly suited for use in analysing dislocation loops. The method combines analyses of the dislocation-induced splitting of Bragg lines in a LACBED pattern for the determination of the Burgers vector with analyses of the loop contrast behaviour in transmission electron microscopy bright-field images during tilt experiments, from which the habit plane of the dislocation loop is determined. Perfect dislocation loops formed by condensation of interstitial atoms or vacancies were found, depending on the diffusion conditions. The loops possess {110}-habit planes and Burgers vectors parallel to (110). The LACBED method findings are compared with results of contrast analyses based on the so-called 'inside-outside' contrast of dislocation loops. Advantages of the LACBED method consist in the possibility of determining the complete Burgers vector of the dislocation loops and of an unambiguous and fast loop type analysis

  6. Field evaluation of remote wind sensing technologies: Shore-based and buoy mounted LIDAR systems

    Energy Technology Data Exchange (ETDEWEB)

    Herrington, Thomas [Stevens Inst. of Technology, Hoboken, NJ (United States)

    2017-11-03

    will be transferred to the Garrad Hassan (a subcontractor to Fishermen’s Energy) for incorporation in to the validation database, which is accessible to other scientific team members. Data collection times and durations will be determined by the PI and Co-PIs in consultation with instrument engineers to ensure the capture of data representative of the expected range of mid-Atlantic atmospheric conditions (e.g., temperature, moisture, coastal low pressure systems, tropical systems, rain, snow, fog). The collection and processing of the data is a function of site specific measurement requirements (Kelley et.al. 2007; Hannon et.al. 2008). To determine the optimal profiles of wind speed and direction from the LIDAR radial velocities as a function of azimuth angle, rigorous estimates of the bias and random error of each radial velocity estimate are required. Lockheed Martin Coherent Technologies, Inc., under contract with Fishermen’s Energy, will provide analyses of raw and processed data using various scan patterns to determine optimal performance settings for the pulsed scanning LIDAR. Once optimized, appropriate processing and analyses techniques will be evaluated by Garrad Hassan for use in validating the accuracy of the LIDAR wind field measurements against the standard anemometer measurements from the meteorological masts. The most attractive capability of the scanning LIDAR is the ability to provide high spatial resolution observations in a three-dimensional volume which provides superior statistical accuracy due to the large number of samples obtained. Each radial scan provides measurements in 100 range gates over a distance of 10 to 12 km at an update rate of 5 to 10 Hz and rotation of 2.5° per second. Each rotation at a fixed azimuth requires 2.4 minutes. Depending on the number of azimuths desired a complete scan can take up to 10 minutes or longer to complete. Once collected the radial velocities are processed to produce vector wind velocity estimates based

  7. Detection scheme for a partially occluded pedestrian based on occluded depth in lidar-radar sensor fusion

    Science.gov (United States)

    Kwon, Seong Kyung; Hyun, Eugin; Lee, Jin-Hee; Lee, Jonghun; Son, Sang Hyuk

    2017-11-01

    Object detections are critical technologies for the safety of pedestrians and drivers in autonomous vehicles. Above all, occluded pedestrian detection is still a challenging topic. We propose a new detection scheme for occluded pedestrian detection by means of lidar-radar sensor fusion. In the proposed method, the lidar and radar regions of interest (RoIs) have been selected based on the respective sensor measurement. Occluded depth is a new means to determine whether an occluded target exists or not. The occluded depth is a region projected out by expanding the longitudinal distance with maintaining the angle formed by the outermost two end points of the lidar RoI. The occlusion RoI is the overlapped region made by superimposing the radar RoI and the occluded depth. The object within the occlusion RoI is detected by the radar measurement information and the occluded object is estimated as a pedestrian based on human Doppler distribution. Additionally, various experiments are performed in detecting a partially occluded pedestrian in outdoor as well as indoor environments. According to experimental results, the proposed sensor fusion scheme has much better detection performance compared to the case without our proposed method.

  8. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    Science.gov (United States)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  9. The resection angle in apical surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Janner, Simone F M; Jensen, Simon S

    2016-01-01

    OBJECTIVES: The primary objective of the present radiographic study was to analyse the resection angle in apical surgery and its correlation with treatment outcome, type of treated tooth, surgical depth and level of root-end filling. MATERIALS AND METHODS: In the context of a prospective clinical...... study, cone beam computed tomography (CBCT) scans were taken before and 1 year after apical surgery to measure the angle of the resection plane relative to the longitudinal axis of the root. Further, the surgical depth (distance from the buccal cortex to the most lingual/palatal point of the resection...... or with the retrofilling length. CONCLUSIONS: Statistically significant differences were observed comparing resection angles of different tooth groups. However, the angle had no significant effect on treatment outcome. CLINICAL RELEVANCE: Contrary to common belief, the resection angle in maxillary anterior teeth...

  10. Evaluating UAV and LiDAR Retrieval of Snow Depth in a Coniferous Forest in Arizona

    Science.gov (United States)

    Van Leeuwen, W. J. D.; Broxton, P.; Biederman, J. A.

    2017-12-01

    Remote sensing of snow depth and cover in forested environments is challenging. Trees interfere with the remote sensing of snowpack below the canopy and cause large variations in the spatial distribution of the snowpack itself (e.g. between below canopy environments to shaded gaps to open clearings). The distribution of trees and topographic variation make it challenging to monitor the snowpack with in-situ observations. Airborne LiDAR has improved our ability to monitor snowpack over large areas in montane and forested environments because of its high sampling rate and ability to penetrate the canopy. However, these LiDAR flights can be too expensive and time-consuming to process, making it hard to use them for real-time snow monitoring. In this research, we evaluate Structure from Motion (SfM) as an alternative to Airborne LiDAR to generate high-resolution snow depth data in forested environments. This past winter, we conducted a snow field campaign over Arizona's Mogollon Rim where we acquired aerial LiDAR, multi-angle aerial photography from a UAV, and extensive field observations of snow depth at two sites. LiDAR and SFM derived snow depth maps were generated by comparing "snow-on" and "snow-off" LiDAR and SfM data. The SfM- and LiDAR-generated snow depth maps were similar at a site with fewer trees, though there were more discrepancies at a site with more trees. Both compared reasonably well with the field observations at the sparser forested site, with poorer agreement at the denser forested site. Finally, although the SfM produced point clouds with much higher point densities than the aerial LiDAR, the SfM was not able to produce meaningful snow depth estimates directly underneath trees and had trouble in areas with deep shadows. Based on these findings, we are optimizing our UAV data acquisition strategies for this upcoming field season. We are using these data, along with high-resolution hydrological modeling, to gain a better understanding of how

  11. H- beam neutralization measurements in a solenoidal beam transport system

    International Nuclear Information System (INIS)

    Sherman, J.; Pitcher, E.; Stevens, R.; Allison, P.

    1992-01-01

    H minus beam space-charge neutralization is measured for 65-mA, 35-keV beams extracted from a circular-aperture Penning surface-plasma source, the small-angle source. The H minus beam is transported to a RFQ matchpoint by a two-solenoid magnet system. Beam noise is typically ±4%. A four-grid analyzer is located in a magnetic-field-free region between the two solenoid magnets. H minus potentials are deduced from kinetic energy measurements of particles (electrons and positive ions) ejected radially from the beam channel by using a griddled energy analyzer. Background neutral gas density is increased by the introduction of additional Xe and Ar gases, enabling the H minus beam to become overneutralized

  12. Atmospheric lidar: legislative, scientific and technological aspects; Lidar atmosferico. Aspetti legislativi, scientifici e tecnologici

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R.; Colao, F.; Fiorani, L.; Palucci, A. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy)

    2000-07-01

    The Atmospheric Lidar is one of the systems of the Mobile Laboratory of Laser Remote Sensing under development at the ENEA Research Center of Frascati. This technical report addresses the legislative, scientific and technological aspects that are the basis for the identification of the requirements, the definition of the architecture and the fixation of the specifications of the Atmospheric Lidar. The problems of air pollution are introduced in section 2. A summary of the Italian laws on that topic is then given. Section 4 provides a survey of the atmospheric measurements that can be achieved with the lidar. The sensitivity in the monitoring of pollutants is discussed in section 5. The other systems of the Mobile Laboratory of Laser Remote Sensing are shortly described in section 6. The last section is devoted to conclusions and perspectives. [Italian] Il lidar atmosferico e' uno dei sistemi del Laboratorio Mobile di Telerilevamento Laser in corso di realizzazione presso il Centro Ricerche di Frascati dell'ENEA. Questo rapporto tecnico discute gli aspetti legislativi, scientifici, tecnologici che sono alla base dell'individuazione dei requisiti, della definizione dell'architettura e della fissazione delle specifiche del Lidar atmosferico. La problematica dell'inquinamento dell'aria e' introdotta nella sezione 2. Segue un riassunto della legislazione italiana su tale tematica. La sezione 4 offre una panoramica delle misure atmosferiche realizzabili con il Lidar. La sensibilita' nel monitoraggio di inquinanti e' discussa nella sezione 5. Gli altri sistemi del Laboratorio Mobile di Telerilevamento Laser sono descritti brevemente nella sezione 6. L'ultima sezione e' dedicata alle conclusioni e alle prospettive.

  13. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  14. Derivation of Sky-View Factors from LIDAR Data

    Science.gov (United States)

    Kidd, Christopher; Chapman, Lee

    2013-01-01

    The use of Lidar (Light Detection and Ranging), an active light-emitting instrument, is becoming increasingly common for a range of potential applications. Its ability to provide fine resolution spatial and vertical resolution elevation data makes it ideal for a wide range of studies. This paper demonstrates the capability of Lidar data to measure sky view factors (SVF). The Lidar data is used to generate a spatial map of SVFs which are then compared against photographically-derived SVF at selected point locations. At each location three near-surface elevations measurements were taken and compared with collocated Lidar-derived estimated. It was found that there was generally good agreement between the two methodologies, although with decreasing SVF the Lidar-derived technique tended to overestimate the SVF: this can be attributed in part to the spatial resolution of the Lidar sampling. Nevertheless, airborne Lidar systems can map sky view factors over a large area easily, improving the utility of such data in atmospheric and meteorological models.

  15. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    Science.gov (United States)

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  16. Coherent Lidar Turbulence Measurement for Gust Load Alleviation

    Science.gov (United States)

    Bogue, Rodney K.; Ehernberger, L. J.; Soreide, David; Bagley, Hal

    1996-01-01

    Atmospheric turbulence adversely affects operation of commercial and military aircraft and is a design constraint. The airplane structure must be designed to survive the loads imposed by turbulence. Reducing these loads allows the airplane structure to be lighter, a substantial advantage for a commercial airplane. Gust alleviation systems based on accelerometers mounted in the airplane can reduce the maximum gust loads by a small fraction. These systems still represent an economic advantage. The ability to reduce the gust load increases tremendously if the turbulent gust can be measured before the airplane encounters it. A lidar system can make measurements of turbulent gusts ahead of the airplane, and the NASA Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) program is developing such a lidar. The ACLAIM program is intended to develop a prototype lidar system for use in feasibility testing of gust load alleviation systems and other airborne lidar applications, to define applications of lidar with the potential for improving airplane performance, and to determine the feasibility and benefits of these applications. This paper gives an overview of the ACLAIM program, describes the lidar architecture for a gust alleviation system, and describes the prototype ACLAIM lidar system.

  17. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  18. The derivation of a bistable criterion for double V-beam mechanisms

    International Nuclear Information System (INIS)

    Wu, Cho-Chun; Chen, Rongshun; Lin, Meng-Ju

    2013-01-01

    This study presents the theoretical derivation of the discriminant D as a structural and material criterion for determining whether bistability can occur in micromechanically bistable mechanisms. When D < 0, the mechanism displays bistable behavior if an appropriate force is applied to push the bistable mechanism, whereas when D > 0, bistable behavior cannot occur. The proposed V-beam bistable mechanism was successfully fabricated with various beam lengths and tilted angles. The experiments conducted in this study validated the theoretical study of bistability. A comparison of the theoretical solutions and experimental results shows good agreement. Results further show that to design a bistable V-beam mechanism, the tilted angle should be larger for the same beam length, whereas the beam length should be longer for the same tilted angle. The developed discriminant D can be used to predict if a bistable mechanism can achieve bistable behavior based on structural sizes and material properties. Consequently, researchers can reduce trial-and-error experiments when designing a bistable mechanism. A V-beam with a larger tilted angle of up to 5° was successfully fabricated to act as a bistable mechanism, compared to a 3.5° tilted angle in existing studies. Consequently, the proposed method has the advantages of shorter beam lengths and smaller device areas. (paper)

  19. Lidar instruments for ESA Earth observation missions

    Science.gov (United States)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  20. IEA Task 32: Wind Lidar Systems for Wind Energy Deployment (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Martin; Trabucchi, Davide; Clifton, Andrew; Courtney, Mike; Rettenmeier, Andreas

    2016-05-25

    Under the International Energy Agency Wind Implementing Agreement (IEA Wind) Task 11, researchers started examining novel applications for remote sensing and the issues around them during the 51st topical expert meeting about remote sensing in January 2007. The 59th topical expert meeting organized by Task 11 in October 2009 was also dedicated to remote sensing, and the first draft of the Task's recommended practices on remote sensing was published in January 2013. The results of the Task 11 topical expert meetings provided solid groundwork for a new IEA Wind Task 32 on wind lidar technologies. Members of the wind community identified the need to consolidate the knowledge about wind lidar systems to facilitate their use, and to investigate how to exploit the advantages offered by this technology. This was the motivation that led to the start of IEA Wind Task 32 'Lidar Application for Wind Energy Deployment' in November 2011. The kick-off was meeting was held in May 2012.

  1. Burgers Vector Analysis of Vertical Dislocations in Ge Crystals by Large-Angle Convergent Beam Electron Diffraction.

    Science.gov (United States)

    Groiss, Heiko; Glaser, Martin; Marzegalli, Anna; Isa, Fabio; Isella, Giovanni; Miglio, Leo; Schäffler, Friedrich

    2015-06-01

    By transmission electron microscopy with extended Burgers vector analyses, we demonstrate the edge and screw character of vertical dislocations (VDs) in novel SiGe heterostructures. The investigated pillar-shaped Ge epilayers on prepatterned Si(001) substrates are an attempt to avoid the high defect densities of lattice mismatched heteroepitaxy. The Ge pillars are almost completely strain-relaxed and essentially defect-free, except for the rather unexpected VDs. We investigated both pillar-shaped and unstructured Ge epilayers grown either by molecular beam epitaxy or by chemical vapor deposition to derive a general picture of the underlying dislocation mechanisms. For the Burgers vector analysis we used a combination of dark field imaging and large-angle convergent beam electron diffraction (LACBED). With LACBED simulations we identify ideally suited zeroth and second order Laue zone Bragg lines for an unambiguous determination of the three-dimensional Burgers vectors. By analyzing dislocation reactions we confirm the origin of the observed types of VDs, which can be efficiently distinguished by LACBED. The screw type VDs are formed by a reaction of perfect 60° dislocations, whereas the edge types are sessile dislocations that can be formed by cross-slips and climbing processes. The understanding of these origins allows us to suggest strategies to avoid VDs.

  2. Lidar extinction measurement in the mid infrared

    Science.gov (United States)

    Mitev, Valentin; Babichenko, S.; Borelli, R.; Fiorani, L.; Grigorov, I.; Nuvoli, M.; Palucci, A.; Pistilli, M.; Puiu, Ad.; Rebane, Ott; Santoro, S.

    2014-11-01

    We present a lidar measurement of atmospheric extinction coefficient. The measurement is performed by inversion of the backscatter lidar signal at wavelengths 3'000nm and 3'500nm. The inversion of the backscatter lidar signal was performed with constant extinction-to-backscatter ration values of 104 and exponential factor 0.1.

  3. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Quinault River Watershed, Washington (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Quinault watershed survey area for the Puget Sound LiDAR Consortium. This...

  4. A Dual Wavelength Echidna® Lidar (DWEL) for Forest Structure Retrieval

    Science.gov (United States)

    Strahler, A. H.; Douglas, E. S.; Martel, J.; Cook, T.; Mendillo, C.; Marshall, R. A.; Chakrabarti, S.; Schaaf, C.; Woodcock, C. E.; Li, Z.; Yang, X.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.

    2012-12-01

    A newly-constructed, ground-based lidar scanner designed for automated retrieval of forest structure, the Dual Wavelength Echidna Lidar (DWEL), separates laser "hits" of leaves from hits of trunks and branches using simultaneous laser pulses at 1548 nm, where leaf water content produces strong absorption, and at 1064 nm, where leaves and branches have similar reflectances. The DWEL uses a rotating mirror scan mechanism on a revolving mount, coupled with full digitization of return waveforms, to identify, locate, and parameterize scattering events in the three-dimensional space around the scanner. In the DWEL instrument, the two measurement lasers are triggered simultaneously. Laser pulses are sharply peaked; full-width half-max pulse length of the lasers is 5.1 ns, corresponding to 1.53 m in distance. The laser pulses are expanded and collimated to a 6-mm beam diameter (1/e2), then shaped into a top-hat cross section using a diffraction apparatus. Interchangeable optics provide a beam divergence of 1.25-, 2.5-, or 5-mrad. A mirror and two dichroic filters combine the beams and join them with a visible green continuous-wave marker laser. The combined beam is guided along an optical path to the 10-cm rotating scan mirror. Scan encoders in zenith and azimuth directions resolve the pointing of the instrument to 215 units per 2π radians. Scan resolution has three settings: 1-, 2-, and 4-mrad. Scan time varies with resolution: 11 min at 4 mrad; 41 min at 2 mrad; and 2.7 hr at 1 mrad. The return beam enters the 10-cm diameter Newtonian-Nasmyth telescope and is directed to the receiver assembly, which splits the return beam using a dichroic filter and narrowband pass filters. Two 0.5 mm InGaAs photodiodes measure the return signal, which is sampled by two digitizers at 2 gigasamples per second with 10-bit precision. This provides a 7.5-cm sampling of the 1.53 m pulse, allowing very good reconstruction of the return waveform. The designed signal-to-noise ratio is 10:1 (8

  5. Development of a beam ion velocity detector for the heavy ion beam probe

    International Nuclear Information System (INIS)

    Fimognari, P. J.; Crowley, T. P.; Demers, D. R.

    2016-01-01

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  6. Development of a beam ion velocity detector for the heavy ion beam probe

    Energy Technology Data Exchange (ETDEWEB)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R. [Xantho Technologies, LLC, Madison, Wisconsin 53705 (United States)

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  7. Compensation of the long-range beam-beam interactions as a path towards new configurations for the High Luminosity LHC

    CERN Document Server

    AUTHOR|(SzGeCERN)390904; Papaphilippou, Yannis; Shatilov, Dmitry

    2015-01-01

    Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β* and type of optics (flat or round), and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the longrange beam-beam effects, therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the fi...

  8. Aerosol backscatter measurements at 10.6 microns with airborne and ground-based CO2 Doppler lidars over the Colorado High Plains. I - Lidar intercomparison

    Science.gov (United States)

    Bowdle, David A.; Rothermel, Jeffry; Vaughan, J. Michael; Brown, Derek W.; Post, Madison J.

    1991-01-01

    An airborne continuous-wave (CW) focused CO2 Doppler lidar and a ground-based pulsed CO2 Doppler lidar were to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6-micron wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter, the two lidars show good agreement, with differences usually less than about 50 percent near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients, the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  9. Depolarization Ratio Profiles Calibration and Observations of Aerosol and Cloud in the Tibetan Plateau Based on Polarization Raman Lidar

    Directory of Open Access Journals (Sweden)

    Guangyao Dai

    2018-03-01

    Full Text Available A brief description of the Water vapor, Cloud and Aerosol Lidar (WACAL system is provided. To calibrate the volume linear depolarization ratio, the concept of “ Δ 90 ° -calibration” is applied in this study. This effective and accurate calibration method is adjusted according to the design of WACAL. Error calculations and analysis of the gain ratio, calibrated volume linear depolarization ratio and particle linear depolarization ratio are provided as well. In this method, the influences of the gain ratio, the rotation angle of the plane of polarization and the polarizing beam splitter are discussed in depth. Two groups of measurements with half wave plate (HWP at angles of (0 ° , 45 ° and (22.5 ° , −22.5 ° are operated to calibrate the volume linear depolarization ratio. Then, the particle linear depolarization ratios measured by WACAL and CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization during the simultaneous observations were compared. Good agreements are found. The calibration method was applied in the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX III in 2013 and 2014 in China. Vertical profiles of the particle depolarization ratio of clouds and aerosol in the Tibetan Plateau were measured with WACAL in Litang (30.03° N, 100.28° E, 3949 m above sea level (a.s.l. in 2013 and Naqu (31.48° N, 92.06° E, 4508 m a.s.l. in 2014. Then an analysis on the polarizing properties of the aerosol, clouds and cirrus over the Tibetan Plateau is provided. The particle depolarization ratio of cirrus clouds varies from 0.36 to 0.52, with a mean value of 0.44 ± 0.04. Cirrus clouds occurred between 5.2 and 12 km above ground level (a.g.l.. The cloud thickness ranges from 0.12 to 2.55 km with a mean thickness of 1.22 ± 0.70 km. It is found that the particle depolarization ratio of cirrus clouds become larger as the height increases. However, the increase rate of the particle depolarization ratio becomes smaller as

  10. Influence of Radiographic Positioning on Canine Sacroiliac and Lumbosacral Angle Measurements.

    Science.gov (United States)

    Jones, Susan; Savage, Mason; Naughton, Brian; Singh, Susheela; Robertson, Ian; Roe, Simon C; Marcellin-Little, Denis J; Mathews, Kyle G

    2018-01-01

     To evaluate the influence of radiographic malpositioning on canine sacroiliac and lumbosacral inclination angles.  Using canine cadavers, lateral pelvic radiographs were acquired with the radiographic beam in a neutral position and then rotated 5, 10 and 15° to mimic rotational malpositioning. The focal point of the beam was then focused over the abdomen and again over mid-diaphysis of the femur to mimic an abdominal or femoral radiographic study.  Five degrees of rotational malpositioning did not influence measurements of sacroiliac or lumbosacral inclination, but malpositioning by more than 5° led to a significant decrease in both sacroiliac and lumbosacral angles. Moving the focal point to the femur significantly decreased the measured lumbosacral angle. Abdominally centred radiographs had no effect on lumbosacral and sacroiliac angle measurements.  When evaluating canine lumbosacral and sacroiliac angles radiographically, pelvic rotation of more than 5° should be avoided as should the use of lateral radiographs centred over the femur. Schattauer GmbH Stuttgart.

  11. Can Wind Lidars Measure Turbulence?

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Gottschall, Julia

    2011-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the conical scanning technique to measure the velocity field. The model captures the effect of volume illumination and coni...

  12. Electron beam based transversal profile measurements of intense ion beams; Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    El Moussati, Said

    2014-11-03

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  13. Beam-Beam Simulation of Crab Cavity White Noise for LHC Upgrade

    CERN Document Server

    Qiang, J; Pieloni, Tatiana; Ohmi, Kazuhito

    2015-01-01

    High luminosity LHC upgrade will improve the luminosity of the current LHC operation by an order of magnitude. Crab cavity as a critical component for compensating luminosity loss from large crossing angle collision and also providing luminosity leveling for the LHC upgrade is being actively pursued. In this paper, we will report on the study of potential effects of the crab cavity white noise errors on the beam luminosity lifetime based on strong-strong beam-beam simulations.

  14. NSPEC - A neutron spectrum code for beam-heated fusion plasmas

    International Nuclear Information System (INIS)

    Scheffel, J.

    1983-06-01

    A 3-dimensional computer code is described, which computes neutron spectra due to beam heating of fusion plasmas. Three types of interactions are considered; thermonuclear of plasma-plasma, beam-plasma and beam-beam interactions. Beam deposition is modelled by the NFREYA code. The applied steady state beam distribution as a function of pitch angle and velocity contains the effects of energy diffusion, friction, angular scattering, charge exchange, electric field and source pitch angle distribution. The neutron spectra, generated by Monte-Carlo methods, are computed with respect to given lines of sight. This enables the code to be used for neutron diagnostics. (author)

  15. Optimizing beam transport in rapidly compressing beams on the neutralized drift compression experiment – II

    Directory of Open Access Journals (Sweden)

    Anton D. Stepanov

    2018-03-01

    Full Text Available The Neutralized Drift Compression Experiment-II (NDCX-II is an induction linac that generates intense pulses of 1.2 MeV helium ions for heating matter to extreme conditions. Here, we present recent results on optimizing beam transport. The NDCX-II beamline includes a 1-m-long drift section downstream of the last transport solenoid, which is filled with charge-neutralizing plasma that enables rapid longitudinal compression of an intense ion beam against space-charge forces. The transport section on NDCX-II consists of 28 solenoids. Finding optimal field settings for a group of solenoids requires knowledge of the envelope parameters of the beam. Imaging the beam on the scintillator gives the radius of the beam, but the envelope angle is not measured directly. We demonstrate how the parameters of the beam envelope (radius, envelop angle, and emittance can be reconstructed from a series of images taken by varying the B-field strengths of a solenoid upstream of the scintillator. We use this technique to evaluate emittance at several points in the NDCX-II beamline and for optimizing the trajectory of the beam at the entry of the plasma-filled drift section. Keywords: Charged-particle beams, Induction accelerators, Beam dynamics, Beam emittance, Ion beam diagnostics, PACS Codes: 41.75.-i, 41.85.Ja, 52.59.Sa, 52.59.Wd, 29.27.Eg

  16. Beam-optics study of the gantry beam delivery system for light-ion cancer therapy

    International Nuclear Information System (INIS)

    Pavlovic, M.

    1995-12-01

    Ion optics considerations on the granty-like beam delivery system for light-ion cancer therapy are presented. A low-angle active beam scanning in two directions is included in the preliminary gantry design. The optical properties of several gantry modifications are discussed. (orig.)

  17. Deflection system for charged-particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Bates, T

    1982-01-13

    A system is described for achromatically deflecting a beam of charged particles without producing net divergence of the beam comprising three successive magnetic deflection means which deflect the beam alternately in opposite directions; the first and second deflect by angles of less than 50/sup 0/ and the third by an angle of at least 90/sup 0/. Particles with different respective energies are transversely spaced as they enter the third deflection means, but emerge completely superimposed in both position and direction and may be brought to a focus in each of two mutually perpendicular planes, a short distance thereafter. Such a system may be particularly compact, especially in the direction in which the beam leaves the system. It is suitable for deflecting a beam of electrons from a linear accelerator so producing a vertical beam of electron (or with an X-ray target, of X-rays) which can be rotated about a horizontal patient for radiation therapy.

  18. LIDAR for atmosphere research over Africa

    CSIR Research Space (South Africa)

    Sivakumar, V

    2008-11-01

    Full Text Available d’aéronomie, CNRS, Paris, France 1Email: SVenkataraman@csir.co.za – www.csir.co.za K-6665 [www.kashangroup.com] Lidar for atmospheric studies: The CSIR’s laser research into monitoring various pollutants in the lower atmosphere via... to lidar applications for atmosphere studies including pollutant monitoring. The following salient features emanated from the survey: • Around 80% of the lidars are in the northern hemisphere • Of the 20% in the southern hemisphere region...

  19. 2012 Oregon Lidar Consortium (OLC) Lidar: Keno (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Oregon Keno Study Area for the Oregon Department of Geology and Mineral...

  20. Laser remote sensing of water vapor: Raman lidar development

    International Nuclear Information System (INIS)

    Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E.; Melfi, S.H.; Whiteman, D.N.; Ferrare, R.A.; Evans, K.D.

    1994-01-01

    The goal of this research is the development of a critical design for a Raman lidar system optimized to match ARM Program needs for profiling atmospheric water vapor at CART sites. This work has emphasized the development of enhanced daytime capabilities using Raman lidar techniques. This abstract touches briefly on the main components of the research program, summarizing results of the efforts. A detailed Raman lidar instrument model has been developed to predict the daytime and nighttime performance capabilities of Raman lidar systems. The model simulates key characteristics of the lidar system, using realistic atmospheric profiles, modeled background sky radiance, and lidar system parameters based on current instrument capabilities. The model is used to guide development of lidar systems based on both the solar-blind concept and the narrowband, narrow field-of-view concept for daytime optimization

  1. Control of beam size and polarization time in PEP

    International Nuclear Information System (INIS)

    Paterson, J.M.; Rees, J.R.; Wiedemann, H.

    1975-07-01

    In this report we describe a method of controlling beam size in which the focusing functions are not altered with beam energy but the curvature function is drastically altered in a few locations which comprise only a very small fraction of the circumference. As will be described in the following paper we are proposing to control the quantum excitation and radiation damping of the particles by means of special excitation magnets or /open quotes/wigglers/close quotes/. Since the mean square energy deviation and radial beam emittance are proportional approximately to E/sup 2//l angle/G/sup 3//r angle//l angle/G/sup 2//r angle//sup /minus/1 while the damping times are proportional to (E/sup 3//l angle/G/sup 2//r angle/)/sup /minus/1/, it is possible to achieve constant beam size in a constant focusing configuration while the damping times vary roughly as E/sup /minus/2/. In addition, it is possible to reduce the beam polarization time with these devices. A scheme for beam-size and damping control based on the same principle was described by M. Bassetti about a year ago, in which all of the storage-ring bending magnets were involved as wigglers, and a substantial increase in magnet cost resulted. The consequences for polarization times were not explored. The design formulae are derived and two specific applications to the PEP design in which the wigglers are installed in three of the six 5-m straight sections are described with attention given to practical magnet design, synchrotron radiation handling and other matters. 5 refs., 4 figs., 1 tab

  2. Novel lidar algorithms for atmospheric slantrange visibility, planetary boundary layer height, meteorogical phenomena and atmospheric layering measurements

    Science.gov (United States)

    Pantazis, Alexandros; Papayannis, Alexandros; Georgoussis, Georgios

    2018-04-01

    In this paper we present a development of novel algorithms and techniques implemented within the Laser Remote Sensing Laboratory (LRSL) of the National Technical University of Athens (NTUA), in collaboration with Raymetrics S.A., in order to incorporate them into a 3-Dimensional (3D) lidar. The lidar is transmitting at 355 nm in the eye safe region and the measurements then are transposed to the visual range at 550 nm, according to the World Meteorological Organization (WMO) and the International Civil Aviation Organization (ICAO) rules of daytime visibility. These algorithms are able to provide horizontal, slant and vertical visibility for tower aircraft controllers, meteorologists, but also from pilot's point of view. Other algorithms are also provided for detection of atmospheric layering in any given direction and vertical angle, along with the detection of the Planetary Boundary Layer Height (PBLH).

  3. Sensitivity analysis of nacelle lidar free stream wind speed measurements to wind-induction reconstruction model and lidar range configuration

    DEFF Research Database (Denmark)

    Svensson, Elin; Borraccino, Antoine; Meyer Forsting, Alexander Raul

    The sensitivity of nacelle lidar wind speed measurements to wind-induction models and lidar range configurations is studied using experimental data from the Nørrekær Enge (NKE) measurement campaign and simulated lidar data from Reynold-Averaged Navier Stokes (RANS) aerodynamic computational fluid...... the ZDM was configured to measure at five distances. From the configured distances, a large number of range configurations were created and systematically tested to determine the sensitivity of the reconstructed wind speeds to the number of ranges, minimum range and maximum range in the range......) of the fitting residuals. The results demonstrate that it is not possible to use RANS CFD simulated lidar data to determine optimal range configurations for real-time nacelle lidars due to their perfect (unrealistic) representation of the simulated flow field. The recommended range configurations are therefore...

  4. 2007 USGS Lidar: Canyon Fire (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Southern California Light Detection and Ranging (LiDAR) data is to provide high accuracy LIDAR data. These datasets will be the initial acquisition to support...

  5. Spaceborne Lidar in the Study of Marine Systems.

    Science.gov (United States)

    Hostetler, Chris A; Behrenfeld, Michael J; Hu, Yongxiang; Hair, Johnathan W; Schulien, Jennifer A

    2018-01-03

    Satellite passive ocean color instruments have provided an unbroken ∼20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  6. Spaceborne Lidar in the Study of Marine Systems

    Science.gov (United States)

    Hostetler, Chris A.; Behrenfeld, Michael J.; Hu, Yongxiang; Hair, Johnathan W.; Schulien, Jennifer A.

    2018-01-01

    Satellite passive ocean color instruments have provided an unbroken ˜20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  7. Improved beam-energy calibration technique for heavy ion accelerators

    International Nuclear Information System (INIS)

    Ferrero, A.M.J.; Garcia, A.; Gil, Salvador

    1989-01-01

    A simple technique for beam energy calibration of heavy-ion accelerators is presented. A thin hydrogenous target was bombarded with 12 C and 19 F, and the energies of the protons knocked out, elastically were measured at several angles using two detectors placed at equal angles on opposite sides of the beam. The use of these two detectors cancels the largest errors due to uncertainties in the angle and position at which the beam hits the target. An application of this energy calibration method to an electrostatic accelerator is described and the calibration constant of the analyzing magnet was obtained with an estimated error of 0.4 (Author) [es

  8. Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere

    Science.gov (United States)

    Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng

    2018-03-01

    Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.

  9. A New Framework for Quantifying Lidar Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer, F.; Clifton, Andrew; Bonin, Timothy A.; Churchfield, Matthew J.

    2017-03-24

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards discuss uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device. However, real-world experience has shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we propose the development of a new lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from an operational wind farm to assess the ability of the framework to predict errors in lidar-measured wind speed.

  10. Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Foroughi Abari, Farzad; Mann, Jakob

    2012-01-01

    are presented. A method for determining the background noise spectrum without interrupting the transmission of the laser beam is described. Moreover, the dependency between the determination of the threshold of a Doppler spectrum with low signal-to-noise ratios and the characteristics of the wind flow......This paper is focused on the required post processing of Doppler spectra, acquired from a continuous-wave coherent lidar at high sampling rates (400 Hz) and under rapid scanning of the laser beam. In particular, the necessary steps followed for extracting the wind speed from such Doppler spectra...... are investigated and a systematic approach for removing the noise is outlined. The suggested post processing procedures are applied to two sample time series acquired by a short-range WindScanner during one second each....

  11. Wind measurement via direct detection lidar

    Science.gov (United States)

    Afek, I.; Sela, N.; Narkiss, N.; Shamai, G.; Tsadka, S.

    2013-10-01

    Wind sensing Lidar is considered a promising technology for high quality wind measurements required for various applications such as hub height wind resource assessment, power curve measurements and advanced, real time, forward looking turbine control. Until recently, the only available Lidar technology was based on coherent Doppler shift detection, whose market acceptance has been slow primarily due to its exuberant price. Direct detection Lidar technology provides an alternative to remote sensing of wind by incorporating high precision measurement, a robust design and an affordable price tag.

  12. Inland and Near Shore Water Profiles Derived from the High Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

    Science.gov (United States)

    Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532 nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in icecaps, sea ice and vegetation, the polar-orbital satellite will observe global surface water during its designed three year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype or the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision of approximately 5-7 cm per 100m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR0, were observed over a range of 1.3 to 9.3 meters depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when solar background rate was low. Near shore bottom reflectance was detected only at the Lake Mead site down to maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest

  13. Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

    Science.gov (United States)

    Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532-nanometer laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in ice caps, sea ice, and vegetation, the polar-orbiting satellite will observe global surface water during its designed three-year life span, including inland waterbodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high-altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the data sets of three MABEL transects observed from 20 kilometers above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 kilometers in length and included the middle Chesapeake Bay, the near-shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision ofapproximately 5-7 centimeters per 100-meter segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR (sub 0), were observed over a range of 1.3 to 9.3 meters, depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when the solar background rate was low. Near-shore bottom reflectance was detected only at the Lake Mead site down to a maximum of 10 meters under a clear night sky and low turbidity of approximately 1

  14. Heterodyne Angle Deviation Interferometry in Vibration and Bubble Measurements

    OpenAIRE

    Ming-Hung Chiu; Jia-Ze Shen; Jian-Ming Huang

    2016-01-01

    We proposed heterodyne angle deviation interferometry (HADI) for angle deviation measurements. The phase shift of an angular sensor (which can be a metal film or a surface plasmon resonance (SPR) prism) is proportional to the deviation angle of the test beam. The method has been demonstrated in bubble and speaker’s vibration measurements in this paper. In the speaker’s vibration measurement, the voltage from the phase channel of a lock-in amplifier includes the vibration level and frequency. ...

  15. Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC

    Directory of Open Access Journals (Sweden)

    Stéphane Fartoukh

    2015-12-01

    Full Text Available Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β^{*} and type of optics (flat or round, and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J. P. Koutchouk, CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project, and compare it to alternative scenarios, or so-called “configurations,” where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. For all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.

  16. 2014 OLC Lidar DEM: Colville, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI, a Quantum Spatial company, has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Colville study area. This study area is...

  17. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    2001-08-01

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  18. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  19. Modulation depth of Michelson interferometer with Gaussian beam.

    Science.gov (United States)

    Välikylä, Tuomas; Kauppinen, Jyrki

    2011-12-20

    Mirror misalignment or the tilt angle of the Michelson interferometer can be estimated from the modulation depth measured with collimated monochromatic light. The intensity of the light beam is usually assumed to be uniform, but, for example, with gas lasers it generally has a Gaussian distribution, which makes the modulation depth less sensitive to the tilt angle. With this assumption, the tilt angle may be underestimated by about 50%. We have derived a mathematical model for modulation depth with a circular aperture and Gaussian beam. The model reduces the error of the tilt angle estimate to below 1%. The results of the model have been verified experimentally.

  20. 2014 PSLC Lidar: City of Redmond

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2014, Quantum Spatial (QSI) was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data for the City of...

  1. 2014 Horry County, South Carolina Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is comprised of lidar point cloud data. This project required lidar data to be acquired over Horry County, South Carolina. The total area of the Horry...

  2. Elevation - LIDAR Survey - Roseau County, Minnesota

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LIDAR Data for Roseau County Minnesota. This project consists of approximately 87 square miles of LIDAR mapping in Roseau County, Minnesota at two sites: area 1,...

  3. 2006 Volusia County Florida LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is the lidar data for Volusia County, Florida, approximately 1,432 square miles, acquired in early March of 2006. A total of 143 flight lines of Lidar...

  4. 3D pulsed chaos lidar system.

    Science.gov (United States)

    Cheng, Chih-Hao; Chen, Chih-Ying; Chen, Jun-Da; Pan, Da-Kung; Ting, Kai-Ting; Lin, Fan-Yi

    2018-04-30

    We develop an unprecedented 3D pulsed chaos lidar system for potential intelligent machinery applications. Benefited from the random nature of the chaos, conventional CW chaos lidars already possess excellent anti-jamming and anti-interference capabilities and have no range ambiguity. In our system, we further employ self-homodyning and time gating to generate a pulsed homodyned chaos to boost the energy-utilization efficiency. Compared to the original chaos, we show that the pulsed homodyned chaos improves the detection SNR by more than 20 dB. With a sampling rate of just 1.25 GS/s that has a native sampling spacing of 12 cm, we successfully achieve millimeter-level accuracy and precision in ranging. Compared with two commercial lidars tested side-by-side, namely the pulsed Spectroscan and the random-modulation continuous-wave Lidar-lite, the pulsed chaos lidar that is in compliance with the class-1 eye-safe regulation shows significantly better precision and a much longer detection range up to 100 m. Moreover, by employing a 2-axis MEMS mirror for active laser scanning, we also demonstrate real-time 3D imaging with errors of less than 4 mm in depth.

  5. Automated grain mapping using wide angle convergent beam electron diffraction in transmission electron microscope for nanomaterials.

    Science.gov (United States)

    Kumar, Vineet

    2011-12-01

    The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.

  6. Simple computer model for the nonlinear beam--beam interaction in ISABELLE

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.; Peierls, R.F.

    1979-03-01

    The beam--beam interaction for two counter-rotating continuous proton beams crossing at an angle can be simulated by a 1-dimensional nonlinear force. The model is applicable to ISABELLE as well as to the ISR. Since the interaction length is short compared with the length of the beam orbit, the interaction region is taken to be a point. The problem is then treated as a mapping with the remainder of the system taken to be a rotation of phase given by the betatron tune of the storage ring. The evolution of the mean square amplitude of a given distribution of particles is shown for different beam--beam strengths. The effect of round-off error with resulting loss of accuracy for particle trajectories is discussed. 3 figures

  7. 2012 USGS Lidar: Elwha River (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Elwha River, WA LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01088 Woolpert Order No....

  8. Lidar data used in the COFIN project

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Nielsen, Morten

    1999-01-01

    This report presents the Lidar data used in the COFIN project. The Lidar data have been obtained from several ground level dispersion experiments over flat and complex terrain. The method for treating the data and the conditons under which the data wereobtained are described in detail. Finally we...... describe the Tools to extract and visualize the Lidar data. Data, report, and visualisation tools are available on the Risø FTP server....

  9. Slope angle studies from multibeam sonar data on three seamounts in Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.

    Slope angles are powerful morphometric tools. Slope angle studies in manganese nodule areas using the Multi Beam Sonar (MBS) data is useful to the mining geologist. A technique to convert depth grid generated from MBS data to slope angle values data...

  10. ESPRIT with multiple-angle subarray beamforming

    Science.gov (United States)

    Xu, Wen; Jiang, Ying; Zhang, Huiquan

    2012-12-01

    This article presents a new approach of implementing signal direction-of-arrival estimation, in which subarray beamforming is applied prior to estimation of signal parameters via rotational invariance techniques (ESPRIT). Different from the previous approaches, the beam-domain data from multiple adjacent pointing angles are combined in a way that the displacement invariance structure required by ESPRIT is maintained. It is intended to further obtain a sub-beamwidth resolution for a conventional multi-beam system already having small beamwidths. Computer simulations show that for typical multi-beam system applications the new approach provides improved estimation mean-square errors over the original ESPRIT, on top of reduced requirements for signal-to-noise ratio, number of snapshots, and computational time.

  11. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    Science.gov (United States)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  12. Infrastructure Investment Protection with LiDAR

    Science.gov (United States)

    2012-10-15

    The primary goal of this research effort was to explore the wide variety of uses of LiDAR technology and to evaluate their : applicability to NCDOT practices. NCDOT can use this information about LiDAR in determining how and when the : technology can...

  13. 2013 NRCS-USGS Lidar: Lauderdale (MS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:NRCS LAUDERDALE MS 0.7M NPS LIDAR. LiDAR Data Acquisition and Processing Production Task. USGS Contract No. G10PC00057. Task Order No. G12PD000125 Woolpert...

  14. 2014 USGS/NRCS Lidar: Central MS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS-NRCS Laurel MS 0.7m NPS LIDAR Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD01086 Woolpert...

  15. Exact fan-beam and 4π-acquisition cone-beam SPECT algorithms with uniform attenuation correction

    International Nuclear Information System (INIS)

    Tang Qiulin; Zeng, Gengsheng L.; Wu Jiansheng; Gullberg, Grant T.

    2005-01-01

    This paper presents analytical fan-beam and cone-beam reconstruction algorithms that compensate for uniform attenuation in single photon emission computed tomography. First, a fan-beam algorithm is developed by obtaining a relationship between the two-dimensional (2D) Fourier transform of parallel-beam projections and fan-beam projections. Using this relationship, 2D Fourier transforms of equivalent parallel-beam projection data are obtained from the fan-beam projection data. Then a quasioptimal analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan, is used to reconstruct the image. A cone-beam algorithm is developed by extending the fan-beam algorithm to 4π solid angle geometry. The cone-beam algorithm is also an exact algorithm

  16. Antenna Beam Pattern Characteristics of HAPS User Terminal

    Science.gov (United States)

    Ku, Bon-Jun; Oh, Dae Sub; Kim, Nam; Ahn, Do-Seob

    High Altitude Platform Stations (HAPS) are recently considered as a green infrastructure to provide high speed multimedia services. The critical issue of HAPS is frequency sharing with satellite systems. Regulating antenna beam pattern using adaptive antenna schemes is one of means to facilitate the sharing with a space receiver for fixed satellite services on the uplink of a HAPS system operating in U bands. In this letter, we investigate antenna beam pattern characteristics of HAPS user terminals with various values of scan angles of main beam, null position angles, and null width.

  17. Lidar-based mapping of flood control levees in south Louisiana

    Science.gov (United States)

    Thatcher, Cindy A.; Lim, Samsung; Palaseanu-Lovejoy, Monica; Danielson, Jeffrey J.; Kimbrow, Dustin R.

    2016-01-01

    Flood protection in south Louisiana is largely dependent on earthen levees, and in the aftermath of Hurricane Katrina the state’s levee system has received intense scrutiny. Accurate elevation data along the levees are critical to local levee district managers responsible for monitoring and maintaining the extensive system of non-federal levees in coastal Louisiana. In 2012, high resolution airborne lidar data were acquired over levees in Lafourche Parish, Louisiana, and a mobile terrestrial lidar survey was conducted for selected levee segments using a terrestrial lidar scanner mounted on a truck. The mobile terrestrial lidar data were collected to test the feasibility of using this relatively new technology to map flood control levees and to compare the accuracy of the terrestrial and airborne lidar. Metrics assessing levee geometry derived from the two lidar surveys are also presented as an efficient, comprehensive method to quantify levee height and stability. The vertical root mean square error values of the terrestrial lidar and airborne lidar digital-derived digital terrain models were 0.038 m and 0.055 m, respectively. The comparison of levee metrics derived from the airborne and terrestrial lidar-based digital terrain models showed that both types of lidar yielded similar results, indicating that either or both surveying techniques could be used to monitor geomorphic change over time. Because airborne lidar is costly, many parts of the USA and other countries have never been mapped with airborne lidar, and repeat surveys are often not available for change detection studies. Terrestrial lidar provides a practical option for conducting repeat surveys of levees and other terrain features that cover a relatively small area, such as eroding cliffs or stream banks, and dunes.

  18. Applications of KHZ-CW Lidar in Ecological Entomology

    Science.gov (United States)

    Malmqvist, Elin; Brydegaard, Mikkel

    2016-06-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  19. SWIMS, Sigmund and Winterbon Multiple Scattering of Ion Beams

    International Nuclear Information System (INIS)

    Eyeberger, L.

    1999-01-01

    1 - Description of program or function - SWIMS calculates the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media. 2 - Method of solution - SWIMS uses the tabulated angular distributions of Sigmund and Winterbon for a Thomas-Fermi screened Coulomb potential. The fraction of the incident beam scattered into a cone defined by the polar angle is computed as a function of that angle for a reduced thickness over the rang of 0.01 to 10

  20. INTERACT-II campaign:comparison of commercial lidars and ceilometers with advanced multi-wavelength Raman lidars

    Science.gov (United States)

    Rosoldi, Marco; Madonna, Fabio; Pappalardo, Gelsomina; Vande Hey, Joshua; Zheng, Yunhui; Vaisala Team

    2017-04-01

    Knowledge of aerosol spatio-temporal distribution in troposphere is essential for the study of climate and air quality. For this purpose, global scale high resolution continuous measurements of tropospheric aerosols are needed. Global coverage high resolution networks of ground-based low-cost and low-maintenance remote sensing instruments, such as commercial automatic lidars and ceilometers, can strongly contribute to this scientific mission. Therefore, it is very interesting for scientific community to understand to which extent these instruments are able to provide reliable aerosol measurements and fill in the geographical gaps of existing networks of the advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). The INTERACT-II (INTERcomparison of Aerosol and Cloud Tracking) campaign, carried out at CIAO (CNR-IMAA Atmospheric Observatory) in Tito Scalo, Potenza, Italy (760m a.s.l., 40.60°N, 15.72°E), aims to evaluate the performances of commercial automatic lidars and ceilometers for tropospheric aerosol profiling. The campaign has been performed in the period from July 2016 to January 2017 in the framework of ACTRIS-2 (Aerosol Clouds Trace gases Research InfraStructure) H2020 research infrastructure project. Besides the commercial ceilometers operational at CIAO (VAISALA CT25K and Luftt CHM15k), the performance of a CL51 VAISALA ceilometer, a Campbell CS135 ceilometer and a mini-Micro Pulse Lidar (MPL) have been assessed using the EARLINET multi-wavelengths Raman lidars operative at CIAO as reference. Following a similar approach used in the first INTERACT campaign (Madonna et al., AMT 2015), attenuated backscatter coefficient profiles and signals obtained from all the instruments have been compared, over a vertical resolution of 60 meters and a temporal integration ranging between 1 and 2 hours, depending on the observed atmospheric scenario. CIAO lidars signals have been processed using the EARLINET Single Calculus Chain (SCC) also with the

  1. Direct cone beam SPECT reconstruction with camera tilt

    International Nuclear Information System (INIS)

    Jianying Li; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E.; Zongjian Cao; Tsui, B.M.W.

    1993-01-01

    A filtered backprojection (FBP) algorithm is derived to perform cone beam (CB) single-photon emission computed tomography (SPECT) reconstruction with camera tilt using circular orbits. This algorithm reconstructs the tilted angle CB projection data directly by incorporating the tilt angle into it. When the tilt angle becomes zero, this algorithm reduces to that of Feldkamp. Experimentally acquired phantom studies using both a two-point source and the three-dimensional Hoffman brain phantom have been performed. The transaxial tilted cone beam brain images and profiles obtained using the new algorithm are compared with those without camera tilt. For those slices which have approximately the same distance from the detector in both tilt and non-tilt set-ups, the two transaxial reconstructions have similar profiles. The two-point source images reconstructed from this new algorithm and the tilted cone beam brain images are also compared with those reconstructed from the existing tilted cone beam algorithm. (author)

  2. Software design of control system of CCD side-scatter lidar

    Science.gov (United States)

    Kuang, Zhiqiang; Liu, Dong; Deng, Qian; Zhang, Zhanye; Wang, Zhenzhu; Yu, Siqi; Tao, Zongming; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Because of the existence of blind zone and transition zone, the application of backscattering lidar in near-ground is limited. The side-scatter lidar equipped with the Charge Coupled Devices (CCD) can separate the transmitting and receiving devices to avoid the impact of the geometric factors which is exited in the backscattering lidar and, detect the more precise near-ground aerosol signals continuously. Theories of CCD side-scatter lidar and the design of control system are introduced. The visible control of laser and CCD and automatic data processing method of the side-scatter lidar are developed by using the software of Visual C #. The results which are compared with the calibration of the atmospheric aerosol lidar data show that signals from the CCD side- scatter lidar are convincible.

  3. LIDAR TS for ITER core plasma. Part I: layout & hardware

    Science.gov (United States)

    Salzmann, H.; Gowers, C.; Nielsen, P.

    2017-12-01

    The original time-of-flight design of the Thomson scattering diagnostic for the ITER core plasma has been shown up by ITER. This decision was justified by insufficiencies of some of the components. In this paper we show that with available, present day technology a LIDAR TS system is feasible which meets all the ITER specifications. As opposed to the conventional TS system the LIDAR TS also measures the high field side of the plasma. The optical layout of the front end has been changed only little in comparison with the latest one considered by ITER. The main change is that it offers an optical collection without any vignetting over the low field side. The throughput of the system is defined only by the size and the angle of acceptance of the detectors. This, in combination with the fact that the LIDAR system uses only one set of spectral channels for the whole line of sight, means that no absolute calibration using Raman or Rayleigh scattering from a non-hydrogen isotope gas fill of the vessel is needed. Alignment of the system is easy since the collection optics view the footprint of the laser on the inner wall. In the described design we use, simultaneously, two different wavelength pulses from a Nd:YAG laser system. Its fundamental wavelength ensures measurements of 2 keV up to more than 40 keV, whereas the injection of the second harmonic enables measurements of low temperatures. As it is the purpose of this paper to show the technological feasibility of the LIDAR system, the hardware is considered in Part I of the paper. In Part II we demonstrate by numerical simulations that the accuracy of the measurements as required by ITER is maintained throughout the given plasma parameter range. The effect of enhanced background radiation in the wavelength range 400 nm-500 nm is considered. In Part III the recovery of calibration in case of changing spectral transmission of the front end is treated. We also investigate how to improve the spatial resolution at the

  4. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    International Nuclear Information System (INIS)

    Nadrowitz, Roger; Feyerabend, Thomas

    2001-01-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved

  5. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Nadrowitz, Roger; Feyerabend, Thomas [Medical University of Luebeck, Germany, Department of Radiotherapy and Nuclear Medicine, Ratzeburger Allee 160, Luebeck, D-23538 (Germany)

    2001-06-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved.

  6. Control of ordered mesoporous titanium dioxide nanostructures formed using plasma enhanced glancing angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Child, David, E-mail: david.child@uws.ac.uk [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Song, Shigeng; Zhao, Chao [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Alajiani, Yahya [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Department of Physics, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Waddell, Ewan [Thin Film Solutions Ltd, West of Scotland Science Park, Glasgow, G20 0TH (United Kingdom)

    2015-10-01

    Three dimensional nanostructures of mesoporous (pore diameter between 2-50 nm) nanocrystalline titania (TiO{sub 2}) were produced using glancing angle deposition combined with plasma ion assisted deposition, providing plasma enhanced glancing angle deposition eliminating the need for post-annealing to achieve film crystallinity. Electron beam evaporation was chosen to deposit nanostructures at various azimuthal angles, achieving designed variation in three dimensional nanostructure. A thermionic broad beam hollow cathode plasma source was used to enhance electron beam deposition, with ability to vary in real time ion fluxes and energies providing a means to modify and control TiO{sub 2} nanostructure real time with controlled density and porosity along and lateral to film growth direction. Plasma ion assisted deposition was carried out at room temperature using a hollow cathode plasma source, ensuring low heat loading to the substrate during deposition. Plasma enhanced glancing angle TiO{sub 2} structures were deposited onto borosilicate microscope slides and used to characterise the effects of glancing angle and plasma ion energy distribution function on the optical and nanostructural properties. Variation in TiO{sub 2} refractive index from 1.40 to 2.45 (@ 550 nm) using PEGLAD is demonstrated. Results and analysis of the influence of plasma enhanced glancing angle deposition on evaporant path and resultant glancing angle deviation from standard GLAD are described. Control of mesoporous morphology is described, providing a means of optimising light trapping features and film porosity, relevant to applications such as fabrication of dye sensitised solar cells. - Highlights: • Plasma assistance during glancing angle deposition enables control of morphology. • Ion energy variation during glancing angle deposition varies columnar angle • Column thickness of glancing angle deposition dependant on ion current density • Ion current density variation during

  7. Multi-wavelength Ocean Profiling and Atmospheric Lidar

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build and demonstrate the world's first multi-wavelength ocean-profiling high spectral resolution lidar (HSRL). The lidar will provide profiles of...

  8. Non-destructive determination of moisture content and micro-fibril angle of wood using a poly-chromatic X-ray beam theoretical and experimental approach

    International Nuclear Information System (INIS)

    Baettig, R.

    2005-07-01

    Non-destructive determination of moisture content and micro-fibril angle are important stakes for the sciences of the wood because these two parameters influence strongly the macroscopic behavior of the wood. For example, the shrinkage, the mechanical properties, the thermal and acoustic conductivity are dependent on the moisture content and their anisotropic character is largely governed by the micro-fibril angle. We used the light difference between X-ray mass attenuation coefficient for the water and for the wood in transmission. Regrettably, the results show that this difference between X-ray mass attenuation coefficient is insufficient to allow the precise measurement of the moisture content.In spite of this, the coherent scattering shows sensitive effects. So, by using a poly-energetic beam and a spectrometric system, we were able to discriminate between the crystalline constituent (cellulose) of the amorphous constituent (water) in a sample of wet wood, because for a given angle these phases scatter in different energy. Besides, the device created allowed us to study the crystalline phase of the wood. We were able to confront experimental profiles of diffraction with theoretical profiles of diffraction, obtained by means of a rigorous simulation, in the objective to estimate the average micro-fibril angle and its standard deviation. (author)

  9. 2012 Oregon Lidar Consortium (OLC) Lidar DEM: Keno (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Oregon Keno Study Area for the Oregon Department of Geology and Mineral...

  10. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    Science.gov (United States)

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  11. Shipborne LiDAR system for coastal change monitoring

    Science.gov (United States)

    Kim, chang hwan; Park, chang hong; Kim, hyun wook; hyuck Kim, won; Lee, myoung hoon; Park, hyeon yeong

    2016-04-01

    Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land and the sea level has risen by about 8cm (1.9mm / yr) due to global warming from 1964 year to 2006 year in Korea. Coastal erosion due to sea-level rise has caused the problem of marine ecosystems and loss of tourism resources, etc. Regular monitoring of coastal erosion is essential at key locations with such volatility. But the survey method of land mobile LiDAR (light detection and ranging) system has much time consuming and many restrictions. For effective monitoring beach erosion, KIOST (Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system comprised a land mobile LiDAR (RIEGL LMS-420i), an INS (inertial navigation system, MAGUS Inertial+), a RTKGPS (LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land mobile LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.

  12. Planar microlens with front-face angle: design, fabrication, and characterization

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-07-08

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500  μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  13. Planar microlens with front-face angle: design, fabrication, and characterization

    Science.gov (United States)

    Al Hafiz, Md. Abdullah; Michael, Aron; Kwok, Chee-Yee

    2016-07-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3 ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  14. Planar microlens with front-face angle: design, fabrication, and characterization

    KAUST Repository

    Hafiz, Md Abdullah Al; Michael, Aron; Kwok, Chee-Yee

    2016-01-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500  μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  15. The influence of beam divergence on ion-beam induced surface patterns

    International Nuclear Information System (INIS)

    Kree, R.; Yasseri, T.; Hartmann, A.K.

    2009-01-01

    We present a continuum theory and a Monte Carlo model of self-organized surface pattern formation by ion-beam sputtering including effects of beam profiles. Recently, it has turned out that such secondary ion-beam parameters may have a strong influence on the types of emerging patterns. We first discuss several cases, for which beam profiles lead to random parameters in the theory of pattern formation. Subsequently we study the evolution of the averaged height profile in continuum theory and find that the typical Bradley-Harper scenario of dependence of ripple patterns on the angle of incidence can be changed qualitatively. Beam profiles are implemented in Monte Carlo simulations, where we find generic effects on pattern formation. Finally, we demonstrate that realistic beam profiles, taken from experiments, may lead to qualitative changes of surface patterns.

  16. 2010 ARRA Lidar: 4 Southeast Counties (MI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Southeast Michigan LiDAR LiDAR Data Acquisition and Processing Production Task- Monroe, St. Clair, Macomb, and Livingston Counties SEMCOG CONTRACT:...

  17. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings

  18. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    Science.gov (United States)

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  19. Ultrasonic Beam Propagation in Highly Anisotropic Materials Simulated by Multi-Gaussian Beams

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo; Schmerr, Lester W.

    2007-01-01

    The necessity of nondestructively inspecting fiber-reinforced composites, austenitic steels, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface play key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasi longitudinal (qL) beam propagates in the symmetry plane of a transversely isotropic gr/ep composite. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions

  20. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  1. Wind turbine control applications of turbine-mounted LIDAR

    International Nuclear Information System (INIS)

    Bossanyi, E A; Kumar, A; Hugues-Salas, O

    2014-01-01

    In recent years there has been much interest in the possible use of LIDAR systems for improving the performance of wind turbine controllers, by providing preview information about the approaching wind field. Various potential benefits have been suggested, and experimental measurements have sometimes been used to claim surprising gains in performance. This paper reports on an independent study which has used detailed analytical methods for two main purposes: firstly to try to evaluate the likely benefits of LIDAR-assisted control objectively, and secondly to provide advice to LIDAR manufacturers about the characteristics of LIDAR systems which are most likely to be of value for this application. Many different LIDAR configurations were compared: as a general conclusion, systems should be able to sample at least 10 points every second, reasonably distributed around the swept area, and allowing a look-ahead time of a few seconds. An important conclusion is that the main benefit of the LIDAR will be to enhance of collective pitch control to reduce thrust-related fatigue loads; there is some indication that extreme loads can also be reduced, but this depends on other considerations which are discussed in the paper. LIDAR-assisted individual pitch control, optimal C p tracking and yaw control were also investigated, but the benefits over conventional methods are less clear

  2. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    Science.gov (United States)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  3. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...

  4. Brewster-angle 50%-50% beam splitter for p-polarized infrared light using a high-index quarter-wave layer deposited on a low-index prism.

    Science.gov (United States)

    Azzam, R M A

    2017-08-10

    A quarter-wave layer (QWL) of high refractive index, which is deposited on a transparent prism of low refractive index, can be designed to split an incident p-polarized light beam at the Brewster angle (BA) of the air-substrate interface into p-polarized reflected and transmitted beams of equal intensity (50% each) that travel in orthogonal directions. For reflection of p-polarized light at the BA, the supported QWL functions as a free-standing (unsupported) pellicle. An exemplary design is presented that uses Si x Ge 1-x QWL deposited on an IRTRAN1 prism for applications (such as Michelson and Mach-Zehnder interferometry) with a variable compositional fraction x in the 2-6 μm mid-IR spectral range.

  5. Lidar sounding of volcanic plumes

    Science.gov (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  6. Influence of ion beam and geometrical parameters on properties of Si thin films grown by Ar ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, Carsten; Feder, Rene; Neumann, Horst [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Leipzig (Germany)

    2012-07-01

    Ion beam sputtering (IBS) offers, in contrast to other physical vapour deposition techniques, such as magnetron sputtering or electron beam evaporation, the opportunity to change the properties of the layer forming particles (sputtered and scattered particles) by varying ion beam parameters (ion species, ion energy) and geometrical parameters (ion incidence angle, emission angle). Consequently, these effects can be utilized to tailor thin film properties [1]. The goal is to study systematically the correlations between the primary and secondary parameters and, at last, the effects on the properties of Si thin films, such as optical properties, stress, surface topography and composition. First experimental results are presented for Ar-ion sputtering of Si.

  7. Determination of Proton dose distal fall-off location by detecting right-angled prompt gamma rays

    International Nuclear Information System (INIS)

    Seo, Kyu Seok

    2006-02-01

    The proton beam has a unique advantage over the electron and photon beams in that it can give very high radiation dose to the tumor volume while effectively sparing the neighboring healthy tissue and organs. The number of proton therapy facility is very rapidly increasing in the world. And now the 230 MeV cyclotron facility for proton therapy is constructing at National Cancer Center, this facility until 2006. The distal fall-off location of proton beam is simply calculated by analytical method, but this method has many uncertain when anatomical structure is very complicated. It is very important to know the exact position of the proton beam distal fall-off, or beam range, in the patient's body for both the safety of the patient and the effectiveness of the treatment itself. In 2003, Stichelbaut and Jongen reported the possibility of using the right-angled prompt gamma rays, which are emitted at 90 .deg. from the incident proton beam direction, to determine the position of the proton beam distal fall-off. They studied the interactions of the protons and other secondary particles in a water phantom and concluded that there is a correlation between the position of the distal fall-off and the distribution of the right-angled prompt gamma rays. We have recently designed a prompt gamma scanning system to measure the proton range in situ by using Monte Carlo technique employing MCNPX, FLUKA, and Sabrina TM . The prompt gamma scanning system was designed to measure only the right-angled prompt gamma rays passing through a narrow collimation hole in order to correlate the position with the dose distribution. The collimation part of the scanning system, which has been constructed to measure the gamma rays at 70 MeV of proton energy, is made of a set of paraffin, boron carbide, and lead layers to shield the high-energy neutrons and secondary photons. After the different proton energies and SOBP beam widths are irradiated at the water phantom. we detected prompt gamma at 5 cm

  8. Lidar investigations of atmospheric aerosols over Sofia

    International Nuclear Information System (INIS)

    Dreischuh, T.; Deleva, A.; Peshev, Z.; Grigorov, I.; Kolarov, G.; Stoyanov, D.

    2016-01-01

    An overview is given of the laser remote sensing of atmospheric aerosols and related processes over the Sofia area performed in the Institute of Electronics, Bulgarian Academy of Sciences, during the last three years. Results from lidar investigations of the optical characteristics of atmospheric aerosols obtained in the frame of the European Aerosol Research Lidar Network, as well as from the lidar mapping of near-surface aerosol fields for remote monitoring of atmospheric pollutants are presented and discussed in this paper.

  9. Automotive Radar and Lidar Systems for Next Generation Driver Assistance Functions

    Directory of Open Access Journals (Sweden)

    R. H. Rasshofer

    2005-01-01

    Full Text Available Automotive radar and lidar sensors represent key components for next generation driver assistance functions (Jones, 2001. Today, their use is limited to comfort applications in premium segment vehicles although an evolution process towards more safety-oriented functions is taking place. Radar sensors available on the market today suffer from low angular resolution and poor target detection in medium ranges (30 to 60m over azimuth angles larger than ±30°. In contrast, Lidar sensors show large sensitivity towards environmental influences (e.g. snow, fog, dirt. Both sensor technologies today have a rather high cost level, forbidding their wide-spread usage on mass markets. A common approach to overcome individual sensor drawbacks is the employment of data fusion techniques (Bar-Shalom, 2001. Raw data fusion requires a common, standardized data interface to easily integrate a variety of asynchronous sensor data into a fusion network. Moreover, next generation sensors should be able to dynamically adopt to new situations and should have the ability to work in cooperative sensor environments. As vehicular function development today is being shifted more and more towards virtual prototyping, mathematical sensor models should be available. These models should take into account the sensor's functional principle as well as all typical measurement errors generated by the sensor.

  10. Negative ion beam processes

    International Nuclear Information System (INIS)

    Hayward, T.D.; Lawrence, G.P.; Bentley, R.F.; Malanify, J.J.; Jackson, J.A.

    1975-06-01

    Los Alamos Scientific Laboratory fiscal year 1975 work on production of intense, very bright, negative hydrogen (H - ), ion beams and conversion of a high-energy (a few hundred MeV) negative beam into a neutral beam are described. The ion source work has used a cesium charge exchange source that has produced H - ion beams greater than or equal to 10 mA (about a factor of 10 greater than those available 1 yr ago) with a brightness of 1.4 x 10 9 A/m 2 -rad 2 (about 18 times brighter than before). The high-energy, neutral beam production investigations have included measurements of the 800-MeV H - -stripping cross section in hydrogen gas (sigma/sub -10/, tentatively 4 x 10 -19 cm 2 ), 3- to 6-MeV H - -stripping cross sections in a hydrogen plasma (sigma/sub -10/, tentatively 2 to 4 x 10 -16 cm 2 ), and the small-angle scattering that results from stripping an 800-MeV H - ion beam to a neutral (H 0 ) beam in hydrogen gas. These last measurements were interrupted by the Los Alamos Meson Physics Facility shutdown in December 1974, but should be completed early in fiscal year 1976 when the accelerator resumes operation. Small-angle scattering calculations have included hydrogen gas-stripping, plasma-stripping, and photodetachment. Calculations indicate that the root mean square angular spread of a 390-MeV negative triton (T - ) beam stripped in a plasma stripper may be as low as 0.7 μrad

  11. Beam diagnostics using transition radiation produced by a 100 Mev electron beam

    International Nuclear Information System (INIS)

    Jablonka, M.; Leroy, J.; Hanus, X.; Derost, J.C.; Wartski, L.

    1991-01-01

    We report on several experiments using the optical transition radiation (OTR) produced by a 100 MeV electron beam. In using a sensitive video camera coupled with a digital image processing system an accurate and simple beam profile monitor has been devised. In measuring with a photo-multiplier the radiation emitted in a small solid angle around the direction of the OTR emission, a signal very sensitive to beam energy variations has been obtained. These experiments have been carried out on the Saclay ALS linac

  12. A user friendly Lidar system based on LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Mats; Weibring, P.

    1996-09-01

    Mobile differential absorption lidar (DIAL) systems have been used for the last two decades. The lidar group in Lund has performed many DIAL measurements with a mobile lidar system which was first described in 1987. This report describes how that system was updated with the graphical programming language LabVIEW in order to get a user friendly system. The software controls the lidar system and analyses measurement data. The measurement results are shown as maps of species concentration. New electronics to support the new lidar program have also been installed. The report describes how all supporting electronics and the program work. A user manual for the new program is also given. 19 refs, 79 figs, 23 charts

  13. Triple-Pulse Integrated Path Differential Absorption Lidar for Carbon Dioxide Measurement - Novel Lidar Technologies and Techniques with Path to Space

    Science.gov (United States)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  14. 2008 St. Johns County, FL Countywide Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne terrestrial LiDAR was collected for St. Johns County, FL. System Parameters/Flight Plan. The LiDAR system acquisition parameters were developed based on a...

  15. 2015 Oregon Department Forestry Lidar: Northwest OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GeoTerra, Inc. was selected by Oregon Department of Forestry to provide Lidar remote sensing data including LAZ files of the classified Lidar points and surface...

  16. Power curve measurement with a nacelle mounted lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Friis Pedersen, Troels; Courtney, Michael

    2014-01-01

    is tested. A pulsed lidar prototype, measuring horizontally, was installed on the nacelle of a multi-megawatt wind turbine. A met mast with a top-mounted cup anemometer standing at two rotor diameters in front of the turbine was used as a reference. After a data-filtering step, the comparison of the 10 min......Nacelle-based lidars are an attractive alternative to conventional mast base reference wind instrumentation where the erection of a mast is expensive, for example offshore. In this paper, the use of this new technology for the specific application of wind turbine power performance measurement...... in wind speed measurements. A lower scatter in the power curve was observed for the lidar than for the mast. Since the lidar follows the turbine nacelle as it yaws, it always measures upwind. The wind measured by the lidar therefore shows a higher correlation with the turbine power fluctuations than...

  17. LIDAR and atmosphere remote sensing [DST Space Science Initiatives

    CSIR Research Space (South Africa)

    Venkataraman, S

    2009-04-01

    Full Text Available Energy Source included in the measurement. Slide 2 © CSIR 2008 www.csir.co.za The observer can control the source Eg. Radar, Lidar, Sodar, Sonar etc. (b) Passive remote sensors. Energy source is not included in the measurement... Instrument Passive Slide 3 © CSIR 2008 www.csir.co.za Active LiDAR Principle • LIDAR (Light Detection and Ranging) • LiDAR employs a laser as a source of pulsed energy • Lasers are advantageous because – checkbld Monochromatic...

  18. Self-healing of Bessel-like beams with longitudinally dependent cone angles

    CSIR Research Space (South Africa)

    Litvin, I

    2015-09-01

    Full Text Available non-diffracting propagation region. Here we show that such beams can self-heal. Moreover, in contrast to Bessel beams where the self-healing distance is constant, here the self-healing distance is dependent on where the obstruction is placed...

  19. 2009 Bayfield County Lake Superior Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LIDAR survey presents digital elevation data sets of a bald earth surface model and 2ft interval contours covering Bayfield County, Wisconsin. The LIDAR data was...

  20. 2007 South Carolina DNR Lidar: Dorchester County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Woolpert Inc. conducted a LiDAR survey to acquire LiDAR capable of producing a DEM for orthophoto rectification and able to support 2-foot contour specifications....

  1. The value of Doppler LiDAR systems to monitor turbulence intensity during storm events in order to enhance aviation safety in Iceland

    Science.gov (United States)

    Yang, Shu; Nína Petersen, Guðrún; Finger, David C.

    2017-04-01

    Turbulence and wind shear are a major natural hazards for aviation safety in Iceland. The temporal and spatial scale of atmospheric turbulence is very dynamic, requiring an adequate method to detect and monitor turbulence with high resolution. The Doppler Light Detection and Ranging (LiDAR) system can provide continuous information about the wind field using the Doppler effect form emitted light signals. In this study, we use a Leosphere Windcube 200s LiDAR systems stationed near Reykjavik city Airport and at Keflavik International Airport, Iceland, to evaluate turbulence intensity by estimating eddy dissipation rate (EDR). For this purpose, we retrieved radial wind velocity observations from Velocity Azimuth Display (VAD) scans (360°scans at 15° and 75° elevation angle) to compute EDR. The method was used to monitor and characterize storm events in fall 2016 and the following winter. The preliminary result reveal that the LiDAR observations can detect and quantify atmospheric turbulence with high spatial and temporal resolution. This finding is an important step towards enhanced aviation safety in subpolar climate characterized by sever wind turbulence.

  2. 2015 OLC FEMA Lidar: Snake River, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Snake River FEMA study area. This study area is located...

  3. 2007 South Carolina DNR Lidar: Anderson County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LiDAR data acquisition was executed in 5 sessions, from March 7 to March 9, 2007. The airborne GPS (ABGPS) base stations supporting the LiDAR acquisition...

  4. 2011 South Carolina DNR Lidar: York County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,500 square miles in York, Pickens, Anderson, and Oconee Counties in South Carolina. This metadata covers the LiDAR produced...

  5. 2012 NRCS-USGS Tupelo, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  6. RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2016-01-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  7. Relativistic Doppler Beaming and Misalignments in AGN Jets

    Science.gov (United States)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  8. Gluing for Raman lidar systems using the lamp mapping technique.

    Science.gov (United States)

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.

  9. 2013-2014 USGS Lidar: Olympic Peninsula (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS Olympic Peninsula Washington LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD00849...

  10. 2015 OLC Lidar DEM: Big Wood, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Big Wood 2015 study area. This study area is located in...

  11. Elevation - LiDAR Survey - Roseau County, Minnesota

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LIDAR Data for Roseau County Minnesota. This project consists of approximately 87 square miles of LIDAR mapping in Roseau County, Minnesota at two sites: area 1,...

  12. A method of directly extracting multiwave angle-domain common-image gathers

    Science.gov (United States)

    Han, Jianguang; Wang, Yun

    2017-10-01

    Angle-domain common-image gathers (ADCIGs) can provide an effective way for migration velocity analysis and amplitude versus angle analysis in oil-gas seismic exploration. On the basis of multi-component Gaussian beam prestack depth migration (GB-PSDM), an alternative method of directly extracting multiwave ADCIGs is presented in this paper. We first introduce multi-component GB-PSDM, where a wavefield separation is proceeded to obtain the separated PP- and PS-wave seismic records before migration imaging for multiwave seismic data. Then, the principle of extracting PP- and PS-ADCIGs using GB-PSDM is presented. The propagation angle can be obtained using the real-value travel time of Gaussian beam in the course of GB-PSDM, which can be used to calculate the incidence and reflection angles. Two kinds of ADCIGs can be extracted for the PS-wave, one of which is P-wave incidence ADCIGs and the other one is S-wave reflection ADCIGs. In this paper, we use the incident angle to plot the ADCIGs for both PP- and PS-waves. Finally, tests of synthetic examples show that the method introduced here is accurate and effective.

  13. Pair creation at large inherent angles

    International Nuclear Information System (INIS)

    Chen, P.; Tauchi, T.; Schroeder, D.V.

    1992-01-01

    In the next-generation linear colliders, the low-energy e + e - pairs created during the collision of high-energy e + e - beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al. At energies where the beamstrahlung parameter Υ lies approximately in the range 0.6 approx-lt Υ approx-lt 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. Since the central issue is the transverse momentum for particles with large angles, the authors notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. In this paper they reinvestigate the problem, following essentially the same equivalent photon approach, but with changes in specific details including the virtual photon spectrum. In addition, various assumptions are made more explicit. The formulas derived are then applied to the collider parameters designed by Palmer

  14. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    Science.gov (United States)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-03-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  15. 2012-2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Hoh River Watershed, Washington (Deliveries 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Hoh River watershed survey area for the Puget Sound LiDAR Consortium and the...

  16. Detecting wind turbine wakes with nacelle lidars

    DEFF Research Database (Denmark)

    Held, D. P.; Larvol, A.; Mann, Jakob

    2017-01-01

    variance is used as a detection parameter for wakes. A one month long measurement campaign, where a continuous-wave lidar on a turbine has been exposed to multiple wake situations, is used to test the detection capabilities. The results show that it is possible to identify situation where a downstream...... turbine is in wake by comparing the peak widths. The used lidar is inexpensive and brings instalments on every turbine within economical reach. Thus, the information gathered by the lidars can be used for improved control at wind farm level....

  17. Dickinson County, MI LIDAR_LAS_1.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:(NRCS) Dickinson County, MI LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G12PD00721 Woolpert...

  18. The analysis of nano structures based on small angle scattering of neutrons

    International Nuclear Information System (INIS)

    Len, Adel; Fuzi, Janos; Rosta, Laszlo; Harmat, Peter

    2014-01-01

    The paper describes the technology of small angle neutron scattering from neutron beam cooling to beam focusing and image processing. The applicability of the method is illustrated by sodium bubble analysis in tungsten, and investigation of the the effect of microbial transglutamase on casein micellas.

  19. 2005 Mississippi Merged LiDAR Data (2005 LiDAR data merged with 2005 Post-Katrina LiDAR data to create a bare-earth product for flood plain mapping in coastal Mississippi).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pre- and post-hurricane Katrina LiDAR datasets of Hancock, Harrison, and Jackson Counties, MS, were merged into a seamless coverage by URS. The pre-Katrina LiDAR...

  20. Three types of planar structure microspring electro-thermal actuators with insulating beam constraints

    Science.gov (United States)

    Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-08-01

    A new concept of using an electrically insulating beam as a constraint is proposed to construct planar spring-like electro-thermal actuators with large displacements. On the basis of this concept, three types of microspring actuators with multi-chevron structures and constraint beams are introduced. The constraint beams in one type (the spring) of these devices are horizontally positioned to restrict the expansion of the active arms in the x-direction, and to produce a displacement in the y-direction only. In the other two types of actuators (the deflector and the contractor), the constraint beams are positioned parallel to the active arms. When the constraint beams are on the inner side of the active arms, the actuator produces an outward deflection in the y-direction. When they are on the outside of the active arms, the actuator produces an inward contraction. Finite-element analysis was used to model the performances. The simulation shows that the displacements of these microspring actuators are all proportional to the number of the chevron sections in series, thus achieving superior displacements to alternative actuators. The displacement of a spring actuator strongly depends on the beam angle, and decreases with increasing the beam angle, the deflector is insensitive to the beam angle, while the displacement of a contractor actuator increases with the beam angle.

  1. EUV beam splitter for use in the wavelength region around 6 nm

    International Nuclear Information System (INIS)

    Takenaka, Hisataka; Ichimaru, Satoshi; Gullikson, E.M.

    2005-01-01

    Extreme ultraviolet (EUV) beam splitters for use at a wavelength of around 6 nm were fabricated. The designs were optimized for Cr/C multilayers and incident angles of 45 deg. and 80 deg. . Measurements revealed the reflectivity of a Cr/C beam splitter to be 3.3% and the transmittance to be 5.6% at a wavelength of 6.36 nm and an incident angle of 45 deg. . The reflectivity of a Cr/C beam splitter was 5.8% and the transmittance was 6.6% at a wavelength of 6.15 nm and an incident angle of 80 deg.

  2. NASA ESTO Lidar Technologies Investment Strategy: 2016 Decadal Update

    Science.gov (United States)

    Valinia, Azita; Komar, George J.; Tratt, David M.; Lotshaw, William T.; Gaab, Kevin M.

    2017-01-01

    The NASA Earth Science Technology Office (ESTO) recently updated its investment strategy in the area of lidar technologies as it pertains to NASA's Earth Science measurement goals in the next decade. The last ESTO lidar strategy was documented in 2006. The current (2016) report assesses the state-of-the-art in lidar technologies a decade later. Lidar technology maturation in the past decade has been evaluated, and the ESTO investment strategy is updated and laid out in this report according to current NASA Earth science measurement needs and new emerging technologies.

  3. 2006 South Carolina DNR Lidar: Aiken County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LiDAR data acquisition was executed in five sessions, on March 15, 16 & 17, 2006, using a Leica ALS50 LiDAR System. Specific details about the ALS50 system...

  4. Operating experience with high beam currents and transient beam loading in the SLC damping rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Akre, R.; Krejcik, P.; Siemann, R.H.

    1995-01-01

    During the 1994 SLC run the nominal operating intensity in the damping rings was raised from 3.5 x 10 10 to greater than 4 x 10 10 particles per bunch (ppb). Stricter regulation of rf system parameters was required to maintain stability of the rf system and particle beam. Improvements were made in the feedback loops which control the cavity amplitude and loading angles. Compensation for beam loading was also required to prevent klystron saturation during repetition rate changes. To minimize the effects of transient loading on the rf system, the gain of the direct rf feedback loop and the loading angles were optimized

  5. NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Lidar Atmospheric Sensing Experiment (LASE) system using the DIAL (Differential Absorption Lidar) system was operated during the NASA African Monsoon...

  6. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  7. Processing LiDAR Data to Predict Natural Hazards

    Science.gov (United States)

    Fairweather, Ian; Crabtree, Robert; Hager, Stacey

    2008-01-01

    ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.

  8. Incident-angle dependency found in track formation sensitivity of a plastic nuclear track detector (TD-1)

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    1999-01-01

    The present study was done since data are hardly available on the incident-angle dependency of track formation sensitivity (S) of the plastic nuclear track detector. Chips of a TD-1 plate, an antioxidant-doped CR-39 (diethyleglycol-bis-allylcarbonate, HARZLAS, Fukuvi Chem. Ind.), were used as a high-LET radiation detector and were exposed to heavy ion beams of C, Ne, and Si under different incident angles in Heavy Ion Medical Accelerator in Chiba of National Institute of Radiological Sciences. After exposed and etched, the chips were observed with an optical microscope and a program for image analysis to calculate S. The S values calculated were found smaller for the beams having lower incident angles. Thus the estimated LET values from the S-LET relationship for vertical incident beams showed large reduction for low-angle particles. Those potential errors should be quantified and corrected in determination of LET spectra in space. (K.H.)

  9. Forest Biomass Mapping From Lidar and Radar Synergies

    Science.gov (United States)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  10. Development of a Dynamic Lidar Uncertainty Framework

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clifton, Andrew [WindForS; Bonin, Timothy [CIRES/NOAA ESRL; Choukulkar, Aditya [CIRES/NOAA ESRL; Brewer, W. Alan [NOAA ESRL; Delgado, Ruben [University of Maryland Baltimore County

    2017-08-07

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote-sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote-sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote-sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards for quantifying remote sensing device uncertainty for power performance testing consider uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device and are generally fixed, leading to climatic uncertainty values that apply to the entire measurement campaign. However, real-world experience and a consideration of the fundamentals of the measurement process have shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we describe the development of a new dynamic lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from a field measurement site to assess the ability of the framework to predict

  11. GRIP LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lidar Atmospheric Sensing Experiment (LASE) dataset was collected by NASA's Lidar Atmospheric Sensing Experiment (LASE) system, which is an airborne...

  12. Wind Ressources in Complex Terrain investigated with Synchronized Lidar Measurements

    Science.gov (United States)

    Mann, J.; Menke, R.; Vasiljevic, N.

    2017-12-01

    The Perdigao experiment was performed by a number of European and American universities in Portugal 2017, and it is probably the largest field campaign focussing on wind energy ressources in complex terrain ever conducted. 186 sonic anemometers on 50 masts, 20 scanning wind lidars and a host of other instruments were deployed. The experiment is a part of an effort to make a new European wind atlas. In this presentation we investigate whether scanning the wind speed over ridges in this complex terrain with multiple Doppler lidars can lead to an efficient mapping of the wind resources at relevant positions. We do that by having pairs of Doppler lidars scanning 80 m above the ridges in Perdigao. We compare wind resources obtained from the lidars and from the mast-mounted sonic anemometers at 80 m on two 100 m masts, one on each of the two ridges. In addition, the scanning lidar measurements are also compared to profiling lidars on the ridges. We take into account the fact that the profiling lidars may be biased due to the curvature of the streamlines over the instrument, see Bingol et al, Meteorolog. Z. vol. 18, pp. 189-195 (2009). We also investigate the impact of interruptions of the lidar measurements on the estimated wind resource. We calculate the relative differences of wind along the ridge from the lidar measurements and compare those to the same obtained from various micro-scale models. A particular subject investigated is how stability affects the wind resources. We often observe internal gravity waves with the scanning lidars during the night and we quantify how these affect the relative wind speed on the ridges.

  13. Evaluating lidar point densities for effective estimation of aboveground biomass

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  14. Four-wavelength lidar evaluation of particle characteristics and aerosol densities

    Science.gov (United States)

    Uthe, E. E.; Livingston, J. M.; Delateur, S. A.; Nielsen, N. B.

    1985-06-01

    The SRI International four-wavelength (0.53, 1.06, 3.8, 10.6 micron) lidar systems was used during the SNOW-ONE-B and Smoke Week XI/SNOW-TWO field experiments to validate its capabilities in assessing obscurant optical and physical properties. The lidar viewed along a horizontal path terminated by a passive reflector. Data examples were analyzed in terms of time-dependent transmission, wavelength dependence of optical depth, and range-resolved extinction coefficients. Three methods were used to derive extinction data from the lidar signatures. These were target method, Klett method and experimental data method. The results of the field and analysis programs are reported in the journal and conference papers that are appended to this report, and include: comparison study of lidar extinction methods, submitted to applied optics, error analysis of lidar solution techniques for range-resolved extinction coefficients based on observational data, smoke/obscurants symposium 9, Four--Wavelength Lidar Measurements from smoke week 6/SNOW-TWO, smoke/obscurants symposium 8, SNOW-ONE-B multiple-wavelength lidar measurements. Snow symposium 3, and lidar applications for obscurant evaluations, smoke/obscurants Symposium 7. The report also provides a summary of background work leading to this project, and of project results.

  15. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available using state of the art Light Detection And Ranging (LiDAR) instrumentation and other active and passive remote sensing tools. First “Lidar Field Campaign” • 2-day measurement campaign at University of Pretoria • First 23-hour continuous measurement... head2rightCirrus cloud morphology and dynamics. Atmospheric Research in Southern Africa and Indian Ocean (ARSAIO) Slide 24 © CSIR 2008 www.csir.co.za Middle atmosphere dynamics and thermal structure: comparative studies from...

  16. Underwater lidar system: design challenges and application in pollution detection

    Science.gov (United States)

    Gupta, Pradip; Sankolli, Swati; Chakraborty, A.

    2016-05-01

    The present remote sensing techniques have imposed limitations in the applications of LIDAR Technology. The fundamental sampling inadequacy of the remote sensing data obtained from satellites is that they cannot resolve in the third spatial dimension, the vertical. This limits our possibilities of measuring any vertical variability in the water column. Also the interaction between the physical and biological process in the oceans and their effects at subsequent depths cannot be modeled with present techniques. The idea behind this paper is to introduce underwater LIDAR measurement system by using a LIDAR mounted on an Autonomous Underwater Vehicle (AUV). The paper introduces working principles and design parameters for the LIDAR mounted AUV (AUV-LIDAR). Among several applications the papers discusses the possible use and advantages of AUV-LIDAR in water pollution detection through profiling of Dissolved Organic Matter (DOM) in water bodies.

  17. Quantifying TOLNet Ozone Lidar Accuracy During the 2014 DISCOVER-AQ and FRAPPE Campaigns

    Science.gov (United States)

    Wang, Lihua; Newchurch, Michael J.; Alvarez, Raul J., II; Berkoff, Timothy A.; Brown, Steven S.; Carrion, William; De Young, Russell J.; Johnson, Bryan J.; Ganoe, Rene; Gronoff, Guillaume; hide

    2017-01-01

    The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry Experiment (FRAPPA) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than +/-15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than +/-5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts.

  18. Review of linear collider beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, P.

    1989-01-01

    Three major effects from the interaction of e + e/sup /minus// beams---disruption, beamstrahlung, and electron-positron pair creation---are reviewed. For the disruption effects we discuss the luminosity enhancement factor, the maximum and rms disruption angles, and the ''kink instability''. All the results are obtained from computer simulations. Scaling laws for the numerical results and theoretical explanations of the computer acquired phenomena are offered wherever possible. For the beamstrahlung effects we concentrate only on the final electron energy spectrum resulting from multiple photon radiation process, and the deflection angle associated with low energy particles. For the effects from electron-positron pair creation, both coherent and incoherent processes of beamstrahlung pair creation are discussed. In addition to the estimation on total number of such pairs, we also look into the energy spectrum and the deflection angle. 17 refs., 23 figs., 1 tab

  19. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  20. Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi; Shimidzu, Naoki; Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro

    2011-09-01

    To improve the recording density of angle-multiplexed holographic memory, it is effective to increase the numerical aperture of the lens and to shorten the wavelength of the laser source as well as to increase the multiplexing number. The angular selectivity of a hologram, which determines the multiplexing number, is dependent on the incident angle of not only the reference beam but also the signal beam to the holographic recording medium. The actual signal beam, which is a convergent or divergent beam, is regarded as the sum of plane waves that have different propagation directions, angular selectivities, and optimal angular spacings. In this paper, focusing on the differences in the optimal angular spacing, we proposed a method to control the angular spacing for each segmented data page. We investigated the angular selectivity of a hologram and crosstalk for segmented data pages using numerical simulation. The experimental results showed a practical bit-error rate on the order of 10-3.