WorldWideScience

Sample records for lhc discovery potential

  1. Commissioning of the ATLAS electromagnetic calorimeter and Z' → e+e- discovery potential in the first LHC data

    International Nuclear Information System (INIS)

    Mangeard, P.S.

    2009-07-01

    After about fifteen years of development, the ATLAS detector is ready to operate and it recorded, in 2008, several millions of cosmic events as well as first LHC data. This achievement is based on the long experience of beam tests and on the large effort towards the detector in situ commissioning undertaken by the ATLAS collaboration. This promises fast ability to perform searches for evidence of the Higgs boson and new physics. I heavily contributed to the in situ commissioning of the electromagnetic calorimeter. To verify its performance, I studied the first cosmic data taken in 2006 which allowed the first in situ analysis of dead channels, energy reconstruction and detector response uniformity. This participation to the commissioning has continued with the study of the single beam data recorded during the first week of LHC operation (Sept. 2008). Expanding on my expertise of the electromagnetic calorimeter, I focused my physics analysis, prepared with simulation, on the promising discovery potential of new physics at LHC via the di-electron/di-photon decay of new heavy gauge boson in the early LHC data (the first 100 pb -1 ). Possible limitations coming from early hardware problems or imperfect electron energy calibration in first data have been estimated. According to the new schedule of LHC operation, this analysis will be possible with 10 TeV pp collisions data in 2010. (author)

  2. Top partner discovery in the T→tZ channel at the LHC

    International Nuclear Information System (INIS)

    Reuter, Juergen; Tonini, Marco

    2014-09-01

    In this paper we study the discovery potential of the LHC run II for heavy vector-like top quarks in the decay channel to a top and a Z boson. Despite the usually smaller branching ratio compared to charged-current decays this channel is rather clean and allows a complete mass reconstruction of the heavy top. The latter is achieved in the fully hadronic top channel using boosted jet and jet substructure techniques. To be as model-independent as possible, a simplified model approach with only two free parameters has been applied. The results are presented in terms of parameter space regions for 3σ evidence or 5σ discovery for such new states in that channel.

  3. Physics potential and experimental challenges of the LHC luminosity upgrade

    CERN Document Server

    Gianotti, F.; Virdee, T.; Abdullin, S.; Azuelos, G.; Ball, A.; Barberis, D.; Belyaev, A.; Bloch, P.; Bosman, M.; Casagrande, L.; Cavalli, D.; Chumney, Pamela R.K.; Cittolin, S.; Dasu, S.; De Roeck, A.; Ellis, N.; Farthouat, P.; Fournier, D.; Hansen, J.B.; Hinchliffe, I.; Hohlfeld, M.; Huhtinen, M.; Jakobs, K.; Joram, C.; Mazzucato, F.; Mikenberg, G.; Miagkov, A.; Moretti, M.; Moretti, S.; Niinikoski, T.; Nikitenko, A.; Nisati, A.; Paige, F.; Palestini, S.; Papadopoulos, C.G.; Piccinini, F.; Pittau, R.; Polesello, G.; Richter-Was, E.; Sharp, P.; Slabospitsky, S.R.; Smith, W.H.; Stapnes, S.; Tonelli, G.; Tsesmelis, E.; Usubov, Z.; Vacavant, L.; van der Bij, J.; Watson, A.; Wielers, M.

    2005-01-01

    We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 10**35 cm-2s-1. The detector R&D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes

  4. Physics potential and experimental challenges of the LHC luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, F.; Ball, A.; Bloch, P.; Casagrande, L.; Cittolin, S.; Roeck, A. de; Ellis, N.; Farthouat, P.; Hansen, J.-B. [CERN, Experimental Physics Division, Geneva (Switzerland); Mangano, M.L. [CERN, Theoretical Physics Division, Geneva (Switzerland); Virdee, T. [CERN, Experimental Physics Division, Geneva (Switzerland); Imperial College, London (United Kingdom); Abdullin, S. [University of Maryland (United States); Azuelos, G. [University of Montreal, Group of Particle Physics, Montreal (Canada); Barberis, D. [Universita di Genova, Dipartimento di Fisica and INFN (Italy); Belyaev, A. [Florida State University, Tallahassee, FL (United States); Bosman, M. [IFAE, Barcelona (Spain); Cavalli, D. [INFN, Milano (Italy); Chumney, P.; Dasu, S. [Univ. of Wisconsin, Madison, WI (United States); Fournier, D. [LAL, Orsay (France); Hinchliffe, I.; Hohlfeld, M.; Huhtinen, M.; Jakobs, K.; Joram, C.; Mazzucato, F.; Mikenberg, G.; Miagkov, A.; Moretti, M.; Moretti, S.; Niinikoski, T.; Nikitenko, A.; Nisati, A.; Paige, F.; Palestini, S.; Papadopoulos, C.G.; Piccinini, F.; Pittau, R.; Polesello, G.; Richter-Was, E.; Sharp, P.; Slabospitsky, S.R.; Smith, W.H.; Stapnes, S.; Tonelli, G.; Tsesmelis, E.; Usubov, Z.; Vacavant, L.; Bij, J. van der; Watson, A.; Wielers, M.

    2004-02-01

    We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 10{sup 35} cm{sup -2}s{sup -1}. The detector R and D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes. (orig.)

  5. Statistics and Discoveries at the LHC (1/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  6. Statistics and Discoveries at the LHC (3/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  7. Statistics and Discoveries at the LHC (2/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  8. Statistics and Discoveries at the LHC (4/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  9. Early LHC physics studies What can be obtained before discoveries?

    CERN Document Server

    AUTHOR|(CDS)2068230

    2006-01-01

    The Large Hadron Collider will provide an unprecedented quantity of collision data right from the start-up. The challenge for the LHC experiments is the quick use of these data for the final commissioning of the detectors, including calibration, alignment, measuring of detector and trigger efficiencies. A new energy frontier will open up, and measurement of basic Standard Model processes will build a solid basement for any discovery studies.

  10. The Physics Landscape of the High Luminosity LHC

    CERN Document Server

    Mangano, M

    2015-01-01

    We review the status of HEP after the first run of the LHC and discuss the opportunities offered by the HL-LHC, in light of the needs for future progress that are emerging from the data. The HL-LHC will push to the systematic limit the precision of most measurements of the Higgs boson, and will be necessary to firmly establish some of the more rare decays foreseen by the Standard Model, such as the decays to dimuons and to a Z+ photon pair. The HL-LHC luminosity will provide additional statistics required by the quantitative study of any discovery the LHC may achieve during the first 300 inverse femtobarn, and will further extend the discovery potential of the LHC, particularly for rare, elusive or low-sensitivity processes.

  11. Is it SUSY? -first steps after an LHC discovery

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    A missing energy discovery is possible at the LHC in the first year of running. The origin of such a signal could be any of a huge number of models of supersymmetry, or non-supersymmetric models with extra dimensions or "little Higgs". Recently we have developed a realistic strategy to rapidly narrow the list of candidate theories at, or close to, the moment of discovery. The strategy is based on robust ratios of inclusive counts of simple physics objects. We studied specific cases showing discrimination of look- alike models in simulated data sets that are at least 10 to 100 times smaller than used in previous studies. We discriminate supersymmetry models from non-supersymmetric look-alikes with only 100 pb-1 of simulated data, using combinations of observables that trace back to differences in spin.

  12. Present status and future prospects for a Higgs boson discovery at the Tevatron and LHC

    International Nuclear Information System (INIS)

    Haber, Howard E

    2010-01-01

    Discovering the Higgs boson is one of the primary goals of both the Tevatron and the Large Hadron Collider (LHC). The present status of the Higgs search is reviewed and future prospects for discovery at the Tevatron and LHC are considered. This talk focuses primarily on the Higgs boson of the Standard Model and its minimal supersymmetric extension. Theoretical expectations for the Higgs boson and its phenomenological consequences are reviewed.

  13. Difficult scenarios for NMSSM Higgs discovery at the LHC

    International Nuclear Information System (INIS)

    Ellwanger, Ulrich; Gunion, John F.; Hugonie, Cyril

    2005-01-01

    We identify scenarios not ruled out by LEP data in which NMSSM Higgs detection at the LHC will be particularly challenging. We first review the 'no-lose' theorem for Higgs discovery at the LHC that applies if Higgs bosons do not decay to other Higgs bosons - namely, with L = 300 fb -1 , there is always one or more 'standard' Higgs detection channel with at least a 5σ signal. However, we provide examples of no-Higgs-to-Higgs cases for which all the standard signals are no larger than 7σ implying that if the available L is smaller or the simulations performed by ATLAS and CMS turn out to be overly optimistic, all standard Higgs signals could fall below 5σ even in the no-Higgs-to-Higgs part of NMSSM parameter space. In the vast bulk of NMSSM parameter space, there will be Higgs-to-Higgs decays. We show that when such decays are present it is possible for all the standard detection channels to have very small significance. In most such cases, the only strongly produced Higgs boson is one with fairly SM-like couplings that decays to two lighter Higgs bosons (either a pair of the lightest CP-even Higgs bosons, or, in the largest part of parameter space, a pair of the lightest CP-odd Higgs bosons). A number of representative bench-mark scenarios of this type are delineated in detail and implications for Higgs discovery at various colliders are discussed

  14. Gravitino LSP scneario at the LHC

    International Nuclear Information System (INIS)

    Heisig, Jan

    2010-05-01

    In this thesis we discuss the phenomenology of the gravitino LSP scenario at the large hadron collider (LHC) experiment. We concentrate on a long-lived stau NLSP which gives rise to a prominent signature in the LHC detector as a 'slow muon'. We discuss the production channels and compute the cross sections for direct production via the Drell-Yan process. On this basis we claim a conservative estimation of the discovery potential for this scenario at the LHC. (orig.)

  15. ATLAS discovery potential of the Standard Model Higgs boson

    CERN Document Server

    Weiser, C; The ATLAS collaboration

    2009-01-01

    The Standard Model of elementary particles is remarkably succesful in describing experimental data. The Higgs mechanism as the origin of electroweak symmetry breaking and mass generation, however, has not yet been confirmed experimentally. The search for the Higgs boson is thus one of the most important tasks of the ATLAS experiment at the Large Hadron Collider (LHC). This talk will present an overview of the potential of the ATLAS detector for the discovery of the Standard Model Higgs boson. Different production processes and decay channels -to cover a wide mass range- will be discussed.

  16. ATLAS Discovery Potential of the Standard Model Higgs Boson

    CERN Document Server

    Weiser, C; The ATLAS collaboration

    2010-01-01

    The Standard Model of elementary particles is remarkably succesful in describing experimental data. The Higgs mechanism as the origin of electroweak symmetry breaking and mass generation, however, has not yet been confirmed experimentally. The search for the Higgs boson is thus one of the most important tasks of the ATLAS experiment at the Large Hadron Collider (LHC). This talk will present an overview of the potential of the ATLAS detector for the discovery of the Standard Model Higgs boson. Different production processes and decay channels -to cover a wide mass range- will be discussed.

  17. Gravitino LSP scneario at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Heisig, Jan

    2010-06-15

    In this thesis we discuss the phenomenology of the gravitino LSP scenario at the large hadron collider (LHC) experiment. We concentrate on a long-lived stau NLSP which gives rise to a prominent signature in the LHC detector as a 'slow muon'. We discuss the production channels and compute the cross sections for direct production via the Drell-Yan process. On this basis we claim a conservative estimation of the discovery potential for this scenario at the LHC. (orig.)

  18. Forward detectors around the CMS interaction point at LHC and their physics potential

    CERN Document Server

    Grothe, Monika

    2008-01-01

    Forward physics with CMS at the LHC covers a wide range of physics subjects, including very low-x QCD, underlying event and multiple interactions characteristics, gamma-mediated processes, shower development at the energy scale of primary cosmic ray interactions with the atmosphere, diffraction in the presence of a hard scale and even MSSM Higgs discovery in central exclusive production. We describe the forward detector instrumentation around the CMS interaction point and present selected feasibility studies to illustrate their physics potential.

  19. Difficult Scenarios for NMSSM Higgs Discovery at the LHC

    CERN Document Server

    Ellwanger, U; Hugonie, C; Ellwanger, Ulrich; Gunion, John F.; Hugonie, Cyril

    2005-01-01

    We identify scenarios not ruled out by LEP data in which NMSSM Higgs detection at the LHC will be particularly challenging. We first review the `no-lose' theorem for Higgs discovery at the LHC that applies if Higgs bosons do not decay to other Higgs bosons - namely, with L=300 fb^-1, there is always one or more `standard' Higgs detection channel with at least a 5 sigma signal. However, we provide examples of no-Higgs-to-Higgs cases for which all the standard signals are no larger than 7 sigma implying that if the available L is smaller or the simulations performed by ATLAS and CMS turn out to be overly optimistic, all standard Higgs signals could fall below 5 sigma even in the no-Higgs-to-Higgs part of NMSSM parameter space. In the vast bulk of NMSSM parameter space, there will be Higgs-to-Higgs decays. We show that when such decays are present it is possible for all the standard detection channels to have very small significance. In most such cases, the only strongly produced Higgs boson is one with fairly S...

  20. Sbottom discovery via mixed decays at the LHC

    Science.gov (United States)

    Han, Tao; Su, Shufang; Wu, Yongcheng; Zhang, Bin; Zhang, Huanian

    2015-12-01

    In the search for the bottom squark (sbottom) in supersymmetry (SUSY) at the LHC, the common practice has been to assume a 100% decay branching fraction for a given search channel. In realistic minimal supersymmetric Standard Model scenarios, there are often more than one significant decay modes to be present, which significantly weaken the current sbottom search limits at the LHC. On the other hand, the combination of the multiple decay modes offers alternative discovery channels for sbottom searches. In this paper, we present the sbottom decays in a few representative mass parameter scenarios. We then analyze the sbottom signal for the pair production in QCD with one sbottom decaying via b ˜ →b χ10 , b χ20 , and the other one decaying via b ˜→t χ1±. With the gaugino subsequent decaying to gauge bosons or a Higgs boson χ20→Z χ10 , h χ10 and χ1±→W±χ10, we study the reach of those signals at the 14 TeV LHC with 300 fb-1 integrated luminosity. For a left-handed bottom squark, we find that a mass up to 920 GeV can be discovered at 5 σ significance for 250 GeV 0 ); similarly, it can be discovered up to 840 GeV, or excluded up to 900 GeV at the 95% confidence level for the Z channel (μ handed bottom squark with the b ˜ b˜ *→b χ10 , t χ1± channel, we find that the sbottom mass up to 880 GeV can be discovered at 5 σ significance, or excluded up to 1060 GeV at the 95% confidence level.

  1. Robust Tracking at the High Luminosity LHC

    CERN Document Server

    Woods, Natasha Lee; The ATLAS collaboration

    2018-01-01

    The High Luminosity LHC (HL-LHC) aims to increase the LHC data-set by an order of magnitude in order to increase its potential for discoveries. Starting from the middle of 2026, the HL-LHC is expected to reach the peak instantaneous luminosity of 7.5×10^34cm^-2s^-1 which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pileup, the current ATLAS Inner Detector will be replaced with a new all-silicon Inner Tracker. In this talk the expected performance of tracking and vertexing with the HL-LHC tracker is presented. Comparison is made to the performance with the Run2 detector. Ongoing developments of the track reconstruction for the HL-LHC are also discussed.

  2. Prospects for early discoveries at the LHC with dileptons, jets and no missing energy

    International Nuclear Information System (INIS)

    Ciaccio, A. di; Thompson, E.

    2009-01-01

    Final states with high p T leptons and jets, without missing energy, are predicted by several BSM models at the LHC, including LR symmetric models and Leptoquarks. The prospects for an early discovery of particles predicted by these models, using the ATLAS experiment, are discussed. These particles include in particular first and second generation leptoquarks, right-handed W and heavy neutrinos. (author)

  3. HL-LHC updates in Japan

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    At a recent meeting in Japan, updates on the High Luminosity LHC (HL-LHC) project were presented, including the progress made so far and the deadlines still to be met for the upgraded machine to be operational from 2020.   New magnets made with advanced superconductor Nb3Sn in the framework of the HL-LHC project. These magnets are currently under construction at CERN by the TE-MSC group. The LHC is the world’s most powerful particle accelerator, and in 2015 it will reach yet another new record for the energy of its colliding beams. One key factor of its discovery potential is its ability to produce collisions described in mathematical terms by the parameter known as “luminosity”. In 2025, the HL-LHC project will allow the total number of collisions in the LHC to increase by a factor of 10. The first step in this rich upgrade programme is the delivery of the Preliminary Design Report (PDR), which is also a key milestone of the HiLumi LHC Design Study partly fund...

  4. Prospects for discovery of single production of vector-like top quarks with the ATLAS detector at the LHC

    CERN Document Server

    AUTHOR|(CDS)2259461; García Navarro, José Enrique

    The project focuses on studying the expected sensitivity of discovery or exclusion of vector-like top quarks $T$ produced singly at the LHC in the decay channel $T \\rightarrow tZ$, with $Z \\rightarrow \

  5. Discovery of the Higgs boson by the ATLAS and CMS experiments at the LHC

    CERN Document Server

    Wang, HaiChen

    2014-01-01

    The Standard Model (SM) Higgs boson was predicted by theorists in the 1960s during the development of the electroweak theory. Prior to the startup of the CERN Large Hadron Collider (LHC), experimental searches found no evidence of the Higgs boson. In July 2012, the ATLAS and CMS experiments at the LHC reported the discovery of a new boson in their searches for the SM Higgs boson. Subsequent experimental studies have revealed the spin-0 nature of this new boson and found its couplings to SM particles consistent to those of a Higgs boson. These measurements confirmed the newly discovered boson is indeed a Higgs boson. More measurements will be performed to compare the properties of the Higgs boson with the SM predictions.

  6. Introduction to the HL-LHC Project

    CERN Document Server

    Rossi , L

    2015-01-01

    The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. It has been exploring the new energy frontier since 2010, gathering a global user community of 7,000 scientists. To extend its discovery potential, the LHC will need a major upgrade in the 2020s to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor of ten. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about ten years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 11–12 tesla superconducting magnets, very compact superconducting cavities for beam rotation with ultra-precise phase control, new technology for beam collimation and 300-meter-long high-power superconducting links with negligible energy dissipation. HL-LHC federa...

  7. Supersymmetry Breaking, Gauge Mediation, and the LHC

    International Nuclear Information System (INIS)

    Shih, David

    2015-01-01

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called 'General Gauge Mediation' (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.

  8. Final Technical Report for ``Paths to Discovery at the LHC : Dark Matter and Track Triggering"

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Kristian [Northwestern Univ., Evanston, IL (United States)

    2016-10-24

    Particle Dark Matter (DM) is perhaps the most compelling and experimentally well-motivated new physics scenario anticipated at the Large Hadron Collider (LHC). The DE-SC0014073 award allowed the PI to define and pursue a path to the discovery of Dark Matter in Run-2 of the LHC with the Compact Muon Solenoid (CMS) experiment. CMS can probe regions of Dark Matter phase-space that direct and indirect detection experiments are unable to constrain. The PI’s team initiated the exploration of these regions, searching specifically for the associated production of Dark Matter with top quarks. The effort focuses on the high-yield, hadronic decays of W bosons produced in top decay, which provides the highest sensitivity to DM produced via through low-mass spin-0 mediators. The group developed identification algorithms that achieve high efficiency and purity in the selection of hadronic top decays, and analysis techniques that provide powerful signal discrimination in Run-2. The ultimate reach of new physics searches with CMS will be established at the high-luminosity LHC (HL-LHC). To fully realize the sensitivity the HL-LHC promises, CMS must minimize the impact of soft, inelastic (“pileup”) interactions on the real-time “trigger” system the experiment uses for data refinement. Charged particle trajectory information (“tracking”) will be essential for pileup mitigation at the HL-LHC. The award allowed the PI’s team to develop firmware-based data delivery and track fitting algorithms for an unprecedented, real-time tracking trigger to sustain the experiment’s sensitivity to new physics in the next decade.

  9. Searches for the Higgs Boson with the ATLAS detector at the LHC

    International Nuclear Information System (INIS)

    Mazini, Rachid

    2007-01-01

    Searching for the Higgs boson lies at the heart of the physics program of the Large Hadron Collider (LHC). The prospects for Higgs searches with the ATLAS detector at the LHC are reviewed. The discovery potential of most prominent Higgs final states predicted by the Standard Model and the MSSM are reviewed. (Author)

  10. MSSM interpretations of the LHC discovery. Light or heavy Higgs?

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, P.; Stefaniak, T. [Bonn Univ. (Germany). Physikalisches Inst.; Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, O. [Stockholm Univ. (Sweden). The Oskar Klein Centre; Weiglein, G.; Zeune, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-11-15

    A Higgs-like particle with a mass of about 126 GeV has been discovered at the LHC. Within the experimental uncertainties, the measured properties of this new state are compatible with those of the Higgs boson in the Standard Model (SM). While not statistically significant at present, the results show some interesting patterns of deviations from the SM predictions, in particular a higher rate in the {gamma}{gamma} decay mode observed by ATLAS and CMS, and a somewhat smaller rate in the {tau}{sup +}{tau}{sup -} mode. The LHC discovery is also compatible with the predictions of the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM), interpreting the new state as either the light or the heavy CP-even MSSM Higgs boson. Within the framework of the MSSM with seven free parameters (pMSSM-7), we fit the various rates of cross section times branching ratio as measured by the LHC and Tevatron experiments under the hypotheses of either the light or the heavy CP-even Higgs boson being the new state around 126 GeV, with and without the inclusion of further lowenergy observables. We find an overall good quality of the fits, with the best fit points exhibiting an enhancement of the {gamma}{gamma} rate, as well as a small suppression of the b anti b and {tau}{sup +}{tau}{sup -} channels with respect to their SM expectations, depending on the details of the fit. For the fits including the whole data set the light CP-even Higgs interpretation in the MSSM results in a higher relative fit probability than the SM fit. On the other hand, we find that the present data also permit the more exotic interpretation in terms of the heavy CP-even MSSM Higgs, which could give rise to experimental signatures of additional Higgs states in the near future.

  11. Atlas electromagnetic calorimeter and electron reconstruction commissioning with the first LHC collision data: study of the W' -> eν heavy gauge boson discovery potential

    International Nuclear Information System (INIS)

    Kuna, M.

    2010-09-01

    ATLAS is a general purpose particle detector based at the Large Hadron Collider which has been delivering collisions since the beginning of 2010, with an energy in the center of mass of √(s) = 7 TeV. The electron and the discovery potential it carries is the subject of my thesis. The electromagnetic calorimeter is a crucial sub-detector for the measurement of electrons kinematic properties. In order to verify its functioning, I contributed to the first in situ data analysis, cosmic muons in 2008 and LHC beam data in 2009. These analyses showed the electromagnetic calorimeter was operational and efficient over its whole coverage. The knowledge of the electrons energy losses before they reach the calorimeter is mandatory to achieve precise measurements. For that purpose, I contributed to a method evaluating the amount of material upstream using Monte-Carlo simulations of high transverse momentum electrons. The information from the electrons allows the mapping of the material from the inner tracker to the calorimeter entrance. In 2009 and 2010, the LHC collisions at √(s) = 900 GeV and √(s) = 7 TeV collisions provided ATLAS with its first electron candidates and enabled the verification of their reconstruction performance. In this prospect, I compared the electron identification variables of data and simulation. Finally, I prepared the search for a charged heavy gauge boson W' decaying in an electron and a neutrino, using a calorimetry only definition of missing transverse energy in order to improve the method's robustness in the perspective of an early data analysis. (author)

  12. Tevatron-for-LHC Report: Preparations for Discoveries

    CERN Document Server

    Abdullin, Salavat; Asai, Shoji; Atramentov, Oleksiy Vladimirovich; Baer, Howard; Balazs, Csaba; Bartalini, Paolo; Belyaev, Alexander; Bernhard, Ralf Patrick; Birkedal, Andreas; Buescher, Volker; Cavanaugh, Richard; Chen, Mu-Chun; Clement, Christophe; Datta, AseshKrishna; de Boer, Ytsen R.; De Roeck, Albert; Dobrescu, Bogdan A.; Drozdetskiy, Alexey; Gershtein, Yuri S.; Glenzinski, Douglas A.; Group, Robert Craig; Heinemeyer, Sven; Heldmann, Michael; Hubisz, Jay; Karlsson, Martin; Kong, Kyoungchul; Korytov, Andrey; Kraml, Sabine; Krupovnickas, Tadas; Lafaye, Remi; Lane, Kenneth; Ledroit, Fabienne; Lehner, Frank; Lin, Cheng-Ju; Macesanu, Cosmin; Matchev, Konstantin T.; Menon, Arjun; Milstead, David; Mitselmakher, Guenakh; Morel, Julien; Morrissey, David; Mrenna, Steve; O'Farrill, Jorge; Pakhotin, Yu.; Perelstein, Maxim; Plehn, Tilman; Rainwater, David; Raklev, Are; Schmitt, Michael; Scurlock, Bobby; Sherstnev, Alexander; Skands, Peter Z.; Sullivan, Zack; Tait, Timothy M.P.; Tata, Xerxes; Torchiani, Ingo; Trocme, Benjamin; Wagner, Carlos; Weiglein, Georg; Zerwas, Dirk

    2006-01-01

    This is the "TeV4LHC" report of the "Physics Landscapes" Working Group, focused on facilitating the start-up of physics explorations at the LHC by using the experience gained at the Tevatron. We present experimental and theoretical results that can be employed to probe various scenarios for physics beyond the Standard Model.

  13. EU supports the LHC high-luminosity study

    CERN Document Server

    CERN Bulletin

    2011-01-01

    The design collision energy and luminosity of the LHC are already at record numbers, making the machine one of the most complex scientific instruments ever built. However, to extend its discovery potential even further, a major upgrade of the LHC will be required around 2020. This will increase its average luminosity by a factor of 5 to 10 beyond its design value. Fifteen worldwide institutions and the European Union are supporting the initial design phase of the project through the HiLumi LHC programme, whose kick-off meeting will take place on 16-18 November.   The CERN team that has successfully built and tested the Short Magnet Coil – a small 40 cm long magnet capable of producing a 12.5 T magnetic field. The upgrade of the LHC will require about 10 years of design, construction and implementation. The new machine configuration will be called “High Luminosity LHC” (HL-LHC). The similarly named “HiLumi LHC” is the EU programme that supports...

  14. Tevatron-for-LHC Report: Preparations for Discoveries

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, V.; Carena, Marcela S.; Dobrescu, Bogdan A.; Mrenna, S.; Rainwater, D.; Schmitt, M.

    2006-08-01

    This is the ''TeV4LHC'' report of the ''Physics Landscapes'' Working Group, focused on facilitating the start-up of physics explorations at the LHC by using the experience gained at the Tevatron. We present experimental and theoretical results that can be employed to probe various scenarios for physics beyond the Standard Model.

  15. High Luminosity LHC: challenges and plans

    Science.gov (United States)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  16. High Luminosity LHC: Challenges and plans

    International Nuclear Information System (INIS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.

    2016-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb 3 Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  17. Introduction to the HL-LHC Project

    Science.gov (United States)

    Rossi, L.; Brüning, O.

    The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. It has been exploring the new energy frontier since 2010, gathering a global user community of 7,000 scientists. To extend its discovery potential, the LHC will need a major upgrade in the 2020s to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor of ten. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about ten years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 11-12 tesla superconducting magnets, very compact superconducting cavities for beam rotation with ultra-precise phase control, new technology for beam collimation and 300-meter-long high-power superconducting links with negligible energy dissipation. HL-LHC federates efforts and R&D of a large community in Europe, in the US and in Japan, which will facilitate the implementation of the construction phase as a global project.

  18. From the LHC to Future Colliders

    DEFF Research Database (Denmark)

    De Roeck, A.; Ellis, J.; Grojean, C.

    2010-01-01

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300/fb of integrated luminosity, of the proposed sLHC luminosity up...

  19. Scalar-mediated double beta decay and LHC

    International Nuclear Information System (INIS)

    Gonzalez, L.; Helo, J.C.; Hirsch, M.; Kovalenko, S.G.

    2016-01-01

    The decay rate of neutrinoless double beta (0νββ) decay could be dominated by Lepton Number Violating (LNV) short-range diagrams involving only heavy scalar intermediate particles, known as “topology-II” diagrams. Examples are diagrams with diquarks, leptoquarks or charged scalars. Here, we compare the LNV discovery potentials of the LHC and 0νββ-decay experiments, resorting to three example models, which cover the range of the optimistic-pessimistic cases for 0νββ decay. We use the LHC constraints from dijet as well as leptoquark searches and find that already with 20/fb the LHC will test interesting parts of the parameter space of these models, not excluded by the current limits on 0νββ-decay.

  20. Scalar-mediated double beta decay and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, L. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso,Casilla 110-V, Valparaíso (Chile); Helo, J.C. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso,Casilla 110-V, Valparaíso (Chile); Departamento de Física, Facultad de Ciencias, Universidad de La Serena,Avenida Cisternas 1200, La Serena (Chile); Hirsch, M. [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València,Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Kovalenko, S.G. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso,Casilla 110-V, Valparaíso (Chile)

    2016-12-23

    The decay rate of neutrinoless double beta (0νββ) decay could be dominated by Lepton Number Violating (LNV) short-range diagrams involving only heavy scalar intermediate particles, known as “topology-II” diagrams. Examples are diagrams with diquarks, leptoquarks or charged scalars. Here, we compare the LNV discovery potentials of the LHC and 0νββ-decay experiments, resorting to three example models, which cover the range of the optimistic-pessimistic cases for 0νββ decay. We use the LHC constraints from dijet as well as leptoquark searches and find that already with 20/fb the LHC will test interesting parts of the parameter space of these models, not excluded by the current limits on 0νββ-decay.

  1. QCD-instantons at LHC. Theoretical aspects; QCD-Instantonen am LHC. Theoretische Aspekte

    Energy Technology Data Exchange (ETDEWEB)

    Petermann, M.

    2007-06-15

    Instantons are nonperturbative, topologically nontrivial field configurations, which occur in every nonabelian gauge theory. They can be understood as tunneling processes between topologically distinct vacua. Although being a basic theoretical aspect of the Standard Model, a direct experimental verification of instanton processes is still lacking. In this thesis the general discovery potential for QCD-instantons at the LHC is studied in detail by means of instanton perturbation theory. In this context the close correspondence between the leading instanton induced processes at HERA and at LHC becomes important. Essential aspects and differences to deep inelastic scattering can already be revealed by studying the simplest process. Based on these results inclusive cross sections are calculated including the emission of final state gluons. Compared to deep inelastic scattering, a large enhancement of the cross section is found. (orig.)

  2. LIGHT and LUMINOSITY, from Einstein to LHC

    CERN Multimedia

    CERN. Geneva; Prof. ROSSI, Lucio

    2015-01-01

    After an introduction on the concept of light in physics, this talk will focus on CERN’s High Luminosity LHC project, aiming at extending the discovery potential of CERN’s flagship accelerator by increasing its “luminosity” (ie the number of particles that can be squeezed inside the accelerator to maximize the number of collisions). To achieve this objective, many new technologies are being developed at CERN and many collaborating institutes worldwide, especially in the field of superconductivity. Lucio Rossi, the main speaker, is the head of the HL-LHC project, based at CERN. Giorgio Apollinari, Director for the LHC Accelerator Research Program (LARP) will speak through a videoconference from Fermilab (USA). The event is webcast live and will be followed by Fermilab and other institutes in the USA.

  3. Expected performance of tracking and vertexing with the HL-LHC ATLAS detector

    CERN Document Server

    Calace, Noemi; The ATLAS collaboration

    2018-01-01

    The High Luminosity LHC (HL-LHC) aims to increase the LHC data-set by an order of magnitude in order to increase its potential for discoveries. Starting from the middle of 2026, the HL-LHC is expected to reach the peak instantaneous luminosity of $7.5 \\cdot 10^{34} cm^{-2}s^{-1}$ which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pileup, the current ATLAS Inner Detector will be replaced with a new all-silicon Inner Tracker. In this talk the expected performance of tracking and vertexing with the HL-LHC tracker is presented. Comparison is made to the performance with the Run2 detector. Ongoing developments of the track reconstruction for the HL-LHC are also discussed.

  4. Current and expected performance of tracking and vertexing with the ATLAS detector at the LHC and the HL-LHC.

    CERN Document Server

    Kastanas, Alex; The ATLAS collaboration

    2018-01-01

    The ATLAS detector at the Large Hadron Collider (LHC) has had an extremely successful data collecting period during 2017, recording over 45 fb-1 of proton-proton collision data at sqrt(s) = 13 TeV. This was achieved, in part, by running the LHC at a high instantaneous lumi- nosity level of over 1.5 x 10+34 cm-2s-1, which corresponds to over 57 inelastic proton-proton collisions per beam crossing. This talk will highlight the tracking and vertexing performance of the tracking detector within ATLAS (Inner Detector) throughout this successful year of data taking. In order to increase its potential for discoveries, the High Luminosity Large Hadron Collider (HL-LHC) aims to increase the LHC data-set by an order of magnitude by collecting 3,000 fb-1 of recorded data. Starting, from mid-2026, the HL-LHC is expected to reach the peak instantaneous luminosity of 7.5 x 10+34 cm-2s-1, which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pile...

  5. LHC INAUGURATION, LHC Fest highlights: exhibition time!

    CERN Multimedia

    2008-01-01

    David Gross, one of the twenty-one Nobel Laureates who have participated in the project.Tuesday 21 October 2008 Accelerating Nobels Colliding Charm, Atomic Cuisine, The Good Anomaly, A Quark Somewhere on the White Paper, Wire Proliferation, A Tale of Two Liquids … these are just some of the titles given to artworks by Physics Nobel Laureates who agreed to make drawings of their prize-winning discoveries (more or less reluctantly) during a special photo session. Science photographer Volker Steger made portraits of Physics Nobel Laureates and before the photo sessions he asked them to make a drawing of their most important discovery. The result is "Accelerating Nobels", an exhibition that combines unusual portraits of and original drawings by twenty-one Nobel laureates in physics whose work is closely related to CERN and the LHC. This exhibition will be one of the highlights of the LHC celebrations on 21 October in the SM18 hall b...

  6. Cryogenics for HL-LHC

    Science.gov (United States)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  7. Physics Prospects at the HL-LHC with ATLAS

    CERN Document Server

    Duncan, Anna Kathryn; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC aims to provide a total integrated luminosity of 3000 fb-1 from p-p collisions at $\\sqrt{s}$ = 14 TeV over the course of $\\sim$ 10 years, reaching instantaneous luminosities of up to L = 7.5 $\\times$ 1034cm$^{-2}$s$^{-1}$, corresponding to an average ($\\mu$) of 200 inelastic p-p collisions per bunch crossing. The upgraded ATLAS detector must be able to cope well with increased occupancies and data rates. The performance of the upgrade has been estimated in full simulation studies, assuming expected HL-LHC conditions and a detector configuration intended to maximise physics performance and discovery potential at the HL-LHC. The performance is expected to be similar to what we have now. Simulation studies have been carried out to evaluate the prospects of various benchmark physics analyses to be performed using the upgraded ATLAS detector with the full HL-LHC dataset.

  8. Conference: STANDARD MODEL @ LHC

    CERN Multimedia

    2012-01-01

    HCØ institute Universitetsparken 5 DK-2100 Copenhagen Ø Denmark Room: Auditorium 2 STANDARD MODEL @ LHC Niels Bohr International Academy and Discovery Center 10-13 April 2012 This four day meeting will bring together both experimental and theoretical aspects of Standard Model phenomenology at the LHC. The very latest results from the LHC experiments will be under discussion. Topics covered will be split into the following categories:     * QCD (Hard,Soft & PDFs)     * Vector Boson production     * Higgs searches     * Top Quark Physics     * Flavour physics

  9. Physics Goals and Experimental Challenges of the Proton-Proton High-Luminosity Operation of the LHC

    Science.gov (United States)

    Campana, P.; Klute, M.; Wells, P. S.

    2016-10-01

    The completion of Run 1 of the Large Hadron Collider (LHC) at CERN has seen the discovery of the Higgs boson and an unprecedented number of precise measurements of the Standard Model, and Run 2 has begun to provide the first data at higher energy. The high-luminosity upgrade of the LHC (HL-LHC) and the four experiments (ATLAS, CMS, ALICE, and LHCb) will exploit the full potential of the collider to discover and explore new physics beyond the Standard Model. We review the experimental challenges and the physics opportunities in proton-proton collisions at the HL-LHC.

  10. LHC: Past, Present, and Future

    CERN Document Server

    Landsberg, Greg

    2013-01-01

    In this overview talk, I give highlights of the first three years of the LHC operations at high energy, spanning heavy-ion physics, standard model measurements, and searches for new particles, which culminated in the discovery of the Higgs boson by the ATLAS and CMS experiments in 2012. I'll discuss what we found about the properties of the new particle in 10 months since the discovery and then talk about the future LHC program and preparations to the 2015 run at the center-of-mass energy of ~13 TeV. These proceedings are meant to be a snapshot of the LHC results as of May 2013 - the time of the conference. Many of the results shown in these proceedings have been since updated (sometimes significantly) just 4 months thereafter, when these proceedings were due. Nevertheless, keeping this writeup in sync with the results shown in the actual talk has some historical value, as, for one, it tells the reader how short is the turnaround time to update the results at the LHC. To help an appreciation of this fact, I b...

  11. Physics prospects at the HL-LHC with ATLAS

    CERN Document Server

    Duncan, Anna Kathryn

    2017-01-01

    The High-Luminosity LHC aims to provide a total integrated luminosity of 3000 fb$^{-1}$ from proton-proton collisions at $\\sqrt{s}$ = 14 TeV over the course of $\\sim$ 10 years, reaching instantaneous luminosities of up to $L = 7.5 \\times 10^{34} cm^{-2} s^{-1}$, corresponding to an average of 200 inelastic p-p collisions per bunch crossing ($\\mu = 200)$. The upgraded ATLAS detector and trigger system must be able to cope well with increased occupancies and data rates. The performance of the upgrade has been estimated in full simulation studies, assuming expected HL-LHC conditions and a detector configuration intended to maximise physics performance and discovery potential at the HL-LHC, and is expected to be similar to current performance. Fast simulation studies have been carried out to evaluate the prospects of various benchmark physics analyses to be performed using the upgraded ATLAS detector with the full HL-LHC dataset.

  12. Discovery Physics at the LHC

    CERN Document Server

    Höcker, A

    2006-01-01

    Introductory lecture to the phenomenology of, and the LHC search for physics beyond the Standard Model (BSM). The first lecture discusses the empirical and theoretical reasons that require BSM physics, and how Supersymmetry, extra dimension and little Higgs models can cope with these. The second lecture introduces the experimental approaches adopted by ATLAS and CMS to search for BSM physics signals, and to measure some of their properties.

  13. Finding viable models in SUSY parameter spaces with signal specific discovery potential

    Science.gov (United States)

    Burgess, Thomas; Lindroos, Jan Øye; Lipniacka, Anna; Sandaker, Heidi

    2013-08-01

    Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.

  14. High-Luminosity Large Hadron Collider (HL-LHC) Preliminary Design Report

    CERN Document Server

    Apollinari, G; Béjar Alonso, I; Brüning, O; Lamont, M; Rossi, L

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cav...

  15. PREFACE: International Workshop on Discovery Physics at the LHC (Kruger2014)

    Science.gov (United States)

    Cleymans, Jean

    2015-06-01

    The third biannual conference on 'Discovery Physics at the LHC' was held on December 1-6 2014 at the Kruger Gate Hotel in South Africa. Over 100 participants attended from Austria, Australia, Belgium, Brazil, Canada, China, the Czech Republic, France, Germany, Italy, the Netherlands, Norway, Poland, South Africa, Switzerland, the UK and the USA. The latest results from the Large Hadron Collider as well the latest theoretical insights were presented. With the majestic Kruger National Park in the background this led to a very stimulating conference with many exchanges taking place. The proceedings reflect the high level of the conference. The financial contributions from the SA-CERN programme, the UCT-CERN Research Centre, the University of Johannesburg, the University of the Witwatersrand and iThemba L.A.B.S. are gratefully acknowledged. Local Organizing Committee: Z. Buthelezi J. Cleymans (chair) S. H. Connell A. S. Cornell T. Dietel S. Förtsch N. Haasbroek A. Hamilton W. A. Horowitz B. Mellado Z. Z. Vilakazi S. Yacoob

  16. Literature in Focus Perspectives on LHC Physics

    CERN Multimedia

    2008-01-01

    The CERN Library invites you to a book presentation, a Literature in Focus event. The Large Hadron Collider (LHC) will be the world’s largest, highest energy and highest intensity particle accelerator. This is a timely book with several perspectives on the hoped-for discoveries from the LHC. This book provides an overview of the techniques that will be crucial for finding new physics at the LHC, as well as perspectives on the importance and implications of the discoveries. Among the accomplished contributors to this book are leaders and visionaries in the field of particle physics beyond the Standard Model, including two Nobel Laureates (Steven Weinberg and Frank Wilczek). With its blend of popular and technical contents, the book will have wide appeal, not only to physical scientists but also to those in related fields. Perspectives on LHC Physics (World Scientific Publishing) Gordon Kane and Aaron Pierce (eds.) Tuesday 12 August, 4.30pm Council Chamber Refresh...

  17. QCD-instantons at LHC. Theoretical aspects

    International Nuclear Information System (INIS)

    Petermann, M.

    2007-06-01

    Instantons are nonperturbative, topologically nontrivial field configurations, which occur in every nonabelian gauge theory. They can be understood as tunneling processes between topologically distinct vacua. Although being a basic theoretical aspect of the Standard Model, a direct experimental verification of instanton processes is still lacking. In this thesis the general discovery potential for QCD-instantons at the LHC is studied in detail by means of instanton perturbation theory. In this context the close correspondence between the leading instanton induced processes at HERA and at LHC becomes important. Essential aspects and differences to deep inelastic scattering can already be revealed by studying the simplest process. Based on these results inclusive cross sections are calculated including the emission of final state gluons. Compared to deep inelastic scattering, a large enhancement of the cross section is found. (orig.)

  18. Commissioning of the Absolute Luminosity For ATLAS detector at the LHC

    CERN Document Server

    Jakobsen, Sune; Hansen, Peter; Hansen, Jørgen Beck

    The startup of the LHC (Large Hadron Collider) has initialized a new era in particle physics. The standard model of particle physics has for the last 40 years with tremendous success described all measurements with phenomenal precision. The experiments at the LHC are testing the standard model in a new energy regime. To normalize the measurements and understand the potential discoveries of the LHC experiments it is often crucial to know the interaction rate - the absolute luminosity. The ATLAS (A Toroidal LHC ApparatuS) detector will measure luminosity by numerous methods. But for most of the methods only the relative luminosity is measured with good precision. The absolute scale has to be provided from elsewhere. ATLAS is like the other LHC experiments mainly relying of absolute luminosity calibration from van der Meer scans (beam separation scans). To cross check and maybe even improve the precision; ATLAS has built a sub-detector to measure the flux of protons scattered under very small angles as this flux...

  19. Spoilers! It’s LHC Season 2

    CERN Multimedia

    2015-01-01

    2015: the year we begin the LHC’s second run, and UNESCO’s International Year of Light. For CERN, these will be the defining themes of the year. When it comes to LHC Run 2, the reasons are clear, and despite the title of this article, it is not within my power to predict what new discoveries may come our way. For the International Year of Light, however, I think I can safely make some predictions.   After two years of work, which have been well documented in the pages of the CERN Bulletin, the LHC is well on schedule for the first beams of Run 2 to be circulating in March, with high-energy collisions following in May. By Christmas, the whole machine was at liquid helium temperature, one full sector had been power tested to the equivalent of 13 TeV, and beams had been sent along the transfer lines to knock at the LHC’s door. It promises to be an exciting time, not only for the discovery potential that the extra energy brings, but also for the precision that more d...

  20. Yukawa Bound States and Their LHC Phenomenology

    Directory of Open Access Journals (Sweden)

    Enkhbat Tsedenbaljir

    2013-01-01

    Full Text Available We present the current status on the possible bound states of extra generation quarks. These include phenomenology and search strategy at the LHC. If chiral fourth-generation quarks do exist their strong Yukawa couplings, implied by current experimental lower bound on their masses, may lead to formation of bound states. Due to nearly degenerate 4G masses suggested by Precision Electroweak Test one can employ “heavy isospin” symmetry to classify possible spectrum. Among these states, the color-octet isosinglet vector ω 8 is the easiest to be produced at the LHC. The discovery potential and corresponding decay channels are covered in this paper. With possible light Higgs at ~125 GeV two-Higgs doublet version is briefly discussed.

  1. Non-simplified SUSY. τ-coannihilation at LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.; Kruecker, D.; List, J.; Melzer-Pellmann, I.A.; Seitz, C. [DESY, Hamburg (Germany); Cakir, A. [DESY, Hamburg (Germany); Istanbul Technical University, Department of Physics Engineering, Istanbul (Turkey); Samani, B.S. [DESY, Hamburg (Germany); IPM, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Wayand, S. [KIT IEKP, Karlsruhe (Germany)

    2016-04-15

    If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small τ-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and the ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states. (orig.)

  2. Physics Goals and Experimental Challenges of the Proton-Proton High-Luminosity Operation of the LHC

    CERN Document Server

    Campana, Pierluigi; Wells, Pippa

    2016-01-01

    The completion of Run 1 of the CERN Large Hadron Collider has seen the discovery of the Higgs boson and an unprecedented number of precise measurements of the Standard Model, while Run 2 operation has just started to provide first data at higher energy. Upgrades of the LHC to high luminosity (HL-LHC) and the experiments (ATLAS, CMS, ALICE and LHCb) will exploit the full potential of the collider to discover and explore new physics beyond the Standard Model. In this article, the experimental challenges and the physics opportunities in proton-proton collisions at the HL-LHC are reviewed.

  3. Mark the date! LHC inauguration and LHC-Fest CERN, Tuesday 21 October 2008

    CERN Document Server

    2008-01-01

    "For a long time we will remember the year 2008, an important year for CERN. as it marks the achievement of the LHC, a great tool for future discoveries, and the completion of exceptional works that demanded the commitment and motivation of many… a remarkable motivation," declared Director-General Robert Aymar during a recent interview. To celebrate this historical milestone in this very important "Big Science" project, CERN has organised two events on October 21: the LHC official inauguration and the LHC-fest. The LHC official inauguration will take place from 14h00 to 18h00, at Point 18 of the Laboratory, in the presence of the highest representatives from the member states of CERN and representatives from the other communities and authorities of the countries participating in the LHC adventure. 300 members from the international press are also expected, giving a total of 1500 guests. The ceremony will be broadcast live in the Lab...

  4. ATLAS. LHC experiments

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In Greek mythology, Atlas was a Titan who had to hold up the heavens with his hands as a punishment for having taken part in a revolt against the Olympians. For LHC, the ATLAS detector will also have an onerous physics burden to bear, but this is seen as a golden opportunity rather than a punishment. The major physics goal of CERN's LHC proton-proton collider is the quest for the long-awaited£higgs' mechanism which drives the spontaneous symmetry breaking of the electroweak Standard Model picture. The large ATLAS collaboration proposes a large general-purpose detector to exploit the full discovery potential of LHC's proton collisions. LHC will provide proton-proton collision luminosities at the aweinspiring level of 1034 cm2 s~1, with initial running in at 1033. The ATLAS philosophy is to handle as many signatures as possible at all luminosity levels, with the initial running providing more complex possibilities. The ATLAS concept was first presented as a Letter of Intent to the LHC Committee in November 1992. Following initial presentations at the Evian meeting (Towards the LHC Experimental Programme') in March of that year, two ideas for generalpurpose detectors, the ASCOT and EAGLE schemes, merged, with Friedrich Dydak (MPI Munich) and Peter Jenni (CERN) as ATLAS cospokesmen. Since the initial Letter of Intent presentation, the ATLAS design has been optimized and developed, guided by physics performance studies and the LHC-oriented detector R&D programme (April/May, page 3). The overall detector concept is characterized by an inner superconducting solenoid (for inner tracking) and large superconducting air-core toroids outside the calorimetry. This solution avoids constraining the calorimetry while providing a high resolution, large acceptance and robust detector. The outer magnet will extend over a length of 26 metres, with an outer diameter of almost 20 metres. The total weight of the detector is 7,000 tonnes. Fitted with its end

  5. CERN Library | Tord Ekelöf presents the proceedings of the Nobel Symposium on the Higgs Boson Discovery and Other Recent LHC Results | 12 June

    CERN Multimedia

    2014-01-01

    Thursday, 12 June 2014 at 16:00 in the Library (52-1-052).   The “Nobel Symposium on LHC results” took place at Krusenberg mansion, Uppsala, Sweden on 13-17 May 2013. The aim of the Symposium was to give an overview of the latest experimental and theoretical results pertaining to the LHC programme but also to give an occasion to ponder over the implications of these results in the broader context of the past, present and future evolution of the field of Particle Physics. “Nobel Symposium 154: The Higgs Boson Discovery and Other Recent LHC Results”, ed. by Tord Ekelöf, Physica Scripta T154, IOP, 2013, ISBN 9789789789781. * Coffee will be served from 15:30 * E-proceedings available here.

  6. PREFACE: International Workshop on Discovery Physics at the LHC (Kruger2012)

    Science.gov (United States)

    Cleymans, Jean

    2013-08-01

    The second conference on 'Discovery Physics at the LHC' was held on 3-7 December 2012 at the Kruger Gate Hotel in South Africa. In total there were 110 participants from Armenia, Belgium, Brazil, Canada, Czech Republic, France, Germany, Greece, Israel, Italy, Norway, Poland, USA, Russia, Slovakia, Spain, Sweden, United Kingdom, Switzerland and South Africa. The latest results from the Large Hadron Collider, Brookhaven National Laboratory, Jefferson Laboratory and BABAR experiments, as well as the latest theoretical insights were presented. Set against the backdrop of the majestic Kruger National Park a very stimulating conference with many exchanges took place. The proceedings reflect the high standard of the conference. The financial contributions from the National Institute for Theoretical Physics (NITHeP), the SA-CERN programme, the UCT-CERN Research Centre, the University of Johannesburg, the University of the Witwatersrand and iThemba Labs—Laboratory for Accelerator Based Science are gratefully acknowledged. Jean Cleymans Chair of the Local Organizing Committee Local Organizing Committee Oana Boeriu Jean Cleymans Simon H Connell Alan S Cornell William A Horowitz Andre Peshier Trevor Vickey Zeblon Z Vilakazi Group picture

  7. A Global Computing Grid for LHC; Una red global de computacion para LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Calama, J. M.; Colino Arriero, N.

    2013-06-01

    An innovative computing infrastructure has played an instrumental role in the recent discovery of the Higgs boson in the LHC and has enabled scientists all over the world to store, process and analyze enormous amounts of data in record time. The Grid computing technology has made it possible to integrate computing center resources spread around the planet, including the CIEMAT, into a distributed system where these resources can be shared and accessed via Internet on a transparent, uniform basis. A global supercomputer for the LHC experiments. (Author)

  8. High-luminosity LHC prospects with the upgraded ATLAS detector

    CERN Document Server

    Slawinska, Magdalena; The ATLAS collaboration

    2016-01-01

    Run-I at the LHC was very successful with the discovery of a new boson with properties compatible with those of the Higgs boson predicted by Standard Model. Precise measurements of the boson properties, and the discovery of physics beyond the Standard Model, are primary goals of the just restarted LHC running at 13 TeV collision energy and all future running at the LHC. The physics prospects with a pp centre-of-mass energy of 14 TeV are presented for 300 and 3000 fb-1 at the high-luminosity LHC. The ultimate precision attainable on measurements of the couplings of the 125 GeV boson to elementary fermions and bosons is discussed, as well as perspectives on the searches for partners associated with it. Supersymmetry is one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks and electro-weakinos in the hundreds of GeV mass range. Benchmark studies are presente...

  9. STATISTICAL CHALLENGES FOR SEARCHES FOR NEW PHYSICS AT THE LHC.

    Energy Technology Data Exchange (ETDEWEB)

    CRANMER, K.

    2005-09-12

    Because the emphasis of the LHC is on 5{sigma} discoveries and the LHC environment induces high systematic errors, many of the common statistical procedures used in High Energy Physics are not adequate. I review the basic ingredients of LHC searches, the sources of systematics, and the performance of several methods. Finally, I indicate the methods that seem most promising for the LHC and areas that are in need of further study.

  10. High-Luminosity Large Hadron Collider (HL-LHC) Technical Design Report V. 0.1

    CERN Document Server

    Béjar Alonso I.; Brüning O.; Fessia P.; Lamont M.; Rossi L.; Tavian L.

    2017-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a newenergy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists work-ing in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. Tosustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase itsinstantaneous luminosity (rate of collisions) by a factor of five beyond the original design value and the integratedluminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely opti-mised machine so this upgrade must be carefully conceived and will require about ten years to implement. Thenew configuration, known as High Luminosity LHC (HL-LHC), relies on a number of key innovations that pushaccelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting mag-nets, compact superconduc...

  11. Status and prospects from the LHC

    International Nuclear Information System (INIS)

    Hawkings, Richard

    2010-01-01

    This article reviews the status of the CERN Large Hadron Collider and associated experiments as of July 2010. After a brief discussion of the progress in accelerator and experiment commissioning, the LHC physics landscape is presented, together with a selection of the experimental results achieved so far. Finally the prospects for the 2010-11 LHC physics run are reviewed, with an emphasis on possible discoveries in the Higgs and supersymmetry sectors.

  12. Calibration of the ATLAS calorimeters and discovery potential for massive top quark resonances at the LHC

    CERN Document Server

    Bergeaas Kuutmann, E; Jon-And, K; Hellman, S

    2010-01-01

    ATLAS is a multi-purpose detector which has recently started to take data at the LHC at CERN. This thesis describes the tests and calibrations of the central calorimeters of ATLAS and outlines a search for heavy top quark pair resonances.The calorimeter tests were performed before the ATLAS detector was assembled at the LHC, in such a way that particle beams of known energy were targeted at the calorimeter modules. In one of the studies presented here, modules of the hadronic barrel calorimeter, TileCal, were exposed to beams of pions of energies between 3 and 9 GeV. It is shown that muons from pion decays in the beam can be separated from the pions, and that the simulation of the detector correctly describes the muon behaviour. In the second calorimeter study, a scheme for local hadronic calibration is developed and applied to single pion test beam data in a wide range of energies, measured by the combination of the electromagnetic barrel calorimeter and the TileCal hadronic calorimeter. The calibration meth...

  13. LHC Nobel Symposium Proceedings

    Science.gov (United States)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  14. Searching for multijet resonances at the LHC

    International Nuclear Information System (INIS)

    Kilic, Can; Son, Minho; Schumann, Steffen

    2009-01-01

    Recently it was shown that there is a class of models in which colored vector and scalar resonances can be copiously produced at the Tevatron with decays to multijet final states, consistent with all experimental constraints and having strong discovery potential. We investigate the collider phenomenology of TeV scale colored resonances at the LHC and demonstrate a strong discovery potential for the scalars with early data as well as the vectors with additional statistics. We argue that the signal can be self-calibrating and using this fact we propose a search strategy which we show to be robust to systematic errors typically expected from Monte Carlo background estimates. We model the resonances with a phenomenological Lagrangian that describes them as bound states of colored vectorlike fermions due to new confining gauge interactions. However, the phenomenological Lagrangian treatment is quite general and can represent other scenarios of microscopic physics as well.

  15. CP asymmetries in the supersymmetric trilepton signal at the LHC

    International Nuclear Information System (INIS)

    Bornhauser, S.; Drees, M.; Dreiner, H.; Eboli, O.J.P.; Kim, J.S.; Kittel, O.

    2012-01-01

    In the CP-violating Minimal Supersymmetric Standard Model, we study the production of a neutralino-chargino pair at the LHC. For their decays into three leptons, we analyze CP asymmetries which are sensitive to the CP phases of the neutralino and chargino sector. We present analytical formulas for the entire production and decay process, and identify the CP-violating contributions in the spin correlation terms. This allows us to define the optimal CP asymmetries. We present a detailed numerical analysis of the cross sections, branching ratios, and the CP observables. For light neutralinos, charginos, and squarks, the asymmetries can reach several 10%. We estimate the discovery potential for the LHC to observe CP violation in the trilepton channel. (orig.)

  16. 2nd report from the LHC performance workshop

    CERN Multimedia

    Bulletin's correspondent from Chamonix

    2012-01-01

    Tuesday's sessions were spent looking ahead to the possibilities for 2012. The morning started with the experiments' desiderata for the year with the key requirement being either discovery of Higgs or exclusion at the 95% confidence level down to 115 GeV. To achieve this Atlas and CMS will need an integrated luminosity in the order of 15 fb-1.   Potential improvements to performance and machine availability were then discussed with presentations on maximising the time the LHC is delivering collisions to the experiments, and the potential of the injectors to provide bunches with higher intensities and the smallest possible beam size (these fold directly into higher collision rates). Machine performance will also be improved in 2012 thanks to a number of mitigation measures taken during the Christmas stop aimed at reducing the effects of radiation on the electronics situated in the LHC tunnel. The possibility for running at a beam energy of 4 TeV was put on the table. Discussions w...

  17. Expected performance of the upgrade ATLAS experiment for HL-LHC

    CERN Document Server

    Liu, Peilian; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) has been successfully delivering proton-proton collision data at the unprecedented center of mass energy of 13 TeV. An upgrade is planned to increase the instantaneous luminosity delivered by the LHC in what is called the HL-LHC, aiming to deliver a total of up 3000/fb to 4000/fb of data per experiment. To cope with the expected data-taking conditions ATLAS is planning major upgrades of the detector. It is now a critical time for these upgrade projects and during the last year and a half, six Technical Design Reports (TDR) were produced by the ATLAS Collaboration. In these TDRs the physics motivation and benefits of such upgrades are discussed together with details on the upgrade project itself. In this contribution we review the expected performance of the upgraded ATLAS detector and the expected reach for physics measurements as well as the discovery potential for new physics that is expected by the end of the HL-LHC data-taking. The performance of object reconstruction under...

  18. The Physics Programme Of The MoEDAL Experiment At The LHC

    CERN Document Server

    Acharya, B.; Bernabeu, J.; Campbell, M.; Cecchini, S.; Chwastowski, J.; De Montigny, M.; Derendarz, D.; De Roeck, A.; Ellis, J.R.; Fairbairn, M.; Felea, D.; Frank, M.; Frekers, D.; Garcia, C.; Giacomelli, G.; Giorgini, M.; Hasegan, D.; Hott, T.; J.Jak\\r u; Katre, A.; Kim, D-W.; King, M.G.L.; Kinoshita, K.; Lacarrere, D.; Lee, S.C.; Leroy, C.; Margiotta, A.; Mauri, N.; Mavromatos, N.E.; Mermod, P.; Mitsou, V.A.; Orava, R.; Pasqualini, L.; Patrizii, L.; Pavalas, G.E.; Pinfold, J.L.; Platkevic, M.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y.N.; Staszewski, R.; Swain, J.; Tenti, M.; Togo, V.; Trzebinski, M.; Tuszynski, J.A.; Vento, V.; Vives, O.; Vykydal, Z.; Widom, A.; Yoon, J.H.

    2014-01-01

    The MoEDAL experiment at Point 8 of the LHC ring is the seventh and newest LHC experiment. It is dedicated to the search for highly ionizing particle avatars of physics beyond the Standard Model, extending significantly the discovery horizon of the LHC. A MoEDAL discovery would have revolutionary implications for our fundamental understanding of the Microcosm. MoEDAL is an unconventional and largely passive LHC detector comprised of the largest array of Nuclear Track Detector stacks ever deployed at an accelerator, surrounding the intersection region at Point 8 on the LHC ring. Another novel feature is the use of paramagnetic trapping volumes to capture both electrically and magnetically charged highly-ionizing particles predicted in new physics scenarios. It includes an array of TimePix pixel devices for monitoring highly-ionizing particle backgrounds. The main passive elements of the MoEDAL detector do not require a trigger system, electronic readout, or online computerized data acquisition. The aim of this...

  19. Perspectives of SM Higgs measurements at the LHC

    Indian Academy of Sciences (India)

    ... where significant signals can be expected from the LHC experiments. The most sensitive LHC Higgs signatures are reviewed and the discovery year is estimated as a function of the Higgs mass. Finally, we give some ideas about: 'What might be known about the production and decays of a SM Higgs boson' after 10 years ...

  20. Study of Rare Beauty Decays with ATLAS Detector at LHC and MDT Chamber Perfomances

    CERN Document Server

    Policicchio, Antonio

    2006-01-01

    The Large Hadron Collider (LHC) is a proton-proton collider that will operate at a center of mass energy of $14~TeV$ and at a maximum luminosity of $L=10^{34}cm^{-2}s^{-1}$. The LHC will reproduce interactions similar to those which existed when the universe was only $\\sim 10^{-12}s$ old, conditions which have not been achieved in any previous collider. The primary goals of the LHC project are to discover the origin of particle masses, to explain why different particles have different masses and to search for new phenomena beyond the Standard Model. Also heavy quark systems and precision measurements on Standard Model parameters will be subject of LHC physics studies. ATLAS (A Toroidal LHC ApparatuS) is one of the two LHC general purpose experiments. The guiding principle in optimizing the ATLAS experiment has been maximizing the discovery potential for New Physics such as Higgs bosons and supersymmetric particles, while keeping the capability of high precision measurements of known objects such as heavy quar...

  1. The CMS Tracker Upgrade for HL-LHC\\\\ Sensor R$\\&$D

    CERN Document Server

    Naseri, Mohsen

    2014-01-01

    At an instantaneous luminosity of 5~$\\times10^{34}~cm^{-2}~s^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of 3000~fb$^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation environment of the tracking system will be severe, requiring new radiation hard sensors for the CMS tracker. Focusing on the upgrade of the outer tracker region, the CMS tracker collaboration has almost completed a large material investigation and irradiation campaign to identify the silicon material and design that fulfils all requirements of a new tracking detector at HL-LHC. Focusing on the upgrade of the outer tracker region, pad diodes as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for various positions in the future track...

  2. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Béjar Alonso, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Brüning, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Lamont, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2015-12-17

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.

  3. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    International Nuclear Information System (INIS)

    Apollinari, G.; Béjar Alonso, I.; Brüning, O.; Lamont, M.; Rossi, L.

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.

  4. Scientific Opportunity: the Tevatron and the LHC

    CERN Multimedia

    2010-01-01

    The press makes much of the competition between CERN’s LHC and Fermilab’s Tevatron in the search for the Higgs boson. This competitive aspect is real, and probably adds spice to the scientific exploration, but for us such reporting often feels like spilling the entire pepper shaker over a fine meal. The media’s emphasis on competition obscures the more important substance of our long-standing collaboration in scientific discovery.   Our laboratories and our communities have worked together for decades. Europeans have contributed greatly to the Tevatron’s many successes, including the discovery of the top quark, the discovery of fast oscillations in the decay of strange B mesons and the many searches for new phenomena. Americans have contributed to many programs at CERN, notably the extraordinary precision measurements of LEP, and more recently construction of the LHC accelerator and detectors. Fermilab scientists played a vital role throughout 2009 in...

  5. Non-simplified SUSY. {tau}-coannihilation at LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.; Cakir, A.; Krueger, D.; List, J.; Lobanov, A.; Melzer-Pellmann, I.A.

    2013-07-15

    Simplified models have become a widely used and important tool to cover the more diverse phenomenology beyond constrained SUSY models. However, they come with a substantial number of caveats themselves, and great care needs to be taken when drawing conclusions from limits based on the simplified approach. To illustrate this issue with a concrete example, we examine the applicability of simplified model results to a series of full SUSY model points which all feature a small {tau} -LSP mass difference, and are compatible with electroweak and flavor precision observables as well as current LHC results. Various channels have been studied using the Snowmass Combined LHC detector implementation in the Delphes simulation package, as well as the Letter of Intent or Technical Design Report simulations of the ILD detector concept at the ILC. We investigated both the LHC and ILC capabilities for discovery, separation and identification of all parts of the spectrum. While parts of the spectrum would be discovered at the LHC, there is substantial room for further discoveries and property determination at the ILC.

  6. High-luminosity LHC prospects with the upgraded ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00379172; The ATLAS collaboration

    2016-01-01

    Run 1 at the LHC was very successful with the discovery of a new boson. The boson’s properties are found to be compatible with those of the Standard Model Higgs boson. It is now revealing the mechanism of electroweak symmetry breaking and (possibly) the discovery of physics beyond the Standard Model that are the primary goals of the just restarted LHC. The ultimate precision will be reached at the high-luminosity LHC run with a proton-proton centre-of-mass energy of 14 TeV. In this contribution physics prospects are presented for ATLAS for the integrated luminosities 300 and 3000 fb−1: the ultimate precision attainable on measurements of the Higgs boson couplings to elementary fermions and bosons, its trilinear self-coulping, as well as perspectives on the searches for partners associated with it. Benchmark studies are presented to show how the sensitivity improves at the future LHC runs. For all these studies, a parameterised simulation of the upgraded ATLAS detector is used and expected pileup condition...

  7. Particle Physics at the LHC Start

    CERN Document Server

    Altarelli, Guido

    2011-01-01

    I present a concise review of the major issues and challenges in particle physics at the start of the LHC era. After a brief overview of the Standard Model and of QCD, I will focus on the electroweak symmetry breaking problem which plays a central role in particle physics today. The Higgs sector of the minimal Standard Model is so far just a mere conjecture that needs to be verified or discarded by the LHC. Probably the reality is more complicated. I will summarize the motivation for new physics that should accompany or even replace the Higgs discovery and a number of its possible forms that could be revealed by the LHC.

  8. LHC, Astrophysics and Cosmology

    Directory of Open Access Journals (Sweden)

    Giulio Auriemma

    2014-12-01

    Full Text Available In this paper we discuss the impact on cosmology of recent results obtained by the LHC (Large Hadron Collider experiments in the 2011-2012 runs, respectively at √s = 7 and 8 TeV. The capital achievement of LHC in this period has been the discovery of a spin-0 particle with mass 126 GeV/c2, very similar to the Higgs boson of the Standard Model of Particle Physics. Less exciting, but not less important, negative results of searches for Supersymmetric particles or other exotica in direct production or rare decays are discussed in connection with particles and V.H.E. astronomy searches for Dark Matter.

  9. Calculation of Wakefields and Higher Order Modes for the Vacuum Chamber of the ATLAS Experiment for the HL-LHC

    CERN Document Server

    Wanzenberg, R

    2013-01-01

    A design study for a High Luminosity Large Hadron Collider (HL-LHC) was started to extend the discovery potential of the Large Hadron Collider (LHC). The HL-LHC study implies also an upgraded configuration of the ATLAS detector with a new beam pipe. The trapped Higher Order Modes (HOMs) and the short range wakefields for the new design of the vacuum chamber are calculated using the computer codes MAFIA and ECHO2D. The short range wakefields are characterized in terms of kick and loss parameters. For the HOMs the frequency the R/Q and the Q-values are given which can directly converted into impedance data. The obtained data are intended to be included into the impedance database of the HL-LHC.

  10. The heavy quark search at the LHC

    International Nuclear Information System (INIS)

    Holdom, Bob

    2007-01-01

    We explore further the discovery potential for heavy quarks at the LHC, with emphasis on the t' and b' of a sequential fourth family associated with electroweak symmetry breaking. We consider QCD multijets, t t-bar + jets, W + jets and single t backgrounds using event generation based on improved matrix elements and low sensitivity to the modeling of initial state radiation. We exploit a jet mass technique for the identification of hadronically decaying W's and t's, to be used in the reconstruction of the t' or b' mass. This along with other aspects of event selection can reduce backgrounds to very manageable levels. It even allows a search for both t' and b' in the absence of b-tagging, of interest for the early running of the LHC. A heavy quark mass of order 600 GeV is motivated by the connection to electroweak symmetry breaking, but our analysis is relevant for any new heavy quarks with weak decay modes

  11. Analysis of the Stability Margin of the High Luminosity LHC Superconducting Cables with a Multi-Strand Model

    CERN Document Server

    AUTHOR|(CDS)2096257; Bottura, Luca

    At CERN (European Organization for Nuclear Research), between 1998 and 2008, the world’s largest and most powerful particle collider has been built. The LHC (Large Hadron Collider) is the biggest scientific instrument ever built to explore the new high-energy physic frontiers and it gathers a global user community of 7,000 scientists from all over 60 countries. The accelerated particles are made to collide together approaching the speed of light. This process allows to understand how the particles interact and provides insights into the fundamental laws of nature. After the latest amazing discoveries concerning the Higgs boson and the penta-quarks, another step forward is needed. To extend its discovery potential, the LHC will need a major upgrade around 2020 to increase its luminosity (rate of collisions) by a factor of 10 beyond the original design value (from 300 to 3000 $fb^{−1})$. As a highly complex and optimised machine, such an upgrade of the LHC must be carefully studied and requires about 10 yea...

  12. LHC Report: Tests of new LHC running modes

    CERN Document Server

    Verena Kain for the LHC team

    2012-01-01

    On 13 September, the LHC collided lead ions with protons for the first time. This outstanding achievement was key preparation for the planned 2013 operation in this mode. Outside of two special physics runs, the LHC has continued productive proton-proton luminosity operation.   Celebrating proton-ion collisions. The first week of September added another 1 fb-1 of integrated luminosity to ATLAS’s and CMS’s proton-proton data set. It was a week of good and steady production mixed with the usual collection of minor equipment faults. The peak performance was slightly degraded at the start of the week but thanks to the work of the teams in the LHC injectors the beam brightness – and thus the LHC peak performance – were restored to previous levels by the weekend. The LHC then switched to new running modes and spectacularly proved its potential as a multi-purpose machine. This is due in large part to the LHC equipment and controls, which have been designed wi...

  13. The LHC (CMS) Discovery Potential for Models with Effective Supersymmetry and Nonuniversal Gaugino Masses.

    CERN Document Server

    Bityukov, S I

    2001-01-01

    We investigate squark and gluino pair production at LHC (CMS) with subsequent decays into quarks, leptons and LSP in models with effective supersymmetry where third generation of squarks is relatively light while the first two generations of squarks are heavy. We consider the general case of nonuniversal gaugino masses. Visibility of signal by an excess over SM background in (n \\geq 2)jets + (m \\geq 0)leptons + E^{miss}_T events depends rather strongly on the relation between LSP, second neutralino, gluino and squark masses and it decreases with the increase of LSP mass. We find that for relatively heavy gluino it is very difficult to detect SUSY signal even for light 3-rd generation squarks (m_{ ilde q_3} \\le 1 TeV) if the LSP mass is closed to the 3-rd generation squark mass.

  14. Lectures on LHC physics

    CERN Document Server

    Plehn, Tilman

    2015-01-01

    With the discovery of the Higgs boson, the LHC experiments have closed the most important gap in our understanding of fundamental interactions, confirming that such interactions between elementary particles can be described by quantum field theory, more specifically by a renormalizable gauge theory. This theory is a priori valid for arbitrarily high energy scales and does not require an ultraviolet completion. Yet, when trying to apply the concrete knowledge of quantum field theory to actual LHC physics - in particular to the Higgs sector and certain regimes of QCD - one inevitably encounters an intricate maze of phenomenological know-how, common lore and other, often historically developed intuitions about what works and what doesn’t. These lectures cover three aspects to help understand LHC results in the Higgs sector and in searches for physics beyond the Standard Model: they discuss the many facets of Higgs physics, which is at the core of this significantly expanded second edition; then QCD, to the deg...

  15. Discovery Mondays - 'The LHC: an accelerator of science'

    CERN Multimedia

    2006-01-01

    Is the LHC about to turn the theories of the infinitesimally small on their heads? Whether or not this proves to be the case, physicists hope that the 27-kilometre-long accelerator due to be commissioned at the end of 2007 will shake up the Standard Model. This theory, which describes elementary particles and forces, leaves many questions unanswered. The LHC and its experiments have been designed to shed light on them. Unresolved questions include how elementary particles acquire mass and why their masses differ. The disappearance of antimatter from our Universe is another such mystery. Physicists want to know what matter was like just after the Big Bang and what the dark matter in the Universe could be: only 5% of the matter of the Universe is visible, and the effects of gravity indicate the presence of another type of matter that cannot be seen by the instruments available today. The theory of supersymmetry, which predicts that each particle has a corresponding superparticle, could go some way towards exp...

  16. LHC and the neutrino paradigm

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    I argue that LHC may shed light on the nature of neutrino mass through the probe of the seesaw mechanism. The smoking gun signature is lepton number violation through the production of same sign lepton pairs, a collider analogy of the neutrinoless double beta decay. I discuss this in the context of L-R symmetric theories, which predicted neutrino mass long before experiment and led to the seesaw mechanism. A WR gauge boson with a mass in a few TeV region could easily dominate neutrinoless double beta decay, and its discovery at LHC would have spectacular signatures of parity restoration and lepton number violation. I also discuss the collider signatures of the three types of seesaw mechanism, and show how in the case of Type II one can measure the PMNS mixing matrix at the LHC, complementing the low energy probes. Finally, I give an example of a simple realistic SU(5) grand unified theory that predicts the hybrid Type I + III seesaw with a weak fermion triplet at the LHC energies. The seminar will be fol...

  17. Massively parallel computing and the search for jets and black holes at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, V., E-mail: vhalyo@gmail.com; LeGresley, P.; Lujan, P.

    2014-04-21

    Massively parallel computing at the LHC could be the next leap necessary to reach an era of new discoveries at the LHC after the Higgs discovery. Scientific computing is a critical component of the LHC experiment, including operation, trigger, LHC computing GRID, simulation, and analysis. One way to improve the physics reach of the LHC is to take advantage of the flexibility of the trigger system by integrating coprocessors based on Graphics Processing Units (GPUs) or the Many Integrated Core (MIC) architecture into its server farm. This cutting edge technology provides not only the means to accelerate existing algorithms, but also the opportunity to develop new algorithms that select events in the trigger that previously would have evaded detection. In this paper we describe new algorithms that would allow us to select in the trigger new topological signatures that include non-prompt jet and black hole-like objects in the silicon tracker.

  18. Sensor R&D for the CMS Tracker Upgrade for the HL-LHC

    CERN Document Server

    Behnamian, Hadi

    2014-01-01

    At an instantaneous luminosity of $5\\times 10^{34} cm^{-2} s^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of 3000 $fb^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation environment of the tracking system will be severe, requiring new radiation hard sensors for the CMS tracker. The CMS tracker collaboration has almost completed a large material investigation and irradiation campaign to identify the silicon material and design that fulfills all requirements of a new tracking detector at HL-LHC. Focusing on the upgrade of the outer tracker region, pad diodes as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for various positions in the future tracker. The measurements performed on the structures inc...

  19. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties Report of the LHC Higgs Cross Section Working Group

    CERN Document Server

    Heinemeyer, S; Passarino, G; Tanaka, R; Andersen, J R; Artoisenet, P; Bagnaschi, E A; Banfi, A; Becher, T; Bernlochner, F U; Bolognesi, S; Bolzoni, P; Boughezal, R; Buarque, D; Campbell, J; Caola, F; Carena, M; Cascioli, F; Chanon, N; Cheng, T; Choi, S Y; David, A; de Aquino, P; Degrassi, G; Del Re, D; Denner, A; van Deurzen, H; Diglio, S; Di Micco, B; Di Nardo, R; Dittmaier, S; Dührssen, M; Ellis, R K; Ferrera, G; Fidanza, N; Flechl, M; de Florian, D; Forte, S; Frederix, R; Frixione, S; Gangal, S; Gao, Y; Garzelli, M V; Gillberg, D; Govoni, P; Grazzini, M; Greiner, N; Griffiths, J; Gritsan, A V; Grojean, C; Hall, D C; Hays, C; Harlander, R; Hernandez-Pinto, R; Höche, S; Huston, J; Jubb, T; Kadastik, M; Kallweit, S; Kardos, A; Kashif, L; Kauer, N; Kim, H; Klees, R; Krämer, M; Krauss, F; Laureys, A; Laurila, S; Lehti, S; Li, Q; Liebler, S; Liu, X; Logan, E; Luisoni, G; Malberti, M; Maltoni, F; Mawatari, K; Maierhoefer, F; Mantler, H; Martin, S; Mastrolia, P; Mattelaer, O; Mazzitelli, J; Mellado, B; Melnikov, K; Meridiani, P; Miller, D J; Mirabella, E; Moch, S O; Monni, P; Moretti, N; Mück, A; Mühlleitner, M; Musella, P; Nason, P; Neu, C; Neubert, M; Oleari, C; Olsen, J; Ossola, G; Peraro, T; Peters, K; Petriello, F; Piacquadio, G; Potter, C T; Pozzorini, S; Prokofiev, K; Puljak, I; Rauch, M; Rebuzzi, D; Reina, L; Rietkerk, R; Rizzi, A; Rotstein-Habarnau, Y; Salam, G P; Sborlini, G; Schissler, F; Schönherr, M; Schulze, M; Schumacher, M; Siegert, F; Slavich, P; Smillie, J M; Stål, O; von Soden-Fraunhofen, J F; Spira, M; Stewart, I W; Tackmann, F J; Taylor, P T E; Tommasini, D; Thompson, J; Thorne, R S; Torrielli, P; Tramontano, F; Tran, N V; Trócsányi, Z; Ubiali, M; Vazquez Acosta, M; Vickey, T; Vicini, A; Waalewijn, W J; Wackeroth, D; Wagner, C; Walsh, J R; Wang, J; Weiglein, G; Whitbeck, A; Williams, C; Yu, J; Zanderighi, G; Zanetti, M; Zaro, M; Zerwas, P M; Zhang, C; Zirke, T J E; Zuberi, S

    2013-01-01

    This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered p...

  20. Higgs couplings and supersymmetry in the light of early LHC results

    International Nuclear Information System (INIS)

    Stefaniak, Tim

    2014-07-01

    We present phenomenological studies investigating the implications of early results from the Large Hadron Collider (LHC) for models beyond the Standard Model (BSM), mostly focusing on Supersymmetry (SUSY). Our work covers different aspects in this wide field of research. We describe the development and basic concepts of the public computer codes HiggsBounds (version 4) and HiggsSignals. These confront the Higgs sector predictions of BSM models with results from LEP, Tevatron and LHC Higgs searches. While HiggsBounds tests the model against experimental null-results, HiggsSignals evaluates the model's chi-squared compatibility with the signal rate and mass measurements of the Higgs boson, that was discovered by the LHC in 2012. We then perform a systematic study of potential deviations in the Higgs couplings from their Standard Model (SM) prediction. No significant deviations are found. Future capabilities of Higgs coupling determination at the later LHC stages and at the International Linear Collider (ILC) are explored. We also study the implications of the Higgs discovery for the Minimal Supersymmetric Standard Model (MSSM), considering either the light or the heavy CP-even Higgs boson as the discovered state. We show that both interpretations are viable and discuss their phenomenology. Finally, we study the LHC signatures of resonant scalar lepton production, which may arise in SUSY models with R-parity violation (RPV). These are confronted with early LHC results, yielding constraints on the relevant RPV operators.

  1. RooStats: Statistical Tools for the LHC

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    LHC data, with emphasis on discoveries, confidence intervals, and combined measurements in the both the Bayesian and Frequentist approaches. The tools are built on top of the RooFit data modeling language and core ROOT mathematics libraries and persistence technology. These tools have been developed in collaboration with the LHC experiments and used by them to produce numerous physics results, such as the combination of ATLAS and CMS Higgs searches that resulted in a model with more than 200 parameters. We will review new developments which have been included in RooStats and the performance optimizations, required to cope with such complex models used by the LHC experiments. We will show as well the parallelization capability of these statistical tools using multiple-processors via PROOF.

  2. Another step towards a no-lose theorem for NMSSM Higgs discovery at the LHC

    International Nuclear Information System (INIS)

    Moretti, S.; Munir, S.; Poulose, P.

    2007-01-01

    We show how the LHC potential to detect a rather light CP-even Higgs boson of the NMSSM, H 1 or H 2 , decaying into CP-odd Higgs states, A 1 A 1 , can be improved if Higgs-strahlung off W bosons and (more marginally) off top-antitop pairs are employed alongside vector boson fusion as production modes. Our results should help extracting at least one Higgs boson signal over the NMSSM parameter space

  3. Flavour in the era of the LHC

    CERN Multimedia

    2006-01-01

    The 4th meeting of the 'Flavour in the era of the LHC' workshop will take place at CERN on 9-11 October, 2006. The goal of this workshop is to outline and document a programme for flavour physics for the next decade, addressing in particular the complementarity and synergy between the discoveries we expect to emerge from the LHC and the potential for accurate measurements of future flavour factories. Over 150 physicists will join in the discussions of the three working groups dedicated to 'Flavour physics at high Q', 'B/D/K decays' and 'Flavour in the lepton sector, EDM's, g-2, etc'. The previous meetings took place in November 2005, and in February and May this year. In addition to the working group sessions, a special miniworkshop dedicated to future prospects for electric dipole moment (EDM) searches and g-2 measurements will be held on 9-10 October. Sensitive EDM and g-2 experiments probe physics in an integral way, and in many cases their physics reach is much higher than the spectrometer searches at th...

  4. Flavour in the era of the LHC

    CERN Multimedia

    2006-01-01

    The 4th meeting of the 'Flavour in the era of the LHC'workshop will take place at CERN on 9-11 October, 2006. The goal of this workshop is to outline and document a programme for flavour physics for the next decade, addressing in particular the complementarity and synergy between the discoveries we expect to emerge from the LHC and the potential for accurate measurements of future flavour factories. Over 150 physicists will join in the discussions of the three working groups dedicated to 'Flavour physics at high Q', 'B/D/K decays'and 'Flavour in the lepton sector, EDM's, g-2, etc'. The previous meetings took place in November 2005, and in February and May this year. In addition to the working group sessions, a special miniworkshop dedicated to future prospects for electric dipole moment (EDM) searches and g-2 measurements will be held on 9-10 October. Sensitive EDM and g-2 experiments probe physics in an integral way, and in many cases their physics reach is much higher than the spectrometer searches at th...

  5. The Atlas Liquid Argon Calorimeter: Commissioning with Cosmic Muons and First LHC Beams

    CERN Document Server

    Trocmé, B

    2008-01-01

    In 2009, the Large Hadron Collider at CERN will collide protons with a center of mass energy of 14 TeV. ATLAS is a general purpose experiment that will allow to explore the wide potential of discovery and achieve high precision measurements. The ATLAS liquid argon calorimeters are presented, with an emphasis on their in situ commissioning using cosmic muons and their response during the first LHC single beam runs on September 2008.

  6. Search for single production of the vector-like top partner at the 14 TeV LHC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yao-Bei; Li, Yu-Qi [Henan Institute of Science and Technology, Xinxiang (China)

    2017-10-15

    The new heavy vector-like top partner (T) is one of typical features of many new physics models beyond the standard model. In this paper we study the discovery potential of the LHC for the vector-like T-quark both in the leptonic T → bW and T → t{sub lep}Z{sub lep} (trilepton) channels at √(s) = 14 TeV in the single production mode. Our analysis is based on a simplified model including a SU(2){sub L} singlet with charge 2/3 with only two free parameters, namely the TWb coupling parameter g* and the top-partner mass m{sub T}. The 2σ exclusion limits, 3σ evidence and the 5σ discovery reach in the parameter plane of g* - m{sub T}, are, respectively, obtained for some typical integrated luminosity at the 14 TeV LHC. Finally we analyze the projected sensitivity in terms of the production cross section times branching fraction for two decay channel. (orig.)

  7. From the LHC to Future Colliders

    Energy Technology Data Exchange (ETDEWEB)

    De Roeck, A.; Ellis, J.; /CERN; Grojean, C.; Heinemeyer, S.; /Cantabria Inst. of Phys.; Jakobs, K.; /Freiburg U.; Weiglein, G.; /Durham U., IPPP; Azuelos, G.; /TRIUMF; Dawson, S.; /Brookhaven; Gripaios, B.; /CERN; Han, T.; /Wisconsin U., Madison; Hewett, J.; /SLAC; Lancaster, M.; /University Coll. London; Mariotti, C.; /INFN, Turin; Moortgat, F.; /Zurich, ETH; Moortgat-Pick, G.; /Durham U., IPPP; Polesello, G.; /INFN, Pavia; Riemann, S.; /DESY; Assamagan, K.; /Brookhaven; Bechtle, P.; /DESY; Carena, M.; /Fermilab; Chachamis, G.; /PSI, Villigen /Taiwan, Natl. Taiwan U. /INFN, Florence /Bonn U. /CERN /Bonn U. /Freiburg U. /Oxford U. /Louvain U., CP3 /Bangalore, Indian Inst. Sci. /INFN, Milan Bicocca /Munich, Max Planck Inst. /Taiwan, Natl. Taiwan U. /Frascati /Fermilab /Warsaw U. /Florida U. /Orsay, LAL /LPSC, Grenoble /Warsaw U. /Yale U. /Stockholm U., Math. Dept. /Durham U., IPPP /DESY /Rome U. /University Coll. London /UC, San Diego /Heidelberg U. /Florida State U. /SLAC /Durham U., IPPP /Southern Denmark U., CP3-Origins /McGill U. /Durham U., IPPP; /more authors..

    2010-06-11

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, theWorking Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  8. The High Luminosity Challenge: potential and limitations of High Intensity High Brightness in the LHC and its injectors

    CERN Document Server

    De Maria, R; Banfi, D; Barranco, J; Bartosik, H; Benedetto, E; Bruce, R; Brüning, O; Calaga, R; Cerutti, F; Damerau, H; Esposito, L; Fartoukh, S; Fitterer, M; Garoby, R; Gilardoni, S; Giovannozzi, M; Goddard, B; Gorini, B; Hanke, K; Iadarola, G; Lamont, M; Meddahi, M; Métral, E; Mikulec, B; Mounet, N; Papaphilippou, Y; Pieloni, T; Redaelli, S; Rossi, L; Rumolo, G; Shaposhnikova, E; Sterbini, G; Todesco, E; Tomás, R; Zimmermann, F; Valishev, A

    2014-01-01

    High-intensity and high-brightness beams are key ingredients to maximize the LHC integrated luminosity and to exploit its full potential. This contribution describes the optimization of beam and machine parameters to maximize the integrated luminosity as seen by the LHC experiments, by taking into account the expected intensity and brightness reach of LHC itself and its injector chain as well as the capabilities of the detectors for next run and foreseen upgrade scenarios.

  9. HERA and the LHC: A Workshop on the implications of HERA for LHC physics: Proceedings Part A

    CERN Document Server

    De Roeck, A.; Startup Meeting; Working Group Meeting; Mid-term Review Meeting; Working Group Meeting; Working Group Meeting; Final Meeting

    2005-01-01

    The HERA electron--proton collider has collected 100 pb$^{-1}$ of data since its start-up in 1992, and recently moved into a high-luminosity operation mode, with upgraded detectors, aiming to increase the total integrated luminosity per experiment to more than 500 pb$^{-1}$. HERA has been a machine of excellence for the study of QCD and the structure of the proton. The Large Hadron Collider (LHC), which will collide protons with a centre-of-mass energy of 14 TeV, will be completed at CERN in 2007. The main mission of the LHC is to discover and study the mechanisms of electroweak symmetry breaking, possibly via the discovery of the Higgs particle, and search for new physics in the TeV energy scale, such as supersymmetry or extra dimensions. Besides these goals, the LHC will also make a substantial number of precision measurements and will offer a new regime to study the strong force via perturbative QCD processes and diffraction. For the full LHC physics programme a good understanding of QCD phenomena and the ...

  10. Comparison of discovery limits for extra Z bosons at future colliders

    International Nuclear Information System (INIS)

    Godfrey, S.

    1995-01-01

    We study and compare the discovery potential for heavy neutral gauge bosons (Z') at various e + e - and pp (-) colliders that are planned or have been proposed. Typical discovery limits are for the Fermilab Tevatron ∼1 TeV, Di-Tevatron ∼2 TeV, CERN LHC ∼4 TeV, LSGNA (a 60 TeV pp collider) ∼13 TeV while the e + e - discovery limits are 2--10x √s with the large variation reflecting the model dependence of the limits. While both types of colliders have comparable discovery limits the hadron colliders are generally less dependent on the specific Z' model and provide more robust limits since the signal has little background. In contrast, discovery limits for e + e - limits are more model dependent and, because they are based on indirect inferences of deviations from standard model predictions, they are more sensitive to systematic errors

  11. TOTEM: Discoveries may go “forward” at the LHC

    CERN Multimedia

    TOTEM Collaboration

    2015-01-01

    After two very intense years of activity during which the TOTEM apparatus has gone through an extensive upgrade programme, the collaboration is now ready to explore the new territories in forward physics that will open at 13 TeV.   One vertical TOTEM Roman Pot and a tilted one, in the LHC tunnel. The rotation of the Roman Pots was one of the operations performed by the TOTEM collaboration during the LS1 upgrade programme. The TOTEM experimental apparatus that will operate during Run 2 of the LHC will be significantly better than before: the Roman Pot detectors have been re-configured to resolve pile-up and prepared for the addition in the near future of high-precision time-of-flight detectors. In addition, their impedance characteristics have been significantly improved to allow the beam to be approached safely at higher intensities. Finally, following up on the Memorandum of Understanding signed in 2014 by TOTEM and CMS, the two experiments have worked on upgrading their data acquisition an...

  12. Ions for LHC Beam Physics and Engineering Challenges

    CERN Document Server

    Maury, Stephan; Baggiolini, Vito; Beuret, Andre; Blas, Alfred; Borburgh, Jan; Braun, Hans Heinrich; Carli, Christian; Chanel, Michel; Fowler, Tony; Gilardoni, S S; Gourber-Pace, Marine; Hancock, Steven; Hill, Charles E; Hourican, Michael; Jowett, John M; Kahle, Karsten; Kuchler, Detlef; Mahner, Edgar; Manglunki, Django; Martini, Michel; Paoluzzi, Mauro M; Pasternak, Jaroslaw; Pedersen, Flemming; Raich, Uli; Rossi, Carlo; Royer, Jean Pierre; Schindl, Karlheinz; Scrivens, Richard; Sermeus, Luc; Shaposhnikova, Elena; Tranquille, Gerard; Vretenar, Maurizio; Zickler, Thomas

    2005-01-01

    The first phase of the heavy ion physics program at the LHC aims to provide lead-lead collisions at energies of 5.5 TeV per colliding nucleon pair and ion-ion luminosity of 1027 cm-2s-1. The transformation of CERN’s ion injector complex (Linac3-LEIR-PS-SPS) presents a number of beam physics and engineering challenges, which are described in this paper. In the LHC itself, there are fundamental performance limitations due to various beam loss mechanisms. To study these without risk of damage there will be an initial period of operation with a reduced number of nominal intensity bunches. While reducing the work required to commission the LHC with ions in 2008, this will still enable early physics discoveries.

  13. The discovery of long-term potentiation.

    Science.gov (United States)

    Lømo, Terje

    2003-04-29

    This paper describes circumstances around the discovery of long-term potentiation (LTP). In 1966, I had just begun independent work for the degree of Dr medicinae (PhD) in Per Andersen's laboratory in Oslo after an eighteen-month apprenticeship with him. Studying the effects of activating the perforant path to dentate granule cells in the hippocampus of anaesthetized rabbits, I observed that brief trains of stimuli resulted in increased efficiency of transmission at the perforant path-granule cell synapses that could last for hours. In 1968, Tim Bliss came to Per Andersen's laboratory to learn about the hippocampus and field potential recording for studies of possible memory mechanisms. The two of us then followed up my preliminary results from 1966 and did the experiments that resulted in a paper that is now properly considered to be the basic reference for the discovery of LTP.

  14. Pauline Gagnon's Blog: Did we build the LHC just to find the Higgs?

    CERN Multimedia

    Pauline Gagnon

    2011-01-01

    There are bosos and bosons, and if the Large Hadron Collider (LHC) were built only to find the Higgs boson, you would be absolutely right to think all physicists belong to the first category. But the fact is, the LHC does much more than search for Higgs bosons.   A selection of recent results obtained by the ATLAS experiment in search for new discoveries. In blue, searches for various supersymmetric models, in turquoise, models involving extra dimensions, and the other colors showing even more exotic models. Despite the media focusing mainly on the Higgs boson, this search only represents one of the many aspects we hope to cover with the LHC. Granted, the Higgs boson brings such an elegant solution to the problem of the origin of mass that its high popularity among physicists has reached even the general public. But the LHC could be opening the door to parallel worlds, extra dimensions or the discovery of as many new particles as the ones we already know. These are but some of the exciting...

  15. Topics in the measurement of electrons with the ATLAS detector at the LHC

    CERN Document Server

    Thioye, Moustapha

    2008-01-01

    Upon completion in 2008, the Large Hadron Collider (LHC) will accelerate and collide protons with a 14~TeV center-of-mass energy at a designed luminosity of $10^{34}\\rm {cm^{-2}s^{-1}}$. The LHC will also be able to accelerate and collide heavy ions (Pb-Pb) at a nucleon-nucleon center of mass of 5.5~TeV. It will be the most powerful instrument ever built to investigate particles properties. The ATLAS (A Toroidal LHC ApparatuS) experiment is one of five experiments at the LHC. ATLAS is a general-purpose detector designed for the discovery of new particles predicted by the Standard Model (i.e Higgs boson), and of signatures of physics beyond the Standard Model (i.e supersymmetry). These discoveries require a highly efficient detection and high-resolution measurement of leptons or photons in the final state. In ATLAS, the liquid Argon (LAr) calorimeters identify and measure electrons and photons with high resolution. This dissertation reports on a study of various topics relevant to the measurement of electrons ...

  16. Minimal Z' models: present bounds and early LHC reach

    International Nuclear Information System (INIS)

    Salvioni, Ennio; Zwirner, Fabio; Villadoro, Giovanni

    2009-01-01

    We consider 'minimal' Z' models, whose phenomenology is controlled by only three parameters beyond the Standard Model ones: the Z' mass and two effective coupling constants. They encompass many popular models motivated by grand unification, as well as many arising in other theoretical contexts. This parameterization takes also into account both mass and kinetic mixing effects, which we show to be sizable in some cases. After discussing the interplay between the bounds from electroweak precision tests and recent direct searches at the Tevatron, we extend our analysis to estimate the early LHC discovery potential. We consider a center-of-mass energy from 7 towards 10 TeV and an integrated luminosity from 50 to several hundred pb -1 , taking all existing bounds into account. We find that the LHC will start exploring virgin land in parameter space for M Z' around 700 GeV, with lower masses still excluded by the Tevatron and higher masses still excluded by electroweak precision tests. Increasing the energy up to 10 TeV, the LHC will start probing a wider range of Z' masses and couplings, although several hundred pb -1 will be needed to explore the regions of couplings favored by grand unification and to overcome the Tevatron bounds in the mass region around 250 GeV.

  17. Higgs Tasting Workshop 2016: Higgs and flavor in the LHC Run 2 era

    CERN Document Server

    2016-01-01

    The discovery of a Higgs particle by the LHC experiments has launched the exploration of electroweak symmetry breaking and potentially opened a new window into beyond Standard Model physics. Measurements of Higgs boson properties during Run 1 of the LHC are broadly consistent with the Standard Model predictions, although they leave significant room for New Physics contributions. At the same time, a number of exciting anomalies in low-energy precision flavor observables have cumulated over the years, whose potential implications are yet to be fully gauged. One of the most pressing questions in high energy physics is the origin of flavor and it is undeniably linked in an intimate way to the physics of the Higgs boson. The Standard Model comes with definite predictions for the structure of the couplings between the Higgs boson and the fermions. Probing this structure or observing any deviation will have long-reaching implications on our understanding on how Nature works at its most fundamental level, including c...

  18. Low-Data Investigation of Higgs Boson Discovery at the LHC

    CERN Document Server

    Scoby, Cheyne M

    2006-01-01

    The Standard Model (SM) remains as a complete and effective tool for understanding fundamental particles and their interactions. There is only one particle that the model predicts that has not yet been discovered. The Higgs boson is required as part of the mechanism behind electroweak symmetry breaking, and explains how the weak vector bosons, as well as the charged quarks and leptons gain mass, proportional to their coupling to the Higgs field. The SM predicts many properties of the Higgs, but cannot give a precise value to its mass. Experiment and theoretical arguments have put limits on the Higgs mass to within 114.7 GeV/c2 < MH < 1000 GeV/c2. The Large Hadron Collider at CERN will provide access to a new energy regime that will offer many channels for a potential discovery of the Higgs. In the Compact Muon Solenoid (CMS) detector experiment, the “Golden mode” for Higgs discovery features decay to two Z0, with both Z0 decaying to leptonic final states. Full reconstruction analyses suffer from the...

  19. Forward and Low-$x$ Physics Programme with CMS at the LHC

    CERN Document Server

    Van Mechelen, Pierre

    2008-01-01

    Forward physics with CMS at the LHC covers a wide range of physics subjects, including very low-$x$ QCD, underlying event and multiple interaction characteristics, photon-mediated processes, diffraction in the presence of a hard scale and even MSSM Higgs discovery in central exclusive production. The status of the forward detector instrumentation of CMS, and the preparation of some example analyses of the first LHC data are discussed.

  20. Forward-backward asymmetry as a discovery tool for Z' bosons at the LHC

    Science.gov (United States)

    Accomando, Elena; Belyaev, Alexander; Fiaschi, Juri; Mimasu, Ken; Moretti, Stefano; Shepherd-Themistocleous, Claire

    2016-01-01

    The Forward-Backward Asymmetry (AFB) in Z' physics is commonly only perceived as the observable which possibly allows one to interpret a Z' signal appearing in the Drell-Yan channel by distinguishing different models of such (heavy) spin-1 bosons. In this paper, we revisit this issue, showing that the absence of any di-lepton rapidity cut, which is commonly used in the literature, can enhance the potential of the observable at the LHC. We moreover examine the ability of AFB in setting bounds on or even discovering a Z' at the Large Hadron Collider (LHC) concluding that it may be a powerful tool for this purpose. We analyse two different scenarios: Z'-bosons with a narrow and wide width, respectively. We find that, in the first case, the significance of the AFB search can be comparable with that of the `bump' search usually adopted by the experimental collaborations; however, in being a ratio of (differential) cross sections, the AFB has the advantage of reducing experimental systematics as well as theoretical errors due to PDF uncertainties. In the second case, the AFB search can outperform the bump search in terms of differential shape, meaning the AFB distribution may be better suited for new broad resonances than the event counting strategy usually adopted in such cases.

  1. LHC challenges and upgrade options

    Energy Technology Data Exchange (ETDEWEB)

    Bruning, O [CERN AB/ABP, Y03600, 1211 Geneva 23 (Switzerland)], E-mail: Oliver.Bruning@cern.ch

    2008-05-15

    The presentation summarizes the key parameters of the LHC collider. Following a discussion of the main challenges for reaching the nominal machine performance the presentation identifies options for increasing the operation tolerances and the potential performance reach of the LHC by means of future hardware upgrades of the LHC and its injector complex.

  2. LHC challenges and upgrade options

    International Nuclear Information System (INIS)

    Bruning, O

    2008-01-01

    The presentation summarizes the key parameters of the LHC collider. Following a discussion of the main challenges for reaching the nominal machine performance the presentation identifies options for increasing the operation tolerances and the potential performance reach of the LHC by means of future hardware upgrades of the LHC and its injector complex

  3. HL-LHC alternatives

    CERN Document Server

    Tomás, R; White, S

    2014-01-01

    The HL-LHC parameters assume unexplored regimes for hadron colliders in various aspects of accelerator beam dynamics and technology. This paper reviews three alternatives that could potentially improve the LHC performance: (i) the alternative filling scheme 8b+4e, (ii) the use of a 200 MHz RF system in the LHC and (iii) the use of proton cooling methods to reduce the beam emittance (at top energy and at injection). The alternatives are assessed in terms of feasibility, pros and cons, risks versus benefits and the impact on beam availability.

  4. Prospects for charged Higgs searches at the LHC

    CERN Document Server

    Akeroyd, A.G.; Arhrib, A.; Basso, L.; Ginzburg, I.F.; Guedes, R.; Hernandez-Sanchez, J.; Huitu, K.; Hurth, T.; Kadastik, M.; Kanemura, S.; Kannike, K.; Khater, W.; Krawczyk, M.; Mahmoudi, F.; Moretti, S.; Najjari, S.; Osland, P.; Pruna, G.M.; Purmohammadi, M.; Racioppi, A.; Raidal, M.; Santos, R.; Sharma, P.; Sokolowska, D.; Staal, O.; Yagyu, K.; Yildirim, E.

    2017-05-03

    The goal of this report is to summarize the current situation and discuss possible search strategies for charged scalars, in non-supersymmetric extensions of the Standard Model at the LHC. Such scalars appear in Multi-Higgs-Doublet models (MHDM), in particular in the popular Two-Higgs-Doublet model (2HDM), allowing for charged and more neutral Higgs bosons. These models have the attractive property that electroweak precision observables are automatically in agreement with the Standard Model at the tree level. For the most popular version of this framework, Model~II, a discovery of a charged Higgs boson remains challenging, since the parameter space is becoming very constrained, and the QCD background is very high. We also briefly comment on models with dark matter which constrain the corresponding charged scalars that occur in these models. The stakes of a possible discovery of an extended scalar sector are very high, and these searches should be pursued in all conceivable channels, at the LHC and at future c...

  5. Prospects for charged Higgs searches at the LHC

    International Nuclear Information System (INIS)

    Akeroyd, A.G.; Moretti, S.; Yagyu, K.; Yildirim, E.; Aoki, M.; Arhrib, A.; Basso, L.; Ginzburg, I.F.; Guedes, R.; Hernandez-Sanchez, J.; Huitu, K.; Hurth, T.; Kadastik, M.; Kannike, K.; Racioppi, A.; Raidal, M.; Kanemura, S.; Khater, W.; Krawczyk, M.; Najjari, S.; Sokolowska, D.; Mahmoudi, F.; Osland, P.; Purmohammadi, M.; Pruna, G.M.; Santos, R.; Sharma, P.; Staal, O.

    2017-01-01

    The goal of this report is to summarize the current situation and discuss possible search strategies for charged scalars, in non-supersymmetric extensions of the Standard Model at the LHC. Such scalars appear in Multi-Higgs-Doublet models, in particular in the popular Two-Higgs-Doublet model, allowing for charged and additional neutral Higgs bosons. These models have the attractive property that electroweak precision observables are automatically in agreement with the Standard Model at the tree level. For the most popular version of this framework, Model II, a discovery of a charged Higgs boson remains challenging, since the parameter space is becoming very constrained, and the QCD background is very high. We also briefly comment on models with dark matter which constrain the corresponding charged scalars that occur in these models. The stakes of a possible discovery of an extended scalar sector are very high, and these searches should be pursued in all conceivable channels, at the LHC and at future colliders. (orig.)

  6. Prospects for charged Higgs searches at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Akeroyd, A.G.; Moretti, S.; Yagyu, K.; Yildirim, E. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Aoki, M. [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan); Arhrib, A. [Universite Abdelmalek Essaadi, Departement de Mathematique, Faculte des Sciences et Techniques, Tangier (Morocco); Faculte des Sciences-Semlalia, LPHEA, Marrakesh (Morocco); Basso, L. [CPPM, Aix-Marseille Universite, CNRS-IN2P3, UMR 7346, Marseille Cedex 9 (France); Ginzburg, I.F. [Novosibirsk University, Sobolev Institute of Mathematics SB RAS, Novosibirsk (Russian Federation); Guedes, R. [FCSH - New University of Lisbon, IHC, Instituto de Historia Contemporanea, Lisbon (Portugal); Hernandez-Sanchez, J. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica, Puebla, Puebla (Mexico); Dual C-P Institute of High Energy Physics, Colima (Mexico); Huitu, K. [University of Helsinki, Department of Physics, and Helsinki Institute of Physics, Helsinki (Finland); Hurth, T. [Johannes Gutenberg University, PRISMA Cluster of Excellence and Institute for Physics (THEP), Mainz (Germany); Kadastik, M.; Kannike, K.; Racioppi, A.; Raidal, M. [National Institute of Chemical Physics and Biophysics, Tallinn (Estonia); Kanemura, S. [University of Toyama, Department of Physics, Toyama (Japan); Khater, W. [Birzeit University, Department of Physics, West Bank (Palestinian Territory, Occupied); Krawczyk, M.; Najjari, S.; Sokolowska, D. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Mahmoudi, F. [Lyon 1 Univ., ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon, UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva 23 (Switzerland); Osland, P.; Purmohammadi, M. [University of Bergen, Department of Physics and Technology, Postboks 7803, Bergen (Norway); Pruna, G.M. [Paul Scherrer Institute, Villigen (Switzerland); Santos, R. [Universidade de Lisboa, Campo Grande, Centro de Fisica Teorica e Computacional, Faculdade de Ciencias, Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa - ISEL, Lisbon (Portugal); Sharma, P. [The University of Adelaide, Center of Excellence in Particle Physics (CoEPP), Adelaide, SA (Australia); Staal, O. [Stockholm University, Department of Physics, The Oskar Klein Centre, Stockholm (Sweden)

    2017-05-15

    The goal of this report is to summarize the current situation and discuss possible search strategies for charged scalars, in non-supersymmetric extensions of the Standard Model at the LHC. Such scalars appear in Multi-Higgs-Doublet models, in particular in the popular Two-Higgs-Doublet model, allowing for charged and additional neutral Higgs bosons. These models have the attractive property that electroweak precision observables are automatically in agreement with the Standard Model at the tree level. For the most popular version of this framework, Model II, a discovery of a charged Higgs boson remains challenging, since the parameter space is becoming very constrained, and the QCD background is very high. We also briefly comment on models with dark matter which constrain the corresponding charged scalars that occur in these models. The stakes of a possible discovery of an extended scalar sector are very high, and these searches should be pursued in all conceivable channels, at the LHC and at future colliders. (orig.)

  7. LHC crab-cavity aspects and strategy

    International Nuclear Information System (INIS)

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-01-01

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  8. Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

    International Nuclear Information System (INIS)

    Testa, M.

    2017-01-01

    The High Luminosity Large Hadron Collider (HL-LHC) is expected to start providing proton-proton collisions by 2026. In the following 10 years it will deliver about 3000 fb −1 of integrated luminosity, more than a factor 10 of the data that will be collected by the end of Run3 at LHC in 2023. For such amount of data, an instantaneous luminosity of ∼ 7.5 × 10 34 cm −2 s −1 is needed. At this luminosity an unprecedented average number of pile-up collision per bunch crossing of 200 is expected. The ATLAS and CMS detectors will be upgraded to fully exploit the HL-LHC potential in this harsh environment. In this document the performances of the ATLAS and CMS upgraded detectors will be described. Their impact on crucial measurements of the Higgs boson sector, of the vector boson fusion process and on new physics searches, will be reported as well.

  9. 2008 LHC Open Days: Super(-conducting) events and activities

    CERN Multimedia

    2008-01-01

    Superconductivity will be one of the central themes of the programme of events and discovery activities of the forthcoming LHC Open Days on 5 and 6 April. Visitors will be invited to take part in a range of activities, experiments and exchanges all about this amazing aspect of the LHC project. Why superconductivity? Simply because it’s the principle on which the very operation of the LHC is based. At the heart of the LHC magnets lie 7000 kilometres of superconducting cables, each strand containing between 6000 and 9000 filaments of the superconducting alloy niobium-titanium in a copper coating. These cables, cooled to a temperature close to absolute zero, are able to conduct electricity without resistance. 12000 amp currents - an intensity some 30000 times greater than that of a 100 watt light bulb - pass through the cables of the LHC magnets.   Programme:   BLDG 163 (Saturday 5 and Sunday 6 April): See weird and wonderful experiments with your own eyes In the workshop where the 2...

  10. Physics potential of precision measurements of the LHC luminosity

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The uncertainty in the determination of the LHC luminosity is rapidly becoming a limiting factor for the analysis and interpretation of many important LHC processes. In this talk first of all we discuss the theoretical accuracy of total cross sections and examine in which cases the luminosity error is or will be dominant. We then review the impact of LHC data in PDF determinations, with enphasis on the effects of the luminosity uncertainty. We explore the requirements for the accuracy of the 2011 luminosity determination from the point of view of standard candle cross section and other important processes. Finally we discuss what we can learn from the accurate measurement of cross section ratios at different center of mass energies for processes like W, ttbar and dijet production.

  11. Quark excitations through the prism of direct photon plus jet at the LHC

    International Nuclear Information System (INIS)

    Bhattacharya, Satyaki; Chauhan, Sushil Singh; Choudhary, Brajesh Chandra; Choudhury, Debajyoti

    2009-01-01

    The quest to know the structure of matter has resulted in various theoretical speculations wherein additional colored fermions are postulated. Arising either as Kaluza-Klein excitations of ordinary quarks, or as excited states in scenarios wherein the quarks themselves are composites, or even in theories with extended gauge symmetry, the presence of such fermions (q*) can potentially be manifested in γ+jet final states at the LHC. Using unitarized amplitudes and the CMS setup, we demonstrate that in the initial phase of LHC operation (with an integrated luminosity of 200 pb -1 ) one can discover such states for a mass up to 2.0 TeV. The discovery of a q* with a mass as large as ∼5 TeV can be achieved for an integrated luminosity of ∼140 fb -1 . We also comment on the feasibility of mass determination.

  12. Search for t Z' associated production induced by t c Z' couplings at the LHC

    Science.gov (United States)

    Hou, Wei-Shu; Kohda, Masaya; Modak, Tanmoy

    2017-07-01

    The P5' and RK anomalies, recently observed by the LHCb Collaboration in B →K(*) transitions, may indicate the existence of a new Z' boson, which may arise from gauged Lμ-Lτ symmetry. Flavor-changing neutral current Z' couplings, such as t c Z', can be induced by the presence of extra vector-like quarks. In this paper we study the LHC signatures of the induced right-handed t c Z' coupling that is inspired by, but not directly linked to, the B →K(*) anomalies. The specific processes studied are c g →t Z' and its conjugate process, each followed by Z'→μ+μ-. By constructing an effective theory for the t c Z' coupling, we first explore in a model-independent way the discovery potential of such a Z' at the 14 TeV LHC with 300 and 3000 fb-1 integrated luminosities. We then reinterpret the model-independent results within the gauged Lμ-Lτ model. In connection with t c Z', the model also implies the existence of a flavor-conserving c c Z' coupling, which can drive the c c ¯→Z'→μ+μ- process. Our study shows that existing LHC results for dimuon resonance searches already constrain the c c Z' coupling, and that the Z' can be discovered in either or both of the c g →t Z' and c c ¯→Z' processes. We further discuss the sensitivity to the left-handed t c Z' coupling and find that the coupling values favored by the B →K(*) anomalies lie slightly below the LHC discovery reach even with 3000 fb-1 .

  13. Prospects for Higgs searches at the LHC

    International Nuclear Information System (INIS)

    Dissertori, G.

    2006-01-01

    In this talk I will summarize the current simulation studies by the LHC experiments regarding the searches for Higgs bosons, both in the context of the Standard Model as well as its supersymmetric extension. Some emphasis will be given to the early discovery reach, as well as to recent studies regarding background estimations and systematic uncertainties. (author)

  14. Top quark production at the LHC

    CERN Document Server

    Ferreira da Silva, Pedro

    2016-01-01

    Twenty years past its discovery, the top quark continues attracting great interest as experiments keep unveiling its properties. An overview of the latest measurements in the domain of top quark production, performed by the ATLAS and CMS experiments at the CERN LHC, is given. The latest measurements of top quark production rates via strong and electroweak processes are reported and compared to different perturbative QCD predictions. Fundamental properties, such as the mass or the couplings of the top quark, as well as re-interpretations seeking for beyond the standard model contributions in the top quark sector, are extracted from these measurements. In each case an attempt to highlight the first results and main prospects for the on-going Run 2 of the LHC is made.

  15. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  16. Forward-backward asymmetry as a discovery tool for Z′ bosons at the LHC

    International Nuclear Information System (INIS)

    Accomando, Elena; Belyaev, Alexander; Fiaschi, Juri; Mimasu, Ken; Moretti, Stefano; Shepherd-Themistocleous, Claire

    2016-01-01

    The Forward-Backward Asymmetry (AFB) in Z ′ physics is commonly only perceived as the observable which possibly allows one to interpret a Z ′ signal appearing in the Drell-Yan channel by distinguishing different models of such (heavy) spin-1 bosons. In this paper, we revisit this issue, showing that the absence of any di-lepton rapidity cut, which is commonly used in the literature, can enhance the potential of the observable at the LHC. We moreover examine the ability of AFB in setting bounds on or even discovering a Z ′ at the Large Hadron Collider (LHC) concluding that it may be a powerful tool for this purpose. We analyse two different scenarios: Z ′ -bosons with a narrow and wide width, respectively. We find that, in the first case, the significance of the AFB search can be comparable with that of the ‘bump’ search usually adopted by the experimental collaborations; however, in being a ratio of (differential) cross sections, the AFB has the advantage of reducing experimental systematics as well as theoretical errors due to PDF uncertainties. In the second case, the AFB search can outperform the bump search in terms of differential shape, meaning the AFB distribution may be better suited for new broad resonances than the event counting strategy usually adopted in such cases.

  17. Potential of stochastic cooling of heavy ions in the LHC

    CERN Document Server

    Schaumann, M; Blaskiewicz, M

    2013-01-01

    The dynamics of the high intensity lead beams in the LHC are strongly influenced by intra-beam scattering (IBS), leading to significant emittance growth and particle losses at all energies. Particle losses during collisions are dominated by nuclear electromagnetic processes and the debunching effect arising from the influence of IBS, resulting in a non-exponential intensity decay during the fill and short luminosity lifetimes. In the LHC heavy ion runs, 3 experiments will be taking data and the average fill duration will be rather short as a consequence of the high burn-off rate. The achievements with stochastic cooling at RHIC suggest that such a system at LHC could substantially reduce the emittance growth and the debunching component during injection and collisions. The luminosity lifetime and fill length could be improved to optimize the use of the limited run time of 4 weeks per year. This paper discusses the first results of a feasibility study to use stochastic cooling on the lead ion beams in the LHC....

  18. The phenomenoogy of extended gauge and higgs sectors at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Andrea Dawn [Univ. of Wisconsin, Madison, WI (United States)

    2008-01-01

    scalar potential. We consider both hh resonant production and hH associated production. We identify viable search channels for the LHC and provide their expected discovery sensitivities for a center-of-mass energy of 14 TeV (LHC14) and a luminosity of 3 ab-1. We nd that discovery at the 95% C.L. is possible over most of the parameter space of the CP-conserving Type-II 2HDM.

  19. The discovery of the indivisible. Quanta, quarks, and the LHC

    International Nuclear Information System (INIS)

    Resag, Joerg

    2010-01-01

    In the middle of Europe one of the largest and mosr complex machines has been taken into operation, which we men have al always built: The Large Hadron Collider (briefly LHC). By it a window is opened in a new world, which conceals many mysteries: What gives to the particles of matter their mass? Do hidden space-dimensions exist? Does a deep connection exist between particles with different spin (supersymmetry)? Of which consists the dark matter, which penetrates our universe? By this book the reader dives in this wonderful world, which we men have discovers in recent time: Atoms and their substructure of quarks and leptons, the mysterious quantum mechanics, particles of light, Einstein's web of space and time, the four interactions, and finally the new world, in which the LHC just advances, and in which we assume Higgs particles, supersymmetry, and possibly first indications for the string theory. After the lecture it is clear: We live in an astonishing world and are just about to put a deciding step forward in the solving of its mysteries.

  20. ATLAS physics prospects with the High-Luminosity LHC

    CERN Document Server

    Khanov, Alexander; The ATLAS collaboration

    2016-01-01

    Run-I at the LHC was very successful with the discovery of a new boson of about 125 GeV mass with properties compatible with those of the Higgs boson predicted by Standard Model.Precise measurements of the properties of this new boson, and the search for new physics beyond the Standard Model, are primary goals of the just restarted LHC running at 13 TeV collision energy and all future running at the LHC, including its luminosity upgrade, HL-LHC, that should allow the collection of 3000 fb-1 of data per experiment. The physics prospects with a pp centre-of-mass energy of 14 TeV are presented for 300 and 3000 fb-1. The ultimate precision attainable on measurements of the couplings of the 125 GeV boson to elementary fermions and bosons is discussed, as well as perspectives on the searches for partners associated with it. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions. Supersymmetry is one of the best motivated extensions of the Standard Mode...

  1. Compressed electroweakino spectra at the LHC

    CERN Document Server

    Schwaller, Pedro

    2014-01-01

    In this work, we examine the sensitivity of monojet searches at the LHC to directly produced charginos and neutralinos (electroweakinos) in the limit of small mass splitting, where the traditional multilepton plus missing energy searches loose their sensitivity. We first recast the existing 8 TeV monojet search at CMS in terms of a SUSY simplified model with only light gauginos (winos and binos) or only light higgsinos. The current searches are not sensitive to MSSM like production cross sections, but would be sensitive to models with 2-20 times enhanced production cross section, for particle masses between 100 GeV and 250 GeV. Then we explore the sensitivity in the 14 TeV run of the LHC. Here we emphasise that in addition to the pure monojet search, soft leptons present in the samples can be used to increase the sensitivity. Exclusion of electroweakino masses up to 200 GeV is possible with 300 fb$^{-1}$ at the LHC, if the systematic error can be reduced to the 1% level. Discovery is possible with 3000 fb$^{-...

  2. Other Exotic Scenarios at the LHC

    CERN Document Server

    Benslama, K

    2006-01-01

    The considerable center-of-mass energy and luminosity at the LHC will ensure a discovery reach for new particles which extends well into the mlti-TeV region. ATLAS and CMS carried out many studies of the implications of this capability for Beyond the Standard Model Physics. In this talk, I will focus on studies involving extra-dimensions, little higgs, strong symmetry breaking, compositeness and new gauge bosons.

  3. LHC Report: LHC smashes collision records

    CERN Multimedia

    Sarah Charley

    2016-01-01

    The Large Hadron Collider is now producing more than a billion proton-proton collisions per second.   The LHC is colliding protons at a faster rate than ever before: approximately 1 billion times per second. Since April 2016, the LHC has delivered more than 30 inverse femtobarns (fb-1) to both ATLAS and CMS. This means that around 2.4 quadrillion (2.4 million billion) collisions have been seen by each of the experiments this year. The inverse femtobarn is the unit of measurement for integrated luminosity, indicating the cumulative number of potential collisions. This compares with the total of 33.2 fb-1 produced between 2010 and 2015. The unprecedented performance this year is the result of both the incremental increases in collision rate and the sheer amount of time the LHC has been up and running. This comes after a slow start-up in 2015, when scientists and engineers still needed to learn how to operate the machine at a much higher energy. “With more energy, the machine is much more sen...

  4. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, S; et al.

    2013-01-01

    This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered particle such as couplings to SM particles, spin and CP-quantum numbers etc.

  5. HL-LHC parameter space and scenarios

    International Nuclear Information System (INIS)

    Bruning, O.S.

    2012-01-01

    The HL-LHC project aims at a total integrated luminosity of approximately 3000 fb -1 over the lifetime of the HL-LHC. Assuming an exploitation period of ca. 10 years this goal implies an annual integrated luminosity of approximately 200 fb -1 to 300 fb -1 per year. This paper looks at potential beam parameters that are compatible with the HL-LHC performance goals and discusses briefly potential variation in the parameter space. It is shown that the design goal of the HL-LHC project can only be achieved with a full upgrade of the injector complex and the operation with β* values close to 0.15 m. Significant margins for leveling can be achieved for β* values close to 0.15 m. However, these margins can only be harvested during the HL-LHC operation if the required leveling techniques have been demonstrated in operation

  6. LHC luminosity upgrade detector challenges

    CERN Multimedia

    CERN. Geneva; de Roeck, Albert; Bortoletto, Daniela; Wigmans, Richard; Riegler, Werner; Smith, Wesley H

    2006-01-01

    LHC luminosity upgrade: detector challenges The upgrade of the LHC machine towards higher luminosity (1035 cm -2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: • Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) • Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector developments (lectures 2-4) • Electronics, trigger and data acquisition challenges (lecture 5) Note: the much more ambitious LHC energy upgrade will not be covered

  7. Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC

    CERN Document Server

    Wanzenberg, Rainer; CERN. Geneva. ATS Department

    2016-01-01

    The High Luminosity Large Hadron Collider (HL-LHC) project was started with the goal to extend the discovery potential of the Large Hadron Collider (LHC). The HL-LHC study implies also an upgraded dimensions of the ALICE beam pipe. The trapped monopole and dipole Higher Order Modes (HOMs) and the short range wakefields for the new design of the ALICE vacuum chamber were calculated with help of the computer codes MAFIA and ECHO2D. The results of the short range wakefields calculations and the HOMs calculations for the ALICE vacuum chamber with new dimensions are presented in this report. The short range wakefields are presented in terms of longitudinal and transverse wake potentials and also in terms of loss and kick parameters. The frequency, the loss parameter, the R/Q and the Qvalues and also power loss parameters are presented as result of the HOMs calculations and can be converted into impedance values.

  8. The Higgs and Supersymmetry at Run II of the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shih, David [Rutgers Univ., Piscataway, NJ (United States)

    2016-04-14

    Prof. David Shih was supported by DOE grant DE-SC0013678 from April 2015 to April 2016. His research during this year focused on the phenomenology of super-symmetry (SUSY) and maximizing its future discovery potential at Run II of the LHC. SUSY is one of the most well-motivated frameworks for physics beyond the Standard Model. It solves the "naturalness" or "hierarchy" problem by stabilizing the Higgs mass against otherwise uncontrolled quantum corrections, predicts "grand unification" of the fundamental forces, and provides many potential candidates for dark matter. However, after decades of null results from direct and indirect searches, the viable parameter space for SUSY is increasingly constrained. Also, the discovery of a Standard Model-like Higgs with a mass at 125 GeV places a stringent constraint on SUSY models. In the work supported on this grant, Shih has worked on four different projects motivated by these issues. He has built natural SUSY models that explain the Higgs mass and provide viable dark matter; he has studied the parameter space of "gauge mediated supersymmetry breaking" (GMSB) that satisfies the Higgs mass constraint; he has developed new tools for the precision calculation of flavor and CP observables in general SUSY models; and he has studied new techniques for discovery of supersymmetric partners of the top quark.

  9. The Higgs and Supersymmetry at Run II of the LHC

    International Nuclear Information System (INIS)

    Shih, David

    2016-01-01

    Prof. David Shih was supported by DOE grant DE-SC0013678 from April 2015 to April 2016. His research during this year focused on the phenomenology of super-symmetry (SUSY) and maximizing its future discovery potential at Run II of the LHC. SUSY is one of the most well-motivated frameworks for physics beyond the Standard Model. It solves the 'naturalness' or 'hierarchy' problem by stabilizing the Higgs mass against otherwise uncontrolled quantum corrections, predicts 'grand unification' of the fundamental forces, and provides many potential candidates for dark matter. However, after decades of null results from direct and indirect searches, the viable parameter space for SUSY is increasingly constrained. Also, the discovery of a Standard Model-like Higgs with a mass at 125 GeV places a stringent constraint on SUSY models. In the work supported on this grant, Shih has worked on four different projects motivated by these issues. He has built natural SUSY models that explain the Higgs mass and provide viable dark matter; he has studied the parameter space of 'gauge mediated supersymmetry breaking' (GMSB) that satisfies the Higgs mass constraint; he has developed new tools for the precision calculation of flavor and CP observables in general SUSY models; and he has studied new techniques for discovery of supersymmetric partners of the top quark.

  10. LHC Starts the Search for Sparticles in April

    CERN Multimedia

    2008-01-01

    The long expected CERN Large Hadron Collider will become operational somewhere this spring, and physicists all around the world can hardly wait to see what new discoveries it will bring. For example, whether the LHC accelerating particles towards each other at speeds close to that of light are able to prove the supersymmetry theory or not.

  11. Post LHC8 SUSY benchmark points for ILC physics

    International Nuclear Information System (INIS)

    Baer, Howard; List, Jenny

    2013-07-01

    We re-evaluate prospects for supersymmetry at the proposed International Linear e + e - Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with ∝5 fb -1 of pp collisions at √(s)=7 TeV and LHC8 with ∝20 fb -1 at √(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m h ≅125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m A , a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, τ-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at √(s)≅ 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.

  12. Post LHC8 SUSY benchmark points for ILC physics

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with {proportional_to}5 fb{sup -1} of pp collisions at {radical}(s)=7 TeV and LHC8 with {proportional_to}20 fb{sup -1} at {radical}(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m{sub h}{approx_equal}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m{sub A}, a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, {tau}-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){approx_equal} 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.

  13. Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

    CERN Document Server

    Carena, M S; Wagner, C E M

    2000-01-01

    We study the discovery potential of the CERN LHC, Fermilab Tevatron and CERN LEP colliders in the search for the neutral CP-even Higgs boson of the MSSM which couples to the weak gauge bosons with a strength close to the standard model one and, hence, plays a relevant role in the mechanism of electroweak symmetry breaking. We place special emphasis on the radiative effects which influence the discovery reach of these colliders. We concentrate on the Vbb channel, with V=Z or W, and on the channels with diphoton final states, which are the dominant ones for the search for a light standard model Higgs boson at LEP or Tevatron and LHC, respectively. By analyzing the parameters of the MSSM for which the searches become difficult at one or more of these three colliders, we demonstrate their complementarity in the search for a light Higgs boson which plays a relevant role in the mechanism of electroweak symmetry breaking. (32 refs).

  14. Higher representations and multijet resonances at the LHC

    International Nuclear Information System (INIS)

    Kumar, Jason; Thomas, Brooks; Rajaraman, Arvind

    2011-01-01

    The CMS Collaboration has recently conducted a search for trijet resonances in multijet events at the LHC. Motivated in part by this analysis, we examine the phenomenology of exotic particles transforming under higher representations of SU(3) color, focusing on those representations which intrinsically prohibit decays to fewer than three jets. We determine the LHC discovery reach for a particle transforming in a representation of this sort and discuss several additional theoretical and phenomenological constraints which apply to such a particle. Furthermore, we demonstrate that such a particle can provide a consistent explanation for a trijet excess (an invariant-mass peak of roughly 375 GeV) observed in the recent CMS study.

  15. Heavy-ion operation of HL-LHC

    CERN Document Server

    Jowett, J M; Versteegen, R

    2015-01-01

    The heavy-ion physics programme of the LHC will continue during the HL-LHC period with upgraded detectors capable of exploiting several times the design luminosity for nucleus–nucleus (Pb–Pb) collisions. For proton–nucleus (p–Pb) collisions, unforeseen in the original design of the LHC, a comparable increase beyond the 2013 luminosity should be attainable. We present performance projections and describe the operational strategies and relatively modest upgrades to the collider hardware that will be needed to achieve these very significant extensions to the physics potential of the High Luminosity LHC.

  16. Cost-Benefit Analysis of the LHC to 2025 and beyond: Was it Worth it ?

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Social cost-benefit analysis (CBA) of projects has been successfully applied in different fields such as transport, energy, health, education, and environment, climate change policy, but often considered impossible for research infrastructures because of the impredictable benefits of scientific discovery. We have designed a CBA model for large scale research infrastructures and applied it to the LHC. After estimating investment and operation costs spread over 30 years (to 2025), combining data from the CERN and the experiments, we evaluate the benefits of knowledge output (publications), human capital development, technological spillovers, and cultural effects. Additionally, willingness-to-pay for the pure value of discovery at the LHC by the general public is estimated through a survey of around 1,ooo respondendents in four countries. Setting to zero any until now unpredictable economic value of discovery of the Higgs boson (or of any new physics), we compute a probability distribution for the net present va...

  17. Fine-tuning implications for complementary dark matter and LHC SUSY searches

    CERN Document Server

    Cassel, S; Kraml, S; Lessa, A; Ross, G G

    2011-01-01

    The requirement that SUSY should solve the hierarchy problem without undue fine-tuning imposes severe constraints on the new supersymmetric states. With the MSSM spectrum and soft SUSY breaking originating from universal scalar and gaugino masses at the Grand Unification scale, we show that the low-fine-tuned regions fall into two classes that will require complementary collider and dark matter searches to explore in the near future. The first class has relatively light gluinos or squarks which should be found by the LHC in its first run. We identify the multijet plus E_T^miss signal as the optimal channel and determine the discovery potential in the first run. The second class has heavier gluinos and squarks but the LSP has a significant Higgsino component and should be seen by the next generation of direct dark matter detection experiments. The combined information from the 7 TeV LHC run and the next generation of direct detection experiments can test almost all of the CMSSM parameter space consistent with ...

  18. Tevatron-for-LHC Report of the QCD Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, Michael G.; Begel, M.; Bourilkov, D.; Campanelli, M.; Chlebana, F.; De Roeck, A.; Dittmann, J.R.; Ellis, S.D.; Field, B.; Field, R.; Gallinaro, M.; /Fermilab

    2006-10-01

    The experiments at Run 2 of the Tevatron have each accumulated over 1 fb{sup -1} of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focused on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.

  19. The LHC taken with philosophy

    CERN Multimedia

    2009-01-01

    "Whether or not scientists at the LHC will find the Higgs boson, they will learn something about the secrets of Nature that will greatly advance human understanding". These are the words of Anthony Grayling, Professor of Philosophy at Birkbeck College, University of London, and presenter of the forthcoming BBC series "Exchanges at the Frontier". He visited CERN to prepare for his next interview with Jim Virdee, CMS Spokesperson.Grayling’s interview with Virdee is part of a series of events at Welcome Trust Collection in London: five of the biggest names in the world of science will discuss the social impact of their discoveries. These events will be broadcast to over 40 million people worldwide in December 2009 by the BBC World Service in the framework of the Exchanges at the Frontier series. Grayling has been following the LHC via the media but his tour of the CMS experiment increased his philosophical awareness of the international cooperation that has enabled it be bu...

  20. Conceptual Design of the Cryogenic System for the High-luminosity Upgrade of the Large Hadron Collider (LHC)

    Science.gov (United States)

    Brodzinski, K.; Claudet, S.; Ferlin, G.; Tavian, L.; Wagner, U.; Van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This paper will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  1. Kruger2016 - Workshop on Discovery Physics at the LHC

    CERN Document Server

    2016-01-01

    Five days of plenary talks and parallel sessions where some of the very latest experimental results in high energy physics will be presented. The scope ranges from the study of excited nuclear matter, as it emerged from the primordial matter created by the Big Bang at the beginning of the Universe to the search for New Physics beyond the Standard Model. The surroundings of one of the world’s largest national parks, and the physics results presented during this workshop, will serve to inspire discussions between theorists and experimentalists on the latest LHC and Tevatron measurements as well as our expectations for the future.

  2. Dark Matter characterization at the LHC in the Effective Field Theory approach

    Science.gov (United States)

    Belyaev, Alexander; Panizzi, Luca; Pukhov, Alexander; Thomas, Marc

    2017-04-01

    We have studied the complete set of dimension 5 and dimension 6 effective operators involving the interaction of scalar, fermion and vector Dark Matter (DM) with SM quarks and gluons, to explore the possibility to distinguish these operators and characterise the spin of DM at the LHC. We have found that three factors — the effective dimension of the operator, the structure of the SM part of the operator and the parton densities of the SM particles connected to the operator — uniquely define the shape of the (unobservable) invariant mass distribution of the DM pair and, consequently, the shape of the (observable) E T miss distribution related to it. Using χ2 analysis, we found that at the LHC, with a luminosity of 300 fb-1, certain classes of EFT operators can be distinguished from each other. Hence, since DM spin is partly correlated with the factors defining the shape of E T miss , the LHC can potentially shed a light also on DM spin. We have also observed a drastic difference in the efficiencies (up to two orders of magnitude) for large E T miss cuts scenarios with different DM spin, thus indicating that the DM discovery potential strongly depends on it. The study we perform here can be applied more generally than within the EFT paradigm, where the DM mediator is not produced on-the-mass-shell, such as the case of t-channel mediator or mediator with mass below 2 M DM, where the invariant mass of the DM pair is not fixed.

  3. Prospects for R-Parity Conserving SUSY searches at the LHC

    CERN Document Server

    Genest, Marie-Helene

    2009-01-01

    We review the current strategies to search for generic SUSY models with R-parity conservation in the ATLAS and CMS detectors at the LHC. The discovery reach in early data will be presented for the different search channels based on missing transverse momentum from undetected neutralinos and multiple jets. We will also describe the search for models of gauge-mediated supersymmetry breaking for which the NLSP is a neutralino decaying to a photon and a gravitino. Finally, we will present recent work on techniques used to reconstruct the decays of SUSY particles at the LHC in early data, based on the selection of final-state exclusive decay chains.

  4. What could the LHC teach us on the structure of space-time?

    Directory of Open Access Journals (Sweden)

    Triantaphyllou George

    2016-01-01

    Full Text Available Collision energies of proton beams now available at the LHC increase the probability of discovering the inner works of the Brout-Englert-Higgs (BEH mechanism within the foreseeable future. Nevertheless, they are still several orders of magnitude below the scale where a possible non-trivial structure of space-time would be detectable. Apart from remaining completely silent on the issue of the fundamental nature of elementary particles and the space in which they propagate, one may try to speculate on this matter by carefully extrapolating existing scientific methods and knowledge to Planck energies. In this talk, an effort is made to logically link some potential discoveries at the LHC with specific space-time structures. Since such links are inevitably weak due to the huge energy hierarchy between the electro-weak and the Planck scales, our goal does not exceed a mere presentation of naturalness and self-consistency arguments in favor of some of the possible outcomes, placing particular emphasis on the scenario of the mirror world.

  5. Physics potential of ATLAS upgrades at HL-LHC

    CERN Document Server

    Testa, Marianna; The ATLAS collaboration

    2017-01-01

    The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start in 2026 and to pro- vide an integrated luminosity of 3000 fb−1 in ten years, a factor 10 more than what will be collected by 2023. This high statistics will allow ATLAS to perform precise measurements in the Higgs sector and improve searches for new physics at the TeV scale. The luminosity needed is L ∼ 7.51034 cm−2 s−1, corresponding to ∼200 additional proton-proton pile- up interactions. To face such harsh environment some sub-detectors of the ATLAS experiment will be upgraded or completely substituted. The performances of the new or upgraded ATLAS sub-detectors are presented, focusing in particular on the new inner tracker and a proposed high granularity time device. The impact of those upgrades on crucial physics measurements for HL-LHC program is also shown.

  6. Forward-backward asymmetry as a discovery tool for Z{sup ′} bosons at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Accomando, Elena; Belyaev, Alexander; Fiaschi, Juri [School of Physics and Astronomy, University of Southampton, Highfield Campus,University Rd, Southampton, SO17 1BJ (United Kingdom); Mimasu, Ken [School of Physics and Astronomy, University of Sussex,Falmer, Brighton, BN1 9RH (United Kingdom); Moretti, Stefano [School of Physics and Astronomy, University of Southampton, Highfield Campus,University Rd, Southampton, SO17 1BJ (United Kingdom); Shepherd-Themistocleous, Claire [Particle Physics Department, STFC, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2016-01-20

    The Forward-Backward Asymmetry (AFB) in Z{sup ′} physics is commonly only perceived as the observable which possibly allows one to interpret a Z{sup ′} signal appearing in the Drell-Yan channel by distinguishing different models of such (heavy) spin-1 bosons. In this paper, we revisit this issue, showing that the absence of any di-lepton rapidity cut, which is commonly used in the literature, can enhance the potential of the observable at the LHC. We moreover examine the ability of AFB in setting bounds on or even discovering a Z{sup ′} at the Large Hadron Collider (LHC) concluding that it may be a powerful tool for this purpose. We analyse two different scenarios: Z{sup ′}-bosons with a narrow and wide width, respectively. We find that, in the first case, the significance of the AFB search can be comparable with that of the ‘bump’ search usually adopted by the experimental collaborations; however, in being a ratio of (differential) cross sections, the AFB has the advantage of reducing experimental systematics as well as theoretical errors due to PDF uncertainties. In the second case, the AFB search can outperform the bump search in terms of differential shape, meaning the AFB distribution may be better suited for new broad resonances than the event counting strategy usually adopted in such cases.

  7. LHC 2012 proton run extended by seven weeks

    CERN Multimedia

    James Gillies

    2012-01-01

    An important piece of news that almost got lost in the excitement of the Higgs update seminar on 4 July is that the 2012 LHC proton run is to be extended.   On 3 July, a meeting was held between the CERN Management and representatives of the LHC and the experiments to discuss the merits of increasing the data target for this year in the light of the announcement to be made the following day. The conclusion was that an additional seven weeks of running would allow the luminosity goal for the year to be increased from 15 inverse femtobarns to 20, giving the experiments a good supply of data to work on during the LHC’s first long shut-down (LS1), and allowing them to make progress in determining the properties of the new particle whose discovery was announced last week. The current LHC schedule foresees proton running reaching a conclusion on 16 October, with a proton-ion run scheduled for November. In the preliminary new schedule, proton running is planned to continue until 16 December, ...

  8. Scenarios for the LHC Upgrade

    CERN Document Server

    Scandale, Walter

    2008-01-01

    The projected lifetime of the LHC low-beta quadrupoles, the evolution of the statistical error halving time, and the physics potential all call for an LHC luminosity upgrade by the middle of the coming decade. In the framework of the CARE-HHH network three principal scenarios have been developed for increasing the LHC peak luminosity by more than a factor of 10, to values above 1035 cm−2s−1. All scenarios imply a rebuilding of the high-luminosity interaction regions (IRs) in combination with a consistent change of beam parameters. However, their respective features, bunch structures, IR layouts, merits and challenges, and luminosity variation with β∗ differ substantially. In all scenarios luminosity leveling during a store would be advantageous for the physics experiments. An injector upgrade must complement the upgrade measures in the LHC proper in order to provide the beam intensity and brightness needed as well as to reduce the LHC turnaround time for higher integrated luminosity.

  9. Measurement of the top quark properties at the Tevatron and the LHC

    CERN Document Server

    INSPIRE-00040958

    2014-01-01

    Almost two decades after its discovery at Fermilab's Tevatron collider experiments, the top quark is still under the spotlight due to its connections to some of the most interesting puzzles in the Standard Model. The Tevatron has been shut down two years ago, yet some interesting results are coming out of the CDF and D0 collaborations. The LHC collider at CERN produced two orders of magnitude more top quarks than Tevatron's, thus giving birth to a new era for top quark physics. While the LHC is also down at the time of this writing, many top quark physics results are being extracted out of the 7\\,TeV and 8\\,TeV proton proton collisions by the ATLAS and CMS collaborations, and many more are expected to appear before the LHC will be turned on again sometime in 2015. These proceedings cover a selection of recent results produced by the Tevatron and LHC experiments.

  10. The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC

    CERN Document Server

    Baak, M.

    2012-11-03

    In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental parameters of the SM are known allowing, for the first time, to overconstrain the SM at the electroweak scale and assert its validity. Including the effects of radiative corrections and the experimental and theoretical uncertainties, the global fit exhibits a p-value of 0.07. The mass measurements by ATLAS and CMS agree within 1.3sigma with the indirect determination M_H=(94 +25 -22) GeV. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted to be M_W=(80.359 +- 0.011) GeV and sin^2(theta_eff^ell)=(0.23150 +- 0.00010) from the global fit. These results are compatible with, and exceed in precision, the direct measurements. For the indirect determination of the top quark mass we find m_t=(175.8 +2.7 -2.4) GeV, in agreement with t...

  11. The electroweak fit of the standard model after the discovery of a new boson at the LHC

    International Nuclear Information System (INIS)

    Baak, M.; Hoecker, A.; Schott, M.; Goebel, M.; Kennedy, D.; Moenig, K.; Haller, J.; Kogler, R.; Stelzer, J.

    2012-09-01

    In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental parameters of the SM are known allowing, for the first time, to overconstrain the SM at the electroweak scale and assert its validity. Including the effects of radiative corrections and the experimental and theoretical uncertainties, the global fit exhibits a p-value of 0.07. The mass measurements by ATLAS and CMS agree within 1.3σ with the indirect determination M H =94 +25 -22 GeV. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted to be M W =80.359±0.011 GeV and sin 2 θ l eff =0.23150±0.00010 from the global fit. These results are compatible with, and exceed in precision, the direct measurements. For the indirect determination of the top quark mass we find m t =175.8 +2.7 -2.4 GeV, in agreement with the kinematic and cross-section based measurements.

  12. Discovery prospects of a light Higgs boson at the LHC in type-I 2HDM

    Science.gov (United States)

    Bhatia, Disha; Maitra, Ushoshi; Niyogi, Saurabh

    2018-03-01

    We present a comprehensive analysis of observing a light Higgs boson in the mass range 70-110 GeV at the 13 /14 TeV LHC, in the context of the type-I two-Higgs-doublet model. The decay of the light Higgs to a pair of bottom quarks is dominant in most parts of the parameter space, except in the fermiophobic limit. Here its decay to bosons (mainly a pair of photons) becomes important. We perform an extensive collider analysis for the b b ¯ and γ γ final states. The light scalar is tagged in the highly boosted regimes for the b b ¯ mode to reduce the enormous QCD background. This decay can be observed with a few thousand fb-1 of integrated luminosity at the LHC. Near the fermiophobic limit, the decay of the light Higgs to a pair of photons can even be probed with a few hundred fb-1 of integrated luminosity at the LHC.

  13. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Sevilla, S., E-mail: Sergio.Gonzalez.Sevilla@cern.ch [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Barbier, G. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Anghinolfi, F. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Cadoux, F.; Clark, A. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Dabrowski, W.; Dwuznik, M. [AGH University of Sceince and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Ferrere, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Garcia, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Ikegami, Y. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hara, K. [University of Tsukuba, School of Pure and Applied Sciences, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Jakobs, K. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Kaplon, J. [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland); Koriki, T. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Lacasta, C. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); La Marra, D. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Marti i Garcia, S. [IFIC, Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Edificio Investigacion Paterna, Apartado 22085 46071 Valencia (Spain); Parzefall, U. [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Pohl, M. [DPNC, University of Geneva, CH 1211 Geneva 4 (Switzerland); Terada, S. [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2011-04-21

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10{sup 34} cm{sup -2} s{sup -1}. It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown.

  14. A silicon strip module for the ATLAS inner detector upgrade in the super LHC collider

    CERN Document Server

    Gonzalez-Sevilla, S; Parzefall, U; Clark, A; Ikegami, Y; Hara, K; Garcia, C; Jakobs, K; Dwuznik, M; Terada, S; Barbier, G; Koriki, T; Lacasta, C; Unno, Y; Anghinolfi, F; Cadoux, F; Garcia, S M I; Ferrere, D; La Marra, D; Pohl, M; Dabrowski, W; Kaplon, J

    2011-01-01

    The ATLAS detector is a general purpose experiment designed to fully exploit the discovery potential of the Large Hadron Collider (LHC) at a nominal luminosity of 10(34)cm(-2)s(-1). It is expected that after several years of successful data-taking, the LHC physics program will be extended by increasing the peak luminosity by one order of magnitude. For ATLAS, an upgrade scenario will imply the complete replacement of the Inner Detector (ID), since the current tracker will not provide the required performance due to cumulated radiation damage and a dramatic increase in the detector occupancy. In this paper, a proposal of a double-sided silicon micro-strip module for the short-strip region of the future ATLAS ID is presented. The expected thermal performance based upon detailed FEA simulations is discussed. First electrical results from a prototype version of the next generation readout front-end chips are also shown. (C) 2010 Elsevier B.V. All rights reserved.

  15. From the LHC to future colliders. CERN Theory Institute summary report

    International Nuclear Information System (INIS)

    Roeck, A. de; Ellis, J.; Wells, J.; Gripaios, B.; Dittmar, M.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Schumacher, M.; Duehrssen, M.; Weiglein, G.; Moortgat-Pick, G.; Morton-Thurtle, V.; Rolbiecki, K.; Smillie, J.; Tattersall, J.; Azuelos, G.; Dawson, S.; Assamagan, K.; Gopalakrishna, S.; Han, T.; Hewett, J.; Rizzo, T.; Lancaster, M.; Ozcan, E.; Mariotti, C.; Moortgat, F.; Polesello, G.; Riemann, S.; Bechtle, P.; Carena, M.; Juste, A.; Chachamis, G.; Chen, K.F.; Hou, W.S.; Curtis, S. de; Desch, K.; Wienemann, P.; Dreiner, H.; Foster, B.; Frandsen, M.T.; Giammanco, A.; Godbole, R.; Govoni, P.; Gunion, J.; Hollik, W.; Isidori, G.; Kalinowski, J.; Krawczyk, M.; Korytov, A.; Kou, E.; Kraml, S.; Martin, A.; Milstead, D.; Moenig, K.; Mele, B.; Pieri, M.; Plehn, T.; Reina, L.; Richter-Was, E.; Sannino, F.; Schram, M.; Sultansoy, S.; Uwer, P.; Webber, B.

    2010-01-01

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb -1 of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb -1 of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions. (orig.)

  16. Probing Higgs-radion mixing in warped models through complementary searches at the LHC and the ILC

    Science.gov (United States)

    Frank, Mariana; Huitu, Katri; Maitra, Ushoshi; Patra, Monalisa

    2016-09-01

    We consider the Higgs-radion mixing in the context of warped space extradimensional models with custodial symmetry and investigate the prospects of detecting the mixed radion. Custodial symmetries allow the Kaluza-Klein excitations to be lighter and protect Z b b ¯ to be in agreement with experimental constraints. We perform a complementary study of discovery reaches of the Higgs-radion mixed state at the 13 and 14 TeV LHC and at the 500 and 1000 GeV International Linear Collider (ILC). We carry out a comprehensive analysis of the most significant production and decay modes of the mixed radion in the 80 GeV-1 TeV mass range and indicate the parameter space that can be probed at the LHC and the ILC. There exists a region of the parameter space which can be probed, at the LHC, through the diphoton channel even for a relatively low luminosity of 50 fb-1 . The reach of the four-lepton final state in probing the parameter space is also studied in the context of 14 TeV LHC, for a luminosity of 1000 fb-1 . At the ILC, with an integrated luminosity of 500 fb-1 , we analyze the Z -radion associated production and the W W fusion production, followed by the radion decay into b b ¯ and W+W-. The W W fusion production is favored over the Z -radion associated channel in probing regions of the parameter space beyond the LHC reach. The complementary study at the LHC and the ILC is useful both for the discovery of the radion and the understanding of its mixing sector.

  17. Elementary Particle Interactions with CMS at LHC

    International Nuclear Information System (INIS)

    Spanier, Stefan

    2016-01-01

    The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity, either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.

  18. Elementary Particle Interactions with CMS at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Spanier, Stefan [Univ. of Tennessee, Knoxville, TN (United States)

    2016-07-31

    The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity, either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.

  19. The potential of the ILC for discovering new particles

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Keisuke [High Energy Accelerator Research Organization (KEK), Ibaraki (Japan); Grojean, Christophe [DESY, Hamburg (Germany); Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; ICREA, Barcelona (Spain); Peskin, Michael E. [Stanford Univ., Menlo Park, CA (United States). SLAC; Collaboration: LCC Physics Working Group; and others

    2017-02-15

    This paper addresses the question of whether the International Linear Collider has the capability of discovering new particles that have not already been discovered at the CERN Large Hadron Collider. We summarize the various paths to discovery offered by the ILC, and discuss them in the context of three different scenarios: 1. LHC does not discover any new particles, 2. LHC discovers some new low mass states and 3. LHC discovers new heavy particles. We will show that in each case, ILC plays a critical role in discovery of new phenomena and in pushing forward the frontiers of high-energy physics as well as our understanding of the universe in a manner which is highly complementary to that of LHC. For the busy reader, a two-page executive summary is provided at the beginning of the document.

  20. The potential of the ILC for discovering new particles

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Grojean, Christophe; Peskin, Michael E.

    2017-02-01

    This paper addresses the question of whether the International Linear Collider has the capability of discovering new particles that have not already been discovered at the CERN Large Hadron Collider. We summarize the various paths to discovery offered by the ILC, and discuss them in the context of three different scenarios: 1. LHC does not discover any new particles, 2. LHC discovers some new low mass states and 3. LHC discovers new heavy particles. We will show that in each case, ILC plays a critical role in discovery of new phenomena and in pushing forward the frontiers of high-energy physics as well as our understanding of the universe in a manner which is highly complementary to that of LHC. For the busy reader, a two-page executive summary is provided at the beginning of the document.

  1. Dark Matter characterization at the LHC in the Effective Field Theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, Alexander; Panizzi, Luca [School of Physics and Astronomy, University of Southampton,Southampton SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Didcot, Oxon OX11 0QX (United Kingdom); Pukhov, Alexander [Skobeltsyn Institute of Nuclear Physics, Moscow State University,Moscow 119992 (Russian Federation); Thomas, Marc [School of Physics and Astronomy, University of Southampton,Southampton SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Didcot, Oxon OX11 0QX (United Kingdom)

    2017-04-19

    We have studied the complete set of dimension 5 and dimension 6 effective operators involving the interaction of scalar, fermion and vector Dark Matter (DM) with SM quarks and gluons, to explore the possibility to distinguish these operators and characterise the spin of DM at the LHC. We have found that three factors — the effective dimension of the operator, the structure of the SM part of the operator and the parton densities of the SM particles connected to the operator — uniquely define the shape of the (unobservable) invariant mass distribution of the DM pair and, consequently, the shape of the (observable) E{sub T}{sup miss} distribution related to it. Using χ{sup 2} analysis, we found that at the LHC, with a luminosity of 300 fb{sup −1}, certain classes of EFT operators can be distinguished from each other. Hence, since DM spin is partly correlated with the factors defining the shape of E{sub T}{sup miss}, the LHC can potentially shed a light also on DM spin. We have also observed a drastic difference in the efficiencies (up to two orders of magnitude) for large E{sub T}{sup miss} cuts scenarios with different DM spin, thus indicating that the DM discovery potential strongly depends on it. The study we perform here can be applied more generally than within the EFT paradigm, where the DM mediator is not produced on-the-mass-shell, such as the case of t-channel mediator or mediator with mass below 2M{sub DM}, where the invariant mass of the DM pair is not fixed.

  2. Heavy-ion performance of the LHC and future colliders

    CERN Document Server

    AUTHOR|(SzGeCERN)696614; Stahl, Achim; Jowett, John M

    2015-10-09

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton–proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term “heavy-ion collisions” refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter l...

  3. Gravitinos and hidden supersymmetry at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2012-08-15

    We investigate phenomenological consequences of locally supersymmetric extensions of the Standard Model consistent with primordial nucleosynthesis, leptogenesis and dark matter constraints. An unequivocal prediction of local supersymmetry is the existence of the gravitino, the spin-3/2 superpartner of the graviton. Due to its extremely weak couplings, decays involving the gravitino in the initial or the final state may cause problems in the early universe. One class of models solving the gravitino problem makes the gravitino either the heaviest or the lightest supersymmetric particle (LSP), while predicting a higgsino-like neutralino as the LSP or the next-to-lightest superparticle (NLSP), respectively. In both cases the LHC phenomenology is determined by the higgsino states. The mass degeneracy between the charged and neutral states, together with very heavy colored states, prevent an early discovery at the LHC, especially if one demands a lightest Higgs mass compatible with the recent LHC signal excess. Another class of models, in which the gravitino is also a dark matter candidate, introduces a small violation of R-parity to render the cosmology consistent. In this case, the phenomenology at the LHC is determined by the R-parity violating decays of the NLSP which can be a bino-like or a higgsino-like neutralino or a stau. Using a novel approach to describing bilinear R-parity violation, we compute decay rates of the gravitino and the possible NLSP. Due to a connection between the gravitino and neutralino decay widths, we can predict the neutralino NLSP decay length at the LHC directly from the recent Fermi-LAT results for decaying dark matter searches. The decays of the NLSP in the detectors distort the missing transverse energy (MET) signature, which complicates the searches relying on it, while creating a new secondary vertex signature. We conclude that for gluino and squark masses accessible at the LHC, searches based on secondary vertices can probe values of

  4. Gravitinos and hidden supersymmetry at the LHC

    International Nuclear Information System (INIS)

    Bobrovskyi, Sergei

    2012-08-01

    We investigate phenomenological consequences of locally supersymmetric extensions of the Standard Model consistent with primordial nucleosynthesis, leptogenesis and dark matter constraints. An unequivocal prediction of local supersymmetry is the existence of the gravitino, the spin-3/2 superpartner of the graviton. Due to its extremely weak couplings, decays involving the gravitino in the initial or the final state may cause problems in the early universe. One class of models solving the gravitino problem makes the gravitino either the heaviest or the lightest supersymmetric particle (LSP), while predicting a higgsino-like neutralino as the LSP or the next-to-lightest superparticle (NLSP), respectively. In both cases the LHC phenomenology is determined by the higgsino states. The mass degeneracy between the charged and neutral states, together with very heavy colored states, prevent an early discovery at the LHC, especially if one demands a lightest Higgs mass compatible with the recent LHC signal excess. Another class of models, in which the gravitino is also a dark matter candidate, introduces a small violation of R-parity to render the cosmology consistent. In this case, the phenomenology at the LHC is determined by the R-parity violating decays of the NLSP which can be a bino-like or a higgsino-like neutralino or a stau. Using a novel approach to describing bilinear R-parity violation, we compute decay rates of the gravitino and the possible NLSP. Due to a connection between the gravitino and neutralino decay widths, we can predict the neutralino NLSP decay length at the LHC directly from the recent Fermi-LAT results for decaying dark matter searches. The decays of the NLSP in the detectors distort the missing transverse energy (MET) signature, which complicates the searches relying on it, while creating a new secondary vertex signature. We conclude that for gluino and squark masses accessible at the LHC, searches based on secondary vertices can probe values of

  5. Mise en service du calorimetre electromagnetique d'Atlas et determination du potentiel de decouverte d'un Z' --> e+e- dans les premieres donnees LHC

    CERN Document Server

    Mangeard, Pierre-Simon

    2009-01-01

    After about fifteen years of development, the ATLAS detector is ready to operate and recorded, in 2008, several millions of cosmic events as well as first LHC data. This achievement is based on the long experience of beam tests and on the large effort towards the detector in situ commissioning undertaken by the ATLAS collaboration. This promises fast ability to perform searches for evidence of Higgs boson and new physics. I heavily contributed to the in situ commissioning of the EM calorimeter. To verify its performance, I studied the first cosmic data taken in 2006 which allowed the first in situ analysis of dead channels, energy reconstruction and detector response uniformity. This participation to the commissioning has continued with the study of the single beam data recorded during the first week of LHC operation (Sept. 2008). Expanding on my expertise of the EM calorimeter, I focused my physics analysis, prepared with simulation, on the promising discovery potential of new physics at LHC via the di-elect...

  6. LHC Injection Beam Quality During LHC Run I

    CERN Document Server

    AUTHOR|(CDS)2079186; Kain, Verena; Stapnes, Steinar

    The LHC at CERN was designed to accelerate proton beams from 450 GeV to 7 TeV and collide them in four large experiments. The 450 GeV beam is extracted from the last pre-accelerator, the SPS, and injected into the LHC via two 3 km long transfer lines, TI 2 and TI 8. The injection process is critical in terms of preservation of beam quality and machine protection. During LHC Run I (2009-2013) the LHC was filled with twelve high intensity injections per ring, in batches of up to 144 bunches of 1.7*10^11 protons per bunch. The stored beam energy of such a batch is already an order of magnitude above the damage level of accelerator equipment. Strict quality and machine protection requirements at injection have a significant impact on operational efficiency. During the first years of LHC operation, the injection phase was identified as one of the limiting factors for fast LHC turnaround time. The LHC Injection Quality Check (IQC) software framework was developed as a part of this thesis to monitor the beam quality...

  7. Prospects for R-Parity Conserving SUSY searches at the LHC

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    The talk reviews the current strategies to search for generic SUSY models with R-parity conservation in the ATLAS and CMS detectors at the LHC. The discovery reach in early data is presented for different search channels based on missing transverse momentum from undetected neutralinos and multiple jets. The talk will also describe the search for models of gauge-mediated supersymmetry breaking for which the NLSP is a neutralino decaying to a photon and a gravitino. In this scenario, the search strategy exploits the distinct signature of a non-pointing photon. Finally, we present recent work on techniques used to reconstruct the decays of SUSY particles at the LHC in early data, based on the selection of final-state exclusive decay chains.

  8. Making the most of the relic density for dark matter searches at the LHC 14 TeV Run

    International Nuclear Information System (INIS)

    Busoni, Giorgio; Simone, Andrea De; Jacques, Thomas; Morgante, Enrico; Riotto, Antonio

    2015-01-01

    As the LHC continues to search for new weakly interacting particles, it is important to remember that the search is strongly motivated by the existence of dark matter. In view of a possible positive signal, it is essential to ask whether the newly discovered weakly interacting particle can be be assigned the label 'dark matter'. Within a given set of simplified models and modest working assumptions, we reinterpret the relic abundance bound as a relic abundance range, and compare the parameter space yielding the correct relic abundance with projections of the Run II exclusion regions. Assuming that dark matter is within the reach of the LHC, we also make the comparison with the potentialdiscovery regions. Reversing the logic, relic density calculations can be used to optimize dark matter searches by motivating choices of parameters where the LHC can probe most deeply into the dark matter parameter space. In the event that DM is seen outside of the region giving the correct relic abundance, we will learn that either thermal relic DM is ruled out in that model, or the DM-quark coupling is suppressed relative to the DM coupling strength to other SM particles

  9. Higgs, supersymmetry and dark matter after Run I of the LHC

    CERN Document Server

    Dumont, Beranger

    2017-01-01

    Two major problems call for an extension of the Standard Model (SM): the hierarchy problem in the Higgs sector and the dark matter in the Universe. The discovery of a Higgs boson with mass of about 125 GeV was clearly the most significant piece of news from CERN's Large Hadron Collider (LHC). In addition to representing the ultimate triumph of the SM, it shed new light on the hierarchy problem and opened up new ways of probing new physics. The various measurements performed at Run I of the LHC constrain the Higgs couplings to SM particles as well as invisible and undetected decays. In this thesis, the impact of the LHC Higgs results on various new physics scenarios is assessed, carefully taking into account uncertainties and correlations between them. Generic modifications of the Higgs coupling strengths, possibly arising from extended Higgs sectors or higher-dimensional operators, are considered. Furthermore, specific new physics models are tested. This includes, in particular, the phenomenological Minimal S...

  10. Computer-aided discovery of antimicrobial agents as potential enoyl ...

    African Journals Online (AJOL)

    Computer-aided discovery of antimicrobial agents as potential enoyl acyl carrier protein reductase inhibitors. ... Conclusion: Overall, the newly discovered hits can act as a good starting point in the future for the development of safe and potent antibacterial agents. Keywords: Enoyl acyl carrier protein reductase, saFabI, ...

  11. Literature in Focus - A Zeptospace Odyssey: A Journey into the Physics of the LHC

    CERN Multimedia

    CERN Library

    2010-01-01

    By Gian Francesco Giudice (CERN) Oxford University Press, 2009 At this very moment the most ambitious scientific experiment of all time is beginning, and yet its precise aims are little understood by the general public. This book aims to provide an everyman’s guide for understanding and following the discoveries that will take place within the next few years at the Large Hadron Collider project at CERN. The reader is invited to share an insider’s view of the theory of particle physics, and is equipped to appreciate the scale of the intellectual revolution that is about to take place. The technological innovations required to build the LHC are among the most astonishing aspects of this scientific adventure, and they too are described here as part of the LHC story. The book culminates with an outline of the scientific aims and expectations at the LHC. Does the mysterious Higgs boson exist? Does space hide supersymmetry or extend into extra dimensions? How can colliding protons at the LHC...

  12. UFOs in the LHC after LS1

    International Nuclear Information System (INIS)

    Baer, T.; Barnes, M.J.; Carlier, E.; Cerutti, F.; Dehning, B.; Ducimetiere, L.; Ferrari, A.; Garrel, N.; Gerardin, A.; Goddard, B.; Holzer, E.B.; Jackson, S.; Jimenez, J.M.; Kain, V.; Lechner, A.; Mertens, V.; Misiowiec, M.; Moron Ballester, R.; Nebot del Busto, E.; Norderhaug Drosdal, L.; Nordt, A.; Uythoven, J.; Velghe, B.; Vlachoudis, V.; Wenninger, J.; Zamantzas, C.; Zimmermann, F.; Fuster Martinez, N.

    2012-01-01

    UFOs (Unidentified Falling Objects) are potentially a major luminosity limitation for nominal LHC operation. With large-scale increases of the BLM thresholds, their impact on LHC availability was mitigated in the second half of 2011. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. Therefore, in 2011, the diagnostics for UFO events were significantly improved, dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. In this paper, the state of knowledge is summarized and extrapolations for LHC operation after LS1 are presented. Mitigation strategies are proposed and related tests and measures for 2012 are specified. (authors)

  13. UFOs in the LHC after LS1

    CERN Document Server

    Baer, T; Carlier, E; Cerutti, F; Dehning, B; Ducimetière, L; Ferrari, A; Garrel, N; Gérardin, A; Goddard, B; Holzer, E B; Jackson, S; Jimenez, J M; Kain, V; Lechner, A; Mertens, V; Misiowiec, M; Morón Ballester, R; Nebot del Busto, E; Norderhaug Drosdal, L; Nordt, A; Uythoven, J; Velghe, B; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zimmermann, F; Fuster Martinez, N

    2012-01-01

    UFOs (Unidentified Falling Objects) are potentially a major luminosity limitation for nominal LHC operation. With large-scale increases of the BLM thresholds, their impact on LHC availability was mitigated in the second half of 2011. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. Therefore, in 2011, the diagnostics for UFO events were significantly improved, dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. In this paper, the state of knowledge is summarized and extrapolations for LHC operation after LS1 are presented. Mitigation strategies are proposed and related tests and measures for 2012 are specified.

  14. Leptonic mono-top from single stop production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Guang Hua [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Hikasa, Ken-ichi [Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Wu, Lei [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University,Nanjing, Jiangsu 210023 (China); ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, The University of Sydney,NSW 2006 (Australia); Yang, Jin Min [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Zhang, Mengchao [Center for Theoretical Physics and Universe, Institute for Basic Science (IBS),Daejeon 34051 (Korea, Republic of)

    2017-03-16

    Top squark (stop) can be produced via QCD interaction but also the electroweak interaction at the LHC. In this paper, we investigate the observability of the associated production of stop and chargino, pp→t̃{sub 1}χ̃{sub 1}{sup −}, in compressed electroweakino scenarios at 14 TeV LHC. Due to small mass splitting between the lightest neutralino (χ̃{sub 1}{sup 0}) and chargino (χ̃{sub 1}{sup −}), the single stop production can give the mono-top signature through the stop decay t̃{sub 1}→tχ̃{sub 1}{sup 0}. We analyze the leptonic mono-top channel of the single stop production and propose a lab-frame observable cos θ{sub bℓ} to reduce the SM backgrounds. We find that such leptonic mono-top events from the single stop production can be probed at 2σ level at the HL-LHC if m{sub t̃{sub 1}}<760 GeV and m{sub χ̃{sub 1{sup 0}}}<150 GeV. Given a discovery of the stop and a measurement of the single stop production cross section, the stop mixing angle can also be determined from the single stop production at the HL-LHC.

  15. LHC physics

    National Research Council Canada - National Science Library

    Binoth, T

    2012-01-01

    "Exploring the phenomenology of the Large Hadron Collider (LHC) at CERN, LHC Physics focuses on the first years of data collected at the LHC as well as the experimental and theoretical tools involved...

  16. Vector-like quarks coupling discrimination at the LHC and future hadron colliders

    Science.gov (United States)

    Barducci, D.; Panizzi, L.

    2017-12-01

    The existence of new coloured states with spin one-half, i.e. extra-quarks, is a striking prediction of various classes of new physics models. Should one of these states be discovered during the 13 TeV runs of the LHC or at future high energy hadron colliders, understanding its properties will be crucial in order to shed light on the underlying model structure. Depending on the extra-quarks quantum number under SU(2) L , their coupling to Standard Model quarks and bosons have either a dominant left- or right-handed chiral component. By exploiting the polarisation properties of the top quarks arising from the decay of pair-produced extra quarks, we show how it is possible to discriminate among the two hypothesis in the whole discovery range currently accessible at the LHC, thus effectively narrowing down the possible interpretations of a discovered state in terms of new physics scenarios. Moreover, we estimate the discovery and discrimination power of future prototype hadron colliders with centre of mass energies of 33 and 100 TeV.

  17. Standard Model Constraints from the LHC

    International Nuclear Information System (INIS)

    Boonekamp, M.

    2007-01-01

    With our current knowledge limited by the absence of physics data, I review our expectations from standard processes measurements at the LHC. Focusing on charged and neutral current processes, I illustrate how their measurement will constrain our uncertainties on discovery physics, and give some arguments about our precision goal for the W mass measurement. Detailed analysis reveals that there is no reason to believe we can not measure this fundamental parameter to about 5 MeV. This sets a natural goal of about 500 MeV for the top mass; to decide whether this is realistic requires further investigation. (author)

  18. The great adventure of the LHC - From big bang to the Higgs boson

    International Nuclear Information System (INIS)

    Denegri, D.; Guyot, C.; Hoecker, A.; ); Roos, L.; Rubbia, C.

    2014-03-01

    This book presents what has been the biggest scientific equipment ever designed on earth: the LHC (large hadron collider) and its associated experiments (ATLAS, CMS, LHCb and ALICE) that led to the discovery of the Higgs boson in 2012. About 10.000 physicists and engineers from 50 countries have taken part into the project that began in 1989. This book is composed of the following chapters: 1) the standard model (SM) of particle physics, 2) the experimental success of SM, 3) the shortfalls of SM, 4) the new physics, 5) the original big bang, 6) the LHC, 7) particle detection, 8) ATLAS and CMS experiments, 9) the first data from LHC, 10) data analysis, 11) the quest for the Higgs boson, 12) the search for new physics, 13) LHCb and ALICE experiments, and 14) future prospects

  19. 2008 LHC Open Days LHC magnets on display

    CERN Multimedia

    2008-01-01

    Over the last few years you’ve probably seen many of the 15 m long blue LHC dipole magnets being ferried around the site. Most of them are underground now, but on the LHC Open Days on 5 and 6 April the magnets will also play a central role on the surface. Installation of one of the LHC dipole magnets on the Saint-Genis roundabout on 7 March. The LHC dipole testing facility with several magnets at various stages of testing. The 27 km ring of the LHC consists of 1232 double-aperture superconducting dipole magnets, 360 short straight sections (SSS) and 114 special SSS for the insertion regions. On the Open Day, you will be able to "Follow the LHC magnets" through different stages around the site, culminating in their descent into the tunnel. Discover all the many components that have to be precisely integrated in the magnet casings, and talk to the engine...

  20. Exotic particles at the LHC. Production via the Higgs portal and WIMP dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, Andre Georg

    2016-09-05

    This thesis addresses two different aspects of the search for Physics Beyond the Standard Model at the Large Hadron Collider (LHC). First, and motivated by the recent discovery of a new interaction mediated by the Higgs boson, we systematically analyze the impact of the Higgs interaction on the production of new particles at the LHC. Second, we investigate the collider signatures of long-lived particles decaying into leptons and invisible energy, and which are predicted to exist in a class of neutrino mass models with a weakly interacting dark matter particle.

  1. Prospects for discovery of supersymmetric No-Scale F-SU(5) at the once and future LHC

    Science.gov (United States)

    Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.; Walker, Joel W.

    2012-06-01

    We present the reach of the Large Hadron Collider (LHC) into the parameter space of No-Scale F-SU(5), starting our analysis with the current operating energy of √{s}=7 TeV, and extending it on through the bright future of a 14 TeV beam. No-Scale F-SU(5) is a model defined by the confluence of the F-lipped SU(5) Grand Unified Theory, two pairs of hypothetical TeV scale vector-like supersymmetric multiplets with origins in F-theory, and the dynamically established boundary conditions of No-Scale Supergravity. When searching for a five standard deviation signal, we find that the CMS experiment at the √{s}=7 TeV LHC began to penetrate the phenomenologically viable parameter space of this model at just under 1 fb of integrated luminosity, and that the majority of this space remains intact, subsequent to analyses of the first 1.1 fb of CMS data. On the contrary, the ATLAS experiment had not reached the F-SU(5) parameter space in its first 1.34 fb of luminosity. Since the CMS and ATLAS detectors have now each amassed a milestone of 5 fb of collected luminosity, the current LHC is presently effectively probing No-Scale F-SU(5). Upon the crossing of the 5 fb threshold, the 7 TeV LHC will have achieved five standard deviation discoverability for a unified gaugino mass of up to about 532 GeV, a light stop of 577 GeV, a gluino of 728 GeV, and heavy squarks of just over 1 TeV. Extending the analysis to include a future LHC center-of-mass beam energy of √{s}=14 TeV, the full model space of No-Scale F-SU(5) should be visible to CMS at about 30 fb of integrated luminosity. We stress that the F-SU(5) discoverability thresholds discussed here are contingent upon retaining only those events with nine jets or more for the CMS experiment and seven jets or more for the ATLAS experiment.

  2. Improving the discovery potential of charged Higgs bosons at the ...

    Indian Academy of Sciences (India)

    The Run 2 discovery potential of H¦bosons in a general Type-II 2HDM is ... gluon and quark–antiquark pairs (hence – by definition – the attainable Higgs ... This description fails to correctly account for the production phenomenology of charged.

  3. Perspectives on top quark physics after Run I of the LHC: $\\sqrt{s}=13$~TeV and beyond

    CERN Document Server

    Ferreira da Silva, Pedro

    2014-01-01

    expected in the next runs of the LHC, several new reconstruction techniques and detector upgrades are foreseen. The prospects for precise measurements and possible discovery stories for new physics with top quarks are summarized.

  4. $A^t_{FB}$ Meets LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, JoAnne L.; /SLAC; Shelton, Jessie; /Yale U.; Spannowsky, Michael; /Oregon U.; Tait, Tim M.P.; /UC, Irvine; Takeuchi, Michihisa; /Heidelberg U.

    2012-02-14

    The recent Tevatron measurement of the forward-backward asymmetry of the top quark shows an intriguing discrepancy with Standard Model expectations, particularly at large t{bar t} invariant masses. Measurements of this quantity are subtle at the LHC, due to its pp initial state, however, one can define a forward-central-charge asymmetry which captures the physics. We study the capability of the LHC to measure this asymmetry and find that within the SM a measurement at the 5{sigma} level is possible with roughly 60 fb{sup -1} at {radical}s = 14 TeV. If nature realizes a model which enhances the asymmetry (as is necessary to explain the Tevatron measurements), a significant difference from zero can be observed much earlier, perhaps even during early LHC running at {radical}s = 7 TeV. We further explore the capabilities of the 7 TeV LHC to discover resonances or contact interactions which modify the t{bar t} invariant mass distribution using recent boosted top tagging techniques. We find that TeV-scale color octet resonances can be discovered, even with small coupling strengths and that contact interactions can be probed at scales exceeding 6 TeV. Overall, the LHC has good potential to clarify the situation with regards to the Tevatron forward-backward measurement.

  5. Signals of composite electroweak-neutral Dark Matter: LHC/direct detection interplay

    International Nuclear Information System (INIS)

    Barbieri, Riccardo; Rychkov, Slava; Torre, Riccardo

    2010-01-01

    In a strong-coupling picture of ElectroWeak Symmetry Breaking, a composite electroweak-neutral state in the TeV mass range, carrying a global (quasi-)conserved charge, makes a plausible Dark Matter (DM) candidate, with the ongoing direct DM searches being precisely sensitive to the expected signals. To exploit the crucial interplay between direct DM searches and the LHC, we consider a composite iso-singlet vector V, mixed with the hypercharge gauge field, as the essential mediator of the interaction between the DM particle and the nucleus. Based on a suitable effective chiral Lagrangian, we give the expected properties and production rates of V, showing its possible discovery at the maximal LHC energy with about 100 fb -1 of integrated luminosity.

  6. Top quark pair production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Baernreuther, Peter

    2012-06-28

    One of the most interesting and manifold processes in the Standard Model of elementary particle physics is the top quark pair production. It enabled the discovery of the top quark at the Tevatron in 1995 and the determination of many of its properties. By means of a precise measurement and calculation of the cross section of top quark pair production it is possible to extract the top quark mass. Improvements in the gluon parton distribution functions (important for the Higgs boson production) or improvements in the prediction of the Higgs mass are also closely linked with the top quark pair production. Furthermore, the production process plays an important role in the discovery of new physics. On the one hand the top quark pair decays form the largest part of the background in many BSM models, on the other hand BSM physics can be detected directly in the decay process by investigating the charge symmetry or the invariant mass spectrum. At the LHC it will be possible for the first time to produce a large amount of top quarks; thereby the statistical errors of the observables will be strongly reduced. The enormous increase in the production rate has two reasons. On the one hand, the acceleration energy of the LHC (14 TeV and 7 TeV) is significantly greater than that of the Tevatron (1.96 Tev). This leads to an increase of the cross section by a factor of 100 ({proportional_to}7.3 pb at the Tevatron to {proportional_to}800 pb at 14 TeV LHC). On the other hand, the luminosity of the LHC outperforms the Tevatron by a factor of 10-100. The reduced experimental errors for the observables demand an improvement of the theoretical error. The experimental accuracy of the LHC and the great relevance of the process led to an intensive activity of different research groups in order to improve the calculation of the cross section of top quark pair production. This work presents for the first time a complete numerical result for the full NNLO correction for the top quark pair

  7. Top quark pair production at the LHC

    International Nuclear Information System (INIS)

    Baernreuther, Peter

    2012-01-01

    One of the most interesting and manifold processes in the Standard Model of elementary particle physics is the top quark pair production. It enabled the discovery of the top quark at the Tevatron in 1995 and the determination of many of its properties. By means of a precise measurement and calculation of the cross section of top quark pair production it is possible to extract the top quark mass. Improvements in the gluon parton distribution functions (important for the Higgs boson production) or improvements in the prediction of the Higgs mass are also closely linked with the top quark pair production. Furthermore, the production process plays an important role in the discovery of new physics. On the one hand the top quark pair decays form the largest part of the background in many BSM models, on the other hand BSM physics can be detected directly in the decay process by investigating the charge symmetry or the invariant mass spectrum. At the LHC it will be possible for the first time to produce a large amount of top quarks; thereby the statistical errors of the observables will be strongly reduced. The enormous increase in the production rate has two reasons. On the one hand, the acceleration energy of the LHC (14 TeV and 7 TeV) is significantly greater than that of the Tevatron (1.96 Tev). This leads to an increase of the cross section by a factor of 100 (∝7.3 pb at the Tevatron to ∝800 pb at 14 TeV LHC). On the other hand, the luminosity of the LHC outperforms the Tevatron by a factor of 10-100. The reduced experimental errors for the observables demand an improvement of the theoretical error. The experimental accuracy of the LHC and the great relevance of the process led to an intensive activity of different research groups in order to improve the calculation of the cross section of top quark pair production. This work presents for the first time a complete numerical result for the full NNLO correction for the top quark pair production in quark anti

  8. Dark Matter after LHC Run I: Clues to Unification

    Directory of Open Access Journals (Sweden)

    Olive Keith A.

    2017-01-01

    Full Text Available After the results of Run I, can we still ‘guarantee’ the discovery of supersymmetry at the LHC? It is shown that viable dark matter models in CMSSM-like models tend to lie in strips (co-annihilation, funnel, focus point. The role of grand unification in constructing supersymmetric models is discussed and it is argued that non-supersymmetric GUTs such as SO(10 may provide solutions to many of the standard problems addressed by supersymmetry.

  9. Higgs Discovery in the Presence of Light CP-Odd Scalars

    Energy Technology Data Exchange (ETDEWEB)

    Lisanti, Mariangela; Wacker, Jay G.; /SLAC /Stanford U., Phys. Dept.

    2009-06-19

    Many models of electroweak symmetry breaking have an additional light pseudoscalar. If the Higgs boson can decay to a new pseudoscalar, LEP searches for the Higgs can be significantly altered and the Higgs can be as light as 86 GeV. Discovering the Higgs boson in these models is challenging when the pseudoscalar is lighter than 10 GeV because it decays dominantly into tau leptons. In this paper, we discuss discovering the Higgs in a subdominant decay mode where one of the pseudoscalars decays to a pair of muons. This search allows for potential discovery of a cascade-decaying Higgs boson with the complete Tevatron data set or early data at the LHC.

  10. Optimization of the ATLAS detector to search for the two-photon decaying Higgs boson at LHC; Optimisation du detecteur ATLAS pour la recherche du boson de Higgs se desintegrant en deux photons au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, V [Paris-11 Univ., 91 - Orsay (France). Lab. de l' Accelerateur Lineaire; [Universite de Paris Sud, 91 - Orsay (France)

    1997-02-03

    The two photon decay channel is the most clear and promising way to detect a Higgs boson of an intermediate mass between 80 GeV/c{sup 2} and 150 GeV/c{sup 2} at the future large proton collider of CERN (LHC). As the Higgs mass is narrow in this range, the observation of this channel relies on the performance of the electromagnetic calorimeter. A full simulation study has been performed to evaluate the discovery potential of the ATLAS detector. The results of this simulation have been confirmed by beam tests with a prototype. This simulation includes different contributions such as energy resolution sampling term, electronic and pile-up noise, global constant term and angular measurement of the two photon opening angle. The levels of the irreducible background from prompt di-photon production and the reducible background from jets with isolated leading neutrals pions have been estimated, taking into account the rejection capability of the detector. After the computation of the two photon invariant mass resolution, and the evaluation of signal and background rates, the discovery potential of the Higgs boson with the ATLAS detector was calculated. The Higgs can be discovered at five sigma confidence level after less than a year of data taking at LHC with the nominal luminosity of 10{sup 34} cm{sup -2}.s{sup -1} if the Higgs mass is between 100 GeV/c{sup 2} and 150 GeV/c{sup 2}. The Higgs mass window between 80 GeV/c{sup 2} and 150 GeV/c{sup 2} will be covered with an integrated luminosity of 3.10{sup 5} pb{sup -1}. In the case of the Minimal Supersymmetric Model (MSSM) the plane (m{sub A{sup 0}}, tan({beta})) will be fully explored if m{sub A{sup 0}} > 175 GeV/c{sup 2}. (author)

  11. Considerations on Energy Frontier Colliders after LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].

  12. HL-LHC Accelerator

    CERN Document Server

    Zimmermann, F

    2013-01-01

    The tentative schedule, key ingredients, as well as progress of pertinent R&D and component prototypes for the LHC luminosity upgrade, "HL-LHC," are reviewed. Also alternative scenarios based on performance-improving consolidations (PICs) instead of a full upgrade are discussed. Tentative time schedules and expected luminosity evolutions for the different scenarios are sketched. The important role of HL-LHC development as a step towards a future HE-LHC or VHE-LHC is finally highlighted. Presented at "Higgs & Beyond" Conference Tohoku University, Sendai 7 June 2013.

  13. HL-LHC and HE-LHC Upgrade Plans and Opportunities for US Participation

    Science.gov (United States)

    Apollinari, Giorgio

    2017-01-01

    The US HEP community has identified the exploitation of physics opportunities at the High Luminosity-LHC (HL-LHC) as the highest near-term priority. Thanks to multi-year R&D programs, US National Laboratories and Universities have taken the leadership in the development of technical solutions to increase the LHC luminosity, enabling the HL-LHC Project and uniquely positioning this country to make critical contributions to the LHC luminosity upgrade. This talk will describe the shaping of the US Program to contribute in the next decade to HL-LHC through newly developed technologies such as Nb3Sn focusing magnets or superconducting crab cavities. The experience gained through the execution of the HL-LHC Project in the US will constitute a pool of knowledge and capabilities allowing further developments in the future. Opportunities for US participations in proposed hadron colliders, such as a possible High Energy-LHC (HE-LHC), will be described as well.

  14. Evolution of the CMS ECAL Performance and R&D Studies for Calorimetry Options at High Luminosity LHC

    CERN Document Server

    Lucchini, Marco Toliman; Auffray, Etiennette

    During the past years the Large Hadron Collider (LHC) at CERN operated with a maximum center-of-mass energy of $\\sqrt{s} = 8$~TeV, a peak luminosity of around $7\\times 10^{33}$~cm$^{-2}$s$^{-1}$ and collected about $23$~fb$^{-1}$ of data which lead to the discovery of a Higgs Boson in July 2012. To further constrain the properties of the newly discovered Higgs boson, the decision to extend the LHC program has recently been made. In this framework, a major upgrade of the beam optics in the interaction region will take place around 2022 to achieve a leveled peak luminosity of $\\mathcal{L} = 5\\times10^{34}$~cm$^{-2}$s$^{-1}$. These will be the operating conditions during the High Luminosity LHC (HL-LHC) which is expected to deliver an integrated luminosity of 3000~fb$^{-1}$ by 2035. During HL-LHC phase the radiation levels will become much higher with respect to the nominal values for which the CMS detector was designed. Therefore it is of crucial importance to identify and quantify the effects ofradiation damag...

  15. UFOs in the LHC: Observations, studies and extrapolations

    CERN Document Server

    Baer, T; Cerutti, F; Ferrari, A; Garrel, N; Goddard, B; Holzer, EB; Jackson, S; Lechner, A; Mertens, V; Misiowiec, M; Nebot del Busto, E; Nordt, A; Uythoven, J; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zimmermann, F; Fuster, N

    2012-01-01

    Unidentified falling objects (UFOs) are potentially a major luminosity limitation for nominal LHC operation. They are presumably micrometer sized dust particles which lead to fast beam losses when they interact with the beam. With large-scale increases and optimizations of the beam loss monitor (BLM) thresholds, their impact on LHC availability was mitigated from mid 2011 onwards. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. In 2011/12, the diagnostics for UFO events were significantly improved: dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge, extrapolations for nominal LHC operation and mitigation strategies are presented

  16. Academic Training - LHC luminosity upgrade: detector challenges

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 13, 14, 15, March, from 11:00 to 12:00 - 16 March from 10:00 to 12:00 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March LHC luminosity upgrade: detector challenges A. De Roeck / CERN-PH, D. Bortoletto / Purdue Univ. USA, R. Wigmans / Texas, Tech Univ. USA, W. Riegler / CERN-PH, W. Smith / Wisconsin Univ. USA The upgrade of the LHC machine towards higher luminosity (1035 cm-2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector ...

  17. LHC Report: LHC hit the target!

    CERN Multimedia

    Enrico Bravin for the LHC team

    2016-01-01

    Last week, the accumulated integrated luminosity reached the target value for 2016 of 25 fb-1 in both ATLAS and CMS.   The integrated luminosity delivered to ATLAS and CMS reached (and already passed!) 25 fb-1– the target for the whole year! Tuesday, 30 August was just a regular day for the 2016 LHC run. However,  on that day, the integrated luminosity delivered to ATLAS and CMS reached 25 fb-1 – the target for the whole year! How did we get here? A large group of committed scientists and technical experts work behind the scenes at the LHC, ready to adapt to the quirks of this truly impressive machine. After the push to produce as many proton-proton collisions as possible before the summer conferences, several new ideas and production techniques (such as Bunch Compression Multiple Splitting, BCMS) have been incorporated in the operation of LHC in order to boost its performance even further. Thanks to these improvements, the LHC was routinely operated with peak luminos...

  18. LHC phenomenology of the three-site Higgsless model

    Energy Technology Data Exchange (ETDEWEB)

    Speckner, Christian

    2009-07-01

    , we simulated the parton-level production of the gauge boson and fermion partners in different channels possibly suitable for their discovery at the LHC. The results are presented in this work together with an introduction to the model and a discussion of the properties and couplings of the model. We find that, while the fermiophobic nature of the new heavy gauge bosons does make them intrinsically difficult to observe at a collider, the LHC should be able to establish the existence of both resonances and even give some hints about the properties of their couplings which would be a vital test of the consistency of such a scenario. For the heavy fermions, we find that their large mass is accompanied by relative widths of more than 10%, making them ill-suited for a direct discovery at the LHC. Nevertheless, our simulations reveal that there is a part of parameter space where, given enough time, patience and a good understanding of detector and backgrounds, a direct discovery might be possible. (orig.)

  19. LHC phenomenology of the three-site Higgsless model

    International Nuclear Information System (INIS)

    Speckner, Christian

    2009-01-01

    the parton-level production of the gauge boson and fermion partners in different channels possibly suitable for their discovery at the LHC. The results are presented in this work together with an introduction to the model and a discussion of the properties and couplings of the model. We find that, while the fermiophobic nature of the new heavy gauge bosons does make them intrinsically difficult to observe at a collider, the LHC should be able to establish the existence of both resonances and even give some hints about the properties of their couplings which would be a vital test of the consistency of such a scenario. For the heavy fermions, we find that their large mass is accompanied by relative widths of more than 10%, making them ill-suited for a direct discovery at the LHC. Nevertheless, our simulations reveal that there is a part of parameter space where, given enough time, patience and a good understanding of detector and backgrounds, a direct discovery might be possible. (orig.)

  20. The long road to the LHC

    CERN Multimedia

    CERN. Geneva; Jenni, Peter; Evans, Lyn

    2014-01-01

    Lecture by Lyn Evans Abstract The key to the discovery of the Higgs boson has been the development of particle accelerators at CERN through the years. I will explain how a particle accelerator works and will follow the path from the construction of the Proton Synchrotron in the 1950s to the world’s most powerful colliding beam machine, the Large Hadron Collider. Biography Born in 1945, Lyn Evans has spent his whole career in the field of high energy physics and particle accelerators, participating in all the great projects of CERN. From 1993 he led the team that designed, built and commissioned the LHC. He is presently a visiting professor at Imperial College London and Director of the Linear Collider Collaboration. Among his many honours he is a Fellow of the American Physical Society and a Fellow of the Royal Society. He was awarded a Special Fundamental Physics Prize in 2013 for his contribution to the discovery of the Higgs boson. “Some aspects of physics at CERN (and elsewhere...

  1. A dedicated LHC collider Beauty experiment for precision measurements of CP-violation. LHC-B letter of intent; TOPICAL

    International Nuclear Information System (INIS)

    Crosetto, Dario B.

    1996-01-01

    The LHC-B Collaboration proposes to build a forward collider detector dedicated to the study of CP violation and other rare phenomena in the decays of Beauty particles. The forward geometry results in an average 80 GeV momentum of reconstructed B-mesons and, with multiple, efficient and redundant triggers, yields large event samples. B-hadron decay products are efficiently identified by Ring-Imaging Cerenkov Counters, rendering a wide range of multi-particle final states accessible and providing precise measurements of all angles,(alpha),(beta) and(gamma) of the unitarity triangle. The LHC-B microvertex detector capabilities facilitate multi-vertex event reconstruction and proper-time measurements with an expected few-percent uncertainty, permitting measurements of B(sub s)-mixing well beyond the largest conceivable values of x(sub S). LHC-B would be fully operational at the startup of LHC and requires only a modest luminosity to reveal its full performance potential

  2. The LHC babies

    CERN Multimedia

    Laëtitia Pedroso

    2011-01-01

    With the machine restart and first collisions at 3.5 TeV, 2009 and 2010 were two action-packed years at the LHC. The events were a real media success, but one important result that remained well hidden was the ten births in the LHC team over the same period. The mothers – engineers, cryogenics experts and administrative assistants working for the LHC – confirm that it is possible to maintain a reasonable work-life balance. Two of them tell us more…   Verena Kain (left) and Reyes Alemany (right) in the CERN Control Centre. With the LHC running around the clock, LHC operations engineers have high-pressure jobs with unsociable working hours. These past two years, which will undoubtedly go down in the annals of CERN history, the LHC team had their work cut out, but despite their high-octane professional lives, several female members of the team took up no less of a challenge in their private lives, creating a mini-baby-boom by which the LHC start-up will also be remembe...

  3. PDF4LHC recommendations for LHC Run II

    CERN Document Server

    Butterworth, Jon; Cooper-Sarkar, Amanda; De Roeck, Albert; Feltesse, Joel; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-01-01

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+$\\alpha_s$ uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. We finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.

  4. RF upgrade program in LHC injectors and LHC machine

    International Nuclear Information System (INIS)

    Jensen, E.

    2012-01-01

    The main themes of the RF upgrade program are: the Linac4 project, the LLRF-upgrade and the study of a tuning-free wide-band system for PSB, the upgrade of the SPS 800 MHz amplifiers and beam controls and the upgrade of the transverse dampers of the LHC. Whilst LHC Splice Consolidation is certainly the top priority for LS1, some necessary RF consolidation and upgrade is necessary to assure the LHC performance for the next 3- year run period. This includes: 1) necessary maintenance and consolidation work that could not fit the shorter technical stops during the last years, 2) the upgrade of the SPS 200 MHz system from presently 4 to 6 cavities and possibly 3) the replacement of one LHC cavity module. On the longer term, the LHC luminosity upgrade requires crab cavities, for which some preparatory work in SPS Coldex must be scheduled during LS1. (author)

  5. LHC@home is ready to support HiLumi LHC: take part!

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Recently relaunched, the LHC@home volunteer computing project is now ready to support the HiLumi LHC project, the design phase of the planned upgrade of the LHC that will increase its luminosity by a factor of 5 to 10 beyond its original design value. HiLumi will need massive simulations to test the beam dynamics. Whether you are at home or at work, you can help experts design the future LHC by connecting your computer to LHC@home. Go for it!   LHC@home is aimed at involving the public in real science. If you have a computer that is connected to the Internet, you can join the large team of volunteers who are already supporting its two main projects: Test4Theory, which runs computer simulations of high-energy particle collisions, and SixTrack, which is aimed at optimizing the LHC performance by performing beam dynamics simulations. In both cases, the software is designed to run only when your computer is idle and causes no disruption to your normal activities. To the simulations run by the Six...

  6. Some LHC milestones...

    CERN Multimedia

    2008-01-01

    October 1995 The LHC technical design report is published. This document details the operation and the architecture of the future accelerator. November 2000 The first of the 1232 main dipole magnets for the LHC are delivered. May 2005 The first interconnection between two magnets of the accelerator is made. To carry out the 1700 interconnections of the LHC, 123 000 operations are necessary. February 2006 The new CERN Control Centre, which combines all the control rooms for the accelerators, the cryogenics and the technical infrastructure, starts operation. The LHC will be controlled from here. October 2006 Construction of the largest refrigerator in the world is complete. The 27 km cryogenic distribution line inside the LHC tunnel will circulate helium in liquid and gas phases to provide cryogenic conditions for the superconducting magnets of the accelerator. November 2006 Magnet production for the LHC is complete. The last of t...

  7. Detector technologies for LHC experiments

    CERN Document Server

    Hansl-Kozanecka, Traudl

    1999-01-01

    Abstract The Large Hadron Collider (LHC) at CERN will provide proton-proton collisions ata centre-of-mass energy of 14 TeV with a design luminosity of 10^34cm^-2s^-1. The exploitation of the rich physics potential is illustrated using the expected performance of the two general-purpose detectors ATLAS and CMS.The lecture introduces the physics motivation for experiments at the LHC energy.The design parameters and expected performance of the LHC machine are then discussed, followed by the design objectives for the detectors. The technical solutions are presented for each detector system (calorimetry, muon system, inner tracker, trigger). For each system the requirements, the technology choices and the achieved and expected performance are discussed. Lectures given at Herbstschule fu:r Hochenergiephysik, Maria Laach, 1999Copies of the transparencies are available in reduced format (black-and-white) from the secretariats of ATLAS and CMS (1999-093 Talk). A full-size colour version is available for consultation.e...

  8. The first lessons of the LHC: the Higgs boson and supersymmetry

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    2013-01-01

    We discuss recent results on the Higgs boson discovery and search for supersymmetry at the LHC. Is the Higgs boson really discovered and if yes is it the Higgs boson of the Standard Model? Which properties of the discovered particle are consistent with the SM and what are the alternatives? Could it be that two Higgs bosons are discovered? What one can say about the stability of the electroweak vacuum if the Higgs boson has a mass of 125 GeV? What are the predictions of SUSY theories concerning the Higgs boson mass? Does the value of 125 GeV support SUSY or contradict it? What is the situation with SUSY searches and what is left of SUSY parameter space? Is low energy SUSY still alive? What are the perspectives of SUSY finding at the LHC at 14 TeV?

  9. Winner of video contest inspired by the LHC

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    A video contest was launched this year to mark the 10th anniversary of the Frederick Phineas and Sandra Priest Rose Centre for Earth and Space. Luke Cahill, a 27 year-old BFA graduate, has just won the contest with a movie about CERN.   Luke, who works in the film industry in Los Angeles and also takes physics classes, came across a video promoting the contest while he was browsing the American Natural History Museum website. "It seemed like a perfect opportunity to combine my passion for science with my craft of filmmaking", says Luke. Luke decided to make a video about the LHC. To him, CERN embodies the ideals of scientific progress and discovery, continually expanding the boundaries of our knowledge. "I have never actually been to CERN but it's high on the list of places I want to visit when I travel to Europe", says Luke. There is a lot of misleading information on the Internet about CERN – especially about the LHC. Luke wanted to clarify what the ...

  10. Status of the Exclusive MSSM Higgs production at LHC after the Run I

    CERN Document Server

    Tasevsky, Marek

    2013-01-01

    We investigate the prospects for Central Exclusive Diffractive (CED) production of MSSM Higgs bosons at the LHC using forward proton detectors (FPD) proposed to be installed 220 m and 420 m from ATLAS and CMS detectors. We summarize the situation after the first and very successful data taking period of the LHC. The discovery of a Higgs boson and results from searches for additional MSSM Higgs bosons from the ATLAS and CMS, have recently led to a proposal of new low-energy MSSM benchmark scenarios. The CED signal cross section for the process H -> bb and its backgrounds are estimated in these new scenarios. We also comment on the experimental procedure if the proposed FPDs are to be used to measure the CED signal.

  11. submitter Investigation of the discovery potential for supersymmetry in Tau final states and measurement of the Tau identification efficiency for the ATLAS experiment

    CERN Document Server

    Lumb, Debra

    Despite its success, the Standard Model has a number of short-comings that lead particle physicists to believe the it is only a low-energy approximation of a more fundamental theory. One of the most promising candidates for an extension of the Standard Model is supersymmetry. From 2009 the search for Supersymmetry will be taken into a new energy regime with the Large Hadron Collider (LHC) experiments at CERN. A new inclusive search for SUSY in tau final states has been developed for the ATLAS experiment. The search focuses on the signature of taus, jets and missing transverse energy. Analyses with different jet multiplicities (4, 3 and 2-jets) have been studied. The requirement of the tau significantly reduces the abundant QCD multijet background making the mode potentially more robust than other modes already in use that focus only on jets and missing transverse energy as the signature. The discovery reach for R-parity conserving mSUGRA models has been studied for a centre-of-mass energy of 14 TeV and an int...

  12. Study of the Higgs boson discovery potential in the process $pp \\to H/A \\to \\mu^+\\mu^-/\\tau^+\\tau^-$ with the ATLAS detector

    CERN Document Server

    Dedes, Georgios

    2008-01-01

    In this thesis, the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN for the heavy neutral Higgs bosons H/A of the Min- imal Supersymmetric extension of the Standard Model of particle physics (MSSM) in the decay channels H/A → τ + τ − → e/μ + X and H/A → μ+ μ− has been studied. The ATLAS detector is designed to study the full spectrum of the physics phenomena occuring in the proton-proton collisions at 14 TeV center-of-mass energy and to provide answers to the question of the origin of particle masses and of elec- troweak symmetry breaking. For the studies, the ATLAS muon spectrometer plays an important role. The spectrometer allows for a precise muon momentum measure- ment independently of other ATLAS subdetectors. The performance of the muon spectrometer depends strongly on the performance of the muon tracking detectors, the Monitored Drift Tube Chambers (MDT). Computer programs have been developed in order to test and verify the ATLAS muon spectrometer s...

  13. LHC Signals from Warped Extra Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Agashe, K.; Belyaev, A.; Krupovnickas, T.; Perez, G.; Virzi, J.

    2006-12-06

    We study production of Kaluza-Klein gluons (KKG) at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the Standard Model (SM) fields propagating in the bulk. We show that the detection of KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decaysmostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for MKKG<~;; 4 TeV, 100 fb-1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizeable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic"top-jets." We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays ("golden" modes) are suppressed. Our analysis suggests that other frameworks, for example little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely (1) Suppressed production rates for the new particles (such as Z'), due to their"lightfermion-phobic" nature, and (2) Difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.

  14. LHC Signals from Warped Extra Dimensions

    International Nuclear Information System (INIS)

    Agashe, K.; Belyaev, A.; Krupovnickas, T.; Perez, G.; Virzi, J.

    2006-01-01

    We study production of Kaluza-Klein gluons (KKG) at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the Standard Model (SM) fields propagating in the bulk. We show that the detection of KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decays mostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for MKKG < 4 TeV, 100 fb-1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizeable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic 'top-jets'. We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays ('golden' modes) are suppressed. Our analysis suggests that other frameworks, for example little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely (1) Suppressed production rates for the new particles (such as Z'), due to their 'light fermion-phobic' nature, and (2) Difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons

  15. LHC Report: a record start for LHC ion operation

    CERN Multimedia

    Jan Uythoven for the LHC Team

    2011-01-01

    After the technical stop, the LHC switched over to ion operation, colliding lead-ions on lead-ions. The recovery from the technical stop was very smooth, and records for ion luminosity were set during the first days of ion operation.   The LHC technical stop ended on the evening of Friday, 11 November. The recovery from the technical stop was extremely smooth, and already that same evening ion beams were circulating in the LHC. ‘Stable beams’ were declared the same night, with 2 x 2 bunches of ions circulating in the LHC, allowing the experiments to have their first look at ion collisions this year. However, the next step-up in intensity – colliding 170 x 170 bunches – was postponed due to a vacuum problem in the PS accelerator, so the collisions on Sunday, 13 November were confined to 9 x 9 bunches. The vacuum problem was solved, and on the night of Monday, 14 November, trains of 24 lead bunches were injected into the LHC and 170 x 170 bunches were brough...

  16. Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    Alessandria, F; Ardito, R; Artusa, DR; III, FTA; Azzolini, O; Balata, M; Banks, TI; Bari, G; Beeman, J; Bellini, F; Bersani, A; Biassoni, M; Bloxham, T; Brofferio, C; Bucci, C; Cai, XZ; Canonica, L; Cao, X; Capelli, S; Carbone, L; Cardani, L; Carrettoni, M; Casali, N; Chiesa, D; Chott, N; Clemenza, M; Cosmelli, C; Cremonesi, O; Creswick, RJ; Dafinei, I; Dally, A; Datskov, V; Biasi, AD; Deninno, MM; Domizio, SD; Vacri, MLD; Ejzak, L; Faccini, R; Fang, DQ; Farach, HA; Faverzani, M; Fernandes, G; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, MA; Freedman, SJ; Fujikawa, BK; Giachero, A; Gironi, L; Giuliani, A; Goett, J; Gorla, P; Gotti, C; Guardincerri, E; Gutierrez, TD; Haller, EE; Han, K; Heeger, KM; Huang, HZ; Kadel, R; Kazkaz, K; Keppel, G; Kogler, L; Kolomensky, YG; Lenz, D; Li, YL; Ligi, C; Liu, X; Ma, YG; Maiano, C; Maino, M; Martinez, M; Maruyama, RH; Mei, Y; Moggi, N; Morganti, S; Napolitano, T; Newman, S; Nisi, S; Nones, C; Norman, EB; Nucciotti, A; O' Donnell, T; Orio, F; Orlandi, D; Ouellet, JL; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Piperno, G; Pirro, S; Previtali, E; Rampazzo, V; Rimondi, F; Rosenfeld, C; Rusconi, C; Sala, E; Sangiorgio, S; Scielzo, ND; Sisti, M; Smith, AR; Stivanello, F; Taffarello, L; Tenconi, M; Tian, WD; Tomei, C; Trentalange, S; Ventura, G; Vignati, M; Wang, BS; Wang, HW; Wise, T; Woodcraft, A; Zanotti, L; Zarra, C; Zhu, BX; Zucchelli, S

    2017-07-06

    We present a study of the sensitivity and discovery potential of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity for various background scenarios are presented, and an extension of the sensitivity formulation to the discovery potential case is also discussed. Assuming a background rate of 10-2 cts/(keV kg y), we find that, after 5 years of live time, CUORE has a 1 sigma sensitivity to the neutrinoless double-beta decay half-life of T$0v\\atop{1/2}$(1θ) = 1.6 \\times 1026 y and thus a potential to probe the effective Majorana neutrino mass down to 40-100 meV; the sensitivity at 1.64 sigma, which corresponds to 90% C.L., will be T$0v\\atop{1/2}$(1.64θ) = 9.5 \\times 1025 y. This range is compared with the claim of observation of neutrinoless double-beta decay in 76Ge and the preferred range of the neutrino mass parameter space from oscillation results.

  17. Expanding the reach of heavy neutrino searches at the LHC

    Science.gov (United States)

    Flórez, Andrés; Gui, Kaiwen; Gurrola, Alfredo; Patiño, Carlos; Restrepo, Diego

    2018-03-01

    The observation of neutrino oscillations establishes that neutrinos have non-zero mass and provides one of the more compelling arguments for physics beyond the standard model (SM) of particle physics. We present a feasibility study to search for hypothetical Majorana neutrinos (N) with TeV scale masses, predicted by extensions of the SM to explain the small but non-zero SM neutrino mass, using vector boson fusion (VBF) processes at the 13 TeV LHC. In the context of the minimal Type-I seesaw mechanism (mTISM), the VBF production cross-section of a lepton (ℓ) and associated heavy Majorana neutrino (Nℓ) surpasses that of the Drell-Yan process at approximately mNℓ = 1.4TeV. We consider second and third-generation heavy neutrino (Nμ or Nτ, where ℓ= muon (μ) or tau (τ) leptons) production through VBF processes, with subsequent Nμ and Nτ decays to a lepton and two jets, as benchmark cases to show the effectiveness of the VBF topology for Nℓ searches at the 13 TeV LHC. The requirement of a dilepton pair combined with four jets, two of which are identified as VBF jets with large separation in pseudorapidity and a TeV scale dijet mass, is effective at reducing the SM background. These criteria may provide expected exclusion bounds, at 95% confidence level, of mNℓ < 1.7 (2.4) TeV, assuming 100 (1000) fb-1 of 13 TeV data from the LHC and mixing |VℓNℓ|2 = 1. The use of the VBF topology to search for mNℓ increases the discovery reach at the LHC, with expected significances greater than 5σ (3σ) for Nℓ masses up to 1.7 (2.05) TeV using 1000fb-1 of 13 TeV data from the LHC.

  18. Expanding the reach of heavy neutrino searches at the LHC

    Directory of Open Access Journals (Sweden)

    Andrés Flórez

    2018-03-01

    Full Text Available The observation of neutrino oscillations establishes that neutrinos have non-zero mass and provides one of the more compelling arguments for physics beyond the standard model (SM of particle physics. We present a feasibility study to search for hypothetical Majorana neutrinos (N with TeV scale masses, predicted by extensions of the SM to explain the small but non-zero SM neutrino mass, using vector boson fusion (VBF processes at the 13 TeV LHC. In the context of the minimal Type-I seesaw mechanism (mTISM, the VBF production cross-section of a lepton (ℓ and associated heavy Majorana neutrino (Nℓ surpasses that of the Drell–Yan process at approximately mNℓ=1.4TeV. We consider second and third-generation heavy neutrino (Nμ or Nτ, where ℓ= muon (μ or tau (τ leptons production through VBF processes, with subsequent Nμ and Nτ decays to a lepton and two jets, as benchmark cases to show the effectiveness of the VBF topology for Nℓ searches at the 13 TeV LHC. The requirement of a dilepton pair combined with four jets, two of which are identified as VBF jets with large separation in pseudorapidity and a TeV scale dijet mass, is effective at reducing the SM background. These criteria may provide expected exclusion bounds, at 95% confidence level, of mNℓ<1.7 (2.4 TeV, assuming 100 (1000 fb−1 of 13 TeV data from the LHC and mixing |VℓNℓ|2=1. The use of the VBF topology to search for mNℓ increases the discovery reach at the LHC, with expected significances greater than 5σ (3σ for Nℓ masses up to 1.7 (2.05 TeV using 1000fb−1 of 13 TeV data from the LHC.

  19. Restart of the LHC. The Higgs particle and the Standard Model. The particle physics behind the world machine illustratively explained; Neustart des LHC. Das Higgs-Teilchen und das Standardmodell. Die Teilchenphysik hinter der Weltmaschine anschaulich erklaert

    Energy Technology Data Exchange (ETDEWEB)

    Knochel, Alexander

    2016-07-01

    The following topics are dealt with: The development of the Standard Model on the base of relativity theory, quantum theory, and the detection of new particles, the physics of the Standard Model, the production of new particles with the LHC, the importance of the discovery of a Higgs boson for our picture of the world. (HSI)

  20. "The Opposite Ends of Supersymmetry and their Implications for the LHC" (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    There have been many predictions for the mass patterns of superpartners. In these lectures I discuss two interesting opposite-end approaches to supersymmetry breaking that determine the superpartner masses: zero scalar mass supersymmetry (no scale, gaugino mediation, etc.) and heavy scalar mass supersymmetry (split susy, PeV-scale susy, etc.). We will step through the theory motivations for each scenario, and detail the rich phenomena that each implies for LHC discovery.

  1. "The Opposite Ends of Supersymmetry and their Implications for the LHC" (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    There have been many predictions for the mass patterns of superpartners. In these lectures I discuss two interesting opposite-end approaches to supersymmetry breaking that determine the superpartner masses: zero scalar mass supersymmetry (no scale, gaugino mediation, etc.) and heavy scalar mass supersymmetry (split susy, PeV-scale susy, etc.). We will step through the theory motivations for each scenario, and detail the rich phenomena that each implies for LHC discovery.

  2. "The Opposite Ends of Supersymmetry and their Implications for the LHC" (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    There have been many predictions for the mass patterns of superpartners. In these lectures I discuss two interesting opposite-end approaches to supersymmetry breaking that determine the superpartner masses: zero scalar mass supersymmetry (no scale, gaugino mediation, etc.) and heavy scalar mass supersymmetry (split susy, PeV-scale susy, etc.). We will step through the theory motivations for each scenario, and detail the rich phenomena that each implies for LHC discovery.

  3. LHC report

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    This week's Report, by Gianluigi Arduini,  will be included in the LHC Physics Day, dedicated to the reviews of the LHC physics results presented at ICHEP 2010. Seehttp://indico.cern.ch/conferenceDisplay.py?confId=102669 

  4. PDF4LHC recommendations for LHC Run II

    NARCIS (Netherlands)

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; Roeck, Albert de; Feltesse, Joel; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert S.

    2015-01-01

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+$\\alpha_s$ uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new

  5. Collimator Layouts for HL-LHC in the Experimental Insertions

    CERN Document Server

    Bruce, R; Esposito, Luigi Salvatore; Jowett, John; Lechner, Anton; Quaranta, Elena; Redaelli, Stefano; Schaumann, Michaela; Skordis, Eleftherios; Eleanor Steele, G; Garcia Morales, H; Kwee-Hinzmann, Regina

    2015-01-01

    This paper presents the layout of collimators for HL-LHC in the experimental insertions. On the incoming beam, we propose to install additional tertiary collimators to protect potential new aperture bottlenecks in cells 4 and 5, which in addition reduce the experimental background. For the outgoing beam, the layout of the present LHC with three physics debris absorbers gives sufficient protection for highluminosity proton operation. However, collisional processes for heavy ions cause localized beam losses with the potential to quench magnets. To alleviate these losses, an installation of dispersion suppressor collimators is proposed.

  6. Keeping HL-LHC accountable

    CERN Multimedia

    2015-01-01

    This week saw the cost and schedule of the High Luminosity LHC (HL-LHC) and LHC Injectors Upgrade (LIU) projects come under close scrutiny from the external review committee set up for the purpose.    HL-LHC, whose implementation requires an upgrade to the CERN injector complex, responds directly to one of the key recommendations of the updated European Strategy for Particle Physics, which urges CERN to prepare for a ‘major luminosity upgrade’, a recommendation that is also perfectly in line with the P5 report on the US strategy for the field. Responding to this recommendation, CERN set up the HL-LHC project in 2013, partially supported by FP7 funding through the HiLumi LHC Design Study (2011-2015), and coordinated with the American LARP project, which oversees the US contribution to the upgrade. A key element of HL-LHC planning is a mechanism for receiving independent expert advice on all aspects of the project.  To this end, several technical reviews h...

  7. Search for Charged Higgs Bosons with the ATLAS Detector at the LHC

    CERN Document Server

    Czodrowski, Patrick

    2013-07-30

    The discovery of a charged Higgs boson, $H^+$, would be an unambiguous evidence for physics beyond the Standard Model. In this thesis a search for the $H^+$, with the ATLAS experiment at the Large Hadron Collider, LHC, at CERN based on data taken in 2011, are described. A re-analysis of the charged Higgs boson search, utilising the ratio-method, was performed, which greatly enhanced the sensitivity compared to the traditional direct search approach. Light charged Higgs bosons, with a mass lower than the top quark mass, can be produced in top quark decays. Due to the large production cross-section of top quark pairs the light charged Higgs bosons are accessible with early LHC data, in contrast to charged Higgs bosons heavier than the top quark mass. For light charged Higgs bosons the decay via $H^\\pm \\to \\tau^\\pm \

  8. LHC-B: a dedicated LHC collider beauty experiment

    International Nuclear Information System (INIS)

    Erhan, S.

    1995-01-01

    LHC-B is a forward detector optimized for the study of CP-violation and other rare phenomena in the decays of beauty particles at the LHC. An open geometry forward detector design, with good mass, vertex resolution and particle identification, will facilitate the collection of a large numbers of event samples in diverse B decay channels and allow for a thorough understanding of the systematic uncertainties. With the expected large event statistics, LHC-B will be able to test the closure of the unitarity triangle and make sensitive tests of the Standard Model description of CP-violation. Here we describe the experiment and summarize its anticipated performance. (orig.)

  9. LHC synchronization test successful

    CERN Multimedia

    The synchronization of the LHC's clockwise beam transfer system and the rest of CERN's accelerator chain was successfully achieved last weekend. Tests began on Friday 8 August when a single bunch of a few particles was taken down the transfer line from the SPS accelerator to the LHC. After a period of optimization, one bunch was kicked up from the transfer line into the LHC beam pipe and steered about 3 kilometres around the LHC itself on the first attempt. On Saturday, the test was repeated several times to optimize the transfer before the operations group handed the machine back for hardware commissioning to resume on Sunday. The anti-clockwise synchronization systems will be tested over the weekend of 22 August.Picture:http://lhc-injection-test.web.cern.ch/lhc-injection-test/

  10. Beam-Beam Simulation of Crab Cavity White Noise for LHC Upgrade

    CERN Document Server

    Qiang, J; Pieloni, Tatiana; Ohmi, Kazuhito

    2015-01-01

    High luminosity LHC upgrade will improve the luminosity of the current LHC operation by an order of magnitude. Crab cavity as a critical component for compensating luminosity loss from large crossing angle collision and also providing luminosity leveling for the LHC upgrade is being actively pursued. In this paper, we will report on the study of potential effects of the crab cavity white noise errors on the beam luminosity lifetime based on strong-strong beam-beam simulations.

  11. Springer Autopsy of measurements with the ATLAS detector at the LHC

    CERN Document Server

    Beauchemin, Pierre-Hugues

    2017-01-01

    A lot of attention has been devoted to the study of discoveries in high energy physics (HEP), but less on measurements aiming at improving an existing theory like the standard model of particle physics, getting more precise values for the parameters of the theory or establishing relationships between them. This paper provides a detailed and critical study of how measurements are performed in recent HEP experiments, taking examples from differential cross section measurements with the ATLAS detector at the LHC. This study will be used to provide an elucidation of the concept of event used in HEP, in order to determine what constitutes an observation and what does not. It will highlight the essential place taken by theory-ladenness in order to produce observational facts, and will show how uncertainty and sensitivity estimates constitute an operational approach to robustness, inside the practice of science, avoiding potential circularity problem traditionally implied by theory-ladenness. This is in contrast to ...

  12. Public conference | Past, present future: LHC and future possibilities | Michelangelo Mangano, Lucie Linssen and Günther Dissertori | 20 November

    CERN Multimedia

    2014-01-01

    Public conference “Past, present future: LHC and future possibilities” by Michelangelo Mangano, Lucie Linssen and Günther Dissertori.   Thursday, 20 November, 7.30 p.m. in the Globe of Science and Innovation Talk in English with simultaneous interpreting into French. Entrance free. Limited number of seats. Reservation essential : +41 22 767 76 76 or cern.reception@cern.ch Webcast at www.cern.ch/webcast “Open problems in particle physics after the Higgs discovery”, by Michelangelo Mangano Michelangelo Mangano. Abstract The discovery of the Higgs boson is the most significant outcome so far of the LHC experiments. This discovery addresses issues in our understanding of nature that have been on the table for almost 50 years. It also provides us with a more solid basis from which to continue our exploration of the other open problems in particle physics, such as: what is the nature of dark matter? What is the origin of matter? Do all forces o...

  13. Safe LHC beam commissioning

    International Nuclear Information System (INIS)

    Uythoven, J.; Schmidt, R.

    2007-01-01

    Due to the large amount of energy stored in magnets and beams, safety operation of the LHC is essential. The commissioning of the LHC machine protection system will be an integral part of the general LHC commissioning program. A brief overview of the LHC Machine Protection System will be given, identifying the main components: the Beam Interlock System, the Beam Dumping System, the Collimation System, the Beam Loss Monitoring System and the Quench Protection System. An outline is given of the commissioning strategy of these systems during the different commissioning phases of the LHC: without beam, injection and the different phases with stored beam depending on beam intensity and energy. (author)

  14. Big advance towards the LHC upgrade

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The LHC is currently the world’s most powerful accelerator. With its technical achievements it has already set world records. However, big science looks very far ahead in time and is already preparing already for the LHC’s magnet upgrade, which should involve a 10-fold increase of the collision rates toward the end of the next decade. The new magnet technology involves the use of an advanced superconducting material that has just started to show its potential.   The first Long Quadrupole Shell (LQS01) model during assembly at Fermilab. The first important step in the qualification of the new technology for use in the LHC was achieved at the beginning of December when the US LHC Accelerator Research Program (LARP) – a consortium of Brookhaven National Laboratory, Fermilab, Lawrence Berkeley National Laboratory and the SLAC National Accelerator Laboratory founded by US Department Of Energy (DOE) in 2003 – successfully tested the first long focussing magnet th...

  15. Transverse emittance measurement and preservation at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Maria

    2016-06-20

    . During LHC Run 1 significant transverse emittance growth throughout the LHC cycle was observed. About 30 % of the potential luminosity performance was lost through the different phases of the LHC cycle. At the LHC design stage the total allowed emittance increase through the cycle was set to 7 %. Measurements indicated that most of the blow-up occurred during the injection plateau and the ramp. Intra-beam scattering was one of the main drivers for emittance growth. In April 2015 the LHC re-started with a collision energy of 6.5 TeV per beam. This thesis presents the first transverse emittance preservation studies in LHC Run 2 with 25 ns beams. A breakdown of the growth throughout the various phases in the LHC cycle is given for low intensity beams measured with wire scanners. Also presented is data collected from synchrotron light monitors and the LHC experiments. Finally, the emittance growth results is compared to intra-beam scattering simulations. A theory on emittance growth due to noise from the LHC transverse damper and other external sources is discussed. The results of the investigations are summarized, and an outlook in terms of emittance blow-up for future LHC upgrade scenarios with low emittance beams is given.

  16. Tracking detectors for the sLHC, the LHC upgrade

    CERN Document Server

    Sadrozinski, Hartmut F W

    2005-01-01

    The plans for an upgrade of the Large Hadron Collider (LHC) to the Super-LHC (sLHC) are reviewed with special consideration of the environment for the inner tracking system. A straw-man detector upgrade for ATLAS is presented, which is motivated by the varying radiation levels as a function of radius, and choices for detector geometries and technologies are proposed, based on the environmental constraints. A few promising technologies for detectors are discussed, both for sensors and for the associated front-end electronics. On-going research in silicon detectors and in ASIC technologies will be crucial for the success of the upgrade.

  17. CERN LHC signals from warped extra dimensions

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Belyaev, Alexander; Krupovnickas, Tadas; Perez, Gilad; Virzi, Joseph

    2008-01-01

    We study production of Kaluza-Klein (KK) gluons at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the standard model fields propagating in the bulk. We show that the detection of the KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decays mostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for M KKG -1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic 'top-jets'. We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays (golden modes) are suppressed. Our analysis suggests that other frameworks, for example, little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely, (1) suppressed production rates for the new particles (such as Z ' ), due to their 'light-fermion-phobic' nature, and (2) difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons

  18. Probing the energy frontier through precision physics in the LHC era

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    With the discovery of the Higgs boson the LHC has confirmed an incredible prediction of the Standard Model precision program and opened new horizons towards the even more ambitious goal of constraining new physics through precision Higgs-boson physics.  With this respect, the capabilities of the LHC as a precision physics machine should not be underestimated.  The progress of experimental analyses has been matched by an unprecedented theoretical effort to describe both signals (Higgs, new physics) and backgrounds (SM).  In most cases the measurement of Higgs production and properties is not limited these days by theoretical systematic, but cases still exist where this is the case. In these cases, further effort to reach a more satisfactory theoretical accuracy will have to be matched by a dedicated program of experimental measurements.  In this talk I will review the interplay between theory and experiments in defining a Higgs precision-physics program, and I will discuss h...

  19. Towards LHC experiments

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    As plans for the LHC proton collider to be built in CERN's 27-kilometre LEP tunnel take shape, interest widens to bring in the experiments exploiting the big machine. The first public presentations of 'expressions of interest' for LHC experiments featured from 5-8 March at Evian-les-Bains on the shore of Lake Geneva, some 50 kilometres from CERN, at the special Towards the LHC Experimental Programme' meeting

  20. LHC Report: astounding availability

    CERN Multimedia

    Andrea Apollonio for the LHC team

    2016-01-01

    The LHC is off to an excellent start in 2016, having already produced triple the luminosity of 2015. An important factor in the impressive performance so far this year is the unprecedented machine availability.   LHC integrated luminosity in 2011, 2012, 2015 and 2016 and the prediction of the 2016 performance foreseen at the start of the year. Following the 2015-2016 end of year shutdown, the LHC restarted beam operation in March 2016. Between the restart and the first technical stop (TS1) in June, the LHC's beam intensity was successively increased, achieving operation with 2040 bunches per beam. The technical stop on 7-8 June was shortened to maximise the time available for luminosity production for the LHC experiments before the summer conferences. Following the technical stop, operation resumed and quickly returned to the performance levels previously achieved. Since then, the LHC has been running steadily with up to 2076 bunches per beam. Since the technical stop, a...

  1. Will ALICE run in the HL-LHC era?

    International Nuclear Information System (INIS)

    Wessels, J.P.

    2012-01-01

    We will present the perspectives for ion running in the HL-LHC era. In particular, ALICE is preparing a significant upgrade of its rate capabilities and is further extending its particle identification potential. This paves the way for heavy ion physics at unprecedented luminosities, which are expected in the HL-LHC era with the heaviest ions. Here, we outline a scenario, in which ALICE will be taking data at a luminosity of L > 6*10 27 cm -2 *s -1 for Pb-Pb with the aim of collecting at least 10 nb -1 . The potential interest of data-taking during high luminosity proton runs for ATLAS and CMS will also be commented. (author)

  2. 60 years of CERN experiments and discoveries

    CERN Document Server

    Di Lella, Luigi

    2015-01-01

    The book contains a description of the most important experimental results achieved at CERN during the past 60 years, from the mid-1950s to the latest discovery of the Higgs particle. It covers the results from early accelerators at CERN to the most recent results at the LHC and thus provides an excellent review of the achievements of this outstanding laboratory. It reflects not only the impressive scientific progress achieved during the past six decades but demonstrates also the special way of successful international collaboration developed at CERN.

  3. LHC collimator controls for a safe LHC operation

    International Nuclear Information System (INIS)

    Redaelli, S.; Assmann, R.; Losito, R.; Donze, M.; Masi, A.

    2012-01-01

    The Large Hadron Collider (LHC) collimation system is designed to protect the machine against beam losses and consists of 108 collimators, 100 of which are movable, located along the 27 km long ring and in the transfer lines. The cleaning performance and machine protection role of the system depend critically on accurate jaw positioning. A fully redundant control system has been developed to ensure that the collimators dynamically follow optimum settings in all phases of the LHC operational cycle. Jaw positions and collimator gaps are interlocked against dump limits defined redundantly as functions of time, beam energy and the β functions, which describe the focusing property of the beams. In this paper, the architectural choices that guarantee a safe LHC operation are presented. Hardware and software implementations that ensure the required performance are described. (authors)

  4. Machine Protection for the Experiments of the LHC

    CERN Document Server

    Appleby, R B

    2010-01-01

    The LHC stored beam contains 362 MJ of energy at the top beam energy of 7 TeV/c, presenting a significant risk to the components of the machine and the detectors. In response to this threat, a sophisticated system of machine protection has been developed to minimize the danger, and detect potentially dangerous situations. In this paper, the protection of the experiments in the LHC from the machine is considered, focusing on pilot beam strikes on the experiments during injection and on the dynamics of hardware failure with a circulating beam, with detailed time-domain calculations performed for LHC ring power converter failures and magnet quenches. The prospects for further integration of the machine protection and experimental protection systems are considered, along with the risk to nearbeam detectors from closed local bumps.

  5. ATLAS LAr Calorimeter Performance and Commissioning for LHC Run-2

    CERN Document Server

    Spettel, Fabian; The ATLAS collaboration

    2015-01-01

    The ATLAS detector was designed and built to study proton-proton colli- sions produced at the LHC at centre-of-mass energies up to 14 TeV and in- stantaneous luminosities up to $10^{34} \\text{cm}^{-2} \\text{s}^{-1}$. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region $|\\eta|<3.2$, and for hadronic calorimetry in the region from $|\\eta|=1.5$ to $|\\eta|=4.9$. In the first LHC run a total luminosity of 27 $\\text{fb}^{-1}$ as been collected at center-of-mass energies of 7-8 TeV with very high operational efficiency of the LAr Calorimeters and excellent performance. The well calibrated and highly granular detector achieved its design values both in energy measurement as well as in direction resolution, which was a main ingredient for the successul discovery of a Higgs boson in the di-photon decay channel. The talk will give an overview of the procedures applied to calibrate the 180.000 read-out channels electronically as well as from using refe...

  6. LHC machine: Status and plan

    International Nuclear Information System (INIS)

    Pojer, M.

    2013-01-01

    The LHC Run I was successfully concluded in March 2012. An incredible amount of data has been collected and the performance continuously improved during these three years. Important information on the limitations of the machine also emerged, which will be used to further increase the potential of the machine in the coming years. (authors)

  7. LHC Report: The beam is back at the LHC

    CERN Multimedia

    Reyes Alemany

    2015-01-01

    A series of sector beam tests paved the way for the start-up of the LHC in 2008 and 2009. These tests and the follow-up of the issues that arose were part of the process that led to a smooth start-up with beam.   Given this experience, sector tests were scheduled to take place several weeks before the 2015 start-up. On the weekend of 6-9 March, beam from the SPS was injected into both LHC injection regions, followed by a first pass through the downstream LHC sectors. For the clockwise LHC beam (called “beam 1”) this meant passing through ALICE and into Sector 2-3, while the anticlockwise beam (called “beam 2”) was threaded through LHCb and all the way from Point 8 to Point 6, where it was extracted by the beam dump kickers onto the beam dump block. The dry runs in the previous weeks were mainly targeted at preparation for the sector tests. The systems tested included: injection, timing, synchronisation and beam instrumentation. The beam interlock ...

  8. Origins of transverse emittance blow-up during the LHC energy tramp

    CERN Document Server

    Kuhn, M; Arduini, G; Kain, V; Schaumann, M; Tomas, R

    2014-01-01

    During LHC Run 1 about 30 % of the potential peak performance was lost due to transverse emittance blow-up through the LHC cycle. Measurements indicated that the majority of the blow-up occurred during the energy ramp. Until the end of LHC Run 1 this emittance blow-up could not be eliminated. In this paper the measurements and observations of emittance growth through the ramp are summarized. Simulation results for growth due to Intra Beam Scattering will be shown and compared to measurements. A summary of investigations of other possible sources will be given and backed up with simulations where possible. Requirements for commissioning the LHC with beam in 2015 after Long Shutdown 1 to understand and control emittance blow-up will be listed.

  9. Physics perspectives with AFTER@LHC (A Fixed Target ExpeRiment at LHC

    Directory of Open Access Journals (Sweden)

    Massacrier L.

    2018-01-01

    Full Text Available AFTER@LHC is an ambitious fixed-target project in order to address open questions in the domain of proton and neutron spins, Quark Gluon Plasma and high-x physics, at the highest energy ever reached in the fixed-target mode. Indeed, thanks to the highly energetic 7 TeV proton and 2.76 A.TeV lead LHC beams, center-of-mass energies as large as sNN = 115 GeV in pp/pA and sNN = 72 GeV in AA can be reached, corresponding to an uncharted energy domain between SPS and RHIC. We report two main ways of performing fixed-target collisions at the LHC, both allowing for the usage of one of the existing LHC experiments. In these proceedings, after discussing the projected luminosities considered for one year of data taking at the LHC, we will present a selection of projections for light and heavy-flavour production.

  10. Measurements at LHC and their relevance for cosmic ray physics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Many LHC measurements are already used to improve hadronic interaction models used in cosmic ray analyses. This already had a positive effect on the model dependence of crucial data analyses. Some of the data and the model tuning is reviewed. However, the LHC still has a lot more potential to provide crucial information. Since the start of Run2 the highest accelerator beam energies are reached and no further increase can be expected for a long time. First data of Run2 are published and the fundamental performance of cosmic ray hadronic interaction models can be scrutinized. The relevance of LHC data in general for cosmic ray data analyses is demonstrated.

  11. Odyssey in the zepto-space. A voyage in the physics of the LHC

    International Nuclear Information System (INIS)

    Giudice, Gian Francesco

    2012-01-01

    Since end of 2009 the mostly ambitioned scientific experiment of all times runs with record energy - and however its goals are scarcely understandable for the generality. This book puts everyone in the position to consecute and reproduce the immediately imminent discoveries in the particle-accelerator project of the Large Hadron Collider (LHC) at CERN. It invites the reader to consider the theory of particle physics with the eyes of an insider, and gives him the tool in the hand in order to comprehend the importance of the mental revolution, the witnesses of which we are at time. To the mostly impressive aspects of this scientific eventure belong the technological innovations in the construction of the LHC. As part of the project history they are described here too. Furthermore this book gives a survey about the scientific goals and expectations connected with the LHC: Does the mysterious Higgs particle really exist? Hides the space a supersymmetry or extends to additional dimensions? How the protons colliding in the LHC ring can give away the mysteries of the origin of our universe? All these questions are explained in the present book by a proved expert. Without any cuts in the exactness the exceedingly technical matter is here presented in a pleasant, accessible style. This books wants not only informate, but also mediate to the reader, which respect and which excitation a physicist feels, when he stands at the threshold to a new era in the understanding of our world.

  12. The super-LHC

    CERN Document Server

    Mangano, Michelangelo L

    2010-01-01

    We review here the prospects of a long-term upgrade programme for the Large Hadron Collider (LHC), CERN laboratory's new proton-proton collider. The super-LHC, which is currently under evaluation and design, is expected to deliver of the order of ten times the statistics of the LHC. In addition to a non-technical summary of the principal physics arguments for the upgrade, I present a pedagogical introduction to the technological challenges on the accelerator and experimental fronts, and a review of the current status of the planning.

  13. ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC

    CERN Document Server

    Koehler, M; The ATLAS collaboration

    2010-01-01

    To extend the physics potential of the Large Hadron Colider (LHC) at CERN, upgrades of the accelerator complex and the detectors towards the Super-LHC (sLHC) are foreseen. The upgrades, separated in Phase-1 and Phase-2, aim at increasing the luminosity while leaving the energy of the colliding particles (7 TeV per proton beam) unchanged. After the Phase-2 upgrade the instantaneous luminosity will be a factor of 5-10 higher than the design luminosity of the LHC. Due to the increased track rate and extreme radiation levels for the tracking detectors, upgrades of the detectors are necessary. At ATLAS, one of the two general purpose detectors at the LHC, the current inner detector will be replaced by an all-silicon tracker. This article describes the plans for the Phase-2 upgrade of the silicon strip detector of ATLAS. Radiation hard n-in-p silicon detectors with shorter strips than currently installed in ATLAS are planned. Results of measurements with these sensors and plans for module designs will be discussed.

  14. LHC Supertable

    International Nuclear Information System (INIS)

    Pereira, M.; Lahey, T.E.; Lamont, M.; Mueller, G.J.; Teixeira, D.D.; McCrory, E.S.

    2012-01-01

    LHC operations generate enormous amounts of data. This data is being stored in many different databases. Hence, it is difficult for operators, physicists, engineers and management to have a clear view on the overall accelerator performance. Until recently the logging database, through its desktop interface TIMBER, was the only way of retrieving information on a fill-by-fill basis. The LHC Supertable has been developed to provide a summary of key LHC performance parameters in a clear, consistent and comprehensive format. The columns in this table represent main parameters that describe the collider operation such as luminosity, beam intensity, emittance, etc. The data is organized in a tabular fill-by-fill manner with different levels of detail. Particular emphasis was placed on data sharing by making data available in various open formats. Typically the contents are calculated for periods of time that map to the accelerator's states or beam modes such as Injection, Stable Beams, etc. Data retrieval and calculation is triggered automatically after the end of each fill. The LHC Supertable project currently publishes 80 columns of data on around 100 fills. (authors)

  15. Remote Inspection, Measurement and Handling for LHC

    CERN Document Server

    Kershaw, K; Coin, A; Delsaux, F; Feniet, T; Grenard, J L; Valbuena, R

    2007-01-01

    Personnel access to the LHC tunnel will be restricted to varying extents during the life of the machine due to radiation, cryogenic and pressure hazards. The ability to carry out visual inspection, measurement and handling activities remotely during periods when the LHC tunnel is potentially hazardous offers advantages in terms of safety, accelerator down time, and costs. The first applications identified were remote measurement of radiation levels at the start of shut-down, remote geometrical survey measurements in the collimation regions, and remote visual inspection during pressure testing and initial machine cool-down. In addition, for remote handling operations, it will be necessary to be able to transmit several real-time video images from the tunnel to the control room. The paper describes the design, development and use of a remotely controlled vehicle to demonstrate the feasibility of meeting the above requirements in the LHC tunnel. Design choices are explained along with operating experience to-dat...

  16. LHC Luminosity Performance

    CERN Document Server

    AUTHOR|(CDS)2091107; Fuchsberger, Kajetan; Papotti, Giulia

    This thesis adresses several approaches with the common goal of assessing, understanding and improving the luminosity of the Large Hadron Collider (LHC). To better exploit existing margins for maximum luminosity while fulfilling the requirements of the LHC experiments, new techniques for luminosity levelling are studied and developed to an operational state, such as changing the crossing angle or $\\beta^*$ (beam size) at the interaction points with the beams in collisions. In 2017 LHC operation, the crossing angle reduction in collisions improved the integrated luminosity by $\\mathrm{\\sim} 2\\,\\mathrm{fb^{-1}}$ ($\\mathrm{\\sim} 4\\,\\mathrm{\\%}$ of the yearly production). For additional diagnostics, a new method for measuring beam sizes and orbits for each circulating bunch using the luminosity measurement during beam separation scans is shown. The results of these Emittance Scans improved the understanding of the LHC luminosity reach and of the orbit offsets introduced by beam-beam long-range effects.

  17. Production of Excited Neutrinos at the LHC

    CERN Document Server

    Belyaev, A; Mehdiyev, R

    2005-01-01

    We study the potential of the CERN LHC in the search for the single production of excited neutrino through gauge interactions. Subsequent decays of excited neutrino via gauge interactions are examined. The mass range accessible with the ATLAS detector is obtained.

  18. LHC preparations change gear

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    After the formal approval by CERN Council in December (January, page 1) of the LHC protonproton collider for CERN's 27- kilometre LEP tunnel, preparations for the new machine change gear. Lyndon Evans becomes LHC Project Leader, and CERN's internal structure will soon be reorganized to take account of the project becoming a definite commitment. On the experimental side, the full Technical Proposals for the big general purpose ATLAS and CMS detectors were aired at a major meeting of the LHC Committee at CERN in January. These Technical Proposals are impressive documents each of some several hundred pages. (Summaries of the detector designs will appear in forthcoming issues of the CERN Courier.) The ALICE heavy ion experiment is not far behind, and plans for other LHC experiments are being developed. Playing an important role in this groundwork has been the Detector Research and Development Committee (DRDC), founded in 1990 to foster detector development for the LHC experimental programme and structured along the lines of a traditional CERN Experiments Committee. Established under the Director Generalship of Carlo Rubbia and initially steered by Research Director Walter Hoogland, the DRDC has done sterling work in blazing a trail for LHC experiments. Acknowledging that the challenge of LHC experimentation needs technological breakthroughs as well as specific detector subsystems, DRDC proposals have covered a wide front, covering readout electronics and computing as well as detector technology. Its first Chairman was Enzo larocci, succeeded in 1993 by Michal Turala. DRDC's role was to evaluate proposals, and make recommendations to CERN's Research Board for approval and resource allocation, not an easy task when the LHC project itself had yet to be formally approved. Over the years, a comprehensive portfolio of detector development has been built up, much of which has either led to specific LHC detector subsystems for traditional detector tasks

  19. Heavy color-octet particles at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Yi [Department of Physics, Brookhaven National Laboratory,Upton, NY 11973 (United States); Freitas, Ayres; Han, Tao [PITTsburgh Particle physics, Astrophysics, and Cosmology Center (PITT PACC),Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Lee, Keith S.M. [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics & Astronomy, University of Waterloo,Waterloo, ON N2L 3G1 (Canada)

    2015-05-26

    Many new-physics models, especially those with a color-triplet top-quark partner, contain a heavy color-octet state. The “naturalness” argument for a light Higgs boson requires that the color-octet state be not much heavier than a TeV, and thus it can be pair-produced with large cross sections at high-energy hadron colliders. It may decay preferentially to a top quark plus a top partner, which subsequently decays to a top quark plus a color-singlet state. This singlet can serve as a WIMP dark-matter candidate. Such decay chains lead to a spectacular signal of four top quarks plus missing energy. We pursue a general categorization of the color-octet states and their decay products according to their spin and gauge quantum numbers. We review the current bounds on the new states at the LHC and study the expected discovery reach at the 8-TeV and 14-TeV runs. We also present the production rates at a future 100-TeV hadron collider, where the cross sections will be many orders of magnitude greater than at the 14-TeV LHC. Furthermore, we explore the extent to which one can determine the color octet’s mass, spin, and chiral couplings. Finally, we propose a test to determine whether the fermionic color octet is a Majorana particle.

  20. Composite Leptoquarks at the LHC

    CERN Document Server

    Gripaios, Ben

    2010-01-01

    If electroweak symmetry breaking arises via strongly-coupled physics, the observed suppression of flavour-changing processes suggests that fermion masses should arise via mixing of elementary fermions with composite fermions of the strong sector. The strong sector then carries colour charge, and may contain composite leptoquark states, arising either as TeV scale resonances, or even as light, pseudo-Nambu-Goldstone bosons. The latter, since they are coupled to colour, get a mass of the order of several hundred GeV, beyond the reach of current searches at the Tevatron. The same generic mechanism that suppresses flavour-changing processes suppresses leptoquark-mediated rare processes, making it conceivable that the many stringent constraints may be evaded. The leptoquarks couple predominantly to third-generation quarks and leptons, and the prospects for discovery at LHC appear to be good. As an illustration, a model based on the Pati-Salam symmetry is described, and its embedding in models with a larger symmetr...

  1. Web proxy auto discovery for the WLCG

    CERN Document Server

    Dykstra, D; Blumenfeld, B; De Salvo, A; Dewhurst, A; Verguilov, V

    2017-01-01

    All four of the LHC experiments depend on web proxies (that is, squids) at each grid site to support software distribution by the CernVM FileSystem (CVMFS). CMS and ATLAS also use web proxies for conditions data distributed through the Frontier Distributed Database caching system. ATLAS & CMS each have their own methods for their grid jobs to find out which web proxies to use for Frontier at each site, and CVMFS has a third method. Those diverse methods limit usability and flexibility, particularly for opportunistic use cases, where an experiment’s jobs are run at sites that do not primarily support that experiment. This paper describes a new Worldwide LHC Computing Grid (WLCG) system for discovering the addresses of web proxies. The system is based on an internet standard called Web Proxy Auto Discovery (WPAD). WPAD is in turn based on another standard called Proxy Auto Configuration (PAC). Both the Frontier and CVMFS clients support this standard. The input into the WLCG system comes from squids regis...

  2. The LHC is safe

    CERN Document Server

    CERN. Geneva; Alvarez-Gaumé, Luís

    2008-01-01

    Concerns have been expressed from time to time about the safety of new high-energy colliders, and the LHC has been no exception. The LHC Safety Assessment Group (LSAG)(*) was asked last year by the CERN management to review previous LHC safety analyses in light of additional experimental results and theoretical understanding. LSAG confirms, updates and extends previous conclusions that there is no basis for any conceivable threat from the LHC. Indeed, recent theoretical and experimental developments reinforce this conclusion. In this Colloquium, the basic arguments presented by LSAG will be reviewed. Cosmic rays of much higher effective centre-of-mass energies have been bombarding the Earth and other astronomical objects for billions of years, and their continued existence shows that the Earth faces no dangers from exotic objects such as hypothetical microscopic black holes that might be produced by the LHC - as discussed in a detailed paper by Giddings and Mangano(**). Measurements of strange particle produc...

  3. Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and $pA$ collisions

    CERN Document Server

    Accardi, Alberto; Botje, M.; Brodsky, S.J.; Cole, B.; Eskola, K.J.; Fai, George I.; Frankfurt, L.; Fries, R.J.; Geist, Walter M.; Guzey, V.; Honkanen, H.; Kolhinen, V.J.; Kovchegov, Yu.V.; McDermott, M.; Morsch, A.; Qiu, Jian-wei; Salgado, C.A.; Strikman, M.; Takai, H.; Tapprogge, S.; Vogt, R.; Zhang, X.f.

    2003-01-01

    This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

  4. LHC status report

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the great success of the first 3.5 TeV collisions in all four LHC experiments on 30 March, the focus of the LHC commissioning teams has turned to consolidating the beam injection and acceleration procedures.   During the last two weeks, the operators have adopted a cycle of beam commissioning studies by day and the preparation and delivery of collisions during the night shifts. The injection and acceleration processes for the beams are by now well established and almost all feedback systems, which are an essential ingredient for establishing reliable and safe machine operation, have been commissioned. Thanks to special current settings for the quadrupoles that are situated near the collision points, the LHC luminosity at high energy has been increased by a factor of 5 in three of the four experiments. Similar improvements are under way for the fourth experiment. The next steps include adjustments of the LHC machine protection and collimation devices, which will ensure 'stable beam' co...

  5. Constraining SUSY models with Fittino using measurements before, with and beyond the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Desch, Klaus; Uhlenbrock, Mathias; Wienemann, Peter [Bonn Univ. (Germany). Physikalisches Inst.

    2009-07-15

    We investigate the constraints on Supersymmetry (SUSY) arising from available precision measurements using a global fit approach.When interpreted within minimal supergravity (mSUGRA), the data provide significant constraints on the masses of supersymmetric particles (sparticles), which are predicted to be light enough for an early discovery at the Large Hadron Collider (LHC). We provide predicted mass spectra including, for the first time, full uncertainty bands. The most stringent constraint is from the measurement of the anomalous magnetic moment of the muon. Using the results of these fits, we investigate to which precision mSUGRA and more general MSSM parameters can be measured by the LHC experiments with three different integrated luminosities for a parameter point which approximately lies in the region preferred by current data. The impact of the already available measurements on these precisions, when combined with LHC data, is also studied. We develop a method to treat ambiguities arising from different interpretations of the data within one model and provide a way to differentiate between values of different digital parameters of a model (e. g. sign({mu}) within mSUGRA). Finally, we show how measurements at a linear collider with up to 1 TeV centre-of-mass energy will help to improve precision by an order of magnitude. (orig.)

  6. Impedance measurements and simulations for the LHC and HL-LHC injection protection collimator

    CERN Document Server

    AUTHOR|(CDS)2125995; Biancacci, Nicolò

    This thesis focuses on the study and the data analysis of the Injection Protection Collimator (also Injection Protection Target Dump or TDI), one of the Large Hadron Collider (LHC) collimators at CERN, in Geneva. The last chapters also deal with the Segmented TDI (TDIS), the TDI upgrade for High Luminosity-LHC (HL-LHC). Going more into details, measurements on the TDI - hexagonal Boron Nitride (TDI - hBN, installed in the LHC during run 2015) were carried out. Using the obtained results as an input, two derivations followed: one evaluating the layer resistivity and the other one for its thickness, in order to consider all the possible coating degradations that could occur. The whole range of data obtained from both the derivations was then fed to Impedance Wake 2D (IW2D), a code performing numerical simulations, to attain impedances. Finally, the resulting longitudinal impedance was compared to some measurements performed on the real TDIs, immediately after they were removed from the LHC. The TDI - Graphite, ...

  7. The LHC at level best

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    On 10 March, a team of CERN surveyors descended into the LHC tunnel. Their aim: to take measurements of the height of the LHC magnets to see how geological shifts might be affecting the machine and to take reference positions of the machine before the interconnects are opened.    CERN surveyors take levelling measurements of the LHC magnets during LS1. The LHC tunnel is renowned for its geological stability: set between layers of sandstone and molasse, it has allowed the alignment of the world’s largest accelerators to be within sub-millimetre precision. But even the most stable of tunnels can be affected by geological events. To ensure the precise alignment of the LHC, the CERN survey team performs regular measurements of the vertical position of the magnets (a process known as “levelling”). Over the past month, the team has been taking measurements of the LHC before the temperature of the magnets reaches 100 K, beyond which there may be some mechanic...

  8. The High Luminosity LHC Project

    Science.gov (United States)

    Rossi, Lucio

    The High Luminosity LHC is one of the major scientific project of the next decade. It aims at increasing the luminosity reach of LHC by a factor five for peak luminosity and a factor ten in integrated luminosity. The project, now fully approved and funded, will be finished in ten years and will prolong the life of LHC until 2035-2040. It implies deep modifications of the LHC for about 1.2 km around the high luminosity insertions of ATLAS and CMS and relies on new cutting edge technologies. We are developing new advanced superconducting magnets capable of reaching 12 T field; superconducting RF crab cavities capable to rotate the beams with great accuracy; 100 kA and hundred meter long superconducting links for removing the power converter out of the tunnel; new collimator concepts, etc... Beside the important physics goals, the High Luminosity LHC project is an ideal test bed for new technologies for the next hadron collider for the post-LHC era.

  9. Higgs boson phenomenology at the LHC

    International Nuclear Information System (INIS)

    Kirchner, Sebastian

    2016-01-01

    The outstanding performance of the Large Hadron Collider (LHC) led to the discovery of the Higgs boson in 2012. The paramount endeavour after this discovery is the examination of the Higgs-boson properties, amongst others the determination of its CP quantum number and total decay width. The experimental analysis of both properties requires precise theoretical input within the Standard Model of particle physics. Theoretical methods and predictions at next-to-leading-order (NLO) in perturbative Quantum Chromodynamics (QCD), addressing the CP nature and decay width of the Higgs boson, are presented in this thesis. The thesis is split in two parts: The first part addresses the Caola-Melnikov method, which is utilised to constrain the Higgs width that is experimentally not directly measurable. The method relies on cross section measurements on and far off the Higgs boson peak. Two-loop corrections via a heavy top quark to the gluon-gluon initialised Z boson pair-production are examined as an expansion about the heavy-top limit combined with a conformal mapping and Pade approximants. The impact of the full NLO QCD corrections to the signal and background cross sections, relevant for bounding the Higgs width, is investigated. The second part of this thesis examines how precisely the CP nature of the Higgs boson can be unravelled in its decay to tau lepton pairs. All subsequent major charged-prong decays of the tau leptons are included.The impact parameter method is utilised and allows to extract the CP-mixing angle of the Higgs boson from the distribution of a signed angle. NLO QCD predictions for the signal process as well as the Drell-Yan background, including a Monte Carlo simulation of measurement uncertainties, are computed. Energy and angular correlations of the charged prongs are analysed and used to suppress the Drell-Yan background contribution. In a second step, the sensitivity to the CP-mixing angle is increased by combining the impact parameter method with the

  10. LHC Commissioning and First Operation

    OpenAIRE

    Myers, S

    2010-01-01

    A description is given of the repair of the LHC after the accident of September 2008. The LHC hardware and beam commissioning and initial operation are reviewed both in terms of beam and hardware performance. The implemented machine protection measures and their impact on LHC operation are presented.

  11. Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade

    International Nuclear Information System (INIS)

    Nikiforou, Nikiforos

    2013-06-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry as well as hadronic calorimetry in the end-caps. After installation in 2004-2006, the calorimeters were extensively commissioned over the three-year period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, approximately 27 fb -1 of data have been collected at an unprecedented center of mass energy. During all these stages, the calorimeter and its electronics have been operating almost optimally, with a performance very close to specifications. This paper covers all aspects of these first years of operation. The excellent performance achieved is especially presented in the context of the discovery of the elusive Higgs boson. The future plans to preserve this performance until the end of the LHC program are also presented. (authors)

  12. Support for the LHC experiments

    CERN Document Server

    Butin, François; Gastal, M; Lacarrère, D; Macina, D; Perrot, A L; Tsesmelis, E; Wilhelmsson, M; CERN. Geneva. TS Department

    2008-01-01

    Experimental Area Teams have been put in place and charged with the general co-ordination and management of the LHC experimental areas and of the zones in the LHC tunnel hosting near-beam detectors of the experiments. This organization is responsible for the in situ co-ordination of work with the aim of providing a structure that enables the experiment collaborations and accelerator groups to carry out their work effectively and safely. This presentation will review some key elements in the support given to the LHC experimental areas and, given the track record and successful implementation during the LHC installation and commissioning phase, will argue that such an organization structure will be required also for the period of LHC exploitation for physics.

  13. Data-driven model-independent searches for long-lived particles at the LHC

    Science.gov (United States)

    Coccaro, Andrea; Curtin, David; Lubatti, H. J.; Russell, Heather; Shelton, Jessie

    2016-12-01

    Neutral long-lived particles (LLPs) are highly motivated by many beyond the Standard Model scenarios, such as theories of supersymmetry, baryogenesis, and neutral naturalness, and present both tremendous discovery opportunities and experimental challenges for the LHC. A major bottleneck for current LLP searches is the prediction of Standard Model backgrounds, which are often impossible to simulate accurately. In this paper, we propose a general strategy for obtaining differential, data-driven background estimates in LLP searches, thereby notably extending the range of LLP masses and lifetimes that can be discovered at the LHC. We focus on LLPs decaying in the ATLAS muon system, where triggers providing both signal and control samples are available at LHC run 2. While many existing searches require two displaced decays, a detailed knowledge of backgrounds will allow for very inclusive searches that require just one detected LLP decay. As we demonstrate for the h →X X signal model of LLP pair production in exotic Higgs decays, this results in dramatic sensitivity improvements for proper lifetimes ≳10 m . In theories of neutral naturalness, this extends reach to glueball masses far below the b ¯b threshold. Our strategy readily generalizes to other signal models and other detector subsystems. This framework therefore lends itself to the development of a systematic, model-independent LLP search program, in analogy to the highly successful simplified-model framework of prompt searches.

  14. Physics Validation of the LHC Software

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The LHC Software will be confronted to unprecedented challenges as soon as the LHC will turn on. We summarize the main Software requirements coming from the LHC detectors, triggers and physics, and we discuss several examples of Software components developed by the experiments and the LCG project (simulation, reconstruction, etc.), their validation, and their adequacy for LHC physics.

  15. Discovery Mondays: 'Sensors, or the art of measuring limits'

    CERN Document Server

    2006-01-01

    The gigantic LHC machine and experiments will be teeming with minuscule sensors like this one, capable of measuring the tiniest of phenomena. In their study of the infinitesimally small, CERN's physicists, engineers and technicians work at the highest levels of precision. To ensure maximum performance, the most sensitive accelerator and detector components have to be positioned with razor-sharp precision. Detector components, for instance, sometimes need to be aligned to the nearest thousandth of a millimetre! The positioning of the LHC beam is another crucial operation requiring similarly phenomenal precision. Come to the next Discovery Monday and see how different types of sensors are used to achieve the required degrees of precision. The Hydrostatic Levelling System (HLS), for instance, relies on the same principle of communicating vessels that was already employed in antiquity for the construction of aqueducts, bridges and other edifices. You will discover the instrumentation that makes it possible to ...

  16. The baton passes to the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Held in the picturesque mountain setting of La Thuile in the Italian Alps, the international conference “Rencontres de Moriond” showed how the baton of discovery in the field of high-energy physics is definitely passing to the LHC experiments. In the well-known spirit of Moriond, the conference was an important platform for young students to present their latest results. The Higgs boson might well be within reach this year and the jet-quenching phenomenon might reveal new things soon…   New physics discussed over the Italian Alps during the "Les rencontres de Moriond" conference.  (Photographer: Paul Gerritsen. Adapted by Katarina Anthony) Known by physicists as one of the most important winter conferences, “Les rencontres de Moriond” are actually a series of conferences spread over two weeks covering the main themes of electroweak interactions, QCD and high-energy interactions, cosmology, gravitation, astropar...

  17. The LHC

    CERN Multimedia

    2002-01-01

    The LHC will use the latest technologies on an enormous scale. 8000 superconducting magnets will keep the beams on track. The entire 27 km ring will be cooled by 700 000 litres of liquid helium to a temperature of -271 degrees Celsius , making the LHC the world's largest superconducting installation. Conventional superconducting wire will form the magnet coils, while high-temperature superconductors will carry a total of 2 300 000 amperes from the power supplies into the magnet cryostat

  18. Physics possibilities at LHC/SSC

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1991-01-01

    This document reviews some recent work on physics simulations for SSC/LHC. Included are reviews of some of the recent developments in physics simulations for the SSC/LHC and comments upon the requirements that are placed upon detectors by the need to extract specific physics signatures. The material in the various EOI/LOI documents submitted to the SCC Laboratory and the work done at the Aachen LHC workshop are discussed. In the following discussion 1 SSC (LHC) year corresponds to an integrated luminosity of 10 (100) fb -1 . 41 refs., 14 figs

  19. Operational beams for the LHC

    CERN Document Server

    Papaphilippou, Y.; Rumolo, G.; Manglunki, D.

    2014-01-01

    The variety of beams, needed to set-up in the injectors as requested in the LHC, are reviewed, in terms of priority but also performance expectations and reach during 2015. This includes the single bunch beams for machine commissioning and measurements (probe, Indiv) but also the standard physics beams with 50 ns and 25 ns bunch spacing and their high brightness variants using the Bunch Compression Merging and Splitting (BCMS) scheme. The required parameters and target performance of special beams like the doublet for electron cloud enhancement and the more exotic 8b$\\oplus$4e beam, compatible with some post-scrubbing scenarios are also described. The progress and plans for the LHC ion production beams during 2014-2015 are detailed. Highlights on the current progress of the setting up of the various beams are finally presented with special emphasis on potential performance issues across the proton and ion injector chain.

  20. Electroweak Physics at the LHC

    CERN Document Server

    Sommer, Philip; The ATLAS collaboration

    2018-01-01

    With the large integrated luminosities recorded at the LHC and the excellent understanding of the LHC detectors, it is possible to measure electroweak observables to the highest precision. A review of the measurement of the $W$ boson mass by the ATLAS Collaboration as well as a new measurement of the electroweak mixing angle with the CMS detector are presented. Special emphasis is put on a discussion of the modelling uncertainties and the potential of the latest low-$\\mu$ runs, recorded at the end of 2017 by both collaboration. In addition, the latest measurements of multi-boson final states as well as the electroweak production of single gauge bosons at 13 TeV are summarised. The study of these processes can be used to constrain anomalous gauge couplings in an effective field theory approach, allowing to bridge tests of the electroweak sector of the Standard Models also to Higgs boson production.

  1. MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle

    International Nuclear Information System (INIS)

    Carena, M.; Heinemeyer, S.; Staal, O.; Wagner, C.E.M.; Weiglein, G.

    2013-01-01

    A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). We propose new low-energy MSSM benchmark scenarios that, over a wide parameter range, are compatible with the mass and production rates of the observed signal. These scenarios also exhibit interesting phenomenology for the MSSM Higgs sector. We propose a slightly updated version of the well-known m h max scenario, and a modified scenario (m h mod ), where the light CP-even Higgs boson can be interpreted as the LHC signal in large parts of the M A -tan β plane. Furthermore, we define a light stop scenario that leads to a suppression of the lightest CP-even Higgs gluon fusion rate, and a light stau scenario with an enhanced decay rate of h→γγ at large tan β. We also suggest a τ-phobic Higgs scenario in which the lightest Higgs can have suppressed couplings to down-type fermions. We propose to supplement the specified value of the μ parameter in some of these scenarios with additional values of both signs. This has a significant impact on the interpretation of searches for the non-SM-like MSSM Higgs bosons. We also discuss the sensitivity of the searches to heavy Higgs decays into light charginos and neutralinos, and to decays of the form H→hh. Finally, in addition to all the other scenarios where the lightest CP-even Higgs is interpreted as the LHC signal, we propose a low-M H scenario, where instead the heavy CP-even Higgs boson corresponds to the new state around 125.5 GeV. (orig.)

  2. Fully transparent LHC

    CERN Multimedia

    2008-01-01

    Thanks to the first real signals received from the LHC while in operation before the incident, the experiments are now set to make the best use of the data they have collected. Report from the LHCC open session.The September open session of the LHCC (LHC Experiments Committee) came just a few days after the incident that occurred at the LHC. The packed auditorium was a testament to the huge interest raised by Lyn Evans’ talk about the status of the machine and the plans for the future. After being told that the actual consequences of the incident will be clear only once Sector 3-4 has been warmed up, the audience focussed on the reports from the experiments. For the first time, the reports showed performance results of the various detectors with particles coming from the machine and not just from cosmic rays or tests and simulations. "The first days of LHC beam exceeded all expectations and the experiments made extensive and rapid use of the data they collected", says ...

  3. The whole world behind the LHC

    CERN Multimedia

    2001-01-01

    The LHC Board, which includes representatives of the non-Member State organisations directly involved in the construction of the LHC accelerator and representatives of CERN, held its fourth meeting on Monday 21 May 2001. From left to right: 1st row, A. Yamamoto (KEK, Japan), P. Pfund (FNAL, United States), L. Maiani (CERN Director-General), L. Evans (LHC Project Leader), F. Dupont (IN2P3, France), D.D. Bhawalkar (CAT, India) ; 2nd row, P. Brossier (CEA, France), N. Tyurin (IHEP, Russia), A. Skrinsky (BINP, Russia), A. Astbury (TRIUMF, Canada), P. Lebrun (LHC Division Leader, CERN); 3rd row, T. Taylor (Deputy Division Leader LHC Division, CERN), A. Shotter (TRIUMF, Canada), P. Bryant (LHC, CERN), K. Hübner (Director for Accelerators, CERN), J. van der Boon (Director of Administration, CERN). Although Canada, the United States, India, Japan and the Russian Federation are not members of CERN, they are all playing an active part in the construction of the LHC through important technical and financial co...

  4. LHC Accelerator Fault Tracker - First Experience

    CERN Document Server

    Apollonio, Andrea; Roderick, Chris; Schmidt, Ruediger; Todd, Benjamin; Wollmann, Daniel

    2016-01-01

    Availability is one of the key performance indicators of LHC operation, being directly correlated with integrated luminosity production. An effective tool for availability tracking is a necessity to ensure a coherent capture of fault information and relevant dependencies on operational modes and beam parameters. At the beginning of LHC Run 2 in 2015, the Accelerator Fault Tracking (AFT) tool was deployed at CERN to track faults or events affecting LHC operation. Information derived from the AFT is crucial for the identification of areas to improve LHC availability, and hence LHC physics production. For the 2015 run, the AFT has been used by members of the CERN Availability Working Group, LHC Machine coordinators and equipment owners to identify the main contributors to downtime and to understand the evolution of LHC availability throughout the year. In this paper the 2015 experience with the AFT for availability tracking is summarised and an overview of the first results as well as an outlook to future develo...

  5. LHC Olympics flex physicists' brains

    CERN Multimedia

    2006-01-01

    Physicists from around the world met at CERN to strengthen their data-deciphering skills at the second LHC Olympics workshop. Physicists gather for the second LHC Olympics workshop. Coinciding with the kick-off of the winter Olympics in Turin, more than 70 physicists gathered at CERN from across the globe for the second LHC Olympics workshop on 9-10 February. Their challenge, however, involved brains rather than brawn. As the switch-on date for the LHC draws near, scientists excited by the project want to test and improve their ability to decipher the unprecedented amount of data that the world's biggest and most powerful particle accelerator is expected to generate. The LHC Olympics is a coordinated effort to do just that, minus the gold, silver and bronze of the athletics competition. 'In some ways, the LHC is not a precision instrument. It gives you the information that something is there but it's hard to untangle and interpret what it is,' said University of Michigan physicist Gordy Kane, who organiz...

  6. Last cast for the LHC

    CERN Multimedia

    2005-01-01

    The first major contract signed for the LHC is drawing to a close. Belgian firm Cockerill Sambre (a member of the Arcelor Group) has just completed production of 50,000 tonnes of steel sheets for the accelerator's superconducting magnet yokes, in what has proved to be an exemplary partnership with CERN. Philippe Lebrun, Head of the AT Department, Lyn Evans, LHC Project Leader, and Lucio Rossi, Head of the AT-MAS Group, in front of the last batch of steel for the LHC at Cockerill Sambre. It was a bright red-letter day at the end of May, when Belgian firm Cockerill Sambre of the Arcelor Group marked the completion of one of the largest contracts for the LHC machine by casting the last batch of steel sheets for the LHC superconducting magnet yokes in the presence of LHC Project Leader Lyn Evans, AT Department Head Philippe Lebrun, Magnets and Superconductors (AT-MAS) Group Leader Lucio Rossi and Head of the AT-MAS Group's components centre Francesco Bertinelli. The yokes constitute approximately 80% of the acc...

  7. The LHC on the table

    CERN Multimedia

    2002-01-01

    How many dipoles have been manufactured so far? How many have been delivered? To find out, you can now consult the LHC Progress Dashboard on the web. The dashboard tracks progress with regard to manufacture and delivery of thirty different types of LHC components. Do you want to know everything about progress on LHC construction? The LHC's engineers have recently acquired a very useful tracking tool precisely for that purpose. This is the LHC Progress Dashboard which makes it possible to track work progress in graph form. In the interests of transparency, the LHC Project Management has decided to make it accessible to the public on the web. You can now consult normalized graphs for each of the thirty different types of components that form part of machine construction, such as the cold masses of the dipole magnets, the vacuum chambers and the octupoles, etc. The graphs show: in blue: the contractual delivery curves, i.e. the delivery schedules to which the suppliers have committed themselves in their contra...

  8. LHC magnets

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Preparations for the LHC proton collider to be built in CERN's LEP tunnel continue to make good progress. In particular development work for the high field superconducting magnets to guide the almost 8 TeVproton beams through the 'tight' curve of the 27-kilometre ring are proceeding well, while the magnet designs and lattice configuration are evolving in the light of ongoing experience. At the Evian LHC Experiments meeting, this progress was covered by Giorgio Brianti

  9. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  10. Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point.

    Science.gov (United States)

    Rodrigues, Tiago

    2017-11-15

    Natural products (NPs) present a privileged source of inspiration for chemical probe and drug design. Despite the biological pre-validation of the underlying molecular architectures and their relevance in drug discovery, the poor accessibility to NPs, complexity of the synthetic routes and scarce knowledge of their macromolecular counterparts in phenotypic screens still hinder their broader exploration. Cheminformatics algorithms now provide a powerful means of circumventing the abovementioned challenges and unlocking the full potential of NPs in a drug discovery context. Herein, I discuss recent advances in the computer-assisted design of NP mimics and how artificial intelligence may accelerate future NP-inspired molecular medicine.

  11. LHC Supertable

    CERN Document Server

    Pereira, M; Lamont, M; Muller, GJ; Teixeira, D D; McCrory, ES

    2011-01-01

    LHC operations generate enormous amounts of data. This data is being stored in many different databases. Hence, it is difficult for operators, physicists, engineers and management to have a clear view on the overall accelerator performance. Until recently the logging database, through its desktop interface TIMBER, was the only way of retrieving information on a fill-by-fill basis. The LHC Supertable has been developed to provide a summary of key LHC performance parameters in a clear, consistent and comprehensive format. The columns in this table represent main parameters that describe the collider’s operation such as luminosity, beam intensity, emittance, etc. The data is organized in a tabular fill-by-fill manner with different levels of detail. Particular emphasis was placed on data sharing by making data available in various open formats. Typically the contents are calculated for periods of time that map to the accelerator’s states or beam modes such as Injection, Stable Beams, etc. Data retrieval and ...

  12. LHC Report: Beams are back in the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The LHC has shaken itself awake after the winter break, and, as the snow melts on the lower slopes, the temperature in the magnets has dropped to a chilly 1.9 K once more.   Following the cool-down, the last few weeks have seen an intense few tests of the magnets, power supplies and associated protection systems. These tests, referred to as hardware commissioning, have been completed in record time. At the same time the other accelerator systems have been put through the preparatory machine checkout. In parallel, the injectors (LINAC2, Booster, PS and SPS) have also come out of the technical stop in order to prepare to deliver beam to the LHC very early in the season. Of particular note here was the remarkably seamless transition to POPS, the PS's new main power supply system. All this work culminated in the LHC taking beam again for the first time in 2011 on Saturday, 19 February. The careful preparation paid off, with circulating beams being rapidly re-established. There then followed a programme ...

  13. The physics of ultraperipheral collisions at the LHC

    International Nuclear Information System (INIS)

    Baltz, A.J.; Baur, G.; D'Enterria, D.; Frankfurt, L.; Gelis, F.; Guzey, V.; Hencken, K.; Kharlov, Yu.; Klasen, M.; Klein, S.R.; Nikulin, V.; Nystrand, J.; Pshenichnov, I.A.; Sadovsky, S.; Scapparone, E.; Seger, J.; Strikman, M.; Tverskoy, M.; Vogt, R.

    2008-01-01

    We discuss the physics of large impact parameter interactions at the LHC: ultraperipheral collisions (UPCs). The dominant processes in UPCs are photon-nucleon (nucleus) interactions. The current LHC detector configurations can explore hard phenomena at small x with nuclei and nucleons at photon-nucleon center-of-mass energies above 1 TeV, extending the x range of HERA by a factor of ten. In particular, it will be possible to probe diffractive and inclusive parton densities in nuclei using several processes. The interaction of small dipoles with protons and nuclei can be investigated in elastic and quasi-elastic J/ψ and Υ production as well as in high tρ 0 production accompanied by a rapidity gap. Several of these phenomena provide clean signatures of the onset of the new high gluon density QCD regime. The LHC is in the kinematic range where nonlinear effects are several times larger than those at HERA. Two-photon processes in UPCs are also studied. In addition, while UPCs play a role in limiting the maximum beam luminosity, they can also be used as a luminosity monitor by measuring mutual electromagnetic dissociation of the beam nuclei. We also review similar studies at HERA and RHIC as well as describe the potential use of the LHC detectors for UPC measurements

  14. SUSY Higgs at the LHC large stop mixing effects and associated production

    CERN Document Server

    Bélanger, G; Sridhar, K

    2000-01-01

    We revisit the effect of the large stop mixing on the decay and production of the lightest SUSY Higgs at the LHC. We stress that whenever the inclusive 2-photon signature is substantially reduced, associated production, $Wh$ and $t\\bar t h$, with the subsequent decay of the Higgs into photons is enhanced and becomes an even more important discovery channel. We also point out that these reductions in the inclusive channel do not occur for the smallest Higgs mass where the significance is known to be lowest. We show that in such scenarios the Higgs can be produced in the decay of the heaviest stop. For not too heavy masses of the pseudo-scalar Higgs where the inclusive channel is even further reduced, we show that large stop mixing also allows the production of the pseudo-scalar Higgs through stop decays. These large mixing scenarios therefore offer much better prospects than previously thought. As a by-product we have recalculated stop1-stop1-h production at the LHC and give a first evaluation of stop1-stop1-Z...

  15. Higgs Spin Determination and Unitarity of Vector-boson Scattering at the LHC

    CERN Document Server

    Frank, Jessica

    After the discovery of a new particle at the Large Hadron Collider (LHC), it is crucial to definitely verify or disprove whether this new 125 − 126 GeV resonance is the Higgs boson of the Standard Model (SM). Thus, its features, including its spin, have to be determined. In order to distinguish the two most likely spin hypotheses, spin-0 or spin-2, the phenomenology of light spin-2 resonances produced in different gluon-fusion and vectorboson-fusion processes at the LHC is studied. Starting from an effective model for the interaction of a spin-2 particle with SM gauge bosons, cross sections and differential distributions are calculated within the Monte Carlo program Vbfnlo. Whereas with specific model parameters, such a spin-2 resonance can mimic rates and transverse-momentum distributions of a SM Higgs boson in the main decay channels γγ, WW and ZZ, several distributions allow to separate spin-2 from spin-0, almost independently of model parameters. Since the SM Higgs boson ensures the unitarity of the S...

  16. Electronics for LHC experiments

    International Nuclear Information System (INIS)

    Bourgeois, Francois

    1995-01-01

    Full text: A major effort is being mounted to prepare the way handling the high interaction rates expected from CERN's new LHC proton-proton collider (see, for example, November, page 6). September saw the First Workshop on Electronics for LHC Experiments, organized by Lisbon's Particle Physics Instrumentation Laboratory (LIP) on behalf of CERN's LHC Electronics Review Board (LERB - March, page 2). Its purpose was not only for the LERB to have a thorough review of ongoing activities, but also to promote cross fertilization in the engineering community involved in electronics design for LHC experiments. The Workshop gathered 187 physicists and engineers from 20 countries including USA and Japan. The meeting comprised six sessions and 82 talks, with special focus on radiation-hard microelectronic processes, electronics for tracking, calorimetry and muon detectors, optoelectronics, trigger and data acquisition systems. Each topic was introduced by an invited speaker who reviewed the requirements set by the particular detector technology at LHC. At the end of each session, panel discussions were chaired by each invited speaker. Representatives from four major integrated circuit manufacturers covered advanced radiation hard processes. Two talks highlighted the importance of obsolescence and quality systems in the long-lived and demanding environment of LHC. The Workshop identified areas and encouraged efforts for rationalization and common developments within and between the different detector groups. As a result, it will also help ensure the reliability and the long term maintainability of installed equipment. The proceedings of the Workshop are available from LIP Lisbon*. The LERB Workshop on Electronics for LHC Experiments will become a regular event, with the second taking place in Hungary, by Lake Balaton, from 23-27 September 1996. The Hungarian institutes KFKIRMKI have taken up the challenge of being as successful as LIP Lisbon in the organization

  17. The LHC access system LACS and LASS

    CERN Document Server

    Ninin, P

    2005-01-01

    The LHC complex is divided into a number of zones with different levels of access controls.Inside the interlocked areas, the personnel protection is ensured by the LHC Access System.The system is made of two parts:the LHC Access Safety System and the LHC Access Control System. During machine operation,the LHC Access Safety System ensures the collective protection of the personnel against the radiation hazards arising from the operation of the accelerator by interlocking the LHC key safety elements. When the beams are off, the LHC Access Control System regulates the access to the accelerator and its many subsystems.It allows a remote, local or automatic operation of the access control equipment which verifies and identifies all users entering the controlled areas.The global architecture of the LHC Access System is now designed and is being validated to ensure that it meets the safety requirements for operation of the LHC.A pilot installation will be tested in the summer 2005 to validate the concept with the us...

  18. The LHC Tier1 at PIC: Experience from first LHC run

    International Nuclear Information System (INIS)

    Flix, J.; Perez-Calero Yzquierdo, A.; Accion, E.; Acin, V.; Acosta, C.; Bernabeu, G.; Bria, A.; Casals, J.; Caubet, M.; Cruz, R.; Delfino, M.; Espinal, X.; Lanciotti, E.; Lopez, F.; Martinez, F.; Mendez, V.; Merino, G.; Pacheco, A.; Planas, E.; Porto, M. C.; Rodriguez, B.; Sedov, A.

    2013-01-01

    This paper summarizes the operational experience of the Tier1 computer center at Port d'Informacio Cientifica (PIC) supporting the commissioning and first run (Run1) of the Large Hadron Collider (LHC). The evolution of the experiment computing models resulting from the higher amounts of data expected after there start of the LHC are also described. (authors)

  19. 2 TeV walking technirho at LHC?

    Directory of Open Access Journals (Sweden)

    Hidenori S. Fukano

    2015-11-01

    Full Text Available The ATLAS collaboration has recently reported an excess of about 2.5 σ global significance at around 2 TeV in the diboson channel with the boson-tagged fat dijets, which may imply a new resonance beyond the standard model. We provide a possible explanation of the excess as the isospin-triplet technivector mesons (technirhos, denoted as ρΠ±,3 of the walking technicolor in the case of the one-family model as a benchmark. As the effective theory for the walking technicolor at the scales relevant to the LHC experiment, we take a scale-invariant version of the hidden local symmetry model so constructed as to accommodate technipions, technivector mesons, and the technidilaton in such a way that the model respects spontaneously broken chiral and scale symmetries of the underlying walking technicolor. In particular, the technidilaton, a (pseudo Nambu–Goldstone boson of the (approximate scale symmetry predicted in the walking technicolor, has been shown to be successfully identified with the 125 GeV Higgs. Currently available LHC limits on those technihadrons are used to fix the couplings of technivector mesons to the standard-model fermions and weak gauge bosons. We find that the technirhos are mainly produced through the Drell–Yan process and predominantly decay to the dibosons, which accounts for the currently reported excess at around 2 TeV. The consistency with the electroweak precision test and other possible discovery channels of the 2 TeV technirhos are also addressed.

  20. Reliability of the Quench Protection System for the LHC Superconducting Elements

    OpenAIRE

    Vergara-Fernández, A; Rodríguez-Mateos, F

    2003-01-01

    The huge energy stored in the Large Hadron Collider (LHC) could potentially cause severe damage when the superconducting state disappears (quench) if precautions are not taken. Most of the superconducting elements in this accelerator require protection in case of resistive transition. The reliability of the Quench Protection System will have a very important impact on the overall LHC performance. Existing high energy accelerators were conceived as prototypes whose main objective was not the e...

  1. Energy Deposition in Adjacent LHC Superconducting Magnets from Beam Loss at LHC Transfer Line Collimators

    CERN Document Server

    Beavan, S; Kain, V

    2006-01-01

    Injection intensities for the LHC are over an order of magnitude above the damage threshold. The collimation system in the two transfer lines is designed to dilute the beam sufficiently to avoid damage in case of accidental beam loss or mis-steered beam. To maximise the protection for the LHC most of the collimators are located in the last 300 m upstream of the injection point where the transfer lines approach the LHC machine. To study the issue of possible quenches following beam loss at the collimators part of the collimation section in one of the lines, TI 8, together with the adjacent part of the LHC has been modeled in FLUKA. The simulated energy deposition in the LHC for worst-case accidental losses and as well as for losses expected during a normal filling is presented.

  2. submitter LHC experiments

    CERN Document Server

    Tanaka, Shuji

    2001-01-01

    Large Hadron Collider (LHC) is under construction at the CERN Laboratory in Switzerland. Four experiments (ATLAS, CMS, LHCb, ALICE) will try to study the new physics by LHC from 2006. Its goal to explore the fundamental nature of matter and the basic forces. The PDF file of the transparency is located on http://www-atlas.kek.jp/sub/documents/lepsymp-stanaka.pdf.

  3. LHC? Of course we’ve heard of the LHC!

    CERN Multimedia

    2009-01-01

    Well, more or less. After its first outing in Meyrin (see last Bulletin issue), our street poll hits the streets of Divonne-les-Bains and the corridors of the University of Geneva. While many have heard of the LHC, the raison d’être of this "scientific whatsit" often remains a mystery.On first questioning, the "man-in-the-street" always pleads ignorance. "Lausanne Hockey Club?" The acronym LHC is not yet imprinted on people’s minds. "Erm, Left-Handed thingamajig?" But as soon as we mention the word "CERN", the accelerator pops straight into people’s minds. Variously referred to as "the circle" or "the ring", it makes you wonder whether people would have been so aware of the LHC if it had been shaped like a square. Size is another thing people remember: "It’s the world’s biggest. Up to now…" As for its purpose, well that’s another kettle of fish. &...

  4. Electroweak Physics at the LHC

    CERN Document Server

    Sommer, Philip; The ATLAS collaboration

    2018-01-01

    With the high integrated luminosities recorded at the LHC and the very good understanding of the LHC detectors, it is possible to measure electroweak observables to the highest precision. In this talk, we review the measurement of the W boson mass by the ATLAS Collaboration as well as the new measurement of the electroweak mixing angle with the CMS detector. Special focus is drawn on a discussion of the modeling uncertainties and the physics potential of the latest low-mu runs, recorded at the end of 2017 by both collaboration. In addition, we will present the latest measurements of multi-boson final states as well as the electroweak production of single gauge bosons at 13 TeV. The study of these processes can be used to constrain anomalous gauge couplings in an effective field theory approach, allowing to bridge tests of the electroweak sector of the Standard Models also to the Higgs-boson production.

  5. LHC technical data goes mobile

    CERN Multimedia

    Jordan Juras

    2010-01-01

    The Computerized Maintenance Management System (CMMS), which has been in use at CERN for many years, has recently been enhanced with an innovative new feature for managing and exploiting existing information regarding the LHC: a system to read the barcodes on the LHC components and easily obtain data and information on the many thousands of items of equipment that make up the accelerator. The feature will eventually be made available for any other scientific instrumentation located at CERN.   Example of a magnet's barcode Systems like CERN's CMMS, which is based on an Enterprise Asset Management (EAM) system from Infor, are today standard practice in organizations managing large volumes of information about their facilities. However, the way in which CERN has adapted its system is rather unique: the CMMS not only manages the manufacturing, installation, maintenance and disposal of the components of CERN’s infrastructure but now has the potential to provide equipment information interact...

  6. The LHC personnel safety system

    International Nuclear Information System (INIS)

    Ninin, P.; Valentini, F.; Ladzinski, T.

    2011-01-01

    Large particle physics installations such as the CERN Large Hadron Collider require specific Personnel Safety Systems (PSS) to protect the personnel against the radiological and industrial hazards. In order to fulfill the French regulation in matter of nuclear installations, the principles of IEC 61508 and IEC 61513 standard are used as a methodology framework to evaluate the criticality of the installation, to design and to implement the PSS.The LHC PSS deals with the implementation of all physical barriers, access controls and interlock devices around the 27 km of underground tunnel, service zones and experimental caverns of the LHC. The system shall guarantee the absence of personnel in the LHC controlled areas during the machine operations and, on the other hand, ensure the automatic accelerator shutdown in case of any safety condition violation, such as an intrusion during beam circulation. The LHC PSS has been conceived as two separate and independent systems: the LHC Access Control System (LACS) and the LHC Access Safety System (LASS). The LACS, using off the shelf technologies, realizes all physical barriers and regulates all accesses to the underground areas by identifying users and checking their authorizations.The LASS has been designed according to the principles of the IEC 61508 and 61513 standards, starting from a risk analysis conducted on the LHC facility equipped with a standard access control system. It consists in a set of safety functions realized by a dedicated fail-safe and redundant hardware guaranteed to be of SIL3 class. The integration of various technologies combining electronics, sensors, video and operational procedures adopted to establish an efficient personnel safety system for the CERN LHC accelerator is presented in this paper. (authors)

  7. LHC Collimators with Embedded Beam Position Monitors: a New Adbanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  8. LHC Collimators with Embedded Beam Position Monitors: A New Advanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M A

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  9. Luminosity Optimization for a Higher-Energy LHC

    CERN Document Server

    Dominguez, O

    2011-01-01

    A Higher-Energy Large Hadron Collider (HE-LHC) is an option to further push the energy frontier of particle physics beyond the present LHC. A beam energy of 16.5 TeV would require 20 T dipole magnets in the existing LHC tunnel, which should be compared with 7 TeV and 8.33 T for the nominal LHC. Since the synchrotron radiation power increases with the fourth power of the energy, radiation damping becomes significant for the HE-LHC. It calls for transverse and longitudinal emittance control vis-a-vis beam-beam interaction and Landau damping. The heat load from synchrotron radiation, gas scattering, and electron cloud also increases with respect to the LHC. In this paper we discuss the proposed HE-LHC beam parameters; the time evolution of luminosity, beam-beam tune shifts, and emittances during an HE-LHC store; the expected heat load; and luminosity optimization schemes for both round and flat beams.

  10. Searches for Dark Matter via Mono-W Production in Inert Doublet Model at the LHC

    Science.gov (United States)

    Wan, Neng; Li, Niu; Zhang, Bo; Yang, Huan; Zhao, Min-Fu; Song, Mao; Li, Gang; Guo, Jian-You

    2018-05-01

    The Inert Doublet Model (IDM) is one of the many beyond Standard Model scenarios with an extended scalar sector, which provide a suitable dark matter particle candidate. Dark matter associated visible particle production at high energy colliders provides a unique way to determine the microscopic properties of the dark matter particle. In this paper, we investigate that the mono-W + missing transverse energy production at the Large Hadron Collider (LHC), where W boson decay to a lepton and a neutrino. We perform the analysis for the signal of mono-W production in the IDM and the Standard Model (SM) backgrounds, and the optimized criteria employing suitable cuts are chosen in kinematic variables to maximize signal significance. We also investigate the discovery potential in several benchmark scenarios at the 14 TeV LHC. When the light Z2 odd scalar higgs of mass is about 65 GeV, charged Higgs is in the mass range from 120 GeV to 250 GeV, it provides the best possibility with a signal significance of about 3σ at an integrated luminosity of about 3000 fb‑1. Supported by the National Natural Science Foundation of China under Grant Nos. 11205003, 11305001, 11575002, the Key Research Foundation of Education Ministry of Anhui Province of China under Grant Nos. KJ2017A032, KJ2016A749, KJ2013A260, and Natural Science Foundation of West Anhui University under Grant No. WXZR201614

  11. Physics at LHC and beyond

    CERN Document Server

    2014-01-01

    The topics addressed during this Conference are as follows. ---An overview of the legacy results of the LHC experiments with 7 and 8 TeV data on Standard Model physics, Scalar sector and searches for New Physics. ---A discussion of the readiness of the CMS, ATLAS, and LHCb experiments for the forthcoming high-energy run and status of the detector upgrades ---A review of the most up-to-date theory outcome on cross-sections and uncertainties, phenomenology of the scalar sector, constraints and portals for new physics. ---The presentation of the improvements and of the expected sensibilities for the Run 2 of the LHC at 13 TeV and beyond. ---A comparison of the relative scientific merits of the future projects for hadron and e+e- colliders (HL-LHC, HE-LHC, ILC, CLIC, TLEP, VHE-LHC) towards precision measurements of the Scalar boson properties and of the Electroweak-Symmetry-Breaking parameters, and towards direct searches for New Physics.

  12. Augmenting collider searches and enhancing discovery potentials through stochastic jet grooming

    Science.gov (United States)

    Roy, Tuhin S.; Thalapillil, Arun M.

    2017-04-01

    The jet trimming procedure has been demonstrated to greatly improve event reconstruction in hadron collisions by mitigating contamination due initial state radiation, multiple interactions, and event pileup. Meanwhile, Qjets—a nondeterministic approach to tree-based jet substructure—has been shown to be a powerful technique in decreasing random statistical fluctuations, yielding significant effective luminosity improvements. This manifests through an improvement in the significance S /δ B , relative to conventional methods. Qjets also provides novel observables in many cases, like mass-volatility, that could be used to further discriminate between signal and background events. The statistical robustness and volatility observables, for tagging, are obtained simultaneously. We explore here a combination of the two techniques, and demonstrate that significant enhancements in discovery potentials may be obtained in nontrivial ways. We will illustrate this by considering a diboson resonance analysis as a case study, enabling us to interpolate between scenarios where the gains are purely due to statistical robustness and scenarios where the gains are also reinforced by volatility variable discriminants. The former, for instance, is applicable to digluon/diquark resonances, while the latter will be of relevance to di -W±/di -Z0 resonances, where the boosted vector bosons are decaying hadronically and have an intrinsic mass scale attached to them. We argue that one can enhance signal significance and discovery potentials markedly through stochastic grooming, and help augment studies at the Large Hadron Collider and future hadron colliders.

  13. Searching for doubly charged vector bileptons in the golden channel at the LHC

    International Nuclear Information System (INIS)

    Meirose, B.; Nepomuceno, A. A.

    2011-01-01

    In this paper we investigate the LHC potential for discovering doubly charged vector bileptons considering the measurable process p, p→e ± e ± μ ± μ ± X. We perform the study using four different bilepton masses and three different exotics quark masses. Minimal LHC integrated luminosities needed for discovering and for setting limits on bilepton masses are obtained for both 7 and 14 TeV center-of-mass energies. We find that these spectacular signatures can be observed at the LHC in the next years up to a bilepton mass of order of 1 TeV.

  14. LHC Report: Restart preparations continue

    CERN Multimedia

    Katy Foraz for the LHC team and Julia Trummer for the RP Group

    2012-01-01

    Maintenance and consolidation work has been progressing well in both the machine and the experiments in preparation for the March restart.   A sample material is attached to the LHC (the white bag taped to the green line), to measure the radiation doses. Additional work was required around Point 5 due to the discovery and repair of a problem with the RF fingers at the connection of two beam vacuum chambers in CMS. The repair has been completed successfully and the sector is now under vacuum. In order to avoid rushing the delicate final operations required for closing the detector, the restart of the machine has been postponed by one week, from 7 March to 14 March. In the machine, the first cool-down to 1.9 K has started in several sectors ,and the cool-down of the whole machine is still planned to be finished by 21 February. The time window between 22 February and 14 March will be dedicated to powering and cryogenic tests. Since 12 December, the Radiation Protection (RP) group has been deep...

  15. Analysis of test-beam data with hybrid pixel detector prototypes for the Compact LInear Collider (CLIC) vertex detectors

    CERN Document Server

    Pequegnot, Anne-Laure

    2013-01-01

    The LHC is currently the most powerful accelerator in the world. This proton-proton collider is now stoppped to increase significantly its luminosity and energy, which would provide a larger discovery potential in 2014 and beyond. A high-energy $e^{+}e^{-}$ collider, such as CLIC, is an option to complement and to extend the LHC physics programme. Indeed, a lepton collider gives access to additional physics processes, beyond those observable at the LHC, and therefore provides new discovery potential. It can also provide complementary and/or more precise information about new physics uncovered at the LHC. Many essential features of a detector are required to deliver the full physics potential of this CLIC machine. In this present report, I present my work on the vertex detector R\\&D for this future linear collider, which aims at developping highly granular and ultra-thin position sensitive detection devices with very low power consumption and fast time-stamping capability. We tested here thin silicon pixel...

  16. Performance of the CMS precision electromagnetic calorimeter at LHC Run II and prospects for High-Luminosity LHC

    Science.gov (United States)

    Zhang, Zhicai

    2018-04-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high-resolution electron and photon energy measurements. Following the excellent performance achieved during LHC Run I at center-of-mass energies of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) is operating at the LHC with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run II has achieved unprecedented levels. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) has reached up to 40 interactions in 2016 and may increase further in 2017. These high pileup levels necessitate a retuning of the ECAL readout and trigger thresholds and reconstruction algorithms. In addition, the energy response of the detector must be precisely calibrated and monitored. We present new reconstruction algorithms and calibration strategies that were implemented to maintain the excellent performance of the CMS ECAL throughout Run II. We will show performance results from the 2015-2016 data taking periods and provide an outlook on the expected Run II performance in the years to come. Beyond the LHC, challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC) . We review the design and R&D studies for the CMS ECAL and present first test beam studies. Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates, and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. We present test beam results of hadron irradiated PbWO crystals up to fluences expected at the HL-LHC . We also report on the R&D for the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL-LHC.

  17. High Luminosity LHC Project Description

    CERN Document Server

    Apollinari, Giorgio; Rossi, Lucio

    2014-01-01

    The High Luminosity LHC (HL-LHC) is a novel configuration of the Large Hadron Collider, aiming at increasing the luminosity by a factor five or more above the nominal LHC design, to allow increasing the integrated luminosity, in the high luminosity experiments ATLAS and CMS, from the 300 fb-1 of the LHC original design up to 3000 fb-1 or more. This paper contains a short description of the main machine parameters and of the main equipment that need to be developed and installed. The preliminary cost evaluation and the time plan are presented, too. Finally, the international collaboration that is supporting the project, the governance and the project structure are discussed, too.

  18. LHC benchmark scenarios for the real Higgs singlet extension of the standard model

    International Nuclear Information System (INIS)

    Robens, Tania; Stefaniak, Tim

    2016-01-01

    We present benchmark scenarios for searches for an additional Higgs state in the real Higgs singlet extension of the Standard Model in Run 2 of the LHC. The scenarios are selected such that they fulfill all relevant current theoretical and experimental constraints, but can potentially be discovered at the current LHC run. We take into account the results presented in earlier work and update the experimental constraints from relevant LHC Higgs searches and signal rate measurements. The benchmark scenarios are given separately for the low-mass and high-mass region, i.e. the mass range where the additional Higgs state is lighter or heavier than the discovered Higgs state at around 125 GeV. They have also been presented in the framework of the LHC Higgs Cross Section Working Group. (orig.)

  19. New strategies of the LHC experiments to meet the computing requirements of the HL-LHC era

    CERN Document Server

    Adamova, Dagmar

    2017-01-01

    The performance of the Large Hadron Collider (LHC) during the ongoing Run 2 is above expectations both concerning the delivered luminosity and the LHC live time. This resulted in a volume of data much larger than originally anticipated. Based on the current data production levels and the structure of the LHC experiment computing models, the estimates of the data production rates and resource needs were re-evaluated for the era leading into the High Luminosity LHC (HLLHC), the Run 3 and Run 4 phases of LHC operation. It turns out that the raw data volume will grow 10 times by the HL-LHC era and the processing capacity needs will grow more than 60 times. While the growth of storage requirements might in principle be satisfied with a 20 per cent budget increase and technology advancements, there is a gap of a factor 6 to 10 between the needed and available computing resources. The threat of a lack of computing and storage resources was present already in the beginning of Run 2, but could still be mitigated, e.g....

  20. Beam Loss Monitoring for LHC Machine Protection

    Science.gov (United States)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  1. Top-philic Z ' forces at the LHC

    Science.gov (United States)

    Fox, Patrick J.; Low, Ian; Zhang, Yue

    2018-03-01

    Despite extensive searches for an additional neutral massive gauge boson at the LHC, a Z ' at the weak scale could still be present if its couplings to the first two generations of quarks are suppressed, in which case the production in hadron colliders relies on tree-level processes in association with heavy flavors or one-loop processes in association with a jet. We consider the low-energy effective theory of a top-philic Z ' and present possible UV completions. We clarify theoretical subtleties in evaluating the production of a top-philic Z ' at the LHC and examine carefully the treatment of ananomalous Z ' current in the low-energy effective theory. Recipes for properly computing the production rate in the Z ' + j channel are given. We discuss constraints from colliders and low-energy probes of new physics. As an application, we apply these considerations to models that use a weak-scale Z ' to explain possible violations of lepton universality in B meson decays, and show that the future running of a high luminosity LHC can potentially cover much of the remaining parameter space favored by this particular interpretation of the B physics anomaly.

  2. Precision measurements, dark matter direct detection and LHC Higgs searches in a constrained NMSSM

    International Nuclear Information System (INIS)

    Bélanger, G.; Hugonie, C.; Pukhov, A.

    2009-01-01

    We reexamine the constrained version of the Next-to-Minimal Supersymmetric Standard Model with semi universal parameters at the GUT scale (CNMSSM). We include constraints from collider searches for Higgs and susy particles, upper bound on the relic density of dark matter, measurements of the muon anomalous magnetic moment and of B-physics observables as well as direct searches for dark matter. We then study the prospects for direct detection of dark matter in large scale detectors and comment on the prospects for discovery of heavy Higgs states at the LHC

  3. MSSM Higgs boson searches at the LHC. Benchmark scenarios after the discovery of a Higgs-like particle

    Energy Technology Data Exchange (ETDEWEB)

    Carena, M. [Fermilab, Batavia, IL (United States). Theoretical Physics Dept.; Chicago Univ., IL (United States). Enrico Fermi Inst.; Chicago Univ., IL (United States). Kavli Inst. for Cosmological Physics; Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, O. [Stockholm Univ. (Sweden). Dept. of Physics; Wagner, C.E.M. [Chicago Univ., IL (United States). Enrico Fermi Inst.; Chicago Univ., IL (United States). Kavli Inst. for Cosmological Physics; Argonne National Laboratory, Argonne, IL (United States). HEP Division; Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-02-15

    A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). We propose new low- energy MSSM benchmark scenarios that, over a wide parameter range, are compatible with the mass and production rates of the observed signal. These scenarios also exhibit interesting phenomenology for the MSSM Higgs sector. We propose a slightly updated version of the well-known m{sup max}{sub h} scenario, and a modified scenario (m{sup mod}{sub h}), where the light CP-even Higgs boson can be interpreted as the LHC signal in large parts of the M{sub A}-tan {beta} plane. Furthermore, we define a light stop scenario that leads to a suppression of the lightest CP-even Higgs gluon fusion rate, and a light stau scenario with an enhanced decay rate of h{yields}{gamma}{gamma} at large tan {beta}. We also suggest a {tau}-phobic Higgs scenario in which the lightest Higgs can have suppressed couplings to down-type fermions. We propose to supplement the specified value of the {mu} parameter in some of these scenarios with additional values of both signs. This has a significant impact on the interpretation of searches for the non SM-like MSSM Higgs bosons. We also discuss the sensitivity of the searches to heavy Higgs decays into light charginos and neutralinos, and to decays of the form H{yields}{gamma}{gamma}. Finally, in addition to all the other scenarios where the lightest CP-even Higgs is interpreted as the LHC signal, we propose a low-M{sub H} scenario, where instead the heavy CP-even Higgs boson corresponds to the new state around 125.5 GeV.

  4. Injection Protection Upgrade for the HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067108; Biancacci, Nicolo; Bracco, Chiara; Frasciello, Oscar; Gentini, Luca; Goddard, Brennan; Lechner, Anton; Maciariello, Fausto; Perillo Marcone, Antonio; Salvant, Benoit; Shetty, Nikhil Vittal; Steele, Genevieve; Velotti, Francesco; Zobov, Mikhail

    2015-01-01

    The injector complex of the LHC is undergoing important changes in the light of the LIU project to provide brighter beams to the LHC. For this reason and as part of the High Luminosity LHC project the injection protection system of the LHC will be upgraded in the Long Shutdown 2 (2018 - 2019) to be able to protect downstream elements against injection failures with the high brightness, high intensity HL-LHC beams. The upgraded LHC injection protection system will consist of a segmented injection protection absorber TDIS, and auxiliary collimators and masks. The layout modifications are described, and the machine element protection and absorber jaw robustness studies are presented for the new systems.

  5. Discovery Mondays "Particle collisions - searching for a needle in a haystack"

    CERN Multimedia

    2007-01-01

    Simulation of a collision in the ALICE detector.One of the great challenges facing the LHC experiments is how to find an interesting "needle" interaction in a "haystack" of data. The accelerator will generate up to 600 million proton collisions per second. Although the frequency of lead-ion collisions in the ALICE detector will be lower, ten times more data will be generated than in proton-proton collisions since each ion contains 82 protons and 126 neutrons. Each collision will produce, on average, 40,000 particles, so in the space of one month the experiment will potentially accumulate up to one petabyte (1015 bytes) of data! But the key question is how do you go about sorting, selecting and processing such colossal quantities of information? This challenge will be met by a state-of-the-art data acquisition, transmission, storage and processing chain. Come to the next Discovery Monday to find out about all the links in this ground-breaking chain. The event will be conducte...

  6. LHC: seven golden suppliers

    CERN Multimedia

    2005-01-01

    The fourth CERN Golden Hadron awards saw seven of the LHC's best suppliers receive recognition for the high quality of their work, compliance with delivery deadlines, flexibility and adaptability to the demanding working conditions of the project. The representatives of the seven companies which received awards during the Golden Hadron ceremony, standing with Lyn Evans, LHC Project Leader. 'The Golden Hadron awards are a symbol of our appreciation of not only the quality and timely delivery of components but also the collaborative and flexible way the firms have contributed to this very difficult project,' said Lyn Evans, head of the LHC project. The awards went to Kemppi-Kempower (Finland), Metso Powdermet (Finland), Transtechnik (Germany), Babcock Noell Nuclear (Germany), Iniziative Industriali (Italy), ZTS VVU Kosice (Slovakia), and Jehier (France). Babock Noell Nuclear (BNN) successfully produced one-third (416 cold dipole masses) of the LHC's superconducting dipole magnets, one of the most critical an...

  7. A table-top LHC

    CERN Multimedia

    Barbara Warmbein

    2011-01-01

    Many years ago, when ATLAS was no more than a huge empty underground cavern and Russian artillery shell casings were being melted down to become part of the CMS calorimetry system, science photographer Peter Ginter started documenting the LHC’s progress. He was there when special convoys of equipment crossed the Jura at night, when cranes were lowering down detector slices and magnet coils were being wound in workshops. Some 18 years of LHC history have been documented by Ginter, and the result has just come out as a massive coffee table book full of double-page spreads of Ginter’s impressive images.   The new coffee table book, LHC: the Large Hadron Collider. Published by the Austrian publisher Edition Lammerhuber in cooperation with CERN and UNESCO Publishing, LHC: the Large Hadron Collider is an unusual piece in the company’s portfolio. As the publisher’s first science book, LHC: the Large Hadron Collider weighs close to five kilos and comes in a s...

  8. Looking back over the LHC Project

    CERN Multimedia

    2007-01-01

    Have you always wanted to delve into the history of the phenomenal LHC Project? Well, now you can. A chronological history of the LHC Project is now available on the web. It traces the Project's key milestones, from its first approval in 1994 to the most recent spectacular transport operations for detector components. The photographs used to illustrate these events are linked to the CDS database, allowing visitors who wish to do so the opportunity to download them or to search for photographs associated with subjects that are of interest to them. To explore the history of the LHC Project, go to the CERN Public Welcome page and click on 'LHC Milestones' or simply go directly to the following link: http://cern.ch/LHC-Milestones/

  9. Optical data transmission ASICs for the high-luminosity LHC (HL-LHC) experiments

    International Nuclear Information System (INIS)

    Li, X; Huang, G; Sun, X; Liu, G; Deng, B; Gong, D; Guo, D; Liu, C; Liu, T; Xiang, A C; Ye, J; Zhao, X; Chen, J; You, Y; He, M; Hou, S; Teng, P-K; Jin, G; Liang, H; Liang, F

    2014-01-01

    We present the design and test results of two optical data transmission ASICs for the High-Luminosity LHC (HL-LHC) experiments. These ASICs include a two-channel serializer (LOCs2) and a single-channel Vertical Cavity Surface Emitting Laser (VCSEL) driver (LOCld1V2). Both ASICs are fabricated in a commercial 0.25-μm Silicon-on-Sapphire (SoS) CMOS technology and operate at a data rate up to 8 Gbps per channel. The power consumption of LOCs2 and LOCld1V2 are 1.25 W and 0.27 W at 8-Gbps data rate, respectively. LOCld1V2 has been verified meeting the radiation-tolerance requirements for HL-LHC experiments

  10. Thermal analysis of the LHC injection kicker magnets

    Science.gov (United States)

    Vega, L.; Abánades, A.; Barnes, M. J.; Vlachodimitropoulos, V.; Weterings, W.

    2017-07-01

    The CERN Large Hadron Collider LHC is equipped with two fast pulsed magnet systems (MKIs) that inject particle beams coming from the injector chain. Operation with high intensity beams for many hours can lead to significant beam induced heating of the ferrite yokes of the MKIs. When the ferrite exceeds the Curie temperature of 125°C it loses its magnetic properties, preventing further injection until the ferrite cools down, potentially causing a delay of several hours. Hence important upgrades of the beam-screen were implemented after Run 1 of LHC. However, the High-Luminosity (HL) LHC will be operated with significantly higher intensity beams and hence additional measures are required to limit the ferrite temperature. These magnets operate under ultra-high vacuum conditions: convection is negligible and, as a result of low emissivity of the inside of the vacuum tanks, thermal radiation is limited. A detailed study of the thermal behaviour of these magnets is reported and compared with measurements. In addition several options to improve cooling of the ferrites are presented and analysed.

  11. Non-custodial warped extra dimensions at the LHC?

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Barry M.; Huber, Stephan J. [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom)

    2015-06-11

    With the prospect of improved Higgs measurements at the LHC and at proposed future colliders such as ILC, CLIC and TLEP we study the non-custodial Randall-Sundrum model with bulk SM fields and compare brane and bulk Higgs scenarios. The latter bear resemblance to the well studied type III two-Higgs-doublet models. We compute the electroweak precision observables and argue that incalculable contributions to these, in the form of higher dimensional operators, could have an impact on the T-parameter. This could potentially reduce the bound on the lowest Kaluza-Klein gauge boson masses to the 5 TeV range, making them detectable at the LHC. In a second part, we compute the misalignment between fermion masses and Yukawa couplings caused by vector-like Kaluza-Klein fermions in this setup. The misalignment of the top Yukawa can easily reach 10%, making it observable at the high-luminosity LHC. Corrections to the bottom and tau Yukawa couplings can be at the percent level and detectable at ILC, CLIC or TLEP.

  12. Large hadron collider (LHC) project quality assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-09-30

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

  13. Large hadron collider (LHC) project quality assurance plan

    International Nuclear Information System (INIS)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-01-01

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4)

  14. Search for new phenomena in jets plus missing transverse energy final states at the LHC

    CERN Document Server

    Caminal Armadans, Roger

    This Thesis presents a search for new phenomena in $pp$ collisions at $\\sqrt{s} = 8$ TeV recorded with the ATLAS detector at the LHC collider. The final state under investigation is defined by the presence of a very energetic jet, large missing transverse energy, a maximum of three reconstructed jets, and no reconstructed leptons, leading to a monojet-like configuration. The monojet final state constitutes a very clean and distinctive signature for new physics processes. After the discovery of the Higgs and the constraints on the masses of first and second generation squarks and gluinos up to the TeV scale, much attention has been put to searches for third generation squarks. These searches are motivated by naturalness arguments, which point to relatively light stops and sbottoms, and therefore allowing their production at the LHC. The monojet analysis is interpreted in terms of pair production of stops and sbottoms, and in terms of inclusive searches for pair production of squarks, and gluinos. In particula...

  15. Augmented reality aiding collimator exchange at the LHC

    International Nuclear Information System (INIS)

    Martínez, Héctor; Fabry, Thomas; Laukkanen, Seppo; Mattila, Jouni; Tabourot, Laurent

    2014-01-01

    Novel Augmented Reality techniques have the potential to have a large positive impact on the way remote maintenance operations are carried out in hazardous areas, e.g. areas where radiation doses that imply careful planning and optimization of maintenance operations are present. This paper describes an Augmented Reality strategy, system and implementation for aiding the remote collimator exchange in the LHC, currently the world's largest and highest-energy particle accelerator. The proposed system relies on marker detection and multi-modal augmentation in real-time. A database system has been used to ensure flexibility. The system has been tested in a mock-up facility, showing real time performance and great potential for future use in the LHC. The technical-scientific difficulties identified during the development of the system and the proposed solutions described in this paper may help the development of future Augmented Reality systems for remote handling in scientific facilities

  16. Augmented reality aiding collimator exchange at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Héctor, E-mail: hector.martinez@sensetrix.com [SenseTrix, PL 20 FI-00101 Helsinki (Finland); Fabry, Thomas [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland); Laukkanen, Seppo [SenseTrix, PL 20 FI-00101 Helsinki (Finland); Mattila, Jouni [Tampere University of Technology, PO Box 527, FI-33101 Tampere (Finland); Tabourot, Laurent [SYMME, Université de Savoie, Polytech Annecy-Chambéry, 5 chemin de Bellevue, 74944 Annecy le Vieux (France)

    2014-11-01

    Novel Augmented Reality techniques have the potential to have a large positive impact on the way remote maintenance operations are carried out in hazardous areas, e.g. areas where radiation doses that imply careful planning and optimization of maintenance operations are present. This paper describes an Augmented Reality strategy, system and implementation for aiding the remote collimator exchange in the LHC, currently the world's largest and highest-energy particle accelerator. The proposed system relies on marker detection and multi-modal augmentation in real-time. A database system has been used to ensure flexibility. The system has been tested in a mock-up facility, showing real time performance and great potential for future use in the LHC. The technical-scientific difficulties identified during the development of the system and the proposed solutions described in this paper may help the development of future Augmented Reality systems for remote handling in scientific facilities.

  17. Installation Strategy for the LHC Main Dipoles

    CERN Multimedia

    Fartoukh, Stephane David

    2004-01-01

    All positions in the LHC machine are not equivalent in terms of beam requirements on the geometry and the field quality of the main dipoles. In the presence of slightly or strongly out-of tolerance magnets, a well-defined installation strategy will therefore contribute to preserve or even optimize the performance of the machine. Based on the present status of the production, we have anticipated a list of potential issues (geometry, transfer function, field direction and random b3) which, combined by order of priority, have been taken into account to define a simple but efficient installation algorithm for the LHC main dipoles. Its output is a prescription for installing the available dipoles in sequence while reducing to an absolute minimum the number of holes required by geometry or FQ issues.

  18. The Lhc beam commissioning

    International Nuclear Information System (INIS)

    Redarelli, S.; Bailey, R.

    2008-01-01

    The plans for the Lhc proton beam commissioning are presented. A staged commissioning approach is proposed to satisfy the request of the Lhc experiments while minimizing the machine complexity in early commissioning phases. Machine protection and collimation aspects will be tackled progressively as the performance will be pushed to higher beam intensities. The key parameters are the number of bunches, k b , the proton intensity pe bunch, N, and the β in the various interaction points. All together these parameters determine the total beam power and the complexity of the machine. We will present the proposed trade off between the evolution of these parameters and the Lhc luminosity performance.

  19. Discovery of the Higgs Boson Decaying to Two Photons

    CERN Document Server

    AUTHOR|(CDS)2075371; Branson, James; Pieri, Marco

    2014-09-10

    The Standard Model (SM) of particle physics fundamentally relies on the existence of the Higgs boson. This massive particle is a relic of the underlying and hidden Higgs field, whose transformation into the Higgs boson provides mass to weak bosons and all massive fermions in the SM. This particle has been long-sought and finally using data from proton-proton collisions at the LHC, CMS and ATLAS experiments have discovered a particle which is compatible with the SM Higgs boson. Presented here is the development of one of the discovery channels, $\\mathrm{H}\\rightarrow\\gamma\\gamma$, and the final $\\mathrm{H}\\rightarrow\\gamma\\gamma$ analysis and results using the full luminosity of the LHC Run 1 dataset $\\sim$25 $\\mathrm{fb}^{-1}$ at 7 or 8 TeV center of mass energy. The observed (expected) significance of this di-photon excess in the final analysis is $5.7\\sigma$ ($5.2\\sigma$) with a measured signal strength of $\\sigma / \\sigma_{SM} = 1.14^{+0.26}_{-0.23}$. The mass of this Higgs boson is not predicted by t...

  20. LHC 2008 lectures
    The LHC: an accelerator of science

    CERN Multimedia

    2008-01-01

    In 2008, CERN will be switching on the greatest physics experiment ever undertaken. The Large Hadron Collider, or LHC, is a particle accelerator that will provide many answers to our questions about the Universe - What is the reason for mass? Where is the invisible matter in the Universe hiding? What is the relationship between matter and antimatter? Will we have to use a theory claiming more than four dimensions? … and what about "time" ? To understand better the raison d’être of the LHC, this gigantic, peerless scientific instrument and all the knowledge it can bring to us, members of the general public are invited to a series of lectures at the Globe of Science and Innovation. Thursday 8 May 2008 at 8.00 p.m. « Comment fonctionne l’Univers ? Ce que le LHC peut nous apprendre » Alvaro de Rujula, CERN physicist Thursday 15 May 2008 at 8.00 p.m. – « Une nouvelle vision du monde » Jean-Pierre Luminet, Director of...

  1. HL-LHC kicker magnet (MKI)

    CERN Multimedia

    Brice, Maximilien

    2018-01-01

    HL-LHC kicker magnet (MKI): last vacuum test, preparation for transport to LHC transfer line in underground tunnel.The LHC injection kicker systems (MKIs) generate fast field pulses to inject the clockwise rotating beam at Point 2 and the anti-clockwise rotating beam at Point 8: there are eight MKI magnets installed in total. Each MKI magnet contains a high purity alumina tube: if an MKI magnet is replaced this tube requires conditioning with LHC beam: until it is properly conditioned, there can be high vacuum pressure due to the beam. This high pressure can also cause electrical breakdowns in the MKI magnets. A special coating (Cr2O3) has been applied to the inside of the alumina tube of an upgraded MKI magnet – this is expected to greatly reduce the pressure rise with beam. In addition, HL-LHC beam would result in excessive heating of the MKI magnets: the upgraded design includes modifications that will reduce heating, and move the power deposition to parts that will be easier to cool. Experience during 2...

  2. The LHC and its successors

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Not too long before the first long technical stop of the LHC, engineers and physicists are already working on the next generation of accelerators: HL-LHC and LHeC. The first would push proton-proton collisions to an unprecedented luminosity rate; the second would give a second wind to electron-proton collisions.   The ring-ring configuration of the LHeC would need this type of magnets, currently being studied for possible future use. In one year, the LHC will begin to change. During the first long shutdown, from December 2012 to late 2014, the machine will go through a first phase of major upgrades, with the objective of running at 7 TeV per beam at the beginning of 2015. With this long technical stop and the two others that will follow (in 2018 and 2022), a new project will see the light of day. Current plans include the study of something that looks more like a new machine rather than a simple upgrade: the High Luminosity LHC (HL-LHC). Much more powerful than the current machine, the HL-...

  3. Hybrid beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The first proton-ion beams were successfully circulated in the LHC a couple of weeks ago. Everything went so smoothly that the LHC teams had planned the first p-Pb collisions for Wednesday, 16 November. Unfortunately, a last-minute problem with a component of the PS required for proton acceleration prevented the LHC teams from making these new collisions. However, the way is open for a possible physics run with proton-lead collisions in 2012.   Members of the LHC team photographed when the first hybrid beams got to full energy. The proton and lead beams are visible on the leftmost screen up on the wall (click to enlarge the photo). The technical challenge of making different beams circulate in the LHC is by no means trivial. Even if the machine is the same, there are a number of differences when it is operated with beams of protons, beams of lead or beams of proton and lead. Provided that the beams are equal, irrespective of whether they consist of protons or lead nuclei, they revolve at the...

  4. Technological challenges for the LHC

    CERN Multimedia

    CERN. Geneva; Rossi, Lucio; Lebrun, Philippe; Bordry, Frederick; Mess, Karl Hubert; Schmidt, Rüdiger

    2003-01-01

    For the LHC to provide particle physics with proton-proton collisions at the centre of mass energy of 14 TeV with a luminosity of 1034 cm-2s-1, the machine will operate with high-field dipole magnets using NbTi superconductors cooled to below the lambda point of helium. In order to reach design performance, the LHC requires both, the use of existing technologies pushed to the limits as well as the application of novel technologies. The construction follows a decade of intensive R&D and technical validation of major collider sub-systems. The first lecture will focus on the required LHC performance, and on the implications on the technologies. In the following lectures several examples for LHC technologies will be discussed: the superconducting magnets to deflect and focus the beams, the cryogenics to cool the magnets to a temperature below the lambda point of helium along most of the LHC circumference, the powering system supplying about 7000 magnets connected in 1700 electrical circuits with a total curr...

  5. Single production of an exotic bottom partner at LHC

    International Nuclear Information System (INIS)

    Álvarez, Ezequiel; Rold, Leandro Da; Vietto, Juan Ignacio Sanchez

    2014-01-01

    We study single production and detection at the LHC run II of exotic partners of the bottom quark. For masses larger than 1 TeV single production can dominate over pair production that is suppressed due to phase space. The presence of exotic partners of the bottom is motivated in models aiming to solve the A FB b anomaly measured at LEP and SLC. Minimal models of this type with partial compositeness predict, as the lightest bottom partner, a new fermion V of electric charge −4/3, also called mirror. The relevant coupling for our study is a WVb vertex, which yields a signal that corresponds to a hard W, a hard b-jet and a forward light jet. We design a search strategy for the leptonic decay of the W, which avoids the large QCD multijet background and its large uncertainties. We find that the main backgrounds are W+jets and tt-bar, and the key variables to enhance the signal over them are a hard b-jet and the rapidity of the light jet. We determine the discovery reach for the LHC run II, in particular we predict that, for couplings of order ∼g/10, this signal could be detected at a 95% confidence level with a mass up to 2.4 TeV using the first 100 fb −1

  6. Transverse and Longitudinal Beam Collimation in a High-Energy Proton Collider (LHC)

    CERN Document Server

    Catalan-Lasheras, N

    1998-01-01

    In the Large Hadron Collider (LHC), particles from the beam halo might potentially impinge on the vacuum chamber, effecting harmful transitions of the superconducting magnets ("quenches"). This can be prevented by the collimation system which confines the particle losses to special, non superconducting sections of the machine. Due to the high energy and intensity of the LHC, any removal system must attain an unprecedented efficiency. The cleaning system was designed on the basis of purely geometric and optical models which neglect non linear effects and assume perfectly absorbing materials. In a second step, true scattering in matter is considered. A series of machine developments (MD) were carried out in 1996-7 with the principal aim of validating the design assumptions. A collimation system comparable to that of the LHC was employed. The predictions of the numerical model used to compute the LHC collimation system efficiency were compared with the data acquired during the measurement sessions. The experimen...

  7. Research infrastructures in the LHC era: a scientometric approach

    CERN Document Server

    Carrazza, Stefano; Salini, Silvia

    2016-01-01

    When a research infrastructure is funded and implemented, new information and new publications are created. This new information is the measurable output of discovery process. In this paper, we describe the impact of infrastructure for physics experiments in terms of publications and citations. In particular, we consider the Large Hadron Collider (LHC) experiments (ATLAS, CMS, ALICE, LHCb) and compare them to the Large Electron Positron Collider (LEP) experiments (ALEPH, DELPHI, L3, OPAL) and the Tevatron experiments (CDF, D0). We provide an overview of the scientific output of these projects over time and highlight the role played by remarkable project results in the publication-citation distribution trends. The methodological and technical contribution of this work provides a starting point for the development of a theoretical model of modern scientific knowledge propagation over time.

  8. Future of LHC

    CERN Document Server

    Dova, Maria-Teresa; The ATLAS collaboration

    2018-01-01

    The High-Luminosity LHC aims to provide a total integrated luminosity of 3000 fb-1 from p-p collisions at  14 TeV over the course of 10 years. The upgraded ATLAS detector must be able to cope well with increased occupancies and data rates. The large data samples at the High-Luminosity LHC will enable precise measurements of the Higgs boson and other Standard Model particles, as well as searches for new phenomena BSM.

  9. Physics programmes of the restarted LHC

    International Nuclear Information System (INIS)

    Tokushuku, Katsuo

    2011-01-01

    Experimental programs at the Large Hadron Collider (LHC) have started. On March 30th in 2010, proton beams collided at 7 TeV in the LHC, at the highest center-of-mass energy the humankind has ever produced. The machine will be operated almost continuously until the end of 2011, providing many collision data to explore new physics in the TeV region. The LHC has recovered from the unfortunate helium-leak incident in September 2009. In this article, after describing the history of the consolidation works in the LHC, physics prospects from the 2 year run are discussed. (author)

  10. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    CERN Document Server

    Rutherfoord, J; The ATLAS collaboration

    2012-01-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 10^34 cm^-2 s^-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals w...

  11. LHC: forwards and onwards

    CERN Multimedia

    2008-01-01

    Following the recent incident in Sector 3-4, which has brought the start-up of the LHC to a halt, the various teams are working hard to establish the cause, evaluate the situation and plan the necessary repairs. The LHC will be started up again in spring 2009 following the winter shutdown for the maintenance of all the CERN installations. The LHC teams are at work on warming up Sector 3-4 and establishing the cause of the serious incident that occurred on Friday, 19 September. Preliminary investigations suggest that the likely cause of the problem was a faulty electrical connection between two magnets. The connections probably melted, leading to a mechanical failure and a large leak of helium into the tunnel. However, the teams will not be able to carry out a full evaluation and assess the repairs needed until the sector has been warmed up again and inspected. "We are not worried about repairing the magnets as spare parts are available", said Lyn Evans, the LHC Project Leade...

  12. LHC Report: Ion Age

    CERN Multimedia

    John Jowett for the LHC team

    2013-01-01

    The LHC starts the New Year facing a new challenge: proton-lead collisions in the last month before the shutdown in mid-February.    Commissioning this new and almost unprecedented mode of collider operation is a major challenge both for the LHC and its injector chain. Moreover, it has to be done very quickly to achieve a whole series of physics goals, requiring modifications of the LHC configuration, in a very short time. These include a switch of the beam directions halfway through the run, polarity reversals of the ALICE spectrometer magnet and Van der Meer scans.    The Linac3 team kept the lead source running throughout the end-of-year technical stop, and recovery of the accelerator complex was very quick. New proton and lead beams were soon ready, with a bunch filling pattern that ensures they will eventually match up in the LHC. The LEIR machine has even attained a new ion beam intensity record.  On Friday 11 January the first single bunches o...

  13. From the Higgs boson to the search for new physics: the prospects for the LHC programme at CERN

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The discovery of the Higgs boson, which was the subject of this year's Nobel prize for physics, has brought us the missing piece of the Standard Model of Particle Physics.  However, many observations (such as the predominance of matter over antimatter in the Universe, the existence of dark matter observed by the cosmologists and even the fact that the Higgs boson has a relatively small mass) underline that our knowledge of the structure of matter and its interactions is incomplete.   A wide-ranging programme of research spanning several decades to come thus awaits us at the LHC.  Philippe Bloch will begin his lecture by giving us the latest news on the Higgs boson, and will then go on to explain how developments at the LHC and its experiments, which will resume in 2015, will explore these fund...

  14. The LHC in numbers

    CERN Multimedia

    Alizée Dauvergne

    2010-01-01

    What makes the LHC the biggest particle accelerator in the world? Here are some of the numbers that characterise the LHC, and their equivalents in terms that are easier for us to imagine.   Feature Number Equivalent Circumference ~ 27 km   Distance covered by beam in 10 hours ~ 10 billion km a round trip to Neptune Number of times a single proton travels around the ring each second 11 245   Speed of protons first entering the LHC 299 732 500 m/s 99.9998 % of the speed of light Speed of protons when they collide 299 789 760 m/s 99.9999991 % of the speed of light Collision temperature ~ 1016 °C ove...

  15. Contribution to the gamma calibration by the radiative decay Z → μμγ, in the CMS experiment at LHC (CERN)

    International Nuclear Information System (INIS)

    Baty, C.

    2009-11-01

    The LHC has started to take data since november 2009. This opened a new era of discovery in particle physics. The CMS detector is one of the main experiment at the LHC (CERN). One goal of this experiment is the Higgs's boson discovery, that can be related to the electroweak symmetry breaking. After a contextual position of the LHC and CMS within the nowadays' particle physics, I will explain the whole chain allowing to go from the physical event to the final analysis, in order to extract the reconstructed particles and the information allowing us, at the end, to discover new particles like the Higgs's boson. The first part of this work was about the measurement and the study of the acquisition electronics gains-ratios. This work aimed at having a precise measurement of the photons energy on the whole available energy band (35 MeV -> 1.7 TeV). In particular, this work deals with the validation of the different calibration methods for the VFE acquisition cards within the detector. A second part of my work was about the way that we have to generate the physics events avoiding double-counting between photons coming from matrix-element generators and those coming from parton-shower algorithms. An anti-double-counting veto has been created. Finally the last part of the work was about the way the radiative decay of the Z 0 neutral electroweak gauge boson allow, by the selection of certified photons, the extraction of the photons energy scale inside the electromagnetic calorimeter of CMS. (author)

  16. Beam Scraping for LHC Injection

    CERN Document Server

    Burkhardt, H; Fischer, C; Gras, J-J; Koschik, A; Kramer, Daniel; Pedersen, S; Redaelli, S

    2007-01-01

    Operation of the LHC will require injection of very high intensity beams from the SPS to the LHC. Fast scrapers have been installed and will be used in the SPS to detect and remove any existing halo before beams are extracted, to minimize the probability for quenching of superconducting magnets at injection in the LHC. We briefly review the functionality of the scraper system and report about measurements that have recently been performed in the SPS on halo scraping and re-population of tails.

  17. Electron reconstruction and calibration with single Z and W production in CMS at the LHC

    CERN Document Server

    Rovelli, Chiara

    2006-01-01

    The CMS experiment at the LHC is building an electromagnetic calorimeter with high performance. Preserving high reconstruction efficiency and best four momentum measurements for electrons is a necessity for optimal discovery prospects in the ZZ(*) and WW(*) Higgs boson decay channels. This is challenging in view of the material budget in front of ECAL and of the presence of a strong magnetic field. A new reconstruction strategy for electrons in CMS is described. The usage of electrons from single Z and W production for the ECAL calibration strategy is also discussed.

  18. CERN Library | Book presentation: "60 years of CERN experiments and discoveries" | 15 December

    CERN Document Server

    CERN Library

    2015-01-01

    "60 years of CERN experiments and discoveries", edited by Herwig Schopper and Luigi Di Lella.   Tuesday 15 December at 16:00 Room C (Building 61) The presentation will be followed by refreshments The book contains a description of the most important experimental results achieved at CERN during the past 60 years, from the mid-1950s to the latest discovery of the Higgs particle. It covers the results from early accelerators at CERN to the most recent results at the LHC and thus provides an excellent review of the achievements of this outstanding laboratory. It reflects not only the impressive scientific progress achieved during the past six decades but demonstrates also the special way of successful international collaboration developed at CERN. The e-book is available in Open Access here thanks to an agreement between CERN and the publisher. "60 years of CERN experiments and discoveries", ed. by Herwig Schopper and Luigi Di Lella, World Scientific, 2015, ISBN 9789...

  19. Searches for new physics: Les Houches recommendations for the presentation of LHC results

    Energy Technology Data Exchange (ETDEWEB)

    Kraml, S.; /LPSC, Grenoble; Allanach, B.C.; /Cambridge U., DAMTP; Mangano, M.; /CERN; Prosper, H.B.; /Florida State U.; Sekmen, S.; /CERN /Florida State U.; Balazs, C.; /Monash U.; Barr, A.; /Oxford U.; Bechtle, P.; /Bonn U.; Belanger, G.; /Annecy, LAPTH; Belyaev, A.; /Rutherford /Southampton U.; Benslama, K.; /Regina U.; Campanelli, M.; /University Coll. London; Cranmer, K.; /New York U., CCPP; De Roeck, A.; /CERN; Dolan, M.J.; /Durham U., IPPP; Eifert, T.; /SLAC; Ellis, J.R.; /King' s Coll. London /CERN; Felcini, M.; /Cantabria U., Santander; Fuks, B.; /Strasbourg, IPHC /Strasbourg, IReS; Guadagnoli, D.; /Orsay, LPT /Annecy, LAPTH; Gunion, J.F.; /UC, Davis /Cantabria U., Santander /SLAC /NICPB, Tallinn /Aachen, Tech. Hochsch. /Fermilab /Clermont-Ferrand U. /CERN /Clermont-Ferrand U. /Northern Illinois U. /Santa Barbara, KITP /SLAC /Dresden, Tech. U. /Gent U. /DESY

    2012-04-17

    We present a set of recommendations for the presentation of LHC results on searches for new physics, which are aimed at providing a more efficient flow of scientific information between the experimental collaborations and the rest of the high energy physics community, and at facilitating the interpretation of the results in a wide class of models. Implementing these recommendations would aid the full exploitation of the physics potential of the LHC.

  20. Searches for New Physics: Les Houches Recommendations for the Presentation of LHC Results

    Energy Technology Data Exchange (ETDEWEB)

    Kraml, S.; et al.

    2012-04-17

    We present a set of recommendations for the presentation of LHC results on searches for new physics, which are aimed at providing a more efficient flow of scientific information between the experimental collaborations and the rest of the high energy physics community, and at facilitating the interpretation of the results in a wide class of models. Implementing these recommendations would aid the full exploitation of the physics potential of the LHC.

  1. Gluino reach and mass extraction at the LHC in radiatively-driven natural SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard; Savoy, Michael; Sengupta, Dibyashree [University of Oklahoma, Department of Physics and Astronomy, Norman, OK (United States); Barger, Vernon [University of Wisconsin, Department of Physics, Madison, WI (United States); Gainer, James S.; Tata, Xerxes [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Huang, Peisi [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); HEP Division, Argonne National Laboratory, Argonne, IL (United States); Texas A and M University, Mitchell Institute for Fundamental Physics and Astronomy, College Station, TX (United States)

    2017-07-15

    Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the 10% level while respecting LHC sparticle and Higgs mass constraints. Gluino and top-squark masses can range up to several TeV (with other squarks even heavier) but a set of light Higgsinos are required with mass not too far above m{sub h} ∝ 125 GeV. Within the RNS framework, gluinos dominantly decay via g → tt{sub 1}{sup *}, anti tt{sub 1} → t anti tZ{sub 1,2} or t anti bW{sub 1}{sup -} + c.c., where the decay products of the higgsino-like W{sub 1} and Z{sub 2} are very soft. Gluino pair production is, therefore, signaled by events with up to four hard b-jets and large E{sub T}. We devise a set of cuts to isolate a relatively pure gluino sample at the (high-luminosity) LHC and show that in the RNS model with very heavy squarks, the gluino signal will be accessible for m{sub g} < 2400 (2800) GeV for an integrated luminosity of 300 (3000) fb{sup -1}. We also show that the measurement of the rate of gluino events in the clean sample mentioned above allows for a determination of m{sub g} with a statistical precision of 2-5% (depending on the integrated luminosity and the gluino mass) over the range of gluino masses where a 5σ discovery is possible at the LHC. (orig.)

  2. Use of fluorocarbons in the cooling of LHC experiments

    CERN Document Server

    Pimenta dos Santos, M

    2003-01-01

    Perfluorochemicals sold by 3M under the trade name 3M Fluorinert Electronic Liquids have been used for many years as heat transfer media in a variety of industries. The suitability of these liquids for the cooling of LHC experiment originates from their high dielectric strength as well as from their chemical stability under ionizing radiation. The Fluorinerts are clear, colorless, non-flammable with low toxicity and low corrosiveness. Additionally, they offer low global waming potential – GWP – and zero ozone-depletion potential – ODP. Some examples of fluorinert application in the cooling of LHC experiments will be presented : (a) the ATLAS Inner detector C3F8 evaporative cooling system (b) the ATLAS TRF C6F14 monophase cooling system and (c) the ALICE SPD “active heat pipe” C4F10 evaporative cooling system. A brief comparison of evaporative and monophase cooling systems will be outlined.

  3. The physics behind LHC

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    What do physicists want to discover with experiments at the LHC? What is the Higgs boson? What are the new phenomena that could be observed at the LHC?I will try to answer these questions using language accessible also to non-experts. Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  4. LHC physics results and prospects

    CERN Document Server

    Kono, Takanori; The ATLAS collaboration

    2018-01-01

    This talk presents the latest results from LHC Run-2 as of May 2018 which include Standard Model measurements, Higgs boson properties and beyond Standard Model search results. The prospects for future LHC runs are also shown.

  5. Performance and Operational Aspects of HL-LHC Scenarios

    CERN Document Server

    Medina Medrano, Luis

    2016-01-01

    Several alternatives to the present HL-LHC baseline configuration have been proposed, aiming either to improve the potential performance, reduce its risks, or to provide options for addressing possible limitations or changes in its parameters. In this paper we review and compare the performance of the HL-LHC baseline and the main alternatives with the latest parameters set. The results are obtained using refined simulations of the evolution of the luminosity with β^{*}-levelling, for which new criteria have been introduced, such as improved calculation of the intrabeam scattering and the addition of penalty steps to take into account the necessary time to move between consecutive optics during the process. The features of the set of optics are discussed for the nominal baseline.

  6. Performance with lead ions of the LHC beam dump system

    CERN Document Server

    Bruce, R; Jensen, L; Lefèvre, T; Weterings, W

    2007-01-01

    The LHC beam dump system must function safely with 208Pb82+ions. The differences with respect to the LHC proton beams are briefly recalled, and the possible areas for performance concerns discussed, in particular the various beam intercepting devices and the beam instrumentation. Energy deposition simulation results for the most critical elements are presented, and the conclusions drawn for the lead ion operation. The expected performance of the beam instrumentation systems are reviewed in the context of the damage potential of the ion beam and the required functionality of the various safety and post-operational analysis requirements.

  7. Probing top quark and Higgs boson production in multi-jet events at the LHC with the ATLAS detector

    CERN Document Server

    Bertella Claudia

    The ATLAS detector is a general-purpose detector located at the Large Hadron Collider (LHC). It aims at the discovery of new physics phenomena and improving our knowledge of the Standard Model (SM). The LHC is an hadron collider designed to provide proton proton collisions at 14 TeV center-of-mass energy and 1034cm-2s-1 peak luminosity. The ATLAS experiment collected 4.7 fb-1 pp collisions delivered by the LHC at a centre-of-mass energy of 7 TeV in 2011 and about 20 fb-1pp collisions in 2012 at a centre-of-mass energy of 8 TeV. The thesis reports the measurement of top-anti top cross section performed using the 4.7 fb-1 data recorded by the ATLAS detector during the 2011 data-taking campaign with a center-of-mass energy of 7 TeV. The top-anti top pair decay mode investigated is the all-hadronic, where both the W bosons, produced in the top quark disintegration, decay in a quarks pair. The all-hadronic decay mode has the advantage of a high branching fraction, about 46%, but on the other hand it suffers from a...

  8. Search for heavy sterile neutrinos in trileptons at the LHC

    International Nuclear Information System (INIS)

    Dib, Claudio O.; Kim, C.S.; Wang, Kechen; Chinese Academy of Sciences, Beijing

    2017-03-01

    We present a search strategy for both Dirac and Majorana sterile neutrinos from the purely leptonic decays of W"±→e"±e"±μ"-"+ν and μ"±μ"±e"-"+ν at the 14 TeV LHC. The discovery and exclusion limits for sterile neutrinos are shown using both the Cut-and-Count (CC) and Multi-Variate Analysis (MVA) methods. We also discriminate between Dirac and Majorana sterile neutrinos by exploiting a set of kinematic observables which differ between the Dirac and Majorana cases. We find that the MVA method, compared to the more common CC method, can greatly enhance the discovery and discrimination limits. Two benchmark points with sterile neutrino mass m_N=20 GeV and 50 GeV are tested. For an integrated luminosity of 3000 fb"-"1, sterile neutrinos can be found with 5σ significance if heavy-to-light neutrino mixings vertical stroke U_N_e vertical stroke "2∝ vertical stroke U_N_μ vertical stroke "2∝10"-"6, while Majorana vs. Dirac discrimination can be reached if at least one of the mixings is of order 10"-"5.

  9. LHC an unprecedented technological challenge

    International Nuclear Information System (INIS)

    Baruch, J.O.

    2002-01-01

    This article presents the future LHC (large hadron collider) in simple terms and gives some details concerning radiation detectors and supra-conducting magnets. LHC will take the place of the LEP inside the 27 km long underground tunnel near Geneva and is scheduled to operate in 2007. 8 years after its official launching the LHC project has piled up 2 year delay and has exceeded its initial budget (2 milliard euros) by 18%. Technological challenges and design difficulties are the main causes of these shifts. The first challenge has been carried out successfully, it was the complete clearing out of the LEP installation. In order to release 14 TeV in each proton-proton collision, powerful magnetic fields (8,33 Tesla) are necessary. 1248 supra-conducting 15 m-long bipolar magnets have to be built. 30% of the worldwide production of niobium-titanium wires will be used each year for 5 years in the design of these coils. The global cryogenic system will be gigantic and will use 94 tons of helium. 4 radiation detectors are being built: ATLAS (a toroidal LHC apparatus), CMS (compact muon solenoid), ALICE (a large ion collider experiment) and LHC-b (large hadron collider beauty). The 2 first will search after the Higgs boson, ALICE will be dedicated to the study of the quark-gluon plasma and LHC-b will gather data on the imbalance between matter and anti-matter. (A.C.)

  10. Heavy feet for the LHC

    CERN Document Server

    2003-01-01

    The first 800 jacks (adjustable supports) for one sector of the LHC have arrived from India in recent weeks. After the final acceptance of the preseries jacks at the end of October, they can now be used to support the LHC cryo-magnets. How do you move the weight of eight adult Indian elephants by the breadth of a human hair? If you are a surveyor at CERN who has to adjust the 32 ton LHC dipoles with a resolution of 1/20 of a millimetre, you use the 80 kg jacks which were designed and are being procured by the Centre for Advanced Technology (CAT) in India. The jacks are undergoing final pre-shipment inspection by CAT engineers in India. More than 800 jacks have arrived in recent weeks from India, enough to equip the first sector of the LHC (one octant of the ring). For all the cryo-magnets (dipoles and quadrupoles) of the LHC 7000 jacks are needed in total. They are now being continuously delivered to CERN up to mid-2005. The close collaboration between the Department of Atomic Energy (DAE) in India and CE...

  11. Japanese contributions to CERN-LHC

    International Nuclear Information System (INIS)

    Kondo, Takahiko; Shintomi, Takakazu; Kimura, Yoshitaka

    2001-01-01

    The Large Hadron Collider (LHC) is now under construction at CERN, Geveva, to study frontier researches of particle physics. The LHC is the biggest superconducting accelerator using the most advanced cryogenics and applied superconductivities. The accelerator and large scale detectors for particle physics experiments are being constructed by collaboration with European countries and also by participation with non-CERN countries worldwide. In 1995, the Japanese government decided to take on a share in the LHC project with funding and technological contributions. KEK contributes to the development of low beta insertion superconducting quadrupole magnets and of components of the ATLAS detector by collaboration with university groups. Some Japanese companies have received contracts for technically key elements such as superconducting cable, cold compressor, nonmagnetic steel, polyimide film, and so on. An outline of the LHC project and Japanese contributions are described. (author)

  12. Helium Inventory Management For LHC Cryogenics

    CERN Document Server

    Pyarali, Maisam

    2017-01-01

    The LHC is a 26.7 km circumference ring lined with superconducting magnets that operate at 1.9 K. These magnets are used to control the trajectory of beams of protons traveling in opposite directions and collide them at various experimental sites across the LHC where their debris is analyzed. The focus of this paper is the cryogenic system that allows the magnets to operate in their superconducting states. It aims to highlight the operating principles of helium refrigeration and liquefaction, with and without nitrogen pre-cooling; discuss the various refrigerators and liquefiers used at CERN for both LHC and Non-LHC applications, with their liquefaction capacities and purposes; and finally to deliberate the management of the LHC inventory and how it contributes to the strategic decision CERN makes regarding the inventory management during the Year-End Technical Stop (YETS), Extended Year-End Technical Stop (EYETS) and long shutdowns.

  13. High Luminosity LHC (HL-LHC) general infographics

    CERN Multimedia

    Landua, Fabienne

    2016-01-01

    The High-Luminosity LHC, which is expected to be operational after 2025, will increase the LHC’s luminosity by a factor of 10. To achieve this major upgrade, several technologies, some of which are completely innovative, are being developed.

  14. Electronics at LHC

    CERN Document Server

    Hall, Geoffrey

    1998-01-01

    An overview of the electronic readout systems planned for use in the CMS and ATLAS experiments at the LHC will be given, with an emphasis on the motivations for the designs adopted and major technologies to be employed, specially those which are specific to LHC. At its design luminosity, the LHC will deliver hundreds of millions of proton-proton interactions per second. Storage and computing limitations limit the number of physics events that can be recorded to about 100 per second. The selection will be carried out by the Trigger and data acquisition systems of the experiments. This lecture will review the requirements, architectures and various designs currently considered. Introduction. Structure of gauge theories. The QED and QCD examples. Chiral theories. The electroweak theory. Spontaneous symmetry breaking. The Higgs machanism.Gauge boson and fermion masses. Yukawa coupling. Charges current couplings. The Cabibbo-Kobayashi-Maskawa matrix and CP violation. neutral current couplings. the Clashow-Iliopoul...

  15. Status of the LHC machine

    International Nuclear Information System (INIS)

    Faugeras, P.

    1997-01-01

    The report represents itself a set of diagrams, characterizing: the LHC main parameters for proton-proton collisions and lead ion collisions, parameters of SC dipole and quadrupole magnets and outlines of their designs, LHC cryogenic systems, injection complex and detectors [ru

  16. HL-LHC (High-Luminosity LHC) first stone ceremony June 2018

    CERN Document Server

    Brice, Maximilien

    2018-01-01

    The first two pictures: Point 1 of the LHC. The Director-General of CERN inserts the time capsule containing a document submitted by France submits a document which is inserted in a time capsule at Point 1 of the LHC. This is the article "Geneva" of the Encyclopedia de Diderot and d'Alembert. In August 1756, during his stay in Geneva, Voltaire stayed in a property called Les Délices, many visitors including d'Alembert were involved in writing this article. Today, that location is the Library of Geneva's centre of research for the Enlightenment period. The following two pictures: Point 5 of the LHC. The Director-General of CERN inserts the time capsule containing a document submitted by the Republic and Canton of Geneva. This historic document from 1952 is the telegram by which the President of the Council of State at the time, Mr. Louis Casai, announced to his fellow members of the Government of Geneva the news of the decision taken by the signatory states of the convention for the establishment of a Europea...

  17. Bioinformatics for cancer immunotherapy target discovery

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Campos, Benito; Barnkob, Mike Stein

    2014-01-01

    therapy target discovery in a bioinformatics analysis pipeline. We describe specialized bioinformatics tools and databases for three main bottlenecks in immunotherapy target discovery: the cataloging of potentially antigenic proteins, the identification of potential HLA binders, and the selection epitopes...

  18. 10 CFR 2.1018 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Discovery. 2.1018 Section 2.1018 Energy NUCLEAR REGULATORY... Geologic Repository § 2.1018 Discovery. (a)(1) Parties, potential parties, and interested governmental participants in the high-level waste licensing proceeding may obtain discovery by one or more of the following...

  19. Commissioning of the LHC

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The LHC construction is now approaching the end and it is now time to prepare for commissioning with beam. The behavior of a proton storage ring is much different to that of LEP, which profited from strong radiation damping to keep the beam stable. Our last experience with a hadron collider at CERN goes back more than 15 years when the proton-antiproton collider last operated. Ppbar taught us a lot about the machine physics of bunched beam proton storage rings and was essential input for the design of the LHC. After a short presentation of where we stand today with machine installation and hardware commissioning, I will discuss the main machine physics issues that will have to be dealt with in the LHC.

  20. Searches for new physics: Les Houches recommendations for the presentation of LHC results

    International Nuclear Information System (INIS)

    Kraml, S.; Allanach, B.C.; Mangano, M.; Roeck, A. de; Prosper, H.B.; Sekmen, S.; Balazs, C.; Barr, A.; Bechtle, P.; Belanger, G.; Belyaev, A.; Benslama, K.; Campanelli, M.; Cranmer, K.; Dolan, M.J.; Eifert, T.; Hewett, J.; Ismail, A.; Rizzo, T.; Ellis, J.R.; Felcini, M.; Heinemeyer, S.; Fuks, B.; Guadagnoli, D.; Gunion, J.F.; Kadastik, M.; Kraemer, M.; Lykken, J.; Mahmoudi, F.; Martin, S.P.; Robens, T.; Tytgat, M.; Weiler, A.

    2012-01-01

    We present a set of recommendations for the presentation of LHC results on searches for new physics, which are aimed at providing a more efficient flow of scientific information between the experimental collaborations and the rest of the high energy physics community, and at facilitating the interpretation of the results in a wide class of models. Implementing these recommendations would aid the full exploitation of the physics potential of the LHC. (orig.)

  1. Searches for New Physics: Les Houches Recommendations for the Presentation of LHC Results

    International Nuclear Information System (INIS)

    Kraml, S.; Allanach, B.C.; Mangano, M.; Prosper, H.B.; Sekmen, S.; Balazs, C.; Barr, A.; Bechtle, P.; Belanger, G.; Belyaev, A.; Kenslama, K.; Campanelli, M.; Cranmer, K.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Felcini, M.; Fuks, B.; Guadagnoli, D.; Gunion, J.F.; Heinemeyer, S.; Hewett, J.; Ismail, A.; Kadastik, M.; Kraemer, M.; Lykken, J.; Mahmoudi, F.; Martin, S.P.; Rizzo, T.; Robens, T.; Tytgat, M.; Weiler, A.

    2012-01-01

    We present a set of recommendations for the presentation of LHC results on searches for new physics, which are aimed at providing a more efficient flow of scientific information between the experimental collaborations and the rest of the high energy physics community, and at facilitating the interpretation of the results in a wide class of models. Implementing these recommendations would aid the full exploitation of the physics potential of the LHC. (authors)

  2. LHC Highlights, from dream to reality

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The idea of the Large Hadron Collider (LHC) was born in the early 1980s. Although LEP (CERN’s previous large accelerator) was still under construction at that time, scientists were already starting to think about re-using the 27-kilometre ring for an even more powerful machine. Turning this ambitious scientific plan into reality proved to be an immensely complex task. Civil engineering work, state-of-the-art technologies, a new approach to data storage and analysis: many people worked hard for many years to accomplish all this.   Here are some of the highlights: 1984. A symposium organized in Lausanne, Switzerland, is the official starting point for the LHC. LHC prototype of the two beam pipes (1992). 1989. The first embryonic collaborations begin. 1992. A meeting in Evian, France, marks the beginning of the LHC experiments. 1994. The CERN Council approves the construction of the LHC accelerator. 1995. Japan becomes an Observer of CERN and announces a financial contribution to ...

  3. Performance of the LHC Pre-Injectors

    CERN Document Server

    Benedikt, Michael; Chanel, M; Garoby, R; Giovannozzi, Massimo; Hancock, S; Martini, M; Métral, Elias; Métral, G; Schindl, Karlheinz; Vallet, J L

    2001-01-01

    The LHC pre-injector complex, comprising Linac 2, the PS Booster (PSB) and the PS, has undergone a major upgrade in order to meet the very stringent requirements of the LHC. Whereas bunches with the nominal spacing and transverse beam brightness were already available from the PS in 1999 [1], their length proved to be outside tolerance due to a debunching procedure plagued by microwave instabilities. An alternative scenario was then proposed, based on a series of bunch-splitting steps in the PS. The entire process has recently been implemented successfully, and beams whose longitudinal characteristics are safely inside LHC specifications are now routinely available. Variants of the method also enable bunch trains with gaps of different lengths to be generated. These are of interest for the study and possible cure of electron cloud effects in both the SPS and LHC. The paper summarizes the beam dynamics issues that had to be addressed to produce beams with all the requisite qualities for the LHC.

  4. The LHC Project Status and Prospects

    CERN Document Server

    Faugeras, Paul E

    2001-01-01

    The Large Hadron Collider (LHC), CERN's future major facility for high-energy physics, has entered into the construction and preparation for installation phases. After recalling briefly the main machine design choices and challenges, one will review the progress of civil works for the machine and experimental areas and the status of the main LHC components, which are presently series-built and for some of them procured in kind through world-wide collaborations. Report will also be given on the full-scale prototype of an elementary LHC lattice cell, called String 2, which is being commissioned and used for optimising the installation and testing procedures of the LHC. The size and duration of the LHC Project, its intrinsic complexity and the large number of world-wide collaborations involved require rather elaborate project management tools, which will be shortly described. Finally, following the extended running of the LEP and the delay for emptying of the machine tunnel, a new planning for project completion...

  5. To the LHC and beyond

    CERN Document Server

    Rodgers, Peter

    2004-01-01

    CERN was conceived in 1949 as a new European laboratory to halt the exodus of physics talent from Europe to North America. In 1954, the new lab formally came into existence upon ratification of the resolution by the first 12 European member states. To further strengthen its position as the top particle-physics laboratory in the world, the CERN council agreed a new seven-point strategy. Completing the Large Hadron Collider (LHC) on schedule in 2007 is the top priority, followed by consolidating the lab's infrastructure to guarantee reliable operation of the LHC; examining the lab's experimental program apart from the LHC; coordinating research in Europe; building a new injector for the LHC in 2006; increasing R&D on the Compact Linear Collider (CLIC); and working on a long-term strategy for the lab. CERN expects to complete half of these at the end of 2008. (Edited abstract).

  6. Review of LHC dark matter searches

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix

    2017-02-01

    This review discusses both experimental and theoretical aspects of searches for dark matter at the LHC. An overview of the various experimental search channels is given, followed by a summary of the different theoretical approaches for predicting dark matter signals. A special emphasis is placed on the interplay between LHC dark matter searches and other kinds of dark matter experiments, as well as among different types of LHC searches.

  7. Review of LHC dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix

    2017-02-15

    This review discusses both experimental and theoretical aspects of searches for dark matter at the LHC. An overview of the various experimental search channels is given, followed by a summary of the different theoretical approaches for predicting dark matter signals. A special emphasis is placed on the interplay between LHC dark matter searches and other kinds of dark matter experiments, as well as among different types of LHC searches.

  8. Delivering LHC software to HPC compute elements

    CERN Document Server

    Blomer, Jakob; Hardi, Nikola; Popescu, Radu

    2017-01-01

    In recent years, there was a growing interest in improving the utilization of supercomputers by running applications of experiments at the Large Hadron Collider (LHC) at CERN when idle cores cannot be assigned to traditional HPC jobs. At the same time, the upcoming LHC machine and detector upgrades will produce some 60 times higher data rates and challenge LHC experiments to use so far untapped compute resources. LHC experiment applications are tailored to run on high-throughput computing resources and they have a different anatomy than HPC applications. LHC applications comprise a core framework that allows hundreds of researchers to plug in their specific algorithms. The software stacks easily accumulate to many gigabytes for a single release. New releases are often produced on a daily basis. To facilitate the distribution of these software stacks to world-wide distributed computing resources, LHC experiments use a purpose-built, global, POSIX file system, the CernVM File System. CernVM-FS pre-processes dat...

  9. New U.S. LHC Web site launched

    CERN Multimedia

    Katie Yurkewicz

    2007-01-01

    On September 12, the U.S. Department of Energy's Office of Science launched a new Web site, www.uslhc.us, to tell the story of the U.S. role in the LHC. The site provides general information for the public about the LHC and its six experiments, as well as detailed information about the participation of physicists, engineers and students from the United States. The U.S. site joins the UK's LHC site in providing information for a national audience, with sites from several more countries expected to launch within the next year. The US LHC site features news and information about the LHC, along with high-resolution images and resources for students and educators. The site also features blogs by four particle physicists, including ATLAS collaborators Monica Dunford from the University of Chicago and Peter Steinberg from Brookhaven National Laboratory. More than 1,300 scientists from over 90 U.S. institutions participate in the LHC and its experiments, representing universities and national laboratories from...

  10. Gaugephobic Higgs Signals at the LHC

    CERN Document Server

    Galloway, Jamison; McRaven, John; Terning, John

    2009-01-01

    The Gaugephobic Higgs model provides an interpolation between three different models of electroweak symmetry breaking: Higgsless models, Randall-Sundrum models, and the Standard Model. At parameter points between the extremes, Standard Model Higgs signals are present at reduced rates, and Higgsless Kaluza-Klein excitations are present with shifted masses and couplings, as well as signals from exotic quarks necessary to protect the Zbb coupling. Using a new implementation of the model in SHERPA, we show the LHC signals which differentiate the generic Gaugephobic Higgs model from its limiting cases. These are all signals involving a Higgs coupling to a Kaluza-Klein gauge boson or quark. We identify the clean signal $p p \\to W^(i) \\to W H$ mediated by a Kaluza-Klein W, which can be present at large rates and is enhanced for even Kaluza-Klein numbers. Due to the very hard lepton coming from the W decay, this signature has little background, and provides a better discovery channel for the Higgs than any of the Sta...

  11. Fast Automatic Beam-Based Alignment of the LHC Collimator Jaws

    CERN Document Server

    AUTHOR|(CDS)2080813; Assmann, R W

    2014-01-01

    The CERN Large Hadron Collider (LHC) in Geneva, Switzerland is the largest and most powerful particle accelerator ever built. With a circumference of 27 km, it is designed to collide particles in two counter-rotating beams at a centre-of-mass energy of 14 TeV to explore the fundamental forces and constituents of matter. Due to its potentially destructive high energy particle beams, the LHC is equipped with several machine protection systems. The LHC collimation system is tasked with scattering and absorbing beam halo particles before they can quench the superconducting magnets. The 108 collimators also protect the machine from damage in the event of very fast beam losses, and shields sensitive devices in the tunnel from radiation over years of operation. Each collimator is made up of two blocks or ‘jaws’ of carbon, tungsten or copper material. The collimator jaws need be placed symmetrically on either side of the beam trajectory, to clean halo particles with maximum efficiency. The beam orbit and beam siz...

  12. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    CERN Document Server

    Chen, H; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is one of the two general-purpose detectors designed to study proton-proton collisions (14 TeV in the center of mass) produced at the Large Hadron Collider (LHC) and to explore the full physics potential of the LHC machine at CERN. The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS (and its LAr Calorimeters) has been operating and collecting p-p collisions at LHC since 2009. The on-detector electronics (front-end) part of the current readout electronics of the calorimeters measures the ionization current signals by means of preamplifiers, shapers and digitizers and then transfers the data to the off-detector electronics (back-end) for further elaboration, via optical links. Only the data selected by the level-1 calorimeter trigger system are transferred, achieving a bandwidth reduction to 1.6 Gbps. The analog trigger sum sig...

  13. Considerations on a Partial Energy Upgrade of the LHC

    CERN Document Server

    Fartoukh, Stephane; Missiaen, Dominique; Todesco, Ezio; Zimmermann, Frank

    2017-01-01

    In the frame of the HL-LHC project, a few accelerator dipole and quadrupole magnets of higher critical field and/or larger aperture are being produced. The new inner triplet quadrupoles and dispersion-suppressor dipoles are made from Nb$_{3}$Sn superconductor, which supports a higher field than the classical Nb-Ti magnets used for the LHC. For the longer term future, it has been proposed to replace a fraction of the Nb-Ti arc magnets in the LHC arcs with Nb$_{3}$Sn magnets of higher field (e.g. 11 T), in order to boost the beam energy. Here we examine several options: the replacement of every third dipole by a stronger one, the substitution of the present Nb-Ti quadrupole by Nb$_{3}$Sn combined-function magnets, the excitation of the horizontal orbit correctors, and pushing all the dipole magnets to their ultimate field. We discuss challenges and constraints, including issues related to mechanical aperture, powering, or other hardware limitations, and we estimate the potential energy reach for each of the opt...

  14. Beam-gas Background Observations at LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00214737; The ATLAS collaboration; Alici, Andrea; Lazic, Dragoslav-Laza; Alemany Fernandez, Reyes; Alessio, Federico; Bregliozzi, Giuseppe; Burkhardt, Helmut; Corti, Gloria; Guthoff, Moritz; Manousos, Athanasios; Sjoebaek, Kyrre; D'Auria, Saverio

    2017-01-01

    Observations of beam-induced background at LHC during 2015 and 2016 are presented in this paper. The four LHC experiments use the non-colliding bunches present in the physics-filling pattern of the accelerator to trigger on beam-gas interactions. During luminosity production the LHC experiments record the beam-gas interactions using dedicated background monitors. These data are sent to the LHC control system and are used to monitor the background levels at the experiments during accelerator operation. This is a very important measurement, since poor beam-induced background conditions can seriously affect the performance of the detectors. A summary of the evolution of the background levels during 2015 and 2016 is given in these proceedings.

  15. Budker INP in the LHC Machine (2)

    CERN Multimedia

    2001-01-01

    The main BINP contributions to the LHC machine are magnets for transfer lines (26 MCHF) and bus- bar sets (23 MCHF). Budker INP is also responsible for construction of some other LHC magnets and vacuum parts. In total, the contribution to the LHC machine will reach about 90 MCHF.

  16. Le futur du project LHC

    CERN Multimedia

    Heyoka

    2007-01-01

    Since 2004, and specitally during the long study in 2005, we used the results of the LHC Project to evaluate differents parameters of the machiene (LHC). The final choices for the design of the machine are based partly on these results. (1,5 page)

  17. An early separation scheme for the LHC luminosity upgrade

    CERN Document Server

    Sterbini, G

    2010-01-01

    The present document is organized in five chapters. In the first chapter the framework of the study is described, developing the motivations, the goals and the requirements for the LHC Luminosity Upgrade. We analyze the need for the crossing angle and its impact on the peak luminosity of the collider. After having introduced the Early Separation Scheme, we explain how it may overcome some limitations of the present machine. We compare the nominal LHC crossing scheme with the proposed one underlining its potential in terms of performance and its issues with respect to the integration in the detectors. An analysis of the integrated magnetic field required is given. In the second chapter we introduce one of the most powerful aspect of the scheme: the luminosity leveling. After the description of the physical model adopted, we compare the results of its analytical and numerical solutions. All the potential improvement due to the Early Separation Scheme are shown on the luminosity plane (peak luminosity versus int...

  18. CERN LHC dipole prototype success

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In a crash programme, the first prototype superconducting dipole magnet for CERN's LHC protonproton collider was successfully powered for the first time at CERN on 14 April, eventually sailing to 9T, above the 8.65T nominal LHC field, before quenching for the third time. The next stage is to install the delicate measuring system for making comprehensive magnetic field maps in the 10 m long, 50 mm diameter twin-apertures of the magnet. These measurements will check that the required LHC field quality has been achieved at both the nominal and injection fields

  19. Le LHC, un tunnel cosmique

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d’autres termes, qu’est-ce que le LHC peut nous apporter dans la connaissance de l’Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l’univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l’Univers ? La matière noire est-elle détectable au LHC ? L’énergie noire ? Pourquoi l’antimatière accumulée au CERN est-elle si rare dans l’Univers ? Et si le CERN a bâti sa réputation sur l’exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l’évolution cosmique ? Depuis une trentaine d’années, notre compréhension de l’univers dans ses plus grandes dimensions et l’appréhension de son comportement aux plus peti...

  20. The pMSSM10 after LHC Run 1

    International Nuclear Information System (INIS)

    De Vries, K.J.; Buchmueller, O.

    2015-04-01

    We present a frequentist analysis of the parameter space of the pMSSM10, in which the following 10 soft SUSY-breaking parameters are specified independently at the mean scalar top mass scale M SUSY ≡√(m t 1 m t 2 ): the gaugino masses M 1,2,3 , the 1st-and 2nd-generation squark masses m q 1 =m q 2 , the third-generation squark mass m q 3 , a common slepton mass M l and a common trilinear mixing parameter A, the Higgs mixing parameter μ, the pseudoscalar Higgs mass M A and tan β. We use the MultiNest sampling algorithm with ∝1.2 x 10 9 points to sample the pMSSM10 parameter space. A dedicated study shows that the sensitivities to strongly-interacting SUSY masses of ATLAS and CMS searches for jets, leptons+E T signals depend only weakly on many of the other pMSSM10 parameters. With the aid of the Atom and Scorpion codes, we also implement the LHC searches for EW-interacting sparticles and light stops, so as to confront the pMSSM10 parameter space with all relevant SUSY searches. In addition, our analysis includes Higgs mass and rate measurements using the HiggsSignals code, SUSY Higgs exclusion bounds, the measurements B-physics observables, EW precision observables, the CDM density and searches for spin-independent DM scattering. We show that the pMSSM10 is able to provide a SUSY interpretation of (g-2) μ , unlike the CMSSM, NUHM1 and NUHM2. As a result, we find (omitting Higgs rates) that the minimum χ 2 /d.o.f.=20.5/18 in the pMSSM10, corresponding to a χ 2 probability of 30.8 %, to be compared with χ 2 /d.o.f.=32.8/24(31.1/23)(30.3/22) in the CMSSM (NUHM1) (NUHM2). We display 1-dimensional likelihood functions for SUSY masses, and show that they may be significantly lighter in the pMSSM10 than in the CMSSM, NUHM1 and NUHM2. We discuss the discovery potential of future LHC runs, e + e - colliders and direct detection experiments.

  1. Proposal to negotiate a collaboration agreement for the design, testing and prototyping of superconducting elements for the High Luminosity LHC (HL-LHC) project and for the production of spare quadrupole magnets for LHC

    CERN Document Server

    2016-01-01

    Proposal to negotiate a collaboration agreement for the design, testing and prototyping of superconducting elements for the High Luminosity LHC (HL-LHC) project and for the production of spare quadrupole magnets for LHC

  2. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  3. LHC Report: Back in operation

    CERN Multimedia

    2016-01-01

    With the machine back in their hands since Friday, 4 March, the LHC operators are now performing the powering tests on the magnets. This is a crucial step before receiving the first beams and restarting Run 2 for physics.   A Distribution Feed-Box (DFB) brings power to the LHC magnets and maintains the stability of the current in the superconducting circuits. The LHC was the last machine to be handed back to operators after the completion of maintenance work carried out during the Year-End Technical Stop (YETS) that had started on 14 December 2015. During the eleven weeks of scheduled maintenance activities, several operations took place in all the accelerators and beam lines. They included the maintenance in several points of the cryogenic system, the replacement of 18 magnets in the Super Proton Synchrotron; an extensive campaign to identify and remove thousands of obsolete cables; the replacement of the LHC beam absorbers for injection (TDIs) that are used to absorb the SPS b...

  4. Keeping the LHC in power

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The critical safety equipment around the LHC, including the machine protection systems, is connected to Uninterruptible Power Supplies (UPS).  In case of mains failure, the UPS systems continue to power, for a limited time, these critical systems and ensure a safe shutdown of the accelerator. This week, work began to upgrade and replace over 100 UPS systems in the LHC.   The new UPS installations. For the LHC, even a perturbation on the mains is more than just an inconvenience: it often results in beam dumps and, in some cases, requires an energy extraction from superconducting circuits. When this occurs, machine protection systems, and in particular the Quench Protection System, must remain active to correctly carry out the shutdown procedure. With the UPS systems, 10 minutes of crucial power can be provided to the protection systems during this critical phase. There are currently two UPS systems in place in each one of the 32 LHC UPS zones. Originally one was used as a backup if ...

  5. A scientometric prediction of the discovery of the first potentially habitable planet with a mass similar to Earth.

    Science.gov (United States)

    Arbesman, Samuel; Laughlin, Gregory

    2010-10-04

    The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.

  6. LS1 general planning and strategy for the LHC, LHC injectors

    CERN Document Server

    Foraz, K

    2012-01-01

    The goal of Long Shutdown 1 (LS1) is to perform the full maintenance of equipment, and the necessary consolidation and upgrade activities in order to ensure reliable LHC operation at nominal performance from mid 2014. LS1 not only concerns LHC but also its injectors. To ensure resources will be available an analysis is in progress to detect conflict/overload and decide what is compulsary, what we can afford, and what can be postponed to LS2. The strategy, time key drivers, constraints, and draft schedule will be presented here.

  7. First LHC beam in 2017

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    Impressions from the ATLAS control room while waiting for the very first 2017 LHC beams, from the traditional croissants in the morning to the "beam splashes" in the evening. The shift crew, online experts, run coordinators and management are looking forward to the next steps of the LHC restart.

  8. First LHC beam in 2017

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    Impressions from the ATLAS control room while waiting for the very first 2017 LHC beams, from the traditional croissants in the morning to the "beam splashes" in the evening. The shift crew, online experts, run coordinators and management are looking forward the next steps of the LHC restart.

  9. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  10. The CMS Outer Tracker for HL-LHC

    CERN Document Server

    Dierlamm, Alexander Hermann

    2018-01-01

    The LHC is planning an upgrade program, which will bring the luminosity to about $5-7\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with a goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker is already running beyond design specifications and will not be able to cope with the HL-LHC radiation conditions. CMS will need a completely new Tracker in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Outer Tracker system is designed to provide robust tracking as well as Level-1 trigger capabilities using closely spaced modules composed of silicon macro-pixel and/or strip sensors. Research and development activities are ongoing to explore options and develop module components and designs for the HL-LHC environment. The design choices for the CMS Outer Tracker Upgrade are discussed along with some highlig...

  11. 1754 Days to the LHC and counting!

    CERN Multimedia

    2001-01-01

    At the 118th session of CERN Council, held on Friday 15 June under the chairmanship of Professor Maurice Bourquin of Switzerland, Director-General, Luciano Maiani, presented the commissioning schedule for the Large Hadron Collider (LHC) for the first time. The LHC will collide its first beams in a pilot run starting on 1 April 2006. 'We are 1754 days from the LHC', said Professor Maiani. A full seven-month physics run will begin in August 2006, and the LHC's heavy-ion programme will start in February 2007. Left to right: Lyn Evans, Luciano Maiani, Alexander Skrinsky, and Kurt Hubner with the magnets from Novosibirsk. Professor Maiani underlined to Council that the LHC is now CERN's most important single activity, accounting for over 70% of the Laboratory's resources. Moreover, with some 70% of the total LHC cost adjudicated and 30% paid, the project is very far advanced. With the adjudication this Autumn of the contracts for the 1236 fifteen metre superconducting dipole magnets, the placing of major contrac...

  12. Particles are back in the LHC

    CERN Multimedia

    CERN Bulletin

    2016-01-01

    The LHC has introduced beam for the first time since the year-end technical stop began in December 2015.   CERN Management and LHC operators applaud as the first beam circulates in the LHC, on Friday 25 March.   On Friday, the LHC opened its doors to allow particles to travel around the ring for the first time since the year-end technical stop (YETS) began in December 2015. At 10:30 a.m., a first bunch was circulating and by midday the beam was circulating in both directions. Progress over the weekend has been good and low intensity beam has already been taken to 6.5 TeV and through the squeeze. Last week, the LHC underwent the final phase of preparation before beam -known as the machine checkout. During this phase all the systems of the LHC are put through their paces without beam. A key part of the process is driving the magnetic circuits, radiofrequency accelerating cavities, collimators, transverse dampers etc. repeatedly through the nominal LHC cycle. A fu...

  13. LHC Report: The machine under maintenance

    CERN Multimedia

    Katy Foraz for the LHC Team

    2012-01-01

    The LHC Christmas break started on 12 December. Since then, teams have been working hard to complete all the maintenance work planned to ensure the reliable operation of the LHC in 2012.   Installation of shielding at Point 1. The maintenance work is being carried out on key infrastructure such as the cooling, ventilation, electricity and safety systems. Maintenance work is being carried out not just in the LHC but also across the whole accelerator complex, which makes planning the work even more complicated. At the time of going to print, 50% of the cryogenics system maintenance has been finished, which, according to the schedule, will allow the LHC teams to start cooling down the first sectors next week to have the entire machine cold by the end of February. A lot of activity is going on in order to mitigate the effects of radiation on equipment installed in the LHC tunnel and underground areas during 2012 operation. To this end, teams have installed additional shielding at Point 1 (see ph...

  14. LHC Power Converters: A Precision Game

    CERN Multimedia

    2001-01-01

    The LHC test-bed, String 2, is close to commissioning and one important element to get a first chance to prove what it can do is the power converter system. In String 2 there are 16 converters, in the full LHC there will be almost 1800. This article takes a look at what is so special about the power converters for the LHC. The 13 000 Amps power converters with the watercooled cables going to the String 2 feedboxes. The LHC's superconducting magnets will be the pinnacle of high technology. But to work, they'll need the help of high-precision power converters to supply them with extremely stable DC current. Perfection will be the name of the game, with an accuracy of just 1-2 parts per million (ppm) required. LEP, for the sake of comparison, could live with 10-20 ppm. The LHC's power converters will be very different from those of LEP or the SPS since the new accelerator's magnets are mostly superconducting. That means that they require much higher currents at a lower voltage since superconductors have no re...

  15. Prototype HL-LHC magnet undergoes testing

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A preliminary short prototype of the quadrupole magnets for the High-Luminosity LHC has passed its first tests.   The first short prototype of the quadrupole magnet for the High Luminosity LHC. (Photo: G. Ambrosio (US-LARP and Fermilab), P. Ferracin and E. Todesco (CERN TE-MSC)) Momentum is gathering behind the High-Luminosity LHC (HL-LHC) project. In laboratories on either side of the Atlantic, a host of tests are being carried out on the various magnet models. In mid-March, a short prototype of the quadrupole magnet underwent its first testing phase at the Fermilab laboratory in the United States. This magnet is a pre-prototype of the quadrupole magnets that will be installed near to the ATLAS and CMS detectors to squeeze the beams before collisions. Six quadrupole magnets will be installed on each side of each experiment, giving a total of 24 magnets, and will replace the LHC's triplet magnets. Made of superconducting niobium-tin, the magnets will be more powerful than their p...

  16. Press Conference: LHC Restart, Season 2

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    PRESS BRIEFING ON THE LARGE HADRON COLLIDER (LHC) RE-START, SEASON 2 AT CERN, GLOBE OF SCIENCE AND INNOVATION Where :   http://cern.ch/directions   at the Globe of Science and Innovation When : Thursday, 12 March from 2.30 to 3.30pm - Open seating as from 2.15pm Speakers : CERN’s Director General, Rolf Heuer and Director of Accelerators, Frédérick Bordry, and representatives of the LHC experiments Webcast : https://webcast.web.cern.ch/webcast/ Dear Journalists, CERN is pleased to invite you to the above press briefing which will take place on Thursday 12 March, in the Globe of Science and Innovation, 1st floor, from 2.30 to 3.30pm. The Large Hadron Collider (LHC) is ready to start up for its second three-year run. The 27km LHC is the largest and most powerful particle accelerator in the world operating at a temperature of -217 degrees Centigrade and powered to a current of 11,000 amps. Run 2 of the LHC follows a two-year technical s...

  17. LHC related projects and studies - Part (II)

    International Nuclear Information System (INIS)

    Rossi, L.; De Maria, R.

    2012-01-01

    The session was devoted to address some aspects of the HL-LHC (High Luminosity LHC) project and explore ideas on new machines for the long term future. The session had two parts. The former focused on some of the key issues of the HL-LHC projects: beam current limits, evolution of the collimation system, research plans for the interaction region magnets and crab cavities. The latter explored the ideas for the long term future projects (LHeC and HE-LHC) and how the current research-development program for magnets and RF structures could fit in the envisaged scenarios

  18. Fast loss analysis with LHC diamond detectors in 2017

    CERN Document Server

    Gorzawski, Arkadiusz; Fuster Martinez, Nuria; Garcia Morales, Hector; Mereghetti, Alessio; Cai, Xu; Valentino, Gianluca; Appleby, Robert Barrie; CERN. Geneva. ATS Department

    2018-01-01

    We presented some applications of the diamond BLM system installed in the LHC betatron collimation insertion. A selection of results illustrates the potential of this measurement system to understand better the losses at the LHC. Measurements range from the bunch-by-bunch analysis in different phases of the operational cycle, to the frequency analysis of fast losses. This work will continue in 2018, in collaboration with the various teams at CERN. New hardware is planned to improve the system. The addition of one monitor per beam will allow distinguishing the horizontal and vertical contents of losses at primary collimators, thus opening the possibility for a better understanding of loss mechanisms and for further study of correlation with other bunch-by-bunch measurements.

  19. LS1 to LHC Report: LHC key handed back to Operations

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    This week, after 23 months of hard work involving about 1000 people every day, the key to the LHC was symbolically handed back to the Operations team. The first long shutdown is over and the machine is getting ready for a restart that will bring its beam to full energy in early spring.   Katy Foraz, LS1 activities coordinator, symbolically hands the LHC key to the operations team, represented, left to right, by Jorg Wenninger, Mike Lamont and Mirko Pojer. All the departments, all the machines and all the experimental areas were involved in the first long shutdown of the LHC that began in February 2013. Over the last two years, the Bulletin has closely followed  all the work and achievements that had been carefully included in the complex general schedule drawn up and managed by the team led by Katy Foraz from the Engineering Department. “The work on the schedule began two years before the start of LS1 and one of the first things we realised was that there was no commercial...

  20. Fast crab cavity failures in HL-LHC

    CERN Document Server

    Yee-Rendon, B; Calaga, R; Tomas, R; Zimmermann, F; Barranco, J

    2014-01-01

    Crab cavities (CCs) are a key ingredient of the High-Luminosity Large Hadron Collider (HL-LHC) to ensure head on collisions at the main experiments (ATLAS and CMS) and fully profit from the smaller provided by the ATS optics [1]. At KEKB, CCs have exhibited abrupt changes of phase and voltage during a time period of few LHC turns and considering the large energy stored in the HL-LHC beam, CC failures represent a serious risk to the LHC machine protection. In this paper, we discuss the effect of CC voltage or phase changes on a time interval similar to, or longer than, the one needed to dump the beam. The simulations assume a realistic steady-state distribution to assess the beam losses for the HL-LHC. Additionally, some strategies are studied in order to reduce the damage caused by the CC failures.

  1. Volunteer Clouds and Citizen Cyberscience for LHC Physics

    International Nuclear Information System (INIS)

    Aguado Sanchez, Carlos; Blomer, Jakob; Buncic, Predrag; Ellis, John; Harutyunyan, Artem; Marquina, Miguel; Mato, Pere; Schulz, Holger; Segal, Ben; Sharma, Archana; Skands, Peter; Chen Gang; Wu Jie; Wu Wenjing; Garcia Quintas, David; Grey, Francois; Lombrana Gonzalez, Daniel; Rantala, Jarno; Weir, David; Yadav, Rohit

    2011-01-01

    Computing for the LHC, and for HEP more generally, is traditionally viewed as requiring specialized infrastructure and software environments, and therefore not compatible with the recent trend in v olunteer computing , where volunteers supply free processing time on ordinary PCs and laptops via standard Internet connections. In this paper, we demonstrate that with the use of virtual machine technology, at least some standard LHC computing tasks can be tackled with volunteer computing resources. Specifically, by presenting volunteer computing resources to HEP scientists as a v olunteer cloud , essentially identical to a Grid or dedicated cluster from a job submission perspective, LHC simulations can be processed effectively. This article outlines both the technical steps required for such a solution and the implications for LHC computing as well as for LHC public outreach and for participation by scientists from developing regions in LHC research.

  2. Resistive wall instability for the LHC: intermediate review

    CERN Document Server

    Brandt, D

    2001-01-01

    As the design of some basic components of the LHC becomes available, it is possible to refine the evaluation of the expected contribution of these elements to the total impedance budget of the machine. The LHC beam-screen being expected to be the main contributor for the resistive wall effect, it appeared justified to review the impedance budget, taking into account the latest available data. This note first recalls the original estimations presented in the LHC Conceptual Design [1], then presents an updated review of the instability rise times and finally discusses a possible reduction of this rather large contribution. ------------- !!Note!!: Please note that updated values for the LHC impedance budget are now available from the report CERN LHC Project Report 585 (Coupled Bunch Instabilities in the LHC, D. Angal-Kalinin and L. Vos, EPAC, July 2002 ).

  3. Plans for the upgrade of the LHC injectors

    CERN Document Server

    Garoby, R; Goddard, B; Hanke, K; Meddahi, M; Vretenar, M

    2011-01-01

    The LHC injectors upgrade (LIU) project has been launched at the end of 2010 to prepare the CERN accelerator complex for reliably providing beam with the challenging characteristics required by the high luminosity LHC until at least 2030. Based on the work already started on Linac4, PS Booster, PS and SPS, the LIU project coordinates studies and implementation, and interfaces with the high luminosity LHC (HL-LHC) project which looks after the upgrade of the LHC itself, expected by the end of the present decade. The anticipated beam characteristics are described, as well as the status of the studies and the solutions envisaged for improving the injector performances.

  4. The discovery of the undivisible. Quanta, quarks, and the discovery of the Higgs particle. 2. ed.; Die Entdeckung des Unteilbaren. Quanten, Quarks und die Entdeckung des Higgs-Teilchens

    Energy Technology Data Exchange (ETDEWEB)

    Resag, Joerg

    2014-04-01

    In the middle of Europe one of the largest and most complex machine went into operation, which we humans have ever built: The Large Hadron Collider (LHC). With it, a window opens in a new world that holds many secrets: What gives the particles of matter their mass? Are there hidden dimensions of space? Is their a deeper connection between particles with different spin (supersymmetry)? What is the dark matter that permeates our universe? Does the Higgs particle exist? With this book the reader is immersed in this wonderful world that we humans have discovered in the modern era: Atoms and their substructure of quarks and leptons, the enigmatic quantum mechanics, particles of the light, Einstein's web of space and time, the four interactions, and finally the new world, in which the LHC just penetrates and in which we assume Higgs particles, supersymmetry, and possibly first signatures for the string theory. The first assumption could be meanwhile confirmed: In the summer 2012 at the LHC the discovery of the Higgs particle was announced. After reading it is clear: We live in an astonishing world and are just about to make a decisive step to go forward in unraveling its mysteries. For the 2nd edition the author has actualized the book and supplemented by the latest findings.

  5. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye

    Science.gov (United States)

    Chen, Li; Liu, Cheng; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Li, Shayu; Yang, Chunhong; Yang, Guoqiang

    2014-07-01

    The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.

  6. Very forward measurements at the LHC

    CERN Document Server

    Berretti, Mirko

    2017-01-01

    In this talk we present a selection of forward physics results recently obtained with the run-1 and run-2 LHC data by the CMS, LHCf and TOTEM experiments. The status of the very forward LHC proton spectrometer, CT-PPS, is discussed: emphasis is given to the physics potential of CT-PPS and to the analyses that are currently ongoing with the data collected in 2016. Very recent forward measurements obtained with the LHCf and the CMS-CASTOR calorimeter are then addressed. In particular, CMS measured the inclusive energy spectrum in the very forward direction for proton-proton collisions at a center-of-mass energy of 13 TeV and the jet cross sections for p+Pb collisions at 5.02 TeV. The LHCf experiment has instead recently published the inclusive energy spectra of forward photons for pp collisions at 13 TeV. Finally, the new measurements of the total, elastic and inelastic cross sections obtained by the TOTEM collaboration at 2.76 and 13 TeV center of mass energy are presented.

  7. Statistical Model Predictions for p+p and Pb+Pb Collisions at LHC

    CERN Document Server

    Kraus, I; Oeschler, H; Redlich, K; Wheaton, S

    2009-01-01

    Particle production in p+p and central Pb+Pb collisions at LHC is discussed in the context of the statistical thermal model. For heavy-ion collisions, predictions of various particle ratios are presented. The sensitivity of several ratios on the temperature and the baryon chemical potential is studied in detail, and some of them, which are particularly appropriate to determine the chemical freeze-out point experimentally, are indicated. Considering elementary interactions on the other hand, we focus on strangeness production and its possible suppression. Extrapolating the thermal parameters to LHC energy, we present predictions of the statistical model for particle yields in p+p collisions. We quantify the strangeness suppression by the correlation volume parameter and discuss its influence on particle production. We propose observables that can provide deeper insight into the mechanism of strangeness production and suppression at LHC.

  8. LHC vector resonance searches in the tt̄Z final state

    Energy Technology Data Exchange (ETDEWEB)

    Backović, Mihailo [Center for Cosmology, Particle Physics and Phenomenology - CP3,Universite Catholique de Louvain,Louvain-la-neuve (Belgium); Flacke, Thomas [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon (Korea, Republic of); Department of Physics, Korea University,Seoul 02841 (Korea, Republic of); Jain, Bithika [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Lee, Seung J. [Department of Physics, Korea University,Seoul 02841 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of)

    2017-03-23

    LHC searches for BSM resonances in l{sup +}l{sup −}, jj, tt̄,γγ and VV final states have so far not resulted in discovery of new physics. Current results set lower limits on mass scales of new physics resonances well into the O(1) TeV range, assuming that the new resonance decays dominantly to a pair of Standard Model particles. While the SM pair searches are a vital probe of possible new physics, it is important to re-examine the scope of new physics scenarios probed with such final states. Scenarios where new resonances decay dominantly to final states other than SM pairs, even though well theoretically motivated, lie beyond the scope of SM pair searches. In this paper we argue that LHC searches for (vector) resonances beyond two particle final states would be useful complementary probes of new physics scenarios. As an example, we consider a class of composite Higgs models, and identify specific model parameter points where the color singlet, electrically neutral vector resonance ρ{sub 0} decays dominantly not to a pair of SM particles, but to a fermionic top partner T{sub f1} and a top quark, with T{sub f1}→tZ. We show that dominant decays of ρ{sub 0}→T{sub f1}t in the context of Composite Higgs models are possible even when the decay channel to a pair of T{sub f1} is kinematically open. Our analysis deals with scenarios where both m{sub ρ} and m{sub T{sub f{sub 1}}} are of O(1) TeV, leading to highly boosted tt̄Z final state topologies. We show that the particular composite Higgs scenario we consider is discoverable at the LHC13 with as little as 30 fb{sup −1}, while being allowed by other existing experimental constraints.

  9. Upgrades to the SPS-to-LHC Transfer Line Beam Stoppers for the LHC High-Luminosity Era

    CERN Document Server

    Kain, Verena; Fraser, Matthew; Goddard, Brennan; Meddahi, Malika; Perillo Marcone, Antonio; Steele, Genevieve; Velotti, Francesco

    2016-01-01

    Each of the 3 km long transfer lines between the SPS and the LHC is equipped with two beam stoppers (TEDs), one at the beginning of the line and one close to the LHC injection point, which need to absorb the full transferred beam. The beam stoppers are used for setting up the SPS extractions and transfer lines with beam without having to inject into the LHC. Energy deposition and thermo-mechanical simulations have, however, shown that the TEDs will not be robust enough to safely absorb the high intensity beams foreseen for the high-luminosity LHC era. This paper will summarize the simulation results and limitations for upgrading the beam stoppers. An outline of the hardware upgrade strategy for the TEDs together with modifications to the SPS extraction interlock system to enforce intensity limitations for beam on the beam stoppers will be given.

  10. QCD in gauge-boson production at the LHC

    CERN Document Server

    Schott, Matthias; The ATLAS collaboration

    2018-01-01

    Measurements of the Drell-Yan production of W and Z/gamma* bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS and CMS collaborations have performed several high precision measurements at different center-of-mass energies, ranging from single to triple differential cross sections. These measurements are the key in improving physics modelling uncertainties of electroweak precision measurements at the LHC. Moreover, perturbative QCD can be tested further in a multi-scale environment, when studying the production of jets in association with single and di-bosons final states. In this talk, we review the latest measurements, discuss the compatibility between the experiments and compare the results to the state-of-the-art QCD calculations and Monte Carlo simulations, as well their potential impact on improving our understanding PDFs.

  11. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential.

    Science.gov (United States)

    Janero, David R

    2014-08-01

    Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.

  12. Parton distributions with LHC data

    CERN Document Server

    Ball, Richard D.; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, Jose I.; Rojo, Juan; Ubiali, Maria

    2013-01-01

    We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all the relevant LHC data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z lepton rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run, and ATLAS inclusive jet cross-sections from the 2010 run. We introduce an improved implementation of the FastKernel method which allows us to fit to this extended data set, and also to adopt a more effective minimization methodology. We present the NNPDF2.3 PDF sets, and compare them to the NNPDF2.1 sets to assess the impact of the LHC data. We find that all the LHC data are broadly consistent with each other and with all the older data sets included in the fit. We present predictions for various ...

  13. LS1 general planning and strategy for the LHC, LHC injectors

    International Nuclear Information System (INIS)

    Foraz, K.

    2012-01-01

    The goal of Long Shutdown 1 (LS1) is to perform the full maintenance of equipment and the necessary consolidation and upgrade activities in order to ensure reliable LHC operation at nominal performance from mid-2014. LS1 is scheduled to last 20 months. LS1 not only concerns the LHC but also its injectors. To ensure resources will be available an analysis is in progress to detect conflict/overload and decide what is compulsory, what we can afford, and what can be postponed until LS2. The strategy, time key drivers, constraints, and draft schedule are presented here. (author)

  14. Performance of the ATLAS tau trigger with 7 TeV collision data at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Mary Rose; Shamim, Mansoora [Department of Physics, 1274 University of Oregon, Eugene, OR 97403-1274 (United States)

    2010-07-01

    Tau leptons are a fundamental ingredient in the discovery of New Physics at the LHC. The Standard Model and various Supersymmetric models predict an abundant production of taus with respect to other leptons. The reconstruction of hadronic {tau} decay at the trigger level, although a very challenging task in proton proton collisions environment, allows to double the signal sample collected, and provides additional discovery power to final states including {tau} leptons. In this contribution we show the present understanding of the tau trigger system in recent proton proton collisions at 7 TeV collected with the ATLAS detector. We present the most relevant quantities used in the different stages of the trigger selection, and the trigger efficiencies as a function of pT and pseudorapidity using Tau-like QCD events passing the offline reconstruction and identification selection. Finally, we present the prospects for tau trigger measurements with real taus from W {yields} {tau} {nu} and Z{yields} {tau} {tau} processes. (authors)

  15. Charge multiplication detectors for use in the HL-LHC and measurement of the production cross-section in pp collisions of a W boson in association with a charm quark at √(s) = 8 TeV with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, Christopher

    2016-04-01

    measurements taken at lower energies. The LHC will need a major upgrade in the 2020s to increase its longevity and extend its discovery potential. The High Luminosity LHC, or simply the HL-LHC, is a planned luminosity upgrade of the machine which will increase the integrated luminosity ten fold. By the time of the upgrade, the current machine components will have aged considerably, and the silicon tracking detectors in ATLAS and CMS will have already undergone severe radiation damage. The more extreme radiation environment in the HL-LHC will present unique challenges that must be overcome, not just to the silicon detectors, but also to the electronics and physics analyses, which will have to cope with increased data volumes and pileup conditions. The CERN RD50 collaboration has been investigating radiation hard semiconductor materials, with the main driver being radiation damage posed by the HL-LHC conditions. Several designs have been proposed to replace the silicon trackers in ATLAS and CMS, with one such option being charge multiplication detectors. Charge multiplication detectors aim to mitigate the radiation induced signal loss in silicon detectors by means of impact ionization. The electric fields in such devices must reach a critical point for multiplication of the signal to occur. This can be achieved in a variety of ways, from simple geometrical designs to changes in the wafer processing. An open question has been the stability of this charge multiplication mode under large bias voltages and long time scales, as would be relevant in operational conditions at the LHC. The work in this thesis aims to address this, with emphasis on the feasibility of such devices as radiation-hard detectors for use in the HL-LHC.

  16. Charge multiplication detectors for use in the HL-LHC and measurement of the production cross-section in pp collisions of a W boson in association with a charm quark at √(s) = 8 TeV with the ATLAS detector

    International Nuclear Information System (INIS)

    Betancourt, Christopher

    2016-01-01

    measurements taken at lower energies. The LHC will need a major upgrade in the 2020s to increase its longevity and extend its discovery potential. The High Luminosity LHC, or simply the HL-LHC, is a planned luminosity upgrade of the machine which will increase the integrated luminosity ten fold. By the time of the upgrade, the current machine components will have aged considerably, and the silicon tracking detectors in ATLAS and CMS will have already undergone severe radiation damage. The more extreme radiation environment in the HL-LHC will present unique challenges that must be overcome, not just to the silicon detectors, but also to the electronics and physics analyses, which will have to cope with increased data volumes and pileup conditions. The CERN RD50 collaboration has been investigating radiation hard semiconductor materials, with the main driver being radiation damage posed by the HL-LHC conditions. Several designs have been proposed to replace the silicon trackers in ATLAS and CMS, with one such option being charge multiplication detectors. Charge multiplication detectors aim to mitigate the radiation induced signal loss in silicon detectors by means of impact ionization. The electric fields in such devices must reach a critical point for multiplication of the signal to occur. This can be achieved in a variety of ways, from simple geometrical designs to changes in the wafer processing. An open question has been the stability of this charge multiplication mode under large bias voltages and long time scales, as would be relevant in operational conditions at the LHC. The work in this thesis aims to address this, with emphasis on the feasibility of such devices as radiation-hard detectors for use in the HL-LHC.

  17. Academic Training: A walk through the LHC injector chain

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 21, 22, 23 March from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 A walk through the LHC injector chain M. BENEDIKT, P. COLLIER, K. SCHINDL /CERN-AB Proton linac, PS Booster, PS, SPS and the two transfer channels from SPS to LHC are used for LHC proton injection. The lectures will review the features of these faithful machines and underline the modifications required for the LHC era. Moreover, an overview of the LHC lead ion injector scheme from the ion source through ion linac, LEIR, PS and SPS right to the LHC entry will be given. The particular behaviour of heavy ions in the LHC will be sketched and the repercussions on the injectors will be discussed. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  18. Dashboard for the LHC experiments

    International Nuclear Information System (INIS)

    Andreeva, J; Cirstoiu, C; Miguel, M D F D; Ivanchenko, A; Gaidioz, B; Herrala, J; Janulis, M; Maier, G; Maguire, E J; Rivera, R P; Rocha, R; Saiz, P; Sidorova, I; Belov, S; Berejnoj, A; Kodolova, O; Chen, Y; Chen, T; Chiu, S; Munro, C

    2008-01-01

    In this paper we present the Experiment Dashboard monitoring system, which is currently in use by four Large Hadron Collider (LHC) experiments. The goal of the Experiment Dashboard is to monitor the activities of the LHC experiments on the distributed infrastructure, providing monitoring data from the virtual organization (VO) and user perspectives. The LHC experiments are using various Grid infrastructures (LCG/EGEE, OSG, NDGF) with correspondingly various middleware flavors and job submission methods. Providing a uniform and complete view of various activities like job processing, data movement and publishing, access to distributed databases regardless of the underlying Grid flavor is the challenging task. In this paper we will describe the Experiment Dashboard concept, its framework and main monitoring applications

  19. The LHC road at CERN

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To explore the 1 TeV energy scale where fundamental particle interactions should encounter new conditions, two major routes were proposed - a high magnetic field proton collider in the LEP tunnel, dubbed LHC for Large Hadron Collider, and the CERN Linear Collider (CLIC) to supply beams of electrons and positrons. Exploratory studies have shown that while CLIC remains a valid long-term goal, LHC appears as the most cost-effective way for CERN to enter the 1 TeV arena. High-field superconducting magnet prototype work demonstrates that a 'two-in-one' design supplying the 10 tesla fields needed to handle LHC's 8 TeV proton beams (collision energy 16 TeV) is a practical proposition. (orig./HSI).

  20. Inclusive production at LHC energies

    International Nuclear Information System (INIS)

    Merino, C.; Pajares, C.; Shabelski, Yu.M.

    2011-01-01

    We consider the first LHC data for pp collisions in the framework of Regge theory. The integral cross sections and inclusive densities of secondaries are determined by the Pomeron exchange, and we present the corresponding predictions for them. The first measurements of inclusive densities in the midrapidity region are in agreement with these predictions. The contribution of the baryon-number transfer due to String Junction diffusion in the rapidity space is at the origin of the differences in the inclusive spectra of particle and antiparticle in the central region, and this effect could be significant at LHC energies. We discuss the first data of ALICE and LHCb collaborations on the baryon/antibaryon asymmetry at LHC. (orig.)

  1. Search for heavy sterile neutrinos in trileptons at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Claudio O. [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). CCTVal y Dept. of Physics; Kim, C.S. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Physics and IPAP; Wang, Kechen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics

    2017-03-15

    We present a search strategy for both Dirac and Majorana sterile neutrinos from the purely leptonic decays of W{sup ±}→e{sup ±}e{sup ±}μ{sup -+}ν and μ{sup ±}μ{sup ±}e{sup -+}ν at the 14 TeV LHC. The discovery and exclusion limits for sterile neutrinos are shown using both the Cut-and-Count (CC) and Multi-Variate Analysis (MVA) methods. We also discriminate between Dirac and Majorana sterile neutrinos by exploiting a set of kinematic observables which differ between the Dirac and Majorana cases. We find that the MVA method, compared to the more common CC method, can greatly enhance the discovery and discrimination limits. Two benchmark points with sterile neutrino mass m{sub N}=20 GeV and 50 GeV are tested. For an integrated luminosity of 3000 fb{sup -1}, sterile neutrinos can be found with 5σ significance if heavy-to-light neutrino mixings vertical stroke U{sub Ne} vertical stroke {sup 2}∝ vertical stroke U{sub Nμ} vertical stroke {sup 2}∝10{sup -6}, while Majorana vs. Dirac discrimination can be reached if at least one of the mixings is of order 10{sup -5}.

  2. High Intensity Beam Test of Low Z Materials for the Upgrade of SPS-to-LHC Transfer Line Collimators and LHC Injection Absorbers

    CERN Document Server

    Maciariello, Fausto; Butcher, Mark; Calviani, Marco; Folch, Ramon; Kain, Verena; Karagiannis, Konstantinos; Lamas Garcia, Inigo; Lechner, Anton; Nuiry, Francois-Xavier; Steele, Genevieve; Uythoven, Jan

    2016-01-01

    In the framework of the LHC Injector Upgrade (LIU) and High-Luminosity LHC (HL-LHC) project, the collimators in the SPS-to LHC transfer lines will undergo important modifications. The changes to these collimators will allow them to cope with beam brightness and intensity levels much increased with respect to their original design parameters: nominal and ultimate LHC. The necessity for replacement of the current materials will need to be confirmed by a test in the High Radiation to Materials (HRM) facility at CERN. This test will involve low Z materials (such as Graphite and 3-D Carbon/Carbon composite), and will recreate the worst case scenario those materials could see when directly impacted by High luminosity LHC (HL-LHC) or Batch Compression Merging and Splitting (BCMS) beams. Thermo-structural simulations used for the material studies and research, the experiment preparation phase, the experiment itself, pre irradiation analysis (including ultrasound and metrology tests on the target materials), the resul...

  3. Abort Gap Cleaning for LHC Run 2

    Energy Technology Data Exchange (ETDEWEB)

    Uythoven, Jan [CERN; Boccardi, Andrea [CERN; Bravin, Enrico [CERN; Goddard, Brennan [CERN; Hemelsoet, Georges-Henry [CERN; Höfle, Wolfgang [CERN; Jacquet, Delphine [CERN; Kain, Verena [CERN; Mazzoni, Stefano [CERN; Meddahi, Malika [CERN; Valuch, Daniel [CERN; Gianfelice-Wendt, Eliana [Fermilab

    2014-07-01

    To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  4. Abort Gap Cleaning for LHC Run 2

    CERN Document Server

    Uythoven, J; Bravin, E; Goddard, B; Hemelsoet, GH; Höfle, W; Jacquet, D; Kain, V; Mazzoni, S; Meddahi, M; Valuch, D

    2015-01-01

    To minimise the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  5. Discovery Mondays: Transporting tonnes of equipment with millimetre precision

    CERN Multimedia

    2005-01-01

    Transporting huge, very heavy but also frequently fragile items at CERN often presents a real challenge. The task becomes even more challenging when it involves lowering huge LHC machine and detector components 100 metres below ground. The Laboratory's Transport Service uses various techniques and different types of transport and heavy handling equipment to perform these delicate operations. You will have an opportunity to find out more about how they do their job at the next Discovery Monday event. You will have a close encounter with the trailer used to transport the impressive 15 metre-long, 35-tonne dipole magnets. You will be able to install mock-up magnets in a beam line or test your skill using heavy handling equipment to carry out a most unusual fishing operation. You will be able to take a trip in a three-metre-high lorry and have a once-in-a-lifetime opportunity to operate a crane. You will also be able to take a test drive in the famous roll-over simulator vehicle. At the coming Discovery Monday...

  6. Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    CERN Document Server

    Brambilla, A; Jolliot, M; Bravin, E

    2008-01-01

    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ioni...

  7. Performance Evaluation of the SPS Scraping System in View of the High Luminosity LHC

    CERN Document Server

    AUTHOR|(SzGeCERN)659273; Cerutti, Francesco

    Injection in the LHC is a delicate moment, since the LHC collimation system cannot offer adequate protection during beam transfer. For this reason, a complex chain of injection protection devices has been put in place. Among them, the SPS scrapers are the multi-turn cleaning system installed in the SPS aimed at halo removal immediately before injection in the LHC. The upgrade in luminosity of the LHC foresees beams brighter than those currently available in machine, posing serious problems to the performance of the existing injection protection systems. In particular, the integrity of beam-intercepting devices is challenged by unprecedented beam parameters, leading to interactions potentially destructive. In this context, a new design of scrapers has been proposed, aimed at improved robustness and performance. This thesis compares the two scraping systems, i.e. the existing one and the one proposed for upgrade. Unlike any other collimation system for regular halo cleaning, both are "fast" systems, characteris...

  8. Proton-Nucleus Collisions at the LHC: Scientific Opportunities and Requirements

    CERN Document Server

    Salgado, C A; Arleo, F; Armesto, N; Botje, M; Cacciari, M; Campbell, J; Carli, C; Cole, B; D'Enterria, D; Gelis, F; Guzey, V; Hencken, K; Jacobs, P; Jowett, J M; Klein, S R; Maltoni, F; Morsch, A; Piotrzkowski, K; Qiu, J W; Satogata, T; Sikler, F; Strikman, M; Takai, H; Vogt, R; Wessels, J P; White, S N; Wiedemann, U A; Wyslouch, B; Zhalov, M

    2012-01-01

    Proton-nucleus (p+A) collisions have long been recognized as a crucial component of the physics programme with nuclear beams at high energies, in particular for their reference role to interpret and understand nucleus-nucleus data as well as for their potential to elucidate the partonic structure of matter at low parton fractional momenta (small-x). Here, we summarize the main motivations that make a proton-nucleus run a decisive ingredient for a successful heavy-ion programme at the Large Hadron Collider (LHC) and we present unique scientific opportunities arising from these collisions. We also review the status of ongoing discussions about operation plans for the p+A mode at the LHC.

  9. Report from LHC MD 2158: IR-nonlinear studies

    CERN Document Server

    Maclean, Ewen Hamish; Cruz Alaniz, Emilia; Dalena, Barbara; Dilly, Joschua Werner; Fol, Elena; Giovannozzi, Massimo; Hofer, Michael; Malina, Lukas; Persson, Tobias Hakan Bjorn; Coello De Portugal - Martinez Vazquez, Jaime Maria; Skowronski, Piotr Krzysztof; Solfaroli Camillocci, Matteo; Tomas Garcia, Rogelio; Garcia-Tabares Valdivieso, Ana; Wegscheider, Andreas; CERN. Geneva. ATS Department

    2018-01-01

    For the first time the LHC is running for luminosity-production with local corrections for nonlinear errors in the ATLAS and CMS insertions. While a major step forward in LHC optics commissioning strategy (and one which has yielded clear operational benefits) considerable challenges remain to be overcome, both in regard to the optimization of LHC optics and in order to ensure successful commissioning of the High-Luminosity LHC. MD 2158 sought to follow up several aspects of the 2017 nonlinear optics commissioning which are not yet understood, and by enhancing sextupole and dodecapole sources in the ATLAS and CMS insertions explore the prospects for linear and nonlinear optics commissioning in the HL-LHC.

  10. The B-Physics Programme of ATLAS in LHC Run-II and in HL-LHC

    CERN Document Server

    Reznicek, P; The ATLAS collaboration

    2014-01-01

    Slides for the talk to be given at Beauty 2014 conference in Edinburgh, 14-18 July 2014. The talk describes the ATLAS B-physics programme planned to future LHC runs: Run 2, 3 and HL-LHC. The relevant ATLAS detector upgrades are dicussed and a results of pilot sensitivity study of $B_{s} \\to J/\\psi \\phi$ measurement in the future runs are shown.

  11. Requirements for the LHC collimation system

    CERN Document Server

    Assmann, R W; Brugger, M; Bruno, L; Burkhardt, H; Burtin, G; Dehning, Bernd; Fischer, C; Goddard, B; Gschwendtner, E; Hayes, M; Jeanneret, J B; Jung, R; Kain, V; Kaltchev, D I; Lamont, M; Schmidt, R; Vossenberg, Eugène B; Weisse, E; Wenninger, J

    2002-01-01

    The LHC requires efficient collimation during all phases of the beam cycle. Collimation plays important roles in prevention of magnet quenches from regular beam diffusion, detection of abnormal beam loss and subsequent beam abort, radiation protection, and passive protection of the superconducting magnets in case of failures. The different roles of collimation and the high beam power in the LHC impose many challenges for the design of the collimation system. In particular, the collimators must be able to withstand the expected particle losses. The requirements for the LHC collimation system are presented.

  12. The HL-LHC accelerator physics challenges

    CERN Document Server

    Fartoukh, S

    2014-01-01

    We review the conceptual baseline of the HL-LHC project, putting into perspective the main beam physics challenges of this new collider in comparison with the existing LHC, and the series of solutions and possible mitigation measures presently envisaged.

  13. The HL-LHC Accelerator Physics Challenges

    Science.gov (United States)

    Fartoukh, S.; Zimmermann, F.

    The conceptual baseline of the HL-LHC project is reviewed, putting into perspective the main beam physics challenges of this new collider in comparison with the existing LHC, and the series of solutions and possible mitigation measures presently envisaged.

  14. The HL-LHC accelerator physics challenges

    CERN Document Server

    Fartoukh, S

    2015-01-01

    The conceptual baseline of the HL-LHC project is reviewed, putting into perspective the main beam physics challenges of this new collider in comparison with the existing LHC, and the series of solutions and possible mitigation measures presently envisaged.

  15. Search for the Higgs boson decaying to four leptons in the ATLAS detector at LHC and studies of muon isolation and energy loss

    International Nuclear Information System (INIS)

    Lenzi, B.

    2010-01-01

    The central subject of this thesis is the evaluation of the discovery potential of the Higgs boson through its decay into four leptons (electrons and muons) in the ATLAS experiment installed at the Large Hadron Collider (LHC). The LHC was designed to accelerate proton beams at a center of mass energy of 14 TeV and started its physics program with 7 TeV collisions in the beginning of 2010. An inclusive analysis involving all the production modes and an exclusive one aiming at production through vector boson fusion (VBF), studied for the first time in the collaboration, are presented. Both are capable of discovering the Higgs boson after a few years of LHC operation, with integrated luminosities of 30 fb -1 . The first one covers most part of a Higgs mass window from 130 to 500 GeV. The second one concentrates on masses around 180 GeV and above, exploiting the presence of high energy jets with large separations in pseudo-rapidity to increase the signal over background ratio. An important part of the document is devoted to the reconstruction of muon isolation and energy loss in the ATLAS calorimeters. A software package that optimized the way of treating the energy deposits was developed and tested on simulated data and cosmic-ray events, leading to improvements in the muon momentum resolution and the distinction between muons from heavy quark and vector boson decays. As a consequence of the last result, one of the dominant backgrounds to the H → 4μ channel, Zb b-bar, is expected to be reduced by almost a factor of two. (author) [fr

  16. A scientometric prediction of the discovery of the first potentially habitable planet with a mass similar to Earth.

    Directory of Open Access Journals (Sweden)

    Samuel Arbesman

    Full Text Available BACKGROUND: The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. METHODOLOGY/PRINCIPAL FINDINGS: Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. CONCLUSIONS/SIGNIFICANCE: Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.

  17. Standard Model at the LHC 2017

    CERN Document Server

    2017-01-01

    The SM@LHC 2017 conference will be held May 2-5, 2017 at Nikhef, Amsterdam. The meeting aims to bring together experimentalists and theorists to discuss the phenomenology, observational results and theoretical tools for Standard Model physics at the LHC.

  18. The LHC detectors and the first CMS data

    CERN Document Server

    Green, Dan

    2015-01-01

    This chapter describes the subsystems of a generic LHC detector and explains how the values of the detector parameters were selected. The design of the LHC detectors follows from the requirement of confronting electroweak symmetry breaking in a decisive fashion. The LHC accelerator also meets those requirements.

  19. LHC-ILC synergy

    CERN Document Server

    Godbole, Rohini M

    2006-01-01

    I will begin by making a few general comments on the synergy between the Large Hadron Collider (LHC) which will go in action in 2007 and the International Linear Collider (ILC) which is under planning. I will then focus on the synergy between the LHC and the PLC option at the ILC, which is expected to be realised in the later stages of the ILC program. In this I will cover the possible synergy in the Higgs sector (with and without CP violation), in the determination of the anomalous vector boson couplings and last but not the least, in the search for extra dimensions and radions.

  20. LHC beampipe interconnection

    CERN Document Server

    Particle beams circulate for around 10 hours in the Large Hadron Collider (LHC). During this time, the particles make four hundred million revolutions of the machine, travelling a distance equivalent to the diameter of the solar system. The beams must travel in a pipe which is emptied of air, to avoid collisions between the particles and air molecules (which are considerably bigger than protons). The beam pipes are pumped down to an air pressure similar to that on the surface of the moon. Much of the LHC runs at 1.9 degrees above absolute zero. When material is cooled, it contracts. The interconnections must absorb this contraction whilst maintaining electrical connectivity.

  1. Literature in Focus: Engines of Discovery Meet the author Ted Wilson

    CERN Multimedia

    2007-01-01

    Ted Wilson is a world-renowned expert on particle accelerators and a brilliant speaker. He came to CERN in 1967, where he worked on the SPS and collaborated closely with John Adams, taking part in the design and commissioning of the accelerator. In 1980, he joined the PS and worked on the antiproton accumulator. In 1991, he became a member of the LHC Committee and was entrusted with the task of writing a report on the design of the future accelerator. This book for the first time chronicles the development of particle accelerators from the invention of electrostatic accelerators, linear accelerators and the cyclotron to the colliders of today. It also addresses accelerators used as sources of x-rays, for medical purposes and in industrial applications. The book identifies the crucial discoveries in applied physics and engineering that have driven the field and gives the reader insight into the people who made these discoveries as well as the methods they used. Come a...

  2. The CMS Tracker upgrade for HL-LHC

    CERN Document Server

    Ahuja, Sudha

    2017-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5 $\\times$ $10^{34} $cm$^{-2}$s$^{-1}$ in 2028, to possibly reach an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running beyond design specifications, and CMS Phase1 Pixel Detector will not be able to survive HL-LHC radiation conditions and CMS will need completely new devices, in order to fully exploit the high-demanding operating conditions and the delivered luminosity. The new Outer Tracker should have also trigger capabilities. To achieve such goals, R$\\&$D activities are ongoing to explore options both for the Outer Tracker, and for the pixel Inner Tracker. Solutions are being developed that would allow including tracking information at Level-1. The design choices for the Tracker upgrades are discussed along with some highlights...

  3. Anatomy of the inert two-Higgs-doublet model in the light of the LHC and non-LHC dark matter searches

    Science.gov (United States)

    Belyaev, Alexander; Cacciapaglia, Giacomo; Ivanov, Igor P.; Rojas-Abatte, Felipe; Thomas, Marc

    2018-02-01

    The inert two-Higgs-doublet model (i2HDM) is a theoretically well-motivated example of a minimal consistent dark matter (DM) model which provides monojet, mono-Z , mono-Higgs, and vector-boson-fusion +ETmiss signatures at the LHC, complemented by signals in direct and indirect DM search experiments. In this paper we have performed a detailed analysis of the constraints in the full five-dimensional parameter space of the i2HDM, coming from perturbativity, unitarity, electroweak precision data, Higgs data from the LHC, DM relic density, direct/indirect DM detection, and LHC monojet analysis, as well as implications of experimental LHC studies on disappearing charged tracks relevant to a high DM mass region. We demonstrate the complementarity of the above constraints and present projections for future LHC data and direct DM detection experiments to probe further i2HDM parameter space. The model is implemented into the CalcHEP and micrOMEGAs packages, which are publicly available at the HEPMDB database, and it is ready for a further exploration in the context of the LHC, relic density, and DM direct detection.

  4. Analysis of the Dependability of the LHC Quench Detection System During LHC Run 2 and Further System Evolution

    OpenAIRE

    Podzorny, Tomasz; Calcoen, Daniel; Denz, Reiner; Siemko, Andrzej; Spasic, Jelena; Steckert, Jens

    2017-01-01

    The quench detection system (QDS) of the LHC superconducting circuits is an essential part of the LHC machine protection and ensures the integrity of key elements of the accelerator. The large amount of hardwired and software interlock channels of the QDS requires a very high system dependability in order to reduce the risk of affecting the successful operation of the LHC. This contribution will present methods and tools for systematic fault tracking and analysis, and will discuss recent resu...

  5. LHC First Beam 2008

    CERN Multimedia

    Tuura, L

    2008-01-01

    The CMS Centre played a major part in the LHC First Beam Event on September 10th 2008: it was a central point for CMS, hosting journalists from all over the world and providing live link-ups to collaborating institutes as well as, of course, monitoring events as they happened at Point 5. It was also a venue for celebration as the beam completed circuits of the LHC in both directions, passing successfully through the detector (Courtesy of Lassi Tuura)

  6. QCD and hard diffraction at the LHC

    International Nuclear Information System (INIS)

    Albrow, Michael G.; Fermilab

    2005-01-01

    As an introduction to QCD at the LHC I given an overview of QCD at the Tevatron, emphasizing the high Q 2 frontier which will be taken over by the LHC. After describing briefly the LHC detectors I discuss high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. I introduce the FP420 project to measure the scattered protons 420 m downstream of ATLAS and CMS

  7. Performance reach in the LHC for 2012

    International Nuclear Information System (INIS)

    Arduini, G.

    2012-01-01

    Based on the 2011 experience and Machine Development study results, the performance reach of the LHC with 25 and 50 ns beams will be addressed for operation at 3.5 and 4 TeV. The possible scrubbing scenarios and potential intensity limitations resulting from vacuum, heating will be taken into account wherever possible. The paper mainly covers the performance of the two high luminosity regions in IR1 and IR5. (author)

  8. 6. workshop on electronics for LHC experiments. Proceedings

    International Nuclear Information System (INIS)

    2000-01-01

    The purpose of the workshop was to review the electronics for LHC experiments and to identify areas and encourage common efforts for the development of electronics within and between the different LHC experiments and to promote collaboration in the engineering and physics communities involved in the LHC activities. (orig.)

  9. 6. workshop on electronics for LHC experiments. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-25

    The purpose of the workshop was to review the electronics for LHC experiments and to identify areas and encourage common efforts for the development of electronics within and between the different LHC experiments and to promote collaboration in the engineering and physics communities involved in the LHC activities. (orig.)

  10. LHC detectors trigger/DAQ at LHC

    CERN Document Server

    Sphicas, Paris

    1998-01-01

    At its design luminosity, the LHC will deliver hundreds of millions of proton-proton interactions per second. Storage and computing limitations limit the number of physics events that can be recorded to about 100 per second. The selection will be carried out by the Trigger and data acquisition systems of the experiments. This lecture will review the requirements, architectures and various designs currently considered.

  11. Beam dynamics requirements for HL–LHC electrical circuits

    CERN Document Server

    Gamba, Davide; Cerqueira Bastos, Miguel; Coello De Portugal - Martinez Vazquez, Jaime Maria; De Maria, Riccardo; Giovannozzi, Massimo; Martino, Michele; Tomas Garcia, Rogelio

    2017-01-01

    A certain number of LHC magnets and relative electrical circuits will be replaced for the HL-LHC upgrade. The performance of the new circuits will need to be compatible with the current installation, and to provide the necessary improvements to meet the tight requirements of the new operational scenario. This document summarises the present knowledge of the performance and use of the LHC circuits and, based on this and on the new optics requirements, provides the necessary specifications for the new HL-LHC electrical circuits.

  12. LHC Cryogenics on the mend

    CERN Multimedia

    2004-01-01

    On 29 September, repairs began on the LHC cryogenic distribution line, or QRL, to replace a faulty part that occurs in the hundreds of elements of the line that are already on-site. The Accelerator Technology Department is designing a work programme to finish the repairs as soon as possible and minimize delays to the rest of the LHC project.

  13. LHC Report: imaginative injectors

    CERN Multimedia

    Pierre Freyermuth for the LHC team

    2016-01-01

    A new bunch injection scheme from the PS to the SPS allowed the LHC to achieve a new peak luminosity record.   Figure 1: PSB multi-turn injection principle: to vary the parameters during injection with the aim of putting the newly injected beam in a different region of the transverse phase-space plan. The LHC relies on the injector complex to deliver beam with well-defined bunch populations and the necessary transverse and longitudinal characteristics – all of which fold directly into luminosity performance. There are several processes taking place in the PS Booster (PSB) and the Proton Synchrotron (PS) acting on the beam structure in order to obtain the LHC beam characteristics. Two processes are mainly responsible for the beam brightness: the PSB multi-turn injection and the PS radio-frequency (RF) gymnastics. The total number of protons in a bunch and the transverse emittances are mostly determined by the multi-turn Booster injection, while the number of bunches and their time spacin...

  14. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  15. UFOs in the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Grob, Laura [CERN, Geneva (Switzerland); Technische Universitaet Darmstadt (Germany)

    2016-07-01

    In the Large Hadron Collider (LHC) localized and recurring beam losses have been observed, which usually persist for several hundred microseconds. With increasing beam energy these losses were found to pose a serious risk to the machine availability, as some of these events can cause quenches in the superconducting magnets. The current understanding is that these losses are caused by falling microparticles that interact with the proton beam. To describe these so-called UFOs (unidentified falling objects) and their dynamics, a model was developed starting from the approach that only gravitational and electrostatic forces act on a neutrally charged particle. However, the model's results cannot reproduce the actual data from the LHC's beam loss monitors (BLMs), which indicates a more complex UFO dynamic. Experimental studies and further analysis of the BLM data are planned to investigate the UFO dynamics in greater detail and to understand origins and release mechanisms for microparticles in the LHC beam pipe.

  16. QCD@LHC International Conference

    CERN Document Server

    2016-01-01

    The particle physics groups of UZH and ETH will host the QCD@LHC2016 conference (22.8.-26.8., UZH downtown campus), which is part of an annual conference series bringing together theorists and experimentalists working on hard scattering processes at the CERN LHC, ranging from precision studies of Standard Model processes to searches for new particles and phenomena. The format of the conference is a combination of plenary review talks and parallel sessions, with the latter providing a particularly good opportunity for junior researchers to present their results. The conference will take place shortly after the release of the new data taken by the LHC in sping 2016 at a collision energy of 13TeV, expected to more than double the currently available data set. It will be one of the first opportunities to discuss these data in a broader context, and we expect the conference to become a very lively forum at the interface of phenomenology and experiment.

  17. LHC Report: Summer temperatures in the LHC

    CERN Multimedia

    Jan Uythoven for the LHC Team

    2012-01-01

    The LHC experiments have finished their data-taking period before the summer conferences. The machine has already delivered substantially more collisions to the experiments this year than in the whole of 2011. The LHC has now started a six-day Machine Development period, which will be followed by the second Technical Stop of the year.   The number of collisions delivered to the experiments is expressed in integrated luminosity. In 2011, the integrated luminosity delivered to both ATLAS and CMS was around 5.6 fb-1. On Monday 18 June, experiments finished taking data before the summer conferences and the integrated luminosity for 2012 so far is about 6.6 fb-1, well above the unofficial target of 5 fb-1. The LHC’s performance over the last week of running was so efficient that the injection kicker magnets – which heat up due to the circulating beam – did not have time to cool down between the subsequent fills. As the time constants for warming up and cooli...

  18. Longitudinal Beam measurements at the LHC: The LHC Beam Quality Monitor

    CERN Document Server

    Papotti, G; Follin, F; Wehrle, U

    2011-01-01

    The LHC Beam Quality Monitor is a system that measures individual bunch lengths and positions, similarly to the twin system SPS Beam Quality Monitor, from which it was derived. The pattern verification that the system provides is vital during the injection process to verify the correctness of the injected pattern, while the bunch length measurement is fed back to control the longitudinal emittance blow up performed during the energy ramp and provides a general indication of the health of the RF system. The algorithms used, the hardware implementation and the system integration in the LHC control infrastructure are presented in this paper, along with possible improvements.

  19. Successful test of SPS-to-LHC beamline

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    On 23 October there was great excitement in the Prevessin control room when, on the first attempt, a beam passed over 2.5 km down the new SPS-to-LHC transfer line, TI8, to within a few metres of the LHC tunnel. Members of the AB, AT and TS departments involved in the beamline and its test, celebrate their success with the Director General, Robert Aymar, and the LHC Project Leader, Lyn Evans.

  20. Successful test of SPS-to-LHC beamline

    CERN Multimedia

    2004-01-01

    On 23 October there was great excitement in the Prevessin control room when, on the first attempt, a beam passed over 2.5 km down the new SPS-to-LHC transfer line, TI8, to within a few metres of the LHC tunnel. Above: members of the AB, AT and TS departments involved in the beamline and its test, celebrate their success with the Director General, Robert Aymar, and the LHC Project Leader, Lyn Evans.