WorldWideScience

Sample records for levitated vehicle systems

  1. Potential Development of Vehicle Traction Levitation Systems with Magnetic Suspension

    Directory of Open Access Journals (Sweden)

    A.V. Kireev

    2015-03-01

    Full Text Available Below is given the brief analysis of development trend for vehicle traction levitation systems with magnetic suspension. It is presented the assessment of potential development of traction levitation systems in terms of their simplicity. The examples are considered of technical solutions focused on reducing the complexity of transport systems. It is proposed the forecast of their further development.

  2. A review of dynamic characteristics of magnetically levitated vehicle systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  3. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    Science.gov (United States)

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  4. Statics of levitated vehicle model with hybrid magnets

    Institute of Scientific and Technical Information of China (English)

    Desheng LI; Zhiyuan LU; Tianwu DONG

    2009-01-01

    By studying the special characteristics of permanent and electronic magnets, a levitated vehicle model with hybrid magnets is established. The mathematical model of the vehicle is built based on its dynamics equation by studying its machine structure and working principle. Based on the model, the basic characteristics and the effect between the excluding forces from permanent magnets in three different spatial directions are analyzed, statics characteristics of the interference forces in three different spatial directions are studied, and self-adjusting equilibrium characteristics and stabilization are analyzed. Based on the structure above, the vehicle can levitate steadily by control system adjustment.

  5. Magnetic Levitation.

    Science.gov (United States)

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  6. Magnetic Levitation.

    Science.gov (United States)

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  7. Knolle Magnetrans: A magnetically levitated train system

    Science.gov (United States)

    Knolle, Ernst G.

    1992-05-01

    The Knolle Magnetrans is a continuous transportation system featuring small cars traveling in rapid succession, levitated by permanent magnets in repulsion, and propelled by stationary linear induction motors. The vehicles' headway, speed, acceleration, and deceleration are designed into the system and mechanically enforced. Passengers board dynamically and controls consist of a simple on-off relay. This paper summarizes the system design goals, describes the system components and discusses related environmental issues.

  8. Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z.; Zheng, J.; Li, J.; Ma, G.; Lu, Y.; Zhang, Y.; Wang, S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jsywang@home.swjtu.edu.cn

    2008-06-15

    High-temperature superconducting (HTS) maglev vehicle is well known as one of the most potential applications of bulk high-temperature superconductors (HTSCs) in transported levitation system. Many efforts have promoted the practice of the HTS maglev vehicle in people's life by enhancing the load capability and stability. Besides improving the material performance of bulk HTSC and optimizing permanent magnet guideway (PMG), magnetization method of bulk HTSC is also very effective for more stable levitation. Up to now, applied onboard bulk HTSCs are directly magnetized by field cooling above the PMG for the present HTS maglev test vehicles or prototypes in China, Germany, Russia, Brazil, and Japan. By the direct-field-cooling-magnetization (DFCM) over PMG, maglev performances of the bulk HTSCs are mainly depended on the PMG's magnetic field. However, introducing HTS bulk magnet into the HTS maglev system breaks this dependence, which is magnetized by other non-PMG magnetic field. The feasibility of this HTS bulk magnet for maglev vehicle is investigated in the paper. The HTS bulk magnet is field-cooling magnetized by a Field Control Electromagnets Workbench (FCEW), which produces a constant magnetic field up to 1 T. The levitation and guidance forces of the HTS bulk magnet over PMG with different trapped flux at 15 mm working height (WH) were measured and compared with that by DFCM in the same applied PMG magnetic field at optimal field-cooling height (FCH) 30 mm, WH 15 mm. It is found that HTS bulk magnet can also realize a stable levitation above PMG. The trapped flux of HTS bulk magnet is easily controllable by the charging current of FCEW, which implies the maglev performances of HTS bulk magnet above PMG will be adjustable according to the practical requirement. The more trapped flux HTS bulk magnet will lead to bigger guidance force and smaller repulsion levitation force above PMG. In the case of saturated trapped flux for experimental HTS bulk

  9. Levitation force relaxation under reloading in a HTS Maglev system

    Science.gov (United States)

    He, Qingyong; Wang, Jiasu; Wang, Suyu; Wang, Jiansi; Dong, Hao; Wang, Yuxin; Shao, Senhao

    2009-02-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle.

  10. Low Complex System for Levitating Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Dahiru Sani Shu'aibu

    2010-06-01

    Full Text Available This paper primarily presents detailed design and implementation of a low complex magnetic levitation system which can be used in laboratory for levitation experiments. The system transfer function was derived from the coenergy and the mathematical model of the state space representation was obtained. The mathematical model showed that, the system is highly non-linear and inherently unstable. Based on simulation, a low complex circuit was designed and implemented to stabilize the system, using MATLAB control tool-box. The developed controller was simple, cheap and effective, capable of controlling weights of different masses at various distances as compared to some controllers in literature.

  11. Application of Fuzzy Logic to EMS-type Magnetically Levitated Railway Vehicle

    Science.gov (United States)

    Kusagawa, Shinichi; Baba, Jumpei; Shutoh, Katsuhiko; Masada, Eisuke

    A type of the magnetically levitated railway system with the electro-magnetic suspension system (EMS), which is named HSST system, will be put into revenue service as an urban transport in Nagoya, Japan at the beginning of April 2005. To extend its operational velocity higher than 200km/h for applications in other cities, the design of its EMS system is reexamined for improvement of riding comfort and performances of a train. In order to achieve these objectives, the multipurpose optimization on the basis of the genetic algorithm is applied for the design of EMS-type magnetically levitated vehicle, control parameters of which are optimized both to follow the rail exactly in high-speed and to provide enough riding comfort to passengers. However, the ability to follow sharp irregularities of the rail and to cope with high frequency noises in the gap length control system should be coordinated with riding comfort. The fuzzy logic is introduced into the dynamic control loop and verified to solve the problem. Far better coordination is obtained between the vehicle performances and riding comfort of passengers in high-speed against such various rail conditions. The levitation control with fuzzy logic is shown to be useful for the critical design problem as the high-speed maglev railways.

  12. Repulsive Magnetic Levitation Systems Using Motion Control of Magnets

    OpenAIRE

    水野, 毅; 石野, 裕二; 荒木, 獻次; 大内, 泰平

    1995-01-01

    Repulsive magnetic levitation systems with magnets driven by actuators were studied in this paper. In one system, a levitation magnet was driven in the direction of repulsive force to control the position and vibration of the levitated object. In another, a levitation magnet was moved in the lateral directions to stabilize the system in the manner of an inverted pendulum. The first type was studied experimentally with an experimental setup using a magnetostrictive actuator. The damping charac...

  13. Vibrations in Magnet/Superconductor Levitation Systems

    Institute of Scientific and Technical Information of China (English)

    F. Y. Alzoubi; H. M. Al-khateeb; M. K. Alqadi; N. Y. Ayoub

    2006-01-01

    The problem of a small magnet levitating above a very thin superconducting disc in the Meissner state is analysed. The dipole-dipole interaction model is employed to derive analytical expressions for the interaction energy, levitation force, magnetic stiffness and frequency of small vibrations about the equilibrium position in two different configurations, i.e. with the magnetic moment parallel and perpendicular to the superconductor. The results show that the frequency of small vibrations decreases with the increasing levitation height for a particular radius of the superconducting disc, which is in good agreement with the experimental results. However, the frequency increases monotomcally up to saturation by increasing the radius of the disc for a particular height of the magnet. In addition, the frequency of vibrations is higher when the system is in the vertical configuration than that when the system is in the horizontal configuration.

  14. A Superconducting Levitation Transport Model System for Dynamical and Didactical Studies

    Science.gov (United States)

    Rosenzweig, St.; Reich, E.; Neu, V.; Berger, D.; Peukert, K.; Holzapfel, B.; Schultz, L.; Pospiech, G.

    Superconducting levitation transport systems might become very attractive in the near future due to various reasons. The realisation of contactless systems allows e.g. extended maintenance-free operation with high efficiency since such a system only needs energy for cooling and propulsion. We established a small superconducting levitation transport model system called "SupraTrans Min" consisting of permanent magnetic rails and a levitated vehicle including four YBCO-bulk samples in a cryostat. The rail system consists of an oval shaped loop (2.90 m x 1.44 m), which was build up from individual linear and curved track modules. Inside the vehicle position variations of the superconductors are possible. By means of velocity, acceleration and temperature measurements different dynamical aspects of our complex levitation system can be investigated. We also show the broad applicability of the experimental setup for didactical studies in physics.

  15. Safety of high speed magnetic levitation transportation systems. Magnetic field testing of the TR07 Maglev vehicle and system. Volume 2: Appendices

    Science.gov (United States)

    Dietrich, Fred; Robertson, David; Steiner, George

    1992-04-01

    The safety of various magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is of direct concern to the Federal Railroad Administration (FRA). The characterization of electric and magnetic fields (EMF) emissions, both steady (dc) and produced by alternating current (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and other frequencies in the Extreme Low Frequency (ELF) range (3-3000 Hz), and associated public and worker exposures to EMF, are a growing health and safety concern worldwide. As part of a comprehensive safety assessment of the German TransRapid (TR-07) maglev system undertaken by the FRA, with technical support from the DOT/RSPA Volpe National Transportation System Center (VNTSC), magnetic field measurements were performed by Electric Research and Management, Inc. (ERM) at the Transrapid Test Facility (TVE) in Emsland, Germany in August, 1990. Appendices include catalogs and documents detailing magnetic field data files and their specifics (static fields, spectral waveforms, and temporal and spatial information) by location.

  16. Safety of high speed magnetic levitation transportation systems. Magnetic field testing of the TR07 Maglev vehicle and system. Volume 1: Analysis

    Science.gov (United States)

    Dietrich, Fred; Feero, William E.

    1992-04-01

    The safety of various magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is of direct concern to the Federal Railroad Administration (FRA). The characterization of electric and magnetic field (EMF) emissions, both steady (dc) and produced by alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and other frequencies in the Extreme Low Frequency (ELF) range (3-3000 Hz), and associated public and worker exposure to EMF, are a growing health and safety concern worldwide. As part of a comprehensive safety assessment of the German TransRapid (TR-07) maglev system undertaken by the FRA, with technical support from the DOT/RSPA Volpe National Transportation System Center (VNTSC), magnetic field measurements were performed by Electric Research and Management, Inc. (ERM) at the Transrapid Test Facility (TVE) in Emsland, Germany in August, 1990. Analysis summarizes the experimental findings and compares results to common home, work, and power lines emissions for selected spectral bands.

  17. Effective method to control the levitation force and levitation height in a superconducting maglev system

    Institute of Scientific and Technical Information of China (English)

    杨芃焘; 杨万民; 王妙; 李佳伟; 郭玉霞

    2015-01-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications.

  18. Temperature dependence of levitation force and its relaxation in a HTS levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Zhang Xingyi [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou Youhe, E-mail: zhouyh@lzu.edu.c [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2010-03-01

    Using a modified Gifford-McMahon refrigerator to cool the cylindrical bulk YBaCuO superconductor within the region of 100-10 K, and using an updated high-temperature superconductor (HTS) maglev measurement system, the levitation force and its time relaxation at different temperatures between a YBaCuO bulk superconductor and a permanent magnet (PM) have been measured under zero-field cooling. It is found that decrease the cooling temperature of HTS can decrease the hysteresis of magnetization and increase the maximum levitation force of each hysteresis loop. For the relaxation of levitation force, if the temperature is continually lowered to 10 K after the relaxation measurement at given cooling temperature is performed for 600 s, the levitation force will continue to decrease sharply with the lowering of temperature even though it will get stable if the temperature is not lowered. Our results shown in this work are a benefit to the understanding of levitation systems.

  19. Robust levitation control for maglev systems with guaranteed bounded airgap.

    Science.gov (United States)

    Xu, Jinquan; Chen, Ye-Hwa; Guo, Hong

    2015-11-01

    The robust control design problem for the levitation control of a nonlinear uncertain maglev system is considered. The uncertainty is (possibly) fast time-varying. The system has magnitude limitation on the airgap between the suspended chassis and the guideway in order to prevent undesirable contact. Furthermore, the (global) matching condition is not satisfied. After a three-step state transformation, a robust control scheme for the maglev vehicle is proposed, which is able to guarantee the uniform boundedness and uniform ultimate boundedness of the system, regardless of the uncertainty. The magnitude limitation of the airgap is guaranteed, regardless of the uncertainty. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  1. Development and Control of a Non Linear Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    A Sanjeevi Gandhi

    2013-06-01

    Full Text Available Nowadays, studies to develop and control non linear systems is of great significance. Magnetic Levitation System has gained considerable interests due to its great practical importance in different engineering fields In this paper an electromagnetic levitation system was developed and mathematical model for the system was derived. The developed system was controlled manually.

  2. Effective method to control the levitation force and levitation height in a superconducting maglev system

    Science.gov (United States)

    Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia

    2015-11-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).

  3. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    Directory of Open Access Journals (Sweden)

    Yoshihito Miyatake

    2012-01-01

    Full Text Available Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  4. Zero Power Levitation Control of Hybrid Electro-Magnetic Levitation System by Load Observer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youn Hyun; Lee, Ju [Hanyang University, Seoul (Korea)

    2001-06-01

    This paper introduces the scheme that improve the control performance of electromagnetic levitation system with zero power controller. Magnetic levitation is used widely, but the electromagnetic force has nonlinear characteristics because it is proportioned to a square of the magnetic flux density and it is in inverse proportion to a square of the air gap. So, it is complicate and difficult to control the electromagnetic force. Besides, it is more difficult to control if the equivalent gap is unknown in case of zero power control. Therefore, this paper proposed the hybrid electro-magnetic levitation control method in which the variable load is estimated by using a load observer and its system is controlled at a new zero power equilibrium air gap position. Also it is confirmed that the proposed control method improve the control performance through simulation and experiment. (author). 10 refs., 17 figs., 1 tab.

  5. ASSESSMENT OF LEVITATION MOVEMENT ELECTRODYNAMIC VEHICLES IN DIFFERENT POSITIONS OF THE CONTOURS OF THE FLAT TRACK CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    N. O. Radchenko

    2010-02-01

    Full Text Available The results of investigation of spatial oscillations and stability of motion of electrodynamically levitated vehicle are presented. Various shapes of the track contours and their arrangement on a plain track structure are considered

  6. Vibration Analysis of Continuous Maglev Guideway Considering the Magnetic Levitation System

    Institute of Scientific and Technical Information of China (English)

    TENG Yan-feng; TENG Nian-guan; KOU Xin-jian

    2008-01-01

    The dynamic interaction between moving vehicles and two-span continuous guideway was discussed. With the consideration of the magnetic levitation system, the maglev vehicle/guideway dynamic interaction model was developed. Numerical simulation was performed to understand dynamic characteristics of the guide- way used in practice. The results show that vehicle speed, span length and primary frequency of the guideway have an important influence on the dynamic responses of the guideway and there is no distinct trend towards resonance vibration when f1 equals 1.0. The definite way is to control the impact coefficient and acceleration of the guideway. The conclusions can serve the design of high speed maglev guideway.

  7. Safety of high speed magnetic levitation transportation systems. Preliminary safety review of the transrapid maglev system

    Science.gov (United States)

    Dorer, R. M.; Hathaway, W. T.

    1990-11-01

    The safety of various magnetically levitated trains under development for possible implementation in the United States is of direct concern to the Federal Railroad Administration. Safety issues are addressed related to a specific maglev technology. The Transrapid maglev system was under development by the German Government over the last 10 to 15 years and was evolved into the current system with the TR-07 vehicle. A technically based safety review was under way over the last year by the U.S. Department of Transportation. The initial results of the review are presented to identify and assess potential maglev safety issues.

  8. Magnetic levitation system for moving objects

    Science.gov (United States)

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  9. Eddy damping effect of additional conductors in superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhao-Fei; Gou, Xiao-Fan, E-mail: xfgou@hhu.edu.cn

    2015-12-15

    Highlights: • In this article, for the eddy current damper attached to the HTSC, we • quantitatively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. • presented four different arrangements of the copper damper, and comparatively studied their damping effects and Joule heating, and finally proposed the most advisable arrangement. - Abstract: Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC–PM levitation system, the HTSC with higher critical current density J{sub c} can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC–PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/V{sub Cu}, in which V{sub Cu} is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  10. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    Science.gov (United States)

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  11. Damping in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  12. Damping in high-temperature superconducting levitation systems

    Science.gov (United States)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  13. NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.

    2014-01-01

    Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.

  14. Sliding mode control of a magnetic levitation system

    Directory of Open Access Journals (Sweden)

    N. F. Al-Muthairi

    2004-01-01

    Full Text Available Sliding mode control schemes of the static and dynamic types are proposed for the control of a magnetic levitation system. The proposed controllers guarantee the asymptotic regulation of the statesof the system to their desired values. Simulation results of the proposed controllers are given to illustrate the effectiveness of them. Robustness of the control schemes to changes in the parameters of the system is also investigated.

  15. Sliding mode control of a magnetic levitation system

    OpenAIRE

    Al-Muthairi N. F.; Zribi M.

    2004-01-01

    Sliding mode control schemes of the static and dynamic types are proposed for the control of a magnetic levitation system. The proposed controllers guarantee the asymptotic regulation of the statesof the system to their desired values. Simulation results of the proposed controllers are given to illustrate the effectiveness of them. Robustness of the control schemes to changes in the parameters of the system is also investigated.

  16. Efficient Fuzzy Logic Controller for Magnetic Levitation Systems

    Directory of Open Access Journals (Sweden)

    D. S. Shu’aibu

    2016-12-01

    Full Text Available Magnetic levitation is a system of suspending a body or a complete system against gravity. Suspending a system in air against gravity without using fixed structure for supporting is highly unstable and complex. In the previous research many techniques of stabilizing magnetic levitation systems were discussed. In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input signals were investigated. Using unit step input signal, the proposed controller has a settling time of 0.35 secs, percentage overshoot of 0% and there is no oscillation. The proposed controller is validated with a model of an existing practical conventional proportional plus derivatives (PD controller. The PD controller has a settling time of 0.45 secs, percentage overshoot of 7% and with oscillation. Similarly, with sinusoidal input, the FLC has a phase shift and peak response of 0^0 and 0.9967 respectively, while PD controller has a phase shift and peak response of 24.48o and 0.9616 respectively. A disturbance signal was applied to the input of the control system. Fuzzy controller succeeded in rejecting the disturbance signal without further turning of the parameters whereby PD controller failed.

  17. The performance of induction levitators

    Science.gov (United States)

    Eastham, J. F.; Rodger, D.

    1984-09-01

    The present investigation is concerned with the performance of induction levitators, which are employed in vehicles for contactless transport systems, utilizing magnetic levitation (Maglev). A small model (38 cm long) of an induction levitator is shown. The armature consists of a laminated 'u' shaped iron yoke. Around the limbs of the yoke are wound two primary excitation coils carrying single phase 50 Hz current. Eddy currents, induced in the conducting secondary, produce a force of repulsion between secondary and yoke. A lateral stabilizing force can also be obtained. A description is presented of a study of the characteristics of these forces. Attention is given of a finite element model and the application of the Galerkin weighted residual technique, experimental and calculated results, and a design study of two single phase levitators for a 50 tonne Maglev vehicle.

  18. Comparison of Systems for Levitation Heating of Electrically Conductive Bodies

    Directory of Open Access Journals (Sweden)

    Bohus Ulrych

    2004-01-01

    Full Text Available Levitation heating of nonmagnetic electrically conductive bodies can be realized in various systems consisting of one of more inductors. The paper deals with compassion of the resultant. Lorentz lifts force acting on such a body (cylinder, sphere and velocity of its heating for different shapes of coils and parameters of the field currents (amplitudes, frequency. The tack is solved in quasi-coupled formulation. Theoretical considerations are supplemented with an illustrative example whose results are discussed.

  19. Relaxation properties of magnetic force between a magnet and superconductor in an unsymmetrical levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xingyi; Zhou Jun; Zhou Youhe [Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education (China); Liang Xinwen [Department of Finance, School of Economics of Sichuan University, Sichuan University, Chengdu, Sichuan 610064 (China)

    2009-02-15

    We present an experimental study of the relaxation of vertical and horizontal force components in an unsymmetrical high-temperature superconducting levitation system, with different initial cooling processes, after fixing the levitated body statically in a given position. It was found that the values of the relaxation measurements of the levitation force and lateral force remained constant or increased with time after vertical and horizontal traverses. The phenomenon has been theoretically described based on the Bean model and the thermally activated flux creep theory. The criterion developed in the present work is considered to be suitable for providing qualitative predictions of the relaxation properties in the levitation force and lateral force.

  20. Relaxation properties of magnetic force between a magnet and superconductor in an unsymmetrical levitation system

    Science.gov (United States)

    Zhang, Xing-Yi; Zhou, Jun; Zhou, You-He; Liang, Xin-Wen

    2009-02-01

    We present an experimental study of the relaxation of vertical and horizontal force components in an unsymmetrical high-temperature superconducting levitation system, with different initial cooling processes, after fixing the levitated body statically in a given position. It was found that the values of the relaxation measurements of the levitation force and lateral force remained constant or increased with time after vertical and horizontal traverses. The phenomenon has been theoretically described based on the Bean model and the thermally activated flux creep theory. The criterion developed in the present work is considered to be suitable for providing qualitative predictions of the relaxation properties in the levitation force and lateral force.

  1. Damping and support in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Sammamish, WA); McIver, Carl R. (Everett, WA); Mittleider, John A. (Kent, WA)

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  2. Damping and support in high-temperature superconducting levitation systems

    Science.gov (United States)

    Hull, John R.; McIver, Carl R.; Mittleider, John A.

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  3. Arbitrary Finite-time Tracking Control for Magnetic Levitation Systems

    Directory of Open Access Journals (Sweden)

    Xuan-Toa Tran

    2014-10-01

    Full Text Available In this paper, an arbitrary finite-time tracking control (AFTC method is developed for magnetic levitation systems with uncertain dynamics and external disturbances. By introducing a novel augmented sliding-mode manifold function, the proposed method can eliminate the singular problem in traditional terminal sliding-mode control, as well as the reaching-phase problem. Moreover, the tracking errors can reach the reference value with faster convergence and better tracking precision in arbitrarily determined finite time. In addition, a fuzzy-arbitrary finite-time tracking control (F-AFTC scheme that combines a fuzzy technique with AFTC to enhance the robustness and sliding performance is also proposed. A fuzzy logic system is used to replace the discontinuous control term. Thus, the chattering phenomenon is resolved without degrading the tracking performance. The stability of the closed-loop system is guaranteed by the Lyapunov theory. Finally, the effectiveness of the proposed methods is illustrated by simulation and experimental study in a real magnetic levitation system.

  4. Arbitrary Finite-time Tracking Control for Magnetic Levitation Systems

    Directory of Open Access Journals (Sweden)

    Xuan-Toa Tran

    2014-10-01

    Full Text Available In this paper, an arbitrary finite-time tracking control (AFTC method is developed for magnetic levitation systems with uncertain dynamics and external disturbances. By introducing a novel augmented sliding- mode manifold function, the proposed method can eliminate the singular problem in traditional terminal sliding-mode control, as well as the reaching-phase problem. Moreover, the tracking errors can reach the reference value with faster convergence and better tracking precision in arbitrarily determined finite time. In addition, a fuzzy-arbitrary finite-time tracking control (F- AFTC scheme that combines a fuzzy technique with AFTC to enhance the robustness and sliding performance is also proposed. A fuzzy logic system is used to replace the discontinuous control term. Thus, the chattering phenomenon is resolved without degrading the tracking performance. The stability of the closed-loop system is guaranteed by the Lyapunov theory. Finally, the effectiveness of the proposed methods is illustrated by simulation and experimental study in a real magnetic levitation system.

  5. Calculating levitation forces in the magnet-high-temperature superconductor systems

    NARCIS (Netherlands)

    Ermolaev, YS; Rudnev, IA

    2005-01-01

    A new method of calculation of the magnetic levitation force in the permanent magnet-high-temperature superconductor systems is proposed based on the Maxwell equations and the Bean model. The dependences of the levitation force on the gap width calculated for various regimes of superconductor coolin

  6. Calculating levitation forces in the magnet-high-temperature superconductor systems

    NARCIS (Netherlands)

    Ermolaev, YS; Rudnev, IA

    2005-01-01

    A new method of calculation of the magnetic levitation force in the permanent magnet-high-temperature superconductor systems is proposed based on the Maxwell equations and the Bean model. The dependences of the levitation force on the gap width calculated for various regimes of superconductor coolin

  7. Output feedback control of a mechanical system using magnetic levitation.

    Science.gov (United States)

    Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C; Favela-Contreras, A

    2015-07-01

    This paper presents an application of a nonlinear magnetic levitation system to the problem of efficient active control of mass-spring-damper mechanical systems. An output feedback control scheme is proposed for reference position trajectory tracking tasks on the flexible mechanical system. The electromagnetically actuated system is shown to be a differentially flat nonlinear system. An extended state estimation approach is also proposed to obtain estimates of velocity, acceleration and disturbance signals. The differential flatness structural property of the system is then employed for the synthesis of the controller and the signal estimation approach presented in this work. Some experimental and simulation results are included to show the efficient performance of the control approach and the effective estimation of the unknown signals. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Overview of Magnetic Levitation Systems with Emphasis on Electrodynamic Suspension

    Directory of Open Access Journals (Sweden)

    Abbas Najjar-Khodabakhsh

    2011-07-01

    Full Text Available Nowadays, the use of magnetic levitation systems has made attention in transportation. Suspension is caused by two magnetic fields in the near distance and thus the repulsion and attraction induced between them. In Iran, different types of magnetic systems and their applications, especially in the transportation system were not considered deeply and the features and specifications of each of these systems is not discussed yet. In this article we want to review past research and studies on the applications and the characteristics of these systems to fully express and we do compare them with each other. We also offer the laboratory equipment for study the behavior of magnetic suspension systems with emphasis on electrodynamic suspension.

  9. Superconducting bulk magnets for magnetic levitation systems

    Science.gov (United States)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  10. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S. [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Bae, D.K. [Chungju National University, Chungju 380-702 (Korea, Republic of); Lee, C.Y. [Ultra High-Speed Train Research Department, Korea Railroad Research Institute, Uiwang-Si 437-757 (Korea, Republic of); Ko, T.K., E-mail: tkko@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN{sub 2}).

  11. Multi-Objective PID-Controller Tuning for a Magnetic Levitation System using NSGA-II

    DEFF Research Database (Denmark)

    Pedersen, Gerulf K. M.; Yang, Zhenyu

    2006-01-01

    This paper investigates the issue of PID-controller parameter tuning for a magnetic levitation system using the non-dominated sorting genetic algorithm (NSGA-II). The magnetic levitation system is inherently unstable and the PID-controller parameters are hard to find using conventional methods....... Based on four different performance measures, derived from the step response of the levitation system, the algorithm is used to find a set of non-dominated parameters for a PID-controller that can stabilize the system and minimize the performance measures....

  12. Electromagnet weight reduction in a magnetic levitation system for contactless delivery applications.

    Science.gov (United States)

    Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang

    2010-01-01

    This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper's procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results.

  13. Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications

    Directory of Open Access Journals (Sweden)

    Ki-Chang Lee

    2010-07-01

    Full Text Available This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG algorithm is adopted in the kriging model. This paper’s procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results.

  14. Interaction between propulsion and levitation system in the HTSC-permanent magnet conveyance system

    Science.gov (United States)

    Ohashi, S.; Nishio, R.; Hashikawa, T.

    2010-11-01

    The magnetically levitated conveyance system has been developed. Pinning force of high temperature bulk superconductors (HTSC) are used for the levitation and the guidance of the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs on the carrier body. To increase the load weight, the repulsive force of the permanent magnet is introduced. The hybrid levitation system is composed. The repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. As the load stage is connected to the carrier body by the linear sliders, the mass of the load weight does not act on the carrier body. The interaction between the electromagnet and the permanent magnet under the load stage generates the propulsion force. The electromagnet is constructed by the air core coils, and excited only when the load stage passes. The interaction between the propulsion and the levitation system is investigated. Disturbance of the propulsion system on the levitation and the guidance force is measured. The results show the influence of the propulsion electromagnet on the pinning force is little, and this propulsion system works effectively.

  15. Optimization of a superconducting linear levitation system using a soft ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles, E-mail: carles.navau@uab.cat; Sanchez, Alvaro

    2013-04-15

    Highlights: ► Study of the levitation of a superconducting bar over different magnetic guideways. ► A soft ferromagnet within permanent magnets improves levitation stability. ► We study the best geometry for large levitation force with full stability. -- Abstract: The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.

  16. Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Tania Tariq Salim

    2013-12-01

    Full Text Available This paper presents a fuzzy logic controller design for the stabilization of magnetic levitation system (Maglev 's.Additionally, the investigation on Linear Quadratic Regulator Controller (LQRC also mentioned here. This paper presents the difference between the performance of fuzzy logic control (FLC and LQRC for the same linear model of magnetic levitation system .A magnetic levitation is a nonlinear unstable system and the fuzzy logic controller brings the magnetic levitation system to a stable region by keeping a magnetic ball suspended in the air. The modeling of the system is simulated using Matlab Simulink and connected to Hilink platform and the maglev model of Zeltom company. This paper presents a comparison for both LQRC and FLC to control a ball suspended on the air. The performance results of simulation shows that the fuzzy logic controller had better performance than the LQR control.

  17. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  18. The 13th International Conference on Magnetically Levitated Systems and Linear Drives MAGLEV 1993

    Science.gov (United States)

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  19. Transient Response of a Novel Displacement Transducer for Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    Mrunal Deshpande

    2011-01-01

    Full Text Available Problem statement: In magnetic levitation system, position sensors are used to obtain a voltage proportional to the position of the suspended object. This is an essential feedback signal for stabilizing the system. These sensors make the system clumsy and prone to failures. To eliminate any physical attachment on the levitated object for the purpose of measuring its displacement, a novel magnetic displacement transducer has been designed. Approach: Variation in inductance of the transducer with the position of the levitated object is used to detect the position of the object. Coil of the transducer is excited by a 5 kHz voltage and variation in phase angle of its current is measured by synchronous demodulation method. Transient response of this system is also obtained for step change in the position of the levitated object. Results: By simulation as well as by experiments it is observed that a minimum delay equal to one and a half times the cycle time of the exciting frequency is always present. The delay further increases with increase in order of the filter. In magnetic levitation applications, mechanical frequency of the levitated object is generally below 10 Hz and therefore a delay of around 300 micro seconds with an exciting frequency of 5 kHz is acceptable. Steady state characteristic of the transducer is nearly linear and it is further linearized by using a look up table and cubic interpolation. Signal output from synchronous demodulation circuit has been digitally processed for application to magnetically levitated system. Conclusion: A novel yet simple circuit for sensing the position of the moving object for electromagnetic levitation system is developed. The transient response of the developed system is also obtained and the simulation results are verified experimentally.

  20. Relaxation transition due to different cooling processes in a superconducting levitation system

    Science.gov (United States)

    Zhou, You-He; Zhang, Xing-Yi; Zhou, Jun

    2008-06-01

    We present an experimental study of relaxation of vertical and horizontal force components in a high-temperature superconducting levitation system, with different initial cooling process after fixing the levitated body in an expected position statically. In the experiment, the bulk YBaCuO cylinder superconductor and the permanent magnet disk are employed. For a selected levitation height (LH) and a lateral displacement (LD) of the system, the experimental results show that the relaxations of the vertical and horizontal forces are strongly dependent on the initial cooling height (CH). With CH decreasing, the transition of the lateral force from repulsion to attraction is found as well as the changing characteristics with time from decrease to increase. Additionally, when LH is fixed at the CH, the transition phenomenon is also observed in the levitation force behavior and their relaxation under different LDs.

  1. Amplitude and frequency dependence of hysteresis loss in a magnet-superconductor levitation system

    Science.gov (United States)

    Yang, Z. J.; Hull, J. R.; Mulcahy, T. M.; Rossing, T. D.

    1995-08-01

    Using an electromagnetically controlled mechanical pendulum, we measured the energy loss for different amplitudes in a magnetic levitation system that contained high temperature superconductors (HTSs). Two procedures were followed to measure losses at 77 K for frequencies of 93.8 mHz to 80 Hz. In the first procedure, the distance between the permanent magnet and the HTS levitator was the same as that during (field) cooling. In the second procedure, the magnet was lowered (after cooling) closer to the HTS levitator before the measurements were performed. The experimental data show that these two procedures give essentially the same results at the same distance despite different cooling (and magnetization) histories for melt-textured YBaCuO levitators, and the frequency-independent energy loss is a power-law function of amplitude. We attribute the energy loss to magnetic hysteresis in the superconductor.

  2. Levitation and Guidance Characteristics of the Permanent magnet-HTSC Hybrid Magnetic Conveyance System

    Science.gov (United States)

    Ohashi, Shunsuke; Dodo, Daiki

    Hybrid magnetically levitated transportation system has been developed. The magnetic rail is set on the ground, and the carrier with permanent magnets and high-Tc superconductors (HTSC) levitates on the rail. In this system, pinning force of HTSC and repulsive force of permanent magnet is combined. Repulsive force of permanent magnet is introduced to support weight. Pinning force is used to support weight of the frame of the carrier and to achieve lateral stability of the carrier. To decrease influence of weight on the levitation gap of the carrier, the weight stage is fixed to the carrier frame by linear sliders, and moves freely for vertical direction. As a result, there is little influence on levitation gap of the carrier. Basic levitation and guidance characteristics of the system are shown. Repulsive force generates very large levitation force. It also generates unstable lateral force. Weight added to the carrier has some influence on lateral stability. Although lateral position recovery force by pinning effect decreases at a heavier weight, the carrier shows enough force to keep lateral stability.

  3. Translational and rotational dynamic analysis of a superconducting levitation system

    Science.gov (United States)

    Cansiz, A.; Hull, J. R.; Gundogdu, Ö.

    2005-07-01

    The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet.

  4. Vehicle/guideway interaction in maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Chen, S.S.; Rote, D.M.

    1992-03-01

    Dynamic interactions between the vehicle and guideway in a high-speed ground transportation system based on magnetically levitated (maglev) vehicles were studied, with an emphasis on the effects of vehicle and guideway parameters. Two dynamic models for the vehicle are presented. In one model, the vehicle is considered to be a moving force traveling at various speeds on a simply supported single- or two-span beam. In the second model, the vehicle is considered to be one-dimensional and has two degrees of freedom; this model consists of the primary and secondary suspensions of the vehicle, with lumped masses, linear springs, and dampings. The Bernoulli-Euler beam equation is used to model the characteristics of a flexible guideway, and the guideway synthesis is based on modal analysis. Analyses were performed to gain an understanding of response characteristics under various loading conditions and to provide benchmark data for verification of existing comprehensive computer programs and some basic design guidelines for maglev systems. Finally, the German Transrapid maglev system was evaluated. 19 ref.

  5. Influence of the lateral movement on the levitation and guidance force in the high-temperature superconductor maglev system

    Science.gov (United States)

    Song, Honghai; de Haas, Oliver; Beyer, Christoph; Krabbes, Gernot; Verges, Peter; Schultz, Ludwig

    2005-05-01

    After the levitation force relaxation was studied for different field-cooling height and working-levitation height, the high-temperature superconductor (HTS) bulk was horizontally moved in the lateral direction above the permanent magnet guideway. Both levitation and guidance force were collected by the measurement system at the same time. It was found that the decay of levitation force is dependent on both the maximum lateral displacement and the movement cycle times, while the guidance force hysteresis curve does not change after the first cycle. This work provided scientific analysis for the HTS maglev system design.

  6. Thrust Reduction of Magnetic Levitation Vehicle Driven by Long Stator Linear Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Wan-Tsun Tseng

    2013-01-01

    Full Text Available The propulsion technology of long stator linear synchronous motors is used to drive high-speed maglev trains. The linear synchronous motor stator is divided into sections placed on guideway. The electric power supplies to stator sections in which the train just passes in change-step mode for long-distance operation. However, a thrust drop will be caused by change-step machinery for driving magnetic vehicle. According to the train speed and vehicle data, the change-step mode has three types of operation, namely premature commutation, simultaneous commutation, and late commutation. Each type of operation has a different thrust drop which can be affected by several parameters such as jerk, running speed, motor section length, and vehicle data. This paper focuses on determining the thrust drop of the change-step mode. The study results of this paper can be used to improve the operation system of high-speed maglev trains.

  7. Vehicle chassis monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Pisu, P.; Soliman, A.; Rizzoni, G. [Ohio State Univ., Columbus (United States). Center for Automotive Research

    2001-07-01

    Fault detection and isolation is becoming one of the most important aspects in vehicle control system design. In order to achieve this FDI schemes, particular vehicle subsystems integrated with a controller have been proposed. This paper introduces a new model-based fault detection and fault diagnosis method for monitoring the vehicle chassis performance. (orig.)

  8. Electric Vehicle Propulsion System

    OpenAIRE

    2014-01-01

    Electric vehicles are being considered as one of the pillar of eco-friendly solutions to overcome the problem of global pollution and radiations due to greenhouse gases. Present thesis work reports the improvement in overall performance of the propulsion system of an electric vehicle by improving autonomy and torque-speed characteristic. Electric vehicle propulsion system consists of supply and traction system, and are coordinated by the monitoring & control system. Case of light electric veh...

  9. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.

    Science.gov (United States)

    Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli

    2017-05-01

    A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.

  10. Effect of reciprocating motions around working points on levitation force of superconductor-magnet system

    Science.gov (United States)

    Xu, Jimin; Zhang, Fei; Sun, Tao; Yuan, Xiaoyang; Zhang, Cuiping

    2016-09-01

    In order to simulate vibration around working points in practical operation of superconducting levitation system, magnet in a simple superconductor-magnet system are conducted reciprocating motions around static height in this study. Two YBCO cylindrical samples with different grain orientations are used to investigate the effect of reciprocating motions of magnet on superconducting magnetic force. The c-axis of sample S1 is perpendicular to the top surface while sample S2 is parallel to the top surface. The initial cooling processes for the superconductors include zero-field-cooled (ZFC) and filed-cooled (FC). Compared to the levitation force before reciprocating motions, the ZFC levitation force at static height becomes smaller after reciprocating while the FC force presents opposite phenomenon. It is found that levitation force at static height tends to be stable after several times of reciprocating under ZFC and FC conditions and its time-decay phenomenon is suppressed in some extent, which is meaningful for the practical application of superconducting levitation system. Based on vortex dynamic, some physical discussions are presented to the experimental results.

  11. Effect of size on levitation force in a magnet/superconductor system

    Science.gov (United States)

    Yang, Z. J.; Hull, J. R.

    1996-03-01

    We consider a model system consisting of an infinitely long magnetic dipole line placed symmetrically above an infinitely long superconducting strip. Using the Meissner effect of superconductors, we derive analytical expressions of the levitation forces acting on the dipole line. At lowest-order approximation, we discuss the possible application of our model system to estimate the upper limit of the levitation forces in some magnetic bearing systems. In one example, the model correctly calculated the vertical vibration frequency of an experimental superconducting bearing.

  12. Nonlinear resonances of three modes in a high-T{sub c} superconducting magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Masahiko, E-mail: galian@z2.keio.jp; Sakaguchi, Ryunosuke; Sugiura, Toshihiko, E-mail: sugiura@mach.keio.ac.jp

    2013-11-15

    Highlights: •We studied two nonlinear vibrations of a levitated beam supported by superconductors. •One of the vibrations is combination resonance of the 1st mode and the 3rd mode. •The other vibration is autoparametric resonance of the 2nd mode. •When the amplitude of the 2nd mode is small, the combination resonance is suppressed. •Otherwise, the two resonances can be resonated simultaneously. -- Abstract: In a high-T{sub c} superconducting magnetic levitation system, an object can levitate without control and contact. So it is expected to be applied to magnetically levitated transportation. To use it safely, lightening the levitated object is necessary. But this reduces the bending stiffness of the object. Besides, the system has nonlinearity. Therefore nonlinear elastic vibration can occur. This study focused on how plural nonlinear elastic vibrations of the 1st, 2nd and 3rd modes simultaneously occur. Our numerical calculation and experiment found out that the three modes simultaneously resonate when the amplitude of the 2nd mode is large enough whereas only the 2nd mode resonates when it is small.

  13. A practical nonlinear controller for levitation system with magnetic flux feedback

    Institute of Scientific and Technical Information of China (English)

    李金辉; 李杰

    2016-01-01

    This work proposes a practical nonlinear controller for the MIMO levitation system. Firstly, the mathematical model of levitation modules is developed and the advantages of the control scheme with magnetic flux feedback are analyzed when compared with the current feedback. Then, a backstepping controller with magnetic flux feedback based on the mathematical model of levitation module is developed. To obtain magnetic flux signals for full-size maglev system, a physical method with induction coils installed to winding of the electromagnet is developed. Furthermore, to avoid its hardware addition, a novel conception of virtual magnetic flux feedback is proposed. To demonstrate the feasibility of the proposed controller, the nonlinear dynamic model of full-size maglev train with quintessential details is developed. Based on the nonlinear model, the numerical comparisons and related experimental validations are carried out. Finally, results illustrating closed-loop performance are provided.

  14. Vehicle usage verification system

    NARCIS (Netherlands)

    Scanlon, William G.; McQuiston, Jonathan; Cotton, Simon L.

    2012-01-01

    EN)A computer-implemented system for verifying vehicle usage comprising a server capable of communication with a plurality of clients across a communications network. Each client is provided in a respective vehicle and with a respective global positioning system (GPS) by which the client can determi

  15. Improvement of the Levitation Characteristics in the Magnetic Bearing System Using HTSC-Permanent Magnet Hybrid Structure

    Science.gov (United States)

    Ohashi, Shunsuke

    Magnetic bearing using pining force of a permanent magnet and a high-temperature superconductor has been developed. Additional permanent magnet is introduced to increase the levitation force of the magnetic bearing. In this hybrid magnetic bearing system, levitation force is mainly given by the repulsive force of the permanent magnets, and stability for the lateral direction is given by pining force of the superconductor. The experimental device is developed. A ring type superconductor and a bulk one are examined. Levitation characteristics of the hybrid magnetic bearing are measured. A bulk superconductor shows better characteristics both levitation and lateral stability than ring one. Levitation force of the hybrid system becomes about twice as large as that of the no-hybrid one. Although repulsive force of the permanent magnet decreases lateral stability of the system, its influence becomes small by choosing adequate position of the permanent magnets and the superconductor.

  16. Levitation force of small clearance superconductor-magnet system under non-coaxial condition

    Science.gov (United States)

    Xu, Jimin; Jin, Yingze; Yuan, Xiaoyang; Miao, Xusheng

    2017-03-01

    A novel superconducting tilting-pad bearing was proposed for the advanced research of reusable liquid hydrogen turbopump in liquid rocket. The bearing is a combination of superconducting magnetic bearing and hydrodynamic fluid-film bearing. Since the viscosity of cryogenic fuel to activate superconducting state and form hydrodynamic fluid-film is very low, bearing clearance will be very small. This study focuses on the investigation of superconducting levitation force in this kind of small clearance superconductor-magnet system. Based on Bean critical state model and three-dimensional finite element method, an analysis method is presented to obtain the levitation force under such situation. Since the complicated operational conditions and structural arrangement for application in liquid rocket, center lines of bulk superconductor and magnet rotor will usually be in non-coaxial state. Superconducting levitation forces in axial direction and radial direction under non-coaxial situation are also analyzed by the presented method.

  17. Robust stabilization via computer-generated Lyapunov functions: An application to a magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Blanchini, F. [Universita di Udine (Italy); Carabelli, S. [Politecnico di Torino (Italy)

    1994-12-31

    We apply a technique recently proposed in literature for the robust stabilization of linear systems with time-varying uncertain parameters to a magnetic levitation system. This technique allows the construction of a polyhedral Lyapunov function and a linear variable-structure stabilizing controller.

  18. Automatic Tuning of PID Controller for a 1-D Levitation System Using a Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Gerulf K.m.

    2006-01-01

    The automatic PID control design for a onedimensional magnetic levitation system is investigated. The PID controller is automatically tuned using the non-dominated sorting genetic algorithm (NSGA-II) based on a nonlinear system model. The developed controller is digitally implemented and tested...

  19. Optically levitated nanoparticle as a model system for stochastic bistable dynamics

    Science.gov (United States)

    Ricci, F.; Rica, R. A.; Spasenović, M.; Gieseler, J.; Rondin, L.; Novotny, L.; Quidant, R.

    2017-05-01

    Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.

  20. A Methodology for Modeling Electromagnetic Confinement Systems: Application to Levitation Melting

    Science.gov (United States)

    El-Kaddah, Nagy; Natarajan, Thinium T.

    A modeling strategy is presented for computing the electromagnetic field and the shape of the molten metal in electromagnetic confinement systems. This strategy involves the use of a hybrid finite element/integral technique to calculate the electromagnetic field and force distribution in the melt. The free surface shape is determined from minimization of electromagnetic, gravitational and surface tension energies using the Lagrange method of multipliers. This approach was applied to model the electromagnetic levitation melting process. The model was found to accurately predict the measured shape of levitated droplets.

  1. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  2. Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system.

    Science.gov (United States)

    Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai

    2009-06-01

    In this paper, a robust dynamic sliding mode control system (RDSMC) using a recurrent Elman neural network (RENN) is proposed to control the position of a levitated object of a magnetic levitation system considering the uncertainties. First, a dynamic model of the magnetic levitation system is derived. Then, a proportional-integral-derivative (PID)-type sliding-mode control system (SMC) is adopted for tracking of the reference trajectories. Moreover, a new PID-type dynamic sliding-mode control system (DSMC) is proposed to reduce the chattering phenomenon. However, due to the hardware being limited and the uncertainty bound being unknown of the switching function for the DSMC, an RDSMC is proposed to improve the control performance and further increase the robustness of the magnetic levitation system. In the RDSMC, an RENN estimator is used to estimate an unknown nonlinear function of lumped uncertainty online and replace the switching function in the hitting control of the DSMC directly. The adaptive learning algorithms that trained the parameters of the RENN online are derived using Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher order terms in Taylor series. Finally, some experimental results of tracking the various periodic trajectories demonstrate the validity of the proposed RDSMC for practical applications.

  3. The Inductrack Approach to Magnetic Levitation

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.F.; Ryutov, D.D.

    2000-04-19

    Concepts developed during research on passive magnetic bearing systems at the Lawrence Livermore National Laboratory gave rise to a new approach to magnetic levitation, the Inductrack. A passive induced-current system employing permanent magnets on the moving vehicle, the Inductrack maximizes levitation forces by a combination of two elements. First, the permanent magnets on the vehicle are arranged in a ''Halbach array,'' a magnet configuration that optimally produces a periodic magnetic field below the array, while canceling the field above the array. Second, the track is made up of close-packed shorted electrical circuits. These circuits couple optimally to the magnetic field of the Halbach array. As a result, levitating forces of order 40 metric tonnes per square meter of Halbach array can be generated, using NdFeB magnets whose weight is a few percent of the levitated weight. Being an induced-current system, the levitation requires motion of the vehicle above a low transition speed. For maglev applications this speed is a few kilometers per hour, walking speed. At rest or in the station auxiliary wheels are needed. The Inductrack is thus fail-safe, that is, drive system failure would only result in the vehicle slowing down and finally settling on its auxiliary wheels. On the basis of theoretical analyses a small model vehicle and a 20-meter-long track was built and tested at speeds of order 12 meters per second. A second model, designed to achieve 10-g acceleration levels and much higher speeds, is under construction under NASA sponsorship, en route to the design of maglev-based launchers for rockets. Some of the presently perceived practical problems of implementing full-scale maglev systems based on the Inductrack concept will be discussed.

  4. Mechatronic Design of an Electromagnetically Levitated Linear Positioning System using Novel Multi-DoF Actuators

    NARCIS (Netherlands)

    Laro, D.A.H.

    2009-01-01

    The development of contactless electromagnetically levitated positioning systems is stimulated by the demand for vacuum compatible production machines. These vacuum compatible machines are used e.g. in the development of faster semiconductor chips and optical discs with larger data capacity. A novel

  5. Modeling of a compliant joint in a Magnetic Levitation System for an endoscopic camera

    NARCIS (Netherlands)

    Simi, M.; Tolou, N.; Valdastri, P.; Herder, J.L.; Menciassi, A.; Dario, P.

    2012-01-01

    A novel compliant Magnetic Levitation System (MLS) for a wired miniature surgical camera robot was designed, modeled and fabricated. The robot is composed of two main parts, head and tail, linked by a compliant beam. The tail module embeds two magnets for anchoring and manual rough translation. The

  6. Modeling of a compliant joint in a Magnetic Levitation System for an endoscopic camera

    NARCIS (Netherlands)

    Simi, M.; Tolou, N.; Valdastri, P.; Herder, J.L.; Menciassi, A.; Dario, P.

    2012-01-01

    A novel compliant Magnetic Levitation System (MLS) for a wired miniature surgical camera robot was designed, modeled and fabricated. The robot is composed of two main parts, head and tail, linked by a compliant beam. The tail module embeds two magnets for anchoring and manual rough translation. The

  7. Mass determination with the magnetic levitation method—proposal for a new design of electromechanical system

    Science.gov (United States)

    Kajastie, H.; Riski, K.; Satrapinski, A.

    2009-06-01

    The method for realization of the kilogram using 'superconducting magnetic levitation' was re-evaluated at MIKES. The realization of the kilogram based on the traditional levitation method is limited by the imperfections of the superconducting materials and the indefinable dependence between supplied electrical energy and the gravitational potential energy of the superconducting mass. This indefiniteness is proportional to the applied magnetic field and is caused by increasing losses and trapped magnetic fluxes. A new design of an electromechanical system for the levitation method is proposed. In the proposed system the required magnetic field and the corresponding force are reduced, as the mass of the body (hanging from a mass comparator) is compensated by the reference weight on the mass comparator. The direction of the magnetic force can be upward (levitation force, when the body is over the coil) or downward (repulsive force, when the body is under the coil). The initial force to move the body from the coil is not needed and magnetic field sensitivity is increased, providing linearization of displacement versus applied current. This new construction allows a lower magnetic induction, reduces energy losses compared with previous designs of electromechanical system and reduces the corresponding systematic error.

  8. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    Science.gov (United States)

    Nishio, R.; Ikeda, M.; Sasaki, R.; Ohashi, S.

    2011-11-01

    We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  9. Angular Dependence of Lateral and Levitation Forces in Asymmetric Small Magnet/Superconducting Systems

    Institute of Scientific and Technical Information of China (English)

    H. M. Al-Khateeb; M. K. Alqadi; F. Y. Alzoubi; N. Y. Ayoub

    2007-01-01

    The dipole-dipole interaction model is used to calculate the angular dependence of lateral and levitation forces on a small permanent magnet and a cylindrical superconductor in the Meissner state lying laterally offthe symmetric axis of the cylinder. Under the assumption that the lateral displacement of the magnet is small compared with the physical dimensions of the system, we obtain analytical expressions for the lateral and levitation forces as functions of geometrical parameters of the superconductor as well as the height, the lateral displacement and the orientation of magnetic moment of the magnet. The effect of thickness and radius of the superconductor on the levitation force is similar to that for a symmetric magnet/superconducting cylinder system, but within the range of lateral displacement. The splitting in the levitation force increases with the increasing angle of orientation of the magnetic moment of the magnet. For a given lateral displacement of the magnet, the lateral force vanishes when the magnetic moment is perpendicular to the surface of the superconductor and has a maximum value when the moment is parallel to the surface. For a given orientation of the magnetic moment, the lateral force has a linear relationship with the lateral displacement. The stability of the magnet above the superconducting cylinder is discussed in detail.

  10. Designing Flexible Neuro-Fuzzy System Based on Sliding Mode Controller for Magnetic Levitation Systems

    Directory of Open Access Journals (Sweden)

    Zahra Mohammadi

    2011-07-01

    Full Text Available This study presents a novel controller of magnetic levitation system by using new neuro-fuzzy structures which called flexible neuro-fuzzy systems. In this type of controller we use sliding mode control with neuro-fuzzy to eliminate the Jacobian of plant. At first, we control magnetic levitation system with Mamdanitype neuro-fuzzy systems and logical-type neuro-fuzzy systems separately and then we use two types of flexible neuro-fuzzy systems as controllers. Basic flexible OR-type neuro-fuzzy inference system and basic compromise AND-type neuro-fuzzy inference system are two new flexible neuro-fuzzy controllers which structure of fuzzy inference system (Mamdani or logical is determined in the learning process. We can investigate with these two types of controllers which of the Mamdani or logical type systems has better performance for control of this plant. Finally we compare performance of these controllers with sliding mode controller and RBF sliding mode controller.

  11. Dynamic Analysis of Micro-machined Diamagnetic Stable Permanent Magnet Levitation System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel micro-machined diamagnetic stable-levitation system (MDSLS) which is composed of a free permanent magnetic rotor, a ring lifting permanent magnet and two diamagnetic stabilizers was presented. The static and dynamic stable characters of MDSLS were analyzed. The coupled non-linear differential equations were used to describe six-degree-of-freedom motion of the levitated rotor, and the equivalent surface current and combined diamagnetic image current method were utilized to model the interaction forces and torques between the lifting permanent magnet and rotor permanent magnet and also between the rotor permanent magnet and diamagnetic substrates. Because of difficulty to get analytical solution, the numerical calculation based on Runge-Kutta method was used to solve the dynamic model. The vibration frequencies were identified by fast Fourier transform (FFT) analysis. According to their resonance characteristics and parameters, the translational and angular dynamic stiffness were also calculated. The results show that the levitation of the rotor in MDSLS is stable, and the MDSLS is potential for the application in levitation inertial sensor.

  12. An Ultrasonic Levitator

    Directory of Open Access Journals (Sweden)

    R.R. Boullosa

    2013-12-01

    Full Text Available We report the development of an ultrasonic levitation system. Liquid drops or solid samples of diameter less than one half wavelength of the excitation frequency are levitated without contact just below the pressure nodes. The piezo transducer is excited by an ultrasonic signal of around 29 kHz through a voltage amplifier. The choice of the number of half-waves of the acoustic field in the space between the reflector and radiator is made by means of a micrometer. A lamp, an amplifier and a frequency generator are integrated to the levitator. The diameters of the droplets of liquid that can levitate are of the order of tenths of mm to 3 or 4 mm, depending on the liquid properties (density, surface tension, etc.. Solid objects can also be levitated. The maximum voltage of the system is 20 Vrms.

  13. Leidenfrost levitation: beyond droplets.

    Science.gov (United States)

    Hashmi, Ali; Xu, Yuhao; Coder, Benjamin; Osborne, Paul A; Spafford, Jonathon; Michael, Grant E; Yu, Gan; Xu, Jie

    2012-01-01

    Friction is a major inhibitor in almost every mechanical system. Enlightened by the Leidenfrost effect - a droplet can be levitated by its own vapor layer on a sufficiently hot surface - we demonstrate for the first time that a small cart can also be levitated by Leidenfrost vapor. The levitated cart can carry certain amount of load and move frictionlessly over the hot surface. The maximum load that the cart can carry is experimentally tested over a range of surface temperatures. We show that the levitated cart can be propelled not only by gravitational force over a slanted flat surface, but also self-propelled over a ratchet shaped horizontal surface. In the end, we experimentally tested water consumption rate for sustaining the levitated cart, and compared the results to theoretical calculations. If perfected, this frictionless Leidenfrost cart could be used in numerous engineering applications where relative motion exists between surfaces.

  14. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, R.; Ikeda, M.; Sasaki, R. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetically levitated carrying system is developed. Control method of running velocity of the carrier is studied. Running velocity is controlled by current of the propulsion coils. Propulsion characteristcs are improved. We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  15. Design and Development of an Acoustic Levitation System for Use in CVD Growth of Carbon Nanotubes

    Science.gov (United States)

    Qasem, Amal ali

    The most widely used methods for growth of carbon nanotubes (CNTs) arc discharge, laser ablation, and chemical vapor deposition (CVD). Some of these methods have difficulties, such as controlling the quality and straightness of the nanotube in the synthesis of CNTs from substrates. Also, the enhanced plasma chemical vapor deposition method with the catalyst on a substrate produces straighter, larger diameter nanotubes by the tip growth method, but they are short. The difficulty in the floating catalyst method is that the nanotubes stay in the growth furnace for short times limiting growth to about one mm length; this method also leaves many catalyst impurities. One factor that limits CNT growth in these methods is the difficulty of getting enough carbon atoms to the growth catalyst to grow long nanotubes. The motivation of this work is that longer, higher quality nanotubes could be grown by increasing growth time and by increasing carbon atom movement to catalyst. The goal of this project is to use acoustic levitation to assist chemical vapor deposition growth by trapping and vibrating the growing CNTs for better properties. Our levitation system consists of a piezoelectric transducer attached to an aluminum horn and quartz rod extending into the growth furnace. The most important elements of our methods to achieve the acoustic levitation are as follows. 1. Using COMSOL Multi-physic Simulation software to determine the length of quartz rod needed to excite standing waves for levitation in the tube furnace. 2. Determining the resonance frequency of different transducers and horns. 3. Using ultrasound measurement to determine the time of flight, velocity of sound and sound wavelength of different horns. 4. Making Aluminum horns with the appropriate lengths. 5. Using ultrasound measurement to determine the changing of quartz rod velocity of sound and length in the furnace. 6. Mounting the transducer to booster horn and aluminum cylindrical horn above a reflector to

  16. Design of a 2-DOF Control and Disturbance Estimator for a Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    A. Pati

    2017-02-01

    Full Text Available This work proposes a systematic two-degree freedom control scheme to improve the reference input tracking and load disturbance rejection for an unstable magnetic levitation system. The proposed control strategy is a two-step design process. Firstly, a proportional derivative controller is introduced purposely to get the desired set-point response of the magnetic levitation system and then, an integral square error (ISE performance specification is used for designing a set-point tracking controller. Secondly, a disturbance estimator is designed using the desired closed loop complimentary sensitivity function for the rejection of load disturbances. This leads to the decoupling of the nominal set-point response from the load disturbance response similar to an open loop control manner. Thus, it is convenient to optimize both controllers simultaneously as well as separately. The effectiveness of the proposed control strategy is validated through simulation.

  17. A new conveyor system based on a passive magnetic levitation unit having repulsive-type magnetic bearings

    Science.gov (United States)

    Ohji, T.; Ichiyama, S.; Amei, K.; Sakui, M.; Yamada, S.

    2004-05-01

    A magnetic repulsive-type conveyor system is proposed as a new application of repulsive-type magnetic bearings, which use repulsive forces between the stator and rotor permanent magnets. The proposed conveyer is composed by aligning many passive magnetic levitation units. Each unit also contains electromagnets to oscillate a levitator shaft in the radial direction. The way of generating vibration and rotation in the conveyance direction was examined by the various excitation methods.

  18. Design of a Discrete Tracking Controller for a Magnetic Levitation System: A Nonlinear Rational Model Approach

    Directory of Open Access Journals (Sweden)

    Fernando Gómez-Salas

    2015-01-01

    Full Text Available This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.

  19. Thrust Reduction of Magnetic Levitation Vehicle Driven by Long Stator Linear Synchronous Motor

    OpenAIRE

    Wan-Tsun Tseng

    2013-01-01

    The propulsion technology of long stator linear synchronous motors is used to drive high-speed maglev trains. The linear synchronous motor stator is divided into sections placed on guideway. The electric power supplies to stator sections in which the train just passes in change-step mode for long-distance operation. However, a thrust drop will be caused by change-step machinery for driving magnetic vehicle. According to the train speed and vehicle data, the change-step mode has three types of...

  20. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  1. Vibration reduction using autoparametric resonance in a high-Tc superconducting levitation system

    Science.gov (United States)

    Yamasaki, Hiroshi; Takazakura, Toyoki; Sakaguchi, Ryunosuke; Sugiura, Toshihiko

    2014-05-01

    High-Tc superconducting levitation systems have very small damping and enable stable levitation without control. Therefore, they can be applied to various kinds of application. However, there are some problems that small damping produces large vibration and nonlinearity of magnetic force can generate complicated phenomena. Accordingly, analysis of these phenomena and reduction of vibration occurring in the system are important. In this study, we examined reduction of vibration without using any absorbers, but utilizing autoparametric resonance caused by nonlinear coupling between vertical oscillation and horizontal oscillation. We conducted numerical analysis and experiments in order to investigate motions of a rigid bar levitated by the electromagnetic force from high-Tc superconductors. As a result, if the ratio of the natural frequency of vertical oscillation and that of horizontal oscillation is two to one, the vertical oscillation decreases while the horizontal oscillation is excited. Thus, it was confirmed that the amplitude of a primary resonance can be reduced by occurrence of autoparametric resonance without using any absorbers.

  2. Design of Magnetic Levitation System Based on Inverse Control Techniqueusing Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Mithaq Nama Raheema

    2017-07-01

    Full Text Available The design of ANFIS network based inverse control technique is proposed in this paperfor this system. Simulation is implemented in MATLAB after the ANFIS is trained and it is shown that results are applicable in process industry and acceptable for reference control applications. The effectiveness of the proposed ANFIS in inverse controller it has been tested by entering random selected points which represent the values of input voltage from the system under control as a reference input to inverse modelling, after that entering the results of inverse modelling to the modelling of magnet levitation system to form the desired output. The result is acceptable with small errors about 0.0011

  3. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  4. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  5. Optomechanics of Nanoparticles: Effect of Quantum Fluctuations in Levitating EM Field on Cavity-assisted and Cavity-less Systems

    CERN Document Server

    Jazayeri, Amir M

    2016-01-01

    Optomechanics of nanoparticles purports to reach the quantum regime, but experimental evidence suggests otherwise. We believe that the discrepancy is due to the omission of the deleterious effects of the EM field levitating the particle. This letter focuses on quantum fluctuations in the levitating field. In a cavity-assisted system, they lead to fluctuations in the gradient force, and encourage escape of the particle. In a feedback system, they lead to the detector shot noise besides fluctuations in the gradient force and radiation pressure, and render the system very vulnerable to the thermal noise of the feedback circuit.

  6. Characterization and adaptive fuzzy model reference control for a magnetic levitation system

    Directory of Open Access Journals (Sweden)

    J.J. Hernández-Casañas

    2016-09-01

    Full Text Available This paper shows the implementation of a fuzzy controller applied for magnetic levitation, to make this, the characterization of the magnetic actuator was computed by using ANSYS® analysis. The control law was a Mamdani PD implemented with two microcontrollers, to get a smooth control signal, it was used a model reference. A learning scheme was used to update the consequents of the fuzzy rules. Different reference signals and disturbances were applied to the system to show the robustness of the controller. Finally, LabVIEW® was used to plot the results.

  7. An improvement of frozen-image model and its application in a HTS levitation system

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper mainly reports an improvement of frozen-image model which can qualitatively describe the influence of lateral moving speed on vertical force in a HTS levitation system under lateral movement with field-cooling condition.The model is improved by introducing a dipole which represents the influence of lateral moving speed and modifying the rule of diamagnetic dipole based on frozen-image model.The vertical and lateral forces that are obtained by this improved model agree with the previous measure...

  8. Dynamic circuit and Fourier series methods for moment calculation in electrodynamic repulsive magnetic levitation systems

    Science.gov (United States)

    Knowles, R.

    1982-07-01

    A general theory of moments for electrodynamic magnetic levitation systems has been developed using double Fourier series and dynamic circuit principles. Both employ Parseval's theorem using either wave constant derivatives or the polar waveconstant principle of the Fourier-Bessel/double Fourier series equivalence. A method for calculating angular derivatives of moments and forces is explained, and for all of these methods comparisons are made with experimental results obtained for single and split rail configurations. Extensions of dynamic circuit theory for tilted nonflat and circular magnets are also explained.

  9. Stability of magnetic tip/superconductor levitation systems

    Institute of Scientific and Technical Information of China (English)

    M. K. Alqadi

    2015-01-01

    The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness.

  10. Cold atoms as a coolant for levitated optomechanical systems

    CERN Document Server

    Ranjit, Gambhir; Geraci, Andrew A

    2014-01-01

    Optically trapped dielectric objects are well suited for reaching the quantum regime of their center of mass motion in an ultra-high vacuum environment. We show that ground state cooling of an optically trapped nanosphere is achievable when starting at room temperature, by sympathetic cooling of a cold atomic gas optically coupled to the nanoparticle. Unlike cavity cooling in the resolved sideband limit, this system requires only a modest cavity finesse and it allows the cooling to be turned off, permitting subsequent observation of strongly-coupled dynamics between the atoms and sphere. Nanospheres cooled to their quantum ground state could have applications in quantum information science or in precision sensing.

  11. Flux line depinning in a magnet-superconductor levitation system

    Science.gov (United States)

    Terentiev, A. N.; Hull, J. R.; De Long, L. E.

    The AC loss characteristics of a magnet-superconductor system were studied with the magnet fixed to the free end of an oscillating cantilever located near a stationary melt-textured YBCO pellet. Below a threshold AC field amplitude ≈2 Oe, the dissipation of the oscillator is amplitude-independent, characteristic of a linear, non-hysteretic regime. Above threshold, dissipation increases with amplitude, reflecting the depinning and hysteretic motion of flux lines. The threshold AC field is an order of magnitude higher than that measured for the same YBCO material via AC susceptometry in a uniform DC magnetic field. A partial lock-in of flux lines between YBCO ab planes is proposed as the mechanism for the substantial increase of the depinning threshold.

  12. Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array

    Science.gov (United States)

    Iniguez, J.; Raposo, V.

    2009-01-01

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…

  13. Radial stiffness improvement of a flywheel system using multi-surface superconducting levitation

    Science.gov (United States)

    Basaran, Sinan; Sivrioglu, Selim

    2017-03-01

    The goal of this research study is the maximization of the levitation force in a flywheel system by the use of more than one permanent magnet with a single ring-shaped HTS material. An analytical model for the radial stiffness of the ring HTS-PM is derived using the frozen image approach. The experimental works are carried out for different polarizations of the permanent magnets, and radial stiffness values are obtained from the radial force measurements. The rotational test of the flywheel system is also realized for different cases. Finally, natural frequencies of the flywheel superconducting magnetic bearing system are experimentally obtained for different combinations of the permanent magnets using a frequency analyzer.

  14. Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.

    Science.gov (United States)

    Ghosh, Arun; Rakesh Krishnan, T; Tejaswy, Pailla; Mandal, Abhisek; Pradhan, Jatin K; Ranasingh, Subhakant

    2014-07-01

    This paper employs a 2-DOF (degree of freedom) PID controller for compensating a physical magnetic levitation system. It is shown that because of having a feedforward gain in the proposed 2-DOF PID control, the transient performance of the compensated system can be changed in a desired manner unlike the conventional 1-DOF PID control. It is also shown that for a choice of PID parameters, although the theoretical loop robustness is the same for both the compensated systems, in real-time, 2-DOF PID control may provide superior robustness if a suitable choice of the feedforward parameter is made. The results are verified through simulations and experiments. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Electric vehicle data acquisition system

    DEFF Research Database (Denmark)

    Svendsen, Mathias; Winther-Jensen, Mads; Pedersen, Anders Bro

    2014-01-01

    A data acquisition system for electric vehicles is presented. The system connects to the On-board Diagnostic port of newer vehicles, and utilizes the in-vehicle sensor network, as well as auxiliary sensors, to gather data. Data is transmitted continuously to a central database for academic...... and industrial applications, e.g. research in electric vehicle driving patterns, vehicle substitutability analysis and fleet management. The platform is based on a embedded computer running Linux, and features a high level of modularity and flexibility. The system operates independently of the make of the car......, by using the On-board Diagnostic port to identify car model and adapt its software accordingly. By utilizing on-board Global Navigation Satellite System, General Packet Radio Service, accelerometer, gyroscope and magnetometer, the system not only provides valuable data for research in the field of electric...

  16. Design and Implementation of a Magnetic Levitation System Controller using Global Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Rudi Uswarman

    2014-07-01

    Full Text Available This paper presents global sliding mode control and conventional sliding mode control for stabilization position of a levitation object. Sliding mode control will be robusting when in sliding mode condition. However, it is not necessarily robust at attaining phase. In the global sliding mode control, the attaining motion phase was eliminated, so that the robustness of the controller can be improved. However, the value of the parameter uncertainties needs to be limited. Besides that, the common problem in sliding mode control is high chattering phenomenon. If the chattering is too large, it can make the system unstable due the limited ability of electronics component. The strategy to overcome the chattering phenomenon is needed. Based on simulation and experimental results, the global sliding mode control has better performance than conventional sliding mode control.  

  17. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system.

    Science.gov (United States)

    Shimokawa, Y; Matsuura, Y; Hirano, T; Sakai, K

    2016-12-01

    Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ⋅ s.

  18. The Modeling and Analysis for the Self-Excited Vibration of the Maglev Vehicle-Bridge Interaction System

    Directory of Open Access Journals (Sweden)

    Jinhui Li

    2015-01-01

    Full Text Available This paper addresses the self-excited vibration problems of maglev vehicle-bridge interaction system which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, two levitation models with different complexity are developed, and the comparison of the energy curves associated with the two models is carried out. We conclude that the interaction model with a single levitation control unit is sufficient for the study of the self-excited vibration. Then, the principle underlying the self-excited vibration is explored from the standpoint of work acting on the bridge done by the levitation system. Furthermore, the influences of the parameters, including the modal frequency and modal damping of bridge, the gain of the controller, the sprung mass, and the unsprung mass, on the stability of the interaction system are carried out. The study provides a theoretical guidance for solving the self-excited vibration problems of the vehicle-bridge interaction systems.

  19. Design of a Mathematical Unit in FPGA for the Implementation of the Control of a Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    Juan José Raygoza-Panduro

    2008-01-01

    Full Text Available This paper presents the design and implementation of an automatically generated mathematical unit, from a program developed in Java that describes the VHDL circuit, ready to be synthesized with the Xilinx ISE tool. The core contains diverse complex operations such as mathematical functions including sine and cosine, among others. The proposed unit is used to synthesize a sliding mode controller for a magnetic levitation system. This kind of systems is used in industrial applications requiring high level of mathematical calculations in small time periods. The core is designed to calculate trigonometric and arithmetic operations in such a way that each function is performed in a clock cycle. In this paper, the results of the mathematical core are shown in terms of implementation, utilization, and application to control a magnetic levitation system.

  20. Magnetic levitation of single cells.

    Science.gov (United States)

    Durmus, Naside Gozde; Tekin, H Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Ghiran, Ionita; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2015-07-14

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine.

  1. Oscillation propagating in non-contact linear piezoelectric ultrasonic levitation transporting system---from solid state to fluid media.

    Science.gov (United States)

    Li, Xianghua; Sun, Yuntao; Chen, Chao; Zhao, Chunsheng

    2010-04-01

    Non-contact ultrasonic motors (USM) show potential for future use, especially in the industrial fields because of its simple structure and quick response. It is therefore important to comprehensively understand their theoretical background so as to push this research forward. In this study, we shall fully explain and deduce the driving mechanism of a linear ultrasonic levitation transporting system. Oscillation equations from the initial exciting Langevin transducer and flexural traveling wave propagation on the linear guide were first established. Then the squeezing fluid movement between the linear guide and the levitating slider was analyzed. Next, after being excited by the progressing wave under corresponding boundary conditions, the related tangential velocity of the middle flow field was obtained. Finally, the validated experiment was set up to test slider velocity.

  2. Modeling, Design and Analysis of a Electrodynamic Levitation System by Considering the Skin Effect

    Directory of Open Access Journals (Sweden)

    Mohammad Rajabi Sabadani

    2016-01-01

    Full Text Available In this paper, lift and drag forces of permanent-magnet electrodynamic suspension (PMEDS System have been studied by considering the skin effect. Electrodynamic suspension is based on repulsive force between two magnetic fields with the same polarity. In this research the electrodynamic suspension system consists of a moving permanent magnet block levitated over a flat conducting plate with 2 mm thickness. At first, the analytical model of the PMEDS is proposed. For this propose, permanent magnet poles are modeled by the current sheets. Then the eddy current is calculated on aluminum sheet by considering the skin effect. Finally, the lift and drag forces are calculated in difference speed. The 2D finite element method is utilized to investigate the effect of speed variations on the performance of PMEDS at two different airgap. Two-dimensional finite element model, the accuracy of proposed analytical model is validated. The results of the finite element method are compared with results obtained by analytical model. It shows the accuracy of the analytical model in the estimation of the lift and drag forces of an electrodynamic suspension system.

  3. TID and I-TD controller design for magnetic levitation system using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Debdoot Sain

    2016-09-01

    Full Text Available This article is about the design of controllers for magnetic levitation (Maglev system in both simulation and real time. Local linearization around the equilibrium point has been done for the nonlinear Maglev system to obtain a linearized model transfer function. In this study, the design of integral-tilted-derivative (I-TD controller has been proposed for the Maglev system and its performance is compared with conventional tilted-integral-derivative (TID controller. In this study, TID controller parameters have been optimized through genetic algorithm (GA and those set of values have been employed for the design of I-TD controller. A performance comparison between TID and I-TD controller is then investigated. The analysis shows the superiority of I-TD controller over TID controller in terms of maximum overshoot, gain margin and phase margin. The settling time remains almost same in both the cases. In future, a detailed study of robustness in presence of model uncertainties will be incorporated as a scope of further research.

  4. Modeling of a compliant joint in a Magnetic Levitation System for an endoscopic camera

    Directory of Open Access Journals (Sweden)

    M. Simi

    2012-01-01

    Full Text Available A novel compliant Magnetic Levitation System (MLS for a wired miniature surgical camera robot was designed, modeled and fabricated. The robot is composed of two main parts, head and tail, linked by a compliant beam. The tail module embeds two magnets for anchoring and manual rough translation. The head module incorporates two motorized donut-shaped magnets and a miniaturized vision system at the tip. The compliant MLS can exploit the static external magnetic field to induce a smooth bending of the robotic head (0–80°, guaranteeing a wide span tilt motion of the point of view. A nonlinear mathematical model for compliant beam was developed and solved analytically in order to describe and predict the trajectory behaviour of the system for different structural parameters. The entire device is 95 mm long and 12.7 mm in diameter. Use of such a robot in single port or standard multiport laparoscopy could enable a reduction of the number or size of ancillary trocars, or increase the number of working devices that can be deployed, thus paving the way for multiple view point laparoscopy.

  5. Diamagnetic Levitation Cantilever System for the Calibration of Normal Force Atomic Force Microscopy Measurements

    Science.gov (United States)

    Torres, Jahn; Yi, Jin-Woo; Murphy, Colin; Kim, Kyung-Suk

    2011-03-01

    In this presentation we report a novel technique for normal force calibration for Atomic Force Microcopy (AFM) adhesion measurements known as the diamagnetic normal force calibration (D-NFC) system. The levitation produced by the repulsion between a diamagnetic graphite sheet and a set of rare-earth magnets is used in order to produce an oscillation due to an unstable mechanical moment produced by a silicon cantilever supported on the graphite. The measurement of the natural frequency of this oscillation allows for the calculation of the stiffness of the system to three-digit accuracy. The D-NFC response was proven to have a high sensitivity for the structure of water molecules collected on its surface. This in turns allows for the study of the effects of coatings on the structure of surface water. This work was supported by the Coatings/Biofouling Program and the Maritime Sensing Program of the Office of Naval Research as well as the ILIR Program of the Naval Undersea Warfare Center DIVNPT.

  6. THE UNCONVENTIONAL DESIGN OF THE ELECTRODYNAMIC TRANSPORT SYSTEMS

    Directory of Open Access Journals (Sweden)

    V. A. Dzenzersjkyj

    2009-08-01

    Full Text Available The arrangements of electro-dynamic transport systems with the flat track structure are described and the fluctuations and stability of levitation motion of their vehicles are evaluated. It is shown that under rational choice of main parameters of the systems a stable levitation motion of the vehicles in straight-line and curvilinear sections of the track is provided.

  7. Distributed control system for vehicles

    Science.gov (United States)

    Callen, Jeffrey N.; Iaconis, John M.

    1997-01-01

    Previously, control systems for remotely controlled vehicles (RCVs) and unmanned ground vehicles (UGVs) have largely been of a centralized design, in which all vehicles sensing and servo control systems are individually interfaces to a central computer. These controllers often have been completely redeveloped for each new application. This approach leads to increased development, installation, and maintenance costs, and to a product that is not easily adaptable to other platforms or tasks. Under a Phase II SBIR program, RedZone Robotics is developing a distributed control systems (DCS) that reduces development, installation, and maintenance costs while enhancing adaptability to other platforms or applications. The DCS consists of a distributed control network of small, intelligent local controller nodes acting on the vehicle motion and sensing system components. A central card oversees the network and handles higher level commands. The central card and local nodes are linked through the controller area network serial bus. The node hardware is of standardized design so that application specific tasks are largely accomplished in software. The standardized design makes the DCS potentially compatible with multiple UGV platforms and eventual dual-use applications in commercial vehicles. More sophisticated functionality, such as remote control or autonomous navigation can be layered on top of the low level control supplied by DCS. Thus, the DCS can be an enabling component for development of advanced UGV technologies. ALso, intelligent nodes enable fault identification and orderly shutdown to be accomplished directly at the vehicle actuators. This SBIR is sponsored by the US Army Tank-Automotive Research, Development and Engineering Center.

  8. Levitation in an "almost" electrostatic field

    CERN Document Server

    Miranda, E N

    2012-01-01

    It is well known that a charged particle cannot be in stable equilibrium in a purely electrostatic field. The situation is different in a magnetostatic field; consequently, magnetic levitation is possible while electrostatic levitation is not. In this paper, motivated by an analogy with a mechanical system, we show that the addition of a small oscillating electrical field to an otherwise electrostatic configuration leads to the stabilisation of unstable equilibrium points. Therefore, levitation becomes possible in an "almost electrostatic" field.

  9. Velocity damper for electromagnetically levitated materials

    Science.gov (United States)

    Fox, Richard J.

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  10. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    ANSI-C program extending the TCL system is used for plan execution and a combination of MATLAB and a custom made Java GUI as user interface on the remote operator console. The choice of these standard software components is explained and the individual components demonstrated. Examples of how specific....... The central element of the architecture is the ‘global database’ that serves several purposes, such as storing system parameters, making signals available for data logging and inter-process communication. Standard software components are used to a large extent, OS-9 as real-time operating system, a custom...

  11. FY2015 Vehicle Systems Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-31

    The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  12. Vertical Dynamics Analysis of Levitation Chassis on Middle and Low Speed Maglev Vehicle%中低速磁浮列车悬浮架垂向动力学分析

    Institute of Scientific and Technical Information of China (English)

    周益; 刘放; 李贤坤; 迟振华

    2012-01-01

    Based on the viberation of bouncing, pitching and rolling directions, the vertical dynamics model of levitation chassis was established, and the equations of motion of the model were derived. A simulation program was designed to simulate the vibration dynamic characteristics of the levitation chassis for a certain latest middle and low speed maglev vehicle. The structure decoupling function of levitation chassis was further studied, especially the influence of elastic constraints between the maglev vehicle specific left and right module, and evidences were provided for designing the restraint parameters of module rolling.%建立了考虑沉浮、点头、侧滚多方向振动的悬浮架垂向动力学模型,编制了系统动力学仿真程序,分析了某新型中低速磁浮悬浮架的振动动态特性;进一步研究了悬浮架结构解耦,特别是磁浮车辆特有的左右模块之间弹性约束的影响,为磁浮车辆抗侧滚悬挂参数设计提供依据.

  13. Sound Waves Levitate Substrates

    Science.gov (United States)

    Lee, M. C.; Wang, T. G.

    1982-01-01

    System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.

  14. Electrostatic levitation under the single-axis feedback control condition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of various types of materials such as metals, inorganic materials and polymers, we made both experimental and theoretical investigations to solve the four key problems of electric field optimization, sample position detecting, sample charging control and levitation voltage minimization. Under the capacitive induction charging condition, a sample with the size of 2.6–4.5 mm usually bears positive charges amounting to 10-9 Coulomb. Because the single-axis feedback control system responds quickly, it takes the levitated sample only 0.1 s from leaving the bottom electrode until attaining a stable levitation in the upright direction. The levitated sample displays satisfactory levitation stability in both the upright and the horizontal directions owing to the constraining force produced by spherical electrodes.

  15. Improvement of the propulsion force for HTSC-permanent magnet hybrid magnetically levitated carrying system by using the pinned flux of HTSC

    Science.gov (United States)

    Ikeda, M.; Sasaki, R.; Ueno, T.; Ohashi, S.

    Magnetically levitated carrying system has been developed. In this system, pinning force of high temperature bulk superconductor (HTSC) is used for the levitation and guidance. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. For the propulsion system, electromagnets are installed on the surface of the magnetic rail. Improvement of the propulsion force is studied. In the previous system, only flux of the permanent magnet of the carrier is used for propulsion. To increase propulsion force, that of the HTSC of the carrier is also used. Using this excitation method, the propulsion force is improved even though total number of the excited coil is the same.

  16. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  17. In-Vehicle Information Systems

    Directory of Open Access Journals (Sweden)

    Gordana Štefančić

    2012-10-01

    Full Text Available The work considers different information systems, includingthe infonnation ~ystems with autonomous units, whichcany all their intelligence around with them, and those withcommunicating units, which infonn the motorist about the currentsituation of the road system by radio or other means. Thesymbols of various messages have three main objectives: to provideinstruction, to warn of oncoming dange1~ or to give adviceregarding parking or looking for altemative routes. When notused for these pwposes, they are used to provide general informationabout the weathe1~ temperature or possible attractions.The in-vehicle information systems fly to assist the motorist indriving, and they are promoted as part of the comprehensive intelligenttransport system.

  18. In-Vehicle Information Systems

    Directory of Open Access Journals (Sweden)

    Gordana Štefančić

    2002-03-01

    Full Text Available The paper considers different systems, including thesystems with autonomous units, which cany all their knowledgewith them, and those with communication units, which informthe driver about the current situation of the road system byradio or other means. The symbols of various messageshave three main goals: to provide instruction, to warn ofoncoming danger, or to give advice regarding parking or lookingfor alternative routes. When not used for these purposes,they are used to provide general information about/he weathe1;temperature or possible attractions. The in-vehicle informationsystems try to assist the motorist in driving, and they arepromoted as part of the comprehensive intelligent transport system.

  19. High-temperature metal purification using a compact, portable rf heating and levitation system on the wake shield

    Science.gov (United States)

    Hahs, C. A.

    1990-01-01

    The potential use of a compact, battery-operated rf levitator and heating system to purify high-temperature melting materials in space is described. The wake shield now being fabricated for the Space Vacuum Epitaxy Center will provide an Ultra-high vacuum (10(exp -14) Torr hydrogen, 10(exp -14) Torr helium, 10(exp -30) Torr oxygen). The use of the wake shield to purify Nb, Ti, W, Ir, and other metals to a purity level not achievable on earth is described.

  20. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  1. Quantum levitation using metamaterials

    Science.gov (United States)

    Pappakrishnan, Venkatesh K.

    The emergence of an attractive vacuum force (Casimir force) between two purely dielectric materials can lead to an increase in the friction and the stiction effects in nanoscale devices, resulting in degradation or decreased performance. Thus, it is of high practical importance that the conditions for the reversal of the Casimir force from attractive to repulsive are identified. Although the repulsive Casimir force has been considered for high dielectric materials as an intermediate (between the plates) medium, so far no realistic system has been proposed that can demonstrate quantum levitation with air/vacuum as a host medium. Since air is the natural environment for almost all nano- and microscopic devices, it is therefore imperative to seek a better understanding of the nature of the Casimir force under such ambient conditions. In this thesis, the conditions for achieving quantum levitation at an arbitrary temperature are investigated by considering a simple configuration consisting of two parallel plates separated by air. The proposed parallel-plate designs are based on artificial nano-engineered electromagnetic materials commonly referred to as the electromagnetic metamaterials. In the case of an ideal system consisting of non-dispersive plates, we have uncovered the existence of six universal Casimir force types. We have also derived an explicit necessary condition for Casimir force reversal as a function of the non-retarded specular functions of the plates. By introducing a modification of the Lifshitz theory, we have performed an extensive investigation of the Casimir force for general dispersive magneto-dielectric plates. Simple necessary and sufficient conditions for force reversal have been derived that can serve as a useful tool in designing quantum levitation systems. Based on the sufficient condition, the complete parametric domain for the Casimir force repulsion has been identified. A strongly magnetic response for at least one of the plates is

  2. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    OpenAIRE

    Ling-Yuan Hsu; Tsung-Lin Chen

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficie...

  3. Launch vehicle systems design analysis

    Science.gov (United States)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  4. Experiments Using a Ground-Based Electrostatic Levitator and Numerical Modeling of Melt Convection for the Iron-Cobalt System in Support of Space Experiments

    Science.gov (United States)

    Lee, Jonghyun; SanSoucie, Michael P.

    2017-08-01

    Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.

  5. Dynamics of vehicle-road coupled system

    CERN Document Server

    Yang, Shaopu; Li, Shaohua

    2015-01-01

    Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...

  6. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles.

    Science.gov (United States)

    Daquinag, Alexes C; Souza, Glauco R; Kolonin, Mikhail G

    2013-05-01

    White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet

  7. The Wonders of Levitation

    Science.gov (United States)

    French, M. M. J.

    2010-01-01

    I discuss some interesting classroom demonstrations of diamagnetism and how this effect can produce levitation. The possibilities for hands-on demonstrations of diamagnetic and superconducting levitation are discussed. To conclude I discuss some practical uses for levitation in daily life. (Contains 6 figures.)

  8. Improvement of levitation force characteristics in magnetic levitation type seismic isolation device composed of HTS bulk and permanent magnet

    Science.gov (United States)

    Tsuda, M.; Kawasaki, T.; Yagai, T.; Hamajima, T.

    2008-02-01

    Magnetic levitation type seismic isolation device composed of HTS bulks and permanent magnets can theoretically remove horizontal vibration completely. It is, however, not easy to generate the large levitation force by using only the levitation system composed of HTS bulk and permanent magnet (HTS-PM system). We focused on a hybrid levitation system composed of the HTS-PM system and the PM-PM system composed of only permanent magnets and investigated the suitable arranging method of the hybrid system for improving levitation force and obtaining stable levitation. In order to clarify the most suitable permanent magnet arrangement in the PM-PM system for the levitation force improvement, repulsive force between permanent magnets was measured in various kinds of the PM-PM system. The maximum repulsive force per unit area in the PM-PM system was at least three times larger than the levitation force per unit area in the HTS-PM system, so that the levitation force in the hybrid system was larger than that of the HTS-PM system. Stable levitation was also achieved in the hybrid system. This is because repulsive force in the PM-PM system against horizontal displacement was much smaller than restoring force in the HTS-PM system.

  9. Navigation System for Reusable Launch Vehicle

    OpenAIRE

    Schlotterer, Markus

    2008-01-01

    PHOENIX is a downscaled experimental vehicle to demonstrate automatic landing capabilities of future Reusable Launch Vehicles (RLVs). PHOENIX has flown in May 2004 at NEAT (North European Aerospace Test range) in Vidsel, Sweden. As the shape of the vehicle has been designed for re-entry, the dynamics are very high and almost unstable. This requires a fast and precise GNC system. This paper describes the navigation system and the navigation filter of PHOENIX. The system is introduced and the h...

  10. Improved Position Sensor for Feedback Control of Levitation

    Science.gov (United States)

    Hyers, Robert; Savage, Larry; Rogers, Jan

    2004-01-01

    An improved optoelectronic apparatus has been developed to provide the position feedback needed for controlling the levitation subsystem of a containerless-processing system. As explained, the advantage of this apparatus over prior optoelectronic apparatuses that have served this purpose stems from the use of an incandescent lamp, instead of a laser, to illuminate the levitated object. In containerless processing, a small object to be processed is levitated (e.g., by use of a microwave, low-frequency electromagnetic, electrostatic, or acoustic field) so that it is not in contact with the wall of the processing chamber or with any other solid object during processing. In the case of electrostatic or low-frequency electromagnetic levitation, real-time measurement of the displacement of the levitated object from its nominal levitation position along the vertical axis (and, in some cases, along one or two horizontal axes) is needed for feedback control of the levitating field.

  11. Distributed Control in Multi-Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Paul A. Avery

    2013-12-01

    Full Text Available The Southwest Research Institute (SwRI Mobile Autonomous Robotics Technology Initiative (MARTI program has enabled the development of fully-autonomous passenger-sized commercial vehicles and military tactical vehicles, as well as the development of cooperative vehicle behaviors, such as cooperative sensor sharing and cooperative convoy operations. The program has also developed behaviors to interface intelligent vehicles with intelligent road-side devices. The development of intelligent vehicle behaviors cannot be approached as stand-alone phenomena; rather, they must be understood within a context of the broader traffic system dynamics. The study of other complex systems has shown that system-level behaviors emerge as a result of the spatio-temporal dynamics within a system's constituent parts. The design of such systems must therefore account for both the system-level emergent behavior, as well as behaviors of individuals within the system. It has also become clear over the past several years, for both of these domains, that human trust in the behavior of individual vehicles is paramount to broader technology adoption. This paper examines the interplay between individual vehicle capabilities, vehicle connectivity, and emergent system behaviors, and presents some considerations for a distributed control paradigm in a multi-vehicle system.

  12. Distributed Control in Multi-Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Paul A. Avery

    2013-12-01

    Full Text Available The Southwest Research Institute (SwRI Mobile Autonomous Robotics Technology Initiative (MARTI program has enabled the development of fully-autonomous passenger-sized commercial vehicles and military tactical vehicles, as well as the development of cooperative vehicle behaviors, such as cooperative sensor sharing and cooperative convoy operations. The program has also developed behaviors to interface intelligent vehicles with intelligent road-side devices. The development of intelligent vehicle behaviors cannot be approached as stand-alone phenomena; rather, they must be understood within a context of the broader traffic system dynamics. The study of other complex systems has shown that system-level behaviors emerge as a result of the spatio-temporal dynamics within a system's constituent parts. The design of such systems must therefore account for both the system-level emergent behavior, as well as behaviors of individuals within the system. It has also become clear over the past several years, for both of these domains, that human trust in the behavior of individual vehicles is paramount to broader technology adoption. This paper examines the interplay between individual vehicle capabilities, vehicle connectivity, and emergent system behaviors, and presents some considerations for a distributed control paradigm in a multi-vehicle system.

  13. Dynamics and Control of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Won ko

    2006-06-01

    Full Text Available In this paper, dynamics of a Maglev vehicle was analyzed and controls utilizing an optimized damping and an LQR algorithms were designed to stabilize the vehicle. The dynamics of magnetically levitated and propelled Maglev vehicle are complex and inherently unstable. Moreover, 6-DOF system dynamics is highly nonlinear and coupled. The proposed control schemes provide the dynamic stability and controllability, which computer simulations confirmed the effectiveness.

  14. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  15. Attractors of hybrid magnetic levitation ball system and stability research%混合磁悬浮球系统吸引子及稳定性研究

    Institute of Scientific and Technical Information of China (English)

    马凤莲; 江东; 张翔; 杨嘉祥

    2012-01-01

    为了避免磁悬浮球混沌运动,设计了永磁和电磁混合型磁悬浮球模型,推导了磁悬浮球的动力学方程,并建立了磁悬浮球系统的仿真模型.通过改变初始状态,得到不同初始条件下的磁悬浮球系统吸引子.混合型磁悬浮球系统具有单、双两类吸引子,双吸引子表现出较强的混沌特性,磁悬浮球围绕平衡点附近的波动较大,磁悬浮球由混沌运动状态向非混沌运动状态转变时,由双吸引子逐渐向单吸引子过渡,系统演变为具有周期特性的运动状态,再演变为相轨迹收敛于一个点,磁悬浮球处于较稳定的运动状态.仿真和实验结果表明,通过磁悬浮球吸引子的研究可了解混沌产生的初始区间,进而为设计中避开混沌区实现磁悬浮球的稳定运动提供了参考依据.%In order to avoid magnetic levitation ball in the chaotic region, the model of permanent magnet and electromagnet hybrid magnetic levitation ball system was designed,the dynamic equation of magnetic levitation ball was deduced, and the magnetic levitation system simulation mode] was set up. The different attractors were obtained by changing the initial states. The simulation results show that the hybrid magnetic levitation ball system designed has single and double two types of attractors. The double attractors have stronger chaotic performance and the magnetic levitation ball has greater fluctuation around the equilibrium point. The attractor is gradually from double attractors to single attractor in magnetic levitation ball from chaotic station transition to non-chaotic state, the magnetic levitation ball becomes a cyclical nature of the motion state and it gradually evolves to a point of phase trajectories when the system presents a stable state. Simulation and test show that the chaos generated by the initial region can be understood by studying the magnetic levitation ball attractors, which provides a reference design basis to a

  16. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  17. Vehicle with tilting suspension system

    OpenAIRE

    Festini, Andrea; Tonoli, Andrea; Cavalli, Fabio; Carabelli, Stefano

    2006-01-01

    The patent is relative to the application of a tilting suspension on a snowmobile to improve its drive feeling and safety. At high speed the introduction of the tilting suspension reduce the rollover risk during cornering. The vehicle can tilt as a motorcycle and its lateral dimensions can be reduced not compromising the vehicle stability

  18. Classification of Dynamic Vehicle Routing Systems

    DEFF Research Database (Denmark)

    Larsen, Allan; Madsen, Oli B.G.; Solomon, Marius M.

    2007-01-01

    to classify dynamic vehicle routing systems. Methods for evaluation of the performance of algorithms that solve on-line routing problems are discussed and we list some of the most important issues to include in the system objective. Finally, we provide a three-echelon classification of dynamic vehicle routing...

  19. Design of Scale Intelligent Vehicle System

    Science.gov (United States)

    Wang, Junliang; Zhang, Zufeng; Jia, Peng; Luo, Shaohua; Zhang, Zufeng

    Nowadays, intelligent vehicle is widely studied all over the world. On considering cost and safety of test on real vehicle, it takes scale intelligent vehicle as a carrier platform, which uses visual sensors to capture the environmental information in a Wi-Fi wireless communication network environment, and creates a system including video surveillance system, monitoring command terminal, data server and three-dimensional simulating test traffic environment. The core algorithms, such as road recognition perception, image data processing, path planning and the implementation of motion control, have been completely designed and applying on the vehicle platform. The experimental results verified its good effects and the robustness and stability of the algorithm.

  20. Emergency vehicle traffic signal preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor); Foster, Conrad F. (Inventor)

    2011-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.

  1. Aerodynamics of magnetic levitation (MAGLEV) trains

    Science.gov (United States)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  2. GPS based Advanced Vehicle Tracking and Vehicle Control System

    Directory of Open Access Journals (Sweden)

    Mashood Mukhtar

    2015-02-01

    Full Text Available Security systems and navigators have always been a necessity of human‟s life. The developments of advanced electronics have brought revolutionary changes in these fields. In this paper, we will present a vehicle tracking system that employs a GPS module and a GSM modem to find the location of a vehicle and offers a range of control features. To complete the design successfully, a GPS unit, two relays, a GSM Modem and two MCU units are used. There are five features introduced in the project. The aim of this project is to remotely track a vehicle‟s location, remotely switch ON and OFF the vehicle‟s ignition system and remotely lock and unlock the doors of the vehicle. An SMS message is sent to the tracking system and the system responds to the users request by performing appropriate actions. Short text messages are assigned to each of these features. A webpage is specifically designed to view the vehicle‟s location on Google maps. By using relay based control concept introduced in this paper, number of control features such as turning heater on/off, radio on/off etc. can be implemented in the same fashion.

  3. Vehicle management system-system analysis and design

    Institute of Scientific and Technical Information of China (English)

    CHENG Ke-fei; LONG Hua; ZHANG Cong

    2004-01-01

    This paper presents one of GPS Vehicle Monitor System on base of Web-GIS technology, which is very important in vehicle tracking, scheduling and management. In the paper, a real GPS vehicle monitor system which using Internet technology is introduced. This system have been putted into practice successfully.

  4. Image-based Vehicle Classification System

    CERN Document Server

    Ng, Jun Yee

    2012-01-01

    Electronic toll collection (ETC) system has been a common trend used for toll collection on toll road nowadays. The implementation of electronic toll collection allows vehicles to travel at low or full speed during the toll payment, which help to avoid the traffic delay at toll road. One of the major components of an electronic toll collection is the automatic vehicle detection and classification (AVDC) system which is important to classify the vehicle so that the toll is charged according to the vehicle classes. Vision-based vehicle classification system is one type of vehicle classification system which adopt camera as the input sensing device for the system. This type of system has advantage over the rest for it is cost efficient as low cost camera is used. The implementation of vision-based vehicle classification system requires lower initial investment cost and very suitable for the toll collection trend migration in Malaysia from single ETC system to full-scale multi-lane free flow (MLFF). This project ...

  5. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  6. Electrostatic Levitation for Studies of Additive Manufactured Materials

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri

    2014-01-01

    The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL

  7. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic

  8. The Inductrack concept: A new approach to magnetic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.F.; Ryutov, D.

    1996-05-01

    This report describes theoretical and experimental investigations of a new approach to the problem of the magnetic levitation of a moving object. By contrast with previously studied levitation approaches, the Inductrack concept concept represents a simpler, potentially less expensive, and totally passive means of levitating a high-speed train. It may also be applicable to other areas where simpler magnetic levitation systems are needed, for example, high-speed test sleds for crash testing applications, or low-friction conveyer systems for industrial use.

  9. VEHICLE THEFT ALERT SYSTEM USING GSM

    Directory of Open Access Journals (Sweden)

    LAXMI

    2013-05-01

    Full Text Available In this technical world where technology is growing up day by day and scientific researches are presenting a new era of discoveries, we need security in all the areas. As theft activities are increasing around, we have need of more security in Automobiles/Vehicles. Today automobile industry is a major industry of the world and the vehicles need to be secured otherwise they will be packed gifts for the criminals given by our own hands. The main aim of this paper is to use wireless technology to intimate the owner of the vehicle about each and every unauthorized attempt of entry to his/her vehicle. The auto-generated Short Message Service by system is used to give information to the owner’s cell phone. And one more advantage of this project is that a back Short Message Service can be send by vehicle’s owner which will disable the ignition of the vehicle system and vehicle will be stopped. If system is active and if any unauthorized person tries to start the vehicle, the microcontroller used insystem gets an interrupt through a switch which is connected to the security system. Instantly microcontroller commands the Global System for Mobile modem to send an auto-generated message. The owner receives the Short Message Service alert in the form of some written text which is predefined in the system. If he is not sure about the jumper, owner can send a back message to the Global System for Mobile modem to ‘stop’. The Global System for Mobile modem which is interfaced to the microcontroller receives the message, according to the output of Global System for Mobile modem, micro controller disables the ignition, and it will result in stopping of the vehicle. Advancement to this system is that we can transmit auto-generated Multimedia Message Service instead of Short Message Service by using smart phone.

  10. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  11. Fusion Enhanced Vehicle Level Diagnostic System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Technology Connection, Inc. in conjunction with its partner, Vanderbilt University, is proposing to build a Fusion-enhanced Vehicle Diagnostics System (FVDS)...

  12. Analysis of Unmmanned Air Vehicles Communication Systems

    Directory of Open Access Journals (Sweden)

    Darius Rudinskas

    2011-04-01

    Full Text Available The analyzed questions of information security transferable by the radio connection link are presented in this article. This safety it is especially important for design of unmanned air vehicles (UAV and for other remote control vehicles. Also questions about UAV communication systems structure, security treats of radio connection system, possible menaces for secure information transferring, security and integrity are discussed in our presentation. Article in Lithuanian

  13. Pico-litre Sample Introduction and Acoustic Levitation Systems for Time Resolved Protein Crystallography Experiments at XFELS

    Directory of Open Access Journals (Sweden)

    Peter Docker

    2017-07-01

    Full Text Available The system described in this work is a variant from traditional acoustic levitation first described by, Marzo et al. It uses multiple transducers eliminating the requirement for a mirror surface, allowing for an open geometry as the sound from multiple transducers combines to generate the acoustic trap which is configured to catch pico litres of crystal slurries. These acoustic traps also have the significant benefit of eliminating potential beam attenuation due to support structures or microfluidic devices. Additionally they meet the need to eliminate sample environments when experiments are carried out using an X-ray Free Electron Lasers (XFEL such as the Linac Coherent Light Source (LCLS as any sample environment would not survive the exposure to the X-Ray beam. XFELs generate Light a billion times brighter than the sun. The application for this system will be to examine turn over in Beta lactamase proteins which is responsible for bacteria developing antibiotic resistance and therefore of significant importance to future world health. The system will allow for diffraction data to be collected before and after turnover allowing for a better understanding of the underling processes. The authors first described this work at Nanotech 2017.

  14. Effects of Magnet Size and Geometry on Magnetic Levitation Force

    Institute of Scientific and Technical Information of China (English)

    M. K. Alqadi; H. M. Al-khateeb; F. Y. Alzoubi; N. Y. Ayoub

    2007-01-01

    We obtain analytical relations for the levitation force as a function of dimensions of the superconductor-magnet system. The force has been calculated on the basis of the dipole-dipole interaction model.The effect of thickness of the superconductor on the levitation force is investigated. The results show that the influence of geometry and thickness of the magnet becomes significantly large at small levitation distances. Furthermore, approximating the permanent magnet as a point dipole results in an inaccurate estimation of the levitation force.

  15. DC Power System of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zhang Liwei

    2013-11-01

    Full Text Available In recent years, environmental and energy problem has become one of the world's hot spot problems. Today, the road cars not only consume a lot of oil resource, but also cause serious pollution to human survival environment. Therefore, to save energy and protect environment, a green environmental friendly electric car instead of fuel car will be needed for sustainable development of the society. Electric vehicle has no pollution, low noise, high efficiency, diversification, simple structure and convenient maintaining; the development of green cleaning electric vehicle is the trend, and the inevitable choice. The power supply system of electric vehicle can be divided into three parts, the battery charging system, motor drive system and dc load power supply system. This paper mainly studies the dc load power supply system. Main function is to convert the high-voltage of the battery in the electric vehicle into low voltage output, provide the power supply for the low voltage dc load, including the car safety system, windshield wiper system, audio system. On the basis of the analysis of the parameters, this article designs the converter, sets up the principle prototype, analyzes the experimental results and finally makes conclusion. The vehicle power supply is green, environment friendly, high-efficiency, digital and intelligent.    

  16. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  17. 3D positional control of magnetic levitation system using adaptive control: improvement of positioning control in horizontal plane

    Science.gov (United States)

    Nishino, Toshimasa; Fujitani, Yasuhiro; Kato, Norihiko; Tsuda, Naoaki; Nomura, Yoshihiko; Matsui, Hirokazu

    2012-01-01

    The objective of this paper is to establish a technique that levitates and conveys a hand, a kind of micro-robot, by applying magnetic forces: the hand is assumed to have a function of holding and detaching the objects. The equipment to be used in our experiments consists of four pole-pieces of electromagnets, and is expected to work as a 4DOF drive unit within some restricted range of 3D space: the three DOF are corresponding to 3D positional control and the remaining one DOF, rotational oscillation damping control. Having used the same equipment, Khamesee et al. had manipulated the impressed voltages on the four electric magnetics by a PID controller by the use of the feedback signal of the hand's 3D position, the controlled variable. However, in this system, there were some problems remaining: in the horizontal direction, when translating the hand out of restricted region, positional control performance was suddenly degraded. The authors propose a method to apply an adaptive control to the horizontal directional control. It is expected that the technique to be presented in this paper contributes not only to the improvement of the response characteristic but also to widening the applicable range in the horizontal directional control.

  18. Emission system upgrades for older vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.R.; Finkenbiner, K.; Sommerville, R.J.

    1996-09-01

    Thirteen 1975--1980 model year vehicles were equipped with a set of components to upgrade their emission control systems. Each vehicle was tested before maintenance (as-received), after tune-up and correction of original equipment emission system defects (baseline), and after installation of the emission upgrade system (upgrade). Average emissions of non-methane hydrocarbons (NHMC), carbon monoxide (CO), and nitrogen oxides (NOx) with the emission upgrade system installed were reduced more than 60% from the baseline immediately after upgrade. Six of the vehicles accumulated 48,000 kilometers with the upgrade system. After 48,000 kilometers, average emissions of NMHC and NOx were still reduced approximately 50% compared to the baseline and average emissions of CO were reduced approximately 20%.

  19. Innovative control systems for tracked vehicle platforms

    CERN Document Server

    2014-01-01

     This book has been motivated by an urgent need for designing and implementation of innovative control algorithms and systems for tracked vehicles. Nowadays the unmanned vehicles are becoming more and more common. Therefore there is a need for innovative mechanical constructions capable of adapting to various applications regardless the ground, air or water/underwater environment. There are multiple various activities connected with tracked vehicles. They can be distributed among three main groups: design and control algorithms, sensoric and vision based in-formation, construction and testing mechanical parts of unmanned vehicles. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision, data fusion, or IC will find this book useful.

  20. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  1. Vehicle dynamic prediction systems with on-line identification of vehicle parameters and road conditions.

    Science.gov (United States)

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event.

  2. Fiber optic gyroscopes for vehicle navigation systems

    Science.gov (United States)

    Kumagai, Tatsuya; Soekawa, Hirokazu; Yuhara, Toshiya; Kajioka, Hiroshi; Oho, Shigeru; Sonobe, Hisao

    1994-03-01

    Fiber optic gyroscopes (FOGs) have been developed for vehicle navigation systems and are used in Toyota Motor Corporation models Mark II, Chaser and Cresta in Japan. Use of FOGs in these systems requires high reliability under a wide range of conditions, especially in a temperature range between -40 and 85 degree(s)C. In addition, a high cost-performance ratio is needed. We have developed optical and electrical systems that are inexpensive and can perform well. They are ready to be mass-produced. FOGs have already been installed in luxury automobiles, and will soon be included in more basic vehicles. We have developed more inexpensive FOGs for this purpose.

  3. ROBUST STABILITY ANALYSIS FOR RAILWAY VEHICLE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Wang Yong; Zeng Jing; Cao Dengqing

    2003-01-01

    The lateral stability for railway vehicle dynamic system with uncertain parameters and nonlinear uncertain force vector is studied by using the Lyapunov stability theory. A robust stability condition for the considered system is derived, and the obtained stability bounds are not necessarily symmetric with respect to the origin in the parameter space. The lateral stability analysis for a railway bogie model is analyzed by using the proposed approach. The symmetric and asymmetric results are both given and the influence of the adjustable parameter ( on the stability bounds is also discussed. With the help of the proposed method, the robust stability analysis can provide a reference for the design of the railway vehicle systems.

  4. SCANNING VISION SYSTEM FOR VEHICLE NAVIGATION

    OpenAIRE

    O. Sergiyenko

    2012-01-01

    The new model of the scanning vision system for vehicles is offered. The questions of creation, functioning and interaction of the system units and elements are considered. The mathematical apparatus for processing digital information inside the system and for determining distances and an-gle standard in the offered system is worked out. Expected accuracy, functioning speed, range of ac-tion, energy consumption when using the system are determined. The possible areas of the developed automa...

  5. Lunar roving vehicle navigation system performance review

    Science.gov (United States)

    Smith, E. C.; Mastin, W. C.

    1973-01-01

    The design and operation of the lunar roving vehicle (LRV) navigation system are briefly described. The basis for the premission LRV navigation error analysis is explained and an example included. The real time mission support operations philosophy is presented. The LRV navigation system operation and accuracy during the lunar missions are evaluated.

  6. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  7. Automatic vehicle counting system for traffic monitoring

    Science.gov (United States)

    Crouzil, Alain; Khoudour, Louahdi; Valiere, Paul; Truong Cong, Dung Nghy

    2016-09-01

    The article is dedicated to the presentation of a vision-based system for road vehicle counting and classification. The system is able to achieve counting with a very good accuracy even in difficult scenarios linked to occlusions and/or presence of shadows. The principle of the system is to use already installed cameras in road networks without any additional calibration procedure. We propose a robust segmentation algorithm that detects foreground pixels corresponding to moving vehicles. First, the approach models each pixel of the background with an adaptive Gaussian distribution. This model is coupled with a motion detection procedure, which allows correctly location of moving vehicles in space and time. The nature of trials carried out, including peak periods and various vehicle types, leads to an increase of occlusions between cars and between cars and trucks. A specific method for severe occlusion detection, based on the notion of solidity, has been carried out and tested. Furthermore, the method developed in this work is capable of managing shadows with high resolution. The related algorithm has been tested and compared to a classical method. Experimental results based on four large datasets show that our method can count and classify vehicles in real time with a high level of performance (>98%) under different environmental situations, thus performing better than the conventional inductive loop detectors.

  8. Effect of the characteristics of a superconductor on the levitation properties of the magnet-superconductor system

    NARCIS (Netherlands)

    Rudnev, I. A.; Ermolaev, Yu. S.

    2007-01-01

    The results of the experimental and theoretical investigations of the magnetic levitation force appearing at the interaction of the multilayer superconducting block of the YBa2Cu3O7-x melted textured ceramic and a permanent magnet are presented. The maximum repulsive force and maximum attractive for

  9. Effect of the characteristics of a superconductor on the levitation properties of the magnet-superconductor system

    NARCIS (Netherlands)

    Rudnev, I. A.; Ermolaev, Yu. S.

    2007-01-01

    The results of the experimental and theoretical investigations of the magnetic levitation force appearing at the interaction of the multilayer superconducting block of the YBa2Cu3O7-x melted textured ceramic and a permanent magnet are presented. The maximum repulsive force and maximum attractive for

  10. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  11. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  12. COUPLING VIBRATION OF VEHICLE-BRIDGE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    陈炎; 黄小清; 马友发

    2004-01-01

    By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system was developed. The model was solved by mode analyzing method and Runge-Kutta method, and the dynamic response and the resonance curve of the bridge were obtained. It is found that there are two resonance regions, one represents the main resonance while the other the minor resonance, in the resonance curve. The influence due to the rugged surface, the vibration mode of bridge, and the interaction between vehicle and bridge on vibration of the system were discussed. Numerical results show that the influence due to these parameters is so significant that the effect of roughness of the bridge deck and the mode shape of the bridge can't be ignored and the vehicle velocity should be kept away from the critical speed of the vehicle.

  13. Magnetic levitation of single cells

    National Research Council Canada - National Science Library

    Naside Gozde Durmus; H. Cumhur Tekin; Sinan Guven; Kaushik Sridhar; Ahu Arslan Yildiz; Gizem Calibasi; Ionita Ghiran; Ronald W. Davis; Lars M. Steinmetz; Utkan Demirci

    2015-01-01

    .... Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal...

  14. Investigations of levitated helium drops

    Science.gov (United States)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  15. Wireless Transmission System for Vehicle Inspection Data

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan; MIAO Chang-yun

    2008-01-01

    Based on general packet radio service(GPRS) and TCP/IP protocol, a wireless transmission system of vehicle inspection data is designed. Basic structure and work theory are expounded. SIM300 designed by SIMCOM is used for client GPRS communication module. Using Winsock control of visual basic(VB), the client and server communication has been accomplished. By means of a client and server communications software, the remote wireless transmission of vehicle inspection data has been accomplished also. The server management software has been developed by using Microsoft SQL Server 2000 and VB6.0. Functions of software include import, inquiry, export and maintenance of test data.

  16. Influence of electromagnetic interference on implanted cardiac arrhythmia devices in and around a magnetically levitated linear motor car.

    Science.gov (United States)

    Fukuta, Motoyuki; Mizutani, Noboru; Waseda, Katsuhisa

    2005-01-01

    This study was designed to determine the susceptibility of implanted cardiac arrhythmia devices to electromagnetic interference in and around a magnetically levitated linear motor car [High-Speed Surface Transport (HSST)]. During the study, cardiac devices were connected to a phantom model that had similar characteristics to the human body. Three pacemakers from three manufacturers and one implantable cardioverter-defibrillator (ICD) were evaluated in and around the magnetically levitated vehicle. The system is based on a normal conductive system levitated by the attractive force of magnets and propelled by a linear induction motor without wheels. The magnetic field strength at 40 cm from the vehicle in the nonlevitating state was 0.12 mT and that during levitation was 0.20 mT. The magnetic and electric field strengths on a seat close to the variable voltage/variable frequency inverter while the vehicle was moving and at rest were 0.13 mT, 2.95 V/m and 0.04 mT, 0.36 V/m, respectively. Data recorded on a seat close to the reactor while the vehicle was moving and at rest were 0.09 mT, 2.45 V/m and 0.05 mT, 1.46 V/m, respectively. Measured magnetic and electric field strengths both inside and outside the linear motor car were too low to result in device inactivation. No sensing, pacing, or arrhythmic interactions were noted with any pacemaker or ICD programmed in either bipolar and unipolar configurations. In conclusion, our data suggest that a permanent programming change or a device failure is unlikely to occur and that the linear motor car system is probably safe for patients with one of the four implanted cardiac arrhythmia devices used in this study under the conditions tested.

  17. A Simple, Inexpensive Acoustic Levitation Apparatus

    Science.gov (United States)

    Schappe, R. Scott; Barbosa, Cinthya

    2017-01-01

    Acoustic levitation uses a resonant ultrasonic standing wave to suspend small objects; it is used in a variety of research disciplines, particularly in the study of phase transitions and materials susceptible to contamination, or as a stabilization mechanism in microgravity environments. The levitation equipment used for such research is quite costly; we wanted to develop a simple, inexpensive system to demonstrate this visually striking example of standing waves. A search of the literature produced only one article relevant to creating such an apparatus, but the authors' approach uses a test tube, which limits the access to the standing wave. Our apparatus, shown in Fig. 1, can levitate multiple small (1-2 mm) pieces of expanded polystyrene (Styrofoam) using components readily available to most instructors of introductory physics. Acoustic levitation occurs in small, stable equilibrium locations where the weight of the object is balanced by the acoustic radiation force created by an ultrasonic standing wave; these locations are slightly below the pressure nodes. The levitation process also creates a horizontal restoring force. Since the pressure nodes are also velocity antinodes, this transverse stability may be analogous to the effect of an upward air stream supporting a ball.

  18. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    Science.gov (United States)

    Liu, Minxian; Wang, Yan

    2012-01-01

    In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  19. Levitation Technology in International Space Station Research

    Science.gov (United States)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    The International Space Station (ISS) is a unique multidisciplinary orbiting laboratory for science and technology research, enabling discoveries that benefit life on Earth and exploration of the universe. ISS facilities for containerless sample processing in Materials Science experiments include levitation devices with specimen positioning control while reducing containment vessel contamination. For example, ESA's EML (ElectroMagnetic Levitator), is used for melting and solidification of conductive metals, alloys, or semiconductors in ultra-high vacuum, or in high-purity gaseous atmospheres. Sample heating and positioning are accomplished through electromagnetic fields generated by a coil system. EML applications cover investigation of solidification and microstructural formation, evaluation of thermophysical properties of highly reactive metals (whose properties can be very sensitive to contamination), and examination of undercooled liquid metals to understand metastable phase convection and influence convection on structural changes. MSL utilization includes development of novel light-weight, high-performance materials. Another facility, JAXA's ELF (Electrostatic Levitation Furnace), is used to perform high temperature melting while avoiding chemical reactions with crucibles by levitating a sample through Coulomb force. ELF is capable of measuring density, surface tension, and viscosity of samples at high temperatures. One of the initial ELF investigations, Interfacial Energy-1, is aimed at clarification of interfacial phenomena between molten steels and oxide melts with industrial applications in control processes for liquid mixing. In addition to these Materials Science facilities, other ISS investigations that involve levitation employ it for biological research. For example, NASA's "Magnetic 3D Culturing and Bioprinting" investigation uses magnetic levitation for three-dimensional culturing and positioning of magnetized cells to generate spheroid assemblies

  20. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  1. SCANNING VISION SYSTEM FOR VEHICLE NAVIGATION

    Directory of Open Access Journals (Sweden)

    O. Sergiyenko

    2012-01-01

    Full Text Available The new model of the scanning vision system for vehicles is offered. The questions of creation, functioning and interaction of the system units and elements are considered. The mathematical apparatus for processing digital information inside the system and for determining distances and an-gle standard in the offered system is worked out. Expected accuracy, functioning speed, range of ac-tion, energy consumption when using the system are determined. The possible areas of the developed automatic navigation system use are offered.

  2. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay; Mauel, Michael

    2013-03-10

    -field transport. We find levitation causes the central plasma density to increase dramatically and to significantly improve the confinement of thermal plasma [Boxer, Nature-Physics, v8, p. 949, 2010]. Several diagnostic systems have been used to measure plasma fluctuations, and these appear to represent low-frequency convection that may lead to adiabatic heating and strongly peaked pressure profiles. These experiments are remarkable, and the motivate wide-ranging studies of plasma found in space and confined for fusion energy. In the following report, we describe: (i) observations of the centrally-peaked density profile that appears naturally as a consequence of a strong turbulent pinch, (ii) observations of overall density and pressure increases that suggest large improvements to the thermal electron confinement time result occur during levitation, and (iii) the remarkable properties of low-frequency plasma fluctuations that cause magnetized plasma to "self-organize" into well-confined, centrally-peaked profiles that are relative to fusion and to space.

  3. 77 FR 30765 - Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems for Heavy Vehicles

    Science.gov (United States)

    2012-05-23

    ... CFR Part 571 Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems for Heavy... 571 RIN 2127-AK97 Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems for... a new Federal Motor Vehicle Safety Standard No. 136 to require electronic stability control (ESC...

  4. Influence of lateral displacement on the levitation performance of a magnetized bulk high-T{sub c} superconductor magnet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W., E-mail: tonny-violet@163.com [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China) and Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J.S.; Ma, G.T.; Zheng, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Tuo, X.G.; Li, L.L. [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China); Ye, C.Q.; Liao, X.L. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China)

    2012-03-15

    Compared with the permanent magnet, the magnetized bulk high-T{sub c} superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-T{sub c} superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.

  5. Self-Contained Automated Vehicle Washing System

    Science.gov (United States)

    2014-09-26

    military personnel from harmful contaminants are the impetus for designing a closed loop vehicle washing system. Systems Specification Development This...I I I " I I EACH CONTAINMENT PAD HAS SELf -CONTAINED STORAGE TO MINIMIZ[ THE FOOTPRINT DURI NG TRANSPORT . I ~ ,’"j PIVOTING ELBOWS LOCK ...shipped to Dugway, UT in August 2013 and travel plans were confirmed only to encounter the government shutdown which would delay travel until 2014

  6. Algebraic Riccati equation based Q and R matrices selection algorithm for optimal LQR applied to tracking control of 3rd order magnetic levitation system

    Directory of Open Access Journals (Sweden)

    Kumare Vinodh

    2016-03-01

    Full Text Available This paper presents an analytical approach for solving the weighting matrices selection problem of a linear quadratic regulator (LQR for the trajectory tracking application of a magnetic levitation system. One of the challenging problems in the design of LQR for tracking applications is the choice of Q and R matrices. Conventionally, the weights of a LQR controller are chosen based on a trial and error approach to determine the optimum state feedback controller gains. However, it is often time consuming and tedious to tune the controller gains via a trial and error method. To address this problem, by utilizing the relation between the algebraic Riccati equation (ARE and the Lagrangian optimization principle, an analytical methodology for selecting the elements of Q and R matrices has been formulated. The novelty of the methodology is the emphasis on the synthesis of time domain design specifications for the formulation of the cost function of LQR, which directly translates the system requirement into a cost function so that the optimal performance can be obtained via a systematic approach. The efficacy of the proposed methodology is tested on the benchmark Quanser magnetic levitation system and a detailed simulation and experimental results are presented. Experimental results prove that the proposed methodology not only provides a systematic way of selecting the weighting matrices but also significantly improves the tracking performance of the system.

  7. 单电磁铁悬浮系统的非线性鲁棒控制%Single electric magnetic levitation system nonlinear robust control

    Institute of Scientific and Technical Information of China (English)

    林志雄; 李全国

    2014-01-01

    Based on the state feedback precise linearization and Linear robust control theory,one methord of designing Nonlinear robust controller is proposed,which contributes to the research of nonlin-ear robust control of single electromagnet levitation system.With wide application's needs,it characters conciseness and practical applicability.Firstly,we build an corresponding linear system robust control strategy by using feedback precise linearization.And then,we can figure out the original nonlinear system control law with preliminary feedback and have deduced that the control law possesses robustness in single electromagnet levitation system at last.%结合状态反馈精确线性化和线性鲁棒控制理论研究单电磁铁悬浮系统的非线性鲁棒控制问题,给出一种简洁实用的非线性鲁棒控制器设计方法,先用反馈精确线性化构造相应的线性系统的鲁棒控制策略,然后再用预反馈求出原非线性系统的控制律,最后证明该控制律对于单电磁铁悬浮系统具有鲁棒性。

  8. Torsional optomechanics of a levitated nonspherical nanoparticle

    CERN Document Server

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, F; Yin, Zhang-Qi; Li, Tongcang

    2016-01-01

    An optically levitated nanoparticle in vacuum is a paradigm optomechanical system for sensing and studying macroscopic quantum mechanics. While its center-of-mass motion has been investigated intensively, its torsional vibration has only been studied theoretically in limited cases. Here we report the first experimental observation of the torsional vibration of an optically levitated nonspherical nanoparticle in vacuum. We achieve this by utilizing the coupling between the spin angular momentum of photons and the torsional vibration of a nonspherical nanoparticle whose polarizability is a tensor. The torsional vibration frequency can be one order of magnitude higher than its center-of-mass motion frequency, which is promising for ground state cooling. With an ellipsoidal model, we propose a simple yet novel scheme to achieve ground state cooling of its torsional vibration with a linearly-polarized Gaussian cavity mode. A levitated nonspherical nanoparticle in vacuum will also be an ultrasensitive nanoscale tor...

  9. COMPOSITIVE EMISSION CONTROL SYSTEM OF GASOLINE VEHICLE

    Institute of Scientific and Technical Information of China (English)

    CAI Ruibin; CHEN Zijian

    2006-01-01

    The working principle of a kind of compositive emission control system is inquired into,which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic converter, etc. The purification effect of CO, HC and NOx emission of the gasoline spark ignite (S.I.) engine is studied. The entire vehicle driving cycle tests based on the national emission standard and a series of the gasoline engine-testing bench tests including full load characteristic experiment, load characteristic experiment and idle speed experiment are done. The results show that the system has a very good emission control effect to CO, HC and NOx of gasoline engine. The construction of the system is very simple and can be mounted on the exhaust pipe conveniently without any alteration of the vehicle-use gasoline engine.

  10. Energy System selection for Small Underwater Vehicles

    Institute of Scientific and Technical Information of China (English)

    G.T.Reader; J.G.Hawley; 等

    1994-01-01

    The oceans cover almost three-quarters of the earth's surface and provide a highway for commerce or conquest and constitute a rich source of nutrients.materials and emergy.The exploration and exploitation of oceanic resources accelerated in the 1970s because of the merging offshore oil and gas industry.The extraction and national protection of these and other resources will increase rapidly in the next century and in support of these activities one of the most useful tools will be the small underwater vehicle.However,if these vehicles are to carry out the envisageed tasks in a cost-effective and mission-effective manner they will require high performance energy systems.A number of such systems are being developed and the problem arises as which one to select for a particular task.In this paper the development of software based techniques for the selection of energy systems is described.

  11. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Liu Minxian, E-mail: liukey_sjtu@263.net [School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Wang Yan [Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China)

    2012-01-15

    The characteristic of the levitation force relaxation was studied by experiment. The levitation force is attenuated with the application of the AC external magnetic field. The decay increases with the amplitude of the A external magnetic field. The decay is almost independent of the frequency of AC field. In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  12. Video Analytics Algorithm for Automatic Vehicle Classification (Intelligent Transport System

    Directory of Open Access Journals (Sweden)

    ArtaIftikhar

    2013-04-01

    Full Text Available Automated Vehicle detection and classification is an important component of intelligent transport system. Due to significant importance in various fields such as traffic accidents avoidance, toll collection, congestion avoidance, terrorist activities monitoring, security and surveillance systems, intelligent transport system has become important field of study. Various technologies have been used for detecting and classifying vehicles automatically. Automated vehicle detection is broadly divided into two types- Hardware based and software based detection. Various algorithms have been implemented to classify different vehicles from videos. In this paper an efficient and economical solution for automatic vehicle detection and classification is proposed. The proposed system first isolates the object through background subtraction followed by vehicle detection using ontology. Vehicle detection is based on low level features such as shape, size, and spatial location. Finally system classifies vehicles into one of the known classes of vehicle based on size.

  13. System to generate and control levitation, propulsion and guidance of linear switched reluctance machines

    OpenAIRE

    2003-01-01

    A translation system, applicable in trains, elevators, aircraft launchers, rail guns, conveyors, door openers, machine tools and servo drives, includes a first linear switch reluctance machine (“LSRM”) having a stator and a translator each configured, positioned and proportioned for electromagentic engagement with the other. The system further includes an assembly for selectable application of at least one phase of a multiphasic DC excitation to the LSRM to produce a longitudinal or propulsiv...

  14. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  15. Stereoscopic Vision System For Robotic Vehicle

    Science.gov (United States)

    Matthies, Larry H.; Anderson, Charles H.

    1993-01-01

    Distances estimated from images by cross-correlation. Two-camera stereoscopic vision system with onboard processing of image data developed for use in guiding robotic vehicle semiautonomously. Combination of semiautonomous guidance and teleoperation useful in remote and/or hazardous operations, including clean-up of toxic wastes, exploration of dangerous terrain on Earth and other planets, and delivery of materials in factories where unexpected hazards or obstacles can arise.

  16. Theoretical research and experimental study for a new measurement method of standing wave levitation force

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinbo; Jiang, Hai; Jiao, Xiaoyang; Zhang, Kai; Liu, Guojun; Liu, Jianfang [Jilin University, Changchun (China)

    2015-05-15

    Based on the lever principle, a novel measurement method for the standing wave levitation force is investigated and the measurement device is developed. The relative levitation force was simulated by MATLAB software, from which the relative levitation force distribution and the curves of relative levitation force in vertical and horizontal directions were obtained. To verify the rationale of the measurement method, a series of experiments were carried out with the designed measurement device system. The levitation force distribution and the curves of levitation force in vertical and horizontal directions were also obtained from the experiment. Comparing the experimental results with the simulation, the levitation force distribution situation from the experimental results and the simulation is identical.

  17. A containerless levitation setup for liquid processing in a superconducting magnet.

    Science.gov (United States)

    Lu, Hui-Meng; Yin, Da-Chuan; Li, Hai-Sheng; Geng, Li-Qiang; Zhang, Chen-Yan; Lu, Qin-Qin; Guo, Yun-Zhu; Guo, Wei-Hong; Shang, Peng; Wakayama, Nobuko I

    2008-09-01

    Containerless processing of materials is considered beneficial for obtaining high quality products due to the elimination of the detrimental effects coming from the contact with container walls. Many containerless processing methods are realized by levitation techniques. This paper describes a containerless levitation setup that utilized the magnetization force generated in a gradient magnetic field. It comprises a levitation unit, a temperature control unit, and a real-time observation unit. Known volume of liquid diamagnetic samples can be levitated in the levitation chamber, the temperature of which is controlled using the temperature control unit. The evolution of the levitated sample is observed in real time using the observation unit. With this setup, containerless processing of liquid such as crystal growth from solution can be realized in a well-controlled manner. Since the levitation is achieved using a superconducting magnet, experiments requiring long duration time such as protein crystallization and simulation of space environment for living system can be easily succeeded.

  18. Method and system for reducing errors in vehicle weighing systems

    Energy Technology Data Exchange (ETDEWEB)

    Hively, Lee M. (Philadelphia, TN); Abercrombie, Robert K. (Knoxville, TN)

    2010-08-24

    A method and system (10, 23) for determining vehicle weight to a precision of <0.1%, uses a plurality of weight sensing elements (23), a computer (10) for reading in weighing data for a vehicle (25) and produces a dataset representing the total weight of a vehicle via programming (40-53) that is executable by the computer (10) for (a) providing a plurality of mode parameters that characterize each oscillatory mode in the data due to movement of the vehicle during weighing, (b) by determining the oscillatory mode at which there is a minimum error in the weighing data; (c) processing the weighing data to remove that dynamical oscillation from the weighing data; and (d) repeating steps (a)-(c) until the error in the set of weighing data is <0.1% in the vehicle weight.

  19. Design of electric vehicle propulsion system incorporating flywheel energy storage

    OpenAIRE

    2015-01-01

    Battery electric vehicles are crucial for moving towards a zero emission transport system. Though battery electric vehicle technology has been rapidly improving, it is still not competitive to the conventional vehicles in terms of both cost and performance. The limited driving range and high cost are significant impediments to the popularity of battery electric vehicles. The battery is the main element which affects the range and cost of the vehicle. The battery has to meet the requirements o...

  20. Intelligent vehicle electrical power supply system with central coordinated protection

    Science.gov (United States)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-07-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  1. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  2. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  3. Usability Analysis of Collision Avoidance System in Vehicle-to-Vehicle Communication Environment

    Directory of Open Access Journals (Sweden)

    Hong Cho

    2014-01-01

    Full Text Available Conventional intelligent vehicles have performance limitations owing to the short road and obstacle detection range of the installed sensors. In this study, to overcome this limitation, we tested the usability of a new conceptual autonomous emergency braking (AEB system that employs vehicle-to-vehicle (V2V communication technology in the existing AEB system. To this end, a radar sensor and a driving and communication environment constituting the AEB system were simulated; the simulation was then linked by applying vehicle dynamics and control logic. The simulation results show that the collision avoidance relaxation rate of V2V communication-based AEB system was reduced compared with that of existing vehicle-mounted-sensor-based system. Thus, a method that can lower the collision risk of the existing AEB system, which uses only a sensor cluster installed on the vehicle, is realized.

  4. Hydrodynamics Research on Amphibious Vehicle Systems: Engineering Application

    Institute of Scientific and Technical Information of China (English)

    JU Nai-jun

    2006-01-01

    Based on the modeling theoretical research of the amphibious vehicle systems, a simulation computed architecture on the state space expressions of hydrodynamics for amphibious vehicle systems are educed, and simulation computed results of navigation characteristics, vibration-impact characteristics, firing-hitting characteristics for amphibious vehicle on water are given. It is shown that the hydrodynamic research on amphibious vehicle systems is necessary and feasible.

  5. Digital Signal Processing for In-Vehicle Systems and Safety

    CERN Document Server

    Boyraz, Pinar; Takeda, Kazuya; Abut, Hüseyin

    2012-01-01

    Compiled from papers of the 4th Biennial Workshop on DSP (Digital Signal Processing) for In-Vehicle Systems and Safety this edited collection features world-class experts from diverse fields focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. Digital Signal Processing for In-Vehicle Systems and Safety presents new approaches on how to reduce driver inattention and prevent road accidents. The material addresses DSP technologies in adaptive automobiles, in-vehicle dialogue systems, human machine interfaces, video and audio processing, and in-vehicle speech systems. The volume also features: Recent advances in Smart-Car technology – vehicles that take into account and conform to the driver Driver-vehicle interfaces that take into account the driving task and cognitive load of the driver Best practices for In-Vehicle Corpus Development and distribution Information on multi-sensor analysis and fusion techniques for robust driver monitoring and driver recognition ...

  6. Hybrid electric vehicle power management system

    Energy Technology Data Exchange (ETDEWEB)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  7. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  8. Research and Simulation of the Electrical Vehicle Based Dynamical System

    Directory of Open Access Journals (Sweden)

    Ko-Chun Chen

    2015-01-01

    Full Text Available This study developed a dynamic model of electric vehicle system by using the MATLAB/Simulink tool. The vehicle model comprises two system components: an electrical system and a suspension system. This study also designed various road conditions for simulating the motion of vehicle traveling along a road. The results show that the electrical and suspension system parameters can be adjusted immediately to enhance passenger comfort. The findings of this research have practical teaching applications. Students can modify the vehicle model parameters byes using the MATLAB graphical user interface, allowing them to observe the motion of vehicle under various road conditions.

  9. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  10. In-vehicle information system functions

    Energy Technology Data Exchange (ETDEWEB)

    Tufano, D.R.; Spelt, P.F.; Knee, H.E.

    1997-04-01

    This paper describes the functional requirement for an In-Vehicle Information System (IVIS), which will manage and display all driving-related information from many sources. There are numerous information systems currently being fielded or developed (e.g., routing and navigation, collision avoidance). However, without a logical integration of all of the possible on-board information, there is a potential for overwhelming the driver. The system described in this paper will filter and prioritize information across all sources, and present it to the driver in a timely manner, within a unified interface. To do this, IVIS will perform three general functions: (1) interact with other, on-board information subsystems and the vehicle; (2) manage the information by filtering, prioritizing, and integrating it; and (3) interact with the driver, both in terms of displaying information to the driver and allowing the driver to input requests, goals and preferences. The functional requirements described in this paper have either been derived from these three high-level functions or are directly mandated by the overriding requirements for modularity and flexibility. IVIS will have to be able to accommodate different types of information subsystems, of varying level of sophistication. The system will also have to meet the diverse needs of different types of drivers (private, commercial, transit), who may have very different levels of expertise in using information systems.

  11. Wireless Intra-vehicle Communication System (WICS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon's Wireless Intra-vehicle Communication System (WICS) is being designed as an enabling technology for low-cost launch vehicles. It will reduce the cost of...

  12. A levitation instrument for containerless study of molten materials.

    Science.gov (United States)

    Nordine, Paul C; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert

    2012-12-01

    A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al(2)O(3) at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y(3)Al(5)O(12) far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al(2)O(3) as a function of temperature. Levitation of dense liquid HfO(2) at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.

  13. A Study of Maglev Vehicle Dynamics Using a Reduced-Scale Vehicle Model Experiment Apparatus

    Science.gov (United States)

    Suzuki, Erimitsu; Watanabe, Ken; Hoshino, Hironori; Yonezu, Takenori; Nagai, Masao

    An experiment apparatus using a 1/12 scale model of a train car body was constructed to study the characteristics of vehicle dynamics of magnetically levitated high speed surface transport (Maglev) systems that differ from conventional railway systems. Consisting of six-axis parallel link motion bases to reproduce bogie motions, an aluminum car body, and secondary suspension units, this apparatus is expected to be useful in examinations of control methods to reduce vehicle vibrations and to generate data useful in eventually improving the precision of computer simulations. This report provides an overview of the Maglev vehicle model experiment apparatus and results of initial tests examining its fundamental characteristics.

  14. Intelligent Vehicle Electrical Power Supply System with Central Coordinated Protection

    Institute of Scientific and Technical Information of China (English)

    YANG Diange; KONG Weiwei; LI Bing; LIAN Xiaomin

    2016-01-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect;electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle’s battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle’s power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  15. Smart mobile in-vehicle systems next generation advancements

    CERN Document Server

    Abut, Huseyin; Takeda, Kazuya; Hansen, John

    2014-01-01

    This is an edited collection by world-class experts, from diverse fields, focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. The book presents developments on road safety, in-vehicle technologies and state-of-the art systems. Includes coverage of DSP technologies in adaptive automobiles, algorithms and evaluation of in-car communication systems, driver-status monitoring and stress detection, in-vehicle dialogue systems and human-machine interfaces, challenges in video and audio processing for in-vehicle products, multi-sensor fusion for driver identification and vehicle to infrastructure wireless technologies.

  16. Vehicle System Management Modeling in UML for Ares I

    Science.gov (United States)

    Pearson, Newton W.; Biehn, Bradley A.; Curry, Tristan D.; Martinez, Mario R.

    2011-01-01

    The Spacecraft & Vehicle Systems Department of Marshall Space Flight Center is responsible for modeling the Vehicle System Management for the Ares I vehicle which was a part of the now canceled Constellation Program. An approach to generating the requirements for the Vehicle System Management was to use the Unified Modeling Language technique to build and test a model that would fulfill the Vehicle System Management requirements. UML has been used on past projects (flight software) in the design phase of the effort but this was the first attempt to use the UML technique from a top down requirements perspective.

  17. Electromagnetic levitation system

    OpenAIRE

    Starikov, D. P.; Rybakov, E. A.

    2014-01-01

    Magnetism is a physical phenomenon produced by the motion of electric charge, resulting in attractive and repulsive forces between objects. It is widely adopted in many spheres of our routine life. By using the effect of magnetism, it has become possible to create non-frictional bearings, contact-free shock absorbers and many things, which found their appliance in industrial usage. There are many great inventions connected with magnets, such as the train on the air cushion (Maglev train). Mag...

  18. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  19. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  20. Electron spin control of optically levitated nanodiamonds in vacuum

    Science.gov (United States)

    Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  1. Electron spin control of optically levitated nanodiamonds in vacuum.

    Science.gov (United States)

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-19

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  2. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.M., E-mail: yangwm@snnu.edu.cn; Chao, X.X.; Guo, F.X.; Li, J.W.; Chen, S.L.

    2013-10-15

    Highlights: • A small superconducting maglev propeller system has been designed and constructed based on YBCO bulk superconductors. • Several small maglev vehicle models have been designed and constructed based on YBCO bulk superconductors. • The models can be used as experimental or demonstration devices for the magnetic levitation applications. -- Abstract: A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN{sub 2} temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  3. Internal resonance of an elastic body levitated above high-Tc superconducting bulks

    Energy Technology Data Exchange (ETDEWEB)

    Kokuzawa, T; Toshihiko, S; Yoshizawa, M, E-mail: sugiura@mech.keio.ac.j [Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan)

    2010-06-01

    In high-Tc superconducting magnetic levitation systems, levitated bodies can keep stable levitation with no contact and no control and thus their damping is very small. Thanks to these features, their applications to various apparatus are expected. However, on account of their small damping, the nonlinearity of electromagnetic levitation force can give notable effects upon motion of the levitated bodies. Therefore this nonlinearity must be taken into account to accurately analyze the dynamical behavior of the levitated bodies. Structures of such a levitated body can show elastic deformation if the large electromagnetic force acts on it. Therefore, we need to deal with the model as an elastic body. As mentioned above, nonlinear characteristics easily appear in this elastic vibration on account of the small damping. Especially when the ratio of the natural frequencies of the eigenmodes is integer, internal resonance can occur. This nonlinear resonance is derived from nonlinear interactions among the eigenmodes of the elastic levitated body. This kind of internal resonance of an elastic body appearing in high-Tc superconducting levitation systems has not been studied so far. This research especially deals with internal resonance of a beam supported at both its ends by electromagnetic forces acting on permanent magnets. The governing equation with the nonlinear boundary conditions for the dynamics of a levitated beam has been derived. Numerical results show internal resonance of the 1st mode and the 3rd mode. Experimental results are qualitatively in good agreement with numerical ones.

  4. An automated miniature robotic vehicle inspection system

    Science.gov (United States)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-02-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  5. Design of Flight Vehicle Management Systems

    Science.gov (United States)

    Meyer, George; Aiken, Edwin W. (Technical Monitor)

    1994-01-01

    As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possess much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.

  6. Magnetic Launch Assist Vehicle-Artist's Concept

    Science.gov (United States)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  7. Effects of electric vehicles on power systems in Northern Europe

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Ravn, Hans; Juul, Nina

    2012-01-01

    In this study, it is analysed how a large-scale implementation of plug-in hybrid electric vehicles and battery electric vehicles towards 2030 would influence the power systems of five Northern European countries, Denmark, Finland, Germany, Norway, and Sweden. Increasing shares of electric vehicles...

  8. An Adaptive Controller Design for Magnetic Levitation Ball System%磁悬浮球系统的自适应控制器设计

    Institute of Scientific and Technical Information of China (English)

    刘宁

    2011-01-01

    For a magnetic levitation ball system, a design method for an adaptive controller based on the linearized model and Backstepping scheme is proposed in this paper. The adaptive controller has some significant advantages such as the simple structure, easy to be realized and convenient to obtain the control input. Finally, the simulation results show the effectiveness of the proposed controller.%本文以磁悬浮球系统为研究对象,基于该系统的线性化模型,通过Backstepping设计方法设计了一类自适应控制器,所设计的控制器具有结构简单易于实现,控制输入易于得到等优点,仿真实验验证了该控制器的有效性.

  9. Developments in Understanding Stability as Applied to Magnetic Levitated Launch Assist

    Science.gov (United States)

    Gering, James A.

    2002-01-01

    Magnetic levitation is a promising technology, with the potential of constituting the first stage of a third generation space transportation system. Today, the Space Shuttle burns on the order of one million pounds of solid rocket propellant to bring the orbiter and external tank to nearly Mach 1 (1,000 kph). Imagine the reductions in launch vehicle weight, complexity and risk if an aerospace vehicle could be accelerated to the same speed utilizing about $1,000 of off-board electrical energy stored in flywheels. After over two decades of development, maglev trains travel on full-scale demonstration tracks in Germany and Japan reaching speeds approaching 500 kph. Encouraging as this may appear, the energy and power required to accelerate a 1 million pound launch vehicle to 1,000 kph would radically redefine the state-of-the-art in electrical energy storage and delivery. Reaching such a goal will require levitation with sufficient stability to withstand an operating environment fundamentally different from that of a high-speed train. Recently NASA let contracts for the construction of three maglev demonstration tracks. This construction and several associated trade studies represent a first-order investigation into the feasibility of maglev launch assist. This report provides a review of these efforts, other government sponsored maglev projects and additional technical literature pertinent to maglev stability. This review brings to light details and dimensions of the maglev stability problem which are not found in previous NASA-sponsored trade studies and which must be addressed in order to realize magnetic levitation as a launch assist technology.

  10. Parallel Hybrid Vehicle Optimal Storage System

    Science.gov (United States)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  11. Vehicle health management for guidance, navigation and control systems

    Science.gov (United States)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  12. Wireless Data Acquisition System for Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Sabooj Ray

    2013-03-01

    Full Text Available Present launch vehicle integration architecture for avionics uses wired link to transfer data between various sub-systems. Depending on system criticality and complexity, MIL1553 and RS485 are the common protocols that are adopted. These buses have their inherent complexity and failure issues due to harness defects or under adverse flight environments. To mitigate this problem, a prototype wireless, data acquisition system for telemetry applications has been developed and demonstrated. The wireless system simplifies the integration, while reducing weight and costs. Commercial applications of wireless systems are widespread. Few systems have recently been developed for complex and critical environments. Efforts have been underway to make such architectures operational in promising application scenarios. This paper discusses the system concept for adapting a wireless system to the existing bus topology. The protocol involved and the internal implementation of the different modules are described. The test results are presented; some of the issues faced are discussed and the; future course of action is identified.Defence Science Journal, 2013, 63(2, pp.186-191, DOI:http://dx.doi.org/10.14429/dsj.63.4262

  13. Control of AWD System for Vehicle Performance and Safety

    Directory of Open Access Journals (Sweden)

    Jung Hojin

    2016-01-01

    Full Text Available AWD (All-Wheel Drive system transfers drive force to all wheels so that it can help vehicle escape low mu surface or climb hill more conveniently. Recently, AWD system for on road vehicle has become popular to improve vehicle driving performance. However, there has not been enough research of applying AWD system for vehicle stability especially for lateral movement. Compared with ESC (Electronic Stability Control, AWD system does not cause any inconveniences to the driver because it controls vehicle only by distributing front and rear drive torque, without using brake. By allowing slipping/locking of wet clutch inside the transfer case, AWD system can distribute different amount of torque between front and rear axle. This paper introduces modelling of AWD system and suggests the control of AWD system based on peak slip ratio and slip angle at which tyre saturates. Carsim based vehicle simulation results of AWD controller is presented.

  14. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  15. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna International, Rochester Mills, MI (United States)

    2010-08-27

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  16. Electric vehicle with downhill electro-generating system

    Energy Technology Data Exchange (ETDEWEB)

    Stulbach, N.; Yuter, S.C.

    1993-06-01

    A vehicle adapted to be driven by an electrical motor electrically connected to charge storage battery means and having an electro-operating system is described comprising a first dynamo electric generator, first mechanical turns amplifier means for coupling said first dynamo electric generator to a road wheels axle of the vehicle, a second dynamo electric generator, downhill sensing means coupled to a portion of the vehicle, and second mechanical turns amplifier means responsive to said downhill sensing means for automatically coupling said second dynamo electric generator to a road wheels axle of the vehicle only when the vehicle is going downhill, whereby said first dynamo electric generator is driven by the amplified rotation of the axle whenever said axle rotates thereby converting movement of the vehicle into electrical energy, and said second dynamo electric generator is automatically driven by the amplified rotation of the axle only when said vehicle is going downhill thereby converting downhill movement of the vehicle into electrical energy.

  17. Electromagnetic Levitation of a Disc

    Science.gov (United States)

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  18. Electromagnetic Levitation of a Disc

    Science.gov (United States)

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  19. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    Science.gov (United States)

    Deng, Zigang; Qian, Nan; Che, Tong; Jin, Liwei; Si, Shuaishuai; Zhang, Ya; Zheng, Jun

    2016-12-01

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems.

  20. Hydrodynamics Research on Amphibious Vehicle Systems:Modeling Theory

    Institute of Scientific and Technical Information of China (English)

    JU Nai-jun

    2006-01-01

    For completing the hydrodynamics software development and the engineering application research on the amphibious vehicle systems, hydrodynamic modeling theory of the amphibious vehicle systems is elaborated, which includes to build up the dynamic system model of amphibious vehicle motion on water, gun tracking-aiming-firing, bullet hit and armored check-target, gunner operating control, and the simulation computed model of time domain for random sea wave.

  1. Autonomous Underwater Vehicle Magnetic Mapping System

    Science.gov (United States)

    Steigerwalt, R.; Johnson, R. M.; Trembanis, A. C.; Schmidt, V. E.; Tait, G.

    2012-12-01

    An Autonomous Underwater Vehicle (AUV) Magnetic Mapping (MM) System has been developed and tested for military munitions detection as well as pipeline locating, wreck searches, and geologic surveys in underwater environments. The system is comprised of a high sensitivity Geometrics G-880AUV cesium vapor magnetometer integrated with a Teledyne-Gavia AUV and associated Doppler enabled inertial navigation further utilizing traditional acoustic bathymetric and side scan imaging. All onboard sensors and associated electronics are managed through customized crew members to autonomously operate through the vehicles primary control module. Total field magnetic measurements are recorded with asynchronous time-stamped data logs which include position, altitude, heading, pitch, roll, and electrical current usage. Pre-planned mission information can be uploaded to the system operators to define data collection metrics including speed, height above seafloor, and lane or transect spacing specifically designed to meet data quality objectives for the survey. As a result of the AUVs modular design, autonomous navigation and rapid deployment capabilities, the AUV MM System provides cost savings over current surface vessel surveys by reducing the mobilization/demobilization effort, thus requiring less manpower for operation and reducing or eliminating the need for a surface support vessel altogether. When the system completes its mission, data can be remotely downloaded via W-LAN and exported for use in advanced signal processing platforms. Magnetic compensation software has been concurrently developed to accept electrical current measurements directly from the AUV to address distortions from permanent and induced magnetization effects on the magnetometer. Maneuver and electrical current compensation terms can be extracted from the magnetic survey missions to perform automated post-process corrections. Considerable suppression of system noise has been observed over traditional

  2. Characterization of Acousto-Electric Cluster and Array Levitation and its Application to Evaporation

    Science.gov (United States)

    Robert E. Apfel; Zheng, Yibing

    2000-01-01

    An acousto-electric levitator has been developed to study the behavior of liquid drop and solid particle clusters and arrays. Unlike an ordinary acoustic levitator that uses only a standing acoustic wave to levitate a single drop or particle, this device uses an extra electric static field and the acoustic field simultaneously to generate and levitate charged drops in two-dimensional arrays in air without any contact to a solid surface. This cluster and array generation (CAG) instrument enables us to steadily position drops and arrays to study the behavior of multiple drop and particle systems such as spray and aerosol systems relevant to the energy, environmental, and material sciences.

  3. Computational Modeling of Flow Control Systems for Aerospace Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...

  4. Dropsonde System for Unmanned Aerial Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned Aerial Vehicles (UAVs) are assuming more numerous and increasingly important roles in global environmental and atmospheric research. There is a...

  5. Systems and methods for vehicle speed management

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, Vivek Anand; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Forst, Howard Robert

    2016-03-01

    Controlling a speed of a vehicle based on at least a portion of a route grade and a route distance divided into a plurality of route sections, each including at least one of a section grade and section length. Controlling the speed of the vehicle is further based on determining a cruise control speed mode for the vehicle for each of the plurality of route sections and determining a speed reference command of the vehicle based on at least one of the cruise control speed mode, the section length, the section grade, and a current speed.

  6. Lane-Level Vehicle Trajectory Reckoning for Cooperative Vehicle-Infrastructure System

    Directory of Open Access Journals (Sweden)

    Yinsong Wang

    2012-01-01

    Full Text Available This paper presents a lane-level positioning method by trajectory reckoning without Global Positioning System (GPS equipment in the environment of Cooperative Vehicle-Infrastructure System (CVIS. Firstly, the accuracy requirements of vehicle position in CVIS applications and the applicability of GPS positioning methods were analyzed. Then, a trajectory reckoning method based on speed and steering data from vehicle’s Control Area Network (CAN and roadside calibration facilities was proposed, which consists of three critical models, including real-time estimation of steering angle and vehicle direction, vehicle movement reckoning, and wireless calibration. Finally, the proposed method was validated through simulation and field tests under a variety of traffic conditions. Results show that the accuracy of the reckoned vehicle position can reach the lane level and match the requirements of common CVIS applications.

  7. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  8. Design of vehicle overload detection system based on geophone

    Science.gov (United States)

    Hu, Siquan; Kong, Min; She, Chundong

    2017-08-01

    A vehicle overload detection system is proposed based on geophone. Under normal circumstances, when overloaded vehicles and ordinary vehicles pass through the road, the amplitude of the ground vibration will be different, and the geophone sensor can detect tiny vibrations of the ground. The system includes information acquisition module, signal conditioning module and wireless transmission module. The collected vibration data is transmitted through the wireless transmission module to the background, and the SVM algorithm is used to classify the information and determine whether the vehicle is overloaded. Experiments show that the system can detect overload accurately.

  9. Design of a digital adaptive control system for reentry vehicles.

    Science.gov (United States)

    Picon-Jimenez, J. L.; Montgomery, R. C.; Grigsby, L. L.

    1972-01-01

    The flying qualities of atmospheric reentry vehicles experience considerable variations due to the wide changes in flight conditions characteristic of reentry trajectories. A digital adaptive control system has been designed to modify the vehicle's dynamic characteristics and to provide desired flying qualities for all flight conditions. This adaptive control system consists of a finite-memory identifier which determines the vehicle's unknown parameters, and a gain computer which calculates feedback gains to satisfy flying quality requirements.

  10. Magnetic Levitation Experiments with the Electrodynamic Wheel

    Science.gov (United States)

    Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian

    Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  11. Controlling the net charge on a nanoparticle optically levitated in vacuum

    Science.gov (United States)

    Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas

    2017-06-01

    Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.

  12. The effects of magnetization process on levitation characteristics of a superconducting bulk magnet

    Science.gov (United States)

    Jiang, J.; Gong, Y. M.; Li, Y. H.; Liang, G.; Yang, X. S.; Cheng, C. H.; Zhao, Y.

    2015-09-01

    In this paper, a bulk YBCO superconductor was magnetized in a chosen magnetic field generated from a superconducting magnet (SM) after field cooling process. The effects of magnetization process with different magnetization intensities on levitation forces and relaxation characteristics were investigated. From the results, it can be confirmed that the superconducting bulk magnet (SBM) magnetized with proper magnetization intensity was beneficial to improve the levitation characteristics of the magnetic levitation system. Nevertheless, when the magnetization intensity exceeded 0.85T, the levitation forces and the relaxation characteristics of the SBM attained saturation.

  13. Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions

    Science.gov (United States)

    Yau, J. D.

    2010-05-01

    This paper intends to present a computational framework of aerodynamic analysis for a maglev (magnetically levitated) vehicle traveling over flexible guideways under oncoming wind loads. The guideway unit is simulated as a series of simple beams with identical span and the maglev vehicle as a rigid car body supported by levitation forces. To carry out the interaction dynamics of maglev vehicle/guideway system, this study adopts an onboard PID (proportional-integral-derivative) controller based on Ziegler-Nicholas (Z-N) method to control the levitation forces. Interaction of wind with high-speed train is a complicated situation arising from unsteady airflow around the train. In this study, the oncoming wind loads acting on the running maglev vehicle are generated in temporal/spatial domain using digital simulation techniques that can account for the moving effect of vehicle's speed and the spatial correlation of stochastic airflow velocity field. Considering the motion-dependent nature of levitation forces and the non-conservative characteristics of turbulent airflows, an iterative approach is used to compute the interaction response of the maglev vehicle/guideway coupling system under wind actions. For the purpose of numerical simulation, this paper employs Galerkin's method to convert the governing equations containing a maglev vehicle into a set of differential equations in generalized systems, and then solve the two sets of differential equations using an iterative approach with the Newmark method. From the present investigation, the aerodynamic forces may result in a significant amplification on acceleration amplitude of the running maglev vehicle at higher speeds. For this problem, a PID+LQR (linear quadratic regulator) controller is proposed to reduce the vehicle's acceleration response for the ride comfort of passengers.

  14. Longitudinal Control Strategy for Vehicle Adaptive Cruise Control Systems

    Institute of Scientific and Technical Information of China (English)

    WU Li-jun; LIU Zhao-du; MA Yue-feng

    2007-01-01

    A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented.The running relationship between the ACC vehicle and the detected target vehicle is described by the relative velocity and the deviation between the actual headway distance and the prescribed safety distance.Based on this,two state space models are built and the linear quadratic optimal control theory is used to yield desired velocity for the ACC-equipped vehicle when with the target vehicle detected.By switching among four control modes,the desired velocity profile is designed to deal with different running situations.A velocity controller,which includes a PID controller for throttle openness and a neural network controller for brake application,is developed to achieve the desired velocity profile.The proposed control strategy is applied to a non-linear vehicle model in a simulation environment and is shown to provide the ACC vehicle comfortable ride and satisfying safety.

  15. System Architecture Design for Electric Vehicle (EV) Systems

    DEFF Research Database (Denmark)

    Xu, Zhao; Wu, Qiuwei; Nielsen, Arne Hejde

    2010-01-01

    The electric vehicle (EV) system should fulfill the energy needs of EVs to meet the EV users’ driving requirements and enable the system service from EVs to support the power system operation with high penetration of renewable energy resources (RES) by providing necessary infrastructures. In order...... to realize the functionalities of the EV system, a three‐level conceptual EV system has been proposed. The proposed conceptual model comprises the three listed levels.    management/control level  information/communication level  physical level.   The control/management level is dealing with local control...

  16. Levitated micro-accelerometer.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Schmidt, Carrie Frances; Peterson, Kenneth Allen; Kravitz, Stanley H.; Renn, Rosemarie A.; Peter, Frank J.; Kinney, Ragon D.; Gilkey, Jeffrey C.

    2004-06-01

    The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.

  17. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume 1. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Surber, F.T.

    1979-09-30

    The results of investigations conducted under Ce Hybrid Vehicle Potential Assessment Task are reported in 10 volumes. This volume contains an overview of the study and its results. The purpose of the overall study was to determine if the petroleum fuel savings achievable through the use of hybrid electric vehicles is worth the R and D expenditures needed to develop the hybrid vehicles and to determine R and D priorities. It was concluded that by the year 2010 hybrid vehicles could replace 80% of the automotive power that would otherwise be produced from petroleum fuels; the public should not suffer any mobility loss through the use of hybrid vehicles; high initial and life-cycle costs are a limiting factor; and R and D funds should be spent for systems design and the development of low-cost batteries and controllers. (LCL)

  18. Compact Water Jet Propulsion System for a Marine Vehicle.

    Science.gov (United States)

    The invention is directed to an improved water jet propulsion system for a marine vehicle. The water jet propulsion system of the present invention...the vehicle hull and extending internally thereof, a water jet pump having an inlet end attached to the outlet end of the inlet duct, a motor for

  19. Scheduling vehicles in automated transportation systems : algorithms and case study

    NARCIS (Netherlands)

    Heijden, van der Matthieu; Ebben, Mark; Gademann, Noud; Harten, van Aart

    2000-01-01

    One of the major planning issues in large scale automated transportation systems is so-called empty vehicle management, the timely supply of vehicles to terminals in order to reduce cargo waiting times. Motivated by a Dutch pilot project on an underground cargo transportation system using Automated

  20. Combined Pressure and Thermal Window System for Space Vehicles

    Science.gov (United States)

    Svartstrom, Kirk Nils (Inventor)

    2017-01-01

    A window system for a vehicle comprising a pressure and thermal window pane, a seal system, and a retainer system. The pressure and thermal window pane may be configured to provide desired pressure protection and desired thermal protection when exposed to an environment around the vehicle during operation of the vehicle. The pressure and thermal window pane may have a desired ductility. The seal system may be configured to contact the pressure and thermal window pane to seal the pressure and thermal window pane. The retainer system may be configured to hold the seal system and the pressure and thermal window pane.

  1. ZHANG Caihong. Fusion algorithm of H¥ and sliding-mode control for magnetic levitation systems%H¥与滑模融合控制算法在磁悬浮系统中的应用

    Institute of Scientific and Technical Information of China (English)

    李丹丹; 何荣卜; 张彩红

    2014-01-01

    磁悬浮系统在实际运行中会出现模型摄动和各种外界干扰,提高磁悬浮系统的鲁棒性非常重要,给出了磁悬浮系统的数学模型;结合H∞控制和滑模控制的优点,给出一种 H¥控制和滑模控制的融合算法,把该算法应用在磁悬浮系统中;通过Matlab仿真,验证了该算法能有效抑制磁悬浮系统中存在的确定性和不确定性干扰,从而使控制系统的性能得到提高。%Magnetic levitation control system has model perturbation and a variety of outside interference during operation, so, improving the robustness of magnetic levitation system is very important. This paper gives a mathematical model of magnetic levitation system;a fusion algorithm of H¥ and sliding-mode control is discussed;simulation is obtained by Matlab tool. The results show that the algorithm is robust to the uncertainty of the system on the matching and non-matching at the same time.

  2. Accurate Localization of Communicant Vehicles using GPS and Vision Systems

    Directory of Open Access Journals (Sweden)

    Georges CHALLITA

    2009-07-01

    Full Text Available The new generation of ADAS systems based on cooperation between vehicles can offer serious perspectives to the road security. The inter-vehicle cooperation is made possible thanks to the revolution in the wireless mobile ad hoc network. In this paper, we will develop a system that will minimize the imprecision of the GPS used to car tracking, based on the data given by the GPS which means the coordinates and speed in addition to the use of the vision data that will be collected from the loading system in the vehicle (camera and processor. Localization information can be exchanged between the vehicles through a wireless communication device. The creation of the system must adopt the Monte Carlo Method or what we call a particle filter for the treatment of the GPS data and vision data. An experimental study of this system is performed on our fleet of experimental communicating vehicles.

  3. Aerodynamic levitation : an approach to microgravity.

    Energy Technology Data Exchange (ETDEWEB)

    Glorieux, B.; Saboungi, M.-L.; Millot, F.; Enderby, J.; Rifflet, J.-C.

    2000-12-05

    Measurements of the thermophysical and structural properties of liquid materials at high temperature have undergone considerable development in the past few years. Following improvements in electromagnetic levitation, aerodynamic levitation associated with laser heating has shown promise for assessing properties of different molten materials (metals, oxides, and semiconductors), preserving sample purity over a wide range of temperatures and under different gas environments. The density, surface tension and viscosity are measured with a high-speed video camera and an image analysis system. Results on nickel and alumina show that small droplets can be considered in the first approximation to be under microgravity conditions. Using a non-invasive contactless technique recently developed to measure electrical conductivity, results have been extended to variety of materials ranging from liquid metals and liquid semiconductors to ionically conducting materials. The advantage of this technique is the feasibility of monitoring changes in transport occurring during phase transitions and in deeply undercooled states.

  4. Design, implementation and control of a magnetic levitation device

    Science.gov (United States)

    Shameli, Ehsan

    Magnetic levitation technology has shown a great deal of promise for micromanipulation tasks. Due to the lack of mechanical contact, magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. These advantages have made magnetic levitation systems a great candidate for clean room applications. In this thesis, a new large gap magnetic levitation system is designed, developed and successfully tested. The system is capable of levitating a 6.5(gr) permanent magnet in 3D space with an air gap of approximately 50(cm) with the traveling range of 20x20x30 mm3. The overall positioning accuracy of the system is 60mum. With the aid of finite elements method, an optimal geometry for the magnetic stator is proposed. Also, an energy optimization approach is utilized in the design of the electromagnets. In order to facilitate the design of various controllers for the system, a mathematical model of the magnetic force experienced by the levitated object is obtained. The dynamic magnetic force model is determined experimentally using frequency response system identification. The response of the system components including the power amplifiers, and position measurement system are also considered in the development of the force model. The force model is then employed in the controller design for the magnetic levitation device. Through a modular approach, the controller design for the 3D positioning system is started with the controller design for the vertical direction, i.e. z, and then followed by the controller design in the horizontal directions, i.e. x and y. For the vertical direction, several controllers such as PID, feed forward and feedback linearization are designed and their performances are compared. Also a control command conditioning method is introduced as a solution to increase the control performance and the results of the proposed controller are compared with the other designs. Experimental results showed that for the magnetic

  5. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  6. Power Conversion System Strategies for Fuel Cell Vehicles

    Institute of Scientific and Technical Information of China (English)

    Kaushik Rajashekara

    2005-01-01

    Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.

  7. Robust Vehicle Suspension System by Converting Active & Passive Control of a Vehicle to Semi-Active Control System Analytically

    Directory of Open Access Journals (Sweden)

    Hassan Elahi

    2014-12-01

    Full Text Available In this research work a simplified translational model of an automotive suspension system is constructed by only considering the translation motion of one wheel of a car. Passive Vehicle Suspension System is converted into Semi Active Vehicle System. Major advantage achieved by this system is that it adjusts the damping of the suspension system without the application of any actuator by using MATLAB® simulations. The semi-active control is found to control the vibration of suspension system very well.

  8. Integrated Navigation System for the Second Generation Reusable Launch Vehicle

    Science.gov (United States)

    2002-01-01

    An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.

  9. Dropsonde System for Unmanned Aerial Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A small, modular dropsonde launcher is being developed for Unmanned Aerial Vehicles (UAVs). Some critical measurement needs can only be satisfied by in-situ...

  10. Navigation System Fault Diagnosis for Underwater Vehicle

    DEFF Research Database (Denmark)

    Falkenberg, Thomas; Gregersen, Rene Tavs; Blanke, Mogens

    2014-01-01

    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal b...

  11. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  12. A Study of Electric Vehicle Suspension Control System Based on an Improved Half-vehicle Model

    Institute of Scientific and Technical Information of China (English)

    Jiang-Tao Cao; Hong-Hai Liu; Ping Li; David J.Brown; Georgi Dimirovski

    2007-01-01

    An improved half-vehicle model has been proposed for active suspension control systems, in contrast to existing models, it allows to explore the nature of the effect of vehicle speed changes by introducing a state vector of vehicle pitch angle. Three control strategies of linear quadratic control (LQ), improved LQ (ILQ) and wheelbase preview LQ (WLQ) have been implemented into the proposed model. ILQ has integrated an additional control parameter into LQ by concerning the correlation between acceleration values and their corresponding pitch angles. Simulation results have showed the effectiveness of the proposed model in terms of LQ, ILQ and WLQ control strategies.

  13. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    Science.gov (United States)

    Yang, W. M.; Chao, X. X.; Guo, F. X.; Li, J. W.; Chen, S. L.

    2013-10-01

    A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN2 temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  14. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    Science.gov (United States)

    Jiang, Hai; Liu, Jianfang; Lv, Qingqing; Gu, Shoudong; Jiao, Xiaoyang; Li, Minjiao; Zhang, Shasha

    2016-09-01

    The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.

  15. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  16. An estimation-based automatic vehicle location system for public transport vehicles

    OpenAIRE

    Morenz, Tino; MEIER, RENE

    2008-01-01

    PUBLISHED Public transport vehicles often share a road network with other road users making their journeys susceptive to changing road conditions and especially to congestion. Travelers using such public transport increasingly depend on real-time information to plan their journeys. While such information can be provided by Automatic Vehicle Location (AVL) systems, AVLs depend heavily on large-scale deployment of designated sensory equipment, which may prevent their ...

  17. Observation of vacuum-enhanced electron spin resonance of levitated nanodiamonds

    CERN Document Server

    Hoang, Thai M; Bang, Jaehoon; Li, Tongcang

    2015-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potenti...

  18. Observation of vacuum-enhanced electron spin resonance of optically levitated nanodiamonds

    Science.gov (United States)

    Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potential applications of NV centers in gas sensing.

  19. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity syste...... be accommodated in the network with the smart charging mode. The extent of integrating EVs in an area is constrained by the EV charging behavior and the safe operational limits of electricity system parameters....... operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles......Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...

  20. Control system of magnetic levitation permanent magnet linear motor based on field-circuit coupling%基于场路耦合的磁悬浮永磁直线电动机控制系统

    Institute of Scientific and Technical Information of China (English)

    蓝益鹏; 张振兴; 杨波; 赵辉

    2012-01-01

    为了解决数控机床进给系统的摩擦问题,采用一种磁悬浮永磁直线电动机来实现无摩擦进给.建立磁悬浮永磁直线电动机的电压、磁链、推力和运动的数学模型及控制系统的场路耦合仿真模型,运用Ansoft软件中的Maxwell和Simplorer对磁悬浮永磁直线电动机控制系统进行场路耦合的联合仿真,并研究磁悬浮永磁直线电动机加速、刹车与反向运行过程.仿真结果表明,该磁悬浮永磁直线电动机控制系统具有良好的跟踪和抗扰性能,为深入研究整个系统的相互耦合以及搭建实验平台提供了依据.%To solve the friction problem existing in the feed system of computer numerical control (CNC) machine tool, a magnetic levitation permanent magnet linear motor was adopted to realize the friction-free feed. The mathmatical models for the voltage, flux linkage, thrust force and movement of magnetic levitation permanent magnet linear motor as well as the simulation model for the field-circuit coupling of control system were established. Maxwell and Simplorer in Ansoft software were used to carry out the co-simulation of field-circuit coupling for the control system of magnetic levitation permanent magnet linear motor. In addition, the acceleration, braking and reverse operation processes of magnetic levitation permanent magnet linear motor were studied. The simulation results show that the control system of magnetic levitation permanent magnet linear motor exhibits good tracking performance and anti-disturbance capability, which provides the basis for the research on the intercoupling of whole system and the guidance for the establishment of experiment platform.

  1. Decay Characteristics of Levitation Force of YBCO Bulk Exposed to AC Magnetic Field above NdFeB Guideway

    Science.gov (United States)

    Liu, Minxian; Lu, Yiyun; Wang, Suyu; Ma, Guangtong

    2011-04-01

    The superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the nonuniformity of the magnetic field along the movement direction above the NdFeB guideway is inevitable due to the assembly error and inhomogeneity of the material property of the NdFeB magnet. So it is required to study the characteristics of levitation force of the bulks affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we will study the characteristics of the levitation force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet is used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experimental results, it has found that the levitation force is decreasing with the application of the AC external magnetic field, and the decay increasing with the amplitude of the applied magnetic field and is almost independent of the frequency.

  2. Intelligent Emergency Response System for Police Vehicles in India

    DEFF Research Database (Denmark)

    Ganeshan, Ishan; Memon, Nasrullah

    2015-01-01

    . Based on this crime mapping, the administrator assigns patrol schedules for different police vehicles throughout the day. The proposed system would make it very easy for people to call for the help, and the police authorities to know the locations of the callers and identify crime hot spots...... time by the police vehicles. In the proposed system, the administrator can view the performance of all the police vehicles at any time through a web portal. The system used traditional data mining algorithms in order to analyze crimes in different areas of a city and at different times of the day...

  3. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  4. Modelling and simulation of vehicle electric power system

    Science.gov (United States)

    Lee, Wootaik; Choi, Daeho; Sunwoo, Myoungho

    In recent years, the demand for an increased number of vehicle functions by legislation and customer expectations has introduced many electronic control systems and electrical driven units in vehicles and has resulted in steadily increasing electrical loads. Moreover, due to heavy urban traffic conditions, the idling time fraction has increased and reduced the power generation of the alternator. In the vehicle design phase, in order to avoid an over- or under-design problem of the electric power system, it is necessary to understand both the characteristics of each component of the vehicle electric power system and the interactions between the components. For this purpose, model and simulation algorithms of the vehicle power system are required. In this study, the vehicle electric power system, which is mainly composed of a generator and battery, is modelled and evaluated. Among the various proposed battery models, two types are compared in terms of accuracy and ease-of-use. These two models are distinguished by the consideration of inrush current at the beginning of charging and discharging. In addition, a variable terminal voltage alternator model (VTVA model) is proposed, and is compared with a constant terminal voltage alternator model (CTVA model). Based on the major component model, a simulation algorithm is developed and used to perform a case study. Compared with real data from the vehicle, the simulation results of energy generation and consumption are comparable.

  5. Transient Performance of Electrical System in a Military Vehicle

    Directory of Open Access Journals (Sweden)

    Zang Kemao

    2004-01-01

    Full Text Available Electrical system in a military vehicle is a low voltage (28 V dc system which is an unsymmetrical and nonlinear system made up of silicon-rectifying generator and a battery in parallel. Studies have been carried out using numerical method to calculate its transient performance. State variable and coordinate transformation have been adopted to express the functional modes and its transfer law of the silicon-rectifying generator; the battery is expressed as a simplified equivalent circuit according to its characteristics during transient process: Consequently, the general mathematical model of electrical system in a military vehicle is presented. Examples of electrical systems in somemilitary vehicles have been taken to carry out the calculation of transient performance and the findings have been compared with the test results of an actual vehicle to show that the numerical method designed works.

  6. Knowledge-based fault diagnosis system for refuse collection vehicle

    Science.gov (United States)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y.

    2015-05-01

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  7. Knowledge-based fault diagnosis system for refuse collection vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y. [Centre of Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  8. Motion coordination and performance analysis of multiple vehicle systems

    Science.gov (United States)

    Sharma, Vikrant

    In this dissertation, issues related to multiple vehicle systems are studied. First, the issue of vehicular congestion is addressed and its effect on the performance of some systems studied. Motion coordination algorithms for some systems of interest are also developed. The issue of vehicular congestion is addressed by characterizing the effect of increasing the number of vehicles, in a bounded region, on the speed of the vehicles. A multiple vehicle routing problem is considered where vehicles are required to stay velocity-dependent distance away from each other to avoid physical collisions. Optimal solutions to the minimum time routing are characterized and are found to increase with the square root of the number of vehicles in the environment, for different distributions of the sources and destinations of the vehicles. The second issue addressed is that of the effect of vehicular congestion on the delay associated with data delivery in wireless networks where vehicles are used to transport data to increase the wireless capacity of the network. Tight bounds on the associated delay are derived. The next problem addressed is that of covering an arbitrary path-connected two dimensional region, using multiple unmanned aerial vehicles, in minimum time. A constant-factor optimal algorithm is presented for any given initial positions of the vehicles inside the environment. The last problem addressed is that of the deployment of an environment monitoring network of mobile sensors to improve the network lifetime and sensing quality. A distributed algorithm is presented that improves the system's performance starting from an initial deployment.

  9. FPGA Fuzzy Controller Design for Magnetic Ball Levitation

    Directory of Open Access Journals (Sweden)

    Basil Hamed

    2012-09-01

    Full Text Available this paper presents a fuzzy controller design for nonlinear system using FPGA. A magnetic levitation system is considered as a case study and the fuzzy controller is designed to keep a magnetic object suspended in the air counteracting the weight of the object. Fuzzy controller will be implemented using FPGA chip. The design will use a high-level programming language HDL for implementing the fuzzy logic controller using the Xfuzzy tools to implement the fuzzy logic controller into HDL code. This paper, advocates a novel approach to implement the fuzzy logic controller for magnetic ball levitation system by using FPGA.

  10. Simulation Model of Magnetic Levitation Based on NARX Neural Networks

    Directory of Open Access Journals (Sweden)

    Dragan Antić

    2013-04-01

    Full Text Available In this paper, we present analysis of different training types for nonlinear autoregressive neural network, used for simulation of magnetic levitation system. First, the model of this highly nonlinear system is described and after that the Nonlinear Auto Regressive eXogenous (NARX of neural network model is given. Also, numerical optimization techniques for improved network training are described. It is verified that NARX neural network can be successfully used to simulate real magnetic levitation system if suitable training procedure is chosen, and the best two training types, obtained from experimental results, are described in details.

  11. System design of electronic vehicles and components

    OpenAIRE

    Смолій, Вікторія Миколаївна

    2015-01-01

    The oscillation mechanical and thermal mathematical models of electronic vehicles that allow to take into account properties and cooperation of making model elements of replacement and design oscillation stability of PCBS and components in the conditions of technological process of their production are worked out

  12. 无轴承扰动补偿悬浮系统的稳定性分析与验证%Stability analysis and verification for bearingless magnetic levitation system with disturbance rejection

    Institute of Scientific and Technical Information of China (English)

    王晓琳; 贺鹏

    2012-01-01

    目前,无轴承磁悬浮系统多采用PID等经典控制策略,然而由于外界扰动、参数摄动等诸多原因,难以实现高性能的悬浮控制.本文针对上述问题,通过在传统PID悬浮控制系统中增加扩张状态观测器,对悬浮力扰动进行实时补偿,从而建立基于扩张状态观测器的无轴承悬浮控制系统.其中,根据扩张状态观测器对综合扰动进行观测的基本原理,构建了系统数学模型,并对其稳定性进行了分析.在此基础上,对观测器参数调节的选取原则和稳定域的参考范围进行了理论分析,从而提出了一套无轴承悬浮控制系统参数整定方案.此外,本文还结合模型中主要参数的物理意义,进一步完善了非线性扩张状态观测器参数的设定原则.最后,通过仿真验证了扩张状态观测器对无轴承悬浮系统扰动抑制的作用,以及所述参数整定方案的正确性.%Although the PID control strategy is widely adopted in the bearingless magnetic levitation system, it is impossible to realize high performance in the levitation control due to the influences of disturbance to the levitation forces and the parameters perturbation, etc. To deal with this problem, we develop a novel bearingless levitation system by adding an extended state observer (ESO) to obverse the comprehensive disturbances, making the system able to compensate the disturbances in real-time. The mathematical model of the ESO is built based on the operating principle, and its stability is analyzed. On this basis, the principle of the parameter selection and the stable region of the parameters for the levitation control system are considered theoretically, thus a complete control scheme for the bearingless magnetic levitation system is presented. Additionally, the principle of the parameter adjustment in the nonlinear extended state observer is improved by considering the physical meanings of those

  13. Magnetically levitated space elevator to low-earth orbit

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.; Niemann, Ralph C.

    2002-05-01

    The properties of currently available NbTi superconductors and carbon-fiber structural materials enable the possibility of constructing a magnetically levitated space elevator from the earth's surface up to an altitude of ≈200 km. The magnetic part of the elevator consists of a long loop of current-carrying NbTi, composed of one length that is attached to the earth's surface in an east-west direction and a levitated-arch portion. The critical current density of NbTi is sufficiently high that these conductors will stably levitate in the earth's magnetic field. The 200-km maximum height of the levitated arch is limited by the allowable stresses of the structural material. The loop is cryogenically cooled with helium, and the system utilizes intermediate pumping and cooling stations along both the ground and the levitated portion of the loop, similar to other large terrestrial cryogenic systems. A preliminary economic analysis estimates the cost to orbit at <30/kg when amortized over ten years with a large volume of traffic; estimated construction cost is well within the ability of many industrial nations.

  14. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  15. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  16. An operating system for future aerospace vehicle computer systems

    Science.gov (United States)

    Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.

    1984-01-01

    The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.

  17. Drive system failure control for distributed drive electric vehicles

    Science.gov (United States)

    Liu, Tao; Tang, Yuan; Wang, Jianfeng; Li, Yaou; Yang, Na; Liu, Yiqun

    2017-09-01

    Aiming at the failure problem of distributed electric drive vehicle, the conventional control strategy of drive system failure is designed according to the characteristics of each wheel torque independent control and the redundant configuration of the power unit. On this basis, combined with the traditional body stability control technology, the direct yaw moment control method is used. The simulation results show that the conventional control method designed of the drive system failure can effectively improve the driving condition of the vehicle. The driving stability of the vehicle is further improved after the direct yaw torque control is applied.

  18. Advanced Control System Design for Hypersonic Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Guidance and control system design for hypersonic vehicles is more challenging than their subsonic and supersonic counterparts. Some of these challenges are (i)...

  19. Highway vehicle systems contractors coordination meeting. Seventeenth summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Separate abstracts was prepared for each of the 62 papers presented at the Contractors' Coordination meeting on highway vehicle systems. One paper had previously appeared in DOE's data base.

  20. Fuzzy Logic Control for Suspension Systems of Tracked Vehicles

    Institute of Scientific and Technical Information of China (English)

    YU Yang; WEI Xue-xia; ZHANG Yong-fa

    2009-01-01

    A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented.A mechanical model for the whole body of a tracked vehicle,which is totally a fifteen-degree-of-freedom system,is established.The model includes the vertical motion,the pitch motion as well as the roll motion of the tracked vehicle.In contrast to most previous studies,the coupling effect among the vertical,the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously.The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration,pitch angle and roll angle of suspension system can be efficiently controlled.

  1. A new Maglev. Permanent magnets to make a train levitate; Un nouveau Maglev. Des aimants permanents pour faire leviter un train

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-02-01

    A new, more stable and economical magnetic levitation system has been developed at the Lawrence Livermore Laboratory (USA) which uses permanent magnets instead of expensive superconducting or electro-magnets. In this new type of levitated train, the skates of the wagons are made of series of permanent magnets organized as a Hallbach net while the levitating coils are included in the rails. The construction of such a train using this 'indutrack' system would be 3 times less expensive than the German Maglev. Short paper. (J.S.)

  2. A high performance pneumatic braking system for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2010-12-01

    Current research into reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, these algorithms require the knowledge of variables that are impractical to measure directly. This paper introduces a sliding mode braking force observer to support a sliding mode controller for air-braked heavy vehicles. The performance of the observer is examined through simulations and field testing of an articulated heavy vehicle. The observer operated robustly during single-wheel vehicle simulations, and provided reasonable estimates of surface friction from test data. The effect of brake gain errors on the controller and observer are illustrated, and a recursive least squares estimator is derived for the brake gain. The estimator converged within 0.3 s in simulations and vehicle trials.

  3. Video upload from public transport vehicles using multihomed systems

    OpenAIRE

    Mellia, Marco; Safari Khatouni, Ali; Ajmone Marsan, Marco Giuseppe

    2016-01-01

    Abstract: We consider a surveillance system for public transport vehicles, which is based on the collection of on-board videos, and the upload via mobile network to a central security system of video segments corresponding to those cameras and time intervals involved in an accident. We assume that vehicles are connected to several wireless interfaces, provided by different Mobile Network Operators (MNOs), each charging a different cost. Both the cost and the upload rate for each network inter...

  4. The control system of an autonomous underwater vehicle

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    1995-04-01

    Full Text Available This paper presents the flight control system of an Autonomous Underwater Vehicle (AUV developed at the Norwegian Defence Research Establishment. A mathematical model of the vehicle is derived and discussed. The system is separated into lightly interacting subsystems and three autopilots are designed for steering, diving and speed control. The design of the separate controllers is based on PID techniques. Results from sea trials show robust performance and stability for the autopilot.

  5. Coil optimization for electromagnetic levitation using a genetic like algorithm

    Science.gov (United States)

    Royer, Z. L.; Tackes, C.; LeSar, R.; Napolitano, R. E.

    2013-06-01

    The technique of electromagnetic levitation (EML) provides a means for thermally processing an electrically conductive specimen in a containerless manner. For the investigation of metallic liquids and related melting or freezing transformations, the elimination of substrate-induced nucleation affords access to much higher undercooling than otherwise attainable. With heating and levitation both arising from the currents induced by the coil, the performance of any EML system depends on controlling the balance between lifting forces and heating effects, as influenced by the levitation coil geometry. In this work, a genetic algorithm is developed and utilized to optimize the design of electromagnetic levitation coils. The optimization is targeted specifically to reduce the steady-state temperature of the stably levitated metallic specimen. Reductions in temperature of nominally 70 K relative to that obtained with the initial design are achieved through coil optimization, and the results are compared with experiments for aluminum. Additionally, the optimization method is shown to be robust, generating a small range of converged results from a variety of initial starting conditions. While our optimization criterion was set to achieve the lowest possible sample temperature, the method is general and can be used to optimize for other criteria as well.

  6. High levitation pressures with cage-cooled superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Komori, Mochimitsu [Department of Mechanical Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka (Japan)

    2002-05-01

    We present an analysis of and experimental results from a levitational system comprising a stationary, bulk high-temperature superconductor (HTS) and a levitated component (rotor) that consists of a cylindrical permanent magnet surrounded by an annular HTS. The rotor is cooled below the critical temperature of the HTS while surrounded by a ferromagnetic cage. When the ferromagnetic cage is removed, the flux from the permanent magnet is essentially excluded from the interior of the HTS. When brought into proximity with the HTS stator, the cage-cooled rotor experiences a levitational force. The levitational force may be calculated by applying magnetic circuit theory. Such calculations indicate that for a sufficiently high critical current density, the levitational pressure may exceed that between the permanent magnet and its mirror image. We constructed a rotor from an NdFeB permanent magnet and YBCO bulk HTS with a critical current density of {approx}5 kA cm{sup -2}. A soft ferromagnetic steel cage was constructed in segments. The critical current density of the stator HTS was also {approx}5 kA cm{sup -2}. Experimental results obtained with the cage-cooled rotor and stationary HTS show a significant increase in force over that of an equivalent PM rotor and stationary HTS. (author)

  7. High levitation pressures with cage-cooled superconductors

    Science.gov (United States)

    Hull, John R.; Komori, Mochimitsu

    2002-05-01

    We present an analysis of and experimental results from a levitational system comprising a stationary, bulk high-temperature superconductor (HTS) and a levitated component (rotor) that consists of a cylindrical permanent magnet surrounded by an annular HTS. The rotor is cooled below the critical temperature of the HTS while surrounded by a ferromagnetic cage. When the ferromagnetic cage is removed, the flux from the permanent magnet is essentially excluded from the interior of the HTS. When brought into proximity with the HTS stator, the cage-cooled rotor experiences a levitational force. The levitational force may be calculated by applying magnetic circuit theory. Such calculations indicate that for a sufficiently high critical current density, the levitational pressure may exceed that between the permanent magnet and its mirror image. We constructed a rotor from an NdFeB permanent magnet and YBCO bulk HTS with a critical current density of ≈5 kA cm-2. A soft ferromagnetic steel cage was constructed in segments. The critical current density of the stator HTS was also ≈5 kA cm-2. Experimental results obtained with the cage-cooled rotor and stationary HTS show a significant increase in force over that of an equivalent PM rotor and stationary HTS.

  8. Nanomagnetic Levitation 3-D Cultures of Breast and Colorectal Cancers

    Science.gov (United States)

    Bumpers, Harvey L.; Janagama, Dasharatham G.; Manne, Upender; Basson, Marc D.; Katkoori, Venkat

    2014-01-01

    Background Innovative technologies for drug discovery and development, cancer models, stem cell research, tissue engineering, and drug testing in various cell-based platforms require an application similar to the in vivo system. Materials and Methods We developed for the first time nanomagnetically levitated three dimensional (3-D) cultures of breast cancer (BC) and colorectal cancer (CRC) cells using carbon encapsulated cobalt magnetic nanoparticles. BC and CRC xenografts grown in severe combined immunodeficient (SCID) mice were evaluated for N-cadherin and Epidermal growth factor receptor (EGFR) expressions. These phenotypes were compared with 2-D cultures and 3-D cultures grown in a gel matrix. Results The BC and CRC cells grown by magnetic levitation formed microtissues. The levitated cultures had high viability and were maintained in culture for long periods of time. It has been observed that N-cadherin and EGFR activities were highly expressed in the levitated 3-D tumor spheres and xenografts of CRC and BC cells. Conclusions Nanomagnetically levitated 3-D cultures tend to form stable microtissues of BC and CRC and may be more feasible for a range of applications in drug discovery or regenerative medicine. PMID:25617973

  9. Experimental determination of the dynamics of an acoustically levitated sphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  10. Passive vs. Parachute System Architecture for Robotic Sample Return Vehicles

    Science.gov (United States)

    Maddock, Robert W.; Henning, Allen B.; Samareh, Jamshid A.

    2016-01-01

    The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.

  11. Cooperative Path-Planning for Multi-Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Qichen Wang

    2014-11-01

    Full Text Available In this paper, we propose a collision avoidance algorithm for multi-vehicle systems, which is a common problem in many areas, including navigation and robotics. In dynamic environments, vehicles may become involved in potential collisions with each other, particularly when the vehicle density is high and the direction of travel is unrestricted. Cooperatively planning vehicle movement can effectively reduce and fairly distribute the detour inconvenience before subsequently returning vehicles to their intended paths. We present a novel method of cooperative path planning for multi-vehicle systems based on reinforcement learning to address this problem as a decision process. A dynamic system is described as a multi-dimensional space formed by vectors as states to represent all participating vehicles’ position and orientation, whilst considering the kinematic constraints of the vehicles. Actions are defined for the system to transit from one state to another. In order to select appropriate actions whilst satisfying the constraints of path smoothness, constant speed and complying with a minimum distance between vehicles, an approximate value function is iteratively developed to indicate the desirability of every state-action pair from the continuous state space and action space. The proposed scheme comprises two phases. The convergence of the value function takes place in the former learning phase, and it is then used as a path planning guideline in the subsequent action phase. This paper summarizes the concept and methodologies used to implement this online cooperative collision avoidance algorithm and presents results and analysis regarding how this cooperative scheme improves upon two baseline schemes where vehicles make movement decisions independently.

  12. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    Science.gov (United States)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2016-08-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  13. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    Science.gov (United States)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2017-01-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  14. An electrostatic levitator for high-temperature containerless materials processing in 1-g

    Science.gov (United States)

    Rhim, Won-Kyu; Chung, Sang K.; Barber, Daniel; Man, Kin F.; Gutt, Gary; Rulison, Aaron; Spjut, R. Erik

    1993-10-01

    This article discusses recent developments in high-temperature electrostatic levitation technology for containerless processing of metals and alloys. Presented is the first demonstration of an electrostatic levitation technology which can levitate metals and alloys (2-4 mm diam spheres) in vacuum and of superheating-undercooling-recalescence cycles which can be repeated while maintaining good positioning stability. The electrostatic levitator (ESL) has several important advantages over the electromagnetic levitator. Most important is the wide range of sample temperature which can be achieved without affecting levitation. This article also describes the general architecture of the levitator, electrode design, position control hardware and software, sample heating, charging, and preparation methods, and operational procedures. Particular emphasis is given to sample charging by photoelectric and thermionic emission. While this ESL is more oriented toward ground-based operation, an extension to microgravity applications is also addressed briefly. The system performance was demonstrated by showing multiple superheating-undercooling-recalescence cycles in a zirconium sample (Tm=2128 K). This levitator, when fully matured, will be a valuable tool both in Earth-based and space-based laboratories for the study of thermophysical properties of undercooled liquids, nucleation kinetics, the creation of metastable phases, and access to a wide range of materials with novel properties.

  15. Mobile system for locating and tracking vehicles in distress

    Science.gov (United States)

    Landi, Giuliano; Stoica, Axente D.

    2000-02-01

    This report relates to a mobile system for tracking and protection of vehicles owned by some banking organizations, security institutions or by some social service for fire, medical rescue or taxicabs, by an operator placed also aboard of a vehicle in which he has at his disposal all the necessary means for precise determination of the position and the state of each vehicle from the fleet that is under his surveying. Therefore in contrast to the operating mode of the localization systems known in present and which have in its composition a stable center for permanent surveying, the operator of the system presented in this report can intervene personally and in an efficient mode in the aid of the vehicle in distress.

  16. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    Science.gov (United States)

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force.

  17. Smart suspension systems for bridge-friendly vehicles

    Science.gov (United States)

    Chen, Yonghong; Tan, Chin An; Bergman, Larry A.; Tsao, T. C.

    2002-06-01

    In this paper, the effects of using semi-active control strategy (such as MR dampers) in vehicle suspensions on the coupled vibrations of a vehicle traversing a bridge are examined in order to develop various designs of smart suspension systems for bridge-friendly vehicles. The bridge-vehicle coupled system is modeled as a simply supported beam traversed by a two-degree-of-freedom quarter-car model. The surface unevenness on the bridge deck is modeled as a deterministic profile of a sinusoidal wave. As the vehicle travels along the bridge, the system is excited as a result of the surface unevenness and this excitation is characterized by a frequency defined by the speed of travel and the wavelength of the profile. The dynamic interactions between the bridge and the vehicle due to surface deck irregularities are obtained by solving the coupled equations of motion. Numerical results of a passive control strategy show that, when the lower natural frequency of the vehicle matches with a natural frequency (usually the first frequency) of the bridge and the excitation frequency, the maximum response of the bridge is large while the response of the vehicle is relatively smaller, meaning that the bridge behaves like a vibration absorber. This is undesirable from a bridge design viewpoint. Comparative studies of passive and semi-active controls for the vehicle suspension are performed. It is demonstrated that skyhook control can significantly mitigate the response of the bridge, while ground-hook control reduces the tire force impacted onto the bridge.

  18. Advanced vehicle concepts systems and design analysis studies

    Science.gov (United States)

    Waters, Mark H.; Huynh, Loc C.

    1994-01-01

    The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program.

  19. Compound Droplet Levitation for Lab-on-a-Chip

    Science.gov (United States)

    Black, James; Neitzel, G. Paul

    2016-11-01

    A fluid transport mechanism utilizing thermocapillarity has been previously shown to successfully levitate and translate both microliter- and nanoliter-volume droplets of silicone oil. The surface flow required to drive levitation and transport has not been achieved for aqueous droplets, and encapsulation of samples within a layer of silicone oil is necessary. A droplet-on-demand generator capable of producing nanoliter-volume compound droplets has been developed and previously reported. The work presented here discusses efforts to demonstrate the applicability of this microfluidic transport mechanism to lab-on-a-chip systems. We elaborate on translation speeds of single-phase, nanoliter-volume, silicone-oil droplets. Compound droplets of varying compositions of oil and water are then generated, captured, levitated, and merged to explore the composition limits thereof. Work supported by NSF and NASA.

  20. A stereo vision-based obstacle detection system in vehicles

    Science.gov (United States)

    Huh, Kunsoo; Park, Jaehak; Hwang, Junyeon; Hong, Daegun

    2008-02-01

    Obstacle detection is a crucial issue for driver assistance systems as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision with the front vehicle. The vision-based obstacle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an obstacle detection system using stereo vision sensors is developed. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the obstacles. The proposed system can detect a front obstacle, a leading vehicle and a vehicle cutting into the lane. Then, the position parameters of the obstacles and leading vehicles can be obtained. The proposed obstacle detection system is implemented on a passenger car and its performance is verified experimentally.

  1. System for sterilizing objects. [cleaning space vehicle systems

    Science.gov (United States)

    Bryan, C. J.; Wright, E. E., Jr.; Moyers, C. V. (Inventor)

    1981-01-01

    A system for producing a stream of humidified sterilizing gas for sterilizing objects such as the water systems of space vehicles and the like includes a source of sterilant gas which is fed to a mixing chamber which has inlet and outlet ports. The level of the water only partially fills the mixing chamber so as to provide an empty space adjacent the top of the chamber. A heater is provided for heating the water in the chamber so as to produce a humidified atmosphere. The sterilant gas is fed through an arcuate shaped tubular member connected to the inlet port of the mixing chamber for producing a vortex type of flow of sterilant gas into the chamber for humidification. A tubular member extends from the mixing chamber for supplying the humidified sterilant gas to the object for being sterilized. Scrubbers are provided for removing the sterilant gas after use.

  2. Wireless system application for in-scale marine vehicles

    OpenAIRE

    Velasco González, Francisco Jesús; Revestido Herrero, Elías; Hombreiro Noriega, Tomás José; Moyano Pérez, Emiliano; López García, Eloy

    2012-01-01

    Advances in information and communications technology have enabled the use of wireless communication techniques in all sectors for the transmission of information in different forms. Wireless communications and distributed computing have made it possible to develop the remote experimentation environment for in-scale marine vehicles which is the subject of this work. The present article describes a wireless system architecture suitable for communication among several in-scale vehicles and a st...

  3. Driving Energy System Transformation with "Vehicle-to-Grid" Power

    OpenAIRE

    Moura, F

    2006-01-01

    Today's electricity and transport systems face a number of challenges related to reliability, security and environmental sustainability. New technologies may provide a means by which to overcome some of these challenges, yet many such technologies are confronted with substantial technical or commercial hurdles. This report explores one promising technology, "Vehicle-to-Grid" (V2G) power generation, whereby parked Electric-Drive Vehicles (EDVs) are used to provide electricity to the grid. EDV...

  4. Catalog of components for electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  5. Effect of permanent-magnet irregularities in levitation force measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  6. Effect of permanent-magnet irregularities in levitation force measurements

    Science.gov (United States)

    Hull, John R.

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM.

  7. Effect of permanent-magnet irregularities in levitation force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM. (author)

  8. Cascade Control of Magnetic Levitation with Sliding Modes

    Directory of Open Access Journals (Sweden)

    Eroğlu Yakup

    2016-01-01

    Full Text Available The effectiveness and applicability of magnetic levitation systems need precise feedback control designs. A cascade control approach consisting of sliding mode control plus sliding mode control (SMC plus SMC is designed to solve position control problem and to provide a high control performance and robustness to the magnetic levitation plant. It is shown that the SMC plus SMC cascade controller is able to eliminate the effects of the inductance related uncertainties of the electromagnetic coil of the plant and achieve a robust and precise position control. Experimental and numerical results are provided to validate the effectiveness and feasibility of the method.

  9. Convertible electrodynamic levitator trap to quasielectrostatic levitator for microparticle nucleation studies

    Science.gov (United States)

    Arnold, S.; Goddard, N. L.; Wotherspoon, N.

    1999-02-01

    This article describes an apparatus for obtaining nucleation data from a levitated solution microdroplet, automatically. A particularly novel feature is that it uses an electrodynamic levitator trap (ELT) which converts to a quasielectrostatic levitator (QEL), at any time during an experiment. The conversion is accomplished by using asymmetrically applied potentials on the ELT structure. With this modification one can trap a particle in the ELT mode and then convert to the QEL mode for automatic operation. By eliminating the need for the alternating gradient forces which are intrinsic to the ELT, the system in its QEL mode is shielded from unwanted noise and parametric instabilities associated with the ELT's alternating potential. To test the system theoretically, we calculate the effect which molecular collisions have on the positional variance in a spherical void QEL. Following this, we describe the components of our servosystem, and demonstrate the robustness of our design by following the nucleation of a solution droplet as the ambient relative humidity is reduced by evacuation.

  10. On the Study of Vehicle Density in Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Julio A. Sanguesa

    2016-01-01

    Full Text Available Vehicular ad hoc networks (VANETs are wireless communication networks which support cooperative driving among vehicles on the road. The specific characteristics of VANETs favor the development of attractive and challenging services and applications which rely on message exchanging among vehicles. These communication capabilities depend directly on the existence of nearby vehicles able to exchange information. Therefore, higher vehicle densities favor the communication among vehicles. However, vehicular communications are also strongly affected by the topology of the map (i.e., wireless signal could be attenuated due to the distance between the sender and receiver, and obstacles usually block signal transmission. In this paper, we study the influence of the roadmap topology and the number of vehicles when accounting for the vehicular communications capabilities, especially in urban scenarios. Additionally, we consider the use of two parameters: the SJ Ratio (SJR and the Total Distance (TD, as the topology-related factors that better correlate with communications performance. Finally, we propose the use of a new density metric based on the number of vehicles, the complexity of the roadmap, and its maximum capacity. Hence, researchers will be able to accurately characterize the different urban scenarios and better validate their proposals related to cooperative Intelligent Transportation Systems based on vehicular communications.

  11. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    Science.gov (United States)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  12. Vehicle-manipulator systems modeling for simulation, analysis, and control

    CERN Document Server

    From, Pal Johan; Pettersen, Kristin Ytterstad

    2014-01-01

    Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas.  The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain glob...

  13. ISSUES AND RECENT TRENDS IN VEHICLE SAFETY COMMUNICATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Sadayuki TSUGAWA

    2005-01-01

    Full Text Available This paper surveys the research on the applications of inter-vehicle communications, the issues of the deployment and technology, and the current status of inter-vehicle communications projects in Europe, the United States and Japan. The inter-vehicle communications, defined here as communications between on-board ITS computers, improve road traffic safety and efficiency by expanding the horizon of the drivers and on-board sensors. One of the earliest studies on inter-vehicle communications began in Japan in the early 1980s. The inter-vehicle communications play an essential role in automated platooning and cooperative driving systems developed since the 1990's by enabling vehicles to obtain data that would be difficult or impossible to measure with on-board sensors. During these years, interest in applications for inter-vehicle communications increased in the EU, the US and Japan, resulting in many national vehicle safety communications projects such as CarTALK2000 in the EU and VSCC in the US. The technological issues include protocol and communications media. Experiments employ various kinds of protocols and typically use infrared, microwave or millimeter wave media. The situation is ready for standardization. The deployment strategy is another issue. To be feasible, deployment should begin with multiple rather than single services that would work even at a low penetration rate of the communication equipment. In addition, non-technological, legal and institutional issues remained unsolved. Although inter-vehicle communications involve many issues, such applications should be promoted because they will lead to safer and more efficient automobile traffic.

  14. Design of a vehicle based system to prevent ozone loss

    Science.gov (United States)

    Talbot, Matthew D.; Eby, Steven C.; Ireland, Glen J.; Mcwithey, Michael C.; Schneider, Mark S.; Youngblood, Daniel L.; Johnson, Matt; Taylor, Chris

    1994-01-01

    This project is designed to be completed over a three year period. Overall project goals are: (1) to understand the processes that contribute to stratospheric ozone loss; (2) to determine the best scheme to prevent ozone loss; and (3) to design a vehicle based system to carry out the prevention scheme. The 1993/1994 design objectives included: (1) to review the results of the 1992/1993 design team, including a reevaluation of the key assumptions used; (2) to develop a matrix of baseline vehicle concepts as candidates for the delivery vehicle; and (3) to develop a selection criteria and perform quantitative trade studies to use in the selection of the specific vehicle concept.

  15. Systems analysis of decontamination options for civilian vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Foltz, Greg W.; Hoette, Trisha Marie

    2010-11-01

    The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposed to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.

  16. Preview control of vehicle suspension system featuring MR shock absorber

    Science.gov (United States)

    Seong, M. S.; Choi, S. B.; Cho, M. W.; Lee, H. G.

    2009-02-01

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  17. A Driving Behavior Retrieval Application for Vehicle Surveillance System

    Directory of Open Access Journals (Sweden)

    Fu Xianping

    2011-03-01

    Full Text Available Vehicle surveillance system provides a large range of informational services for the driver and administrator such as multiview road and driver surveillance videos from multiple cameras mounted on the vehicle, video shots monitoring driving behavior and highlighting the traffic conditions on the roads. How to retrieval driver’s specific behavior, such as ignoring pedestrian, operating infotainment, near collision or running the red light, is difficult in large scale driving data. Annotation and retrieving of these video streams has an important role on visual aids for safety and driving behavior assessment. In a vehicle surveillance system, video as a primary data source requires effective ways of retrieving the desired clip data from a database. And data from naturalistic studies allow for an unparalleled breadth and depth of driver behavior analysis that goes beyond the quantification and description of driver distraction into a deeper understanding of how drivers interact with their vehicles. To do so, a model that classifies vehicle video data on the basis of traffic information and its semantic properties which were described by driver’s eye gaze orientation was developed in this paper. The vehicle data from OBD and sensors is also used to annotate the video. Then the annotated video data based on the model is organized and streamed by retrieval platform and adaptive streaming method. The experimental results show that this model is a good example for evidence-based traffic instruction programs and driving behavior assessment.

  18. Modeling and test on height adjustment system of electrically-controlled air suspension for agricultural vehicles

    National Research Council Canada - National Science Library

    Chen Yuexia; Chen Long; Wang Ruochen; Xu Xing; Shen Yujie; Liu Yanling

    2016-01-01

      To reduce the damages of pavement, vehicle components and agricultural product during transportation, an electric control air suspension height adjustment system of agricultural transport vehicle...

  19. Towards a Scalable Group Vehicle-based Security System

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Jason M [ORNL

    2016-01-01

    In August 2014, the National Highway Traffic Safety Administration (NHTSA) proposed new rulemaking to require V2V communication in light vehicles. To establish trust in the basic safety messages (BSMs) that are exchanged by vehicles to improve driver safety, a vehicle public key infrastructure (VPKI) is required. We outline a system where a group or groups of vehicles manage and generate their own BSM signing keys and authenticating certificates -- a Vehicle-Based Security System (VBSS). Based on our preliminary examination, we assert the mechanisms exist to implement a VBSS that supports V2V communications; however, maintaining uniform trust throughout the system while protecting individual privacy does require reliance on nascent group signature technology which may require a significant amount of communication overhead for trust maintenance. To better evaluate the VBSS approach, we compare it to the proposed Security Credential Management System (SCMS) in four major areas including bootstrapping, pseudonym provisioning, BSM signing and authentication, and revocation. System scale, driver privacy, and the distribution and dynamics of participants make designing an effective VPKI an interesting and challenging problem; no clear-cut strategy exists to satisfy the security and privacy expectations in a highly efficient way. More work is needed in VPKI research, so the life-saving promise of V2V technology can be achieved.

  20. Development of City Transport System and Twowheel Vehicles

    Institute of Scientific and Technical Information of China (English)

    宫焕久; 李理光

    2003-01-01

    Based on the study on the city transport systems of some typical cities worldwide,this paper put forward that each city transport system has its own development mode,which is influenced by the city development plan,economic development level,traveling vehicle composition etc..When some problems occur,such as the congestions caused by contradiction between the road capacity and vehicle composition,the city transport system may come into temporary maturity period.If the improvement for road system is limited meanwhile,optimized structure of vehicle composition should be an effective solution in this case.With the development of economy-internationalization,the development speed of city transport modernization is rapid.When traveling easiness is conflicting with efficiency,the advantages of public transport system become more obvious.Correspondingly,the superiority of two-wheel vehicles will reappear.Though the important function of two-wheel vehicles for alleviating city traffic problems is obvious,however,their development strategy must be reasonably proposed,and operation regulations must be performed accordingly.

  1. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...... is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults...... in the steering system. The paper shows how active control reconfiguration can accommodate all critical faults. The fault-tolerant abilities of the steering system are demonstrated on the hardware of a warehouse truck....

  2. Simulation platform of navigation system for autonomous underwater vehicle

    Institute of Scientific and Technical Information of China (English)

    QIN Zheng; BIAN Xin-qian

    2006-01-01

    In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net communication and the information flow are discussed. The methods of software realization and some key techniques of the Vehicle Computer and the Navigation Equipment Computer are introduced in particular. The software design of Terrain Matching Computer is introduced also. The simulation platform is verified and analyzed through simulation. The results show that the architecture of the platform is reasonable and reliable, and the mathematic models and simulation algorithms of sub-systems are also valid and practicable.

  3. Process modeling of fuel cell vehicle power system

    Institute of Scientific and Technical Information of China (English)

    CHEN LiMing; LIN ZhaoJia; MA ZiFeng

    2009-01-01

    Constructed here is a mathematic model of PEM Fuel Cell Vehicle Power System which is composed of fuel supply model, fuel cell stack model and water-heat management model. The model was developed by Matiab/Simulink to evaluate how the major operating variables affect the output performances. Itshows that the constructed model can represent characteristics of the power system closely by comparing modeling results with experimental data, and it can be used in the study and design of fuel cell vehicle power system.

  4. Observable dynamics and coordinate systems for vehicle tracking

    CERN Document Server

    Altendorfer, Richard

    2010-01-01

    We investigate several coordinate systems and dynamical vector fields for target tracking to be used in driver assistance systems. We show how to express the discrete dynamics of maneuvering target vehicles in arbitrary coordinates starting from the target's and the own (ego) vehicle's assumed dynamical model in global coordinates. We clarify the notion of "ego compensation" and show how non-inertial effects are to be included when using a body-fixed coordinate system for target tracking. We finally compare the tracking error of different combinations of target tracking coordinates and dynamical vector fields for simulated data.

  5. Design Considerations for a Launch Vehicle Development Flight Instrumentation System

    Science.gov (United States)

    Johnson, Martin L.; Crawford, Kevin

    2011-01-01

    When embarking into the design of a new launch vehicle, engineering models of expected vehicle performance are always generated. While many models are well established and understood, some models contain design features that are only marginally known. Unfortunately, these analytical models produce uncertainties in design margins. The best way to answer these analytical issues is with vehicle level testing. The National Aeronautics and Space Administration respond to these uncertainties by using a vehicle level system called the Development Flight Instrumentation, or DFI. This DFI system can be simple to implement, with only a few measurements, or it may be a sophisticated system with hundreds of measurement and video, without a recording capability. From experience with DFI systems, DFI never goes away. The system is renamed and allowed to continue, in most cases. Proper system design can aid the transition to future data requirements. This paper will discuss design features that need to be considered when developing a DFI system for a launch vehicle. It will briefly review the data acquisition units, sensors, multiplexers and recorders, telemetry components and harnessing. It will present a reasonable set of requirements which should be implemented in the beginning of the program in order to start the design. It will discuss a simplistic DFI architecture that could be the basis for the next NASA launch vehicle. This will be followed by a discussion of the "experiences gained" from a past DFI system implementation, such as the very successful Ares I-X test flight. Application of these design considerations may not work for every situation, but they may direct a path toward success or at least make one pause and ask the right questions.

  6. Magnetic levitation and stiffness in melt-textured Y-Ba-Cu-O

    Science.gov (United States)

    Hull, J. R.; Mulcahy, T. M.; Salama, K.; Selvamanickam, V.; Weinberger, B. R.; Lynds, L.

    1992-09-01

    Magnetic levitation and stiffness have been measured in several systems composed of a permanent magnet elastically suspended above a stationary melt-textured sample of Y-Ba-Cu-O. The levitation force and vertical stiffness have been calculated on the basis of magnetization measurements of the same system, and the calculated results showed excellent agreement with the experimental measurements. Based on the force and magnetization measurements, it is predicted that the same Y-Ba-Cu-O material configured in a geometry suitable for magnetic bearings could produce a levitation pressure of 100-400 kPa at 20 K.

  7. Vibrational Properties of High- Superconductors Levitated Above a Bipolar Permanent Magnetic Guideway

    Science.gov (United States)

    Liu, Lu; Wang, Jiasu

    2014-05-01

    A bipolar permanent magnetic guideway (PMG) has a unique magnetic field distribution profile which may introduce a better levitation performance and stability to the high- superconducting (HTS) maglev system. The dynamic vibration properties of multiple YBCO bulks arranged into different arrays positioned above a bipolar PMG and free to levitate were investigated. The acceleration and resonance frequencies were experimentally measured, and the stiffness and damping coefficients were evaluated for dynamic stability. Results indicate that the levitation stiffness is closely related to the field-cooling-height and sample positioning. The damping ratio was found to be low and nonlinear for the Halbach bipolar HTS-PMG system.

  8. Two-dimensional inverted pendulum using repulsive magnetic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Eirich, Max; Ishino, Yuji; Takasaki, Masaya; Mizuno, Takeshi [Saitama Univ. (Japan). Dept. of Mechanical Engineering

    2010-07-01

    The active control of two-degree-of-freedom motion of the repulsive levitated object (floator) is studied. In this system of permanent magnets, the vertical motions of the rotor are passively supported by repulsive forces between the permanent magnets. The inclination angle is actively stabilized using the motion control of additional magnets. (orig.)

  9. Study on Vehicle Hands Free System With Bluetooth

    Institute of Scientific and Technical Information of China (English)

    JIN Xuexin; DONG Guiju; GAO Yanxu; CUI Tianshi

    2008-01-01

    In this paper,the appfication of bluetooth in vehicle hands free system was described,then the hardware and software structure of system had been designed.Finally,selection about electron parts and chip of electronic equipments was presented in detail.

  10. FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS INTEGRATED IN VEHICLES

    Directory of Open Access Journals (Sweden)

    THOMAS MATHEWS

    2013-09-01

    Full Text Available Today, many hybrid electric vehicles have been developed in order to reduce the consumption of fossil fuels; unfortunately these vehicles require electrochemical batteries to store energy, with high costs as well as poor conversion efficiencies. By integrating flywheel hybrid systems, these drawbacks can be overcome and can potentially replace battery powered hybrid vehicles cost effectively. The paper will explain the engineering, mechanics of the flywheel system and it’s working in detail. Each component of the flywheel-based kineticenergy recovery system will also be described. The advantages of this technology over the electric hybrids will be elucidated carefully. The latest advancements in the field, the potential future and scope of the flywheelhybrid will be assessed.

  11. gPark: Vehicle Parking Management System Using Smart Glass

    Directory of Open Access Journals (Sweden)

    Rana E. Ahmed

    2016-01-01

    Full Text Available Recent advances in wearable technologies have opened new avenues for their applications in various fields. This paper presents the design, implementation, and testing results for a vehicle parking management system using smart Glass technology. The management system consists of four major interconnected applications. The most important one, running on the smart Glass, scans the vehicle number plate and extracts the related information in real time. The vehicle information is sent to the remote server for checking of any violation. The server sends the updates back to the Glass that allows the parking attendant to take further actions, if needed. The system was tested in real-life scenarios, and it was found that the detection accuracy up to 75% can be easily achieved with current hardware and software capabilities of the Google Glass.

  12. Survey of Controllable Suspension System for Off-road Vehicles

    Institute of Scientific and Technical Information of China (English)

    WU Zhi-cheng; ZHU Quan-min; CHEN Si-zhong; Alan Winfield; YANG Lin; ZHANG Bin

    2007-01-01

    The controllable suspension system can improve the performances of off-road vehicles both on road and cross-country. So far, four controllable suspensions, that is, body height control, active, semi-active and slow-active suspensions, have been developed. For off-road vehicles, the slow-active suspension and the semi-active suspension which have controllable stiffness, damping and body height are more appropriate to use. For many years, some control methodologies for controllable suspension systems have been developed along with the development of modern control theory, and two or more original control methods are integrated as a new control method. Today, for military or civilian off-road vehicles, the R&D of controllable suspension systems is ongoing.

  13. Protection against malevolent use of vehicles at Nuclear Power Plants. Vehicle barrier system selection guidance

    Energy Technology Data Exchange (ETDEWEB)

    Nebuda, D.T.

    1994-08-01

    This manual provides a simplified procedure for selecting land vehicle barriers that will stop the design basis vehicle threat adopted by the U.S. Nuclear Regulatory Commission. Proper selection and construction of vehicle barriers should prevent intrusion of the design basis vehicle. In addition, vital safety related equipment should survive a design basis vehicle bomb attack when vehicle barriers are properly selected, sited, and constructed. This manual addresses passive vehicle barriers, active vehicle barriers, and site design features that can be used to reduce vehicle impact velocity.

  14. GSM-GPS Based Intelligent Security and Control System for Vehicle

    Directory of Open Access Journals (Sweden)

    Mr. Kiran Gaikwad

    2013-05-01

    Full Text Available The revolution of Mobile and Technology has made ‘GSM based vehicle security system’. The vehicle security system is prominent worldwide. But it is not so much secure system. Every vehicle owner wants maximum protection of his vehicle; otherwise thief can easily trap the vehicle. So, by combing the idea of mobile and vehicle security system GSM based vehicle security system can be designed. So this GSM-GPS based vehicle security system works when someone tries to steal your vehicle. This paper deals with the design {&} development of an embedded system, which is being used to prevent/control the theft of a vehicle. The instrument is an embedded system based on GSM and GPS technology. The instrument is installed in the engine of the vehicle. The main objective of this instrument is to protect the vehicle from any unauthorized access, through entering a protected password and intimate the status and location of the same vehicle to the authorize person (owner using Global System for Mobile Communication (GSM and Global Positioning System (GPS technology. Here owner of vehicle can control system through Cell phone or a personal computer (PC. In this system new concept is inclusion of RTC (Real Time Clock by which vehicle can be permanently off depending upon date and time set. This system is intelligent because it performs many tasks automatically and also control vehicle on/off from a distance

  15. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    Directory of Open Access Journals (Sweden)

    Xiaofeng Tang

    2014-05-01

    Full Text Available A Highway Intelligent Space System (HISS is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method’s feasibility.

  16. Development of a DC propulsion system for an electric vehicle

    Science.gov (United States)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  17. Implementation of the vehicle recognition systems using wireless magnetic sensors

    Indian Academy of Sciences (India)

    SERCAN VANCIN; EBUBEKIR ERDEM

    2017-06-01

    Wireless network sensors and their use in traffic monitoring, traffic density determination or vehicle speed detection and classification have recently been the focus of interest for researchers. This article describes how a new sensor circuit was designed to deliver instantaneous, real-time and novel solutions as a vehicle detection system, which is more powerful than the nodes used in other studies, and gives results with smaller error margins due to its serial communication qualification. With the proposed logic algorithm, it was possible tocategorise the instantaneous traffic status of a road in four levels: no traffic, mild traffic, heavy traffic and very heavy traffic. Additionally, with the nodes placed at the beginning and the end of the road, the number of vehicles per hour for a day was determined and traffic was analysed. Then, vehicles passing by were classified with a proposed classification algorithm and magnetic signature length (MSL) parameter as cars, minibuses, buses and trucks, and an accuracy rate of 95% was obtained. As the last application, the direction of motion ofthe vehicle on the x-axis as well as left-to-right or right-to-left directions was determined, and the result was 94% accurate. The simplicity of the proposed algorithms, the absence of any complex mathematical calculations, thelow cost of the sensor node and circuit and the low power consumption of the communication system demonstrate the superiority of this system in comparison with other studies.

  18. Vibration Control of Vehicle Suspension System by Electrorheological Damper

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xia; ZHANG Yong-fa

    2006-01-01

    An overview of electrorheological (ER) fluid characteristics is given. Based on the Bingham plasticity model and a simple parallel-plate model, the operation principle of ER damper is presented and a four-DOF dynamic model of a vehicle suspension is constructed. Then a semi-active control of vehicle suspension system by ER damper is obtained. According to the semi-active control theory, the acceleration frequency characteristic is achieved with Matlab toolbox. Simulation results show that the vibration of the suspension system is well controlled.

  19. GNSS systems in vehicle fleet management

    Directory of Open Access Journals (Sweden)

    Arkadiusz TYSZKO

    2007-01-01

    Full Text Available GNSS (Global Navigation Satellite System in connection with othertechnologies, such as mobile telephone GSM will improve management of chains of orders and fleet management in all types of transport. The paper describes existing navigation satellite systems (NAVSTAR GPS, GLONASS, EGNOS. It also presents advantages and barriers of using GNSS in transportation systems.

  20. Decision support system for vehicle scheduling

    Directory of Open Access Journals (Sweden)

    C. Gaindric

    1999-08-01

    Full Text Available A decision support system (DSS is described to form schedules of traffic from a central warehouse to a set of consumers by cyclic routes. The system may be used by dispatchers at transportation enterprises. The system structure, short description of modules, and algorithms solving the originating problems are presented.

  1. 基于MATLAB的磁悬浮球系统PID控制器设计与实现%Design and implemen tation of PID controller based on MATLAB for magnetic levitation ball system

    Institute of Scientific and Technical Information of China (English)

    陈亚栋; 高文华; 张井岗; 刘鑫

    2013-01-01

    The structure and work principle of magnetic levitation ball system was introduced in this paper . The mathematical model was got through and linearized near the equilibrium point . Then the PID controller will be made based on the mathematical model . The model of the control system was built in the Simulink environment to simulate research . At last , the control system model conducted the real-time control experiment on the googol GML1001 series of magnetic levitation device . The experimental results showed that the proposed PID controller guaranteed the suspension ball to achieve the expectation fast and had excellent anti-in-terference performance .%介绍了磁悬浮球系统的结构和工作原理,建立了磁悬浮系统的数学模型并进行线性化处理;设计 PID 控制器,在 Simulink 环境下搭建控制系统的模型进行仿真研究,并在固高 GML1001系列磁悬浮装置上进行实时控制实验。实验结果表明,采用 PID 控制,能使钢球快速地悬浮在期望位置,并且有一定的抗干扰能力。

  2. Real-time vehicle tracking for traffic monitoring systems

    Institute of Scientific and Technical Information of China (English)

    胡硕

    2016-01-01

    A real-time vehicle tracking method is proposed for traffic monitoring system at road intersec-tions, and the vehicle tracking module consists of an initialization stage and a tracking stage .Li-cense plate location based on edge density and color analysis is used to detect the license plate re -gion for tracking initialization .In the tracking stage , covariance matching is employed to track the license plate .Genetic algorithm is used to reduce the computational cost .Real-time image tracking of multi-lane vehicles is achieved .In the experiment , test videos are recorded in advance by record-ers of actual E-police systems at several different city intersections .In the tracking module , the av-erage false detection rate and missed plates rate are 1.19%, and 1.72%, respectively.

  3. Design of a recovery system for a reentry vehicle

    Science.gov (United States)

    Von Eckroth, Wulf; Garrard, William L.; Miller, Norman

    1993-01-01

    Engineers are often required to design decelerator systems which are deployed in cross-wind orientations. If the system is not designed to minimize 'line sail', damage to the parachutes could result. A Reentry Vehicle Analysis Code (RVAC) and an accompanying graphics animation software program (DISPLAY) are presented in this paper. These computer codes allow the user to quickly apply the Purvis line sail modeling technique to any vehicle and then observe the relative motion of the vehicle, nose cap, suspension lines, pilot and drogue bags and canopies on a computer screen. Data files are created which allow plots of velocities, spacial positions, and dynamic pressures versus time to be generated. The code is an important tool for the design engineer because it integrates two degrees of freedom (DOF) line sail equations with a three DOF model of the reentry body and jettisoned nose cap to provide an animated output.

  4. About the Influence of the Magnetic Field Configuration on the Levitation Characteristics of the System Superconductor - Array of Magnets

    Science.gov (United States)

    Ermolaev, Yu. S.; Rudnev, I. A.

    2014-07-01

    Interaction of a superconductor with an array of magnets having different orientations of the magnetization vector is theoretically investigated. Based on a critical state model, the interaction force arising in the system superconductor - array of magnets is calculated by the method of finite elements. Optimal configurations of the magnetic system are established in which maximum values of both attractive and repulsive forces are created.

  5. Tethered Vehicle Control and Tracking System

    Science.gov (United States)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2017-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  6. Dust levitation about Itokawa's equator

    Science.gov (United States)

    Hartzell, C.; Zimmerman, M.; Takahashi, Y.

    2014-07-01

    Introduction: Electrostatic dust motion has been hypothesized to occur on the asteroids, due to the observations of the Eros dust ponds [1] and the potential presence of such a phenomenon on the Moon [2]. There are two phases of electrostatic dust motion: lofting and the subsequent trajectories. The feasibility of electrostatic dust lofting can be assessed by comparing the strength of the electrostatic force to the gravity and cohesion which hold the grain on to the surface [3--5]. The motion of the dust grains after they detach from the surface can be described as either ballistic, escaping, or levitating. We are interested in dust levitation because it could potentially redistribute grains on the surface of an asteroid (for instance, producing the Eros dust ponds) and it could also be hazardous to spacecraft. Specifically, levitating dust could obscure the observations of surface-based spacecraft or possibly trigger obstacle avoidance routines during landing. Dust Levitation: Dust levitation is defined as the altitude oscillation of grains prior to their redeposition on the surface of an asteroid. Levitation occurs about equilibria where the electrostatic and gravity forces on the grain are equal and opposite. An equilibrium state is defined as a position and charge for a specific grain size. We have previously identified equilibria using a 1D plasma model and a simple gravity model for Itokawa [6]. In this simple model, the largest grain that was capable of stable levitation above Itokawa was 3 microns (in radius) [6]. Additionally, we have shown that levitating dust grains follow the variation in the equilibria for a rotating asteroid (i.e., the grain continues to oscillate about an equilibrium state that approaches the surface) [7]. Due to the nonspherical shape of Itokawa, both the gravity and plasma environments are much more complicated than the 1D approximations made in our previous work. Thus, in order to accurately assess the feasibility of dust

  7. Optical levitation of a mirror for reaching the standard quantum limit

    Science.gov (United States)

    Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki

    2017-06-01

    We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-P{\\'e}rot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.

  8. Charge and Levitation of Grains in Plasma Sheath with Dust Thermic Emission

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    By taking into account thermic emission current from hot dust surface, the problem involved in dust charging and levitation of dust grains in plasma sheath has been researched. The results are compared to that without including thermal emission current while the system parameters are same. It is found that the thermal emission current has played a significant role on modifying the dust charging and balance levitations. Both of the charging numbers of dust and the dust radius in balance are dramatically reduced. The stability of dust levitation is also analyzed and discussed.

  9. Integrating Sensory/Actuation Systems in Agricultural Vehicles

    Directory of Open Access Journals (Sweden)

    Luis Emmi

    2014-02-01

    Full Text Available In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles.

  10. Traffic flow characteristics in a mixed traffic system consisting of ACC vehicles and manual vehicles: A hybrid modelling approach

    Science.gov (United States)

    Yuan, Yao-Ming; Jiang, Rui; Hu, Mao-Bin; Wu, Qing-Song; Wang, Ruili

    2009-06-01

    In this paper, we have investigated traffic flow characteristics in a traffic system consisting of a mixture of adaptive cruise control (ACC) vehicles and manual-controlled (manual) vehicles, by using a hybrid modelling approach. In the hybrid approach, (i) the manual vehicles are described by a cellular automaton (CA) model, which can reproduce different traffic states (i.e., free flow, synchronised flow, and jam) as well as probabilistic traffic breakdown phenomena; (ii) the ACC vehicles are simulated by using a car-following model, which removes artificial velocity fluctuations due to intrinsic randomisation in the CA model. We have studied the traffic breakdown probability from free flow to congested flow, the phase transition probability from synchronised flow to jam in the mixed traffic system. The results are compared with that, where both ACC vehicles and manual vehicles are simulated by CA models. The qualitative and quantitative differences are indicated.

  11. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Science.gov (United States)

    2010-10-01

    ... vehicle is determined by measuring the stopping distance from a given initial speed. S6.5.3.2. Unless... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 135; Light vehicle brake systems. 571... Federal Motor Vehicle Safety Standards § 571.135 Standard No. 135; Light vehicle brake systems. S1. Scope...

  12. Intelligent vision system for autonomous vehicle operations

    Science.gov (United States)

    Scholl, Marija S.

    1991-01-01

    A complex optical system consisting of a 4f optical correlator with programmatic filters under the control of a digital on-board computer that operates at video rates for filter generation, storage, and management is described.

  13. GNSS systems in vehicle fleet management

    National Research Council Canada - National Science Library

    Arkadiusz TYSZKO; Tomasz TEMLIN; Stanisław OSZCZAK

    2007-01-01

    GNSS (Global Navigation Satellite System) in connection with othertechnologies, such as mobile telephone GSM will improve management of chains of orders and fleet management in all types of transport...

  14. Ares I Integrated Vehicle System Safety Team

    Science.gov (United States)

    Wetherholt, Jon; McNairy, Lisa; Shackelford, Carla

    2009-01-01

    Complex systems require integrated analysis teams which sometimes are divided into subsystem teams. Proper division of the analysis in to subsystem teams is important. Safety analysis is one of the most difficult aspects of integration.

  15. Eimpact: Impact assessment of in-vehicle safety systems

    NARCIS (Netherlands)

    Malone, K.; Wilmink, I.; Noort, M. van; Klunder, G.

    2007-01-01

    eIMPACT, a project in the EU's Sixth Framework Programme for Information Society Technologies and Media, assesses the socio-economic effects of Intelligent Vehicle Safety Systems (IVSS), their impact on traffic safety and efficiency. It addresses policy options and the views of the different stakeho

  16. A sensor system for the navigation of an underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. [Univ. of Oxford (United Kingdom)]|[Silsoe Research Inst., Bedfordshire (United Kingdom); Frost, A. [Silsoe Research Inst., Bedfordshire (United Kingdom); Probert, P. [Univ. of Oxford (United Kingdom)

    1999-07-01

    A sensor system for an underwater vehicle is described. The vehicle is equipped with inclinometers, gyroscopes, a magnetometer, a pressure gauge, and a sonar system. The sensor models used for the inclinometers and gyroscopes are straightforward; however, the magnetometer can be corrupted by variations in the earth`s field caused by: external objects and internal magnetic fields. The authors show how to use inclinometer data to adjust for a limited set of external field variation. The authors also show how to calibrate the magnetometer to compensate for static and thruster-dependent internal fields. The sonar unit uses range differentials between cheap time-of-flight sonar to follow a target. This reduces signal processing since data association is only required on target acquisition, and removes the need to scan an entire landscape, which is usually slow. The gyroscopes are fused via a second indirect filter system. The vehicle attitude is represented as a quaternion; these have a low computational burden, and lack discontinuities and singularities. The simplicity of the indirect filter permits very fast update rates, so that the system may follow rapid vehicle rotations.

  17. Passive Fuel Tank Inerting Systems for Ground Combat Vehicles

    Science.gov (United States)

    1988-09-01

    34Fire Protection Handbook,"Natioaal girt Pro~dction Association (NFPA), 14th es., Dos on, cu (January 1976) 25 American Petroleum Institute, API ...System on the X60 Series Combat Vehicles," Report No. 79-04A, U.S. Army Tank Automotive Research and Development I Command, DRDTA-V, Warren, MI (October

  18. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Keemink, Arvid Quintijn Leon; Keemink, A.Q.L.; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2012-01-01

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The innova

  19. Propulsion system research and development for electric and hybrid vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  20. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Keemink, Arvid Quintijn Leon; Keemink, A.Q.L.; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The

  1. Traffic control and intelligent vehicle highway systems: a survey

    NARCIS (Netherlands)

    Baskar, L.D.; Schutter, B. de; Hellendoorn, J.; Papp, Z.

    2011-01-01

    Traffic congestion in highway networks is one of the main issues to be addressed by today's traffic management schemes. Automation combined with the increasing market penetration of on-line communication, navigation and advanced driver assistance systems will ultimately result in intelligent vehicle

  2. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    Electric vehicles (EVs) provide a unique opportunity to reduce the CO2-emissions from the transport sector. At the same time, EVs have the potential to play an important role in an economic and reliable operation of an electricity system with high penetration of renewable energy. EVs...

  3. Development and Evaluation of Positioning Systems for Autonomous Vehicle Navigation

    Science.gov (United States)

    2001-12-01

    The University of Oxford has developed a navigation for a low speed, indoor AGV suitable suitable for industrial use. This system uses SONAR to...1996. Shi92 Shin, D.H., Sanjiv, S., and Lee, J.J., “Explicit Path Tracking by Autonomous Vehicles,” Robotica , 10, (1992), 69-87. Ste95

  4. Multicriteria vehicle routing problem solved by artificial immune system

    Directory of Open Access Journals (Sweden)

    Bogna MRÓWCZYŃSKA

    2015-09-01

    Full Text Available Vehicles route planning in large transportation companies, where drivers are workers, usually takes place on the basis of experience or intuition of the employees. Because of the cost and environmental protection, it is important to save fuel, thus planning routes in an optimal way. In this article an example of the problem is presented solving delivery vans route planning taking into account the distance and travel time within the constraints of vehicle capacities, restrictions on working time of drivers and having varying degrees of movement. An artificial immune system was used for the calculations.

  5. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    Energy Technology Data Exchange (ETDEWEB)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  6. Position control of active magnetic levitation using sphere-shaped HTS bulk for inertial nuclear fusion

    Science.gov (United States)

    Suga, K.; Riku, K.; Agatsuma, K.; Ueda, H.; Ishiyama, A.

    2008-02-01

    We have developed an active magnetic levitation system that comprises a field-cooled disk-shaped or sphere-shaped HTS bulk and multiple ring-shaped electromagnets. In this system, the levitation height of HTS bulk can be controlled by adjusting the operating current of each electromagnet individually. Further, the application of the vertical noncontact levitation system is expected due to its levitation stability without mechanical supports. We assume that this system is applied to inertial nuclear fusion. However, one of the important issues is to achieve position control with high accuracy of the fusion fuel in order to illuminate the target evenly over the entire surface. Therefore, this system is applied to the levitation and position control of a sphere-shaped superconducting capsule containing nuclear fusion fuel. In this study, we designed and constructed a position control system for the sphere-shaped HTS bulk with a diameter of 5 mm by using numerical simulation based on hybrid finite element and boundary element analysis. We then carried out the experiment of levitation height and position control characteristics of the HTS bulk in this system. With regard to position control, accuracies within 59 ?m are obtained.

  7. Entry Vehicle Control System Design for the Mars Smart Lander

    Science.gov (United States)

    Calhoun, Philip C.; Queen, Eric M.

    2002-01-01

    The NASA Langley Research Center, in cooperation with the Jet Propulsion Laboratory, participated in a preliminary design study of the Entry, Descent and Landing phase for the Mars Smart Lander Project. This concept utilizes advances in Guidance, Navigation and Control technology to significantly reduce uncertainty in the vehicle landed location on the Mars surface. A candidate entry vehicle controller based on the Reaction Control System controller for the Apollo Lunar Excursion Module digital autopilot is proposed for use in the entry vehicle attitude control. A slight modification to the phase plane controller is used to reduce jet-firing chattering while maintaining good control response for the Martian entry probe application. The controller performance is demonstrated in a six-degree-of-freedom simulation with representative aerodynamics.

  8. A Novel Noncontact Ultrasonic Levitating Bearing Excited by Piezoelectric Ceramics

    Directory of Open Access Journals (Sweden)

    He Li

    2016-10-01

    Full Text Available A novel ultrasonic levitating bearing excited by three piezoelectric transducers is presented in this work. The transducers are circumferentially equispaced in a housing, with their center lines going through the rotation center of a spindle. This noncontact bearing has the ability to self-align and carry radical and axial loads simultaneously. A finite element model of the bearing is built in ANSYS, and modal analysis and harmonious response analysis are conducted to investigate its characteristics and driving parameters. Based on nonlinear acoustic theory and a thermodynamic theory of ideal gas, the radical and lateral load-carrying models are built to predict the bearing’s carrying capacity. In order to validate the bearing’s levitation force, a test system is established and levitating experiments are conducted. The experimental data match well with the theoretical results. The experiments reveal that the maximum radical and axial levitating loads of the proposed bearing are about 15 N and 6 N, respectively, when the piezoelectric transducers operate at a working frequency of 16.11 kHz and a voltage of 150 Vp-p.

  9. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    Science.gov (United States)

    Gisser, D. G.; Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. Y.

    1975-01-01

    Problems related to an unmanned exploration of the planet Mars by means of an autonomous roving planetary vehicle are investigated. These problems include: design, construction and evaluation of the vehicle itself and its control and operating systems. More specifically, vehicle configuration, dynamics, control, propulsion, hazard detection systems, terrain sensing and modelling, obstacle detection concepts, path selection, decision-making systems, and chemical analyses of samples are studied. Emphasis is placed on development of a vehicle capable of gathering specimens and data for an Augmented Viking Mission or to provide the basis for a Sample Return Mission.

  10. Systems design analysis applied to launch vehicle configuration

    Science.gov (United States)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  11. Integrating intrinsic mobility into unmanned ground vehicle systems

    Science.gov (United States)

    Brosinsky, Chris A.; Penzes, Steven G.; Buehler, Martin G.; Steeves, Carl

    2001-09-01

    The ability of an Unmanned Ground Vehicle (UGV) to successfully move about in its environment is enabled by the synergistic combination of perception, control and platform (mobility and utility). Vast effort is being expended on the former technologies but little demonstrable evidence has been produced to indicate that the latter (mobility/utility) has been considered as an integral part of the UGV systems level capability; a concept commonly referred to as intrinsic mobility. While past work described the rationale for hybrid locomotion, this paper aims to demonstrate that integrating intrinsic mobility into a UGV systems mobility element or 'vehicle' will be a key contributor to the magnitude of autonomy that the system can achieve. This paper serves to provide compelling evidence that 1) intrinsic mobility improvements provided by hybrid locomotion configurations offer the best generic mobility, that 2) strict attention must be placed on the optimization of both utility (inherent vehicle capabilities) and mobility and that 3) the establishment of measures of performance for unmanned vehicle mobility is an unmet and latent need.

  12. Heavy Vehicle Essential Power Systems Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Susan Rogers

    2001-12-12

    Essential power is a crosscutting technology area that addresses the efficient and practical management of electrical and thermal requirements on trucks. Essential Power Systems: any function on the truck, that is not currently involved in moving the truck, and requires electrical or mechanical energy; Truck Lights; Hotel Loads (HVAC, computers, appliances, lighting, entertainment systems); Pumps, starter, compressor, fans, trailer refrigeration; Engine and fuel heating; and Operation of power lifts and pumps for bulk fluid transfer. Transition from ''belt and gear driven'' to auxiliary power generation of electricity - ''Truck Electrification'' 42 volts, DC and/ or AC; All electrically driven auxiliaries; Power on demand - manage electrical loads; Benefits include: increased fuel efficiency, reduced emission both when truck is idling and moving down the road.

  13. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay [Massachusetts Institute of Technology, Cambridge, MA (United States); Mauel, Michael [Columbia Univ., New York, NY (United States)

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m-3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.

  14. Control strategy of maglev vehicles based on particle swarm algorithm

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Gang Shen; Jinsong Zhou

    2014-01-01

    Taking a single magnet levitation system as the object, a nonlinear numerical model of the vehicle-guide-way coupling system was established to study the levitation control strategies. According to the similarity in dynamics, the single magnet-guideway coupling system was simpli-fied into a magnet-suspended track system, and the corre-sponding hardware-in-loop test rig was set up using dSPACE. A full-state-feedback controller was developed using the levitation gap signal and the current signal, and controller parameters were optimized by particle swarm algorithm. The results from the simulation and the test rig show that, the proposed control method can keep the sys-tem stable by calculating the controller output with the full-state information of the coupling system, Step responses from the test rig show that the controller can stabilize the system within 0.15 s with a 2% overshot, and performs well even in the condition of violent external disturbances. Unlike the linear quadratic optimal method, the particle swarm algorithm carries out the optimization with the nonlinear controlled object included, and its optimized results make the system responses much better.

  15. Evaluating the effectiveness of active vehicle safety systems.

    Science.gov (United States)

    Jeong, Eunbi; Oh, Cheol

    2017-03-01

    Advanced vehicle safety systems have been widely introduced in transportation systems and are expected to enhance traffic safety. However, these technologies mainly focus on assisting individual vehicles that are equipped with them, and less effort has been made to identify the effect of vehicular technologies on the traffic stream. This study proposed a methodology to assess the effectiveness of active vehicle safety systems (AVSSs), which represent a promising technology to prevent traffic crashes and mitigate injury severity. The proposed AVSS consists of longitudinal and lateral vehicle control systems, which corresponds to the Level 2 vehicle automation presented by the National Highway Safety Administration (NHTSA). The effectiveness evaluation for the proposed technology was conducted in terms of crash potential reduction and congestion mitigation. A microscopic traffic simulator, VISSIM, was used to simulate freeway traffic stream and collect vehicle-maneuvering data. In addition, an external application program interface, VISSIM's COM-interface, was used to implement the AVSS. A surrogate safety assessment model (SSAM) was used to derive indirect safety measures to evaluate the effectiveness of the AVSS. A 16.7-km freeway stretch between the Nakdong and Seonsan interchanges on Korean freeway 45 was selected for the simulation experiments to evaluate the effectiveness of AVSS. A total of five simulation runs for each evaluation scenario were conducted. For the non-incident conditions, the rear-end and lane-change conflicts were reduced by 78.8% and 17.3%, respectively, under the level of service (LOS) D traffic conditions. In addition, the average delay was reduced by 55.5%. However, the system's effectiveness was weakened in the LOS A-C categories. Under incident traffic conditions, the number of rear-end conflicts was reduced by approximately 9.7%. Vehicle delays were reduced by approximately 43.9% with 100% of market penetration rate (MPR). These results

  16. AC propulsion system for an electric vehicle, phase 2

    Science.gov (United States)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  17. Machine-Vision Systems Selection for Agricultural Vehicles: A Guide

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares

    2016-11-01

    Full Text Available Machine vision systems are becoming increasingly common onboard agricultural vehicles (autonomous and non-autonomous for different tasks. This paper provides guidelines for selecting machine-vision systems for optimum performance, considering the adverse conditions on these outdoor environments with high variability on the illumination, irregular terrain conditions or different plant growth states, among others. In this regard, three main topics have been conveniently addressed for the best selection: (a spectral bands (visible and infrared; (b imaging sensors and optical systems (including intrinsic parameters and (c geometric visual system arrangement (considering extrinsic parameters and stereovision systems. A general overview, with detailed description and technical support, is provided for each topic with illustrative examples focused on specific applications in agriculture, although they could be applied in different contexts other than agricultural. A case study is provided as a result of research in the RHEA (Robot Fleets for Highly Effective Agriculture and Forestry Management project for effective weed control in maize fields (wide-rows crops, funded by the European Union, where the machine vision system onboard the autonomous vehicles was the most important part of the full perception system, where machine vision was the most relevant. Details and results about crop row detection, weed patches identification, autonomous vehicle guidance and obstacle detection are provided together with a review of methods and approaches on these topics.

  18. HIGH VOLTAGE SAFETY MANAGEMENT SYSTEM OF ELECTRIC VEHICLE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to improve the drivability and energy efficiency of electric vehicle (EV), more and more batteries are connected in series with high voltage which makes it necessary to monitor the electric parameters of high voltage system (HVS) to ensure the high voltage safety. A high voltage safety management system is developed to solve this critical issue. Several key electric parameters including pre-charge, contact resistance, insulation resistance and remaining capacity are monitored and analyzed based on the presented equivalent models. An electronic unit called high voltage safety controller is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated and the on-line electric parameters monitor strategy is discussed. The real vehicle experiment results indicate that the high voltage safety management system designed is suitable for EV application.

  19. Electromagnetic shielding of thermal protection system for hypersonic vehicles

    Science.gov (United States)

    Albano, M.; Micheli, D.; Gradoni, G.; Morles, R. B.; Marchetti, M.; Moglie, F.; Mariani Primiani, V.

    2013-06-01

    The numerical simulation and the measurement of electromagnetic shielding at microwave frequencies of thermal protection system for hypersonic vehicles is presented using nested reverberation chamber. An example of a possible thermal protection system for a re-entry vehicle is presented. This system based on carbon material is electromagnetically characterized. The characterization takes into account not only the materials but also the final assembly configuration of the thermal protection system. The frequency range is 2-8 GHz. The results of measurements and simulations show that the microwave shielding effectiveness of carbon materials is above 60 dB for a single tile and that the tile inter-distance is able to downgrade the shielding effectiveness on the average to about 40 dB.

  20. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  1. Magnet levitation at your fingertips

    Science.gov (United States)

    Geim, A. K.; Simon, M. D.; Boamfa, M. I.; Heflinger, L. O.

    1999-07-01

    The stable levitation of magnets is forbidden by Earnshaw's theorem, which states that no stationary object made of magnets in a fixed configuration can be held in stable equilibrium by any combination of static magnetic or gravitational forces. Earnshaw's theorem can be viewed as a consequence of the Maxwell equations, which do not allow the magnitude of a magnetic field in a free space to possess a maximum, as required for stable equilibrium. Diamagnets (which respond to magnetic fields with mild repulsion) are known to flout the theorem, as their negative susceptibility results in the requirement of a minimum rather than a maximum in the field's magnitude. Nevertheless, levitation of a magnet without using superconductors is widely thought to be impossible. We find that the stable levitation of a magnet can be achieved using the feeble diamagnetism of materials that are normally perceived as being non-magnetic, so that even human fingers can keep a magnet hovering in mid-air without touching it.

  2. A Coupling Vibration Test Bench and the Simulation Research of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Weihua Ma

    2015-01-01

    Full Text Available To study the characteristics of the coupling vibration between a maglev vehicle and its track beam system and to improve the performance of the levitation system, a new type of vibration test bench was developed. Take a single maglev frame as the study object; simulation of the coupling vibration of the maglev vehicle, levitation system, and track beam were achieved. In addition, all types of real track irregularity excitations can be simulated using hydraulic actuators of the test bench. To expand the research scope, a simulation model was developed that can conduct the simulation research synergistically with the test bench. Based on a dynamics model of the test bench, the dynamics simulation method determined the influence on the levitation control performance of three factors: the track beam support stiffness, the track beam mass, and the track irregularity. The vibration resonance phenomenon of the vehicle/track system was reproduced by the dynamics simulation, and a portion of the simulation results were validated by the test results. By combining the test bench and the dynamics model, experiments can be guided by the simulation results, and the experimental results can validate the dynamics simulation results.

  3. Anisotropy Effect on Levitation Performance of Bulk High-Tc Superconductors Above a Permanent Magnet Guideway

    Science.gov (United States)

    Zheng, Jun; Liao, Xinglin; Jing, Hailian; Lin, Qunxu; Ma, Guangtong; Yen, Fei; Wang, Suyu; Wang, Jiasu

    The anisotropy properties of bulk high-temperature superconductors (HTSCs) are taken into consideration for the application of high-temperature superconducting (HTS) Maglev systems, which are especially based on the different flux-trapping capabilities as well as critical current density, Jc, values between the growth section boundary (GSB) and the growth sections (GS) in bulk superconductors. By adjusting the angle between the GSB of bulk HTSCs and the strongest magnetic field position of a permanent magnet guideway (PMG), the levitation force and its relaxation processes are compared at different field-cooling conditions. Experimental results show that the levitation capability and the suppression of levitation force decay can be enhanced by optimizing the GS/GSB alignment of every bulk HTSC above the PMG. Meanwhile, our conclusions may provide references to other HTS maglev systems with small levitation gaps, i.e., superconducting magnetic bearings.

  4. A Hydraulic Blowdown Servo System For Launch Vehicle

    Science.gov (United States)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  5. The MEDEA/JASON remotely operated vehicle system

    Science.gov (United States)

    Ballard, Robert D.

    1993-08-01

    The remotely operated vehicle (ROV) system MEDEA/JASON has been under development for the last decade. Adter a number of engineering test cruises, including the discovery of the R.M.S. Titanic and the German Battleship Bismarck, this ROV system is now being implemented in oceanographic investigations. This paper explains its development history and its unique ability to carry out a broad range of scientific research.

  6. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com

    2014-10-15

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  7. Electric Vehicle (EV) Charging Management with Dynamic Distribution System Tariff

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Wu, Qiuwei; Østergaard, Jacob

    2011-01-01

    congestions in local distribution systems from the day-ahead planning perspective. Locational marginal pricing method was used to determine the dynamic distribution system tariff based on predicted day-ahead spot prices and predicted charging behaviors. Distribution grids of the Bornholm power system were......An electric vehicle (EV) charging schedule algorithm was proposed in this paper in order to charge EVs to meet EV users’ driving needs with the minimum EV charging cost and respect the local distribution system constraints. A day-ahead dynamic distribution system tariff scheme was proposed to avoid...

  8. Optimization and Control of Cyber-Physical Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Justin M. Bradley

    2015-09-01

    Full Text Available A cyber-physical system (CPS is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  9. Study on High Efficient Electric Vehicle Wireless Charging System

    Science.gov (United States)

    Chen, H. X.; Liu, Z. Z.; Zeng, H.; Qu, X. D.; Hou, Y. J.

    2016-08-01

    Electric and unmanned is a new trend in the development of automobile, cable charging pile can not meet the demand of unmanned electric vehicle. Wireless charging system for electric vehicle has a high level of automation, which can be realized by unmanned operation, and the wireless charging technology has been paid more and more attention. This paper first analyses the differences in S-S (series-series) and S-P (series-parallel) type resonant wireless power supply system, combined with the load characteristics of electric vehicle, S-S type resonant structure was used in this system. This paper analyses the coupling coefficient of several common coil structure changes with the moving distance of Maxwell Ansys software, the performance of disc type coil structure is better. Then the simulation model is established by Simulink toolbox in Matlab, to analyse the power and efficiency characteristics of the whole system. Finally, the experiment platform is set up to verify the feasibility of the whole system and optimize the system. Based on the theoretical and simulation analysis, the higher charging efficiency is obtained by optimizing the magnetic coupling mechanism.

  10. Optimization and Control of Cyber-Physical Vehicle Systems

    Science.gov (United States)

    Bradley, Justin M.; Atkins, Ella M.

    2015-01-01

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined. PMID:26378541

  11. Optimization and Control of Cyber-Physical Vehicle Systems.

    Science.gov (United States)

    Bradley, Justin M; Atkins, Ella M

    2015-09-11

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  12. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  13. Research and Development of Engine-Generator Set Control System for Tracked Vehicle Electric Transmission System

    Institute of Scientific and Technical Information of China (English)

    HUANG Ying; HUANG Qian; SUN Feng-chun; LIU Bo-lan; LIU Jia

    2007-01-01

    As an energy generating equipment, the engine-generator set supplies power to the electric transmission. Therefore, its control is one of the key technologies of electric vehicles. Based on the discussion about the demands to the engine-generator set in tracked vehicles, the detailed function of engine-generator and the control strategy are determined. The hardware and software of the control system are also developed and tested in a prototype vehicle. The experiment results show that the control system has good reliability and can satisfy the power requirements of vehicles under all operating conditions.

  14. System Design and Implementation of Smart Dashboard for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Hu

    2015-01-01

    Full Text Available Recently, the development of automobile focuses on the chassis structure and motion control. However, due to the concept of smart and safe vehicle, the integrated dashboard becomes a necessary issue. The proposed system can not only represent the conventional dashboard in a digital form but also endow the system with an intelligent guidance. The statuses such as speed, battery SOC, braking, mileage, and the activation of TCS and ABS can be seen and monitored in all driving scenarios. For example, the current modern electric vehicles face the danger of self-ignition problem when the over load problem is consisted. Basically, these severe conditions can be eliminated by a guard of smart interface. Consequently, under a proper design, the presented system can assist the driver to maintain the energy efficiency, steering stability, and so on. Then the operation procedure can be simplified and hence driver can concentrate more on steering.

  15. 3D modeling of forces between magnet and HTS in a levitation system using new approach of the control volume method based on an unstructured grid

    Energy Technology Data Exchange (ETDEWEB)

    Alloui, L., E-mail: lotfi.alloui@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Laboratoire de modelisation des systemes energetiques (LMSE), Universite de Biskra, 07000 Biskra (Algeria); Bouillault, F., E-mail: bouillault@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Bernard, L., E-mail: laurent.bernardl@lgep.supelc.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Leveque, J., E-mail: jean.leveque@green.uhp-nancy.fr [Groupe de recherche en electronique et electrotechnique de Nancy, Universite Henry Poincare, BP 239, 54506 Vandoeuvre les Nancy (France)

    2012-05-15

    In this paper we present new 3D numerical model to calculate the vertical and the guidance forces in high temperature superconductors taking into account the influence of the flux creep phenomena. In the suggested numerical model, we adopt a new approach of the control volume method. This approach is based on the use of an unstructured grid which can be used to model more complex geometries. A comparison of the control volume method results with experiments verifies the validity of this approach and the proposed numerical model. Based on this model, the levitation force's relaxation at different temperatures was also studied.

  16. Development of portable measuring system for testing of electrical vehicle's heat energy recovery system

    Science.gov (United States)

    Sarvajcz, K.; Váradiné Szarka, A.

    2016-11-01

    Nowadays the consumer society applies a huge amount of energy in many fields including transportation sector. Internal combustion vehicles contribute substantially to the air pollution. An alternative solution for reducing energy consumption is replacing the internal combustion vehicles by electrical or hybrid vehicles. Today one of the biggest disadvantages of the electrical vehicles is the finite capacity of batteries. The research topic presented in this paper is the „Energy Harvesting”, and development of energy recovery system for electrical vehicles which largely contributes in increasing the driving range. At the current phase of the research efficiency analysis of the heat energy recovery devices are investigated in real driving circumstances. Computer based mobile and wireless measurement system for the analysis was developed, tested and installed in a real vehicle. Driving tests were performed and analysed in different circumstances.

  17. Visualization Component of Vehicle Health Decision Support System

    Science.gov (United States)

    Jacob, Joseph; Turmon, Michael; Stough, Timothy; Siegel, Herbert; Walter, patrick; Kurt, Cindy

    2008-01-01

    The visualization front-end of a Decision Support System (DSS) also includes an analysis engine linked to vehicle telemetry, and a database of learned models for known behaviors. Because the display is graphical rather than text-based, the summarization it provides has a greater information density on one screen for evaluation by a flight controller.This tool provides a system-level visualization of the state of a vehicle, and drill-down capability for more details and interfaces to separate analysis algorithms and sensor data streams. The system-level view is a 3D rendering of the vehicle, with sensors represented as icons, tied to appropriate positions within the vehicle body and colored to indicate sensor state (e.g., normal, warning, anomalous state, etc.). The sensor data is received via an Information Sharing Protocol (ISP) client that connects to an external server for real-time telemetry. Users can interactively pan, zoom, and rotate this 3D view, as well as select sensors for a detail plot of the associated time series data. Subsets of the plotted data can be selected and sent to an external analysis engine to either search for a similar time series in an historical database, or to detect anomalous events. The system overview and plotting capabilities are completely general in that they can be applied to any vehicle instrumented with a collection of sensors. This visualization component can interface with the ISP for data streams used by NASA s Mission Control Center at Johnson Space Center. In addition, it can connect to, and display results from, separate analysis engine components that identify anomalies or that search for past instances of similar behavior. This software supports NASA's Software, Intelligent Systems, and Modeling element in the Exploration Systems Research and Technology Program by augmenting the capability of human flight controllers to make correct decisions, thus increasing safety and reliability. It was designed specifically as a

  18. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  19. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  20. Application of discrete sliding mode variable structure control in magnetic levitation ball system%离散滑模变结构控制在磁悬浮球系统中的应用

    Institute of Scientific and Technical Information of China (English)

    钱玉恒; 杨亚非; 张翔

    2012-01-01

    The magnetic levitation ball experiment device is a typical nonlinear system, which provides conventional PID control, but hardly achieves ideal control effect. Therefore, a discrete sliding mode variable structure control is put forward in order to study the system. Firstly, the discrete sliding mode switching surface and tendency rate are analyzed. Secondly, based on the design of discrete sliding mode controller under system disturbances and jitter, and by studying the controller's convergence, the integral compensation discrete sliding mode controller is proposed which can overcome disturbances and jitter. Finally, the proposed ' control method is verified on the magnetic levitation ball experiment device. The experiment results show that the system's response time is reduced to 5 s with the new method, while it is 15 s with the PID control, and the control error is also decreased, which prove that the control effect of the proposed method is better than that of PID control, and the method is suitable for the control of magnetic levitation ball system. It provides a set of new experiment methods for the experiment device.%磁悬浮球实验装置是典型的非线性系统,该装置提供了常规PID控制,但难以达到理想的控制效果,由此提出采用离散滑模变结构控制来研究该系统.文中首先分析了离散滑模切换面和趋近率,然后设计了存在系统干扰和抖动情况下的离散滑模控制器,并研究了其收敛性,在此基础上提出了克服干扰和抖动的积分补偿离散滑模控制器,最后将所提出的控制方法在磁悬浮球实验装置上进行验证.试验验证结果表明,系统响应时间由PID控制的15s减小到5s,控制偏差也有所减小,控制效果优于PID控制,适合磁悬浮球系统的控制,为该实验装置提供了一套新的实验方法,

  1. 模糊自适应PID算法在磁悬浮实时控制系统中的应用研究%Application Research on Fuzzy PID Algorithm in Real-time Control System of Magnetic Levitation

    Institute of Scientific and Technical Information of China (English)

    李明然; 贺建军

    2012-01-01

    针对磁悬浮系统的复杂非线性及模型不确定的特点,采用模糊PID算法对其进行控制,以满足系统对动态性能和静态性能的要求;结合PID实时控制中的经验,建立合理的模糊规则,模糊推理机构根据不同的偏差e、偏差变化率ec对PID参数Kp、Ki和Kd进行自校正;在磁悬浮实验装置中进行实时控制实验,通过与常规PID控制效果的比较来验证模糊PID控制器的性能;在系统输入存在正弦扰动时,模糊PID控制器使系统响应过程中的振荡幅度得到明显减小,干扰对控制效果的影响被减弱;实验证明,模糊PID控制器具有较强的鲁棒性和抗干扰能力,对于磁悬浮这种非线性系统具有良好的控制效果.%Aiming at the characteristics of the complex nonlinearity and uncertain model, fuzzy PID algorithm is adopted to satisfy the requirements of dynamic and static performance in the control of magnetic levitation system. Based on the experience in the real time PID control experiment, fuzzy control rules are established. According to different deviation e and deviation rate of changeec. , PID parameters Kp , K, and KdWere accomplished self tuning by fuzzy inference mechanism. The real- time control experiment is done in the magnetic levitation device in order to verify the control performance of fuzzy PIDconlroller. When system input exists sinusoidal disturbance, the oscillation amplitude cif the system in response process and the impact of interference are reduced obviously by fuzzy PID controller. The experiment proves that this fuzzy PID controller owns better robustness and stronger anti - interference and has good control performance for the nonlinear system such as magnetic levitation system.

  2. Magnetically levitated autoparametric broadband vibration energy harvesting

    Science.gov (United States)

    Kurmann, L.; Jia, Y.; Manoli, Y.; Woias, P.

    2016-11-01

    Some of the lingering challenges within the current paradigm of vibration energy harvesting (VEH) involve narrow operational frequency range and the inevitable non-resonant response from broadband noise excitations. Such VEHs are only suitable for limited applications with fixed sinusoidal vibration, and fail to capture a large spectrum of the real world vibration. Various arraying designs, frequency tuning schemes and nonlinear vibratory approaches have only yielded modest enhancements. To fundamentally address this, the paper proposes and explores the potentials in using highly nonlinear magnetic spring force to activate an autoparametric oscillator, in order to realize an inherently broadband resonant system. Analytical and numerical modelling illustrate that high spring nonlinearity derived from magnetic levitation helps to promote the 2:1 internal frequency matching required to activate parametric resonance. At the right internal parameters, the resulting system can intrinsically exhibit semi-resonant response regardless of the bandwidth of the input vibration, including broadband white noise excitation.

  3. Impact of Plug-in Hybrid Electric Vehicle on Power Distribution System Considering Vehicle to Grid Technology: A Review

    Directory of Open Access Journals (Sweden)

    A. Aljanad

    2015-08-01

    Full Text Available This study presents a comprehensive review of the potential technical impacts of plug-in hybrid electric vehicles on power distribution and transmission systems. This review also presents various power quality impacts on the power system in several aspects. This review conveys a detailed analysis of electric vehicle charging strategies on electrical distribution networks. The two charging aspects (coordinated/uncoordinated and intelligent scheduling of charging are discussed in terms of their impacts on power systems. Vehicle to grid technology are investigated, elaborated and evaluated based on technical, suitability and configuration aspects.

  4. Vision-based pedestrian protection systems for intelligent vehicles

    CERN Document Server

    Geronimo, David

    2013-01-01

    Pedestrian Protection Systems (PPSs) are on-board systems aimed at detecting and tracking people in the surroundings of a vehicle in order to avoid potentially dangerous situations. These systems, together with other Advanced Driver Assistance Systems (ADAS) such as lane departure warning or adaptive cruise control, are one of the most promising ways to improve traffic safety. By the use of computer vision, cameras working either in the visible or infra-red spectra have been demonstrated as a reliable sensor to perform this task. Nevertheless, the variability of human's appearance, not only in

  5. The Orbital Maneuvering Vehicle Training Facility visual system concept

    Science.gov (United States)

    Williams, Keith

    1989-01-01

    The purpose of the Orbital Maneuvering Vehicle (OMV) Training Facility (OTF) is to provide effective training for OMV pilots. A critical part of the training environment is the Visual System, which will simulate the video scenes produced by the OMV Closed-Circuit Television (CCTV) system. The simulation will include camera models, dynamic target models, moving appendages, and scene degradation due to the compression/decompression of video signal. Video system malfunctions will also be provided to ensure that the pilot is ready to meet all challenges the real-world might provide. One possible visual system configuration for the training facility that will meet existing requirements is described.

  6. Study on Machine Tool Crossbeam Magnetic Levitation System Based on Backstepping Self-adaptive Dynamic Sliding Mode Control%机床横梁悬浮系统的反演自适应动态滑模变结构控制研究

    Institute of Scientific and Technical Information of China (English)

    王通; 迟青光

    2011-01-01

    Disturbance and the system parameters time variation have effects on magnetic levitation system when the tool was cutting. In order to achieve levitation gaps precision control, a backstepping self-adaptive dynamic sliding mode controller was designed at the moving crossbeam levitation system of the gantry NC machining center. Using this method, chatting of the system could be effectively decreased and the stability of levitation system could be kept. Due to the introduction of self-adaptive control strategy, the control ability restraining parameters uncertainty was greatly improved. The simulated result shows that this controller has powerful anti-disturbance ability and makes the system has high rigidity. It can achieve steady levitation.%在龙门数控加工中心移动横梁磁悬浮系统中,刀具切削工件过程中磁悬浮系统所受到扰动和系统自身参数的时变性对悬浮高度有影响.为了实现悬浮高度的精确控制,设计了控制悬浮高度的反演自适应动态滑模控制器,该控制器可有效削弱系统抖振并保持悬浮高度的稳定性;引入自适应控制策略,大大改进了滑模控制对不确定性系统参数的控制能力.仿真结果表明:该控制器具有很强的抗扰性,并使系统具有较高刚度,实现了稳定悬浮.

  7. Design, fabrication and levitation experiments of a micromachined electrostatically suspended six-axis accelerometer.

    Science.gov (United States)

    Cui, Feng; Liu, Wu; Chen, Wenyuan; Zhang, Weiping; Wu, Xiaosheng

    2011-01-01

    A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated.

  8. A Simple, Inexpensive Acoustic Levitation Apparatus

    Science.gov (United States)

    Schappe, R. Scott; Barbosa, Cinthya

    2017-01-01

    Acoustic levitation uses a resonant ultrasonic standing wave to suspend small objects; it is used in a variety of research disciplines, particularly in the study of phase transitions and materials susceptible to contamination, or as a stabilization mechanism in microgravity environments. The levitation equipment used for such research is quite…

  9. Passive levitation in alternating magnetic fields

    Science.gov (United States)

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  10. Variable geometry two mode levitation trap

    Science.gov (United States)

    Babič, D.; Čadež, A.

    1999-11-01

    Construction and operation of the electrodynamic levitation trap which can be operated in a passive and an active mode is described. This combination together with variable electrode geometry simplifies the trap's design and simultaneously gives more flexibility with respect to different kinds of measurements. Sample measurements of mechanocaloric effect caused by nonuniform heating of a single levitated particle are presented and discussed.

  11. Acoustical-Levitation Chamber for Metallurgy

    Science.gov (United States)

    Barmatz, M. B.; Trinh, E.; Wang, T. G.; Elleman, D. D.; Jacobi, N.

    1983-01-01

    Sample moved to different positions for heating and quenching. Acoustical levitation chamber selectively excited in fundamental and second-harmonic longitudinal modes to hold sample at one of three stable postions: A, B, or C. Levitated object quickly moved from one of these positions to another by changing modes. Object rapidly quenched at A or C after heating in furnace region at B.

  12. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T

    1999-01-01

    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  13. Study on the Levitation and Restoring Force Characteristics of the Improved HTS-permanent Magnet Hybrid Magnetic Bearing

    Science.gov (United States)

    Sugiyama, R.; Oguni, K.; Ohashi, S.

    We have developed the hybrid magnetic bearing using permanent magnets and high temperature bulk super conductor (HTS). In this system, the permanent magnet has ring type structure so that the permanent magnet and the HTS can be set to the stator. The pinning force of the HTS is used for the levitation and the guidance. Repulsive force of the permanent magnets was used in the conventional hybrid system. However the restoring force in the guidance direction of the conventional hybrid system decreases by the side slip force of the permanent magnets. In this research, attractive force of permanent magnets is used for increasing the load weight in the guidance direction. In this paper, influence of the hybrid system on the static characteristics of the rotor is studied. Three-dimensional numerical analysis of the linkage flux (in the levitation and the guidance direction) in the HTS is undertaken. The stator side permanent magnet increases the linkage flux of the levitation direction. Therefore in the hybrid system the linkage flux of the levitation direction increases. The levitation and restoring force of the rotor is measured. The levitation force of the hybrid system becomes smaller than that of the non-hybrid one by attractive force. The rotor in the hybrid system is supported by the pinning force and attractive force. The restoring force of the hybrid system becomes larger than that of the non-hybrid one because of increasing the linkage flux of the levitation direction.

  14. 多模型切换控制方法在磁悬浮系统中的应用%Multi-model Switching Control Method of Magnetic Levitation System

    Institute of Scientific and Technical Information of China (English)

    彭辉; 高杰

    2011-01-01

    An multi-model switching based Linear quadratic regulator (LQR) is proposed for the magnetic levitation system characterized by, nonlinearity and complexity.The structure, principle, model-rank choice, identification of the ARX models are dis, cussed the stale spale model and the design of LQR is presented.With existing experimental equipment such as PC, data collector and magnetic levitation system, a real-time control system is constracted based-on Matlab/Simulink environment to implement the control strategy.The experimental curves under different algorithms are given, and the multi-modle switching control method is used to improve the proformance.The results of real-time control on the magnetic levitation system show the and satisfactory performance of model and control approach.%针对磁悬浮装置的非线性及对实时性要求高的特点,对磁悬浮装置构造线性二次型调节器(Linear Quadratic regulator-LQR)并采用多模型切换的控制方法对磁悬浮装置进行实时控制,取得了较好的控制效果.讨论了ARX模型的结构、原理、模型阶次的选择和辫识方法等问题,介绍了状态空间的创建方法和LQR控制器的构造方案,利用实验室现有的试验设备:PC、数据采集卡以及磁悬浮装置,在Matlab/Simulink中组建实时控制模块,对铁球在磁悬浮装置中的位置进行实时控制.并且对磁悬浮球系统在不同信号源给定下的控制效果进行了讨论和分析,针时磁悬浮系统的非线性强的特点提出了多模型切换的控制方法.最后比较了多模型切换的LQR控制方法和传统PID控制方法的控制效果,证明了提出的方法有更好的性能.

  15. Vehicle height and posture control of the electronic air suspension system using the hybrid system approach

    Science.gov (United States)

    Sun, Xiaoqiang; Cai, Yingfeng; Chen, Long; Liu, Yanling; Wang, Shaohua

    2016-03-01

    The electronic air suspension (EAS) system can improve ride comfort, fuel economy and handling safety of vehicles by adjusting vehicle height. This paper describes the development of a novel controller using the hybrid system approach to adjust the vehicle height (height control) and to regulate the roll and pitch angles of the vehicle body during the height adjustment process (posture control). The vehicle height adjustment system of EAS poses challenging hybrid control problems, since it features different discrete modes of operation, where each mode has an associated linear continuous-time dynamic. In this paper, we propose a novel approach to the modelling and controller design problem for the vehicle height adjustment system of EAS. The system model is described firstly in the hybrid system description language (HYSDEL) to obtain a mixed logical dynamical (MLD) hybrid model. For the resulting model, a hybrid model predictive controller is tuned to improve the vehicle height and posture tracking accuracy and to achieve the on-off statuses direct control of solenoid valves. The effectiveness and performance of the proposed approach are demonstrated by simulations and actual vehicle tests.

  16. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  17. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  18. FY2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization.

  19. Vehicle Propulsion Systems Introduction to Modeling and Optimization

    CERN Document Server

    Guzzella, Lino

    2013-01-01

    This text provides an introduction to the mathematical modeling and subsequent optimization of vehicle propulsion systems and their supervisory control algorithms. Automobiles are responsible for a substantial part of the world's consumption of primary energy, mostly fossil liquid hydrocarbons and the reduction of the fuel consumption of these vehicles has become a top priority. Increasing concerns over fossil fuel consumption and the associated environmental impacts have motivated many groups in industry and academia to propose new propulsion systems and to explore new optimization methodologies. This third edition has been prepared to include many of these developments. In the third edition, exercises are included at the end of each chapter and the solutions are available on the web.

  20. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  1. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    Science.gov (United States)

    2010-06-18

    radiator #7. The fan blades and shroud were formed using stereo lithography; the fan motor was a brushless DC motor with motor controller. These...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--10-9253 Cooling System Design for PEM Fuel Cell Powered Air Vehicles June 18, 2010...Stroman, Michael W. Schuette,* and Gregory S. Page† Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5342 NRL/MR/6110--10-9253

  2. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  3. Note on Modern Trends in Heavy Vehicle Electrical Electronic systems

    Directory of Open Access Journals (Sweden)

    B. S. Sastry

    1982-04-01

    Full Text Available The paper presents an overview of some of the aerospace control systems that are being successfully adopted in the field of Armoured Fighting Vehicles. An automatic electronic transmission controller for an epicyclic gear box with a torque converter to select the forward and reverse speeds in a sequential logic has been developed. Transducers developed for monitoring various engine and transmission parameters are being used for Electronic Fuel Injection (EFI, variable valve timings and electronic governing.

  4. UPenn Multi-Robot Unmanned Vehicle System (MAGIC)

    Science.gov (United States)

    2014-05-05

    environment. The static objects of interest (OOIs) were red barrels with a predetermined surrounding danger zone. Robots that entered the danger zone...unlimited. 3 Ground Vehicle Components and Systems Mac Mini Hokuyo UTM 30LX Microcontroller Board GPS Dynamixel RX-28 USB RS-232 IMU 6x analog Camera1...integrating MEMS- based gyroscopes and accelerometers. An Atmel microcontroller is used to perform sensor fusion using attitude estimation as

  5. Impacts and Utilization of Electric Vehicles Integration Into Power Systems

    Institute of Scientific and Technical Information of China (English)

    HUZechun; SONG Yonghua; XU Zhiwei; LUO Zhuowei; ZHAN Kaiqiao; JIA Long

    2012-01-01

    With the increasing of electric vehicles (EVs) penetration in power grids, the charging of EVs will have significant impacts on power system planning and operation. It is necessary to note that the majority of EVs are not in use in most of the time in a day. Therefore, the onboard batteries can be utilized as energy storage devices. This article reviews and discusses the current related research in the following areas.

  6. Advanced Driving Assistance Systems for an Electric Vehicle

    OpenAIRE

    Pau Muñoz-Benavent; Leopoldo Armesto; Vicent Girbés; J. Ernesto Solanes; Juan F Dols; Adolfo Muñoz; Josep Tornero

    2012-01-01

    This paper describes the automation of a Neighborhood Electric Vehicle (NEV) and the embedded distributed architecture for implementing an Advanced Driving Assistance System (ADAS) with haptic, visual, and audio feedback in order to improve safety. For the automation, original electric signals were conditioned, and mechanisms for actuation and haptic feedback were installed. An embedded distributed architecture was chosen based on two low-cost boards and implemented under a Robotics Operating...

  7. Advanced Driving Assistance Systems for an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Pau Muñoz-Benavent

    2012-12-01

    Full Text Available This paper describes the automation of a Neighborhood Electric Vehicle (NEV and the embedded distributed architecture for implementing an Advanced Driving Assistance System (ADAS with haptic, visual, and audio feedback in order to improve safety. For the automation, original electric signals were conditioned, and mechanisms for actuation and haptic feedback were installed. An embedded distributed architecture was chosen based on two low-cost boards and implemented under a Robotics Operating System (ROS framework. The system includes features such as collision avoidance and motion planning.

  8. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  9. Design of Propulsion System for a Fuel Cell Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Andreasen, Søren Juhl; Rasmussen, Peter Omand

    2007-01-01

    This paper presents a design method of propulsion systems for fuel cell vehicles complying with the 42V PowerNet standard. The method is based on field measurements during several weeks. Several cases of combining energy storage devices to a common bus voltage are investigated, and the total mass......, volume, cost and efficiency of the propulsion system are compared. It is concluded that the number of energy storage devices and their connecting to the common bus have a significant affect of the mass, volume, cost and efficiency of the propulsion system....

  10. Low Frequency Vibration Energy Harvesting using Diamagnetically Stabilized Magnet Levitation

    Science.gov (United States)

    Palagummi, Sri Vikram

    Over the last decade, vibration-based energy harvesting has provided a technology push on the feasibility of self-powered portable small electronic devices and wireless sensor nodes. Vibration energy harvesters in general transduce energy by damping out the environmentally induced relative emotion through either a cantilever beam or an equivalent suspension mechanism with one of the transduction mechanisms, like, piezoelectric, electrostatic, electromagnetic or magnetostrictive. Two major challenges face the present harvesters in literature, one, they suffer from the unavoidable mechanical damping due to internal friction present in the systems, second, they cannot operate efficiently in the low frequency range (magnet levitation mechanisms which can work efficiently as a vibration energy harvester in the low frequency range are discussed in this work. First, a mono-stable vertical diamagnetic levitation (VDL) based vibration energy harvester (VEH) is discussed. The harvester consists of a lifting magnet (LM), a floating magnet (FM) and two diamagnetic plates (DPs). The LM balances out the weight of the FM and stability is brought about by the repulsive effect of the DPs, made of pyrolytic graphite. Two thick cylindrical coils, placed in grooves which are engraved in the DPs, are used to convert the mechanical energy into electrical energy. Experimental frequency response of the system is validated by the theoretical analysis which showed that the VEH works in a low frequency range but sufficient levitation gap was not achieved and the frequency response characteristic of the system was effectively linear. To overcome these challenges, the influence of the geometry of the FM, the LM, and the DP were parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For efficient vibration energy harvesting using the VDL system, ways to mitigate eddy current damping and a coil geometry for transduction were critically

  11. Magnetic levitation Maglev technology and applications

    CERN Document Server

    Han, Hyung-Suk

    2016-01-01

    This book provides a comprehensive overview of magnetic levitation (Maglev) technologies, from fundamental principles through to the state-of-the-art, and describes applications both realised and under development. It includes a history of Maglev science and technology showing the various milestones in its advancement. The core concepts, operating principles and main challenges of Maglev applications attempted across various fields are introduced and discussed. The principle difficulties encountered when applying Maglev technology to different systems, namely air gap control and stabilization, are addressed in detail. The book describes how major advancements in linear motor and magnet technologies have enabled the development of the linear-motor-powered Maglev train, which has a high speed advantage over conventional wheeled trains and has the potential to reach speed levels achieved by aircraft. However, many expect that Maglev technology to be a green technology that is applied not only in rail transportat...

  12. Experimental Investigation of Exhaust Thermoelectric System and Application for Vehicle

    Science.gov (United States)

    Liu, X.; Deng, Y. D.; Wang, W. S.; Su, C. Q.

    2015-06-01

    In this case study, an energy harvesting system using a thermoelectric power generator (TEG) has been constructed. Experimental investigation of the hot and cold sides of the thermoelectric modules (TMs) in this system has been undertaken to assess the feasibility for automotive applications. Two test benches have been developed to analyze the TM performance and the TEG system characteristics, especially the temperature difference, open-circuit voltage, and maximum power output of the TM and TEG system. As the performance of a TM is most influenced by the applied pressure and the temperature difference, a thermostatic heater, thermostatic water tank, and clamping devices are used in our experimental apparatus, increasing the output power of the TEG system. Based on the test bench, a new system called the "four-TEGs" system was designed and assembled into a prototype vehicle called "Warrior," and the characteristics of the system such as the maximum power output have been studied in road tests. The results show great potential for application of this technology in future vehicles.

  13. Environmentally friendly traffic management system using integrated road-vehicle system

    NARCIS (Netherlands)

    Mahmod, M.M.; Arem, B. van

    2008-01-01

    Local habitability is coming under increasing pressure from harmful traffic emissions. This emission is strongly correlated to the characteristics and dynamics of traffic: type of vehicle, speed, acceleration and deceleration. This paper investigates the use of integrated road-vehicle systems for en

  14. X-33/RLV System Health Management/Vehicle Health Management

    Science.gov (United States)

    Mouyos, William; Wangu, Srimal

    1998-01-01

    To reduce operations costs, Reusable Launch Vehicles (RLVS) must include highly reliable robust subsystems which are designed for simple repair access with a simplified servicing infrastructure, and which incorporate expedited decision-making about faults and anomalies. A key component for the Single Stage To Orbit (SSTO) RLV system used to meet these objectives is System Health Management (SHM). SHM incorporates Vehicle Health Management (VHM), ground processing associated with the vehicle fleet (GVHM), and Ground Infrastructure Health Management (GIHM). The primary objective of SHM is to provide an automated and paperless health decision, maintenance, and logistics system. Sanders, a Lockheed Martin Company, is leading the design, development, and integration of the SHM system for RLV and for X-33 (a sub-scale, sub-orbit Advanced Technology Demonstrator). Many critical technologies are necessary to make SHM (and more specifically VHM) practical, reliable, and cost effective. This paper will present the X-33 SHM design which forms the baseline for the RLV SHM, and it will discuss applications of advanced technologies to future RLVs. In addition, this paper will describe a Virtual Design Environment (VDE) which is being developed for RLV. This VDE will allow for system design engineering, as well as program management teams, to accurately and efficiently evaluate system designs, analyze the behavior of current systems, and predict the feasibility of making smooth and cost-efficient transitions from older technologies to newer ones. The RLV SHM design methodology will reduce program costs, decrease total program life-cycle time, and ultimately increase mission success.

  15. Electromagnetic interference in electrical systems of motor vehicles

    Science.gov (United States)

    Dziubiński, M.; Drozd, A.; Adamiec, M.; Siemionek, E.

    2016-09-01

    Electronic ignition system affects the electronic equipment of the vehicle by electric and magnetic fields. The measurement of radio electromagnetic interference originating from the ignition system affecting the audiovisual test bench was carried out with a variable speed of the ignition system. The paper presents measurements of radio electromagnetic interference in automobiles. In order to determine the level of electromagnetic interference, the audiovisual test bench was equipped with a set of meters for power consumption and assessment of the level of electromagnetic interference. Measurements of the electromagnetic interference level within the audiovisual system were performed on an experimental test bench consisting of the ignition system, starting system and charging system with an alternator and regulator.

  16. 五自由度全永磁轴承系统的稳定悬浮特性分析%Stable Levitation Performance Analysis of Five Degrees of Freedom All Permanent Magnetic Bearing System

    Institute of Scientific and Technical Information of China (English)

    张钢; 孟庆涛; 钟永彦; 张坚; 张海龙; 樊曼

    2015-01-01

    为探讨永磁悬浮轴承系统的稳定悬浮特性,从轴承刚度角度对五自由度全永磁轴承系统的稳定悬浮特性进行了分析。采用等效磁荷理论建立永磁轴承的承载力、承载力矩和刚度的数学表达式,并利用蒙特卡洛法对表达式中存在的四重积分进行求解。探究转子在受迫进动情况下以及受到外力矩干扰时继续保持稳定旋转所需要的最低临界转速。基于轴向永磁轴承与径向永磁轴承的结构,提出一种六磁环五自由度全永磁轴承系统结构模型,对全永磁轴承的转子系统承受轴向和径向外载荷的承载力、力矩和承载刚度进行分析,得出轴向可以承受外载荷而径向无法承受外载荷,即静态下轴向可以稳定悬浮、径向不能稳定悬浮,符合 Earnshaw 定理。利用刚性转子的陀螺惯性力矩来承受全永磁轴承系统的不平衡力矩和外力矩,从而保持转子定轴自稳定悬浮,并对系统稳定悬浮特性进行计算,结果表明转子在超过最低临界转速后是可以实现动态稳定悬浮的,具有一定的工程应用价值。%To investigate the stable levitation performance of permanent magnetic bearings system, the stable levitation performance of the five-DOF permanent magnetic bearing (PMB) system is analyzed from the perspective of bearing stiffness. The analysis formulas of PMB’ s loading capacity, torque and stiffness are established based on the equivalent magnetic charge theory, then use Monte Carlo method to solve the quadruple integral formula to get the result of the force, moment and stiffness. The minimum critical speed for rotor in the case of forced precession and in the situation of external torque is explored. Puts forward a six circular magnetic rings and five DOF all permanent magnetic bearing structure model based on the structure of radial and axial magnetic bearings, the carrying capacity, moment and stiffness of five-DOF PMB

  17. Contactless Calorimetry for Levitated Samples

    Science.gov (United States)

    Lee, M. C.; Dokko, W.

    1986-01-01

    Temperature and specific heat of hot sample measured with pyrometer in proposed experimental technique. Technique intended expecially for contactless calorimetry of such materials as undercooled molten alloys, samples of which must be levitated to prevent contamination and premature crystallization. Contactless calorimetry technique enables data to be taken over entire undercooling temperature range with only one sample. Technique proves valuable in study of undercooling because difference in specific heat between undercooled-liquid and crystalline phases at same temperature provides driving force to convert metastable undercooled phase to stable crystalline phase.

  18. Accurate Intelligent Map Matching Algorithms for Vehicle Positioning System

    Directory of Open Access Journals (Sweden)

    M. Pashaian

    2012-03-01

    Full Text Available The purpose of a navigation system installed on a car is to help drivers in order to select an optimal path to reach the destination. In most of these systems, Global Positioning System (GPS are used to determine vehicle position. There are number of error sources that undermine the quality of GPS measurements for car navigation systems. For this reason, technique like Map Matching (MM is required to identify the road of a car is that moving on, with a high degree of confidence. MM in car navigation systems, has a task of determining the current position of vehicle on the city's map. In this paper, two new MM methods based on Fuzzy Logic (FL and Neural Network (NN are proposed to solve the matching problem in car navigation systems. For the experiments, a car navigation system is implemented with a low cost GPS receiver. The proposed fuzzy algorithm is easy to calculate. It requires little computation time without need to extra sensors and can find effectively the mobile exact position which moves on the road.

  19. Vision-Based SLAM System for Unmanned Aerial Vehicles.

    Science.gov (United States)

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-03-15

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

  20. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  1. Vision-Based SLAM System for Unmanned Aerial Vehicles

    Science.gov (United States)

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-01-01

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy. PMID:26999131

  2. Vision-Based SLAM System for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2016-03-01

    Full Text Available The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs. The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i an orientation sensor (AHRS; (ii a position sensor (GPS; and (iii a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy.

  3. Optimisation of Kinematics for Tracked Vehicle Hydro Gas Suspension System

    Directory of Open Access Journals (Sweden)

    S. Sridhar

    2006-11-01

    Full Text Available The modern-day armoured fighting vehicles (AFVs are basically tracked vehicles equippedwith hydro gas suspensions, in lieu of conventional mechanical suspensions like torsion barand coil spring bogie suspensions. The uniqueness of hydro gas suspension is that it offersa nonlinear spring rate, which is very much required for the cross-country moveability of atracked vehicle. The AFVs have to negotiate different cross-country terrains like sandy, rocky,riverbed, etc. and the road irregularities provide enumerable problems during dynamic loadingsto the design of hydro gas suspension system. Optimising various design parameters demandsinnovative design methodologies to achieve better ride performance. Hence, a comprehensivekinematic analysis is needed. In this study, a methodology has been derived to optimise thekinematics of the suspension by reorienting the cylinder axis and optimising the loadtransferringleverage factor so that the side thrust on the cylinder is minimised to a greaterextent. The optimisation ultimately increases the life of the high-pressure and high-temperaturepiston seals, resulting in enhanced system life for better dependability.

  4. Production and exploitation of thermoelectric air conditioning systems for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Dudnik, Vladimir [Conditioner Ltd, Gagarin (Russian Federation); Skipidarov, Sergey [SCTB NORD, Moskau (Russian Federation); Rapp, Axel [Quick-Ohm Kupper und Co. GmbH, Wuppertal-Cronenberg (Germany)

    2011-07-01

    In the paper more than 10-year experience of thermoelectric devices batch manufacturing is described for the field of their obvious advantages. This field of application includes thermoelectric air conditioning systems which have shown their competitive advantage when used in vehicles of elevated vibration where compressor equipment application is difficult because of leakage of refrigerant. Energy characteristics of air conditioners for tractors, excavators, tanks, locomotive driver's cabins and cranes are described. Thermoelectric (TE) air conditioners mechanical test data as well as operation experience in vehicles are presented. It is shown that consumption of tellurium, which is a strategic component for thermoelectric materials manufacturing, may be lowered to 40 grams per 1 kW of cooling. (orig.)

  5. Integration of Vehicle-to-Grid in Western Danish Power System

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2011-01-01

    capabilities of large power plants in the future, demands for new balancing solutions like Vehicle-to-Grid systems. In this article, aggregated electric vehicle based battery storage representing a Vehicle-to-Grid system is modelled for the use in long term dynamic power system simulations. Further...... Transmission) control areas are significantly minimized by the faster up and down regulation characteristics of the electric vehicle battery storage....

  6. Lean NOx Trap Modeling in Vehicle Systems Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Conklin, Jim [ORNL

    2010-09-01

    A one-dimensional model for simulating lean NOx trap (LNT) performance is developed and validated using both steady state cycling data and transient data from FTP testing cycles. The model consists of the conservation equations for chemical species and energy in the bulk flow, energy of the solid walls, O2 storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO2, respectively, into sorbent particles (assumed to be hemi-spherical in shape) along with O2 and their formation rates are controlled by chemical kinetics as well as solid-phase diffusion rates of NOx species. The model also accounts for thermal aging and sulfation of LNTs. Empirical correlations are developed on the basis of published experimental data to capture these effects. These empirical correlations depend on total mileage for which the LNT has been in use, the mileage accumulated since the last desulfation event in addition to the freshly degreened catalyst characteristics. The model has been used in studies of vehicle systems (integration, performance etc.) including hybrid powertrain configurations. Since the engines in hybrid vehicles turn on and off multiple number of times during single drive cycles, the exhaust systems may encounter multiple cold start transients. Accurate modeling of catalyst warm-up and cooling is, therefore, very important to simulate LNT performance in such vehicles. For this purpose, the convective heat loss from the LNT to the ambient is modeled using a Nusselt number correlation that includes effects of both forced convection and natural convection (with later being important when vehicle is stationary). Using the model, the fuel penalty associated with operating LNTs on small diesel engine powered car during FTP drive cycles is estimated.

  7. Nonlinear dynamics and millikelvin cavity-cooling of levitated nanoparticles

    CERN Document Server

    Fonseca, P Z G; Millen, J; Monteiro, T S; Barker, P F

    2015-01-01

    Optomechanical systems explore and exploit the coupling between light and the mechanical motion of matter. A nonlinear coupling offers access to rich new physics, in both the quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising of a nanosphere levitated and cooled in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere to millikelvin temperatures for indefinite periods of time in high vacuum. We observe cooling of the linear and non-linear motion, leading to a $10^5$ fold reduction in phonon number $n_p$, attaining final occupancies of $n_p = 100-1000$. This work puts cavity cooling of a levitated object to the quantum ground-state firmly within reach.

  8. Optical Levitation of Nanodiamonds by Doughnut Beams in Vacuum

    CERN Document Server

    Zhou, Lei-Ming; Chen, Jun; Zhao, Nan

    2016-01-01

    Optically levitated nanodiamonds with nitrogen-vacancy centers promise a high-quality hybrid spin-optomechanical system. However, the trapped nanodiamond absorbs energy form laser beams and causes thermal damage in vacuum. We propose to solve the problem by trapping a composite particle (a nanodiamond core coated with a less absorptive silica shell) at the center of strongly focused doughnut-shaped laser beams. Systematical study on the trapping stability, heat absorption, and oscillation frequency concludes that the azimuthally polarized Gaussian beam and the linearly polarized Laguerre-Gaussian beam ${\\rm LG}_{03}$ are the optimal choices. With our proposal, particles with strong absorption coefficients can be trapped without obvious heating and, thus, the spin-optomechanical system based on levitated nanodiamonds are made possible in high vacuum with the present experimental techniques.

  9. Forming the Calculated Dynamic Transmission Systems of Wheeled Vehicles

    Directory of Open Access Journals (Sweden)

    A. B. Fominykh

    2017-01-01

    Full Text Available To calculate dynamic loading of transmission parts of wheeled vehicles, it is necessary to build up the appropriate calculated dynamic systems and determine their inertial, elastic, and damping parameters.The initial point of this process is to form an initial dynamic system. Hereafter, to cut the time of computations there is a need to reduce the number of masses of this system, and sometimes simplify its structure. The main requirement to be fulfilled in this case is that the calculated dynamical system is to be equivalent to the initial one (in terms of similarity of the vibrational process characteristics in these systems, i.e., the frequencies and modes of oscillations of both systems, their amplitude-frequency characteristics. This is possible when the energy characteristics of the corresponding systems are equal, i.e. their kinetic and potential energies, dissipative functions, and external force energies.Usually, when forming the initial and calculated dynamic systems, all types of friction are reduced to a linearly viscous one. However, it disables us to investigate the motion of these systems if there is an arbitrary, in particular, poly-harmonic action (for example, on the side of the internal combustion engine, since in this case the linear friction coefficients given will depend on the frequency and amplitude of the oscillations.The paper is aimed at determining the equivalent parameters of calculated dynamic systems of wheeled vehicles, including the dissipative parameters for the general case of friction.On the basis of energy principles, the expressions are obtained to determine the equivalent inertial, elastic, and damping parameters of the calculated dynamical systems of wheeled vehicles when the structure is changed and the number of masses of the system is decreased. The presented technique enables us to investigate the motion of these systems under arbitrary, including poly-harmonic, action on the system, using the

  10. Synthesis of the unmanned aerial vehicle remote control augmentation system

    Energy Technology Data Exchange (ETDEWEB)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl [Department of Avionics and Control Systems, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstañców Warszawy 12, 35-959 Rzeszów (Poland)

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  11. Synthesis of the unmanned aerial vehicle remote control augmentation system

    Science.gov (United States)

    Tomczyk, Andrzej

    2014-12-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the "ideal" remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  12. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AK62 Federal Motor Vehicle Safety... that amended the Federal motor vehicle safety standard for air brake systems by requiring substantial... 37122) amending Federal Motor Vehicle Safety Standard (FMVSS) No. 121, Air Brake Systems, to...

  13. 76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2011-07-27

    ... Administration 49 CFR Part 571 [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards... published a final rule that amended the Federal motor vehicle safety standard for air brake systems by... Federal Motor Vehicle Safety Standard (FMVSS) No. 121, Air Brake Systems, to require improved...

  14. 77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling

    Science.gov (United States)

    2012-08-07

    ... National Institute of Standards and Technology Work Group on Measuring Systems for Electric Vehicle Fueling... devices and systems used to assess charges to consumers for electric vehicle fuel. There is no cost for... residential and business locations and those used to measure and sell electricity dispensed as a vehicle fuel...

  15. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Science.gov (United States)

    2010-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG...

  16. Development of an Experimental Vehicle with Hybrid Energy System

    Directory of Open Access Journals (Sweden)

    Patricia Ciancio

    2013-06-01

    Full Text Available The first solar car competition in Latin America, in «The Solar Road» category, across the AtacamaDesert, Chile (2011 gave origin to an interdisciplinary project to encourage the use of sustainableenergy applied to the urban transport, without the use of fossil fuels damaging to the environment. Itaimed to develop a vehicle with minimum energy consumption for its transport, lightweight, stable,low-cost, and zero emission based on the combination of photovoltaic solar energy and electricpower obtained from a generator driven by human traction both stored in a battery. In this paper, theinherent aspects of the project and execution stages of an experimental hybrid vehicle, called PampaSolar, are presented. This includes the conception and sizing of the resistant structure, adoption ofthe solar cells configuration, battery sizing and choice, three-phase generator and electronicinstrumentation development, according to the basis of the competition and related loads. The analysisof the results of electric, electronic, mechanical, and vehicle energy systems during competitiondemonstrated a reliable performance, getting the award for the most efficient use of solar energy.

  17. Levitated Optomechanics for Fundamental Physics

    Science.gov (United States)

    Rashid, Muddassar; Bateman, James; Vovrosh, Jamie; Hempston, David; Ulbricht, Hendrik

    2015-05-01

    Optomechanics with levitated nano- and microparticles is believed to form a platform for testing fundamental principles of quantum physics, as well as find applications in sensing. We will report on a new scheme to trap nanoparticles, which is based on a parabolic mirror with a numerical aperture of 1. Combined with achromatic focussing, the setup is a cheap and readily straightforward solution to trapping nanoparticles for further study. Here, we report on the latest progress made in experimentation with levitated nanoparticles; these include the trapping of 100 nm nanodiamonds (with NV-centres) down to 1 mbar as well as the trapping of 50 nm Silica spheres down to 10?4 mbar without any form of feedback cooling. We will also report on the progress to implement feedback stabilisation of the centre of mass motion of the trapped particle using digital electronics. Finally, we argue that such a stabilised particle trap can be the particle source for a nanoparticle matterwave interferometer. We will present our Talbot interferometer scheme, which holds promise to test the quantum superposition principle in the new mass range of 106 amu. EPSRC, John Templeton Foundation.

  18. Electromyographic investigation of hypnotic arm levitation: differences between voluntary arm elevation and involuntary arm levitation.

    Science.gov (United States)

    Peter, Burkhard; Schiebler, Philipp; Piesbergen, Christoph; Hagl, Maria

    2012-01-01

    Thirty-three volunteers were randomly exposed to 3 conditions: hypnotic arm levitation, holding up the arm voluntarily without hypnosis, and imagined arm lifting without hypnosis. Trapezius, deltoid, extensor digitorum, flexor digitorum profundus, biceps brachii, and triceps brachii muscles were measured. Strain and muscle activity during lifting and holding up the right arm for 3 minutes were used as dependent variables. During hypnotic arm levitation, the total muscle activity was lower than during holding it up voluntarily (p levitation.

  19. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    National Research Council Canada - National Science Library

    Vu Trieu Minh; Godwin Oamen; Kristina Vassiljeva; Leo Teder

    2016-01-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking...

  20. Human-inspired sound environment recognition system for assistive vehicles

    Science.gov (United States)

    González Vidal, Eduardo; Fredes Zarricueta, Ernesto; Auat Cheein, Fernando

    2015-02-01

    Objective. The human auditory system acquires environmental information under sound stimuli faster than visual or touch systems, which in turn, allows for faster human responses to such stimuli. It also complements senses such as sight, where direct line-of-view is necessary to identify objects, in the environment recognition process. This work focuses on implementing human reaction to sound stimuli and environment recognition on assistive robotic devices, such as robotic wheelchairs or robotized cars. These vehicles need environment information to ensure safe navigation. Approach. In the field of environment recognition, range sensors (such as LiDAR and ultrasonic systems) and artificial vision devices are widely used; however, these sensors depend on environment constraints (such as lighting variability or color of objects), and sound can provide important information for the characterization of an environment. In this work, we propose a sound-based approach to enhance the environment recognition process, mainly for cases that compromise human integrity, according to the International Classification of Functioning (ICF). Our proposal is based on a neural network implementation that is able to classify up to 15 different environments, each selected according to the ICF considerations on environment factors in the community-based physical activities of people with disabilities. Main results. The accuracy rates in environment classification ranges from 84% to 93%. This classification is later used to constrain assistive vehicle navigation in order to protect the user during daily activities. This work also includes real-time outdoor experimentation (performed on an assistive vehicle) by seven volunteers with different disabilities (but without cognitive impairment and experienced in the use of wheelchairs), statistical validation, comparison with previously published work, and a discussion section where the pros and cons of our system are evaluated. Significance