WorldWideScience

Sample records for level soil science

  1. A short history of the soil science discipline

    Science.gov (United States)

    Brevik, E. C.; Hartemink, A. E.

    2012-04-01

    Since people have cultivated the land they have generated and created knowledge about its soil. By the 4th century most civilizations around had various levels of soil knowledge and that includes irrigation, the use of terraces to control soil erosion, methods to maintain and improve soil fertility. The early soil knowledge was largely empirical and based on observations. Many famous scientists, for example, Francis Bacon, Robert Boyle, Charles Darwin, and Leonardo da Vinci worked on soil issues. Soil science became a true science in the 19th century with the development of genetic soil science, lead by the Russian Vasilii V. Dokuchaev. In the beginning soil science had strong ties to both geology and agriculture but in the 20th century, soil science is now being applied in residential development, the planning of highways, building foundations, septic systems, wildlife management, environmental management, and many other applications. The discipline is maturing and soil science plays a crucial role in many of the current issues that confront the world like climate change, water scarcity, biodiversity and environmental degradation.

  2. Environmental science: A new opportunity for soil science

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, I.L.

    2000-01-01

    During the golden era of soil science--from the 1950s to the 1980s--the main focus of this discipline was on the role of soil in production agriculture. More recently, renewed interest in the area of environmental science has offered new opportunities to soil scientists. Thus, many soil scientists are now working in areas such as bioremediation, waste recycling, and/or contaminant transport. Environmental science has, therefore, not only changed the traditional research role of soil scientists at land grant institutions but has also influenced student enrollment, the traditional soil science curriculum, and faculty recruitment. These changes require a new breed of soil scientist, one with a background not only in soil science but also in other areas of environmental science as well.

  3. A History of Soil Science Education in the United States

    Science.gov (United States)

    Brevik, Eric C.

    2017-04-01

    The formal study of soil science is a fairly recent undertaking in academics. Fields like biology, chemistry, and physics date back hundreds of years, but the scientific study of soils only dates to the late 1800s. Academic programs to train students in soil science are even more recent, with the first such programs only developing in the USA in the early 1900s. Some of the first schools to offer soil science training at the university level included the University of North Carolina (UNC), Earlham College (EC), and Cornell University. The first modern soil science textbook published in the United States was "Soils, Their Properties and Management" by Littleton Lyon, Elmer Fippin and Harry Buckman in 1909. This has evolved over time into the popular modern textbook "The Nature and Properties of Soils", most recently authored by Raymond Weil and Nyle Brady. Over time soil science education moved away from liberal arts schools such as UNC and EC and became associated primarily with land grant universities in their colleges of agriculture. There are currently about 71 colleges and universities in the USA that offer bachelors level soil science degree programs, with 54 of these (76%) being land grant schools. In the 1990s through the early 2000s enrollment in USA soil science programs was on the decline, even as overall enrollment at USA colleges and universities increased. This caused considerable concern in the soil science community. More recently there is evidence that soil science student numbers may be increasing, although additional information on this potential trend is desirable. One challenge soil science faces in the modern USA is finding an academic home, as soils are taught by a wide range of fields and soils classes are taken by students in many fields of study, including soil science, a range of agricultural programs, environmental science, environmental health, engineering, geology, geography, and others.

  4. Soils in Schools: Embedding Soil Science in STEM

    Science.gov (United States)

    Bryce, Alisa

    2015-01-01

    Soil science, though relevant to a variety of subjects including science, geography, mathematics, social sciences and history, is typically perceived as a subgenre of agriculture. With a global need for soil scientists, and declining numbers in university soil courses, there's a growing gap between science needs and providers. One way to promote…

  5. Finnish Society of Soil Sciences

    Science.gov (United States)

    Rankinen, Katri; Hänninen, Pekka; Soinne, Helena; Leppälammi-Kujansuu, Jaana; Salo, Tapio; Pennanen, Taina

    2017-04-01

    In 1998 the organization of the International Union of Soil Sciences (IUSS) was renewed to better support national activities. That was also the new start in the operation of the Finnish Society of Soil Sciences, which became affiliated to the IUSS. The society was originally established in 1971 but it remained relatively inactive. Currently, there are around 200 members in the Finnish Society of Soil Sciences. The members of the executive board cover different fields of soil science from geology to microbiology. Mission statement of the society is to promote the soil sciences and their application in Finland, to act as a forum for creation of better links between soil scientists, interested end users and the public, and to promote distribution and appreciation of general and Finnish research findings in soil science. Every second year the society organizes a national two-day long conference. In 2017 the theme 'circular economy' collected all together 57 presentations. The members of the incoming student division carried responsibility in practical co-ordination committee, acting also as session chairs. In the intervening years the society organizes a weekend excursion to neighboring areas. Lately we have explored the use of biochar in landscaping of Stockholm.

  6. Review of State Soil Cleanup Levels for Dioxin (December 2009)

    Science.gov (United States)

    This final report summarizes a survey of state soil cleanup levels for dioxin and characterizes the science underlying these values. The objective of this project was to summarize existing state cleanup levels for dioxin in soil, together with their scientific bases where availa...

  7. Relaxometry in soil science

    Science.gov (United States)

    Schaumann, G. E.; Jaeger, F.; Bayer, J. V.

    2009-04-01

    NMR relaxometry is a sensitive, informative and promising method to study pore size distribution in soils as well as many kinds of soil physicochemical processes, among which are wetting, swelling or changes in the macromolecular status. Further, it is a very helpful method to study interactions between molecules in soil organic matter and it can serve to study the state of binding of water or organic chemicals to soil organic matter. The method of Relaxometry excite the nuclei of interest and their relaxation kinetics are observed. The relaxation time is the time constant of this first order relaxation process. Most applications of relaxometry concentrate on protons, addressing water molecules or H-containing organic molecules. In this context, 1H-NMR relaxometry may be used as an analysis method to determine water uptake characteristics of soils, thus gaining information about water distribution and mobility as well as pore size distribution in wet and moist samples. Additionally, it can also serve as a tool to study mobility of molecular segments in biopolymers. Principally, relaxometry is not restricted to protons. In soil science, relaxometry is also applied using deuterium, xenon and other nuclei to study pore size distribution and interactions. The relaxation time depends on numerous parameters like surface relaxivity, diffusion and interactions between nuclei as well as between nuclei and the environment. One- and two-dimensional methods address the relation between relaxation time and diffusion coefficients and can give information about the interconnectivity of pores. More specific information can be gained using field cycling techniques. Although proton NMR relaxometry is a very promising method in soil science, it has been applied scarcely up to now. It was used to assess changes in molecular rigidity of humic substances. A very recent study shows the potential of NMR relaxometry to assess the pore size distribution of soils in a fast and non

  8. The soil education technical commission of the Brazilian Soil Science Society: achievements and challenges

    Science.gov (United States)

    Muggler, Cristine Carole; Aparecida de Mello, Nilvania

    2013-04-01

    The Soil Education and public awareness technical commission of the Brazilian Soil Science Society was created in 1987 as Soil Science teaching commission at that time. In the 90's of the last century the commission was very active and realized three national symposia in the years 1994 to 1996: in Viçosa, Minas Gerais; Santa Maria, Rio Grande do Sul and Pato Branco, Paraná. The following symposium scheduled to happen in Brasilia, 1997 could not be realized and was followed by a weakening and reduction of the involved group. Those three symposia were focused on the aspects of soil science taught at the university educational level, mainly in agrarian sciences. The concern about what was going on at basic education and perception by society was not much present. The commission was revitalized in 2005 and in 2007 realized its first meeting at the Brazilian Congress of Soil Science in Gramado, Rio Grande do Sul. At that meeting it was already an urge to assume the approach of soil education instead of soil science teaching, within a major concern how society consider soils. It was accepted and adequate under the structural reorganization undergone by the national society following the IUSS main lines. The commission was renamed and got two new mates at the newly created Division IV, Soils, Environment and Society, of the Brazilian Soil Science Society: Soils and Food Safety and History, Epistemology and Sociology of Soil Science. The national symposia were relaunched to happen biannually. An inventory of the soil education experiences around the country started and the geographic distribution of the future symposia intended to rescue and bring together experiences in different parts of the country that would not be known by other means. Three symposia were already realized: Piracicaba, Sao Paulo, 2008 (southeast); Curitiba, Paraná, 2010 (south) and Sobral, Ceará, 2012 (northeast). The next is planned to happen in Recife, Pernambuco in April 2014. The scope of the

  9. Education and Policy in Soil Science: The U.S. Experience

    Science.gov (United States)

    Sharpley, Andrew; van Es, Harold; Dick, Richard; Bergfeld, Ellen; Anderson, Karl; Chapman, Susan; Fisk, Susan

    2017-04-01

    The Soil Science Society of America (SSSA), founded in 1936, fosters the transfer of knowledge and practices to sustain soils globally, and now serves 6,000 members worldwide. It is also home to over 1,000 certified professionals dedicated to advancing the field of soil science. The Society provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use. We provide high-impact research publications, educational programs, certifications, and science-policy initiatives, which will be described in more detail in this presentation. The need for soil science education to a wider audience and development and promotion of soils-based policy initiatives, has increased in the last decade with recognition of the role soils play in sustaining life, population well-being at the nexus of food, energy, and water security. To address these needs, SSSA has two general public outreach sites online: www.soils.org/discover-soils and https://soilsmatter.wordpress.com/, reaching over a half-million viewers per year, as well as social media platforms. We are dedicated to increasing interest and awareness of soil science among K-12 teachers and their students, and working to integrate more information on soil science into the science curriculum of schools over multiple grade levels. For instance, we have a website dedicated to children (http://www.soils4kids.org/), which describes fun games to play with soil, suggestions for science-fair experiments, and opens their minds to careers in soil science. Another site (http://www.soils4teachers.org/) is dedicated to the needs of school teachers, providing ready resources for the classroom. Society members have even authored books ("Soil! Get the Inside Scoop" for one) to get children aged 9 to 12, excited about the living world of soil. In keeping with the times, a blog called "Soils Matter" is hosted by Society staff and now has

  10. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  11. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    Science.gov (United States)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  12. Soil Science Society of America - K-12 Outreach

    Science.gov (United States)

    Lindbo, David L.; Loynachan, Tom; Mblia, Monday; Robinson, Clay; Chapman, Susan

    2013-04-01

    The Soil Science Society of America created its K12 Committee in 2006 in part to compliment the Dig It! The Secrets of Soil exhibit that opened in July 2008 at the Smithsonian's Institution's Nation Museum of Natural History (of which SSS was a founding sponsor). The committee's work began quickly with a website designed to provide resources for K12 teachers. The first accomplishments included reviewing and posting links to web based information already available to teachers. These links were sorted by subject and grade level to make it easier for teachers to navigate the web and find what they needed quickly. Several presentations and lessons designed for K12 teachers were also posted at this time. Concurrent with this effort a subcommittee review and organized the national teaching standards to show where soils could fit into the overall K12 curriculum. As the website was being developed another subcommittee developed a soils book (Soil! Get the Inside Scoop, 2008) to further compliment the Dig It! exhibit. This was a new endeavor for SSSA having never worked with the non-academic audience in developing a book. Peer-reviews of this book included not only scientist but also students in order to make sure the book was attractive to them. Once the book was published and the website developed it became clear more outreach was needed. SSSA K12 Committee has attended both the National Science Teachers Association (since 2008) the USA Science and Engineering Festival (since 2010) with exhibits and workshops. It has cooperated and contributed to the American Geologic Institutes' Earth Science Week materials with brochures and lesson plans and with National Association of Conservation Districts by providing peer-review and distribution of materials. The most recent developments from the committee include a web redesign that is more student and teacher friendly, the development of a peer-review system to publish K12 Lesson Plans, and finally the publication of a new soils

  13. The History of the Soil Science Society of Nigeria

    Science.gov (United States)

    Okechukwu Chude, Victor

    2013-04-01

    The Soil Science Society of Nigeria (SSSN) founded in 1968, is a registered member of the African Soil Science Association, International Union of Soil Science and the Global Soil Partnership. The Society aims at promoting and fostering better understanding of basic and applied Soil Science in Nigeria. The society also strives to enhance the dissemination of knowledge in all aspects of Soil science and shares ideas with National and International Societies through conferences, symposium, lectures, seminars and journal publications. The numerical strength of the society is 600 members (student, ordinary ,life and corporate). The soil science society of Nigeria has provided invaluable services in the formulation of agricultural land and fertilizer use strategies and policies of the country. The existing reconnaissance soil map of Nigeria typifies one of the major professional services rendered to the country by the society and its members. Despite the numerous contributions the society has made to the advancement of soil science in the country, the larger society is not aware of the its existence. This is largely because of our limited soil extension activities to land users due to lack of funds. If the society can attract donor funds, this will go a long way in enhancing the capacity and capability of the society.

  14. The Spanish Society of Soil Science: history and future perspectives

    Science.gov (United States)

    Bellinfante, Nicolás; Arbelo, Dolores; Rodríguez, Antonio

    2013-04-01

    The Spanish Society of Soil Science (SECS; http://www.secs.com.es) has reached sixty years of existence, after being established in 1947 at the Spanish Council for Scientific Research (CSIC) as an initiative of renowned scientists including José María Albareda, Salvador Rivas Goday, Fernando Burriel, Tomás Alvira and others. However, soil studies in Spain began in the first third of XX century, coordinated by Emilio Huguet del Villar, internationally outstanding researcher who was the President of the Subcommittee for the Mediterranean Region of the International Society Soil Science, with the activities of the Forest Research Institute and the Institute of Mediterranean Soils of the Regional Catalonian Government. With the creation of the CSIC and the Spanish Institute of Soil Science and Agrobiology, directed by José M. Albareda, Soil Science research was promoted in all scientific fields and through the Spanish geography. The SECS is considered equally heiress of previously existing organizations, in particular the Spanish Commission of Soil Science and Phytogeography, created in 1925, which was the Spanish voice in various international organizations and meetings related with Soil Science. After these years, Soil Science has developed considerably, showing a great diversification of fields of study and research and its applications, as well as a growing social awareness of the soil degradation processes and the need to implement measures to protect natural resources nonrenewable on a human scale, and an increasing role of universities and CSIC in Soil Science research. Currently, the SECS is a scientific organization dedicated to promoting the study, knowledge, research and protection of soil resources; spread the scientific importance of soil functions as nonrenewable natural resource in society and promote the interest in its protection; and preserve the knowledge about soils, their management and use, both from productive and environmental perspectives

  15. Teaching with Moodle in Soil Science

    Science.gov (United States)

    Roca, Núria

    2014-05-01

    Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil is integral to many ecological and social systems and it holds potential solutions for many of the world's economic and scientific problems as climate change or scarcity of food and water. The teaching of Soil Science, as a natural science in its own right, requires principles that reflect the unique features and behaviour of soil and the practices of soil scientists. It could be argued that a unique set of teaching practices applies to Soil Science; however specific teaching practices are scarce in literature. The present work was triggered by the need to develop new techniques of teaching to speed up the learning process and to experiment with new methods of teaching. For such, it is necessary to adopt virtual learning environment to new learning requirements regarding Soil Science. This paper proposes a set of e-teaching techniques (as questionnaires, chats as well as forums) introduced in Moodle virtual learning Environment in order to increase student motivation and interest in Soil Science. Such technologies can be used to: a)Increase the amount of time a teacher allots for student reflection after asking a question and before a student responds (wait-time). This practice increases the quantity and quality of students' answers. The students give longer responses, students give more evidence for their ideas and conclusions, students speculate and hypothesize more and more students participated in responding. Furthermore, students ask more questions and talk more to other students. b)Improve active learning, an essential paradigm in education. In contrast to learning-before-doing, we propose to focus on learning-in-doing, a model where learners are increasingly involved in the authentic practices of communities through learning conversations and activities involving expert

  16. The rise of information science: a changing landscape for soil science

    Science.gov (United States)

    Roudier, Pierre; Ritchie, Alistair; Hedley, Carolyn; Medyckyj-Scott, David

    2015-07-01

    The last 15 years have seen the rapid development of a wide range of information technologies. Those developments have been impacting all fields of science, at every step of the scientific method: data collection, data analysis, inference, science communication and outreach. The rate at which data is being generated is increasing exponentially, giving opportunities to improve our understanding of soils. Parallel developments in computing hardware and methods, such as machine learning, open ways to not only harness the '”data deluge”, but also offer a new way to generate knowledge. Finally, emerging data and information delivery protocols are leveraging the outreach power of the World Wide Web to disseminate scientific data and information, and increase their use and understanding outside the boundaries of a given scientific field. However, the nature of this data is mostly new to soil science, and requires adaptation to its diversity and volume. In particular, the integration of the significant amount of legacy soil data collected throughout decades of soil science can be problematic when all necessary metadata is not available. Likewise, knowledge accumulated by our scientific field needs to be acknowledged by - rather than opposed to - numerical methods. While the introduction of this set of emerging technologies is enabling soil science from different points of view, its successful implementation depends on the ability of soil scientists to act as knowledge brokers and support numerical methods.

  17. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals

    Science.gov (United States)

    Keesstra, Saskia D.; Bouma, Johan; Wallinga, Jakob; Tittonell, Pablo; Smith, Pete; Cerdà, Artemi; Montanarella, Luca; Quinton, John N.; Pachepsky, Yakov; van der Putten, Wim H.; Bardgett, Richard D.; Moolenaar, Simon; Mol, Gerben; Jansen, Boris; Fresco, Louise O.

    2016-04-01

    In this forum paper we discuss how soil scientists can help to reach the recently adopted UN Sustainable Development Goals (SDGs) in the most effective manner. Soil science, as a land-related discipline, has important links to several of the SDGs, which are demonstrated through the functions of soils and the ecosystem services that are linked to those functions (see graphical abstract in the Supplement). We explore and discuss how soil scientists can rise to the challenge both internally, in terms of our procedures and practices, and externally, in terms of our relations with colleague scientists in other disciplines, diverse groups of stakeholders and the policy arena. To meet these goals we recommend the following steps to be taken by the soil science community as a whole: (i) embrace the UN SDGs, as they provide a platform that allows soil science to demonstrate its relevance for realizing a sustainable society by 2030; (ii) show the specific value of soil science: research should explicitly show how using modern soil information can improve the results of inter- and transdisciplinary studies on SDGs related to food security, water scarcity, climate change, biodiversity loss and health threats; (iii) take leadership in overarching system analysis of ecosystems, as soils and soil scientists have an integrated nature and this places soil scientists in a unique position; (iii) raise awareness of soil organic matter as a key attribute of soils to illustrate its importance for soil functions and ecosystem services; (iv) improve the transfer of knowledge through knowledge brokers with a soil background; (v) start at the basis: educational programmes are needed at all levels, starting in primary schools, and emphasizing practical, down-to-earth examples; (vi) facilitate communication with the policy arena by framing research in terms that resonate with politicians in terms of the policy cycle or by considering drivers, pressures and responses affecting impacts of land

  18. Scientific support, soil information and education provided by the Austrian Soil Science Society

    Science.gov (United States)

    Huber, Sigbert; Baumgarten, Andreas; Birli, Barbara; Englisch, Michael; Tulipan, Monika; Zechmeister-Boltenstern, Sophie

    2015-04-01

    The Austrian Soil Science Society (ASSS), founded in 1954, is a non-profit organisation aiming at furthering all branches of soil science in Austria. The ASSS provides information on the current state of soil research in Austria and abroad. It organizes annual conferences for scientists from soil and related sciences to exchange their recent studies and offers a journal for scientific publications. Annually, ASSS awards the Kubiena Research Prize for excellent scientific studies provided by young scientists. In order to conserve and improve soil science in the field, excursions are organized, also in cooperation with other scientific organisations. Due to well-established contacts with soil scientists and soil science societies in many countries, the ASSS is able to provide its members with information about the most recent developments in the field of soil science. This contributes to a broadening of the current scientific knowledge on soils. The ASSS also co-operates in the organisation of excursions and meetings with neighbouring countries. Several members of the ASSS teach soil science at various Austrian universities. More detail on said conferences, excursions, publications and awards will be given in the presentation. Beside its own scientific journal, published once or twice a year, and special editions such as guidebooks for soil classification, the ASSS runs a website providing information on the Society, its activities, meetings, publications, awards and projects. Together with the Environment Agency Austria the ASSS runs a soil platform on the internet. It is accessible for the public and thus informs society about soil issues. This platform offers a calendar with national and international soil events, contacts of soil related organisations and networks, information on national projects and publications. The society has access to products, information material and information on educational courses. Last but not least information on specific soil

  19. Development of soil taxation and soil classification as furthered by the Austrian Soil Science Society

    Science.gov (United States)

    Baumgarten, Andreas

    2013-04-01

    Soil taxation and soil classification are important drivers of soil science in Austria. However, the tasks are quite different: whereas soil taxation aims at the evaluation of the productivity potential of the soil, soil classification focusses on the natural development and - especially nowadays - on functionality of the soil. Since the foundation of the Austrian Soil Science Society (ASSS), representatives both directions of the description of the soil have been involved in the common actions of the society. In the first years it was a main target to improve and standardize field descriptions of the soil. Although both systems differ in the general layout, the experts should comply with identical approaches. According to this work, a lot of effort has been put into the standardization of the soil classification system, thus ensuring a common basis. The development, state of the art and further development of both classification and taxation systems initiated and carried out by the ASSS will be shown.

  20. The academic majors of students taking American soil science classes: 2004-2005 to 2013-2014 academic years

    Science.gov (United States)

    Brevik, Eric C.; Vaughan, Karen L.; Parikh, Sanjai J.; Dolliver, Holly; Lindbo, David; Steffan, Joshua J.; Weindorf, David; McDaniel, Paul; Mbila, Monday; Edinger-Marshall, Susan

    2017-04-01

    Many papers have been written in recent years discussing the interdisciplinary and transdisciplinary aspects of soil science. Therefore, it would make sense that soil science courses would be taken by students in a wide array of academic majors. To investigate this, we collected data from eight different American universities on the declared academic majors of students enrolled in soil science courses over a 10 year time period (2004-2005 to 2013-2014 academic years). Data was collected for seven different classes taught at the undergraduate level: introduction to soil science, soil fertility, soil management, pedology, soil biology/microbiology, soil chemistry, and soil physics. Overall trends and trends for each class were evaluated. Generally, environmental science and crop science/horticulture/agronomy students were enrolled in soil science courses in the greatest numbers. Environmental science and engineering students showed rapid increases in enrollment over the 10 years of the study, while the number of crop science/ horticulture/ agronomy students declined. In the introduction to soil science classes, environmental science and crop science/ horticulture/ agronomy students were enrolled in the greatest numbers, while declared soil science majors only made up 6.6% of the average enrollment. The highest enrollments in soil fertility were crop science/ horticulture/ agronomy students and other agricultural students (all agricultural majors except crop science, horticulture, agronomy, or soil science). In both the soil management and pedology classes, environmental science and other agricultural students were the largest groups enrolled. Other agricultural students and students from other majors (all majors not otherwise expressly investigated) were the largest enrolled groups in soil biology/microbiology courses, and environmental science and soil science students were the largest enrolled groups in soil chemistry classes. Soil physics was the only class

  1. A multimedia and interactive approach to teach soil science

    Science.gov (United States)

    Badía-Villas, D.; Martí-Dalmau, C.; Iñiguez-Remón, E.

    2012-04-01

    Soil Science is a discipline concerned with a material that has unique features and behaviours (Churchman, 2010). Thus, teachers of Soil Science need to be experienced with Soil Science practices and must appreciate the complexities and relationships inherent within the discipline (Field et al, 2011). But when soil science had to be taught not by specialists, for instance in the introductory courses of earth and environmental sciences Degrees or in Secondary School, adequate material cannot be found. For this reason, multimedia and interactive programmes have been developed and showed here. EDAFOS is an e-learning resource that provides a comprehensive review of the fundamental concepts on soil science and reveals it as the living skin of planet Earth (European Commission, 2006). This programme is available via website (www.cienciadelsuelo.es) both in Spanish and, more recently, also in English. Edafos is a programme with different modules, which after outlining the study of soil components goes on to examine the main factors and processes of soil genesis explaining the mechanisms of soil processes. By the use of animations, the vital functions of soil are explained. The program ends with a section of multiple-choice exercises with self-assessment. To complement this program, virtual visits to the field are showed in the program iARASOL (www.suelosdearagon.es), in a time when field trips are gradually diminishing due to insufficiency in time and budget, as well as safety concerns (Çaliskan, 2011). In this case, the objective of iARASOL is to set out that soil vary from place to place not randomly, but in a systematic way, according to landscape units; therefore, graduates can classify the soils using the WRB system (IUSS, 2007). It presents diverse types of data and images instantly, from a variety of viewpoints, at many different scales and display non-visual information in the field. Both programs provide an additional source of information to supplement

  2. A general overview of the history of soil science

    Science.gov (United States)

    Brevik, Eric C.; Cerdà, Artemi

    2017-04-01

    Human knowledge of soil has come a long way since agriculture began about 9000 BCE, when finding the best soils to grow crops in was largely based on a trial and error approach. Many innovations to manage and conserve soil, such as the plow, irrigation techniques, terraces, contour tillage, and even the engineering of artificial soils, were developed between 9000 BCE and 1500 CE. Scientific methods began to be employed in the study of soils during the Renaissance and many famous scientists addressed soil issues, but soil science did not evolve into an independent scientific field of study until the 1880s. In the early days of the study of soil as a science, soil survey activities provided one of the major means of advancing the field. As the 20th century progressed, advances in soil biology, chemistry, genesis, management, and physics allowed the use of soil information to expand beyond agriculture to environmental issues, human health, land use planning, and many other areas. The development of soil history as a subfield of the discipline in the latter part of the 20th century has promise to help advance soil science through a better understanding of how we have arrived at the major theories that shape the modern study of soil science.

  3. Proceedings of the 44. annual Alberta Soil Science Workshop

    International Nuclear Information System (INIS)

    Hao, X.; Shaw, C.

    2007-01-01

    The Alberta Soil Science Workshop is held annually in order to provide a forum for the discussion of issues related to soil sciences in Alberta. Attendees at the conference discussed a wide range of subjects related to soil sciences and measuring the environmental impacts of oil and gas activities in the province. The role of soil science in sustainable forest management was also examined. Issues related to acid deposition were reviewed, and recent developments in soil chemistry analysis for agricultural practices were discussed. Other topics included wildland soil analysis methods; the long-term impacts of sulphate deposition from industrial activities; and water chemistry in soils, lakes and river in the Boreal regions. Projects initiated to assess cumulative land use impacts on rangeland ecosystems were outlined along with a review of tools developed to optimize soil analysis techniques. One of the 46 presentations featured at this conference has been catalogued separately for inclusion in this database. refs., tabs., figs

  4. Expanding the horizons of soil science to the public

    Science.gov (United States)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan

    2015-04-01

    Soils are critical to all life on the planet yet most individuals treat soil like dirt. As soil scientist we have long recognized this and have struggled to find ways to communicate the importance of soils to the public. The goal is not purely altruistic as we recognize that society funds or research and provides the workforce in soils that we need to continue to gain knowledge and expertise in soil science. In 2006 the Soil Science Society of America took a bold move and created its K12 Committee in part to compliment the Dig It! The Secrets of Soil exhibit that opened in July 2008 at the Smithsonian's Institution's Nation Museum of Natural History (of which SSS was a founding sponsor). The committee's work began quickly with a website designed to provide resources for K12 teachers (primary and school teachers). The first accomplishments included reviewing and posting links to web based information already available to teachers. These links were sorted by subject and grade level to make it easier for teachers to navigate the web and find what they needed quickly. Several presentations and lessons designed for K12 teachers were also posted at this time. Concurrent with this effort a subcommittee review and organized the national teaching standards to show where soils could fit into the overall K12 curriculum. As the website was being developed another subcommittee developed a soils book (Soil! Get the Inside Scoop, 2008) to further compliment the Dig It! exhibit. This was a new endeavor for SSSA having never worked with the non-academic audience in developing a book. Peer-reviews of this book included not only scientist but also students in order to make sure the book was attractive to them. Once the book was published and the website developed it became clear more outreach was needed. SSSA K12 Committee has attended both the National Science Teachers Association (since 2008) the USA Science and Engineering Festival (since 2010) with exhibits and workshops. It has

  5. Teaching Soil Science in Primary and Secondary Schools

    Science.gov (United States)

    Levine, Elissa R.

    1998-01-01

    Earth's thin layer of soil is a fragile resource, made up of minerals, organic materials, air, water, and billions of living organisms. Soils plays a variety of critical roles that sustain life on Earth. If we think about soil, we tend to see it first as the source of most of the food we eat and the fibers we use, such as wood and cotton. Few students realize that soils also provide the key ingredients to many of the medicines (including antibiotics), cosmetics, and dyes that we use. Fewer still understand the importance of soils in integrating, controlling, and regulating the movement of air, water, materials, and energy between the hydrosphere, lithosphere, atmosphere, and biosphere. Because soil sustains life, it offers both a context and a natural laboratory for investigating these interactions. The enclosed poster, which integrates soil profiles with typical landscapes in which soils form, can also help students explore the interrelationships of Earth systems and gain an understanding of our soil resources. The poster, produced jointly by the American Geological Institute and the Soil Science Society of America, aims to increase awareness of the importance of soil, as does the GLOBE (Global Learning and Observations To Benefit the Environment) Program. Vice President Al Gore instituted the GLOBE Program on Earth Day of 1993 to increase environmental awareness of individuals throughout the world, contribute to a better scientific understanding of the Earth, and help all students reach higher levels of achievement in science and mathematics. GLOBE functions as a partnership between scientists, students, and teachers in which scientists design protocols for specific measurements they need for their research that can be performed by K-12 students. Teachers are trained in the GLOBE protocols and teach them to their students. Students make the measurements, enter data via the Internet to a central data archive, and the data becomes available to scientists and the

  6. Framing a future for soil science education.

    Science.gov (United States)

    Field, Damien

    2017-04-01

    The emerging concept of Global Soil Security highlights the need to have a renewed education framework that addresses the needs of those who want to; 1) know soil, 2) know of soil, and/or 3) be aware of soil. Those who know soil are soil science discipline experts and are concerned with soil as an object of study. With their discipline expertise focusing on what soil's are capable of they would be brokers of soil knowledge to those who know of soil. The connection with soil by the those in the second group focuses on the soil's utility and are responsible for managing the functionality and condition of the soil, the obvious example are farmers and agronomists. Reconnecting society with soil illustrates those who are members of the third group, i.e. those who are aware of soil. This is predicated on concepts of 'care' and is founded in the notion of beauty and utility. The utility is concerned with soil providing good Quality, clean food, or a source of pharmaceuticals. Soil also provides a place for recreation and those aware of soil know who this contributes to human health. The teaching-research-industry-learning (TRIL) nexus has been used to develop a framework for the learning and teaching of soil science applicable to a range of recipients, particularly campus-based students and practicing farm advisors. Consultation with academics, industry and professionals, by means of online (Delphi Study) and face-to-face forums, developed a heavily content-rich core body of knowledge (CBoK) relevant to industry, satisfying those who; know, and know of soil. Integrating the multidisciplinary approach in soil science teaching is a future aspiration, and will enable the development of curriculum that incorporates those who 'care' for soil. In the interim the application of the TRIL model allows the development of a learning framework more suited to real word needs. The development of a learning framework able to meet industry needs includes authentic complex scenarios that

  7. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  8. Careers in Science: Being a Soil Scientist

    Science.gov (United States)

    Bryce, Alisa

    2015-01-01

    Being a soil scientist is a fascinating and certainly diverse career, which can indeed involve working in a laboratory or diagnosing sick orange trees. However it often involves much, much more. In 2015, as part of the United Nations' "International Year of Soils," Soil Science Australia's (SSA) "Soils in Schools" program…

  9. A Brief History of the Soil Science Society of America

    Science.gov (United States)

    Brevik, Eric C.

    2013-04-01

    The Soil Science Society of America (SSSA) was officially born on November 18, 1936 at the Mayflower Hotel in Washington, D.C. with Richard Bradfield as the first President. SSSA was created from the merger of the American Soil Survey Association and the Soils Section of American Society of Agronomy (ASA). Six sections were established: 1) physics, 2) chemistry, 3) microbiology, 4) fertility, 5) morphology, and 6) technology, and total membership was less than 200. The first issue of SSSA Journal, then called SSSA Proceedings, published 87 items totaling 526 pages. The first recorded bank balance for SSSA was at the end of the 1937-38 fiscal year, and showed the Society to be worth 1,300.03. The Soils Section of ASA became the official American section of the International Society of Soil Science in 1934, and the new SSSA inherited that distinction which it retains to this day. SSSA has grown significantly since those early days. The original six sections have grown to 11 divisions, and some of those divisions have changed their names to reflect changes occurring within soil science. For example, the original section 5, morphology, is now Division S05 - Pedology after spending many years under other names such as Division V - Soil Classification and Division S-5 - Soil Genesis, Morphology, and Classification. SSSA was incorporated in the State of Wisconsin, USA on 22 January, 1952. Several awards have been developed to recognize achievement in the field of soil science, including the SSSA Presidential Award, Don and Betty Kirkham Soil Physics Award, Emil Truog Soil Science Award, International Soil Science Award, Irrometer Professional Certification Service Award, L.R. Ahuja Ag Systems Modeling Award, Marion L. and Chrystie M. Jackson Soil Science Award, Soil Science Applied Research Award, Soil Science Distinguished Service Award, Soil Science Education Award, Soil Science Industry and Professional Leadership Award, Soil Science Research Award, and SSSA Early

  10. Individual, country, and journal self-citation in soil science

    NARCIS (Netherlands)

    Minasny, B.; Hartemink, A.E.; McBratney, A.

    2010-01-01

    Self-citation is common practice in most sciences but it differs between disciplines, countries and journals. Here we report on self-citation in soil science. We investigated citations in the major soil science journals and conducted an analysis on a country basis and for the subdiscipline of

  11. Soil Science in Space: Thinking Way Outside the Box

    Science.gov (United States)

    Ming, D. W.

    2016-01-01

    Mars is a perfect laboratory to reconsider the future of pedology across the universe. By investigating the soils and geology through our Curiosity and further endeavors, we find ourselves able to learn about the past, present, and possibly the future. Imagine what we could learn about the early Earth if we could have explored it without vegetation and clouds in the way. The tools and techniques that are used to probe the Martian soil can teach us about exploring the soils on Earth. Although many may feel that soil science has learned all that it can about the soils on Earth, we know differently. Deciding what the most important things to know about Martian soils can help us focus on the fundamentals of soil science on Earth. Our soil science knowledge and experience on Earth can help us learn more about the angry red planet. Why is it so angry with so many fascinating secrets it can tell?

  12. EFFECT OF DIFFERENT LEVELS AGROECOLOGICAL LOADS ON BIOCHEMICAL CHARACTERISTICS OF SOIL

    Directory of Open Access Journals (Sweden)

    A. V. Shchur

    2016-01-01

    Full Text Available Aim. To study the effect of different levels of agri-environmental loads on the enzymatic activity of the soil.Methods. Isolation of soil fauna was conducted by thermogradient. Ecological characteristics of soil biota community was determined by ecological indices. The enzymatic activity of soil under different crops and at different levels of agri-environmental loads in our experiments was determined by methods proven in the laboratory soil enzymology Institute of Experimental Botany name V.F. Kuprevich and Belorussian Research Institute for Soil Science and Agricultural Chemistry.Results. Community soil biota is polydominant character, as evidenced by the values of environmental indices. It does not set a significant impact on the community agrotechnological loads of soil micro and mesofauna. Absolute figures soil phosphatase activity averaged over all embodiments without recourse formation were higher by 63% compared with plowing. Invertase and catalase activity was much higher in stubble on all variants of the experiment and selection of terms. The content of peroxidase lower under pure steam. The laws have taken place in respect of peroxidase activity, marked for polifenoloksidase activity.Main conclusion. There was no major change in the ecological characteristics of soil biota. In the enzymatic activity of soil influenced by sampling time, fertilizer system, soil tillage methods and cultivated crops.

  13. Soils in art as a teaching tool in soil science

    Science.gov (United States)

    Poch, Rosa M.

    2017-04-01

    The representation of soils in the different artistic expressions occurs much less often than that of other naturalistic scientific disciplines, like botany or zoology, due to the minor perception of soils as a natural body since the humans started to express themselves through art. Nevertheless, painters, writers and even musicians and film directors have been forced to deal with soils in their works, as a component of the landscape and as the main actor of the various soil functions. Even if the artists are not aware of soils in the sense of soil science - a study object - their observation of nature invariably leads to express their properties, the problems due to their misuse or degradation and their management practices. These art works have a great value when teaching soil science to students, because the latter can learn to intepret and go beyond the artist's observation and therefore they can appreciate the perception of soils and soil properties along the history of humankind. Paintings from various periods can be used as exercises, mainly those depicting landscapes or agricultural works. Some examples are Dutch landscape painters, as Brueghel the Young showing detailed soil erosion features; or Wijnants (XVII century) depicting very clear podzols on sand dunes. Also the impressionists (Van Gogh, Cézanne, Gaugin), or the landscapes of the romantic nationalists (XIX- early XX century) show forest or agricultural soils that can be used either to deduce soil forming processes and describe horizons, or to discuss the effectivity of soil management practices (deforestation, burning, plowing, terracing). Also some pieces of literature can be used either for illustrating real soil landscapes and soil-water relationships (Steinbeck's "The Grapes of Wrath") or in case of fiction literature, as exercice for soil mapping (Tolkien's Middle Earth in "The Hobbit" and "The Lord of the Rings"). Films as "The field" (Jim Sheridan, 1990) or "Corn Island" (George Ovasvili

  14. Developments and departures in the philosophy of soil science

    Science.gov (United States)

    Traditional soil science curriculums provide comprehensive instruction on soil properties, soil classification, and the physical, chemical, and biological processes that occur in soils. This reductionist perspective is sometimes balanced with a more holistic perspective that focuses on soils as natu...

  15. Soil 4 Youth: Charting New Territory in Canadian High School Soil Science Education

    Science.gov (United States)

    Krzic, Maja; Wilson, Julie; Basiliko, Nathan; Bedard-Haughn, Angela; Humphreys, Elyn; Dyanatkar, Saeed; Hazlett, Paul; Strivelli, Rachel; Crowley, Chris; Dampier, Lesley

    2014-01-01

    As global issues continue to place increasing demands on soil resources, the need to provide soil science education to the next generation of soil scientists and the general public is becoming more imminent. In many countries around the world, including Canada, soil is either not included in the high school curriculum or it is not covered in…

  16. An Infiltration Exercise for Introductory Soil Science

    Science.gov (United States)

    Barbarick, K. A.; Ippolito, J. A.; Butters, G.; Sorge, G. M.

    2005-01-01

    One of the largest challenges in teaching introductory soil science is explaining the dynamics of soil infiltration. To aid students in understanding the concept and to further engage them in active learning in the soils laboratory course, we developed an exercise using Decagon Mini-Disk Infiltrometers with a tension head (h[subscript o]) of 2 cm.…

  17. Crop and Soil Science. A Curriculum Guide for Idaho Vocational Agriculture Instructors. Volume 1 and Volume 2.

    Science.gov (United States)

    Ledington, Richard L.

    The 24 units that comprise this crop and soil science curriculum guide are not geared to a particular age level and must be adapted to the students for whom they are used. Units 1 through 6 are general units covering topics common to soil science. Units 7 through 24 are units covering topics common to crop production. Each unit includes objectives…

  18. Abstracts of the 42. Annual Alberta Soil Science Workshop

    International Nuclear Information System (INIS)

    Bullinger, A.

    2005-01-01

    The presentations at this workshop addressed issues regarding soil science, ecosystem management and land reclamation. The challenges facing the petroleum industry regarding anthropogenic impacts on soil ecosystems were discussed along with issues regarding soil fertility, reclamation and conservation. Riparian and forestry issues were also addressed along with land use management practices and the challenge of developing risk based spill management programs. Discussions ranged from soil properties, nutrient losses in soils, fertilization, crop response to fertilization, groundwater flow, the science of carbon and nitrogen cycling and salt transport. The conference featured 76 presentations and poster sessions, of which 11 have been indexed separately for inclusion in this database

  19. A short history of the Australian Society of Soil Science

    Science.gov (United States)

    Bennison, Linda

    2013-04-01

    In 1955 a resolution, "that the Australian Society of Soil Science be inaugurated as from this meeting" was recorded in Melbourne Australia. The following year in Queensland, the first official meeting of the Society took place with a Federal Executive and Presidents from the Australian Capital Territory, New South Wales, Queensland, South Australian and Victorian branches forming the Federal Council. In later years the executive expanded with the addition of the Western Australia branch in 1957, the Riverina Branch in 1962 and most recently the Tasmania Branch in 2008. The objects of the Society were 1) the advancement of soil science and studies therein with particular reference to Australia and 2) to provide a link between soil scientists and kindred bodies within Australia and between them and other similar organisations in other countries. Membership was restricted to persons engaged in the scientific study of the soil and has grown steadily from to 147 members in 1957 to 875 members in 2012. The first issue of the Society newsletter, Soils News, was published in January 1957 and continued to be published twice yearly until 1996. A name change to Profile and an increase to quarterly publication occurred in 1997; circulation remained restricted to members. The Publications Committee in 1968 determined the Publication Series would be the medium for occasional technical papers, reviews and reports but not research papers and in 1962 the Australian Journal of Soil Research was established by CSIRO in response to continued representations from the Society. By 1960 a draft constitution was circulated to, and adopted by members. The first honorary life membership of the Society was awarded to Dr. J A Prescott. Honorary memberships are still awarded for service to the Society and to soil science and are capped at 25. In 1964 the ISSS awarded honorary membership to Dr. Prescott. Now known as IUSS Honorary members other Australians recognised have been EG Hallsworth

  20. Soil science and geology: Connects, disconnects and new opportunities in geoscience education

    Science.gov (United States)

    Landa, E.R.

    2004-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late- twentieth century. The shift in recent decades within both disciplines to greater emphasis on environmental quality issues and a systems approach has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere, and lithosphere, introductory and advanced soil science classes are now being taught in a number of earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface-to-groundwater "critical zone" requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable earth science specialty area for graduate study. Summer internships such as those offered by the National Science Foundation-funded Integrative Graduate Education, Research, and Training (IGERT) programs offer geology undergraduates the opportunity to explore research and career opportunities in soil science.

  1. Trends in Soil Science education: moving from teacher's questioning to student's questioning

    Science.gov (United States)

    Roca, Núria

    2017-04-01

    Soil science has suffered from communication problems within its own discipline, with other disciplines (except perhaps agronomy) and with the general public. Prof. Dennis Greenland wrote the following in the early 1990s: "…soil scientists have also been frustrated as their advice has gone apparently unheeded. This may be because the advice is couched in terms more easily understood by other soil scientists than by politicians and economists who control the disposition of land. If soil science is to serve society fully it is essential that its arguments are presented in terms readily understood by all and with both scientific and economic rigor so that they are not easily refuted". Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil sciences must integrate different knowledge of many disciplines. How should one go about the teaching and learning of a subject like soil science? This is an ever present question resident in the mind of a soil science teacher who knows that students will find soil science an inherently difficult subject to understand. Therefore, Soil Science cannot be taught in the same way. This paper proposes a mural construction that allows to understand soil formation, soil evolution and soil distribution. This experience has been realized with secondary teachers to offer tools for active learning methodologies. Therefore, this teaching project starts with a box and a global soil map distribution in a wall mural. The box contains many cards with soil properties, soil factors, soil process, soils orders and different natural soil photos as the pieces of a big puzzle. All these pieces will be arranged in the wall mural. These environments imply a new perspective of teaching: moving from a teacher-centered teaching to a student-centered teaching. In contrast to learning-before-doing— the model of most

  2. Historical Highlights From 75 Years of the Soil Science Society of America

    Science.gov (United States)

    Brevik, E. C.

    2012-04-01

    From its official founding on November 18, 1936 to the present day, the Soil Science Society of America (SSSA) has developed a rich and diverse history. SSSA began with 190 members grouped into six sections: 1) physics, 2) chemistry, 3) microbiology, 4) fertility, 5) morphology, and 6) technology. Today SSSA has over 6,000 members who can choose from any of 11 divisions, S1 Soil Physics, S2 Soil Chemistry, S3 Soil Biology and Biochemistry, S4 Soil Fertility and Plant Nutrition, S5 Pedology, S6 Soil and Water Management and Conservation, S7 Forest, Range, and Wildland Soils, S8 Nutrient Management and Soil and Plant Analysis, S9 Soil Mineralogy, S10 Wetland Soils, and S11 Soils and Environmental Quality to represent their primary area(s) of interest. The Society has also gone from being largely agriculturally focused to an eclectic mix of individuals with interests in agriculture, the environment, earth sciences, human interactions, and other diverse areas. At its founding, SSSA sponsored one publication, the Soil Science Society of America Proceedings. Today, SSSA sponsors its descendent, the Soil Science Society of America Journal, as well as Vadose Zone Journal, the Journal of Environmental Quality, Soil Survey Horizons, and the Journal of Natural Resources and Life Science Education. In short, SSSA's history has been one of continued growth over the last 75 years. The future holds many challenges for SSSA and the field of soil science. There are increasing calls to meet with groups other than or in addition to the American Society of Agronomy and the Crop Science Society of America, groups like the Geological Society of America and the Ecological Society of America. Members in SSSA now work in university departments, government agencies, and businesses representing the fields of biology, geology, geography, and archeology, among others, in addition to the traditional agricultural sector. How SSSA handles this diversification of the field and its membership will

  3. Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool

    Science.gov (United States)

    Schmid, Brian M.; Manu, Andrew; Norton, Amy E.

    2009-01-01

    Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…

  4. Soil Erosion: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…

  5. 1rst Congress of the Cuban Society of Soil Sciences

    International Nuclear Information System (INIS)

    1988-01-01

    Abstracts from different works presented at the 1st Congress of the Cuban Society of Soil Sciences (Havana, December 1988) are contained in this book. Works have been performed on soil genesis, classification and cartography; soil erosion, conservation and improvement; agrochemicstry; soil physics and technology, and biology of soils

  6. The EU Dimension to Soil Science in Schools

    Science.gov (United States)

    Johnson, Sue

    2012-01-01

    The EU as a context for science lessons may be given scant attention but EU decision-making is a vital factor in everyday life. Lessons on the emergence of soil science with Charles Darwin's simple scientific experiments can be linked with competence through action, inclusion and argumentations in science lessons. Decisions about an EU Soil…

  7. Brazilian Soil Science Society: brief history, achievements and challenges for the near future

    Science.gov (United States)

    Muggler, Cristine Carole; Oliveira Camargo, Flávio A.; Bezerra de Oliveira, Luiz; Signorelli de Farias, Gonçalo

    2013-04-01

    The Brazilian Soil Science Society (SBCS) is one of the oldest scientific societies in Brazil. It was created in October 1947 during the 1st Brazilian Meeting of Soil Science held at the headquarters of the Agricultural Chemistry Institute of Rio de Janeiro, at present the Soils Institute of the Brazilian Agricultural Research Centre. Its origin lies within the Interamerican Conference of Agriculture, Caracas, 1945, the 2nd Pan American Congress of Mining and Geology, Petropolis, Rio de Janeiro, 1946 and the 5th Brazilian Congress of Chemistry, Porto Alegre, 1947. Its first president was Álvaro Barcelos Fagundes, who was the only Brazilian participant at the 1st International Congress of Soil Science and Transcontinental Excursion held in United States of America, in 1927. At that time he was engaged in research work at the New Jersey Agricultural Experiment Station, at the Rutgers University where he did a doctorate under the guidance of Professor Selman Waksman. The society started with 47 members and presently has nearly 900 members. In its first phase the Brazilian Soil Science Society was housed at the Agricultural Chemistry Institute in Rio de Janeiro and its main activity was the biannual Brazilian Congress of Soil Science. In 1975 its headquarters moved to the Agronomic Institute of Campinas with the creation of its executive board and the start of publication of the Brazilian Journal of Soil Science (1977) as well as the society bulletin (1976). In 1997 its executive office moved to the Soils Department at the Federal University of Viçosa. Nowadays it has a structure similar to the one from the IUSS: the society is organized in four divisions (Soil in space and time, Soils properties and processes, Soil use and management and Soil, environment and society) which encompass 14 technical commissions and eight State or Regional nuclei. The Brazilian Congresses of Soil Science happen without interruption since 1947. The first one had had 72 participants that

  8. Experimental stations as a tool to teach soil science at the University of Valencia

    Science.gov (United States)

    Cerdà, Artemi

    2010-05-01

    This paper shows the strategies used at the University of Valencia (Department of Geography. Soil Erosion and Degradation Research Group) to teach soil science at the Geography and Enviromental Science Degrees. The use of the Montesa and El Teularet research stations contribute with a better knowledge on soil science for the students as they can see the measurements carried out in the field. Students visit the stations and contribute to measurements and sampling every season. The use of meteorological stations, erosion plots, soil moisture and soil temperatures probes, and sampling give the students the chances to understand the theoretical approach they use to have. This presentation will show how the students evolve, and how their knowledge in soil science is improved.

  9. Does Formative Assessment Improve Student Learning and Performance in Soil Science?

    Science.gov (United States)

    Kopittke, Peter M.; Wehr, J. Bernhard; Menzies, Neal W.

    2012-01-01

    Soil science students are required to apply knowledge from a range of disciplines to unfamiliar scenarios to solve complex problems. To encourage deep learning (with student performance an indicator of learning), a formative assessment exercise was introduced to a second-year soil science subject. For the formative assessment exercise, students…

  10. Level of heavy metals in soils and lemon grass in Jos, Bukuru and ...

    African Journals Online (AJOL)

    Level of heavy metals in soils and lemon grass in Jos, Bukuru and environs, Nigeria. SJ Salami, EA Akande, DM Zachariah. Abstract. No Abstract. Global Journal of Pure and Applied Sciences Vol. 13 (2) 2007: pp. 193-196. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT ...

  11. The contribution of Japanese Soil Science Societies to scientific knowledge, education and sustainability: Good practices in the International Year of Soils 2015 towards the International Decade of Soils.

    Science.gov (United States)

    Kosaki, Takashi; Matoh, Toru; Inubushi, Kazuyuki; Sakurai, Katsutoshi

    2017-04-01

    The soil science community in Japan includes ca. 15,000 individuals from a variety of sectors, i.e. research, education, extension, business, national and local government, practitioners, non-governmental or non-profit organizations, etc., who have mostly (multi-)membership(s) in some of the academic societies. Among those societies, the Japanese Society of Soil Science and Plant Nutrition, the Japanese Society of Soil Microbiology and the Japanese Society of Pedology played a leading role in the promotion of the International Year of Soils 2015. The activities, many of which were jointly organized and executed by the above three, can be summarized as follows; Scientific symposiums/workshops not only within the societies but together with other disciplines such as geosciences, quaternary research, biogeochemistry, ecology, biosciences, geotechnology, etc. in national as well as international gatherings, Symposiums, (mobile) exhibitions, photo contests, science cafes, talk shows, field days, agricultural fairs, edutainment programs for school children, etc. for promoting the public awareness of soil and soil science, Publication of the books and booklets on the topics of soils, soil science, soil and environment (and/or food, life, human security, etc.), targeting the moderately educated public, Articles in selected newspapers, Distribution or sale of the novelty/memorial goods and items, e.g. soil globe, logo stickers, specially brewed Sake wines, etc. Translation of "Vienna Soil Declaration" of the IUSS into Japanese language and its distribution to the public, and Scientific and action proposal and its international dispatch of "The need to reinforce soil science research and the information basis to respond to both gradual and sudden changes in our environment" together with the Science Council of Japan. Scientific forums and gatherings as symposiums and workshops with other disciplines were successful and satisfied by most of the participants. Those for the

  12. Experiential learning in soil science: Use of an augmented reality sandbox

    Science.gov (United States)

    Vaughan, Karen; Vaughan, Robert; Seeley, Janel; Brevik, Eric

    2017-04-01

    It is known widely that greater learning occurs when students are active participants. Novel technologies allow instructors the opportunity to create interactive activities for undergraduate students to gain comprehension of complex landscape processes. We incorporated the use of an Augmented Reality (AR) Sandbox in the Introductory Soil Science course at the University of Wyoming to facilitate an experiential learning experience in pedology. The AR Sandbox was developed by researchers at the University of California, Davis as part of a project on informal science education in freshwater lakes and watershed science. It is a hands-on display that allows users to create topography models by shaping sand that is augmented in real-time by a colored elevation maps, topographic contour lines, and simulated water. It uses a 3-dimensional motion sensing camera that detects changes to the distance between the sand surface and the camera sensor. A short-throw projector then displays the elevation model and contour lines in real-time. Undergraduate students enrolled in the Introductory Soil Science course were tasked with creating a virtual landscape and then predicting where particular soils would form on the various landforms. All participants reported a greater comprehension of surface water flow, erosion, and soil formation as a result of this exercise. They provided suggestions for future activities using the AR Sandbox including its incorporation into lessons of watershed hydrology, land management, soil water, and soil genesis.

  13. Soil and art: the Spanish Society of Soil Science calendar for 2016

    Science.gov (United States)

    Mataix-Solera, Jorge; Poch, Rosa M.; Díaz-Fierros, Francisco; Pérez-Moreira, Roxelio; Asins, Sabina; Porta, Jaume; Cortés, Amparo; Badía, David; Del Moral, Fernando

    2017-04-01

    The Spanish Society of Soil Science (SECS: www.secs.com.es) is preparing since 2009 a calendar dealing with a topic chosen by its members, with the main aim to disseminate the importance of the soil to the society. In this contribution, we want to show the calendar 2016, developed during 2015, (International Year of Soils) dedicated to soil and art. We chose, for the twelve months of the year, a selection of paintings where soil is present, and where we, as soil scientists, can interpret what the artist observed about the soil or its management. An introduction written by professor F. Díaz-Fierros describes the evolution of different styles in different regions of Western Europe and US, and how soil was reflected in artworks. The selected paintings date from XV century to current times, by autors of different schools of art and very varying styles. The main features shown in these paintings are soil colour, soil structure, horizonation, and even soil profiles that can be classified. Other paintings show ploughing as main land management practice, and also soil conservation practices and the effects of fire as soil degradation. Artworks included in the calendar (in order of appearance): The ploughed field. 1888. Vincent Van Gogh. Zundert, The Netherlands (1853-1869) Los Cigarrales (alrededores de Toledo). Aureliano de Beruete y Moret. ca. 1905. Casa del Museo Goya - Museo de Arte Hispánico. Castres (France) Les Très Riches Heures du Duc de Berry. Miniature. Musée Condé, Bibliothèque, Chantilly (France)(1413-1416). Paul, Jean and Herman de Limbourg The Dunes near Haarlem. 1667. Jan Wijnants. (1632-1684). National Gallery of Ireland, Dublin. Archaeology: Rooted in the Past. 2010. GC Myers, New York, USA (1959) La forêt au sol rouge. 1891. Georges Lacombe, Versalles (1868-1916) Sitges des de la Creu de Ribes. 1892. Santiago Rusiñol. Barcelona (1861-1931). Courtesy of the Colección Carmen Thyssen-Bornemisza (Madrid) De Kruisdraging. 1606. Pieter Brueghel the

  14. Mercury baseline levels in Flemish soils (Belgium)

    International Nuclear Information System (INIS)

    Tack, Filip M.G.; Vanhaesebroeck, Thomas; Verloo, Marc G.; Van Rompaey, Kurt; Ranst, Eric van

    2005-01-01

    It is important to establish contaminant levels that are normally present in soils to provide baseline data for pollution studies. Mercury is a toxic element of concern. This study was aimed at assessing baseline mercury levels in soils in Flanders. In a previous study, mercury contents in soils in Oost-Vlaanderen were found to be significantly above levels reported elsewhere. For the current study, observations were extended over two more provinces, West-Vlaanderen and Antwerpen. Ranges of soil Hg contents were distinctly higher in the province Oost-Vlaanderen (interquartile range from 0.09 to 0.43 mg/kg) than in the other provinces (interquartile ranges from 0.7 to 0.13 and 0.7 to 0.15 mg/kg for West-Vlaanderen and Antwerpen, respectively). The standard threshold method was applied to separate soils containing baseline levels of Hg from the data. Baseline concentrations for Hg were characterised by a median of 0.10 mg Hg/kg dry soil, an interquartile range from 0.07 to 0.14 mg/kg and a 90% percentile value of 0.30 mg/kg. The influence of soil properties such as clay and organic carbon contents, and pH on baseline Hg concentrations was not important. Maps of the spatial distribution of Hg levels showed that the province Oost-Vlaanderen exhibited zones with systematically higher Hg soil contents. This may be related to the former presence of many small-scale industries employing mercury in that region. - Increased mercury levels may reflect human activity

  15. Crossword Puzzles as Learning Tools in Introductory Soil Science

    Science.gov (United States)

    Barbarick, K. A.

    2010-01-01

    Students in introductory courses generally respond favorably to novel approaches to learning. To this end, I developed and used three crossword puzzles in spring and fall 2009 semesters in Introductory Soil Science Laboratory at Colorado State University. The first hypothesis was that crossword puzzles would improve introductory soil science…

  16. Involvement of the European Confederation of the Soil Science Societies in soil protection policy development

    Science.gov (United States)

    Boivin, Pascal

    2017-04-01

    The European Confederation of the Soil Science Societies (ECSSS) was founded not only to organize the Eurosoil congress, but also to continuously support and promote the soil causes in the European area. A work is in progress to define the best way to achieve this goal, with integrating voices of the European structures and networks, and the national societies. One of the major objectives is to develop a modern approach of soil protection, including leading experimentations shared with all the members, and active lobbying. Such an approach requires the buildup of an efficient interface with policy makers, stake holders, engineering and science, which should be concretized in a new the dimension of the Eurosoil congress. This communication will sketch the on-going work, with reviewing the perspectives, conditions, strengths, questions and difficulties identified.

  17. Contribution of soil sciences for recovering from damages by the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Miwa, Eitaro; Miyazaki, Tsuyoshi; Nanzyo, Masami

    2014-01-01

    This symposium was held in September 2013, under the joint hosting of Science Council of Japan, Agricultural Academy of Japan, and Japanese Society of Soil Science and Plant Nutrition, as one of the programs of the Nagoya convention of Japanese Society of Soil Science and Plant Nutrition. The theme was the contribution of soil science to the restoration from the Great East Japan Earthquake and the issues involved in this. As the restoration from the tsunami, the following two topics were presented: 'Situation of Miyagi Prefecture and challenge of soil science', and 'Technological measures for the resumption of farming in tsunami-hit areas in Soma City, Fukushima Prefecture.' As the restoration from the radiation damage caused by Fukushima Daiichi Nuclear Power Station Accident, the following four topics were presented: 'Cooperation between villagers and scholars at Iitate Village; efforts for survey and decontamination with the hands of villagers,' 'Cesium fixation related to on-site soil,' 'Concentration and separation of cesium,' and 'Volume reduction of contaminated soil.' This paper summarizes these six topics of lectures, keynote comments by other specialists and relevant persons, and the atmosphere of the convention on the day. (A.O)

  18. Dialogic and integrated approach to promote soils at different school levels: a Brazilian experience

    Science.gov (United States)

    Muggler, Cristine Carole

    2017-04-01

    From ancient civilizations to present technological societies, soil is the material and immaterial ground of our existence. Soil is essential to life as are water, air and sun light. Nevertheless, it is overlooked and has its functions and importance not known and recognized by people. In formal education and in most school curricula, soil contents are not approached in the same way and intensity other environmental components are. In its essence, soils are an interdisciplinary subject, crossing over different disciplines. It has a great potential as unifying theme that links and synthesizes different contents and areas of knowledge, especially hard sciences as physics, chemistry and biology. Furthermore, soils are familiar and tangible to everyone, making them a meaningful subject that helps to build an efficient learning process. The challenge remains on how to bring such teaching-learning possibilities to formal education at all levels. Soil education deals with the significance of soil to people. What makes soil meaningful? What are the bases for effective learning about soil? The answers are very much related with subjective perceptions and life experiences carried by each individual. Those dimensions have been considered by the pedagogical approach based on Paulo Freire's socio constructivism which considers social inclusion, knowledge building, horizontal learning and collective action. This approach has been applied within the soil (science) education spaces of the Federal University of Viçosa, Minas Gerais, Brazil, both with university students and basic education pupils. At the university an average of 200 students per semester follow a 60 hours Soil Genesis course. With primary and secondary schools the activities are developed through the Soil Education Programme (PES) of the Earth Sciences Museum. In the classes and activities, materials, methods and learning strategies are developed to stimulate involvement, dialogues and exchange of experiences and

  19. Three Simple Hands-On Soil Exercises Extension Professionals Can Incorporate into Natural Sciences Curriculum

    Science.gov (United States)

    Kleinschmidt, Andy

    2011-01-01

    The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…

  20. Early soil knowledge and the birth and development of soil science

    NARCIS (Netherlands)

    Brevik, E.C.; Hartemink, A.E.

    2010-01-01

    Soils knowledge dates to the earliest known practice of agriculture about 11,000 BP Civilizations all around the world showed various levels of soil knowledge by the 4th century AD, including irrigation, the use of terraces to control erosion, various ways of improving soil fertility, and ways to

  1. How to engage undergraduate students in Soil Science: some strategies to enhance their motivation

    Science.gov (United States)

    Zornoza, Raúl; Lozano-García, Beatriz; Acosta, Jose A.; Martínez-Martínez, Silvia; Parras-Alcántara, Luis; Faz, Angel

    2017-04-01

    Teaching soil science can be a challenge in those degrees where students are not familiar with the soil system and do not understand the importance of soil science for their future career. This is the case of students of Biology, Agronomy or Environmental Science, who normally consider soil as a mere substrate for vegetation development, with no interest about how soil determines productivity and quality of terrestrial ecosystems. Thus, students lack of initial motivation to study Soil Science, and just attend lectures and practical lessons as mandatory procedure to get the degree. To engage undergraduate students from Biology, Agronomy and Environmental Sciences in Soil Science, we developed a strategy to enhance their motivation by means of making them participants of the selection of the soils and analyses used for their training. By means of dichotomous keys, students, grouped in pairs, first select the main purpose of their study from different options (land productivity, soil biodiversity, soil fertility, effectiveness of restoration, effect of land use, effect of management, etc). Once objective is decided, we give them some information about sampling strategies, so that they select how soil sampling is going to be performed, and the number of samples to be taken. In terms of the initial objective, they also decide from a given list the properties they should measure. In a practical basis, from the list of selected properties to be measured, professors decide the ones they can really develop in terms of timing, resources and space demand. After that, they are aware about the fact that they have an experimental design developed by them to achieve the goal they meant. Under this perspective, their motivation is enhanced since students are the ones deciding what to study in terms of their personal and professional interests, so that learning is more effective. The negative aspect of this strategy is that it involves many hours of tutorials for the professor

  2. Characterization of Soil Organic Matter in Peat Soil with Different Humification Levels using FTIR

    Science.gov (United States)

    Teong, I. T.; Felix, N. L. L.; Mohd, S.; Sulaeman, A.

    2016-07-01

    Peat soil is defined as an accumulation of the debris and vegetative under the water logging condition. Soil organic matter of peat soil was affected by the environmental, weather, types of vegetative. Peat soil was normally classified based on its level of humification. Humification can be defined as the transformation of numerous group of substances (proteins, carbohydrates, lipids, etc.) and individual molecules present in living organic matter into group of substances with similar properties (humic substances). During the peat transformation process, content of soil organic matter also will change. Hence, that is important to determine out the types of the organic compound. FTIR (Fourier Transform Infrared) is a machine which is used to differential soil organic matter by using infrared. Infrared is a types of low energy which can determine the organic minerals. Hence, FTIR can be suitable as an indicator on its level of humification. The main objective of this study is to identify an optimized method to characterization of the soil organic content in different level of humification. The case study areas which had been chosen for this study are Parit Sulong, Batu Pahat and UCTS, Sibu. Peat soil samples were taken by every 0.5 m depth until it reached the clay layer. However, the soil organic matter in different humification levels is not significant. FTIR is an indicator which is used to determine the types of soil, but it is unable to differentiate the soil organic matter in peat soil FTIR can determine different types of the soil based on different wave length. Generally, soil organic matter was found that it is not significant to the level of humification.

  3. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types

    NARCIS (Netherlands)

    Bai, Z.H.; Li, H.G.; Yang, X.Y.; Zhou, B.K.; Shi, X.J.; Wang, B.R.; Li, D.C.; Shen, J.B.; Chen, Q.; Qin, W.; Oenema, O.; Zhang, F.S.

    2013-01-01

    Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P

  4. Impacts of land leveling on lowland soil physical properties

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2014-02-01

    Full Text Available The practice of land leveling alters the soil surface to create a uniform slope to improve land conditions for the application of all agricultural practices. The aims of this study were to evaluate the impacts of land leveling through the magnitudes, variances and spatial distributions of selected soil physical properties of a lowland area in the State of Rio Grande do Sul, Brazil; the relationships between the magnitude of cuts and/or fills and soil physical properties after the leveling process; and evaluation of the effect of leveling on the spatial distribution of the top of the B horizon in relation to the soil surface. In the 0-0.20 m layer, a 100-point geo-referenced grid covering two taxonomic soil classes was used in assessment of the following soil properties: soil particle density (Pd and bulk density (Bd; total porosity (Tp, macroporosity (Macro and microporosity (Micro; available water capacity (AWC; sand, silt, clay, and dispersed clay in water (Disp clay contents; electrical conductivity (EC; and weighted average diameter of aggregates (WAD. Soil depth to the top of the B horizon was also measured before leveling. The overall effect of leveling on selected soil physical properties was evaluated by paired "t" tests. The effect on the variability of each property was evaluated through the homogeneity of variance test. The thematic maps constructed by kriging or by the inverse of the square of the distances were visually analyzed to evaluate the effect of leveling on the spatial distribution of the properties and of the top of the B horizon in relation to the soil surface. Linear regression models were fitted with the aim of evaluating the relationship between soil properties and the magnitude of cuts and fills. Leveling altered the mean value of several soil properties and the agronomic effect was negative. The mean values of Bd and Disp clay increased and Tp, Macro and Micro, WAD, AWC and EC decreased. Spatial distributions of all

  5. Decontamination by replacing soil and soil cover with deep-level soil in flower beds and vacant places in Northern Fukushima Prefecture

    International Nuclear Information System (INIS)

    Sugiura, Hiroyuki; Kawano, Keisuke; Kayama, Yukihiko; Koube, Nobuyuki

    2012-01-01

    Radioactivity decontamination by replacing soil and soil cover with deep-level soil and soil cover in flower beds and a vacant place in Northern Fukushima Prefecture were studied, which experienced radioactive contamination due to the accident at the TEPCO's Fukushima Daiichi Nuclear Power Plant. Radioactivity counting rate 1 cm above the soil surface after replacing surface soil with uncontaminated deep-level soil decreased to 13.7% of the control in gardens. The concentration of radioactive cesium in the cover soil increased after 132 days; however, it decreased in the old surface soil under the cover soil in flower beds. A 10 cm deep-level soil cover placed by heavy machinery decreased the radiation dose rate to 70.8% of the control and radioactivity counting rate to 24.6% in the vacant place. Replacing the radioactively contaminated surface soil and soil cover with a deep-level soil was a reasonable decontamination method for the garden and vacant place because it is quick, cost effective and labour efficient. (author)

  6. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    Science.gov (United States)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the

  7. Science Curriculum Guide, Level 4.

    Science.gov (United States)

    Newark School District, DE.

    The fourth of four levels in a K-12 science curriculum is outlined. In Level 4 (grades 9-12), science areas include earth science, biology, chemistry, and physics. Six major themes provide the basis for study in all levels (K-12). These are: Change, Continuity, Diversity, Interaction, Limitation, and Organization. In Level 4, all six themes are…

  8. History, achievements, and future challenges of Japanse Society of Soil Science and Plant Nutrition

    Science.gov (United States)

    Kosaki, Takashi

    2013-04-01

    Modern soil science was introduced just after the reformation of Japan in 1867 by Max Fesca, Oskar Kellner and other German teachers together with their Japanese students, who were traced back to Justus von Liebig and thus started studying and teaching soils based on agrogeology and agricultural chemistry. After the German teachers left, the graduates from agricultural colleges formed the Foundation of Agricultural Sciences in 1887, based on which the Society of the Science of Soil and Manure, Japan, was established in 1927. The research, education and extension activities then expanded to Korea, Manchuria and Inner Mongolia as well as Taiwan and Sakhalin in accordance with a military invasion to China and Southeast Asian countries until the end of WWII. After WWII together with the reformation guided by the General Headquarters (GHQ) of the Allied Forces, soils research and educational units increased in number in the universities and governmental institutions. The society started publication of the journal in English, "Soils and Plant Food" in 1955, which was renamed to "Soil Science and Plant Nutrition (SSPN)" in 1961. There formed a variety of discussion groups in the society such as soil microbiology, pedology, clay science, soil physics, plant physiology, and forest environment, which became independent in the 1960s. Economic growth of Japan in the 1970s accomplished self-sufficiency in rice production and extended the range of crop to grow, however, a variety of environmental issues came out. A new division was established in the society for solving soil-related environmental problems. The society became more involved in international activities and hosted a number of international conferences, workshops, etc., the most significant of which was the 14th International Congress of Soil Science at Kyoto in 1990. The society proposed there a regional organization to cope with the unique issues, e.g. improvement of paddy rice cultivation, for Asian countries and

  9. Soil Moisture Active Passive (SMAP) Mission Level 4 Carbon (L4_C) Product Specification Document

    Science.gov (United States)

    Glassy, Joe; Kimball, John S.; Jones, Lucas; Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project.

  10. Developing a Foundation for Constructing New Curricula in Soil, Crop, and Turfgrass Sciences

    Science.gov (United States)

    Jarvis, Holly D.; Collett, Ryan; Wingenbach, Gary; Heilman, James L.; Fowler, Debra

    2012-01-01

    Some soil and crop science university programs undergo curricula revision to maintain relevancy with their profession and/or to attract the best students to such programs. The Department of Soil and Crop Sciences at Texas A&M University completed a thorough data gathering process as part of its revision of the undergraduate curriculum and…

  11. Selected Aspects of Soil Science History in the USA - Prehistory to the 1970s

    Science.gov (United States)

    Brevik, Eric C.; Fenton, Thomas E.; Homburg, Jeffrey A.

    2017-04-01

    Interest in understanding America's soils originated in prehistory with Native Americans. Following European settlement, notable individuals such as Thomas Jefferson and Lewis and Clark made observations of soil resources. Moving into the 1800s, state geological surveys became involved in soil work and E.W. Hilgard started to formulate ideas similar to those that would eventually lead to V.V. Dokuchaev being recognized as the father of modern soil science. However, Hilgard's advanced ideas on soil genesis were not accepted by the wider American soil science community at the time. Moving into the 1900s, the National Cooperative Soil Survey, the first nationally organized detailed soil survey in the world, was founded under the direction of M. Whitney. Initial soil classification ideas were heavily based in geology, but over time Russian ideas of soil genesis and classification moved into the American soil science community, mainly due to the influence of C.F. Marbut. Early American efforts in scientific study of soil erosion and soil fertility were also initiated in the 1910s and university programs to educate soil scientists started. Soil erosion studies took on high priority in the 1930s as the USA was impacted by the Dust Bowl. Soil Taxonomy, one of the most widely utilized soil classification systems in the world, was developed from the 1950s through the 1970s under the guidance of G.D. Smith and with administrative support from C.E. Kellogg. American soil scientists, such as H. Jenny, R.W. Simonson, D.L. Johnson, and D. Watson-Stegner, developed influential models of soil genesis during the 20th Century, and the use of soil information expanded beyond agriculture to include issues such as land-use planning, soil geomorphology, and interactions between soils and human health.

  12. Soil Science and Global Issues

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Sustainable management of soil is integral to any rational approach to addressing global issues of the 21st century. A high quality soil is essential to: i) advancing food and nutritional security, ii) mitigating and adapting to climate change, iii) improving quality and renewability of water, iv) enriching biodiversity, v) producing biofuel feedstocks for reducing dependence on fossil fuel, and vi) providing cultural, aesthetical and recreational opportunities. Being the essence of all terrestrial life, soil functions and ecosystem services are essential to wellbeing of all species of plants and animals. Yet, soil resources are finite, unequally distributed geographically, and vulnerable to degradation by natural and anthropogenic perturbations. Nonetheless, soil has inherent resilience, and its ecosystem functions and services can be restored over time. However, soil resilience depends on several key soil properties including soil organic carbon (SOC) concentration and pool, plant-available water capacity (PWAC), nutrient reserves, effective rooting depth, texture and clay mineralogy, pH, cation exchange capacity (CEC) etc. There is a close inter-dependence among these properties. For example, SOC concentration strongly affects, PWAC, nutrient reserve, activity and species diversity of soil flora and fauna, CEC etc. Thus, judicious management of SOC concentration to maintain it above the threshold level (~1.5-2%) in the root zone is critical to sustaining essential functions and ecosystem services. Yet, soils of some agroecosystems (e.g., those managed by resources-poor farmers and small landholders in the tropics and sub-tropics) are severely depleted of their SOC reserves. Consequently. Agronomic productivity and wellbeing of people dependent on degraded soils is jeopardized. The ecosystem C pool of the terrestrial biosphere has been mined by extractive practices, the nature demands recarbonization of its biosphere for maintenance of its functions and

  13. SOIL ORGANIC CARBON LEVELS IN SOILS OF CONTRASTING LAND USES IN SOUTHEASTERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Chinyere Blessing Okebalama

    2017-12-01

    Full Text Available Land use change affects soil organic carbon (SOC storage in tropical soils, but information on the influence of land use change on segmental topsoil organic carbon stock is lacking. The study investigated SOC levels in Awgu (L, Okigwe (CL, Nsukka I (SL, and Nsukka II (SCL locations in southeastern Nigeria. Land uses considered in each location were the cultivated (manually-tilled and the adjacent uncultivated (4-5 year bush-fallow soils from which samples at 0-10, 10-20, and 20-30 cm topsoil depth were assessed. The SOC level decreased with topsoil depth in both land uses. Overall, the SOC level at 0-30 cm was between 285.44 and 805.05 Mg ha-1 amongst the soils.  The uncultivated sites stored more SOC than its adjacent cultivated counterpart at 0-10 and 10-20 cm depth, except in Nsukka II soils, which had significantly higher SOC levels in the cultivated than the uncultivated site. Nonetheless, at 20-30 cm depth, the SOC pool across the fallowed soils was statistically similar when parts of the same soil utilization type were tilled and cultivated. Therefore, while 4 to 5 years fallow may be a useful strategy for SOC stabilization within 20-30 cm topsoil depth in the geographical domain, segmental computation of topsoil organic carbon pool is critical.

  14. Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America

    Science.gov (United States)

    The book “Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America” summarizes published research in soil science and agronomy from various field experiments conducted in the soil-climatic/agro-ecological regions of the Northern Great Plains of North America....

  15. Communicating soil carbon science to farmers: Incorporating credibility, salience and legitimacy

    DEFF Research Database (Denmark)

    Ingram, Julie; Mills, Jane; Dibari, Camilla

    2016-01-01

    A key narrative within climate change science is that conserving and improving soil carbon through agricultural practices can contribute to agricultural productivity and is a promising option for mitigating carbon loss through sequestration. This paper examines the potential disconnect between...... science and practice in the context of communicating information about soil carbon management. It focuses on the information producing process and on stakeholder (adviser, farmer representative, policy maker etc) assessment of the attributes credibility, salience and legitimacy. In doing this it draws...... on results from consultations with stakeholders in the SmartSOIL project which aimed to provide decision support guidelines about practices that optimise carbon mitigation and crop productivity. An iterative methodology, used to engage stakeholders in developing, testing and validating a range of decision...

  16. Trends in gender diversity American soil science classes: 2004-2005 to 2013-2014 academic years

    Science.gov (United States)

    Lindbo, David L.; Brevik, Eric C.; Vaughan, Karen L.; Parikh, Sanjai J.; Dilliver, Holly; Steffan, Joshua J.; Weindorf, David; McDaniel, Paul; Mbila, Monday; Edinger-Marshall, Susan; Thomas, Pamela

    2017-04-01

    A diverse workforce has been viewed for a long time as a healthy workforce. Traditionally however Soil Science has been seen as a male dominated field. The total number of female students enrolled showed increasing trends in all classes investigated during this study, but the percentage of female students showed a decline when analyzed by total students enrolled and also declined in four of the seven individual classes investigated. While both total enrollment and female enrollment increased during the study, male enrollment increased more rapidly than female enrollment. Soil biology/microbiology classes had a trend of more than 45% female enrollment throughout the study period, but many classes had less than 40% female enrollment, especially after the 2008-2009 academic year, and some hovered around only 35% female enrollment. The percentage of female soil science students had increased in the USA and Canada from 1992 to 2004 (Baveye et al., 2006) and Miller (2011) reported an increase in the number of female students at Iowa State University in the early 2000s. Therefore, the decrease in percentage of female soil science students found in our study was disappointing, even though absolute numbers of female students increased. It appears there is still a need to find ways to better market soil science coursework to female students. One possible way to accomplish this is to take advantage of the fact that many schools are now focusing efforts on STEM training specifically for females in grades 5-12, whereby science projects, after school programs, and mentorship can substantively influence females to pursue science-based fields in college. Another possibility is to promote the trends in female employment. As an example female employment within the Soil Science Division of the USDA-NRCS has increased over the same period. It should also be noted that the number of females in leadership roles has also increased. As a profession, soil science should look to take

  17. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    Science.gov (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  18. 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE). Screening-Level Feasibility Assessment and Design Tool in Support of 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) ESTCP Project ER 201326

    Science.gov (United States)

    2017-10-01

    USER GUIDE 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening-Level Feasibility Assessment and Design Tool in...Support of 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) ESTCP Project ER-201326 OCTOBER 2017 Rob Hinchee Integrated Science...Technology, Inc. 1509 Coastal Highway Panacea, FL 32346 8/8/2013 - 8/8/2018 10-2017 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening

  19. Pedoinformatics Approach to Soil Text Analytics

    Science.gov (United States)

    Furey, J.; Seiter, J.; Davis, A.

    2017-12-01

    The several extant schema for the classification of soils rely on differing criteria, but the major soil science taxonomies, including the United States Department of Agriculture (USDA) and the international harmonized World Reference Base for Soil Resources systems, are based principally on inferred pedogenic properties. These taxonomies largely result from compiled individual observations of soil morphologies within soil profiles, and the vast majority of this pedologic information is contained in qualitative text descriptions. We present text mining analyses of hundreds of gigabytes of parsed text and other data in the digitally available USDA soil taxonomy documentation, the Soil Survey Geographic (SSURGO) database, and the National Cooperative Soil Survey (NCSS) soil characterization database. These analyses implemented iPython calls to Gensim modules for topic modelling, with latent semantic indexing completed down to the lowest taxon level (soil series) paragraphs. Via a custom extension of the Natural Language Toolkit (NLTK), approximately one percent of the USDA soil series descriptions were used to train a classifier for the remainder of the documents, essentially by treating soil science words as comprising a novel language. While location-specific descriptors at the soil series level are amenable to geomatics methods, unsupervised clustering of the occurrence of other soil science words did not closely follow the usual hierarchy of soil taxa. We present preliminary phrasal analyses that may account for some of these effects.

  20. Project, building and utilization of a tomograph of micro metric resolution to application in soil science

    International Nuclear Information System (INIS)

    Macedo, Alvaro; Torre Neto, Andre; Cruvinel, Paulo Estevao; Crestana, Silvio

    1996-08-01

    This paper describes the project , building and utilization of a tomograph of micro metric resolution in soil science. It describes the problems involved in soil's science study and it describes the system and methodology

  1. The Spanish Society of Soil Science: Main projects and activities developed during the last years

    Science.gov (United States)

    Porta, Jaume; Mataix-Solera, Jorge; Ortiz-Bernad, Irene; Arbelo, Carmen D.; Díaz-Raviña, Montserrat; Badía, David; Alcañiz, Josep M.; Santos, Fernando; Hermosin, M. Carmen; Barral, M. Teresa

    2017-04-01

    The Spanish Society of Soil Science (in Spanish: Sociedad Española de la Ciencia del Suelo, SECS) was founded in 1947 by the Spanish National Research Council (CSIC) to promote cohesion and collaboration between soil science professionals, and with an innovative spirit and a willingness to serve the society. The objectives are: to promote the study, knowledge, research and protection of the soil; to spread, from a scientific point of view, the role played by the soil in favour of society, through ecosystem services such as the production of food and raw materials; The SECS also focus on the protection of other habitats and the conservation of our archaeological heritage; and to preserve knowledge of the soil, its management and use, both from the production and environmental point of view, leading to the optimization of its capabilities. The activities and services of the SECS are accessible on the web site www.secs.com.es, which is continually updated. In this contribution, we will show some examples of recent projects and activities developed by the SECS such as: the edition of the Spanish Journal of Soil Science (SJSS) since 2011; books like the white book on "Tratamiento del suelo en los libros de texto de ESO y Bachillerato en España" available in http://www.secs.com.es/archivo/libro-suelo.pdf, in which the term "Soil" is analysed in many secondary school books (152) in the Spanish education system; conferences, courses, exhibitions, expositions, calendars, the comic "Vivir en el suelo" in diferent languages, and diverse material to promote and disseminate the importance of the soil to the society; and last but not least, the Multingual Soil Science Dictionary (Spanish, Catalan, Gallician and Potuguese with translations in English and French (in process)) available online: http://cit.iec.cat/GLOSECS/inici.html. The promotion of student teams for soil science contests, the SECS Award to attend the Simposio Latinoamericano de Enseñanza y Educación en Ciencia

  2. Soil radon levels across the Amer fault

    International Nuclear Information System (INIS)

    Font, Ll.; Baixeras, C.; Moreno, V.; Bach, J.

    2008-01-01

    Soil radon levels have been measured across the Amer fault, which is located near the volcanic region of La Garrotxa, Spain. Both passive (LR-115, time-integrating) and active (Clipperton II, time-resolved) detectors have been used in a survey in which 27 measurement points were selected in five lines perpendicular to the Amer fault in the village area of Amer. The averaged results show an influence of the distance to the fault on the mean soil radon values. The dynamic results show a very clear seasonal effect on the soil radon levels. The results obtained support the hypothesis that the fault is still active

  3. Making Earth Science Relevant in the K-8 Classroom. The Development of an Instructional Soils Module for Pre-Service Elementary Teachers Using the Next Generation Science Standards

    Science.gov (United States)

    Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.

    2013-12-01

    The development and adoption of the Next Generation Science Standards (NGSS) raises a challenge in teacher preparation: few current teacher preparation programs prepare students to teach science the way it is presented in the NGSS, which emphasize systems thinking, interdisciplinary science, and deep engagement in the scientific process. In addition, the NGSS include more geoscience concepts and methods than previous standards, yet this is a topic area in which most college students are traditionally underprepared. Although nationwide, programmatic reform is needed, there are a few targets where relatively small, course-level changes can have a large effect. One of these targets is the 'science methods' course for pre-service elementary teachers, a requirement in virtually all teacher preparation programs. Since many elementary schools, both locally and across the country, have adopted a kit based science curriculum, examining kits is often a part of a science methods course. Unfortunately, solely relying on a kit based curriculum may leave gaps in science content curriculum as one prepares teachers to meet the NGSS. Moreover, kits developed at the national level often fall short in connecting geoscientific content to the locally relevant societal issues that engage students. This highlights the need to train pre-service elementary teachers to supplement kit curriculum with inquiry based geoscience investigations that consider relevant societal issues, promote systems thinking and incorporate connections between earth, life, and physical systems. We are developing a module that teaches geoscience concepts in the context of locally relevant societal issues while modeling effective pedagogy for pre-service elementary teachers. Specifically, we focus on soils, an interdisciplinary topic relevant to multiple geoscience-related societal grand challenges (e.g., water, food) that is difficult to engage students in. Module development is funded through InTeGrate, NSF

  4. Geology Museum-Based Learning in Soil Science Education

    Science.gov (United States)

    Mikhailova, E. A.; Tennant, C. H.; Post, C. J.; Cicimurri, C.; Cicimurri, D.

    2013-01-01

    Museums provide unique learning opportunities in soil science. The Bob Campbell Geology Museum in Clemson, SC, features an exhibit of minerals and rocks common in the state and in its geologic history. We developed a hands-on laboratory exercise utilizing an exhibit that gives college students an opportunity to visualize regional minerals and…

  5. Are There Dangerous Levels of Lead in Local Soil?

    Science.gov (United States)

    Pita, I.

    2017-12-01

    The purpose of this experiment was to show that comparing random soil samples from areas in New Orleans; the Garden District will have the highest levels of lead in soil. My Independent variable was the soil samples collected from locations in the Garden District area of New Orleans, and other locations throughout New Orleans. The control was the soil samples collected from the local playground in the New Orleans area. My dependent variable was the lead soil test kit, using ppm (parts per million) of lead to show concentration. 400 ppm + in bare soil where children play is considered dangerous hazard levels. 1,000 + ppm in all other areas is considered dangerous hazard levels. The first step to my experiment, I collected soil samples from different locations throughout the Garden District area of New Orleans. The second step to my experiment, I conducted the lead soil testing in a controlled area at home in a well ventilated room, using all the necessary safety equipment needed, I began testing a 24 hour test period and a 48 hour test period. I then collected the data from both test. The results showed that soil samples from the Garden District area compared to the other sample locations had higher lead concentrations in the soil. This backed my hypothesis when comparing soil samples from areas in New Orleans, the Garden District will have the highest lead levels. In conclusion these experiments showed that with the soil samples collected, there were higher concentrations of lead in the soil from the Garden District area compared to the other areas where soil was collected. Reconstruction and renovations, from the devastation that Hurricane Katrina created, are evident of the lead in paint of older homes which now show the lead concentration in the soil. Lead is a lethal element if consumed or inhaled in high doses, which can damage key organs in our body, which can be deadly. Better awareness through social media, television, radio, doctors, studies, pamphlets

  6. Teaching About the Links Between Soils and Climate: An International Year of Soil Outreach by the Soil Science Society of America

    Science.gov (United States)

    Brevik, Eric C.

    2015-04-01

    Soil scientists are well aware of the intimate links that exist between soils and climate, but the same is not always true of the broader population. In an attempt to help address this, the Soil Science Society of America (SSSA) has designated the theme "Soils and Climate" for the month of November, 2015 as part of the SSSA International Year of Soil (IYS) celebration. The topic has been further subdivided into three subthemes: 1) carbon sequestration and greenhouse gases, 2) Soils and past environments, and 3) Desertification and drought. Each subtheme outreach has two parts 1) lesson plans that K-12 educators can use in their classrooms, and 2) materials that a trained soil scientist can present to the general public. Activities developed for the theme include classroom activities to accompany an online game that students can play to see how farm management choices influence greenhouse gas emissions, questions to go with a vermicomposting activity, and discussion session questions to go with a movie on the USA Dust Bowl. All materials are available online free of charge. The Soils and Climate materials can be found at https://www.soils.org/iys/12-month-resources/november; all of the SSSA IYS materials can be found at https://www.soils.org/iys.

  7. Soil Science self-learning based on the design and conduction of experiments

    Science.gov (United States)

    Jordán, A.; Bárcenas-Moreno, G.; Zavala, L. M.

    2012-04-01

    This paper presents an experience for introducing the methodology of project-based learning (PBL) in the area of Soil Science in the University of Sevilla (Spain). Currently, teachers try to enhance practical experience of university students in a complementary manner to theoretical knowledge. However, many times this is a difficult process. Practice is an important part of personal work in the vast majority of subjects that degree students receive, since the implementation of the EHEA. In most cases, these experiences are presented as partial small experiments or projects, assigned to the area-specific knowledge agenda. Certain sciences, such as Soil Science, however, require synthesis and integration capabilities of previous knowledge. It is therefore necessary to develop practical programs that address the student not only to the performance of laboratory determinations, but to the formulation of hypotheses, experimental design and problem solving, whether in groups or individually, situated in a wide context and allowing students to make connections with other areas of knowledge. This project involves the development of teamwork experiments, for the study real cases and problems and making decisions in the field of Soil Science. The results of the experimental work were publicly exposed as posters and oral presentations and were discussed during a mini-congress open to students and a general audience. The open and dynamic nature of the project substantially improves student motivation, which adds value to our project. Due to the multidisciplinary character of Soil Science it is relatively easy to propose projects of some complexity, and therefore, provides good conditions for introducing the PBL methodology. The teacher's role is also important and is not limited to observe or qualify the students, but it is a catalyst for learning. It is important that teacher give the leadership of the process and make the students themselves feel the protagonists of the

  8. Levels of concern for radioactive contaminations in soil according to soil protection standards

    International Nuclear Information System (INIS)

    Gellermann, R.; Barkowski, D.; Machtolf, M.

    2016-01-01

    In the paper the question is examined whether the established soil protection standards for carcinogenic substances are also applicable to the assessment of radioactive soil contamination. Referring to the methods applied in soil protection for evaluation of dose-effectrelations and estimations of carcinogenic risks as well as the calculation methods for test values in soil protection ''levels of concern'' for soil contamination by artificial radionuclides are derived. The values obtained are significantly larger than the values for unrestricted clearance of ground according to the German Radiation Protection Ordinance (StrlSchV). The thesis that soil is protected according to environmental standards provided that radiation protection requirements are met needs further checks but can be probably confirmed if the radiation protection requirements are clearly defined.

  9. Studies from the history of soil science and geology

    Science.gov (United States)

    Landa, Edward R.; Cohen, Benjamin R.

    2010-01-01

    The United Nations proclaimed the year 2008 as the official International Year of Planet Earth (IYPE), with science and outreach activities spanning 2007–2009. IYPE-sponsored outreach helped focus the attention of the general public on topics such as human health and the environment; ocean and natural resources sustainability; mitigating natural hazards and community resilience; and the effects of climate change. Within the earth science community, the IYPE was a stimulus for retrospection, and for efforts aimed at bridging divides within the community. One such effort was the first joint meeting of the Geological Society of America (GSA) and the Soil Science Society of America (SSSA), held in Houston, Texas, 5–9 October 2008.

  10. EFFECT OF DIFFERENT LEVELS AGROECOLOGICAL LOADS ON BIOCHEMICAL CHARACTERISTICS OF SOIL

    OpenAIRE

    A. V. Shchur; D. V. Vinogradov; V. P. Valckho

    2016-01-01

    Aim. To study the effect of different levels of agri-environmental loads on the enzymatic activity of the soil.Methods. Isolation of soil fauna was conducted by thermogradient. Ecological characteristics of soil biota community was determined by ecological indices. The enzymatic activity of soil under different crops and at different levels of agri-environmental loads in our experiments was determined by methods proven in the laboratory soil enzymology Institute of Experimental Botany name V....

  11. Some geomedical problems in relation to soil science

    International Nuclear Information System (INIS)

    Laag, J.

    1988-01-01

    Geomedicine may be defined as the science dealing with the influence of ordinary environmental factors on geographical distribution of health problems in man and animals. An important group of geomedical problems is connected to nutrition. These problems may either be caused by deficiency or surplus of certain matters. Many questions concerning the pollution of nature are classified under the latter group Radioactive pollutants are regarded as important special occurrences under this group. In order to be able to solve complicated geomedical problems, knowledge is needed on the circulation processes rocks-soils-water-plants-animals-man, and waste products back to the soils. The registration of locations of different radioactive elements can give basic material for special geomedical conclusions. Many chemical reactions in which radioactive matter are involved, depend on properties of the soils. Humus and clay minerals have, generally speaking, a high capacity for the absorbtion of soluble matter, but great variations occur. The reactions of radioactive isotopes supplied from the atmosphere, depend on properties of the soil. Radioactive substances are leached relatively rapidly from a soil with low absorption capacity, and may thus be taken away from the circulation in which terrestrial plants, animals and man take part. If the substances is strongly absorbed (fixed), they can also to some extent be withdrawn from the circulation processes

  12. Field Research in the Teaching of Undergraduate Soil Science

    Science.gov (United States)

    Brevik, Eric C.; Senturklu, Songul; Landblom, Douglas

    2015-04-01

    Several studies have demonstrated that undergraduate students benefit from research experiences. Benefits of undergraduate research include 1) personal and intellectual development, 2) more and closer contact with faculty, 3) the use of active learning techniques, 4) creation of high expectations, 5) development of creative and problem-solving skills, 6) greater independence and intrinsic motivation to learn, and 7) exposure to practical skills. The scientific discipline also benefits, as studies have shown that undergraduates who engage in research experiences are more likely to remain science majors and finish their degree program (Lopatto, 2007). Research experiences come as close as possible to allowing undergraduates to experience what it is like to be an academic or research member of their profession working to advance their discipline. Soils form in the field, therefore, field experiences are very important in developing a complete and holistic understanding of soil science. Combining undergraduate research with field experiences can provide extremely beneficial outcomes to the undergraduate student, including increased understanding of and appreciation for detailed descriptions and data analysis as well as an enhanced ability to see how various parts of their undergraduate education come together to understand a complex problem. The experiences of the authors in working with undergraduate students on field-based research projects will be discussed, along with examples of some of the undergraduate research projects that have been undertaken. In addition, student impressions of their research experiences will be presented. Reference Lopatto, D. 2007. Undergraduate research experiences support science career decisions and active learning. CBE -- Life Sciences Education 6:297-306.

  13. Effect of Verticillium dahliae soil inoculum levels on spinach seed infection

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Olesen, Merete Halkjær; Deleuran, Lise Christina

    2016-01-01

    Verticillium dahliae is a soilborne pathogen and a threat to spinach seed production. The aim of this study was to understand the relation between V. dahliae soil inoculum and infection in harvested seed. Quantitative polymerase chain reaction was used for quantification of the pathogen. Semifield...... experiments in which spinach was grown in soils with different inoculum levels enabled us to determine a threshold level for V. dahliae DNA of 0.003 ng/g of soil for seed infection to occur. Soils from production fields were sampled in 2013 and 2014 during and before planting, as well as the harvested seed....... Seed from plants grown in infested soils were infected with V. dahliae in samples from both the semifield and open-field experiments. Lower levels of pathogen were found in seed from spinach grown in soils with a scattered distribution of V. dahliae (one or two positive of three soil subsamples) than...

  14. Radium - 226 levels in some sudanese plants and soils

    International Nuclear Information System (INIS)

    Sam, A.K.

    1993-01-01

    The natural levels of 226 Ra in plant and soil samples have been studied. The field study was mainly conducted in western Sudan (Darfur and Kurdofan) where areas of high natural background radiation have been identified and Khartoum area was taken as a control to (i) assess in natural setting the soil-to-plant concentration ratios (concentration in dry sample / concentration in dry soil) of the naturally occurring radionuclide 226 Ra, (ii) establish base-line data on Radium activity concentration levels in environmental materials and (iii) explore the area of high natural radiation background in western Sudan.Low level gamma spectrometry, employing high purity germanium detector (HPGe) of relative efficiency 12%, has been used for the determination of 226 Ra activity concentrations in plant and soil samples. The mean Radium activity concentration found in soil ranged from 14.41 Bq/Kg to 79.08 Bq/Kg, the values correspond to the reported normal background levels of 226 Ra in soils worldwide. Radium activity concentrations found in Sudanese plants were significantly higher compared to those related to plants from normal background regions and significantly lower than those reported for plants from high background regions in other countries. The mean soil/plant concentration ratios (CRs) found in this study were 0.12, 0.15, 0.17 and 0.08 for whole plants, fruits and leafy vegetables, root vegetables and grains, respectively. These ranges of CR values are comparable with overall range of CR where environmental conditions are normal. The estimated daily intakes by individuals consuming foods of local origin were 1.00, 10.4 and 7.91 Bq/Day of radium Khour Abu Habil, Arkuri and Dumpir, respectively. Since the dietary habits were different, as it was noticed, these results have been much lower in comparison with those obtained from some European countries and United States. (author), 44 refs., 18 tabs., 13 figs

  15. Chemical and biological attributes of a lowland soil affected by land leveling

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2013-11-01

    Full Text Available The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC. Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.

  16. Phytoextraction of low level U-contaminated soil

    International Nuclear Information System (INIS)

    Vandenhove, H.A.; Hees, M. van

    2002-01-01

    The nuclear fuel cycle may be a source of environmental contamination. Uranium exploitation produces large quantities of wastes but also accidental spills at nuclear fuel production, reprocessing or waste treatment plants have led to soil contamination with uranium. U-contaminated soil is generally excavated, packaged and removed which is a costly enterprise. Soil washing has also shown promising in removing U from contaminated soil, but results in the generation of liquid wastes and the deterioration of soil properties. In contrast, phytoextraction, the use of plants to remove contaminants from polluted soil, allows for in situ treatment and does not generate liquid wastes. Furthermore, the contaminated site is covered by plants during phytoextraction and wind and water erosion will be reduced. The phytoextraction potential depends on the amount of radionuclides extracted and the biomass produced. Hyper-accumulating plants often have a low biomass production. Moreover, uranium soil-to-plant transfer factors (TF: ratio of U concentration in dry plant tissue to concentration in soil) rarely exceed a value of 0.1 gg -1 . With a TF of 0.1 gg -1 and a biomass yield of 15t dry weigh ha -1 only 0.1% of the soil uranium will be annually immobilised in the plant biomass. These figures clearly show that the phytoextraction option is not a feasible remediation option, unless the uranium bioavailability could be drastically increased. It was shown that citric acid addition to highly contaminated U contaminated soil increased the U-accumulation of Brassica juncea 1000-fold. The objective of the present paper is to find out if low level U contaminated soil can be phytoextracted in order to achieve proposed release limits

  17. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 1

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soil's science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil's physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil's and water conservation,fertilizers, pollution and environmental quality were discussed. In the first volume of the abstracts are presented papers related to soil's physics and biology where nuclear methods of analysis were utilized

  18. Experimental evidence shows no fractionation of strontium isotopes ((87)Sr/(86)Sr) among soil, plants, and herbivores: implications for tracking wildlife and forensic science.

    Science.gov (United States)

    Flockhart, D T Tyler; Kyser, T Kurt; Chipley, Don; Miller, Nathan G; Norris, D Ryan

    2015-01-01

    Strontium isotopes ((87)Sr/(86)Sr) can be useful biological markers for a wide range of forensic science applications, including wildlife tracking. However, one of the main advantages of using (87)Sr/(86)Sr values, that there is no fractionation from geological bedrock sources through the food web, also happens to be a critical assumption that has never been tested experimentally. We test this assumption by measuring (87)Sr/(86)Sr values across three trophic levels in a controlled greenhouse experiment. Adult monarch butterflies were raised on obligate larval host milkweed plants that were, in turn, grown on seven different soil types collected across Canada. We found no significant differences between (87)Sr/(86)Sr values in leachable Sr from soil minerals, organic soil, milkweed leaves, and monarch butterfly wings. Our results suggest that strontium isoscapes developed from (87)Sr/(86)Sr values in bedrock or soil may serve as a reliable biological marker in forensic science for a range of taxa and across large geographic areas.

  19. Physicochemical Characteristics and Heavy Metal Levels in Soil ...

    African Journals Online (AJOL)

    ADOWIE PERE

    weathering of mineral; the anthropogenic sources are associated mainly with ... al., 2013 reported high levels of Cd, Zn, Ni, Cr and. Pb from soil .... Determination of trace elements (Zn and Mn): 5 g of the dried ..... vehicles constitute principal source of Pb. Lead ..... Interaction between metals and soil organic matter in various.

  20. An Arduino Based Citizen Science Soil Moisture Sensor in Support of SMAP and GLOBE

    Science.gov (United States)

    Podest, E.; Das, N. N.; Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Hovhannesian, H.; Fairbanks, G.

    2017-12-01

    Citizen science allows individuals anywhere in the world to engage in science by collecting environmental variables. One of the longest running platforms for the collection of in situ variables is the GLOBE program, which is international in scope and encourages students and citizen scientists alike to collect in situ measurements. NASA's Soil Moisture Active Passive (SMAP) satellite mission, which has been acquiring global soil moisture measurements every 3 days of the top 5 cm of the soil since 2015, has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino- microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. In addition, we have developed a phone app, which interfaces with the Arduino, displays the soil moisture value and send the measurement to the GLOBE database. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  1. Matrices to Revise Crop, Soil, and Environmental Sciences Undergraduate Curricula

    Science.gov (United States)

    Savin, Mary C.; Longer, David; Miller, David M.

    2005-01-01

    Undergraduate curricula for natural resource and agronomic programs have been introduced and revised during the past several decades with a desire to stay current with emerging issues and technologies relevant to constituents. For the past decade, the Department of Crop, Soil, and Environmental Sciences (CSES) faculty at the University of Arkansas…

  2. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 2

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soil's science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil's physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil's and water conservation, fertilizers, pollution and environmental quality were discussed. In the second volume of the abstracts are presented papers related to soil's fertility and plants nutrition are discussed where nuclear methods of analysis are presented

  3. 3D visualisation and artistic imagery to enhance interest in `hidden environments' - new approaches to soil science

    Science.gov (United States)

    Gilford, J.; Falconer, R. E.; Wade, R.; Scott-Brown, K. C.

    2014-09-01

    Interactive Virtual Environments (VEs) have the potential to increase student interest in soil science. Accordingly a bespoke 'soil atlas' was created using Java3D as an interactive 3D VE, to show soil information in the context of (and as affected by) the over-lying landscape. To display the below-ground soil characteristics, four sets of artistic illustrations were produced, each set showing the effects of soil organic-matter density and water content on fungal density, to determine potential for visualisations and interactivity in stimulating interest in soil and soil illustrations, interest being an important factor in facilitating learning. The illustrations were created using 3D modelling packages, and a wide range of styles were produced. This allowed a preliminary study of the relative merits of different artistic styles, scientific-credibility, scale, abstraction and 'realism' (e.g. photo-realism or realism of forms), and any relationship between these and the level of interest indicated by the study participants in the soil visualisations and VE. The study found significant differences in mean interest ratings for different soil illustration styles, as well as in the perception of scientific-credibility of these styles, albeit for both measures there was considerable difference of attitude between participants about particular styles. There was also found to be a highly significant positive correlation between participants rating styles highly for interest and highly for scientific-credibility. There was furthermore a particularly high interest rating among participants for seeing temporal soil processes illustrated/animated, suggesting this as a particularly promising method for further stimulating interest in soil illustrations and soil itself.

  4. Chemical Analysis of Soils: An Environmental Chemistry Laboratory for Undergraduate Science Majors.

    Science.gov (United States)

    Willey, Joan D.; Avery, G. Brooks, Jr.; Manock, John J.; Skrabal, Stephen A.; Stehman, Charles F.

    1999-01-01

    Describes a laboratory exercise for undergraduate science students in which they evaluate soil samples for various parameters related to suitability for crop production and capability for retention of contaminants. (Contains 18 references.) (WRM)

  5. Determination of spatial continuity of soil lead levels in an urban residential neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, N.J.; Bing-Canar, J.; Cailas, M.; Peneff, N.; Binns, H.J.

    2000-01-01

    This study uses geostatistical techniques to model and estimate soil lead levels in an urban, residential neighborhood. Sixty-two composite soil samples in a four-block area of brick and stone homes were obtained. The spatial continuity of soil lead levels was modeled with a semi-variogram, which was then used to estimate lead levels at unsampled locations, a process called kriging. Because soil lead levels were spatially correlated, it is likely that a nonrandom process generated the lead distribution found. This finding signifies the existence of lead sources which were tentatively identified on historical maps of the area and from past traffic volume patterns. The distribution of kriged estimates of soil lead levels provides an explanatory tool for exploring and identifying potential sources and may be useful for targeting urban soil abatement efforts.

  6. Levels of 137Cs and 40K in wood ash-amended soils

    International Nuclear Information System (INIS)

    Ohno, Tsutomu; Hess, C.T.

    1994-01-01

    Wood ash is a residual material produced at an annual rate of 1.5-3.0 million tons by wood burning power plants in the USA. Up to 80% of the wood ash generated in northeastern USA is landspread on agricultural soils. Recently, concern has arisen regarding the 137 Cs content of wood ash and levels of 137 Cs of wood ash-amended soils. The 137 Cs originated primarily from above ground nuclear weapons testing in the 1950s and 1960s. This study examined the total and pH 3, NH 4 OAc extractable levels of 137 Cs and 40 K in three soils incubated in the laboratory with 0, 3 and 9 g of wood ash on a calcium carbonate equivalence basis kg -1 soil. The wood ash contained 137 Cs and 40 K at 3920 and 21'700 pCi kg -1 , respectively. At the regulated wood ash application rate limit, 3 g wood ash (calcium carbonate equivalent basis) kg -1 of soil, there was no statistical difference from the control treatment in both total and soluble 137 Cs and 40 K levels. For one soil, there was an increase in the 137 Cs level when wood ash was amended at 9 g wood ash (calcium carbonate equivalent basis) kg -1 soil. The 137 Cs was strongly bound to the cation exchange sites of the soils with the average fraction soluble in pH 3, NH 4 OAc solution at 4.8% in the mineral soils and 0.9% in the organic soil. Considering the current limits on permitted wood ash application rates to soils, there was no statistically significant effect on the levels of 137 Cs or 40 K found in wood ash-amended soils

  7. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 4

    International Nuclear Information System (INIS)

    1995-01-01

    This congress discussed soils science with emphasis in the Brazilian morpho climatic dominion and the sustained development. Topics related to soils physics, chemical, biology, fertility, classification, nutrition, mineralogy, soils and water conservation, fertilizers, pollution and environmental quality. In the fourth volume of the abstracts were presented papers related to use of fertilizers and herbicides

  8. Phytoextraction for clean-up of low-level uranium contaminated soil evaluated

    International Nuclear Information System (INIS)

    Vandenhove, H.; Hees, M. van

    2004-01-01

    Spills in the nuclear fuel cycle have led to soil contamination with uranium. In case of small contamination just above release levels, low-cost yet sufficiently efficient remedial measures are recommended. This study was executed to test if low-level U contaminated sandy soil from a nuclear fuel processing site could be phytoextracted in order to attain the required release limits. Two soils were tested: a control soil (317 Bq 238 U kg -1 ) and the same soil washed with bicarbonate (69 Bq 238 U kg -1 ). Ryegrass (Lolium perenne cv. Melvina) and Indian mustard (Brassica juncea cv. Vitasso) were used as test plants. The annual removal of soil activity by the biomass was less than 0.1%. The addition of citric acid (25 mmol kg -1 ) 1 week before the harvest increased U uptake up to 500-fold. With a ryegrass and mustard yield of 15,000 and 10,000 kg ha -1 , respectively, up to 3.5% and 4.6% of the soil activity could be removed annually by the biomass. With a desired activity reduction level of 1.5 and 5 for the bicarbonate-washed and control soil, respectively, it would take 10-50 years to attain the release limit. However, citric acid addition resulted in a decreased dry weight production

  9. 3D Visualisation and Artistic Imagery to Enhance Interest in "Hidden Environments"--New Approaches to Soil Science

    Science.gov (United States)

    Gilford, J.; Falconer, R. E.; Wade, R.; Scott-Brown, K. C.

    2014-01-01

    Interactive Virtual Environments (VEs) have the potential to increase student interest in soil science. Accordingly a bespoke "soil atlas" was created using Java3D as an interactive 3D VE, to show soil information in the context of (and as affected by) the over-lying landscape. To display the below-ground soil characteristics, four sets…

  10. Soil and Living Things. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 4.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the structure of the two main soil types in Seychelles; (2) the role of roots in…

  11. Applications of the Advanced Light Source to problems in the earth, soil, and environmental sciences report of the workshop

    International Nuclear Information System (INIS)

    1992-10-01

    This report discusses the following topics: ALS status and research opportunities; advanced light source applications to geological materials; applications in the soil and environmental sciences; x-ray microprobe analysis; potential applications of the ALS in soil and environmental sciences; and x-ray spectroscopy using soft x-rays: applications to earth materials

  12. Relationship between soil contents and plasma levels of selenium ...

    African Journals Online (AJOL)

    The soil contents of trace elements selenium, chromium and manganese were measured to determine their impact on the plasma levels of 160 healthy adult Nigerians in five different experimental locations in Cross River and Akwa Ibom States, South - South Nigeria. The mean (±SD) soil selenium, chromium and ...

  13. Radioisotopes in soil science

    International Nuclear Information System (INIS)

    Kotur, S.C.

    2004-01-01

    Soils form a thin veneer of the Earth that sustain the entire flora and fauna of the terra firma. To that extent the soil as a natural resource is very precious and needs to be managed in a sustainable manner. The fate of degradation of pesticides in soil and build-up of heavy metals in the overall biosafety scenario is also studied gainfully using radioisotopes. Radioisotopes are a very potent tool in the hands of the Soil Scientists, perhaps, the most important among the peaceful applications in service of the mankind

  14. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    Science.gov (United States)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  15. Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Qinghu Jiang

    2016-09-01

    Full Text Available Soil organic carbon (SOC is an essential property for soil function, fertility and sustainability of agricultural systems. It can be measured with visible and near-infrared reflectance (VIS-NIR spectroscopy efficiently based on empirical equations and spectra data for air/oven-dried samples. However, the spectral signal is interfered with by soil moisture content (MC under in situ conditions, which will affect the accuracy of measurements and calibration transfer among different areas. This study aimed to (1 quantify the influences of MC on SOC prediction by VIS-NIR spectroscopy; and (2 explore the potentials of orthogonal signal correction (OSC and generalized least squares weighting (GLSW methods in the removal of moisture interference. Ninety-eight samples were collected from the Jianghan plain, China, and eight MCs were obtained for each sample by a rewetting process. The VIS-NIR spectra of the rewetted soil samples were measured in the laboratory. Partial least squares regression (PLSR was used to develop SOC prediction models. Specifically, three validation strategies, namely moisture level validation, transferability validation and mixed-moisture validation, were designed to test the potentials of OSC and GLSW in removing the MC effect. Results showed that all of the PLSR models generated at different moisture levels (e.g., 50–100, 250–300 g·kg−1 were moderately successful in SOC predictions (r2pre = 0.58–0.85, RPD = 1.55–2.55. These models, however, could not be transferred to soil samples with different moisture levels. OSC and GLSW methods are useful filter transformations improving model transferability. The GLSW-PLSR model (mean of r2pre = 0.77, root mean square error for prediction (RMSEP = 3.08 g·kg−1, and residual prediction deviations (RPD = 2.09 outperforms the OSC-PLSR model (mean of r2pre = 0.67, RMSEP = 3.67 g·kg−1, and RPD = 1.76 when the moisture-mixed protocol is used. Results demonstrated the use of OSC

  16. Education and Awareness Raising Activities of the British Society of Soil Science

    Science.gov (United States)

    Towers, Willie; Allton, Kathryn; Hallett, Steve

    2014-05-01

    The British Society for Soil Science (BSSS) http://www.soils.org.uk is an international membership organisation and UK based charity committed to promoting the study and profession of soil science in its widest aspects. The Society is committed to reaching out to the public at large to educate and inform on the importance of soils to us all. The Society has adopted a range of approaches to soil education, tailored to the needs and aims of different audience types. We have developed the 'Working with Soil' initiative http://www.soilscientist.org/workingwithsoil which provides practicing soil scientists and potential funders with a set of professional competencies aligned to specific aspects of work. From 2013 The Society has developed a program of courses aligned to these documents aimed at meeting the professional development needs of those undertaking such work. So far these have focused on fundamentals of field characterisation, sampling and mapping which have been very well received, especially by early career practitioners who have had less exposure to field work. We have also produced posters and leaflets that demonstrate a range of soil functions which support human society, for example 'Soils in the City' and 'Soils of Britain'. These were originally developed in a more traditional formal style. The materials have also proved popular with local authorities, regional horticultural clubs and higher education establishments, notably agricultural colleges where they have been used to support student learning in both timetabled and project work. We have subsequently produced a further set of materials aimed at a much younger audience. We deliberately chose slightly quirkier names for these, for example 'Soils and Time Travel' and 'Soils and Spaceship Earth' as a hook to capture the child's imagination. These were designed by a specialist company who used a less formal language, the use of cartoons and alternative images and a wider range of font styles and sizes

  17. determination of the levels of lead in the roadside soils of addis

    African Journals Online (AJOL)

    Admin

    J. Sci., 35(2):81–94, 2012. © College of Natural Sciences, Addis Ababa University, 2012 ... originationg from vehicular exhaust, has been investigated. To this end, soil .... liquefied petroleum gas (LPG), motor gasoline, jet fuel, kerosene and ...

  18. Development of a matrix approach to estimate soil clean-up levels for BTEX compounds

    International Nuclear Information System (INIS)

    Erbas-White, I.; San Juan, C.

    1993-01-01

    A draft state-of-the-art matrix approach has been developed for the State of Washington to estimate clean-up levels for benzene, toluene, ethylbenzene and xylene (BTEX) in deep soils based on an endangerment approach to groundwater. Derived soil clean-up levels are estimated using a combination of two computer models, MULTIMED and VLEACH. The matrix uses a simple scoring system that is used to assign a score at a given site based on the parameters such as depth to groundwater, mean annual precipitation, type of soil, distance to potential groundwater receptor and the volume of contaminated soil. The total score is then used to obtain a soil clean-up level from a table. The general approach used involves the utilization of computer models to back-calculate soil contaminant levels in the vadose zone that would create that particular contaminant concentration in groundwater at a given receptor. This usually takes a few iterations of trial runs to estimate the clean-up levels since the models use the soil clean-up levels as ''input'' and the groundwater levels as ''output.'' The selected contaminant levels in groundwater are Model Toxic control Act (MTCA) values used in the State of Washington

  19. Get immersed in the Soil Sciences: the first community of avatars in the EGU Assembly 2015!

    Science.gov (United States)

    Castillo, Sebastian; Alarcón, Purificación; Beato, Mamen; Emilio Guerrero, José; José Martínez, Juan; Pérez, Cristina; Ortiz, Leovigilda; Taguas, Encarnación V.

    2015-04-01

    Virtual reality and immersive worlds refer to artificial computer-generated environments, with which users act and interact as in a known environment by the use of figurative virtual individuals (avatars). Virtual environments will be the technology of the early twenty-first century that will most dramatically change the way we live, particularly in the areas of training and education, product development and entertainment (Schmorrow, 2009). The usefulness of immersive worlds has been proved in different fields. They reduce geographic and social barriers between different stakeholders and create virtual social spaces which can positively impact learning and discussion outcomes (Lorenzo et al. 2012). In this work we present a series of interactive meetings in a virtual building to celebrate the International Year of Soil to promote the importance of soil functions and its conservation. In a virtual room, the avatars of different senior researchers will meet young scientist avatars to talk about: 1) what remains to be done in Soil Sciences; 2) which are their main current limitations and difficulties and 3) which are the future hot research lines. The interactive participation does not require physically attend to the EGU Assembly 2015. In addition, this virtual building inspired in Soil Sciences can be completed with different teaching resources from different locations around the world and it will be used to improve the learning of Soil Sciences in a multicultural context. REFERENCES: Lorenzo C.M., Sicilia, M.A., Sánchez S. 2012. Studying the effectiveness of multi-user immersive environments for collaborative evaluation tasks. Computers & Education 59 (2012) 1361-1376 Schmorrow D.D. 2009. "Why virtual?" Theoretical Issues in Ergonomics Science 10(3): 279-282.

  20. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  1. Modelling soil water dynamics and crop water uptake at the field level

    NARCIS (Netherlands)

    Kabat, P.; Feddes, R.A.

    1995-01-01

    Parametrization approaches to model soil water dynamics and crop water uptake at field level were analysed. Averaging and numerical difficulties in applying numerical soil water flow models to heterogeneous soils are highlighted. Simplified parametrization approaches to the soil water flow, such as

  2. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  3. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity

    Science.gov (United States)

    Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.

    2009-01-01

    Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

  4. Experiencing Soil Science from your office through virtual experiences

    Science.gov (United States)

    Beato, M. Carmen; González-Merino, Ramón; Campillo, M. Carmen; Fernández-Ahumada, Elvira; Ortiz, Leovigilda; Taguas, Encarnación V.; Guerrero, José Emilio

    2017-04-01

    Currently, numerous tools based on the new information and communication technologies offer a wide range of possibilities for the implementation of interactive methodologies in Education and Science. In particular, virtual reality and immersive worlds - artificially generated computer environments where users interact through a figurative individual that represents them in that environment (their "avatar") - have been identified as the technology that will change the way we live, particularly in educational terms, product development and entertainment areas (Schmorrow, 2009). Gisbert-Cervera et al. (2011) consider that the 3D worlds in education, among others, provide a unique training and exchange of knowledge environment which allows a goal reflection to support activities and achieve learning outcomes. In Soil Sciences, the experimental component is essential to acquire the necessary knowledge to understand the biogeochemical processes taking place and their interactions with time, climate, topography and living organisms present. In this work, an immersive virtual environment which reproduces a series of pits have been developed to evaluate and differentiate soil characteristics such as texture, structure, consistency, color and other physical-chemical and biological properties for educational purposes. Bibliographical material such as pictures, books, papers and were collected in order to classify the information needed and to build the soil profiles into the virtual environment. The programming language for the virtual recreation was Unreal Engine4 (UE4; https://www.unrealengine.com/unreal-engine-4). This program was chosen because it provides two toolsets for programmers and it can also be used in tandem to accelerate development workflows. In addition, Unreal Engine4 technology powers hundreds of games as well as real-time 3D films, training simulations, visualizations and it creates very realistic graphics. For the evaluation of its impact and its

  5. Grade 8 students' capability of analytical thinking and attitude toward science through teaching and learning about soil and its' pollution based on science technology and society (STS) approach

    Science.gov (United States)

    Boonprasert, Lapisarin; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 8 students' analytical thinking and attitude toward science in teaching and learning about soil and its' pollution through science technology and society (STS) approach. The participants were 36 Grade 8 students in Naklang, Nongbualumphu, Thailand. The teaching and learning about soil and its' pollution through STS approach had carried out for 6 weeks. The soil and its' pollution unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' analytical thinking and attitude toward science was collected during their learning by participant observation, analytical thinking test, students' tasks, and journal writing. The findings revealed that students could gain their capability of analytical thinking. They could give ideas or behave the characteristics of analytical thinking such as thinking for classifying, compare and contrast, reasoning, interpreting, collecting data and decision making. Students' journal writing reflected that the STS class of soil and its' pollution motivated students. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  6. Soil examination for a forensic trace evidence laboratory-Part 3: A proposed protocol for the effective triage and management of soil examinations.

    Science.gov (United States)

    Woods, Brenda; Lennard, Chris; Kirkbride, K Paul; Robertson, James

    2016-05-01

    In the past, forensic soil examination was a routine aspect of forensic trace evidence examinations. The apparent need for soil examinations then went through a period of decline and with it the capability of many forensic laboratories to carry out soil examinations. In more recent years, interest in soil examinations has been renewed due-at least in part-to soil examinations contributing to some high profile investigations. However, much of this renewed interest has been in organisations with a primary interest in soil and geology rather than forensic science. We argue the need to reinstate soil examinations as a trace evidence sub-discipline within forensic science laboratories and present a pathway to support this aim. An examination procedure is proposed that includes: (i) appropriate sample collection and storage by qualified crime scene examiners; (ii) exclusionary soil examinations by trace evidence scientists within a forensic science laboratory; (iii) inclusionary soil examinations by trace evidence scientists within a forensic science laboratory; and (iv) higher-level examination of soils by specialist soil scientists and palynologists. Soil examinations conducted by trace evidence scientists will be facilitated if the examinations are conducted using the instrumentation routinely used by these examiners. Hence, the proposed examination protocol incorporates instrumentation in routine use in a forensic trace evidence laboratory. Finally, we report on an Australian soil scene variability study and a blind trial that demonstrate the utility of the proposed protocol for the effective triage and management of soil samples by forensic laboratories. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Investigation of Inquiry-based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    Science.gov (United States)

    Weiland, Sunny Minelli

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level science teachers conceptualize "inquiry-based instruction?" 2) What are preferred instructional strategies for implementation in middle level science classrooms? And 3) How do middle level science teachers perceive the connection between science instruction and student learning? The participants within this research study represent 33 percent of teachers in grades 5 through 9 within six school districts in northeastern Pennsylvania. Of the 12 consent forms originally obtained, 10 teachers completed all three phases of the data collection, including the online survey, participation in focus groups, and teacher self-reflection. 60 percent of the participants taught only science, and 40 percent taught all content areas. Of the ten participants, 50 percent were certified teachers of science and 50 percent were certified as teachers of elementary education. 70 percent of the research participants reflected having obtained a master's, with 60 percent of these degrees being received in areas of education, and 10 percent in the area of science. The research participants have a total of 85 collective years of experience as professional educators, with the average years of experience being 8.5 years. Analysis of data revealed three themes related to research question #1) How do middle-level science teachers conceptualize inquiry-based instruction? and sub-question #1) How do middle-level science teachers characterize effective instruction? The themes that capture the essence of teachers' formulation of inquiry-based instruction that emerged in this study were student centered, problem solving, and hands-on . Analysis of data revealed one theme

  8. Factors influencing exemplary science teachers' levels of computer use

    Science.gov (United States)

    Hakverdi, Meral

    This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to

  9. Boron levels in soils cropped to coffee and their relationships to ...

    African Journals Online (AJOL)

    Studies on boron levels in soils cropped to coffee were carried out in Ghana due to widespread reports on boron deficiency in soils of some coffee producing countries. Leaves and soils were sampled from Cocobod coffee plantations at Bogoso, Suhuma, Manso-Mim, Bunso and Bepong, which represent the main coffee ...

  10. Sorption behavior of cesium on various soils under different pH levels

    International Nuclear Information System (INIS)

    Giannakopoulou, F.; Haidouti, C.; Chronopoulou, A.; Gasparatos, D.

    2007-01-01

    In the present study we investigated the sorption behavior of Cs in four different soils (sandyloam, loam, clayloam and clay) by using batch experiment. Cs sorption characteristics of the studied soils were examined at 4 mg L -1 Cs concentration, at various pH levels, at room temperature and with 0.01 M CaCl 2 as a background electrolyte. Among different soils the decrease of k d (distribution coefficient) of cesium, at all pH levels, followed the sequence sandyloam > loam > clayloam > clay, indicating that the particle size fractions and especially the clay content plays predominant role on sorption of Cs. The effect of pH on cesium sorption displays a similar pattern for all soils, depending on soil type. At acid pH levels less cesium was sorbed, due to a greater competition with other cations for available sorption sites. The maximum sorption of Cs was observed at pH 8, where the negative charge density on the surface of the absorbents was the highest. For all soils was observed significantly lower Cs sorption at pH 10

  11. Soil properties and processes

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Tis volume 2 on Soil Properties and Processes covers: - Soil physics - Soil (bio)chemistry -

  12. Determination of levels of polycyclic aromatic hydrocarbons in soil ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    mishandling, deliberate disposal, spilling and leakage of petroleum products ... and eventually seeps into water bodies (Olugboji and ... solubility in water and are highly lipophilic. In water .... detect levels of PAHs in soils even at low levels and.

  13. Evaluation of uranium and arsenic retention by soil from a low level radioactive waste management site using sequential extraction

    International Nuclear Information System (INIS)

    Evans, G.J.; Dhoum, R.T.

    1998-01-01

    The European Communities Bureau of Reference (BCR) and Chunguo sequential extraction procedures were employed to evaluate the retention of U and As by a soil contaminated with low level radioactive waste. Modifications were made to both procedures to optimize the measurement of soil and extractant samples using epithermal neutron activation analysis. Based on the BCR procedure, approximately 20% of the U appeared to be bound to the carbonate fraction, 10% to the mineral oxide fraction and 20% to the organic fraction. In the case of As, the majority was strongly bound in the residue fraction. The results obtained with the Chunguo procedure supported these conclusions to some extent, in that the majority of the U and As was found to be strongly bound to the soil in a manner consistent with its presence in the residue fraction. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Influence of Acacia trees on soil nutrient levels in arid lands

    Science.gov (United States)

    De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim

    2014-05-01

    The potential of scattered trees as keystone structures in restoring degraded environments is gaining importance. Scattered trees have strong influence on their abiotic environment, mainly causing changes in microclimate, water budget and soil properties. They often function as 'nursing trees', facilitating the recruitment of other plants. Acacia raddiana is such a keystone species which persists on the edge of the Sahara desert. The study was conducted in a forest-steppe ecosystem in central Tunisia where several reforestation campaigns with Acacia took place. To indentify the impact of those trees on soil nutrients, changes in nutrient levels under scattered trees of three age stages were examined for the upper soil layer (0-10 cm) at five microsites with increasing distance from the trunk. In addition, changes in soil nutrient levels with depth underneath and outside the canopy were determined for the 0-30 cm soil layer. Higher concentrations of organic matter (OM) were found along the gradient from underneath to outside the canopy for large trees compared to medium and small trees, especially at microsites close to the trunk. Levels of soluble K, electrical conductivity (EC), available P, OM, total C and N decreased whereas pH and levels of soluble Mg increased with increasing distance from tree. Levels of soluble Ca and Na remained unchanged along the gradient. At the microsite closest to the trunk a significant decrease in levels of soluble K, EC, OM, available P, total C and N, while a significant increase in pH was found with increasing depth. The concentration of other nutrients remained unchanged or declined not differently underneath compared to outside the canopy with increasing depth. Differences in nutrient levels were largely driven by greater inputs of organic matter under trees. Hence, Acacia trees can affect the productivity and reproduction of understory species with the latter in term an important source of organic matter. This positive feedback

  15. Survey of radioactivity levels of soil in Shanghai

    International Nuclear Information System (INIS)

    Ren Lihua

    1993-01-01

    The gross α and β activities on soil were measured by a mode FJ-2600 air-flow type alpha and beta counter. 204 sampling points including 173 grid points and 31 special points were set in the whole city. The ranges of the gross α and β activities in soil at the grid points are 816.5-2056.1 Bq/kg and 633.2-896.4 Bq/kg respectively. All these values are within the normal range of background activities. Only few special points are beyond the normal range. The results of statistical test indicate that the gross α and β activities show a normal distribution and that the levels of gross activity correlate with the sampling point, soil type and the geomorphology. It seems that the wide range of background values is related to the differences in natural conditions, such as the terrestrial formation, the soil-forming parent materials, etc., and the human activity

  16. Lead levels in roadside soils and vegetation of Damascus city

    International Nuclear Information System (INIS)

    Othman, I.; Al-Oudat, M.; Al-Masri, M.S.

    1999-01-01

    Seasonal variations of lead concentration in roadside soils and plants in 12 sites in Damascus city have been investigated. Lead concentrations in soil were found to be varied from 78.4 ppm to 832 ppm; lower levels in the wet period than in the dry period were observed. While lead levels in roadside plants varied between 3.39 ppm to 13.28 ppm. The results have also shown that most of the vegetables grown on the roadside of Damascus city have high concentrations of lead and the normal washing does not decrease it to An acceptable level. (author)

  17. Soil use and management

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Volume 3 on Soil Use and Management covers: - Soil evaluation and land use planning - Soil and

  18. Soil dioxins levels at agriculture sites and natural preserve areas of Taiwan.

    Science.gov (United States)

    Jou, Jin-juh; Lin, Kae-Long; Chung, Jen-Chir; Liaw, Shu-Liang

    2007-08-17

    In this study, agriculture soil in Taiwan has been sampled and analyzed to determine the background level of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/DF) in the agricultural and nature preserve areas. Another objective is to investigate relationship between soil characteristics and air deposition in Taiwan. The results indicate that in nature preserve areas the topsoil shows an extraordinary profile of PCDD/DF compared to that in the air deposition. The PCDD/DF levels of the low-contaminated agricultural soils are compatible with those of the nature preserves soils. However, in the highly-contaminated agricultural soils, there is an abrupt jump in their concentrations, 10-100 times higher. The overall I-TEQ values of the background topsoils range from 0.101 to 15.2 ng I-TEQ/kg. Near industrial/urban areas in Taiwan the PCDD/DF are slightly higher compared to those in the low concentration group. Typically, the PCDD/DF background values found in this survey fall in the 90% confidence interval and can thus, be deemed the background levels in Taiwan. Ninety-five percent of these data are below the European and American soil standard of 10 ng I-TEQ/kg d.w. The PCDD/DF profile with one neighborhood soil sample was shown no significant difference.

  19. Temporal and spatial dynamics of mineral levels of forage, soil and ...

    African Journals Online (AJOL)

    Temporal and spatial dynamics of mineral levels of forage, soil and cattle blood ... In the plain lands, local variations occurred for soil phosphorus and magnesium. ... Rangeland improvement and supplementation strategies are suggested to ...

  20. Microbial soil community analyses for forensic science: Application to a blind test.

    Science.gov (United States)

    Demanèche, Sandrine; Schauser, Leif; Dawson, Lorna; Franqueville, Laure; Simonet, Pascal

    2017-01-01

    Soil complexity, heterogeneity and transferability make it valuable in forensic investigations to help obtain clues as to the origin of an unknown sample, or to compare samples from a suspect or object with samples collected at a crime scene. In a few countries, soil analysis is used in matters from site verification to estimates of time after death. However, up to date the application or use of soil information in criminal investigations has been limited. In particular, comparing bacterial communities in soil samples could be a useful tool for forensic science. To evaluate the relevance of this approach, a blind test was performed to determine the origin of two questioned samples (one from the mock crime scene and the other from a 50:50 mixture of the crime scene and the alibi site) compared to three control samples (soil samples from the crime scene, from a context site 25m away from the crime scene and from the alibi site which was the suspect's home). Two biological methods were used, Ribosomal Intergenic Spacer Analysis (RISA), and 16S rRNA gene sequencing with Illumina Miseq, to evaluate the discriminating power of soil bacterial communities. Both techniques discriminated well between soils from a single source, but a combination of both techniques was necessary to show that the origin was a mixture of soils. This study illustrates the potential of applying microbial ecology methodologies in soil as an evaluative forensic tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Application of a visual soil examination and evaluation technique at site and farm level

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Heuvelink, G.B.M.; Moolenaar, S.W.

    2014-01-01

    Visual soil examination and evaluation (VSEE) techniques are semi-quantitative methods that provide rapid and cost-effective information on soil quality. These are mostly applied at site or field level, but there is an increased need for soil quality indicators at farm level to allow integration

  2. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  3. New strategies to strengthen the soil science knowledge of student during field activities

    Science.gov (United States)

    Benito, Marta; Hontoria, Chiquinquirá; Masaguer, Alberto; Diéguez, Carmen; Almorox, Javier; Pérez, Juana; Santano, Jesús; Mariscal, Ignacio; Gutiérrez, Jesús; Moliner, Ana

    2013-04-01

    Soil Science can be considered a discipline that serves as a fundamental base for other disciplines such as ecology, agronomy, plant production, etc. In order to demonstrate the relevance and connection to real world it is important to develop field and practical activities. Field activities help student to comprehend soil as part of the landscape and the natural ecosystems. These activities also help them to realize the importance of historical soil use on the quality of todaýs soil and landscapes. It is well known that fieldwork practices are essential to strengthen the soil science knowledge of students and their learning process. These fieldwork practices involve doing a physical activity rather than passively attending lectures or watching demonstrations. The simple visual and tactile observations in the field could be used to predict soil behavior and these direct observations are best made in the field. Students who learned in the field using an active work are more motivated, have more positive attitudes, and place more value in their work than those that learn passively. Therefore, when scheduling the coursework an important time is assigned to field work, which sometimes is not sufficiently profited from the standpoint of student learning taking into consideration the economic effort involved. We are aware that part of the students are simple spectators in the field so we encourage their participation by making them responsible for obtaining part of the information about the place and the types of soils that will be visited. On the other hand, we will invite the students to do some game based exercises, which are fun and force them to work in groups and to pay attention to explanations. Our objective is to present the information in a more attractive way, making the learning of soil profile description and easier task. The exercises that we propose are both field and problem-based learning to make sure that the knowledge is more memorable (non

  4. Level of Fluoride in Soil, Grain and Water in Jalgaon District, Maharashtra, India.

    Science.gov (United States)

    Naik, Rahul Gaybarao; Dodamani, Arun Suresh; Vishwakarma, Prashanth; Jadhav, Harish Chaitram; Khairnar, Mahesh Ravindra; Deshmukh, Manjiri Abhay; Wadgave, Umesh

    2017-02-01

    Fluoride has an influence on both oral as well as systemic health. The major source of fluoride to body is through drinking water as well as through diet. Staple diet mainly depends on local environmental factors, food grains grown locally, its availability etc. Determination of fluoride level in these food grains is important. So, estimation of the amount of fluoride in grains and its relation to the sources of fluoride used for their cultivation viz., soil and water is important. To estimate the relation of fluoride concentration in grains (Jowar) with respect to that of soil and water used for their cultivation. Fifteen samples each of soil, water and grains were collected using standardized method from the same farm fields of randomly selected villages of Jalgaon district. Fluoride ion concentration was determined in laboratory using SPADNS technique. Mean difference in fluoride levels in between the groups were analyzed using ANOVA and Post-Hoc Tukey test. Linear regression method was applied to analyse the association of the fluoride content of grain with water and soil. There was a significant difference in between mean fluoride levels of soil and water (pwater and grain was found to be non significant (p=0.591). Also fluoride levels in all the three groups showed significant association with each other. Fluoride level of soil, grains and water should be adjusted to an optimum level. Soil has positive correlation with respect to uptake of fluoride by Jowar grains. So, Jowar grains with optimum fluoride content should be made available in the commercial markets so that oral and general health can be benefitted.

  5. Factors Influencing Exemplary Science Teachers' Levels of Computer Use

    Science.gov (United States)

    Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen

    2011-01-01

    The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…

  6. Degradation of kresoxim-methyl in soil: impact of varying moisture, organic matter, soil sterilization, soil type, light and atmospheric CO2 level.

    Science.gov (United States)

    Khandelwal, Ashish; Gupta, Suman; Gajbhiye, Vijay T; Varghese, Eldho

    2014-09-01

    In the present investigation, persistence of kresoxim-methyl (a broad spectrum strobilurin fungicide) was studied in two different soil types of India namely Inceptisol and Ultisol. Results revealed that kresoxim-methyl readily form acid metabolite in soil. Therefore, residues of kresoxim-methyl were quantified on the basis of parent molecule alone and sum total of kresoxim-methyl and its acid metabolite. Among the two soil types, kresoxim-methyl and total residues dissipated at a faster rate in Inceptisol (T1/2 0.9 and 33.8d) than in Ultisol (T1/2 1.5 and 43.6d). Faster dissipation of kresoxim-methyl and total residues was observed in submerged soil conditions (T1/2 0.5 and 5.2d) followed by field capacity (T1/2 0.9 and 33.8d) and air dry (T1/2 2.3 and 51.0d) conditions. Residues also dissipated faster in 5% sludge amended soil (T1/2 0.7 and 21.1d) and on Xenon-light exposure (T1/2 0.5 and 8.0d). Total residues of kresoxim-methyl dissipated at a faster rate under elevated CO2 condition (∼550μLL(-)(1)) than ambient condition (∼385μLL(-)(1)). The study suggests that kresoxim-methyl alone has low persistence in soil. Because of the slow dissipation of acid metabolite, the total residues (kresoxim-methyl+acid metabolite) persist for a longer period in soil. Statistical analysis using SAS 9.3 software and Duncan's Multiple Range Test (DMRT) revealed the significant effect of moisture regime, organic matter, microbial population, soil type, light exposure and atmospheric CO2 level on the dissipation of kresoxim-methyl from soil (at 95% confidence level p<0.0001). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The effect of biofertilizer fungi on Ciherang rice growth at some level of soil salinity

    Directory of Open Access Journals (Sweden)

    Y B Subowo

    2014-04-01

    Full Text Available A research about the effect of fungus contained biofertilizer on Ciherang rice that was growth on different level of soil salinity was conducted. One of the effect of global climate changes is the increase of sea water level. It leads to the expansion of sea water submerged land for agriculture. Salt intrution to the agriculture area considerably decrease soil fertility because of the high salinity. Some of microbes especially soil fungi such as Aspergillus sp and Penicillium sp. are able to grow at high salinity environment. Those fungi were also able to degrade lignocellulose, sollubilize in organic phosphate and provide organic phosphat and produce plant growth hormon especially IAA. Such activities benefit to improve soil fertility in high salinity land as a bio-fertilizer.The objective of this research was to know the growth of rice plant that treated with fungus contained bio-fertilizer on land with different level of salinity. The rice were planted in Green house of Cibinong Science Centre, Cibinong.The research was set up as complete random design with five replication. The rice were watered by 5 conditions: 50% of sea water, 100% of sea water, 100% sea water + 2 % NaCl , fresh water + 5 % NaCl and 100% fresh water as the control. Fertilizer was added to the medium twice. Ten grams of fertilizer were used per polybag (10g/7 Kg, 2 weeks after planting and before flowering subsequently. The observed parameters were plant height, number of tiller, leaves colour, biomass dry weight, soil organic carbon content, cellulosic and lignin degrading activities of the fungus, fungus phosphate-solubilizing potency and fungus production of IAA.The watering treatment lead to 5 level of salinity i.e. : 5,93 dS/m (50% sea water, 9,15 dS/m (100% sea water, 10,42 dS/m (sea water + 2% NaCl, 12,43 dS/m (fresh water + 5% NaCl and 0,74 dS/m (fresh water. The result showed that among those 5 watering condition, the rice grew best on 5,93 dS/m (watering 50% of

  8. Incorporating a Soil Science Artifact into a University ePortfolio Assessment Tool

    Science.gov (United States)

    Mikhailova, Elena; Werts, Joshua; Post, Christopher; Ring, Gail

    2014-01-01

    The ePortfolio is a useful educational tool that is utilized in many educational institutions to showcase student accomplishments and provide students with an opportunity to reflect on their educational progress. The objective of this study was to develop and test an artifact from an introductory soil science course to be included in the…

  9. The effect of soilagrochemical properties on level of available phosphate in soil

    International Nuclear Information System (INIS)

    Zhang Yumei

    1985-01-01

    Superphosphate labelled with 32 P and 15 typies of soil were used to study the effect of various soil-agrochemical properties on the availability of phosphate. The level was figured with A value. The relations of A to soybean yield and soil-agro-chemical properties were analysed through Multiple regression

  10. The rocky flats controversy on radionuclide soil action levels

    International Nuclear Information System (INIS)

    Earle, T.C.

    2004-01-01

    This report describes the Rocky Flats radionuclide soil action level controversy as a case study for the purpose of understanding the nature and value of stakeholder involvement in the management of radiological hazards. The report consists of three main sections. The first section outlines the Rocky Flats story, including the Cold War era, the post-Cold War era, and the transition between the two. This provides the context necessary to understand the radionuclide soil action level controversy, the main events of which are described in the second section. In the final section, the Rocky Flats case is briefly discussed within the framework of a general model of stakeholder involvement and the lessons learned from the case are identified. (author)

  11. The Earth Science for Tomorrows Classroom

    Science.gov (United States)

    Shanskiy, Merrit

    2015-04-01

    The Earth sciences comprises many fascinating topics that is teached to different age level pupils/students in order to bring hard core science closer to their daily life. With developing possibilities in IT, multimedia overall electronic sector the teachers/lecturers have continuous possibilities to accomplish novel approaches and utilize new ideas to make science more interesting for students in all ages. Emerging, from personal experiences, the teaching of our surrounding Environment can be very enjoyable. In our everyday life the SOIL remains invisible. The soil is covered by plant cover which makes the topic somewhat in distant that is not "visible" to an eye and its importance is underestimated. In other hand, the SOIL is valuable primary resource for food production and basis of life for healthy environment. From several studies have found that because its complications, SOIL related topics are not very often chosen topic for course or diploma works by students. The lower-school students are very open to environmental topics accordingly to the grades. Here, the good results can be obtained through complimentary materials creation, like story telling and drawing books and puzzles. The middle/ and upper/school students will experience "real science" being able to learn what the science is about which often can play a important role on making choices for future curriculum completion at university level. Current presentation shares the ideas of selected methods that had showed successful results on different Earth Science topics teaching (biodiversity, growing substrates, green house gas emissions). For some ideas the presentation introduces also the further developmental possibilities to be used in teaching at Tomorrows Classroom.

  12. Transfer mechanisms in cultivated soils of waste radionuclides from electronuclear power plants in the system river--irrigated soil--underground water level

    Energy Technology Data Exchange (ETDEWEB)

    Saas, A; Grauby, A

    1974-12-31

    From symposinm on environmentl behavior of radionuclides released in the nuclear industry; Aix-en-Provence, France (14 May 1973). The location of nuclear power plants by rivers whose waters are used for irrigation and industrial and domestic consumption necessities a profound study of the river-irrigated soil- ground water system. Mechanisms of radionuclide transport in cultivated soil are considered under three principal aspects: the effect of the quality of the river water, of the irrigation channels, and of the ground water level on the mobility of the radionuclides in the soil; the influence of the type of soil (the four types of soils considered are acid brown soil, calcic brown soil, chalky brown soil, and chalky alluvial soil); and the distribution of radionuclides in the soil (hydrosoluble forms can contminate the ground water level and these are the forms in which they are taken up by plants. A study was made on the following nuclides: /sup 22/Na, /sup 137/Cs, /sup 85/Sr, /Sup 54/Mn, /Sup 59/Fe, /Sup 60/ Co, /sup 65/Zn, /sup 124/Sb, /sup 141 in the cultivated soils permit the evaluation of the risks of contmination of the food chain and of the underground water. This study also showed new perspectives of the behavior of radionuclides as a function of their contmination of the organo-mineral wastes of industrial and domestic origin. This pollution interfers largely with the formation of stble complexes carried by the river to irrigated soils. The quality of the water determines the distribution of the radionuclides in the profile. The hydrosoluble complex persists in the soil and migrates toward the underground water level if they are not biodegradable. The stability of these forms as a function of the soil pH and of its physicochemical characteristics, as well as that of the radionuclides considered, permit the formulation of a new balance of the radionuclides in soils. The formulation of new proposals for the contml of nuclear sites is discussed. (tr-auth)

  13. The levels of uranium and thorium in soils and vegetables from Cornwall and Sutherland

    International Nuclear Information System (INIS)

    Nicholson, S.; Long, S.E.; McEwen, I.

    1990-02-01

    Soils from Sutherland and Cornwall may contain high natural levels of uranium and thorium. Samples of soil and vegetables were taken from agricultural land in these regions, and the levels of uranium and thorium were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Delayed Neutron Activation Analysis (DNAA). Mean levels of uranium and thorium in the soils were, respectively, 3.5 times and 1.5 times greater than the British average. Uptake factors were calculated from these data and found to be of the order 10 -4 to 10 -3 which is in agreement with published literature. The Tessier extraction scheme was applied to some of the soils and the low levels present in the ''exchangeables'' fraction are consistent with the uptake factors. (author)

  14. Advancing the Science of Community-Level Interventions

    Science.gov (United States)

    Beehler, Sarah; Deutsch, Charles; Green, Lawrence W.; Hawe, Penelope; McLeroy, Kenneth; Miller, Robin Lin; Rapkin, Bruce D.; Schensul, Jean J.; Schulz, Amy J.; Trimble, Joseph E.

    2011-01-01

    Community interventions are complex social processes that need to move beyond single interventions and outcomes at individual levels of short-term change. A scientific paradigm is emerging that supports collaborative, multilevel, culturally situated community interventions aimed at creating sustainable community-level impact. This paradigm is rooted in a deep history of ecological and collaborative thinking across public health, psychology, anthropology, and other fields of social science. The new paradigm makes a number of primary assertions that affect conceptualization of health issues, intervention design, and intervention evaluation. To elaborate the paradigm and advance the science of community intervention, we offer suggestions for promoting a scientific agenda, developing collaborations among professionals and communities, and examining the culture of science. PMID:21680923

  15. The fascinating side of dirt: Soil and the global environment course

    Science.gov (United States)

    Grand, S.; Krzic, M.; Crowley, C.; Lascu, G.; Rosado, J.

    2012-04-01

    Soil has recently been attracting some renewed public attention due to its inextricable link to current environmental challenges such as climate change, food security and water resource protection. It is increasingly acknowledged that the world's future will require a better understanding of soil science. Yet enrolment in soil related programs at universities in North America and around the world has been declining. One of the proposed causes for this drop is the tendency for soil science education to emphasize the agricultural side of soil science, while our increasingly urban and environmentally conscious student population is more interested in environmental sciences. To address this issue, in 2011 we created an on-line, first-year soil science course designed specifically to communicate the significance of soil science to global environmental questions. We propose that this type of course is an effective way to help increase interest in higher level soil courses and reverse the downward trend in enrolments. The course content was centered on prominent environmental issues, which were used to introduce basic concepts of soil science. Course materials emphasized integration with other natural resources disciplines such as ecology, biogeochemistry and hydrology. The online format allowed for a seamless integration of multimedia components and web content into course materials, and is believed to be appealing to technologically savvy new generations of students. Online discussion boards were extensively used to maintain strong student engagement in the course. Discussion topics were based on soil-related news stories that helped demonstrate the relevance of soils to society and illustrate the complex and often controversial nature of environmental issues. Students also made significant use of an online bulletin board to post information about environmental events and share news stories related to the course. This course was offered for the first time in term 1 of

  16. An estimate of potential threats levels to soil biodiversity in EU

    NARCIS (Netherlands)

    Gardi, C.; Jeffery, S.L.; Saltelli, A.

    2013-01-01

    Life within the soil is vital for maintaining life on Earth due to the numerous ecosystem services that it provides. However, there is evidence that pressures on the soil biota are increasing which may undermine some of these ecosystem services. Current levels of belowground biodiversity are

  17. Predictors of student success in entry-level science courses

    Science.gov (United States)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  18. Assessment of some physicochemical properties and levels of Pb ...

    African Journals Online (AJOL)

    ... properties and levels of Pb, Cu and Zn in soils of selected dumpsites in Kano Metropolis, ... International Journal of Biological and Chemical Sciences ... Cu and Zn in soil samples collected from particular dumpsites within Kano Metropolis ...

  19. The Pedotopia Project: A Transdisciplinary Experiment in Soil Education

    Science.gov (United States)

    Toland, A.; Wessolek, G.

    2012-04-01

    In the absence of every-day interactions with the land, a hands-on, comprehensive soil education across disciplines and ages is necessary. Soil education is usually integrated into earth science and geography curricula and only rarely into social science, arts and humanities programs. Furthermore, an emphasis on measurement and modeling in conventional classroom science often neglects aesthetic, moral and other non-quantifiable values, precluding a broader cultural context in which soil education could take place. The arts play a vital role in communicating environmental issues to the greater public and represent a dynamic approach to help students discover soil complexity in new and unexpected ways. Artistic methods have recently been introduced as pedagogical tools in soil awareness-raising programs for children and youth. Painting with soil has become an interesting new approach to soil education from Kindergarten to University levels (SZLEZAK 2008). And a growing amount of literature describes artists who have undertaken different soil issues, suggesting that such artistic focus may improve wider understanding and appreciation of soil conservation issues (FELLER et al 2010, TOLAND & WESSOLEK 2010, WAGNER 2002). How can art contribute to soil science, policy and education - both with the aim of generating greater public understanding, but also by honing creative methods to confront problems such as contamination, erosion, and urban sprawl? What artistic approaches exist to protect and restore soils as well as our relationship to the land? And how can these approaches support current soil education goals? These questions were addressed in the transdisciplinary soil seminar, "Pedotopia - Re-sourcing Urban Soils" from September 2010 to September 2011 in Berlin. A cooperation between the Technical University of Berlin's Department of Soil Protection and the Berlin University of Arts' Institute for Art in Context, the project served as a teaching experiment as well

  20. An investigation into the use of a mixture model for simulating the electrical properties of soil with varying effective saturation levels for sub-soil imaging using ECT

    International Nuclear Information System (INIS)

    Hayes, R R; Newill, P A; Podd, F J W; York, T A; Grieve, B D; Dorn, O

    2010-01-01

    A new visualisation tool is being developed for seed breeders, providing on-line data for each individual plant in a screening programme. It will be used to indicate how efficiently each plant utilises the water and nutrients available in the surrounding soil. This will facilitate early detection of desirable genetic traits with the aim of increased efficiency in identification and delivery of tomorrow's drought tolerant food crops. Visualisation takes the form of Electrical Capacitance Tomography (ECT), a non-destructive and non-intrusive imaging technique. Measurements are to be obtained for an individual plant thus allowing water and nutrient absorption levels for an individual specimen to be inferred. This paper presents the inverse problem, discusses the inherent challenges and presents the early experimental results. Two mixture models are evaluated for the prediction of electrical capacitance measurement data for varying effective soil saturation levels using a finite element model implemented in COMSOL Multiphysics. These early studies have given the research team an understanding of the technical challenges that must now be addressed to take the current research into the world of agri-science and food supply.

  1. How Indigenous values shaped a successful multi-year Soil Health program in Aotearoa-New Zealand (presented from both indigenous Māori and western science perspectives)

    Science.gov (United States)

    Stevenson, B.; Harmsworth, G.; Kalaugher, E.

    2017-12-01

    New Zealand is a multicultural society, founded on the Treaty of Waitangi which when enshrined into various legislation and national policy, provides incentive to incorporate indigenous Māori world views into nationally funded science and research programmes. Here we discuss how the integration of indigenous world views and western science were combined in a research proposal that resulted in successful funding for a 5 year collaborative science programme. The programme strives to develop an expanded national soil health framework for New Zealand that will be used by policy makers, local government, indigenous Māori, industry, and primary sector groups to maintain the natural capital and productivity of soils within environmental constraints. Soil health is fundamental to economic, social, and human wellbeing, and provides a myriad of ecosystem and environmental services, such as those sustaining food and fibre production. Typically soil health is defined by "dynamic" soil characteristics that are susceptible to changes in land use or land management over relatively short time frames (years to decades). Soil resilience, however, is a much longer-term concept that is not well captured in current soil health thinking. The Māori world view encapsulates such long term thinking through interconnected Māori values and inter-generational concepts (e.g., whakapapa, rangatiratanga, manawhenua, kaitiakitanga, mauri) that provide the basis for indigenous resource management in Aotearoa-New Zealand. These values and recognition of the Treaty of Waitangi provide authority and rights to manage resources according to tikanga (customs, principles). Māori environmental concepts and knowledge combined with science concepts for understanding soil health and resilience, served as a powerful central theme for the design and implementation of this science program. Māori involvement and capability development are integral to this research effort and we believe the synthesis of M

  2. Correlations between soil microbial and physicochemical variations ...

    Indian Academy of Sciences (India)

    Prakash

    Changes in soil quality can be detected by observing community-level ... School of Environment, Resources and Development, Asian Institute of Technology,. Klong Luang .... version 3.3 (International Institute for Geo-Information. Science and ...

  3. Assessment of cobalt levels in wastewater, soil and vegetable ...

    African Journals Online (AJOL)

    User

    Key words: Cobalt level, Kubanni River, soil, vegetable, wastewater. INTRODUCTION. Cobalt is ... metals released into the environment from a variety of anthropogenic activities ..... Heavy Metal Stress in Plants, 2nd Edition,. Springer,. United.

  4. Soil Erosion. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  5. Experience in organization of soil science–biogeographical part of educational natural science practical work of students-geographers

    Directory of Open Access Journals (Sweden)

    Юлія Прасул

    2016-10-01

    Full Text Available The article considers the experience of practical field training of students- geographers, defines its role in training geographers, looks at the ways of rational organization of soil science, biogeographic section of natural science educational practices in terms of training at high school stationary practice grounds. The educational natural science practice of the 1st year-students-geographers of V.N. Karazin Kharkiv National University takes place on the educational and scientific geographical grounds «Gaidary» in Zmiiv district, Kharkiv region. The location of the base allows to explore a typical structure of the Siversky Donets river valley, select a variety of elements and components to form an understanding in students of both the knowledge of the individual components of nature, and the processes of natural complexes functioning as a whole, to introduce the elements of environmental knowledge and factors of anthropogenic impact on the environment. The soil-biogeographical section of practical work focuses on acquiring skills of field research methods of soil and ecological communities by the students; planning of the routes, taking into account the conditions and landscape features of the territory; cameral treatment of the data and samples collected in the field; identification of cause-and-effect relationships of soil and vegetation development. Landscape diversity of the territory in the area of practice allows to study the soil and vegetation within the natural systems of the watershed, its slopes, gullies and gully areas of the floodplain, the first floodplain terrace during 5-6 days of soil-biogeographic section of the practical work through the daily radial routes. During the practice traditional classical techniques of field studies of soils and ecological communities (primarily tab and a description of soil profiles and geo-botanical areas are combined with new, present-day approaches (use of GPS-navigators, GIS

  6. Data on soil PH of Barddhaman district, India

    Directory of Open Access Journals (Sweden)

    Sumanta Bid

    2017-06-01

    Full Text Available PH (Puissance de Hydrogen is an essential ingredient of soil that effects on fertility and productivity of dirt. Barddhaman district is a part of Lower Gangetic Plain fully covered by alluvial soil and popularly known as ‘rice bowl of West Bengal’ owing to its lofty production. This data article provides a block level data on soil PH that is essential for further investigation of the relationship among soil ph, plant growth, plant health and productivity. This data is valuable in the field of soil geography and soil science. Soil PH data is more relevant in the ground of plant biology, agricultural geography and agricultural science. It helps to explain the acidic and alkaline nature of alluvial soil. The data consist of 195 samples (n=195 taken from the entire district. Samples have been collected from March, 2014 to March, 2015 and experimented in the laboratory. Theoretically PH value is limited within 0–14. Experiment result exemplifies the highest value 8.5 found in Khandaghosh block whereas lowest value is 4.5 and the samples which result in lowest value are gathered from 4 different blocks like Manteswar, Burdwan - II, Barabani and Salanpur.

  7. Soil friability - Concept, Assessment and Effects of Soil Properties and Management

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    Soil friability is a key soil physical property yielding valuable information on the ease of productin a favorable seed- and root beds during tillage operations. Therefore, soil friability is acrucial soil property in relation to the ability of soil to support plant growth and to minimzethe energy...... required for tillage. The topic has interested farmers and soil scientiest for centuries, but is was the paper by Utomo and Dexter (1981) that significantly put the topic on the soil science agenda. The awareness of soil friability is growing, both in practiceand in soil science. This must be viewed...... in the light of the present renewed focus on global food security together with a focus on fossil fuel consumption and greenhouse gas emissions in crop production. Certainly, the demand for well-functioning, arable soils is rising to meet the global challenges....

  8. Characterization of Soil Moisture Level for Rice and Maize Crops using GSM Shield and Arduino Microcontroller

    Science.gov (United States)

    Gines, G. A.; Bea, J. G.; Palaoag, T. D.

    2018-03-01

    Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.

  9. Airborne exposure and soil levels associated with lead abatement of a steel tank.

    Science.gov (United States)

    Lange, John H

    2002-02-01

    This study reports on airborne exposure levels and soil concentrations of lead in regard to abatement of a steel structure (water tank). The tank was de-leaded by abrasive sand blasting. The ball of the tank had a lead surface level that exceeded the Environmental Protection Agency (EPA) definition of lead-based paint (LBP) (0.5% lead), but paint on stem and base was below this criterion. Personal and area airborne samples were collected during different activities of lead abatement of the tank. Summary results suggest during abrasive blasting of ball and stem/base personal exposure levels, as reported with arithmetic and geometric means, exceed the Occupational Safety and Health Administration (OSHA) permissible exposure limit (50 microg/m3). Highest personal exposure (occupational exposure) was associated with blasting of ball. Distribution of airborne and soil samples suggest non-normality and is best represented by a logarithmic form. Geometric standard deviations for air and soil lead support a non-normal distribution. Outlying values were found for personal and area air samples. Exposure levels associated with blasting stem/base section of tank support OSHA's policy requiring air monitoring of work at levels below the criterion established by EPA in identifying LBP. Area samples were statistically lower than personal samples associated with blasting ball and stem/base of tank. Exposure data suggest that workers performing abatement on steel structures have elevated lead exposure from surface lead. Respirator protection requirements are discussed. Soil lead concentration was suggested to decrease as distance increased from tank. Soil lead is suggested to be a result of deposition from LBP on tank surface. Minimal efforts were required to reduce average lead soil levels below EPA's upper acceptable criterion (1200 ppm Pb).

  10. Assessment of human health risk of reported soil levels of metals and radionuclides in Port Hope

    International Nuclear Information System (INIS)

    1991-11-01

    Risk assessment methods are applied to the question of health implications of contaminated soil in the Port Hope area. Soil-related as well as other pathways of exposure are considered. Exposures to the reported levels of uranium, antimony, chromium, copper, nickel, cadmium, cobalt, selenium, and zinc in Port Hope soils are not expected to result in adverse health consequences. Oral exposure to arsenic in soil at the reported levels is estimated to result in incremental cancer risk levels in the negligible range (10 -5 ). Estimated exposures also fall well below suggested toxic thresholds for arsenic. For the two small areas within the >50 μg/g isopleth, assessment of exposure is difficult without more definitive data on soil concentrations in these zones. Contamination of soils with lead is overall quite limited. In general, the reported soil levels of lead are not anticipated to pose a hazard. The site with the highest concentrations of lead is located on the west bank of the Ganaraska River, a popular fishing area. Depending on the level and extent of contamination, as well as degree of contact with the site, potential exposures could exceed tolerable intakes for children. Exposures to the radionuclides Ra(226), Pb(210), and U(238) in soil at the reported levels are estimated to fall well within recommended population limits

  11. Critical level of radionuclides pollution estimation for different soil type of Ukrainian Polessye

    International Nuclear Information System (INIS)

    Kravets, A.; Pavlenko, Y.

    1996-01-01

    The successive development and adaptation of general algorithm of calculation of doses from intake 137 Cs and 90 Sr as a function of pollution level and a type of soil as a source of the human trophycal chains and its use in solution of reverse problem, namely- estimation of the critical level of radionuclides pollution for the main type of soil of Ukrainian Polessye has been proposed. Calculation was realized as a combination of dynamic model of migration of radionuclides in soil and spreadsheet form with Quattro Pro, version 4.0. (author)

  12. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels.

    Science.gov (United States)

    Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho

    2016-11-01

    In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km 2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

  13. Do soil organic carbon levels affect potential yields and nitrogen use efficiency?

    DEFF Research Database (Denmark)

    Oelofse, Myles; Markussen, Bo; Knudsen, Leif

    2015-01-01

    Soil organic carbon (SOC) is broadly recognised as an important parameter affecting soil quality, and can therefore contribute to improving a number of soil properties that influence crop yield. Previous research generally indicates that soil organic carbon has positive effects on crop yields......, the yield with no fertiliser N application and the N use efficiency would be positively affected by SOC level. A statistical model was developed to explore relationships between SOC and potential yield, yields at zero N application and N use efficiency (NUE). The model included a variety of variables...

  14. A study of radon levels in the soil of Nasir's College of Agriculture - Yemen

    International Nuclear Information System (INIS)

    Ali, Taher M.; Ahmed, Hayel A.; Zumalian, Abubaker A.

    2000-01-01

    The radon diffusion in the atmosphere and dwelling interior comes from one source, it is the soil. Emitting alpha particles, radon daughters may be deposited in to the lungs and cause health hazards, so for this reason, estimation of radon levels in soil and dwelling were done in may countries. in the present work, we have used the passive dosimeters (SSNTD s ) containing (Cr-39) detectors. The dosimeters were distributed at the surface of the ground, in the soil horizontally (at depth 50 cm) and in soil with depth. The overall mean for radon levels in soil horizontally was (1.28 ± 0.05) KBq/m 3 and the mean radon concentration at the surface of the ground was (0.42 ± 0.03) KBq/m 3 . It is found that radon concentration increases as the depth increases up to (90 cm) depth after that radon levels decrease as the depth increases. (author)

  15. Wetland Ecohydrology: stochastic description of water level fluctuations across the soil surface

    Science.gov (United States)

    Tamea, S.; Muneepeerakul, R.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.

    2009-12-01

    Wetlands provide a suite of social and ecological critical functions such as being habitats of disease-carrying vectors, providing buffer zones against hurricanes, controlling sediment transport, filtering nutrients and contaminants, and a repository of great biological diversity. More recently, wetlands have also been recognized as crucial for carbon storage in the context of global climate change. Despite such importance, quantitative approaches to many aspects of wetlands are far from adequate. Therefore, improving our quantitative understanding of wetlands is necessary to our ability to maintain, manage, and restore these invaluable environments. In wetlands, hydrologic factors and ecosystem processes interplay and generate unique characteristics and a delicate balance between biotic and abiotic elements. The main hydrologic driver of wetland ecosystems is the position of the water level that, being above or below ground, determines the submergence or exposure of soil. When the water level is above the soil surface, soil saturation and lack of oxygen causes hypoxia, anaerobic functioning of microorganisms and anoxic stress in plants, that might lead to the death of non-adapted organisms. When the water level lies below the soil surface, the ecosystem becomes groundwater-dependent, and pedological and physiological aspects play their role in the soil water balance. We propose here a quantitative description of wetland ecohydrology, through a stochastic process-based water balance, driven by a marked compound Poisson noise representing rainfall events. The model includes processes such as rainfall infiltration, evapotranspiration, capillary rise, and the contribution of external water bodies, which are quantified in a simple yet realistic way. The semi-analytical steady-state probability distributions of water level spanning across the soil surface are validated with data from the Everglades (Florida, USA). The model and its results allow for a quantitative

  16. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  17. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  18. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Directory of Open Access Journals (Sweden)

    Jiangbao Xia

    Full Text Available Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL, soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC declined significantly, whereas the salt content (SC and absolute soil solution concentration (CS decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m and shallow water levels (0.6 m respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m.The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  19. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    International Nuclear Information System (INIS)

    Schulze, D.; Anderson, S.; Mattigod, S.

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography

  20. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, Fred; Bruggeman, Frank; Jonker, Catholijn; Looren de Jong, Huib; Tamminga, Allard; Treur, Jan; Westerhoff, Hans; Wijngaards, Wouter

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an *empirical* turn in the philosophy of mind. Rather than concentrate on *a priori* discussions of inter-level relations between “completed” sciences, a case is made for the actual study of the way

  1. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, F.; Bruggeman, F.; Jonker, C.M.; Looren de Jong, H.; Tamminga, A.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between 'completed' sciences, a case is made for the actual study of the way

  2. Inter-level relations in computer science, biology and psychology

    NARCIS (Netherlands)

    Boogerd, F.C.; Bruggeman, F.J.; Jonker, C.M.; Looren De Jong, H.; Tamminga, A.M.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between "completed" sciences, a case is made for the actual study of the way

  3. The effects of student-level and classroom-level factors on elementary students' science achievement in five countries

    Science.gov (United States)

    Kaya, Sibel

    The interest in raising levels of achievement in math and science has led to a focus on investigating the factors that shape achievement in these subjects (Lamb & Fullarton, 2002) as well as understanding how these factors operate across countries (Baker, Fabrega, Galindo, & Mishook, 2004). The current study examined the individual student factors and classroom factors on fourth grade science achievement within and across five countries. Guided by the previous school learning models, the elements of students' science learning were categorized as student-level and classroom-level factors. The student-level factors included gender, self-confidence in science, and home resources. The classroom-level factors included teacher characteristics, instructional variables and classroom composition. Results for the United States and four other countries, Singapore, Japan, Australia, and Scotland were reported. Multilevel effects of student and classroom variables were examined through Hierarchical Linear Modeling (HLM) using the Trends in International Mathematics and Science Study (TIMSS) 2003 fourth grade dataset. The outcome variable was the TIMSS 2003 science score. Overall, the results of this study showed that selected student background characteristics were consistently related to elementary science achievement in countries investigated. At the student-level, higher levels of home resources and self-confidence and at the classroom-level, higher levels of class mean home resources yielded higher science scores on the TIMSS 2003. In general, teacher and instructional variables were minimally related to science achievement. There was evidence of positive effects of teacher support in the U.S. and Singapore. The emphasis on science inquiry was positively related to science achievement in Singapore and negatively related in the U.S. and Australia. Experimental studies that investigate the impacts of teacher and instructional factors on elementary science achievement are

  4. Ciencia: Nivel A (Science: Level A).

    Science.gov (United States)

    Duron, Dolores; And Others

    A teacher's manual was developed for an elementary level science course in Spanish as part of an immersion program for English speaking children. The Level A manual is designed for kindergarten and grade 1 pupils. The five units cover the basic concepts of the weather, colors, animals, plants, and the five senses. Each unit includes vocabulary,…

  5. The importance of Soil Science to understand and remediate Land Degradation and Desertification processes

    Science.gov (United States)

    Bouma, Johan; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    processes, is therefore seen as a promising development in the contiuing battle to reduce land degradation and desertification. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Bouma, J. and L. Montanarella. 2016. Facing policy challenges with inter- and transdisciplinary soil research focused on the SDG's. SOIL 2, 135-145, doi:10.5194/soil-2-135-2016. Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., and Van Oost, K. 2015. The interdisciplinary nature of SOIL, SOIL, 1, 117-129, doi:10.5194/soil-1-117-2015, Easdale, M.H., 2016. Zero net livelihood degradation - the quest for a multidimensional protocol to combat desertification. SOIL 2, 129-134. doi:10.5194/soil-2-129-2016 Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., and Fresco, L. O.: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, SOIL, 2, 111-128, doi:10.5194/soil-2-111-2016, 2016. Keesstra, S.D., Geissen, V., van Schaik, L., Mosse., K., Piiranen, S., 2012. Soil as a filter for groundwater quality. Current Opinions in Environmental Sustainability 4, 507-516. doi:10.1016/j.cosust.2012.10.007 Mol, G., Keesstra, S.D., 2012. Editorial: Soil science in a changing world. Current Opinions in Environmental Sustainability 4: 473-477. Symeonakis, E., Karathanasis, N., Koukoulas, S., & Panagopoulos, G. (2016). Monitoring sensitivity to land degradation and desertification with the environmentally sensitive area index: The case of lesvos island. Land Degradation and Development, 27(6), 1562-1573. doi:10.1002/ldr.2285 Zhang, K., An, Z., Cai, D

  6. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels.

    Science.gov (United States)

    Zheng, S; Wang, C; Shen, Z; Quan, Y; Liu, X

    2015-01-01

    This study presents an efficient heavy metal (HM) control method in HM-contaminated wetlands with varied soil moisture levels through the introduction of extrinsic arbuscular mycorrhizal fungi (AMF) into natural wetland soil containing indigenous AMF species. A pot culture experiment was designed to determine the effect of two soil water contents (5-8% and 25-30%), five extrinsic AMF inoculants (Glomus mosseae, G. clarum, G. claroideum, G. etunicatum, and G. intraradices), and HM contamination on root colonization, plant growth, and element uptake of common reed (Phragmites australis (Cav.) Trin. ex Steudel) plantlets in wetland soils. This study showed the prevalence of mycorrhizae in the roots of all P. australis plantlets, regardless of extrinsic AMF inoculations, varied soil moisture or HM levels. It seems that different extrinsic AMF inoculations effectively lowered HM concentrations in the aboveground tissues of P. australis at two soil moisture levels. However, metal species, metal concentrations, and soil moisture should also be very important factors influencing the elemental uptake performance of plants in wetland ecosystems. Besides, the soil moisture level significantly influenced plant growth (including height, and shoot and root dry weight (DW)), and extrinsic AMF inoculations differently affected shoot DW.

  7. Soil science is way more fun than a proper job (Philippe Duchaufour Medal Lecture)

    Science.gov (United States)

    Smith, Pete

    2017-04-01

    Having now worked in soil science and climate change for over 20 years, I find myself giving one of the "old man / old woman" lectures at the EGU2017. You probably get picked to do this when your peers think that you are about to die soon, so I had better make the most of my time left! We are very fortunate to have a career in science, and to belong to the soils, and the wider, biogeosciences communities. If ever you get fed up with your teaching load, with your experiment that won't work, your model that you can't get running, or your paper that reviewers do not realise for the gem that you know it is, remember that we could be doing a 9 to 5 job, stuck in an office, with no opportunities to meet, talk and have fun with others from around the world with whom we share the same passion. I hope you enjoy your research careers and the time you spend with your work friends as much as I have. In this presentation I will reflect on how much I have learned about soils, climate, and the politics of how things get done over the past 20 years, and I will pick out some changes in our understanding of soils, and their role in the world as I go. I will draw on examples not only from my own work, but those of others, and will reflect on the some of the fun I have had while doing this "job".

  8. Understanding the soil underfoot: building a national postgraduate soils cohort through participative learning

    Science.gov (United States)

    Quinton, John; Haygarth, Phil; Black, Helaina; Allton, Kathryn

    2015-04-01

    Many of the PhD students starting Soil Science PhDs have only a limited understanding of the wider importance of soils, the state -of-art in other sub disciplines, and have often never seen a soil profile in the field. As the number of students nationally in the UK is also small compared to some other disciplines there is also a need to build a cohort of early career researchers. To address these issues, Lancaster University and the James Hutton Institute together with support from the British Society of Soil Science and the Natural Environment Research Council (NERC), ran a 5 day residential foundation soil science 'Summer School' in March 2015. The training school was an intense programme for ambitious and energetic post-graduate students. The course was specifically designed for students who were keen to develop skills in the development of inter-disciplinary research ideas and proposals. Specifically the course addressed: • the different functions in land uses and across landscapes • novel approaches for investigating how soils function • the basics of making a soil description and soil sampling in the field; • the current key challenges in soil science research • the requirements of, and approaches to, soil science research that requires multi-disciplinary and interdisciplinary approaches • the essentials of developing and planning a research project Our approach was to provide a space for the students to both learn from, but also work with some of the leading UK Soil Science experts. We used workshop style lectures, including some delivered via the internet, combined with student research teams working alongside research mentors to produce research proposals to be 'pitched' to a panel at the end of the course. These proposals formed the focus for engagement with the 'experts' making the time the students spent with them concentrated and productive. Feedback from the students was excellent and a variant of the course will be repeated by Cranfield

  9. Phosphorus critical levels and availability in lowland soils cultivated with flooded rice

    Directory of Open Access Journals (Sweden)

    Mariano Isabela Orlando dos Santos

    2002-01-01

    Full Text Available Lowland soils present a great potential for the flooded rice crop. This work aimed to estimate critical levels of P in waterlogged soils cultivated with rice using Mehlich 1 and anion exchange resin as soil-P extractors, compare the performance of these extractors as for the evaluation of the P availability, and study the soil-P fractions involved in the P nutrition of the rice crop. Studied soils consisted of four Histosols: Low Humic Gley (GP, Aluvial (A, Humic Gley (GH and Bog Soil (O which were previously cultivated with beans. The experimental design was completely randomized, in a factorial scheme, using four soils, five P rates (75, 150, 300, 500 and 800 mg dm-3 and two liming treatments (with and without liming, with three replicates. After 60 days of flooding, soil samples were submitted to P extraction by Mehlich 1 and resin, and phosphorous fractionation. Two rice plants were cultivated in pots containing 3 dm³ of waterlogged soils. The labile P and the moderately labile P of the soils contributed for rice nutrition. The two tested extractors presented efficiency in the evaluation of P availability for the rice cultivated in lowland waterlogged soils.

  10. Application of DRIFTS, 13 C NMR, and py-MBMS to Characterize the Effects of Soil Science Oxidation Assays on Soil Organic Matter Composition in a Mollic Xerofluvent

    Energy Technology Data Exchange (ETDEWEB)

    Margenot, Andrew J.; Calderón, Francisco J.; Magrini, Kimberly A.; Evans, Robert J.

    2016-12-20

    Chemical oxidations are routinely employed in soil science to study soil organic matter (SOM), and their interpretation could be improved by characterizing oxidation effects on SOM composition with spectroscopy. We investigated the effects of routinely employed oxidants on SOM composition in a Mollic Xerofluvent representative of intensively managed agricultural soils in the California Central Valley. Soil samples were subjected to oxidation by potassium permanganate (KMnO4), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2). Additionally, non-oxidized and oxidized soils were treated with hydrofluoric acid (HF) to evaluate reduction of the mineral component to improve spectroscopy of oxidation effects. Oxidized non-HF and HF-treated soils were characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), 13C cross polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, and pyrolysis molecular beam mass spectrometry (py-MBMS), and for particle size distribution (PSD) using laser diffractometry (LD). Across the range of soil organic carbon (OC) removed by oxidations (14-72%), aliphatic C-H stretch at 3000-2800 cm-1 (DRIFTS) decreased with OC removal, and this trend was enhanced by HF treatment due to significant demineralization in this soil (70%). Analysis by NMR spectroscopy was feasible only after HF treatment, and did not reveal trends between OC removal and C functional groups. Pyrolysis-MBMS did not detect differences among oxidations, even after HF treatment of soils. Hydrofluoric acid entailed OC loss (13-39%), and for H2O2 oxidized soils increased C:N and substantially decreased mean particle size. This study demonstrates the feasibility of using HF to improve characterizations of SOM composition following oxidations as practiced in soil science, in particular for DRIFTS. Since OC removal by oxidants, mineral removal by HF, and the interaction of oxidants and HF observed for this soil may

  11. Determination of lead levels in roadside soil and plants in Damascus city

    International Nuclear Information System (INIS)

    Othman, I; Al-Oudat, M.; Al-Masri, M.S.

    1997-04-01

    Seasonal variations of lead concentration in roadside soils and plants in 12 sites in Damascus city have been investigated. Lead concentrations in soil were found to be varied from 78.4 ppm to 832 ppm; lower levels in the wet period than in the dry period were observed. While lead levels in roadside plants varied between 3.39 ppm to 13.28 ppm. The results have also shown that most of the vegetables grown on the roadside of Damascus city have high concentrations of lead and the normal washing does not decrease it to unacceptable level. (author). 15 refs., 9 tabs

  12. Staying in the science stream: patterns of participation in A-level science subjects in the UK.

    OpenAIRE

    Smith, Emma

    2011-01-01

    This paper describes patterns of participation and attainment in A-level physics, chemistry and biology from 1961 to 2009. The A-level has long been seen as an important gateway qualification for higher level study, particularly in the sciences. This long term overview examines how recruitment to these three subjects has changed in the context of numerous policies and initiatives that seek to retain more young people in the sciences. The results show that recruitment to the pure sciences has ...

  13. Radioactivity level of soil around Baqiao coal-fired power plant in China

    International Nuclear Information System (INIS)

    Lu, Xinwei; Zhao, Caifeng; Chen, Cancan; Liu, Wen

    2012-01-01

    Natural radioactivity level of soil around Baqiao coal-fired power plant in China was determined using gamma ray spectrometry. The concentrations of 226 Ra, 232 Th and 40 K in the studied soil samples range from 27.6 to 48.8, 44.4 to 61.4 and 640.2 to 992.2 Bq kg −1 with an average of 36.1, 51.1 and 733.9 Bq kg −1 , respectively, which are slightly higher than the average values of Shaanxi soil. The radium equivalent activity, the air absorbed dose rate and the annual effective dose rate were calculated and compared with the internationally reported or reference values. The radium equivalent activities of the studied samples are below the internationally accepted values. The air absorbed dose rate and the annual effective dose rate received by the local residents due to the natural radionuclides in soil are slightly higher than the mean value of Xi'an and worldwide. - Highlights: ► Natural radioactivity in soil around the coal-fired power plant was determined. ► Radiological parameters were used to assess radiation hazard. ► The coal-fired power plant has affected the local radioactivity level.

  14. Copper and lead levels in crops and soils of the Holland Marsh Area-Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Czuba, M.; Hutchinson, T.C.

    1980-01-01

    A study was made of the occurrence, distribution, and concentrations of the heavy metals copper (Cu) and lead (Pb) in the soils and crops of the important horticultural area north of Toronto known as the Holland Marsh. The soils are deep organic mucks (> 85% organic matter), derived by the drainage of black marshland soils, which has been carried out over the past 40 years. A comparison is made between the Pb and Cu concentrations in undrained, uncultivated areas of the marsh and in the intensively used horticultural area. Analyses show a marked accumulation of Cu in surface layers of cultivated soils, with a mean surface concentration of 130 ppM, declining to 20 ppM at a 32-cm depth. Undrained (virgin) soils of the same marshes had < 20 ppM at all depths. Lead concentrations also declined through the profile, from concentrations of 22 to 10 ppM. In comparison, undrained areas had elevated Pb levels. Cultivation appeared to have increased Cu, but lowered Pb in the marsh. Copper and lead levels found in the crops were generally higher in the young spring vegetables than in the mature fall ones. Leafy crops, especially lettuce (Lactuca L.) and celery (Apium graveolens), accumulated higher Pb levels in their foliage compared with levels in root crops. Cultivation procedures, including past pesticide applications and fertilizer additions, appeared to be principal sources of Cu. Mobility from the soil and into the plant for these elements in the marsh muck soils is discussed.

  15. Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea.

    Science.gov (United States)

    Kim, Eun Jung; Choi, Sung-Deuk; Chang, Yoon-Seok

    2011-11-01

    To investigate the influence of biomass burning on the levels of polycyclic aromatic hydrocarbons (PAHs) in soils, temporal trends and profiles of 16 US Environmental Protection Agency priority PAHs were studied in soil and ash samples collected 1, 5, and 9 months after forest fires in South Korea. The levels of PAHs in the burnt soils 1 month after the forest fires (mean, 1,200 ng/g dry weight) were comparable with those of contaminated urban soils. However, 5 and 9 months after the forest fires, these levels decreased considerably to those of general forest soils (206 and 302 ng/g, respectively). The burnt soils and ash were characterized by higher levels of light PAHs with two to four rings, reflecting direct emissions from biomass burning. Five and 9 months after the forest fires, the presence of naphthalene decreased considerably, which indicates that light PAHs were rapidly volatilized or degraded from the burnt soils. The temporal trend and pattern of PAHs clearly suggests that soils in the forest-fire region can be contaminated by PAHs directly emitted from biomass burning. However, the fire-affected soils can return to the pre-fire conditions over time through the washout and wind dissipation of the ash with high content of PAHs as well as vaporization or degradation of light PAHs.

  16. Effects of soil development time and litter quality on soil carbon sequestration: Assessing soil carbon saturation with a field transplant experiment along a post-mining chronosequence

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan

    2017-01-01

    Roč. 28, č. 2 (2017), s. 664-672 ISSN 1085-3278 Institutional support: RVO:60077344 Keywords : soil organic matter fractions * carbon sequestration * carbon saturation * mining * reclamation Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 9.787, year: 2016

  17. Promoting Learning by Inquiry Among Undergraduates in Soil Sciences: Scaffolding From Project-based Courses to Student-Staff Research Grants by the National Research Agency in Oman

    Science.gov (United States)

    Al-Ismaily, Said; Kacimov, Anvar; Al-Maktoumi, Ali

    2016-04-01

    Three strategies in a soil science undergraduate programme with inquiry-based learning (IBL) principles at Sultan Qaboos University, Oman, are presented. The first strategy scaffolds courses into three phases: with direct instructional guidance, structured IBL, and finally, guided to open IBL. The second strategy involves extra-curricular activities of undergraduates, viz. conducting workshops on soils for pupils in grades 7-9 with their teachers. The third strategy promotes the teaching-research nexus through collaboration between the undergraduates and faculty within a student-supporting, government-funded programme through 1-year long research grants of up to 5,500 US/project. The efficiency of the strategies was evaluated by students' evaluations of courses and instructors and questionnaire-based surveys. Statistics of students' responses in teaching evaluations of IBL courses showed a significantly higher level of satisfaction compared with regular courses taught in the department and college. In surveys of other constituencies of the program, viz. the secondary schools, more than 90% of respondents "agreed" or "strongly agreed" that they had learned new information/secrets about soils. The indicators of success in the third strategy are: winning a highly competitive grant and, moreover, earning an even more competitive annual national award for the best executed research project. The two top graduates of the IBL soil programme progressed into the MSc programme with the university and national scholarships. Key words: inquiry based learning, soil science undergraduate program, scaffold of courses, outreach activities, teaching-research nexus, evaluation of program's efficiency

  18. Air-soil exchange of PCBs: levels and temporal variations at two sites in Turkey.

    Science.gov (United States)

    Yolsal, Didem; Salihoglu, Güray; Tasdemir, Yücel

    2014-03-01

    Seasonal distribution of polychlorinated biphenyls (PCBs) at the air-soil intersection was determined for two regions: one with urban characteristics where traffic is dense (BUTAL) and the other representing the coastal zone (Mudanya). Fifty-one air and soil samples were simultaneously collected. Total PCB (Σ82 PCB) levels in the soil samples collected during a 1-year period ranged between 105 and 7,060 pg/g dry matter (dm) (BUTAL) and 110 and 2,320 pg/g dm (Mudanya). Total PCB levels in the gaseous phase were measured to be between 100 and 910 pg/m(3) (BUTAL) and 75 and 1,025 pg/m(3) (Mudanya). Variations in the concentrations were observed depending on the season. Though the PCB concentrations measured in the atmospheres of both regions in the summer months were high, they were found to be lower in winter. However, while soil PCB levels were measured to be high at BUTAL during summer months, they were found to be high during winter months in Mudanya. The direction and amount of the PCB movement were determined by calculating the gaseous phase change fluxes at air-soil intersection. While a general PCB movement from soil to air was found for BUTAL, the PCB movement from air to soil was calculated for the Mudanya region in most of the sampling events. During the warmer seasons PCB movement towards the atmosphere was observed due to evaporation from the soil. With decreases in the temperature, both decreases in the number of PCB congeners occurring in the air and a change in the direction of some congeners were observed, possibly caused by deposition from the atmosphere to the soil. 3-CB and 4-CB congeners were found to be dominant in the atmosphere, and 4-, 5-, and 6-CBs were found to dominate in the surface soils.

  19. Radon-in-soil concentration levels in Mexico

    International Nuclear Information System (INIS)

    Segovia, N.; Tamez, E.; Mena, M.

    1992-01-01

    Radon-in-soil surveys in Mexico have been carried out since 1974 both for uranium prospecting and to correlate mean values of the gas emanation with local telluric behaviour. The mapping covers the northern uranium mining region, the Mexican Neovolcanic Belt, the coastal areas adjacent to the zone of subduction of the Cocos Plate under the North American Plate, some of the active volcanoes of Southern Mexico and several sedimentary valleys in Central Mexico. Recording of 222 Rn alpha decay is systematically performed with LR115 track detectors. Using mean values averaged over different observation periods at fixed monitoring stations, a radon-in-soil map covering one third of the territory of Mexico is presented. The lowest mean values occur in areas associated with active volcanoes. The highest levels are found in uranium ore zones. Intermediate values are obtained in regions with enhanced hydrothermal activity and stations associated with intrusive rocks. (author)

  20. Radon in soil concentration levels in Mexico

    International Nuclear Information System (INIS)

    Segovia, N.; Tamez, E.; Mena, M.

    1991-09-01

    Radon in soil surveys in Mexico have been carried out since 1974 both for uranium prospectus and to correlate mean values of the gas emanation with local telluric behaviour. The mapping includes the northern uranium mining region, the Mexican Neo volcanic Belt, the coastal areas adjacent to the zone of subduction of the Cocos Plate under the North American Plate, some of the active volcanoes of Southern Mexico and several sedimentary valleys in Central Mexico. Recording of 222 Rn alpha decay is systematically performed with LR115 track detectors. Using mean values averaged over different observation periods at fixed monitoring stations, a radon in soil map covering one third of the Mexican territory is presented. The lowest mean values have been found in areas associated with active volcanoes. The highest levels are found in uranium ore zones. Intermediate values are obtained in regions with enhanced hydrothermal activity and stations associated with intrusive rocks. (Author)

  1. Discovering the essence of soil

    Science.gov (United States)

    Frink, D.

    2012-04-01

    Science, and what it can learn, is constrained by its paradigms and premises. Similarly, teaching and what topics can be addressed are constrained by the paradigms and premises of the subject matter. Modern soil science is founded on the five-factor model of Dokuchaev and Jenny. Combined with Retallack's universal definition of soil as geologic detritus affected by weathering and/or biology, modern soil science emphasizes a descriptive rather than an interpretive approach. Modern soil science however, emerged from the study of plants and the need to improve crop yields in the face of chronic and wide spread famine in Europe. In order to teach that dirt is fascinating we must first see soils in their own right, understand their behavior and expand soil science towards an interpretive approach rather than limited as a descriptive one. Following the advice of James Hutton given over two centuries ago, I look at soils from a physiological perspective. Digestive processes are mechanical and chemical weathering, the resulting constituents reformed into new soil constituents (e.g. clay and humus), translocated to different regions of the soil body to serve other physiological processes (e.g. lamellae, argillic and stone-line horizons), or eliminated as wastes (e.g. leachates and evolved gasses). Respiration is described by the ongoing and diurnal exchange of gasses between the soil and its environment. Circulatory processes are evident in soil pore space, drainage capacity and capillary capability. Reproduction of soil is evident at two different scales: the growth of clay crystals (with their capacity for mutation) and repair of disturbed areas such as result from the various pedo-perturbations. The interactions between biotic and abiotic soil components provide examples of both neurological and endocrine systems in soil physiology. Through this change in perspective, both biotic and abiotic soil processes become evident, providing insight into the possible behavior of

  2. Elemental Concentrations in Urban Green Stormwater Infrastructure Soils.

    Science.gov (United States)

    Kondo, Michelle C; Sharma, Raghav; Plante, Alain F; Yang, Yunwen; Burstyn, Igor

    2016-01-01

    Green stormwater infrastructure (GSI) is designed to capture stormwater for infiltration, detention, evapotranspiration, or reuse. Soils play a key role in stormwater interception at these facilities. It is important to assess whether contamination is occurring in GSI soils because urban stormwater drainage areas often accumulate elements of concern. Soil contamination could affect hydrologic and ecosystem functions. Maintenance workers and the public may also be exposed to GSI soils. We investigated soil elemental concentrations, categorized as macro- and micronutrients, heavy metals, and other elements, at 59 GSI sites in the city of Philadelphia. Non-GSI soil samples 3 to 5 m upland of GSI sites were used for comparison. We evaluated differences in elemental composition in GSI and non-GSI soils; the comparisons were corrected for the age of GSI facility, underlying soil type, street drainage, and surrounding land use. Concentrations of Ca and I were greater than background levels at GSI sites. Although GSI facilities appear to accumulate Ca and I, these elements do not pose a significant human health risk. Elements of concern to human health, including Cd, Hg, and Pb, were either no different or were lower in GSI soils compared with non-GSI soils. However, mean values found across GSI sites were up to four times greater than soil cleanup objectives for residential use. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Levels of some heavy Metals in Cocoyam (Colocasia esculentum ...

    African Journals Online (AJOL)

    CEDEN

    Dept. of Chemistry, University of Uyo, Akwa Ibom State, Nigeria. 3Dept. of Plant Science and Biotechnology. University of Port Harcourt, Nigeria. ABSTRACT: The levels of some heavy metals in soil samples and tubers of cocoyam. (Colocasia esculentum) grown on soil receiving paint wastes (PWS) has been investigated.

  4. First results on enzymatic activities in two salt marsh soils under different hydromorphic level and vegetation

    Directory of Open Access Journals (Sweden)

    Carmen Trasar-Cepeda

    2015-12-01

    Full Text Available Salt-marsh soils are soils characterized by non-permanent hydric saturation that, depending on factors like duration of submersion periods, are dominated by different salt-tolerant plant species. The composition of microbial communities is an essential component in trophic dynamics and biogeochemical processes in salt marshes, and determines the level of enzymatic activities, which catalyze the conversion of complex molecules into simpler ones. Despite of this, the enzymatic activities in marsh-soils has not yet been investigated. The aim of this study was to analyze the enzymatic activities in two soil profiles of marsh-soils under different water saturation level and dominated by different plant species [Juncus maritimus Lam and Spartina maritima (Curtis Fernald (Sp]. In both soils, the enzymatic activities were much lower than the levels typically found in terrestrial ecosystems. The enzymatic activities were measured both in air-dried and in re-moistened and incubated soil samples. In air-dried samples, the enzymatic activities were higher in Juncus than in Spartina soil and tended to decrease with depth, being sharper the decrease in Juncus than in Spartina soil. Re-moistened and pre-incubated soils showed a general increase in all the enzymatic activities and throughout the whole soil profile, especially in Spartina soils. Hydrolase activities showed a strong and positive relationship with organic matter content both in air-dried and in re-moistened soil samples, higher in these latter. In general, oxidoreductase activities only showed this relationship in re-moistened soil samples. More studies, preferably using freshly collected soil samples, are needed to understand the relationship between enzymatic activities and these environmental conditions.

  5. Some physico-chemical and Heavy metal levels in soils of waste ...

    African Journals Online (AJOL)

    The results show that the soils are moderately acidic with a mean pH value of 5.5 for the 1m subsoil and 5.8 for 30cm soil depth in the various dumpsites, while the total organic carbon (TOC) levels show that it was low with 3.41% and 2.90% for depths 30cm and 1m respectively. The cation exchange capacity (CEC) of the ...

  6. Study of Effects of Sorghum Cultivation on Some Soil Biological Indicators at Different Zinc Levels

    Directory of Open Access Journals (Sweden)

    S. Bagheri

    2015-06-01

    Full Text Available Zinc is an essential element for plant growth which its high concentrations can cause pollution and toxicity in plant. In this study, the effects of sorghum cultivation on some indicators of microbial activity and its association with increased zinc concentrations in two soils with relatively similar physical and chemical properties, but different in concentration of heavy metals were investigated. In both soils zinc levels were added to obtain 250, 375 and 500 mg kg-1 (based on the initial nitric acid extractable content. Using plastic boxes containing 8 kg of soil, growth boxes (Rhizobox were prepared. The box interior was divided into three sections S1 (the rhizosphere, S2 (adjacent to the rhizosphere and S3 (bulk soil using nylon net plates. The results showed that at all levels of zinc in both soil types, BCF were bigger than units, so using this indicator, sorghum can be considered as a plant for accumulation of zinc. Microbial respiration and dehydrogenase activity was reduced in all sections adjacent to root in the polluted soil. It is generally understood that substrates and inhibitors (heavy metals compete in the formation of substrate-enzyme and inhibitor-enzyme complexes, but the effects of sorghum cultivation in increasing biological and enzyme activity indexes in soil 1 (non-polluted was higher than soil 2 (polluted, perhaps due to improvements in microbial activity in the vicinity of the roots, even in concentration higher than stress condition levels for zinc in soil.

  7. Determination of pesticide residue levels in omani and UAE vegetable farm soils

    International Nuclear Information System (INIS)

    Talukder, F.A.; Dahmani, J.H.A.; Kaakeh, W.; Deadman, M.L.

    2008-01-01

    In the investigation of 40 different vegetable growing farms of Al-Batinah (Oman) and Al - Ain (UAE) regions different pesticide residues were found to be present on all soil samples which varied in their types and levels according to the region. In Omani soil samples, cypermethrin was the most frequent pesticide, followed by chlorpyrifos, malathion, phenthoate, triazophos and deltamethrin. In UAE farm soil samples, chlorpyrifos, cypermethrin and deltamethrin were detected in all the regions, while phenthoate was detected in the Eastern and Northern regions only. (author)

  8. Bioavailability of caesium-137 from chernozem soils with high and low levels of radioactive contamination

    Science.gov (United States)

    Paramonova, Tatiana; Shamshurina, Eugenia; Machaeva, Ekaterina; Belyaev, Vladimir

    2014-05-01

    Bioavailability of Cs-137 in "soil-plant" system of radioactively contaminated terrestrial ecosystems is the most important factor in the understanding of ecological situation. There are many factors affecting the features of Cs-137 biogeochemical cycle: period since an accident, type and intensity of radioactive fallout, general properties of landscape and the specifics of soil and plant covers, etc. In order to evaluate the importance of soil contamination level for the process of Cs-137 translocation from soil to plant the research in forest-steppe areas of Russia with similar natural properties, but contrasting high (Tula region) and low (Kursk region) levels of radioactive Chernobyl fallout (about 25 years after accident) was conducted. Soil cover of both sites is presented by chernozems with bulk density 1.1-1.2 g/cm3, 6-7% humus and neutral pH 6.5-7.2; plant cover under investigation consist of dry and wet meadows with bioproductivity 1.6-2.5 kg/m2 and 85-90% of biomass concentrated underground, that is typical for Russian forest-steppe landscapes. At the same time levels of soil regional contamination with Cs-137 differ by an order - 620-710 Bq/kg (210-250 kBq/m2) in Tula region and 30-55 Bq/kg (10-20 kBq/m2) in Kursk region. At a higher level of soil radioactive contamination specific activity of Cs-137 in vegetation of meadows is noticeably increased (103-160 Bq/kg in Tula region versus 12-14 Bq/kg in Kursk region) with correlation coefficient r 0.87. Increasing of Cs-137 in the underground parts of plants plays a decisive role in this process, while the specific radionuclide's activity in the aboveground parts of different sites is almost invariant (and ubiquitously roots contain 2-5 times more Cs-137 than shoots). The values of transfer factors for Cs-137 (the ratio of the specific Cs-137 activities in the plant tissue and in the soil) at various levels of soil radioactive contamination vary within a relatively narrow range 0.1-0.4, that confirms the

  9. Ground Pollution Science

    International Nuclear Information System (INIS)

    Oh, Jong Min; Bae, Jae Geun

    1997-08-01

    This book deals with ground pollution science and soil science, classification of soil and fundamentals, ground pollution and human, ground pollution and organic matter, ground pollution and city environment, environmental problems of the earth and ground pollution, soil pollution and development of geological features of the ground, ground pollution and landfill of waste, case of measurement of ground pollution.

  10. Poly-use multi-level sampling system for soil-gas transport analysis in the vadose zone.

    Science.gov (United States)

    Nauer, Philipp A; Chiri, Eleonora; Schroth, Martin H

    2013-10-01

    Soil-gas turnover is important in the global cycling of greenhouse gases. The analysis of soil-gas profiles provides quantitative information on below-ground turnover and fluxes. We developed a poly-use multi-level sampling system (PMLS) for soil-gas sampling, water-content and temperature measurement with high depth resolution and minimal soil disturbance. It is based on perforated access tubes (ATs) permanently installed in the soil. A multi-level sampler allows extraction of soil-gas samples from 20 locations within 1 m depth, while a capacitance probe is used to measure volumetric water contents. During idle times, the ATs are sealed and can be equipped with temperature sensors. Proof-of-concept experiments in a field lysimeter showed good agreement of soil-gas samples and water-content measurements compared with conventional techniques, while a successfully performed gas-tracer test demonstrated the feasibility of the PMLS to determine soil-gas diffusion coefficients in situ. A field application of the PMLS to quantify oxidation of atmospheric CH4 in a field lysimeter and in the forefield of a receding glacier yielded activity coefficients and soil-atmosphere fluxes well in agreement with previous studies. With numerous options for customization, the presented tool extends the methodological choices to investigate soil-gas transport in the vadose zone.

  11. An investigation of children's levels of inquiry in an informal science setting

    Science.gov (United States)

    Clark-Thomas, Beth Anne

    Elementary school students' understanding of both science content and processes are enhanced by the higher level thinking associated with inquiry-based science investigations. Informal science setting personnel, elementary school teachers, and curriculum specialists charged with designing inquiry-based investigations would be well served by an understanding of the varying influence of certain present factors upon the students' willingness and ability to delve into such higher level inquiries. This study examined young children's use of inquiry-based materials and factors which may influence the level of inquiry they engaged in during informal science activities. An informal science setting was selected as the context for the examination of student inquiry behaviors because of the rich inquiry-based environment present at the site and the benefits previously noted in the research regarding the impact of informal science settings upon the construction of knowledge in science. The study revealed several patterns of behavior among children when they are engaged in inquiry-based activities at informal science exhibits. These repeated behaviors varied in the children's apparent purposeful use of the materials at the exhibits. These levels of inquiry behavior were taxonomically defined as high/medium/low within this study utilizing a researcher-developed tool. Furthermore, in this study adult interventions, questions, or prompting were found to impact the level of inquiry engaged in by the children. This study revealed that higher levels of inquiry were preceded by task directed and physical feature prompts. Moreover, the levels of inquiry behaviors were haltered, even lowered, when preceded by a prompt that focused on a science content or concept question. Results of this study have implications for the enhancement of inquiry-based science activities in elementary schools as well as in informal science settings. These findings have significance for all science educators

  12. Does water-level fluctuation affect mercury methylation in wetland soils?

    Energy Technology Data Exchange (ETDEWEB)

    Branfireun, B.A.; Mitchell, C.P.J.; Iraci, J.M. [Toronto Univ., ON (Canada). Dept. of Geography; Krabbenhoft, D.P. [United States Geological Survey, Middleton, WI (United States); Fowle, D.A. [Kansas Univ., Lawrence, KS (United States). Dept. of Geology; Neudahl, L. [Minnesota Power, Duluth, MN (United States)

    2006-07-01

    Mercury (Hg) concentrations in fish vary considerably in freshwater lakes and reservoirs. However, the variations are not generally consistent with physical factors such as basin characteristics, wetland cover or lake chemistry. Pronounced differences in Hg concentrations in fish have been noted in the reservoirs of the St. Louis River system near Duluth Minnesota. The differences were observed between headwater reservoir systems with seasonal flooding and drawdown, and a peaking reservoir with approximately daily water level fluctuations during seasonal lower flow periods. It was suggested that these differences could be attributed to water level fluctuations in the reservoir which influenced the actual production of methylmercury (MeHg) in the surrounding wetland soils. In response to this hypothesis, the authors investigated the role of water level fluctuation in the production and mobilization of MeHg in sediments from wetlands that lie adjacent to a headwater reservoir, a peaking reservoir, and a nearby natural flowage lake used as a control. Preliminary field surveys of the wetland soils revealed that although the average MeHg concentrations in the headwater and peaking reservoir wetlands were not considerably different, both were much higher than the natural lake. Each site demonstrated high variability, but maximum MeHg concentrations ranged from 29.2 ng/g for the peaking reservoir to 4.44 ng/g at the natural lake. A laboratory experiment was therefore performed in which sediments from each wetland were subjected to different water level regimes. The purpose was to assess Hg methylation potential. Stable Hg isotopes were used at the beginning and end of the experiment. In order to determine if water level fluctuation can significantly change the methylation potential of wetland soils on its own, the microbial consortia will also be assessed during the laboratory experiment.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. V B Sumithranand. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 507-517. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south ...

  14. Use of engineered soils beneath low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, T.C.; Humphrey, D.N.; DeMascio, F.A. [Univ. of Maine, Orono, ME (United States). Dept. of Civil Engineering

    1993-03-01

    Current regulations are oriented toward locating low-level radioactive waste disposal facilities on sites that have a substantial natural soil barrier and are above the groundwater table. In some of the northern states, like Maine, the overburden soils are glacially derived and in most places provide a thin cover over bedrock with a high groundwater table. Thus, the orientation of current regulations can severely limit the availability of suitable sites. A common characteristic of many locations in glaciated regions is the rapid change of soil types that may occur and the heterogeneity within a given soil type. In addition, the bedrock may be fractured, providing avenues for water movement. A reliable characterization of these sites can be difficult, even with a detailed subsurface exploration program. Moreover, fluctuating groundwater and frost as well as the natural deposition processes have introduced macro features such as cracks, fissures, sand and silt seams, and root holes. The significant effect that these macro features have on the permeability and adsorptive capacity of a large mass is often ignored or poorly accounted for in the analyses. This paper will examine an alternate approach, which is to use engineered soils as a substitute for some or all of the natural soil and to treat the fractures in the underlying bedrock. The site selection would no longer be primarily determined by the natural soil and rock and could even be placed in locations with no existing soils. Engineered soils can be used for below- or aboveground facilities.

  15. Levels of concern for radioactive contaminations in soil according to soil protection standards; Besorgniswerte fuer Radionuklide in Boeden nach bodenschutzrechtlichen Massstaeben

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, R. [Nuclear Control and Consulting GmbH, Braunschweig (Germany); Barkowski, D.; Machtolf, M. [IFUA-Projekt-GmbH Bielefeld (Germany)

    2016-07-01

    In the paper the question is examined whether the established soil protection standards for carcinogenic substances are also applicable to the assessment of radioactive soil contamination. Referring to the methods applied in soil protection for evaluation of dose-effectrelations and estimations of carcinogenic risks as well as the calculation methods for test values in soil protection ''levels of concern'' for soil contamination by artificial radionuclides are derived. The values obtained are significantly larger than the values for unrestricted clearance of ground according to the German Radiation Protection Ordinance (StrlSchV). The thesis that soil is protected according to environmental standards provided that radiation protection requirements are met needs further checks but can be probably confirmed if the radiation protection requirements are clearly defined.

  16. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    Science.gov (United States)

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  17. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N.

    Science.gov (United States)

    Li, Shuailin; Liang, Chutao; Shangguan, Zhouping

    2017-12-31

    The incorporation of biochar into soil has been proposed as a strategy for enhancing soil fertility and crop productivity. However, there is limited information regarding the responses of soil respiration and the C, N and P cycles to the addition of apple branch biochar at different rates to soil with different levels of N. A 108-day incubation experiment was conducted to investigate the effects of the rate of biochar addition (0, 1, 2 and 4% by mass) on soil respiration and nutrients and the activities of enzymes involved in C, N and P cycling under two levels of N. Our results showed that the application of apple branch biochar at rates of 2% and 4% increased the C-mineralization rate, while biochar amendment at 1% decreased the C-mineralization rate, regardless of the N level. The soil organic C and microbial biomass C and P contents increased as the rate of biochar addition was increased to 2%. The biochar had negative effects on β-glucosidase, N-acetyl-β-glucosaminidase and urease activity in N-poor soil but exerted a positive effect on all of these factors in N-rich soil. Alkaline phosphatase activity increased with an increase in the rate of biochar addition, but the available P contents after all biochar addition treatments were lower than those obtained in the treatments without biochar. Biochar application at rates of 2% and 4% reduced the soil nitrate content, particularly in N-rich soil. Thus, apple branch biochar has the potential to sequester C and improve soil fertility, but the responses of soil C mineralization and nutrient cycling depend on the rate of addition and soil N levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of moisture, organic matter, microbial population and fortification level on dissipation of pyraclostrobin in soils.

    Science.gov (United States)

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T

    2013-09-01

    The dissipation of pyraclostrobin, a strobilurin fungicide, in soil was found to be influenced by soil moisture, organic matter content and microbial population. Among the different moisture regimes, dissipation was faster under submerged condition (T1/2 10 days) followed by field capacity (T1/2 28.7 days) and in dry soil (T1/2 41.8 days). Use of sludge at 5 % level to Inceptisol favoured a faster dissipation of pyraclostrobin, whereas a slower rate of dissipation was observed in partial organic matter removed soil as compared to normal soil. Slower rate of dissipation was also observed in sterile soil (T1/2 47 days) compared to normal soil. Pyraclostrobin dissipated faster in Vertisol (T1/2 21.8 days) than in Inceptisol (T1/2 28.7 days). No significant difference in the dissipation rate was observed at 1 and 10 μg g(-1) fortification levels.

  19. EFFECT OF RICE STRAW AND NITRATE LEVELS IN SOIL SOLUTION ON NITROUS OXIDE EMISSION

    Directory of Open Access Journals (Sweden)

    André Carlos Cruz Copetti

    2015-04-01

    Full Text Available Among the greenhouse gases, nitrous oxide (N2O is considered important, in view of a global warming potential 296 times greater than that of carbon dioxide (CO2 and its dynamics strongly depend on the availability of C and mineral N in the soil. The understanding of the factors that define emissions is essential to develop mitigation strategies. This study evaluated the dynamics of N2O emissions after the application of different rice straw amounts and nitrate levels in soil solution. Pots containing soil treated with sodium nitrate rates (0, 50 and 100 g kg-1 of NO−3-N and rice straw levels (0, 5 and 10 Mg ha-1, i.e., nine treatments, were subjected to anaerobic conditions. The results showed that N2O emissions were increased by the addition of greater NO−3 amounts and reduced by large straw quantities applied to the soil. On the 1st day after flooding (DAF, significantly different N2O emissions were observed between the treatments with and without NO−3 addition, when straw had no significant influence on N2O levels. Emissions peaked on the 4th DAF in the treatments with highest NO−3-N addition. At this moment, straw application negatively affected N2O emissions, probably due to NO−3 immobilization. There were also alterations in other soil electrochemical characteristics, e.g., higher straw levels raised the Fe, Mn and dissolved C contents. These results indicate that a lowering of NO−3 concentration in the soil and the increase of straw incorporation can decrease N2O emissions.

  20. Determination of soil screening levels for natural radionuclides in Minas Gerais state, Brazil

    International Nuclear Information System (INIS)

    Peixoto, Claudia Marques; Jacomino, Vanusa Maria Feliciano; Balaine, Fernando; Taddei, Maria Helena

    2013-01-01

    Soil screening levels express the levels of contaminant concentration in the soil, which guide the actions to be taken following investigation to confirm contamination. The list of toxic substances or elements under Brazilian legislation includes organics, volatile organics and metals but does not consider radioactive elements. Radioactive elements are all potentially carcinogenic and therefore need to be subject to legal control. The National Nuclear Energy Commission, the federal agency currently responsible for legislation regarding the control of Naturally-Occurring Radioactive Material (NORM) facilities does not establish guiding values for intervention in terms of soil activity concentration in the case of contamination with radioactive elements. In mining, the processing and treating of ores such as cassiterite, uranium, phosphate, niobium, and rare earths contribute to the generation of large amounts of NORM residues. Obviously, the improper disposal of these materials may lead to situations that result in soil and groundwater contamination and unnecessary exposure of the population in general. In order to establish guiding values for soil quality for natural radionuclides in the state of Minas Gerais, the study area included the entire state, which has unique characteristics related to the lithology, genesis, and morphology of the soils. These characteristics have tremendous influence on the petrogeochemistry of elements and radionuclides. A total of 110 soil samples were collected and analyzed in order to determine the activity concentration of U, Th, 226Ra, 228Ra e 210Pb. In general, it was possible to verify that the activity concentrations of U are higher than those of Th. This fact can be explained by the intense weathering that most of the state's soil has undergone and the chemical and geochemical characteristics of the two elements. The values obtained up to the present are higher than the reference values for soil quality adopted in other parts of

  1. Natural radioactivity levels in soils of Fiji

    International Nuclear Information System (INIS)

    Garimella, S.; Kumar, A.; Prasad, U.; Jafar, M.

    1998-01-01

    A 10 cm (diameter) x 7.5 cm NaI(Tl) gamma-ray spectrometer with a low background shield has been used to measure the natural radioactivity levels in soils of Viti Levu, the main island of Fiji. From this, the external gamma-dose which is likely to be delivered to the local population in this region is computed and found to be 99 μGy a -1 . This is well below the world average, but it is comparable to that observed in Marshall Islands and the Micronesia

  2. Natural radioactivity levels in soils of Fiji

    International Nuclear Information System (INIS)

    Garimella, S.; Kumar, A.; Prasad, U.; Jafar, M.

    1998-01-01

    A 10 cm (diameter) x 7.5 cm NaI(TI) gamma-ray spectrometer with a low background shield has been used to measure the natural radioactivity levels in soils of Viti Levu, the main island of Fiji. From this, the external gamma-dose which is likely to be delivered to the local population in this region is computed and found to be 99 microG a -1 . This is well below the world average, but it is comparable to that observed in Marshall Islands and the Micronesia. (author). 17 refs., 3 figs., 5 tabs

  3. Hygrothermal Material Properties for Soils in Building Science

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferred and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing

  4. Continuous soil maps - a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models

    NARCIS (Netherlands)

    Gruijter, de J.J.; Walvoort, D.J.J.; Gaans, van P.F.M.

    1997-01-01

    Soil maps as multi-purpose models of spatial soil distribution have a much higher level of aggregation (map units) than the models of soil processes and land-use effects that need input from soil maps. This mismatch between aggregation levels is particularly detrimental in the context of precision

  5. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils.

    Science.gov (United States)

    Tepanosyan, Gevorg; Maghakyan, Nairuhi; Sahakyan, Lilit; Saghatelyan, Armen

    2017-08-01

    Children, the most vulnerable urban population group, are exceptionally sensitive to polluted environments, particularly urban soils, which can lead to adverse health effects upon exposure. In this study, the total concentrations of Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti, V, and Zn were determined in 111 topsoil samples collected from kindergartens in Yerevan. The objectives of this study were to evaluate heavy metal pollution levels of kindergarten's soils in Yerevan, compare with national legal and international requirements on heavy metal contents in kindergarten soil, and assess related child health risk. Multivariate geostatistical analyses suggested that the concentrations of Ag, As, Ba, Cd, Cu, Hg, Mo, Pb, and Zn observed in the kindergarten's topsoil may have originated from anthropogenic sources, while Co, Cr, Fe, Mn, Ni, Ti, and V mostly come from natural sources. According to the Summary pollution index (Zc), 102 kindergartens belong to the low pollution level, 7 to the moderate and only 2 to the high level of pollution. Summary concentration index (SCI) showed that 109 kindergartens were in the allowable level, while 2 featured in the low level of pollution. The health risk assessment showed that in all kindergartens except for seven, non-carcinogenic risk for children was detected (HI>1), while carcinogenic risk from arsenic belongs to the very low (allowable) level. Cr and multi-element carcinogenic risk (RI) exceeded the safety level (1.0E- 06) in all kindergartens and showed that the potential of developing cancer, albeit small, does exist. Therefore, city's kindergartens require necessary remedial actions to eliminate or reduce soil pollution and heavy metal-induced health risks. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Performance study and influence of radiation emission energy and soil contamination level on γ-radiation shielding of stabilised/solidified radionuclide-polluted soils

    International Nuclear Information System (INIS)

    Falciglia, Pietro P.; Puccio, Valentina; Romano, Stefano; Vagliasindi, Federico G.A.

    2015-01-01

    This work focuses on the stabilisation/solidification (S/S) of radionuclide-polluted soils at different 232 Th levels using Portland cement alone and with barite aggregates. The potential of S/S was assessed applying a full testing protocol and calculating γ-radiation shielding (γRS) index, that included the measurement of soil radioactivity before and after the S/S as a function of the emission energy and soil contamination level. The results indicate that setting processes are strongly dependent on the contaminant concentration, and for contamination level higher than 5%, setting time values longer than 72 h. The addition of barite aggregates to the cement gout leads to a slight improvement of the S/S performance in terms of durability and contaminant leaching but reduces the mechanical resistance of the treated soils samples. Barite addition also causes an increase in the γ-rays shielding properties of the S/S treatment up to about 20%. Gamma-ray measurements show that γRS strongly depends on the energy, and that the radioactivity with the contamination level was governed by a linear trend, while, γRS index does not depend on the radionuclide concentration. Results allow the calculated γRS values and those available from other experiments to be applied to hazard radioactive soil contaminations. - Highlights: • We assess the effects of 232 Th contamination on performance of S/S treated soil. • We assess the γ-radiation shielding of the S/S materials as a function of energy. • We report a full testing protocol for assessing S/S resistance performance. • Emission energy influences the γ radiation shielding of the S/S. • Barite gives high γ-radiation shielding and low contaminant leaching

  7. [Composition and Density of Soil Fauna in the Region with Enhanced Radioactivity Level (Komi Republic, Vodnyi)].

    Science.gov (United States)

    Kolesnikova, A A; Kudrin, A A; Konakova, T N; Taskaeva, A A

    2015-01-01

    Studies on the influence of high levels of radiation on soil fauna were carried out in 2012 in the territory formed as a result of the activity of the enterprise for extraction and production of radium from reservoir water and waste of uranium ore from 1931 to 1956. At present the local radioactive pollution in this area is caused by the presence of heavy natural radionuclides 226Ra, 238U and products of their disintegration in soils. The oppression of soil invertebrate.fauna in pine forests and meadows with high levels of radionuclides and heavy metals is revealed. Also shown is the decrease in the number and density of different taxonomic groups of invertebrates, reduction of the diversity and spectrum of trophic groups and vital forms in the area with a high content of radionuclides in soil. Our results are in agreement with the results obtained by the similar studies showing negative influence of high-level ionizing radiation on soil fauna.

  8. Radon gas. A review with emphasis on site investigations and measurements of soil gas and indoor house levels

    International Nuclear Information System (INIS)

    Mitchell, Seamus.

    1992-09-01

    A review of radon gas, with particular reference to its source and transport through soils and into buildings is examined. The principal parameters affecting the movement of radon has been discussed. The levels of radon gas in soils and in dwelling houses has been examined. Radon levels in the soil gas were highest in mineral soils with pear soils giving low readings but there was no significant differences between the results. Houses situated over granite and limestone bedrock gave similar results for indoor radon concentrations, with no significant differences being recorded. Results were expected to be much higher in houses over granite areas, in view of the higher uranium series activity in granites. It is concluded that high radon gas levels in soils under and in he vicinity of houses is the probable explanation for the indoor radon levels found. The influence of the underlying bedrock is not the most important parameter as was surmised before the study. (author)

  9. Background levels of some major, trace, and rare earth elements in indigenous plant species growing in Norway and the influence of soil acidification, soil parent material, and seasonal variation on these levels.

    Science.gov (United States)

    Gjengedal, Elin; Martinsen, Thomas; Steinnes, Eiliv

    2015-06-01

    Baseline levels of 43 elements, including major, trace, and rare earth elements (REEs) in several native plant species growing in boreal and alpine areas, are presented. Focus is placed on species metal levels at different soil conditions, temporal variations in plant tissue metal concentrations, and interspecies variation in metal concentrations. Vegetation samples were collected at Sogndal, a pristine site in western Norway, and at Risdalsheia, an acidified site in southernmost Norway. Metal concentrations in the different species sampled in western Norway are compared with relevant literature data from Norway, Finland, and northwest Russia, assumed to represent natural conditions. Except for aluminium (Al) and macronutrients, the levels of metals were generally lower in western Norway than in southern Norway and may be considered close to natural background levels. In southern Norway, the levels of cadmium (Cd) and lead (Pb) in particular appear to be affected by air pollution, either by direct atmospheric supply or through soil acidification. Levels of some elements show considerable variability between as well as within plant species. Calcium (Ca), magnesium (Mg), and potassium (K) are higher in most species at Sogndal compared to Risdalsheia, despite increased extractable concentrations in surface soil in the south, probably attributed to different buffer mechanisms in surface soil. Antagonism on plant uptake is suggested between Ca, Mg, and K on one hand and Al on the other. Tolerance among calcifuges to acid conditions and a particular ability to detoxify or avoid uptake of Al ions are noticeable for Vaccinium vitis-idaea.

  10. Low-level gamma spectrometry of forest and moor soils from exposed mountain regions in Saxony (Erzgebirge)

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, N [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Preusse, W [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Degering, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Unterricker, S [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics

    1997-03-01

    In soils with distinct organic and mineral horizons, radionuclides (RN) can be used to understand geochemical migration processes. In the study presented here high sensitivity HPGe-detectors with active and passive shielding were employed to determine the low activity levels of various natural, cosmogenic and artificial RN. Soils of a spruce forest and a moor from exposed mountain regions in Saxony (Erzgebirge) were investigated as they provide a good example of layered soil systems with vertical transfer of chemical elements. Different soil horizons were sub-sampled as thin slices and analysed to examine the migration processes at sub-horizon level. The depth distributions of chemically different RN were studied considering the geochemical and pedological soil characteristics of the profiles. (orig.)

  11. Sensitivity of ecological soil-screening levels for metals to exposure model parameterization and toxicity reference values.

    Science.gov (United States)

    Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill

    2014-10-01

    Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight-normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. © 2014 The Authors

  12. Education on sustainable soil management for the masses? The Soil4Life MOOC

    Science.gov (United States)

    Maroulis, Jerry; Demie, Moore; Riksen, Michel; Ritsema, Coen

    2017-04-01

    Although soil is one of our most important natural resources and the foundation for all life on Earth it remains one of the most neglected of our resources. We, in soil science know this, but what do we do to reach more people more quickly? MOOCs, 'Massive Open Online Courses', are a vehicle for offering learning to virtually unlimited audiences at little cost to the student. Could MOOCs be the format for introducing more people worldwide to the importance of soil and sustainable soil management? MOOCs have their limitations and critics. However, depending on your goals, expectations and resources, they are a means for getting information to a much broader population than is possible through conventional educational formats. Wageningen University (WU) agreed and approved the development of a MOOC on sustainable soil management entitled Soil4Life. This presentation reviews the format and results of Soil4Life, concluding with some observations and reflections about this approach to soil science education. The Soil4Life MOOC introduces the role of soil in life on earth, soil degradation, and socio-economic issues related to generating action for long-term sustainability of the many soil-related ecosystem services. The objectives of Soil4Life are to raise awareness about the many important aspects of soil and sustainable soil management, and to allow the educational materials we produced to be available for use by others. The process of creating the Soil4Life MOOC involved 18 academic staff across all WU soil-related groups plus a vital team of education and technical staff. This number of people posed various challenges. However, with clear guidelines, lots of encouragement and technical support, Soil4Life was started in late 2015 and launched on the edx platform in May 2016. Just over 5000 students from 161 countries enrolled in the first offer of the Soil4Life MOOC - a modest number for MOOCs, but not bad for soil science. The targeted audience was initially high

  13. New developments in soil classification World Reference Base for Soil Resources

    NARCIS (Netherlands)

    Nachtergaele, F.O.; Spaargaren, O.; Deckers, J.A.; Ahrens, B.

    2000-01-01

    It has been a matter of great concern that after hundred years of modern soil science a generally accepted system of soil classification has not yet been universally adopted [Dudal, R., 1990. Progress in IRB preparation. In: Rozanov, B.G. (Ed.), Soil Classification. Reports of the International

  14. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    Science.gov (United States)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  15. Agro-Science Journal of Tropical Agriculture, Food, Environment ...

    African Journals Online (AJOL)

    PC USER

    Agro-Science Journal of Tropical Agriculture, Food, Environment and Extension. Volume 12 Number 3 ... agricultural field one could maintain a high level of soil fertility. ..... Journal of Applied Biosciences. 7: 202-206. ... International Journal of.

  16. Radionuclide Concentration in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during 2005

    International Nuclear Information System (INIS)

    Fresquez, P.R.; McNaughton, M.W.; Winch, M.J.

    2005-01-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected from up to nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Soil and plant samples were also collected from the proposed expansion area west of Area G for the purpose of gaining preoperational baseline data. Soil and plant samples were analyzed for radionuclides that have shown a history of detection in past years; these included 3 H, 238 Pu, 239,240 Pu, 241 Am, 234 U, 235 U, and 238 U for soils and 3 H, 238 Pu, and 239,240 Pu for plants. As in previous years, the highest levels of 3 H in soils and vegetation were detected at the south portion of Area G near the 3 H shafts; whereas, the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions near the pads for transuranic waste. All concentrations of radionuclides in soils and vegetation, however, were still very low (pCi range) and far below LANL screening levels and regulatory standards

  17. Teaching Environmental Soil Science to Students older than 55

    Science.gov (United States)

    Cerdà, Artemi; Civera, Cristina; Giménez-Morera, Antonio; Burguet, María

    2014-05-01

    The life expectancy growth is a general trend for the world population, which translates into an increase of people older than 55 years in Western societies. This entails to the rise of health problems as well as large investments in healthcare. In general, we are spectators Y tambe voldria saber si ens pots fer una asse of how a large group of citizens have a new life after retirement. The XXI century societies are facing the problem of the need of a healthy population, even after retirement. There is a need in developing new strategies to allow those citizens to improve their knowledge of the environmental changes. The research in Soil Science and related disciplines is the strategy we are using on the Geograns program to inform the students (older than 55) about the changes the Earth and the Soil System are suffering. And this should be done in a healthy and active teaching environment. The NAUGRAN program is being developed by the University of Valencia for more than 10 years and shows the advances on education for senior students. Within this program, Geograns is bringing the environmentalist ideas to the students. This is a difficult task as those students were born in a society were nature was created to be exploited and not to be conserved (e.g. Green Revolution, agricultural transformations of the 60's in Spain). This is the reason why the University of Valencia developed at the end of the 90's a program to teach students older than 55. This paper shows the advances on new strategies developed during 2013 with a group of these senior students. The main strategy was to take the students to visit the nature and to explain the functioning of the Earth and Soil System. Those visits were organized with the collaboration of scientist, environmentalist, farmers and technicians; and the guiding thread was trekking. This mix showed our students different views and sides of the same phenomena (e.g. tillage operations, soil erosion problems, water quantity and

  18. Enzyme activities by indicator of quality in organic soil

    Science.gov (United States)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  19. Carbon dioxide emission from maize straw incubated with soil under various moisture and nitrogen levels

    International Nuclear Information System (INIS)

    Abro, S.A.; Tian, X.; Hussain, Q.; Talpur, M.; Singh, U.

    2012-01-01

    A laboratory incubation experiment was conducted to investigate the decomposition of maize straw incorporated into soil amended with nitrogen (N) and moisture (M) levels. Clay loam topsoil amended with maize straw was adjusted to four initial nitrogen treatments (C/N ratios of 72, 36, 18, and 9) and four moisture levels (60%, 70%, 80% and 90 % of field capacity) for the total of 16 treatments and incubated at 20 deg. C for 51 days. CO/sub 2/-C evolved was regularly recorded for all treatments during entire incubation period. Results showed that the mixing of straw with soil accelerated decomposition rates and enhanced cumulative CO/sub 2/-C production. The incorporation of straw brought about 50% increase in the cumulative CO/sub 2/-C production as compared with controls. About 45% of added maize straw C was mineralized to CO/sub 2/-C in 51 days. We conclude that incorporation of straw into soil along with the addition of N and moisture levels significantly affected CO/sub 2/-C evolution, cumulative CO/sub 2-C/, C mineralization and soil organic carbon deposition. The CO/sub 2/ emission was in positive correlation with (R2=0.99) N, moisture and incubation time (days). The straw returning into soil may enhance carbon pools and, thus will improve soil and environmental quality. (author)

  20. Levels of trace metals in soil and vegetation along major and minor ...

    African Journals Online (AJOL)

    ... emission couple with waste dispose along the roads remain a threat. The findings in general indicate the levels of metals in soil and plant samples were within the EU limits with the exception of Cd. In addition, the high level of Cd appears to reach pollution levels and metal dynamics up the food chain is highly possible.

  1. The grey areas in soil pollution risk mapping : The distinction between cases of soil pollution and increased background levels

    NARCIS (Netherlands)

    Gaast, N. van der; Leenaers, H.; Zegwaard, J.

    1998-01-01

    The progress of soil clean up in the Netherlands is severely hindered by the lack of common agreement on how to describe the grey areas of increased background levels of pollutants. In this study practical methods are proposed in which background levels are described as distribution functions within

  2. Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: toxic levels, sources and relationships with soil organic matter and water-stable aggregates.

    Science.gov (United States)

    Xiao, Rong; Bai, Junhong; Wang, Junjing; Lu, Qiongqiong; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2014-09-01

    The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in the soils from industrial, wharf, cropland, milldam and natural wetland sites to characterize their distributions, toxic levels and possible sources in the Pearl River Estuary and identify their relationships with soil organic matter (SOM) and water-stable aggregates (WSAs). Our results indicate that the average concentration of total PAHs in this region reached a moderate pollution level, which was higher than that in other larger estuaries in Asia. The average level of total PAHs in industrial soils was 1.2, 1.5, 1.6 and 2.3 times higher than those in soils from wharf, cropland, milldam and natural wetland sites, respectively. Greater accumulation of PAHs occurred in the middle and/or bottom soil layers where 3-ring PAHs were dominant. Industrial soils also exhibited the highest toxic levels with the highest toxic equivalent concentrations of PAHs, followed by wharf and milldam soils, and the cropland and wetland soils had the lowest toxicity. The diagnostic ratios suggested that PAHs primarily originated from biomass and coal combustion at industrial and milldam sites, and petroleum combustion was determined to be the primary source of PAHs at the wharf, cropland and wetland sites. Both 3-ring and 4-ring PAHs in the milldam and wharf soils were significantly positively correlated with the SOM, whereas the 4,5,6-ring PAHs and total PAHs in industrial soils and the 2-ring PAHs in cropland soils were significantly negatively correlated with the SOM. In addition, large WSAs also exhibited a significant positive correlation with PAHs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Radionuclide Concentrations in soils an Vegetation at Low-Level Radioactive Waste Disposal Area G During 2004

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Lopez, E.A.

    2004-01-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected at nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). These samples were analyzed for 3 H, 238 Pu, 239,240 Pu, 90 Sr, 241 Am, 137 Cs, 234 U, 235 U, and 238 U. Soil samples collected at Area G contained detectable concentrations of 3H (27%), 239,240 Pu (60%), 238 Pu (40%), and 241 Am (47%) above regional statistical reference levels (RSRLs). In contrast, the levels of 137 Cs, 90 Sr, and U in all of the soil samples at Area G were either nondetectable or within RSRLs. The highest levels of 3 H in soils were detected in the southwestern portion of Area G near the 3 H shafts, whereas the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions. All concentrations of 3 H and Pu in soils, however, were far below LANL screening action levels. As for vegetation, most radionuclides in/on plants were either nondetectable or within RSRLs. The exceptions were 3 H in overstory and some understory vegetation, particularly in the southwestern portion of Area G, which correlated very well with the soils data in that area. Also, there was some foliar contamination from 241 Am and Pu isotopes in/on a few plant samples--the highest concentrations occurring in the northern section of Area G

  4. The impact of groundwater level on soil seed bank survival

    NARCIS (Netherlands)

    Bekker, RM; Oomes, MJM; Bakker, JP

    Seed longevity of plant species is an important topic in restoration management, and little is known about the effects of environmental conditions on seed survival and longevity under natural conditions. Therefore, the effect of groundwater level on the survival of seeds in the soil seed bank of a

  5. The Interaction Features of the Multi-Level Retaining Walls with Soil Mass

    Science.gov (United States)

    Boyko, Igor; Skochko, Liudmyla; Zhuk, Veronica

    2017-09-01

    The interaction features of multi-level retaining walls with soil base were researched by changing their geometric parameters and locality at the plan. During excavation of deep foundation pits it is important to choose the type of constructions which influences on the horizontal displacements. The distance between the levels of retaining walls should be based on the results of numerical modelling. The objective of this paper is to present a comparison between the data of numerical simulations and the results of the in-situ lateral tests of couple piles. The problems have been solved by using the following soil models: Coulomb-Mohr model; model, which is based on the dilatation theory; elastic-plastic model with variable stiffness parameters.

  6. Pre-college Science Experiences; Timing and Causes of Gender Influence Science Interest Levels

    Science.gov (United States)

    Kaplita, E.; Reed, D. E.; McKenzie, D. A.; Jones, R.; May, L. W.

    2015-12-01

    It is known that female students tend to turn away from science during their pre-college years. Experiences during this time are not limited to the classroom, as cultural influences extend beyond K-12 science education and lead to the widely studied reduction in females in STEM fields. This has a large impact on climate science because currently relatively little effort is put into K-12 climate education, yet this is when college attitudes towards science are formed. To help quantify these changes, 400 surveys were collected from 4 different colleges in Oklahoma. Student responses were compared by gender against student experiences (positive and negative), and interest in science. Results of our work show that females tend to have their first positive experience with science at a younger age with friends, family and in the classroom, and have more of an interest in science when they are younger. Males in general like experiencing science more on their own, and surpass the interest levels of females late in high school and during college. While in college, males are more comfortable with science content than females, and males enjoy math and statistics more while those aspects of science were the largest areas of dislike in females. Understanding how to keep students (particularly female) interested in science as they enter their teen years is extremely important in preventing climate misconceptions in the adult population. Potential small changes such as hosting K-12 climate outreach events and including parents, as opposed to just inviting students, could greatly improve student experiences with science and hence, their understanding of climate science. Importantly, a greater focus on female students is warranted.

  7. Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms

    DEFF Research Database (Denmark)

    EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues); Ockleford, Colin; Adriaanse, Paulien

    2017-01-01

    Following a request from EFSA, the Panel on Plant Protection Products and their Residues developed an opinion on the science behind the risk assessment of plant protection products for in-soil organisms. The current risk assessment scheme is reviewed, taking into account new regulatory frameworks...... exposure routes for in-soil organisms and the potential direct and indirect effects is proposed. In order to address species recovery and long-term impacts of PPPs, the use of population models is also proposed....... and scientific developments. Proposals are made for specific protection goals for in-soil organisms being key drivers for relevant ecosystem services in agricultural landscapes such as nutrient cycling, soil structure, pest control and biodiversity. Considering the time-scales and biological processes related...

  8. Radioactivity level and soil radon measurement of a volcanic area in Cameroon

    International Nuclear Information System (INIS)

    Ngachin, M.; Garavaglia, M.; Giovani, C.; Kwato Njock, M.G.; Nourreddine, A.

    2008-01-01

    The radioactivity level of soils in a volcanic area in Cameroon was determined and discussed. Thirty soils samples were collected from Buea and Limbe cities located in the south-western Cameroon. These two regions are known for theirs volcanic grounds due to the presence of Mount Cameroon Mountain. The activity concentrations of natural radionuclides as well as that of the fission product were evaluated by gamma-ray spectrometry using a hyper-purity germanium detector (HPGe). The ranges of concentrations in the surveyed soils were 11-17 Bq kg -1 , 22-36 Bq kg -1 and 43-201 Bq kg -1 for 226 Ra, 232 Th and 40 K, respectively. The radioisotope 137 Cs was also found but in a very small amount. The outdoor absorbed dose rate 1 m above ground with the corresponding annual effective dose rate, assuming a 20% occupancy factor was estimated. The radium equivalent and the external hazard index were also evaluated and results are compared with available data from other studies and with the world average value [United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 1988. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly on the Effects of Atomic Radiation. United Nations, New York; UNSCEAR, 2000. Sources and Effects of Ionizing Radiations. Report to the General Assembly with Scientific Annexes. United Nations, New York]. A solid state nuclear track detector (SSNTD), LR-115 was used for soil radon measurements at a depth of 50 cm. The ranges of soil radon concentrations were 6.7-10.8 kBq m -3 and 5.5-8.7 kBq m -3 in Buea and Limbe, respectively. A positive correlation was found between concentrations of radium measured with γ-spectrometry and the soil radon concentrations measured with the nitrate cellulose detectors. The results of this study provide the radioactivity level in soil of a volcanic area, which has been found to be within the safety limits. The south-western Cameroon can be considered as having normal

  9. Predictors of Student Success in Entry-Level Science Courses

    Science.gov (United States)

    Singh, Mamta K.

    2009-01-01

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and…

  10. Soil Science Forensic Application

    OpenAIRE

    Rēpele, M; Alksne, M

    2009-01-01

    The forensic potential of soil and geological evidence has been recognized for more than a century, but in the last 15 years these types of evidence have been used much more widely both as an investigative intelligence tool and as evidence in court.

  11. Impact of land management on soil structure and soil hydraulic properties

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Jirků, V.; Nikodem, A.; Mühlhanselová, M.; Žigová, Anna

    2010-01-01

    Roč. 12, - (2010) ISSN 1029-7006. [European Geosciences Union General Assembly 2010. 02.05.2010-07.05.2010, Wienna] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : land management * soil structure * soil hydraulic properties * micromorphology Subject RIV: DF - Soil Science

  12. Radionuclide Concentration in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during 2005

    Energy Technology Data Exchange (ETDEWEB)

    P.R. Fresquez; M.W. McNaughton; M.J. Winch

    2005-10-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected from up to nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Soil and plant samples were also collected from the proposed expansion area west of Area G for the purpose of gaining preoperational baseline data. Soil and plant samples were analyzed for radionuclides that have shown a history of detection in past years; these included {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U for soils and {sup 3}H, {sup 238}Pu, and {sup 239,240}Pu for plants. As in previous years, the highest levels of {sup 3}H in soils and vegetation were detected at the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions near the pads for transuranic waste. All concentrations of radionuclides in soils and vegetation, however, were still very low (pCi range) and far below LANL screening levels and regulatory standards.

  13. Biochar for soil fertility and natural carbon sequestration

    Science.gov (United States)

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  14. The level of 137Cs concentration in Greek soils one decade after the Chernobyl accident

    International Nuclear Information System (INIS)

    Vosniakos, F.K.; Zoumakis, N.M.; Diomou, C.S.

    1997-01-01

    One of the most serious consequences of the Chernobyl accident was the greatest radioactive contamination of the biosphere including the soil cover. It is well known that a soil analysis is a principal systematic method to estimate the radioactivity level in the particular area since deposition pattern is determined by measuring activity in grass and soil. The aim of the present work is first to identify the level of the existing 137 Cs contamination over Greece ten years after the Chernobyl accident. Secondly, a comparison between the 1986 137 Cs - distribution and the present measured one in more - less the same areas of Greece, has been attempted. The 40 k (0.0118% of natural K) concentration in soils as ratio 137 Cs/ 40 k has been, examined, even this ratio is not as constant in biological systems as the ratio Sr/Ca

  15. Comparing the Ability of Conventional and Digital Soil Maps to Explain Soil Variability using Diversity Indices

    Directory of Open Access Journals (Sweden)

    zohreh mosleh

    2017-06-01

    Full Text Available Introduction: Effective and sustainable soil management requires knowledge about the spatial patterns of soil variation and soil surveys are important and useful sources of data that can be used. Prior knowledge about the spatial distribution of the soils is the first essential step for this aim but this requires the collection of large amounts of soil information. However, the conventional soil surveys are usually not useful for providing quantitative information about the spatial distribution of soil properties that are used in many environmental studies. Recently, by the rapid development of the computers and technology together with the availability of new types of remote sensing data and digital elevation models (DEMs, digital and quantitative approaches have been developed. These new techniques relies on finding the relationships between soil properties or classes and the auxiliary information that explain the soil forming factors or processes and finally predict soil patterns on the landscape. Different types of the machine learning approaches have been applied for digital soil mapping of soil classes, such as the logistic and multinomial logistic regressions, neural networks and classification trees. In reality, soils are physical outcomes of the interactions happening among the geology, climate, hydrology and geomorphic processes. Diversity is a way of measuring soil variation. Ibanez (9 first introduced ecological diversity indices as measures of diversity. Application of the diversity indices in soil science have considerably increased in recent years. Taxonomic diversity has been evaluated in the most previous researches whereas comparing the ability of different soil mapping approaches based on these indices was rarely considered. Therefore, the main objective of this study was to compare the ability of the conventional and digital soil maps to explain the soil variability using diversity indices in the Shahrekord plain of

  16. Relationships between respiration, chemical and microbial properties of afforested mine soils with different soil texture and tree species: Does the time of incubation matter

    Czech Academy of Sciences Publication Activity Database

    Józefowska, A.; Pietrzykowski, M.; Woś, B.; Cajthaml, T.; Frouz, Jan

    2017-01-01

    Roč. 80, May (2017), s. 102-109 ISSN 1164-5563 Institutional support: RVO:60077344 Keywords : afforested mine soils * soil texture * tree species * chemical properties * microbial properties Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 2.445, year: 2016

  17. The soil and air quality connection: abstracts of the 36. Alberta soil science workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The workshop has the following general categories of papers (with abstracts only): plenary session, volunteer session I; volunteer session II; technical session I - soil reclamation, and soil fertility; technical session II - soil conservation, and soil information; and poster presentations. Twelve individual papers are abstracted/indexed as follows: (1) greenhouse gas emissions from Canadian prairie agriculture; (2) acid deposition, critical loads, soil sensitivity, and environmental responses; (3) the downwind health risks of intensive livestock production; (4) nitrous oxide emission as affected by tillage practices and fertilizer association; (5) a conceptual system for assigning sensitivities to potentially acidifying inputs to soils in the oil sands regions of Alberta; (6) a particle tracer method for soil aggregation and translocation studies; (7) DNA adduct quantification in Eisenia fetida after subchronic exposures to creosote contaminated soils; (8) the physical distribution of anthropogenic mercury in nine contaminated soils; (9) bioremediation of hydrocarbon-contaminated soils: are treatability and ecotoxicity endpoints related?; (10) land reclamation using oil sand processing tailings: a field study; (11) assessment of toxicity based criteria for disposal of drilling waste in oil and gas exploration; and (12) toxicity assessment of approved drilling mud additives in the oil and gas sector.

  18. Environmental radioactivity level and soil radon measurement of a volcanic region in Cameroon

    International Nuclear Information System (INIS)

    Ngachin, M.; Garavaglia, M.; Giovani, C.; Kwato Njock, M.G.

    2007-02-01

    A part of the survey programme on the evaluation of environmental radioactivity in Cameroon has just been initiated. The radioactivity level of soils in a volcanic area in Cameroon was determined and discussed. 30 soils samples were collected from Buea and Limbe cities located in the south-western Cameroon. These two regions are known for theirs volcanic grounds due to the presence of Mount Cameroon mountain. The activity concentrations of natural radionuclides as well as that of the fission product were evaluated by gamma-ray spectrometry using a hyper purity germanium detector (HPGe). The ranges of concentrations in the surveyed soils were 11 - 17 Bq kg -1 , 22 - 36 Bq kg -1 and 43 - 201 Bq kg -1 for 226 Ra, 232 Th and 40 K, respectively. The radioisotope 137 Cs was also found but in a very small amount. The outdoor absorbed dose rate 1 m above ground with the corresponding annual effective dose rate, assuming a 20% occupancy factor were estimated. The radium equivalent and the external hazard index were also evaluated and results are compared with available data from other studies and with the world average value (UNSCEAR, 1988, 2000). A solid state nuclear track detector (SSNTDs), LR-115 was used for soil radon measurements at a depth of 50 cm. The ranges of soil radon concentrations were 6.7 - 10.8 kBq m -3 and 5.5 - 8.7 kBq m -3 in Buea and Limbe, respectively. A positive correlation was found between concentrations of radium measured with γ-spectrometry and the soil radon concentrations measured with the nitrate cellulose detectors. The results of this study provide the radioactivity level in soil of a volcanic area, which has been found to be within the safety limits. The south-western Cameroon can be considered as having normal natural background radiation in normal living conditions. (author)

  19. Radionuclide Concentrations in soils an Vegetation at Low-Level Radioactive Waste Disposal Area G During 2004

    Energy Technology Data Exchange (ETDEWEB)

    P.R. Fresquez; E.A. Lopez

    2004-11-01

    Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected at nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). These samples were analyzed for {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 137}Cs, {sup 234}U, {sup 235}U, and {sup 238}U. Soil samples collected at Area G contained detectable concentrations of 3H (27%), {sup 239,240}Pu (60%), {sup 238}Pu (40%), and {sup 241}Am (47%) above regional statistical reference levels (RSRLs). In contrast, the levels of {sup 137}Cs, {sup 90}Sr, and U in all of the soil samples at Area G were either nondetectable or within RSRLs. The highest levels of {sup 3}H in soils were detected in the southwestern portion of Area G near the {sup 3}H shafts, whereas the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions. All concentrations of {sup 3}H and Pu in soils, however, were far below LANL screening action levels. As for vegetation, most radionuclides in/on plants were either nondetectable or within RSRLs. The exceptions were {sup 3}H in overstory and some understory vegetation, particularly in the southwestern portion of Area G, which correlated very well with the soils data in that area. Also, there was some foliar contamination from {sup 241}Am and Pu isotopes in/on a few plant samples--the highest concentrations occurring in the northern section of Area G.

  20. Absorption of technetium by plants in relation to soil type contamination level and time

    Energy Technology Data Exchange (ETDEWEB)

    Mousny, J.M.; Myttenaere, C. (Louvain Univ. (Belgium). Lab. de Physiologie Vegetale)

    1981-01-01

    Plants of Pisum sativum (var. Merveille de Kelvedon) were grown on seven typical european soils contaminated with different levels of /sup 99/Tc(0.17; 1.7 and 17 ..mu..Ci/kg). Added initially as pertechnetate, the technetium absorption has been studied for three successive cultures. The translocation of technetium from soil to plant leaves is high, but its transfer is reduced in soils rich in organic matter (Fen) or poorly drained (Braunerde). Aging reduces the technetium transfer and modify its relative distribution in plant (relatively more technetium is found in fruits); these results let suppose some modification of the technetium chemical form in soils with time.

  1. Soil Moisture Active Passive Mission L4_C Data Product Assessment (Version 2 Validated Release)

    Science.gov (United States)

    Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima; Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas

    2016-01-01

    The SMAP satellite was successfully launched January 31st 2015, and began acquiring Earth observation data following in-orbit sensor calibration. Global data products derived from the SMAP L-band microwave measurements include Level 1 calibrated and geolocated radiometric brightness temperatures, Level 23 surface soil moisture and freezethaw geophysical retrievals mapped to a fixed Earth grid, and model enhanced Level 4 data products for surface to root zone soil moisture and terrestrial carbon (CO2) fluxes. The post-launch SMAP mission CalVal Phase had two primary objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product pertaining to the validated release. The L4_C validated product release effectively replaces an earlier L4_C beta-product release (Kimball et al. 2015). The validated release described in this report incorporates a longer data record and benefits from algorithm and CalVal refinements acquired during the SMAP post-launch CalVal intensive period. The SMAP L4_C algorithms utilize a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily net ecosystem CO2 exchange (NEE) and component carbon fluxes for vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape freeze/thaw (FT) controls on GPP and respiration (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and

  2. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    Science.gov (United States)

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  3. The Interaction Features of the Multi-Level Retaining Walls with Soil Mass

    Directory of Open Access Journals (Sweden)

    Boyko Igor

    2017-09-01

    Full Text Available The interaction features of multi-level retaining walls with soil base were researched by changing their geometric parameters and locality at the plan. During excavation of deep foundation pits it is important to choose the type of constructions which influences on the horizontal displacements. The distance between the levels of retaining walls should be based on the results of numerical modelling. The objective of this paper is to present a comparison between the data of numerical simulations and the results of the in-situ lateral tests of couple piles. The problems have been solved by using the following soil models: Coulomb-Mohr model; model, which is based on the dilatation theory; elastic-plastic model with variable stiffness parameters.

  4. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    Science.gov (United States)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    ancillary data) were used to correct for surface temperature effects and to derive microwave emissivity. ECMWF data were also used for precipitation forecasts, presence of snow, and frozen ground. Vegetation options are described below. One year of soil moisture observations from a set of four watersheds in the U.S. were used to evaluate four different retrieval methodologies: (1) SMOS soil moisture estimates (version 400), (2) SeA soil moisture estimates using the SMOS/SMAP data with SMOS estimated vegetation optical depth, which is part of the SMOS level 2 product, (3) SeA soil moisture estimates using the SMOS/SMAP data and the MODIS-based vegetation climatology data, and (4) SeA soil moisture estimates using the SMOS/SMAP data and actual MODIS observations. The use of SMOS real-world global microwave observations and the analyses described here will help in the development and selection of different land surface parameters and ancillary observations needed for the SMAP soil moisture algorithms. These investigations will greatly improve the quality and reliability of this SMAP product at launch.

  5. Bacterial Communities in Malagasy Soils with Differing Levels of Disturbance Affecting Botanical Diversity

    Science.gov (United States)

    Blasiak, Leah C.; Schmidt, Alex W.; Andriamiarinoro, Honoré; Mulaw, Temesgen; Rasolomampianina, Rado; Applequist, Wendy L.; Birkinshaw, Chris; Rejo-Fienena, Félicitée; Lowry, Porter P.; Schmidt, Thomas M.; Hill, Russell T.

    2014-01-01

    Madagascar is well-known for the exceptional biodiversity of its macro-flora and fauna, but the biodiversity of Malagasy microbial communities remains relatively unexplored. Understanding patterns of bacterial diversity in soil and their correlations with above-ground botanical diversity could influence conservation planning as well as sampling strategies to maximize access to bacterially derived natural products. We present the first detailed description of Malagasy soil bacterial communities from a targeted 16S rRNA gene survey of greater than 290,000 sequences generated using 454 pyrosequencing. Two sampling plots in each of three forest conservation areas were established to represent different levels of disturbance resulting from human impact through agriculture and selective exploitation of trees, as well as from natural impacts of cyclones. In parallel, we performed an in-depth characterization of the total vascular plant morphospecies richness within each plot. The plots representing different levels of disturbance within each forest did not differ significantly in bacterial diversity or richness. Changes in bacterial community composition were largest between forests rather than between different levels of impact within a forest. The largest difference in bacterial community composition with disturbance was observed at the Vohibe forest conservation area, and this difference was correlated with changes in both vascular plant richness and soil pH. These results provide the first survey of Malagasy soil bacterial diversity and establish a baseline of botanical diversity within important conservation areas. PMID:24465484

  6. System-level musings about system-level science (Invited)

    Science.gov (United States)

    Liu, W.

    2009-12-01

    In teleology, a system has a purpose. In physics, a system has a tendency. For example, a mechanical system has a tendency to lower its potential energy. A thermodynamic system has a tendency to increase its entropy. Therefore, if geospace is seen as a system, what is its tendency? Surprisingly or not, there is no simple answer to this question. Or, to flip the statement, the answer is complex, or complexity. We can understand generally why complexity arises, as the geospace boundary is open to influences from the solar wind and Earth’s atmosphere and components of the system couple to each other in a myriad of ways to make the systemic behavior highly nonlinear. But this still begs the question: What is the system-level approach to geospace science? A reductionist view might assert that as our understanding of a component or subsystem progresses to a certain point, we can couple some together to understand the system on a higher level. However, in practice, a subsystem can almost never been observed in isolation with others. Even if such is possible, there is no guarantee that the subsystem behavior will not change when coupled to others. Hence, there is no guarantee that a subsystem, such as the ring current, has an innate and intrinsic behavior like a hydrogen atom. An absolutist conclusion from this logic can be sobering, as one would have to trace a flash of aurora to the nucleosynthesis in the solar core. The practical answer, however, is more promising; it is a mix of the common sense we call reductionism and awareness that, especially when strongly coupled, subsystems can experience behavioral changes, breakdowns, and catastrophes. If the stock answer to the systemic tendency of geospace is complexity, the objective of the system-level approach to geospace science is to define, measure, and understand this complexity. I will use the example of magnetotail dynamics to illuminate some key points in this talk.

  7. Cleaning the soil

    International Nuclear Information System (INIS)

    Stegmann, R.

    1993-01-01

    Volume 6 of the Hamburg Reports contains contributions from scientists from the Special Research Field 188 'Cleaning up Contaminated Soils' of the Technical University of Hamburg-Harburg and the University of Hamburg and of experts from science and from the practical field. The soil science and analytical aspects of the biological and chemical/physical treatment processes are shown and open questions specific to processes are dealt with. Scientific results are compared with practical experience here. The evaluation of treated soils for reuse in the environment is a very important question, which is explained in the first articles here. Examples of case studies are shown in the last part of the volume. (orig.) [de

  8. Organizational health and the achievement level of students in science at the secondary-level schools in Sri Lanka

    Science.gov (United States)

    Pakkeer-Jaufar, Pakkeer Cadermohideen

    This study sought to identify those organizational health factors that might have overriding influence on the achievement level of students in science in Sri Lankan secondary schools. This study involved 752 students, 33 science teachers, and 10 principals from two different districts, Ampara and Colombo, in Sri Lanka. Ten Tamil medium, secondary level, public schools were selected to participate in this study. Data were collected using four types of instruments: a questionnaire for pupils; interview schedules for science teachers and principals; checklists for classroom/school facilities, science laboratory facilities, and science practicals; and a science achievement test. The analysis focused on the collective perceptions of students, science teachers, and principals. Regression and path analyses were used as major analysis techniques, and the qualitative data provided by science teachers and principals were considered for a crosschecking of the quantitative inferences. The researcher found teacher affiliation, academic emphasis, and instructional leadership of the principal, in descending order, were the overriding influential factors on the achievement level of students in science in Sri Lankan secondary schools. At the same time a similar descending order was found in their mean values and qualities. The researcher concluded that increasing the quality of the organizational health factors in Sri Lankan secondary schools would result in improved better achievement in science. The findings further indicate that instructional leadership of the principal had both direct and indirect effects on students' achievement in science when academic emphasis and teacher affiliation were taken into account. In addition, the resource support of the principal did not make any difference in students' science achievement and the findings stress the availability of the resources for individual students instead of assuming the general facilities of the school are available to all

  9. Trace metal levels in soils and vegetation from some tin mining ...

    African Journals Online (AJOL)

    Samples of soil and vegetation from some tin mining areas of Nigeria were analysed for lead, zinc, copper and cadmium content. The levels of Pb and Zn were found to be high in some samples. The mean levels of metal in the vegetation were: 86.6+ 36.0, 49.6+ 28.3, 12.6+4.8 and 1.4+0.8 µgg-1 dry weight for Pb, Zn, Cu ...

  10. An Evaluation of the Use of Statistical Procedures in Soil Science

    Directory of Open Access Journals (Sweden)

    Laene de Fátima Tavares

    2016-01-01

    Full Text Available ABSTRACT Experimental statistical procedures used in almost all scientific papers are fundamental for clearer interpretation of the results of experiments conducted in agrarian sciences. However, incorrect use of these procedures can lead the researcher to incorrect or incomplete conclusions. Therefore, the aim of this study was to evaluate the characteristics of the experiments and quality of the use of statistical procedures in soil science in order to promote better use of statistical procedures. For that purpose, 200 articles, published between 2010 and 2014, involving only experimentation and studies by sampling in the soil areas of fertility, chemistry, physics, biology, use and management were randomly selected. A questionnaire containing 28 questions was used to assess the characteristics of the experiments, the statistical procedures used, and the quality of selection and use of these procedures. Most of the articles evaluated presented data from studies conducted under field conditions and 27 % of all papers involved studies by sampling. Most studies did not mention testing to verify normality and homoscedasticity, and most used the Tukey test for mean comparisons. Among studies with a factorial structure of the treatments, many had ignored this structure, and data were compared assuming the absence of factorial structure, or the decomposition of interaction was performed without showing or mentioning the significance of the interaction. Almost none of the papers that had split-block factorial designs considered the factorial structure, or they considered it as a split-plot design. Among the articles that performed regression analysis, only a few of them tested non-polynomial fit models, and none reported verification of the lack of fit in the regressions. The articles evaluated thus reflected poor generalization and, in some cases, wrong generalization in experimental design and selection of procedures for statistical analysis.

  11. The rocky flats controversy on radionuclide soil action levels

    International Nuclear Information System (INIS)

    Earle, T.C.

    2004-01-01

    An account of the Rocky Flats radionuclide soil action level controversy is presented as: a case study for the purpose of understanding the nature and value of stakeholder involvement in the management of radiological hazards. The report consists of three main sections. The first section outlines the Rocky Flats story, including the Cold War era, which was characterised by secrecy and distrust, the post-Cold War era, in which trust and co-operation between risk managers and the public began to develop. This contrast between these two historical periods provides the context necessary to understand the radionuclide soil action level controversy, the main events of which are described in the second section. In the final section, the Rocky Flats case is briefly discussed within the framework of a general model of stakeholder involvement and the lessons learned from the case are identified: (1) without a basis in shared values, collaborative public involvement in the management of radiological hazards is not possible; (2) given a basis in shared values, collaborative public involvement can lead to improved solutions to the management of radiological hazards; and (3) risk managers should therefore seek to understand the values of public stakeholders and to identify ways, through stakeholder involvement, that those values can be incorporated in management practice. (author)

  12. Radioactivity level and soil radon measurement of a volcanic area in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Ngachin, M. [Center for Atomic, Molecular Physics and Quantum Optics, University of Douala, P.O. Box 8580, Douala (Cameroon); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy); Institut Pluridisciplinaire Hubert-Curien, UMR7178 CNRS-IN2P3 and Universite Louis Pasteur, 23 rue de Loess, BP 28, F-67037 Strasbourg cedex 02 (France)], E-mail: mngachin@yahoo.com; Garavaglia, M.; Giovani, C. [Regional Agency for Environmental Protection (ARPA), 91 via Tavagnacco, 33100 Udine (Italy); Kwato Njock, M.G. [Center for Atomic, Molecular Physics and Quantum Optics, University of Douala, P.O. Box 8580, Douala (Cameroon); Nourreddine, A. [Institut Pluridisciplinaire Hubert-Curien, UMR7178 CNRS-IN2P3 and Universite Louis Pasteur, 23 rue de Loess, BP 28, F-67037 Strasbourg cedex 02 (France)

    2008-07-15

    The radioactivity level of soils in a volcanic area in Cameroon was determined and discussed. Thirty soils samples were collected from Buea and Limbe cities located in the south-western Cameroon. These two regions are known for theirs volcanic grounds due to the presence of Mount Cameroon Mountain. The activity concentrations of natural radionuclides as well as that of the fission product were evaluated by gamma-ray spectrometry using a hyper-purity germanium detector (HPGe). The ranges of concentrations in the surveyed soils were 11-17 Bq kg{sup -1}, 22-36 Bq kg{sup -1} and 43-201 Bq kg{sup -1} for {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. The radioisotope {sup 137}Cs was also found but in a very small amount. The outdoor absorbed dose rate 1 m above ground with the corresponding annual effective dose rate, assuming a 20% occupancy factor was estimated. The radium equivalent and the external hazard index were also evaluated and results are compared with available data from other studies and with the world average value [United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 1988. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly on the Effects of Atomic Radiation. United Nations, New York; UNSCEAR, 2000. Sources and Effects of Ionizing Radiations. Report to the General Assembly with Scientific Annexes. United Nations, New York]. A solid state nuclear track detector (SSNTD), LR-115 was used for soil radon measurements at a depth of 50 cm. The ranges of soil radon concentrations were 6.7-10.8 kBq m{sup -3} and 5.5-8.7 kBq m{sup -3} in Buea and Limbe, respectively. A positive correlation was found between concentrations of radium measured with {gamma}-spectrometry and the soil radon concentrations measured with the nitrate cellulose detectors. The results of this study provide the radioactivity level in soil of a volcanic area, which has been found to be within the safety limits. The south

  13. Sugarcane trash levels in soil affects the fungi but not bacteria in a short-term field experiment

    Directory of Open Access Journals (Sweden)

    C.T.C.C Rachid

    2016-06-01

    Full Text Available Abstract The sugarcane in Brazil is passing through a management transition that is leading to the abolition of pre-harvest burning. Without burning, large amounts of sugarcane trash is generated, and there is a discussion regarding the utilization of this biomass in the industry versus keeping it in the field to improve soil quality. To study the effects of the trash removal on soil quality, we established an experimental sugarcane plantation with different levels of trash over the soil (0%, 50% and 100% of the original trash deposition and analyzed the structure of the bacterial and fungal community as the bioindicators of impacts. The soil DNA was extracted, and the microbial community was screened by denaturing gradient gel electrophoresis in two different seasons. Our results suggest that there are no effects from the different levels of trash on the soil chemistry and soil bacterial community. However, the fungal community was significantly impacted, and after twelve months, the community presented different structures among the treatments.

  14. Effect of different soil water available levels on the development of young plants of “erva-mate”

    OpenAIRE

    Pintro, Jose Carlos; UEM; Flores, Feliciano Edi Vieira; UFRGS

    2008-01-01

    The influence of different levels of soil water availability on the development of young plants of “erva-mate” (Ilex paraguariensis St. Hil.) was studied under controlled conditions. The plants were cultivated during the period from January to November, a total of 45 weeks. The foreseen treatments corresponded to 3 water available levels for plants: treatment 1 (T-1): soil moisture at 0.3 atm of tension, treatment 2 (T-2): soil moisture at 80% of water quantity used in T-1, and treatment 3 (T...

  15. Predictors of gender achievement in physical science at the secondary level

    Science.gov (United States)

    Kozlenko, Brittany Hunter

    This study used the 2009 National Assessment of Educational Progress (NAEP) science restricted data-set for twelfth graders. The NAEP data used in this research study is derived from a sample group of 11,100 twelfth grade students that represented a national population of over 3,000,000 twelfth grade students enrolled in science in the United States in 2009. The researcher chose the NAEP data set because it provided a national sample using uniform questions. This study investigated how the factors of socioeconomic status (SES), parental education level, mode of instruction, and affective disposition affect twelfth grade students' physical science achievement levels in school for the sample population and subgroups for gender. The factors mode of instruction and affective disposition were built through factor analysis based on available questions from the student surveys. All four factors were found to be significant predictors of physical science achievement for the sample population. NAEP exams are administered to a national sample that represents the population of American students enrolled in public and private schools. This was a non-experimental study that adds to the literature on factors that impact physical science for both genders. A gender gap is essentially nonexistent at the fourth grade level but appears at the eighth grade level in science based on information from NAEP (NCES, 1997). The results of the study can be used to make recommendation for policy change to diminish this gender gap in the future. Educators need to be using research to make instructional decisions; research-based instruction helps all students.

  16. Monitoring soil bacteria with community-level physiological profiles using Biolog™ ECO-plates in the Netherlands and Europe

    DEFF Research Database (Denmark)

    Rutgers, Michiel; Wouterse, Marja; Drost, Sytske M.

    2016-01-01

    Soil samples were analyzed with community-level physiological profiles (CLPP) using Biolog™ ECO-plates in the Netherlands Soil Monitoring Network (NSMN; 704 samples) and in a European-wide transect (73 samples). The selection of sites was based on a representative sample of major soil texture types...... of the bacterial inoculum. The CLPP in Dutch and European soil samples appeared to be reproducible and sensitive to land use and/or soil texture. Although the method is selective, CLPP based parameters correlated well with other microbial parameters and soil characteristics. Consistent patterns in CLPP and soil...... habitat characteristics are emerging, as brought about by environmental disturbances, land management and soil texture. The applicability of CLPP analysis in monitoring systems is discussed....

  17. African Crop Science Journal

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... The African Crop Science Journal, a quarterly publication, publishes original ... interactions, information science, environmental science and soil science.

  18. Ecohydrological role of biological soil crusts across a gradient in levels of development

    Science.gov (United States)

    Whitney, Kristen M.; Vivoni, Enrique R.; Duniway, Michael C.; Bradford, John B.; Reed, Sasha C.; Belnap, Jayne

    2017-01-01

    Though biological soil crusts (biocrusts) form abundant covers in arid and semiarid regions, their competing effects on soil hydrologic conditions are rarely accounted for in models. This study presents the modification of a soil water balance model to account for the presence of biocrusts at different levels of development (LOD) and their impact on one-dimensional hydrologic processes during warm and cold seasons. The model is developed, tested, and applied to study the hydrologic controls of biocrusts in context of a long-term manipulative experiment equipped with meteorological and soil moisture measurements in a Colorado Plateau ecosystem near Moab, Utah. The climate manipulation treatments resulted in distinct biocrust communities, and model performance with respect to soil moisture was assessed in experimental plots with varying LOD as quantified through a field-based roughness index (RI). Model calibration and testing yielded excellent comparisons to observations and smooth variations of biocrust parameters with RI approximated through simple regressions. The model was then used to quantify how LOD affects soil infiltration, evapotranspiration, and runoff under calibrated conditions and in simulation experiments with gradual modifications in biocrust porosity and hydraulic conductivity. Simulation results show that highly developed biocrusts modulate soil moisture nonlinearly with LOD by altering soil infiltration and buffering against evapotranspiration losses, with small impacts on runoff. The nonlinear and threshold variations of the soil water balance in the presence of biocrusts of varying LOD helps explain conflicting outcomes of various field studies and sheds light on the ecohydrological role of biocrusts in arid and semiarid ecosystems.

  19. The role of soils in sustaining society and the environment

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Volume 4 on The Role of Soils in Society and the Environment covers: - Soils and the

  20. Diverse Soil Carbon Dynamics Expressed at the Molecular Level

    Science.gov (United States)

    van der Voort, T. S.; Zell, C. I.; Hagedorn, F.; Feng, X.; McIntyre, C. P.; Haghipour, N.; Graf Pannatier, E.; Eglinton, T. I.

    2017-12-01

    The stability and potential vulnerability of soil organic matter (SOM) to global change remain incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and subalpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids (n-alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14C variations among shorter- and longer-chain n-alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change.

  1. Soil-structure interaction effects on high level waste tanks

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Heymsfeld, E.

    1991-01-01

    High Level Waste Tanks consist of steel tanks located in concrete vaults which are usually completely embedded in the soil. Many of these tanks are old and were designed to seismic standards which are not compatible with current requirements. The objective if this paper is to develop simple methods of modeling SSI effects for such structures and to obtain solutions for a range of parameters that can be used to identify significant aspects of the problem

  2. SOIL Geo-Wiki: A tool for improving soil information

    Science.gov (United States)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  3. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 1; Anais do 25. Congresso brasileiro de ciencia do solo: O solo nos grandes dominios morfoclimaticos do Brasil e o desenvolvimento sustentado. v. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This congress discussed soil`s science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil`s physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil`s and water conservation,fertilizers, pollution and environmental quality were discussed. In the first volume of the abstracts are presented papers related to soil`s physics and biology where nuclear methods of analysis were utilized

  4. Estimation of Soil Nitrate (NO3) Level Using Laser-Induced Breakdown Spectroscopy (LIBS)

    Science.gov (United States)

    Angkat, A. R.; Seminar, K. B.; Rahmat, M.; Sutandi, A.

    2018-05-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is a method for measuring level of nitrogen (N) in the soil in the form of N-nitrate (NO3) rapidly without going through the process of sieving and drying. The sample soil in the form of pellets subjected to laser pulses using a wavelength of 532 nm, pulse duration 5.5 ns, repetition rate of 10 Hz, and Q-switch delay of 150 μs. Emissions are captured by the spectrometer with the wavelength range of 190-1130 nm. Spectrum characterization was processed through the second derivative in order to obtain a wavelength identity that could be rapidly used to estimate the nitrate content of the soil with a determination coefficient of (R2) 0.9254 and a coefficient of variation (CV) of 8.41%. The results of this study are very potential to be applied for rapid measurement of soil nitrate.

  5. Correction of inaccuracies to article of Stanisław Brożek, „Does Polish soil classification, V edition, refer to all soils in our country“ published in the Soil Science Annual, vol. 63 no. 3/2012: 49–56

    Directory of Open Access Journals (Sweden)

    Marcinek Jerzy

    2014-03-01

    Full Text Available The paper presents correction of inaccuracies to the article entitled .Does Polish soil classification, V edition, refer to all soils in our country. by Stanisław Brożek published in Soil Science Annual, vol. 63, No. 3/2012: 49.56. The article of Stanisław Brożek is not a discussion paper but only a collection of numerous remarks, mostly non-professional, on .Polish soil classification. ed. 5, 2011 (SgP5. Since the article of Stanisław Brożek contains a lot of mistakes and inaccuracies arising from misunderstanding merits of a soil classification, as well as SgP5‘s text assessed, therefore in our paper wider merits discussion has not been taken. Correction of the erroneous statements of Author which relate to SgP5 were shown instead. Moreover, this paper is necessary as the Author is not a specialist in the field of soil classification, and his article was published in a pedological scientific journal.

  6. Levels of /sup 137/Cs in soils and vegetation of West Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, B G [Link Systems Ltd., High Wycombe (UK)

    1978-05-01

    Samples of topsoils and vegetation from a wide distribution of sites in West Malaysia have been analysed for their /sup 137/Cs content by gross gamma-ray spectrometry using a Ge(Li) detector. The levels of contamination ranged up to 6.7 nCi/m/sup 2/ in soils from peak locations and up to 24 nCi/m/sup 2/ in one nonpeak location. There was an indication of a possible preferential scavenging effect by rainfall during the south west monsoon period (May to September) making levels in the western rainfall zone slightly higher than in the eastern rainfall zone. The levels in canopy leaves were shown to be strongly correlated with the presence of epiphyllae colonies on their surfaces, causing an enhanced interception of aerosols. The highest level recorded in canopy leaves was 3.7 pCi/g and corresponded to 70% of the leaves harboring epiphyllae colonies. Levels from epiphytic lichens and mosses ranged from 0.23 to 1.3 pCi/g and up to 4.2 pCi/g for ferns. The data on soil samples suggest that West Malaysia has intercepted a minimum of 522 Ci of /sup 137/Cs from past nuclear weapons testing as of March 1974.

  7. Factors influencing U(VI adsorption onto soil from a candidate very low level radioactive waste disposal site in China

    Directory of Open Access Journals (Sweden)

    Zuo Rui

    2016-01-01

    Full Text Available The properties of soil at disposal sites are very important for geological disposal of very low level radioactive waste in terms of U(VI. In this study, soil from a candidate very low level radioactive waste disposal site in China was evaluated for its capacity on uranium sorption. Specifically, the equilibrium time, initial concentration, soil particle, pH, temperature, and carbonate were evaluated. The results indicated that after 15-20 days of sorption, the Kd value fluctuated and stabilized at 355-360 mL/g. The adsorptive capacity of uranium was increased as the initial uranium concentration increased, while it decreased as the soil particle size increased. The pH value played an important role in the U(VI sorption onto soil, especially under alkaline conditions, and had a great effect on the sorption capacity of soil for uranium. Moreover, the presence of carbonate decreased the sorption of U(VI onto soil because of the role of the strong complexation of carbonate with U(VI in the groundwater. Overall, this study assessed the behavior of U(VI sorption onto natural soil, which would be an important factor in the geological barrier of the repository, has contribution on mastering the characteristic of the adsorption of uranium in the particular soil media for the process of very low level radioactive waste disposal.

  8. Sugarcane trash levels in soil affects the fungi but not bacteria in a short-term field experiment.

    Science.gov (United States)

    Rachid, C T C C; Pires, C A; Leite, D C A; Coutinho, H L C; Peixoto, R S; Rosado, A S; Salton, J; Zanatta, J A; Mercante, F M; Angelini, G A R; Balieiro, Fabiano de Carvalho

    2016-01-01

    The sugarcane in Brazil is passing through a management transition that is leading to the abolition of pre-harvest burning. Without burning, large amounts of sugarcane trash is generated, and there is a discussion regarding the utilization of this biomass in the industry versus keeping it in the field to improve soil quality. To study the effects of the trash removal on soil quality, we established an experimental sugarcane plantation with different levels of trash over the soil (0%, 50% and 100% of the original trash deposition) and analyzed the structure of the bacterial and fungal community as the bioindicators of impacts. The soil DNA was extracted, and the microbial community was screened by denaturing gradient gel electrophoresis in two different seasons. Our results suggest that there are no effects from the different levels of trash on the soil chemistry and soil bacterial community. However, the fungal community was significantly impacted, and after twelve months, the community presented different structures among the treatments. Copyright © 2016. Published by Elsevier Editora Ltda.

  9. Functional and community-level soil microbial responses to zinc addition may depend on test system biocomplexity.

    NARCIS (Netherlands)

    Sverdrup, L.E.; Linjordet, R.; Stomman, G.; Hagen, S.B.; van Gestel, C.A.M.; Frostegard, A.; Sorheim, R.

    2006-01-01

    The effect of zinc on soil nitrification and composition of the microbial community in soil was investigated using a full factorial experiment with five zinc concentrations and four levels of biological complexity (microbes only, microbes and earthworms (Eisenia fetida), microbes and Italian

  10. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 2; Anais do 25. Congresso brasileiro de ciencia do solo: O solo nos grandes dominios morfoclimaticos do Brasil e o desenvolvimento sustentado. v. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This congress discussed soil`s science with emphasis in the Brazilian morphoclimatics dominion and the sustained development. Topics related to soil`s physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil`s and water conservation, fertilizers, pollution and environmental quality were discussed. In the second volume of the abstracts are presented papers related to soil`s fertility and plants nutrition are discussed where nuclear methods of analysis are presented

  11. Effects of water level on three wetlands soil seed banks on the Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Miaojun Ma

    Full Text Available BACKGROUND: Although the effect of water level on germination in soil seed banks has been documented in many ecosystems, the mechanism is not fully understood, and to date no empirical studies on this subject exist. Further, no work has been done on the effect of water level on seed banks of drying and saline-alkaline wetlands in alpine areas on the Tibetan Plateau. METHODOLOGY: We examined the effects of water level (0 cm, 5 cm and 10 cm on seed germination and seedling establishment from soil seed banks at 0-5 cm and 5-10 cm depths in typical, drying, and saline-alkaline wetlands. We also explore the potential role of soil seed bank in restoration of drying and saline-alkaline wetlands. PRINCIPAL FINDINGS: Species richness decreased with increase in water level, but there almost no change in seed density. A huge difference exists in species composition of the seed bank among different water levels in all three wetlands, especially between 0 cm and 5 cm and 0 cm and 10 cm. Similarity of species composition between seed bank and plant community was higher in 0 cm water level in drying wetland than in the other two wetlands. The similarity was much higher in 0 cm water level than in 5 cm and 10 cm water levels in all three wetlands. Species composition of the alpine wetland plant community changed significantly after drying and salinization, however, species composition of the seed bank was unchanged regardless of the environment change. CONCLUSIONS/SIGNIFICANCE: Water level greatly affects seed bank recruitment and plant community establishment. Further, different water levels in restored habitats are likely to determine its species composition of the plant community. The seed bank is important in restoration of degraded wetlands. Successful restoration of drying and salinization wetlands could depend on the seed bank.

  12. Neonicotinoid concentrations in arable soils after seed treatment applications in preceding years.

    Science.gov (United States)

    Jones, Ainsley; Harrington, Paul; Turnbull, Gordon

    2014-12-01

    Concentrations of the neonicotinoid insecticides clothianidin, thiamethoxam and imidacloprid were determined in arable soils from a variety of locations in England. In soil samples taken from the central area of fields, concentrations of clothianidin ranged from 0.02 to 13.6 µg kg(-1) . Thiamethoxam concentrations were between clothianidin and thiamethoxam were lower in soil samples taken from the edges of fields than from the centres of fields, but this difference was less pronounced for imidacloprid. This work gives a clear indication of the levels of neonicotinoids in arable soils after typical use of these compounds as seed dressings in the United Kingdom. There was evidence that imidacloprid was more persistent in the soils studied than clothianidin and thiamethoxam. As clothianidin and thiamethoxam have largely superseded imidacloprid in the United Kingdom, neonicotinoid levels were lower than suggested by predictions based on imidacloprid alone. © 2014 Crown copyright. Pest Management Science © 2014 Society of Chemical Industry.

  13. World Reference Base for Soil Resources

    NARCIS (Netherlands)

    Deckers, J.A.; Driessen, P.M.; Nachtergaele, F.O.; Spaargaren, O.C.

    2002-01-01

    In 1998, the International Union of Soil Sciences (IUSS) officially adopted the world reference base for soil resources (WRB) as the Union's system for soil correlation. The structure, concepts, and definitions of the WRB are strongly influenced by the FAO-UNESCO legend of the soil map of the world

  14. Chemical evolution of leaked high-level liquid wastes in Hanford soils

    Energy Technology Data Exchange (ETDEWEB)

    NYMAN,MAY D.; KRUMHANSL,JAMES L.; ZHANG,PENGCHU; ANDERSON,HOWARD L.; NENOFF,TINA M.

    2000-05-19

    A number of Hanford tanks have leaked high level radioactive wastes (HLW) into the surrounding unconsolidated sediments. The disequilibrium between atmospheric C0{sub 2} or silica-rich soils and the highly caustic (pH > 13) fluids is a driving force for numerous reactions. Hazardous dissolved components such as {sup 133}Cs, {sup 79}Se, {sup 99}Tc may be adsorbed or sequestered by alteration phases, or released in the vadose zone for further transport by surface water. Additionally, it is likely that precipitation and alteration reactions will change the soil permeability and consequently the fluid flow path in the sediments. In order to ascertain the location and mobility/immobility of the radionuclides from leaked solutions within the vadose zone, the authors are currently studying the chemical reactions between: (1) tank simulant solutions and Hanford soil fill minerals; and (2) tank simulant solutions and C0{sub 2}. The authors are investigating soil-solution reactions at: (1) elevated temperatures (60--200 C) to simulate reactions which occur immediately adjacent a radiogenically heated tank; and (2) ambient temperature (25 C) to simulate reactions which take place further from the tanks. The authors studies show that reactions at elevated temperature result in dissolution of silicate minerals and precipitation of zeolitic phases. At 25 C, silicate dissolution is not significant except where smectite clays are involved. However, at this temperature CO{sub 2} uptake by the solution results in precipitation of Al(OH){sub 3} (bayerite). In these studies, radionuclide analogues (Cs, Se and Re--for Tc) were partially removed from the test solutions both during high-temperature fluid-soil interactions and during room temperature bayerite precipitation. Altered soils would permanently retain a fraction of the Cs but essentially all of the Se and Re would be released once the plume was past and normal groundwater came in contact with the contaminated soil. Bayerite

  15. Chemical evolution of leaked high-level liquid wastes in Hanford soils

    International Nuclear Information System (INIS)

    NYMAN, MAY D.; KRUMHANSL, JAMES L.; ZHANG, PENGCHU; ANDERSON, HOWARD L.; NENOFF, TINA M.

    2000-01-01

    A number of Hanford tanks have leaked high level radioactive wastes (HLW) into the surrounding unconsolidated sediments. The disequilibrium between atmospheric C0 2 or silica-rich soils and the highly caustic (pH > 13) fluids is a driving force for numerous reactions. Hazardous dissolved components such as 133 Cs, 79 Se, 99 Tc may be adsorbed or sequestered by alteration phases, or released in the vadose zone for further transport by surface water. Additionally, it is likely that precipitation and alteration reactions will change the soil permeability and consequently the fluid flow path in the sediments. In order to ascertain the location and mobility/immobility of the radionuclides from leaked solutions within the vadose zone, the authors are currently studying the chemical reactions between: (1) tank simulant solutions and Hanford soil fill minerals; and (2) tank simulant solutions and C0 2 . The authors are investigating soil-solution reactions at: (1) elevated temperatures (60--200 C) to simulate reactions which occur immediately adjacent a radiogenically heated tank; and (2) ambient temperature (25 C) to simulate reactions which take place further from the tanks. The authors studies show that reactions at elevated temperature result in dissolution of silicate minerals and precipitation of zeolitic phases. At 25 C, silicate dissolution is not significant except where smectite clays are involved. However, at this temperature CO 2 uptake by the solution results in precipitation of Al(OH) 3 (bayerite). In these studies, radionuclide analogues (Cs, Se and Re--for Tc) were partially removed from the test solutions both during high-temperature fluid-soil interactions and during room temperature bayerite precipitation. Altered soils would permanently retain a fraction of the Cs but essentially all of the Se and Re would be released once the plume was past and normal groundwater came in contact with the contaminated soil. Bayerite, however, will retain significant

  16. Soil formation and soil biological properties post mining sites after coal mining in central Europe

    Czech Academy of Sciences Publication Activity Database

    Kaneda, Satoshi; Frouz, Jan; Krištůfek, Václav; Elhottová, Dana; Pižl, Václav; Starý, Josef; Háněl, Ladislav; Tajovský, Karel; Chroňáková, Alica

    2007-01-01

    Roč. 53, - (2007), s. 13 ISSN 0288-5840. [Annual Meeting Japanese Society of Soil Science and Plant Nutrition . 22.08.2007, Setagaya city] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil formation * soil biological properties * post mining sites Subject RIV: EH - Ecology, Behaviour

  17. Determination of Tetracycline and Fluoroquinolone Antibiotics at Trace Levels in Sludge and Soil

    Directory of Open Access Journals (Sweden)

    Marie-Virginie Salvia

    2015-01-01

    Full Text Available This work describes the development of a sensitive analytical method to determine simultaneously traces of tetracycline and fluoroquinolone antibiotics in sludge and soil, based on PLE extraction, followed by SPE purification and finally an analysis by LC-MS/MS. Recoveries were greater than 87% in the case of fluoroquinolones and between 25.4 and 41.7% for tetracyclines. Low relative standard deviations (<15% were obtained in both matrices. The limits of quantification were comprised between 1.1 and 4.6 ng/g and between 5 and 20 ng/g in soil and sludge, respectively. The method was then successfully applied to the analysis of the target antibiotics in sludge as well as soil that received spreading. The substances most frequently found and with the highest levels were fluoroquinolones with concentrations exceeding 1,000 ng/g in several samples of sludge and up to 16 ng/g in soil.

  18. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring

    DEFF Research Database (Denmark)

    Nocita, M.; Stevens, A.; van Wesemael, Bas

    2015-01-01

    The soil science community is facing a growing demand of regional, continental, and worldwide databases in order to monitor the status of the soil. However, the availability of such data is very scarce. Cost-effective tools to measure soil properties for large areas (e.g., Europe) are required....... Soil spectroscopy has shown to be a fast, cost-effective, envi-ronmental-friendly, nondestructive, reproducible, and repeatable analytical technique. The main aim of this paper is to describe the state of the art of soil spectroscopy as well as its potential to facilitating soil monitoring. The factors...... constraining the application of soil spectroscopy as an alternative to traditional laboratory analyses, together with the limits of the technique, are addressed. The paper also highlights that the widespread use of spectroscopy to monitor the status of the soil should be encouraged by (1) the creation...

  19. VegeSafe: A community science program measuring soil-metal contamination, evaluating risk and providing advice for safe gardening.

    Science.gov (United States)

    Rouillon, Marek; Harvey, Paul J; Kristensen, Louise J; George, Steven G; Taylor, Mark P

    2017-03-01

    The extent of metal contamination in Sydney residential garden soils was evaluated using data collected during a three-year Macquarie University community science program called VegeSafe. Despite knowledge of industrial and urban contamination amongst scientists, the general public remains under-informed about the potential risks of exposure from legacy contaminants in their home garden environment. The community was offered free soil metal screening, allowing access to soil samples for research purposes. Participants followed specific soil sampling instructions and posted samples to the University for analysis with a field portable X-ray Fluorescence (pXRF) spectrometer. Over the three-year study period, >5200 soil samples, primarily from vegetable gardens, were collected from >1200 Australian homes. As anticipated, the primary soil metal of concern was lead; mean concentrations were 413 mg/kg (front yard), 707 mg/kg (drip line), 226 mg/kg (back yard) and 301 mg/kg (vegetable garden). The Australian soil lead guideline of 300 mg/kg for residential gardens was exceeded at 40% of Sydney homes, while concentrations >1000 mg/kg were identified at 15% of homes. The incidence of highest soil lead contamination was greatest in the inner city area with concentrations declining towards background values of 20-30 mg/kg at 30-40 km distance from the city. Community engagement with VegeSafe participants has resulted in useful outcomes: dissemination of knowledge related to contamination legacies and health risks; owners building raised beds containing uncontaminated soil and in numerous cases, owners replacing all of their contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  1. Phosphorus levels in soil and lettuce production due to phosphorus fertilization

    Directory of Open Access Journals (Sweden)

    José Ricardo Mantovani

    2014-09-01

    Full Text Available The leafy vegetables are considered nutrient-demanding, but are scarce in the literature works about phosphorus fertilization. This study aimed to evaluate the effect of phosphate on the production of lettuce, content and amount of P accumulated in leaf plants, and to relate levels of P in the clayey soil with plant production. The experiment was conducted in a greenhouse in pots in a randomized block design with ten treatments and four replications. The treatments were made up of P, corresponding to 0, 50, 100, 150, 200, 300, 400, 500, 600 and 700 mg dm-3, as triple superphosphate powder. Portions of 6 dm3 of the clay soil (420 g kg-1 clay received lime, aimed at raising the V % soil to 70 %, equivalent to 20 t ha-1 of cattle manure, and the phosphate fertilizer according to the treatments, remaining incubated for about 30 days. At the end of incubation, each pot received a change of lettuce cultivar Verônica. The plant harvesting was performed 39 days after transplanting the seedlings. O P gave large increases in growth and production of lettuce, and culture responded positively to the application of high doses of the nutrient. A dose of 350 mg dm-3, equivalent to 800 kg ha-1 P2O5, was the most suitable for growing lettuce in the clay soil. In this work conditions, the phosphorus fertilizations it was necessary when the P-Mehlich contents in the clay soil were less than 75 mg dm-3.

  2. The contrasting responses of soil microorganisms in two rice cultivars to elevated ground-level ozone

    International Nuclear Information System (INIS)

    Feng, Youzhi; Yu, Yongjie; Tang, Haoye; Zu, Qianhui; Zhu, Jianguo; Lin, Xiangui

    2015-01-01

    Although elevated ground-level O 3 has a species–specific impact on plant growth, the differences in soil biota responses to O 3 pollution among rice cultivars are rarely reported. Using O 3 Free-Air Concentration Enrichment, the responses of the rhizospheric bacterial communities in the O 3 -tolerant (YD6) and the O 3 -sensitive (IIY084) rice cultivars to O 3 pollution and their differences were assessed by pyrosequencing at rice tillering and anthesis stages. Elevated ground-level O 3 negatively influenced the bacterial community in cultivar YD6 at both rice growth stages by decreasing the bacterial phylogenetic diversities and response ratios. In contrast, in cultivar IIY084, the bacterial community responded positively at the rice tillering stage under O 3 pollution. However, several keystone bacterial guilds were consistently negatively affected by O 3 pollution in two rice cultivars. These findings indicate that continuously O 3 pollution would negatively influence rice agroecosystem and the crop cultivar is important in determining the soil biota responses to elevated O 3 . - Highlights: • We investigated the soil biota in two rice cultivars in presence of elevated O 3 . • The contrasting responses of soil biota were found between two rice cultivars. • Some keystone bacterial guilds were consistently negatively affected by O 3 pollution. • The crop cultivar is important in determining soil biota responses to elevated O 3 . - The crop cultivar is important in determining the soil biota responses to elevated O 3

  3. Soil and water nitrate levels in relation to fertilizer utilization in Yugoslavia

    International Nuclear Information System (INIS)

    Filipovic, R.; Stevanovic, D.

    1980-01-01

    The results of a number of field experiments and monitoring of drainage canals close to intensive agricultural production involving the application of mineral fertilizers are reported. The object was to determine whether the pollution potential of underground and derived surface waters by nitrates and phosphates could be expressed as a function of the applied doses of fertilizer, method of application, climate, soil, etc. Analytical data indicated that, in surface waters adjacent to fertilized land, nitrate levels were higher than those of surface waters adjacent to unfertilized land. Preliminary results on the distribution of NO 3 down the soil profile following the application of 15 N-labelled ammonium nitrate to maize indicated downward movement of the labelled nitrate below the 100-cm depth. Application of organic matter with the fertilizer apparently retarded the leaching process. Soil-surface drainage water was characterized by high P/N ratios. (author)

  4. Background levels of some trace elements in sandy soil of Abou-Zabal, and its variation with soil depth determines by neutron activation analysis. Vol. 4

    International Nuclear Information System (INIS)

    Abdel-Sabour, M.F.; Sanad, W.; Flex, H.; Abdel-Haleem, A.S.; Zohny, E.

    1996-01-01

    The variation in soil total heavy metal contents (horizontally and vertically) in small land area (about one acre) was investigated using neutron activities analysis technique. The background levels found in the sandy soil of Abou-Zabal are also discussed in relation to the findings of other workers. 5 tabs

  5. Background levels of some trace elements in sandy soil of Abou-Zabal, and its variation with soil depth determines by neutron activation analysis. Vol. 4.

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Sabour, M F [Soil Pollution Unit, Soil and Water Department. Nuclear Research Center, Atomic energy Authority, Cairo, (Egypt); Sanad, W; Flex, H; Abdel-Haleem, A S [Hot Lab. Center, Atomic Energy Authority, Cairo (Egypt); Zohny, E [Physics Department, Faculty of Science, Cairo Univ., Beni-Sweif Branch, Cairo, (Egypt)

    1996-03-01

    The variation in soil total heavy metal contents (horizontally and vertically) in small land area (about one acre) was investigated using neutron activities analysis technique. The background levels found in the sandy soil of Abou-Zabal are also discussed in relation to the findings of other workers. 5 tabs.

  6. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen Grothe; Jensen, Karsten Høgh; Fredericia, Johnny

    1998-01-01

    of macropore structure and hydraulic efficiency, using image analysis and tension infiltration, and of soil water content, level of groundwater table, and chloride content of soil water within the soil profile yielded insights into small-scale processes and their associated variability. Macropore how...... into the soil profile. Dye infiltration experiments in the field as well as in the laboratory supported the recognition of the dominant contribution of macropores to the infiltration and transport process. The soil matrix significantly influenced the tracer distribution by acting as a source or sink...... for continuous solute exchange with the macropores. An average field-determined active macroporosity constituted 0.2% of the total porosity, or approximately 10% of the total macroporosity. (C) 1998 Elsevier Science B.V. All rights reserved....

  7. Is This the End of the English Tradition of Practical A-Level Science?

    Science.gov (United States)

    Carter, Ian

    2014-01-01

    From September 2015, schools in England will be teaching new A-level science specifications that have been developed by examination boards to encompass new higher levels of demand developed by the Department for Education. Integral to these new specifications is a radical change to the contribution of practical science to the A-level grade of the…

  8. Multimedia approach to estimating target cleanup levels for soils at hazardous waste sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1990-04-01

    Contaminated soils at hazardous and nuclear waste sites pose a potential threat to human health via transport through environmental media and subsequent human intake. To minimize health risks, it is necessary to identify those risks and ensure that appropriate actions are taken to protect public health. The regulatory process may typically include identification of target cleanup levels and evaluation of the effectiveness of remedial alternatives and the corresponding reduction in risks at a site. The US Environmental Protection Agency (EPA) recommends that exposure assessments be combined with toxicity information to quantify the health risk posed by a specific site. This recommendation then forms the basis for establishing target cleanup levels. An exposure assessment must first identify the chemical concentration in a specific medium (soil, water, air, or food), estimate the exposure potential based on human intake from that media, and then combined with health criteria to estimate the upperbound health risks for noncarcinogens and carcinogens. Estimation of target cleanup levels involves the use of these same principles but can occur in reverse order. The procedure starts from establishing a permissible health effect level and ends with an estimated target cleanup level through an exposure assessment process. 17 refs

  9. Nigerian Journal of Soil Science

    African Journals Online (AJOL)

    Effect of Tillage and Mulch Combination on Soil Physical Properties and Sorghum Performance on Alfisol of Southwest Nigeria · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. S Ojeniyi, S Odedina, J Odedina, M Akinola ...

  10. Global Assessment of the SMAP Level-4 Soil Moisture Product Using Assimilation Diagnostics

    Science.gov (United States)

    Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe

    2018-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx. 2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

  11. Using Data Assimilation Diagnostics to Assess the SMAP Level-4 Soil Moisture Product

    Science.gov (United States)

    Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe

    2018-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx.2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

  12. Environmental Studies and Environmental Science at GCE '0' and 'A' Level.

    Science.gov (United States)

    Gayford, Christopher G.

    1983-01-01

    Reports on environmental studies/science at General Certificate of Examination (GCE) ordinary ("0") and advanced ("A") levels. Questionnaires were used to survey teachers (focusing on their professional training and why they teach environmental studies/science courses) and to determine the relationship between environmental…

  13. Proceedings of the 25. Brazilian congress on soil science: The soil in the great morpho climatic dominion in Brazil and the sustained development. v. 3; Anais do 25 congresso brasileiro de ciencia do solo: O solo nos grandes dominios morfoclimaticos do Brasil e o desenvolvimento sustentado. v. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This congress discussed soil science with emphasis in the Brazilian morpho climatic dominion and the sustained development. Topics related to soil`s physics, chemical, biology, fertility, classification, nutrition, mineralogy, soil`s and water conservation, fertilizers, pollution and environmental quality were discussed. In the third volume of the abstracts are presented papers related to physics and chemical characteristics of building soils in coal mines areas

  14. Soil color - a window for public and educators to understands soils

    Science.gov (United States)

    Libohova, Zamir; Beaudette, Dylan; Wills, Skye; Monger, Curtis; Lindbo, David

    2017-04-01

    Soil color is one of the most visually striking properties recorded by soil scientists around the world. Soil color is an important characteristic related to soil properties such organic matter, parent materials, drainage. It is a simplified way for the public and educators alike to understand soils and their functions. Soil color is a quick measurement that can be recorded by people using color charts or digital cameras, offering an opportunity for the citizen science projects to contribute to soil science. The US Soil Survey has recorded soil colors using Munsell color system for over 20,000 soil types representing a wide range of conditions throughout the Unites States. The objective of this research was to generate a US soil color map based on color descriptions from the Official Series Descriptions (OSDs). A color calculator developed in R and ArcMap were used to spatially display the soil colors. Soil colors showed vertical trends related to soil depth and horizontal trends related to parent material and climate. Soil colors represent development processes depending upon environment and time that have influenced their appearance and geographic distribution. Dark colors represent soils that are rich in organic matter, such as the soils of the Midwest USA, which are some of the most fertile soils in the world. These soils are relatively "young" in that they developed over the last 20,000 years in materials left behind after continental Glaciers retreated and reflect long- term prairie vegetation that dominated this area prior to European settlements. Dark soils of the Pacific Northwest reflect the influence of forests (and volcanic activity) but are shallower and less fertile than the deep dark Midwest soils. Soils of the eastern and southern Coastal Plains are older and are enriched with iron oxides ('rust') which gives them their red coloring. Soils of flood plains, like the broad Mississippi Valley, have multi-colored soils that reflect the process of

  15. Increasing Resilience Through Engagement In Sea Level Rise Community Science Initiatives.

    Science.gov (United States)

    Chilton, L. A.; Rindge, H.

    2017-12-01

    Science literate and engaged members of the public, including students, are critical to building climate resilient communities. USC Sea Grant facilitates programs that work to build and strengthen these connections. The Urban Tides Community Science Initiative (Urban Tides) and the Youth Exploring Sea Level Rise Science Program (YESS) engage communities across the boundaries of public engagement, K-12 education, and informal education. YESS is an experiential sea level rise education program that combines classroom learning, field investigations and public presentations. Students explore sea level rise using a new curricula, collect their own data on sea level rise, develop communication products, and present their findings to city governments, researchers, and others. Urban Tides engages community members, informal education centers, K-12 students, and local government leaders in a citizen science program photo- documenting extreme high tides, erosion and coastal flooding in Southern California. Images provide critical information to help calibrate scientific models used to identify locations vulnerable to damage from future sea level rise. These tools and information enable community leaders and local governments to set priorities, guidelines, and update policies as they plan strategies that will help the region adapt. The program includes a mobile app for data collection, an open database to view photos, a lesson plan, and community beach walks. Urban Tides has led to an increase in data and data-gathering capacity for regional scientists, an increase in public participation in science, and an increase in ocean and climate literacy among initiative participants. Both of these programs bring informed and diverse voices into the discussion of how to adapt and build climate resilient communities. USC Sea Grant will share impacts and lessons learned from these two unique programs.

  16. Soil Moisture Active/Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007)]. The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  17. Soil Moisture Active Passive (SMAP) Radiometer Subband Calibration and Calibration Drift

    Science.gov (United States)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; De Amici, Giovanni; Mohammed, Priscilla N.

    2016-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007). The observatory was launched on Jan 31, 2015. The goal of the SMAP is to measure the global soil moisture and freeze/thaw from space. The L-band radiometer is the passive portion of the spaceborne instrument. It measures all four Stokes antenna temperatures and outputs counts. The Level 1B Brightness Temperature (L1B_TB) science algorithm converts radiometer counts to the Earths surface brightness temperature. The results are reported in the radiometer level 1B data product together with the calibrated antenna temperature (TA) and all of the corrections to the unwanted sources contribution. The calibrated L1B data product are required to satisfy the overall radiometer error budget of 1.3 K needed to meet the soil moisture requirement of 0.04 volumetric fraction uncertainty and the calibration drift requirement of no larger than 0.4 K per month.

  18. Association between risk of birth defects occurring level and arsenic concentrations in soils of Lvliang, Shanxi province of China

    International Nuclear Information System (INIS)

    Wu, Jilei; Zhang, Chaosheng; Pei, Lijun; Chen, Gong; Zheng, Xiaoying

    2014-01-01

    The risk of birth defects is generally accredited with genetic factors, environmental causes, but the contribution of environmental factors to birth defects is still inconclusive. With the hypothesis of associations of geochemical features distribution and birth defects risk, we collected birth records and measured the chemical components in soil samples from a high prevalence area of birth defects in Shanxi province, China. The relative risk levels among villages were estimated with conditional spatial autoregressive model and the relationships between the risk levels of the villages and the 15 types of chemical elements concentration in the cropland and woodland soils were explored. The results revealed that the arsenic levels in cropland soil showed a significant association with birth defects occurring risk in this area, which is consistent with existing evidences of arsenic as a teratogen and warrants further investigation on arsenic exposure routine to birth defect occurring risk. - Highlights: • Association between soil geochemical components and birth defects risk was proposed. • The relative risk difference among villages were estimated with CAR model. • Arsenic levels in cropland showed a significant association to birth defect risk. • The finding warrants further investigation on arsenic as a teratogen. - The difference of risk levels estimate by spatial statistics to birth defect significantly associated with arsenic levels in cropland soils warrants further investigation

  19. The World Soil Museum: education and advocacy on soils of the world

    Science.gov (United States)

    Mantel, Stephan; Land, Hiske

    2013-04-01

    The World Soil Museum (WSM) in Wageningen, is part of ISRIC World Soil Information and was founded in 1966 on request of the United Nations Educational, Scientific and Cultural Organization (UNESCO) and the International Soil Science Society. The World Soil Museum has a collection of over 1100 soil profiles from more than 70 countries. This soil profiles are vertical sections and show the composition, layering and structure of the soil. The collection is unique in the world and includes a significant number of soil profiles from the Netherlands. The Dutch soil collection is important for serving broader visitor groups, as some visitors, such as secondary school classes, are specifically interested in the Dutch landscape and soils. Broadly speaking, the World Soil Museum has five functions: (i) education and courses, (ii) research, (iii) information and edutainment, (iv) social function, and (v) a real museum function (Art). The World Soil Museum (World Soil Museum) is well known in national and international circles soil and the English name has almost 1,000 references on the Internet. The World Soil Museum is visited by about 1000 people a year, mainly university and college students from Western Europe. Other visitor groups that have found their way to the museum are students from disciplines broader then soil science, such as geography and rural development. Secondary school classes visit the museum for geography classes. The uniqueness and the value of the collection of soil profiles (soil monoliths) and associated collections, such as soil samples, hand pieces, thin sections, slides, is emphasized by the fact ISRIC is the only World Data Centre for Soils (WDC-Soils) within the World Data System of the International Council of Science (ICSU). The collection provides an insight in and overview of the diversity of soils in the world, their properties and their limitations and possibilities for use. A new building is under construction for the WSM, which is

  20. Thallium dynamics in contrasting light sandy soils-Soil vulnerability assessment to anthropogenic contamination

    Czech Academy of Sciences Publication Activity Database

    Vaněk, A.; Chrastný, V.; Komárek, M.; Galušková, I.; Drahota, Petr; Grygar, Tomáš; Tejnecký, V.; Drábek, O.

    2010-01-01

    Roč. 173, 1/3 (2010), s. 717-723 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z40320502 Keywords : thallium * soil * LMWOA * retention * mobility Subject RIV: DF - Soil Science Impact factor: 3.723, year: 2010

  1. Relationship Between Total and Bioaccessible Lead on Children’s Blood Lead Levels in Urban Residential Philadelphia Soils

    Science.gov (United States)

    Relationships between total soil or bioaccessible lead (Pb), measured using an in vitro bioaccessibility assay, and children’s blood lead levels (BLL) were investigated in an urban neighborhood in Philadelphia, Pennsylvania, USA, with a history of soil Pb contamination....

  2. How desertification research is addressed in Spain? Land versus Soil approaches

    Science.gov (United States)

    Barbero Sierra, Celia; Marques, María Jose; Ruiz, Manuel; Escadafal, Richard; Exbrayat, Williams; Akthar-Schuster, Mariam; El Haddadi, Anass

    2013-04-01

    This study intend to understand how desertification research is organised in a south Mediterranean country, as is Spain. It is part of a larger work addressing soil and land research and its relationships with stakeholders. This wider work aims to explain the weakness of the United Nation Convention to Combat Desertification (UNCCD), which devoid of a scientific advisory panel. Within this framework, we assume that a fitting coordination between scientific knowledge and a better flow of information between researchers and policy makers is needed in order to slow down and reverse the impacts of land degradation on drylands. With this purpose we conducted an in-depth study at national level in Spain. The initial work focused on a small sample of published references in scientific journals indexed in the Web of Science. It allowed us to identify the most common thematic approaches and working issues, as well as the corresponding institutions and research teams and the relationships between them. The preliminary results of this study pointed out that two prevalent approaches at this national level could be identified. The first one is related to applied science being sensitive to socio-economic issues, and the second one is related to basic science studying the soil in depth, but it is often disconnected from socio-economic factors. We also noticed that the Spanish research teams acknowledge the other Spanish teams in this subject, as frequent co-citations are found in their papers, nevertheless, they do not collaborate. We also realised that the Web of Science database does not collect the wide spectrum of sociology, economics and the human implications of land degradation which use to be included in books or reports related to desertification. A new wider database was built compiling references of Web of Science related to "desertification", "land", "soil", "development" and "Spain" adding references from other socioeconomic databases. In a second stage we used

  3. [Distribution and risk assessment of mercury species in soil of the water-level-fluctuating zone in the Three Gorges Reservoir].

    Science.gov (United States)

    Zhang, Cheng; Chen, Hong; Wang, Ding-Yong; Sun, Rong-Guo; Zhang, Jin-Yang

    2014-03-01

    To investigate pollution level and ecological risk of mercury in soils of the water-level-fluctuating zone in the Three Gorges Reservoir Region, 192 surface soil samples from 14 counties (districts) in Chongqing were obtained. Concentrations of THg and Hg species, bioavailable Hg were analyzed and discussed. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index (E(r)) were applied to assess the pollution status and potential ecological risk of THg and Hg species, respectively. The results showed that significant differences in the concentration of THg were found in soils of water-level-fluctuating zone in the Three Gorges Reservoir. The THg concentration ranged from 22.4 to 393.5 microg x kg(-1), with an average of (84.2 +/- 54.3) microg x kg(-1). 76.6% of the samples' THg content was higher than the soil background value in the Three Gorges Reservoir Region. The percentage of five mercury species (water-soluble Hg, HCl-soluble Hg, KOH-soluble Hg, H2O2-soluble Hg, residue Hg) in soils were 4.1%, 15.5%, 18.3%, 10.9%, 51.3%, respectively. The average concentrations of bioavailable mercury varied between 19.7-36.6 microg x kg(-1), and the percentage of bioavailable Hg was 22.1%-51.6% of THg. According to the geoaccumulation index, the soils were lightly polluted by Hg. Håkanson single potential ecological risk index evaluation showed that Hg species had a low potential ecological risk, moreover, soils of water-level-fluctuating zone in the Three Gorges Reservoir were at low ecological risk levels as evaluated by bioavailable Hg. While, the assessment results based on THg of soils was much higher than that based on the Hg species. Two methods of evaluation showed that the I(geo) and E(r) values calculated based on the Hg species better reflected the actual pollution levels of soils and its hazard to aquatic organisms.

  4. Staying in the Science Stream: Patterns of Participation in A-Level Science Subjects in the UK

    Science.gov (United States)

    Smith, Emma

    2011-01-01

    This paper describes patterns of participation and attainment in A-level physics, chemistry and biology from 1961 to 2009. The A level has long been seen as an important gateway qualification for higher level study, particularly in the sciences. This long-term overview examines how recruitment to these three subjects has changed in the context of…

  5. Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science

    Directory of Open Access Journals (Sweden)

    B. Jansen

    2017-11-01

    Full Text Available The application of lipids in soils as molecular proxies, also often referred to as biomarkers, has dramatically increased in the last decades. Applications range from inferring changes in past vegetation composition, climate, and/or human presence to unraveling the input and turnover of soil organic matter (SOM. The molecules used are extractable and non-extractable lipids, including ester-bound lipids. In addition, the carbon or hydrogen isotopic composition of such molecules is used. While holding great promise, the application of soil lipids as molecular proxies comes with several constraining factors, the most important of which are (i variability in the molecular composition of plant-derived organic matter both internally and between individual plants, (ii variability in (the relative contribution of input pathways into the soil, and (iii the transformation and/or (selective degradation of (some of the molecules once present in the soil. Unfortunately, the information about such constraining factors and their impact on the applicability of molecular proxies is fragmented and scattered. The purpose of this study is to provide a critical review of the current state of knowledge with respect to the applicability of molecular proxies in soil science, specifically focusing on the factors constraining such applicability. Variability in genetic, ontogenetic, and environmental factors influences plant n-alkane patterns in such a way that no unique compounds or specific molecular proxies pointing to, for example, plant community differences or environmental influences, exist. Other components, such as n-alcohols, n-fatty acids, and cutin- and suberin-derived monomers, have received far less attention in this respect. Furthermore, there is a high diversity of input pathways offering both opportunities and limitations for the use of molecular proxies at the same time. New modeling approaches might offer a possibility to unravel such mixed input

  6. Cadmium accumulation in soils caused by contaminated irrigation water in relation to safety level of enviromental water

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H; Iimura, K

    1974-01-01

    Adsorption of cadmium on the soil from irrigation water contaminated by human production activites were investigated. Both in the equilibrium and column experiments, the soils adsorbed more than 90 per cent of cadmium from the water containing 0.01 ppm cadmium and 18 or 300 ppm calcium. The amounts of cadmium adsorbed by the soils in the equilibrium experiments increased with the increasing concentrations (0.001-10 ppm) in accordance with the Freundlich's adsorption formula, the indices of which were near unity. In column experiments, the proportions of cadmium adsorbed by the soils from the water containing 0.01 ppm cadmium and 18 ppm calcium were equal to or more than those of calcium. It was estimated that if the water containing 0.01 ppm cadmium, that is the safety level of environmental water for human health by WHO and adopted as the permissible concentration by the Japanese Government, were irrigated in paddy fields, cadmium contents of the soils would exceed 1 ppm within a few years. Furthermore, on some of those contaminated soils, brown rice containing more than 1 ppm cadmium, that is the permissible concentration in brown rice authorised by the Japanese Government, will be produced. From the viewpoint of soil conservation from contamination, it is suggested that the permissible concentration of cadmium in the environment water should be lowered to at least one tenth of the present level. The exchange equilibriums in the soils between Cd and Ca and Cd and Na were discussed.

  7. Radiometric assessment of natural radioactivity levels of agricultural soil samples collected in Dakahlia, Egypt.

    Science.gov (United States)

    Issa, Shams A M

    2013-01-01

    Determination of the natural radioactivity has been carried out, by using a gamma-ray spectrometry [NaI (Tl) 3″ × 3″] system, in surface soil samples collected from various locations in Dakahlia governorate, Egypt. These locations form the agriculturally important regions of Egypt. The study area has many industries such as chemical, paper, organic fertilisers and construction materials, and the soils of the study region are used as a construction material. Therefore, it becomes necessary to study the natural radioactivity levels in soil to assess the dose for the population in order to know the health risks. The activity concentrations of (226)Ra, (232)Th and (40)K in the soil ranged from 5.7 ± 0.3 to 140 ± 7, from 9.0 ± 0.4 to 139 ± 7 and from 22 ± 1 to 319 ± 16 Bq kg(-1), respectively. The absorbed dose rate, annual effective dose rate, radium equivalent (Req), excess lifetime cancer risk, hazard indices (Hex and Hin) and annual gonadal dose equivalent, which resulted from the natural radionuclides in the soil were calculated.

  8. Two-Level Solutions to Exponentially Complex Problems in Glass Science

    DEFF Research Database (Denmark)

    Mauro, John C.; Smedskjær, Morten Mattrup

    Glass poses an especially challenging problem for physicists. The key to making progress in theoretical glass science is to extract the key physics governing properties of practical interest. In this spirit, we discuss several two-level solutions to exponentially complex problems in glass science....... Topological constraint theory, originally developed by J.C. Phillips, is based on a two-level description of rigid and floppy modes in a glass network and can be used to derive quantitatively accurate and analytically solvable models for a variety of macroscopic properties. The temperature dependence...... that captures both primary and secondary relaxation modes. Such a model also offers the ability to calculate the distinguishability of particles during glass transition and relaxation processes. Two-level models can also be used to capture the distribution of various network-forming species in mixed...

  9. Determination of polonium-210 levels in some syrian soils and crops

    International Nuclear Information System (INIS)

    Othman, I.; Al-Masri, M.S.; Aba, A.A.; Mukhallaty, H.; Al-Hamwy, A.; Khalili, H.

    1997-04-01

    Polonium 210 levels in the edible port of 19 agricultural crops collected from ten locations in Syria have been determined. Results have been shown that the highest concentrations were found to be in parsley (10.49 Bq/Kg) and this due to high area of its levels. Moreover, the concentrations were low in some vegetables such as tomatoes (0.2 Bq/Kg). In addition, polonium 210 was also determined in Syria soil where it was found to vary between 20 Bq/Kg and 68.8 Bq/Kg). (author). 11 refs., 17 tabs

  10. Disturbance of Soil Organic Matter and Nitrogen Dynamics: Implications for Soil and Water Quality

    Science.gov (United States)

    2004-06-30

    Elliott, E.T., 1992. Particulate soil organic- matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777–783. Dale, V.H...C.A., Elliott, E.T., 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal...1645-1650. Van Straalen, N.M. 1997. How to measure no effect. 2. Threshold effects in ecotoxicology . Environmetrics 8: 249-253. Verburg, P.S.J

  11. Citations and the h index of soil researchers and journals in the Web of Science, Scopus, and Google Scholar.

    Science.gov (United States)

    Minasny, Budiman; Hartemink, Alfred E; McBratney, Alex; Jang, Ho-Jun

    2013-01-01

    Citation metrics and h indices differ using different bibliometric databases. We compiled the number of publications, number of citations, h index and year since the first publication from 340 soil researchers from all over the world. On average, Google Scholar has the highest h index, number of publications and citations per researcher, and the Web of Science the lowest. The number of papers in Google Scholar is on average 2.3 times higher and the number of citations is 1.9 times higher compared to the data in the Web of Science. Scopus metrics are slightly higher than that of the Web of Science. The h index in Google Scholar is on average 1.4 times larger than Web of Science, and the h index in Scopus is on average 1.1 times larger than Web of Science. Over time, the metrics increase in all three databases but fastest in Google Scholar. The h index of an individual soil scientist is about 0.7 times the number of years since his/her first publication. There is a large difference between the number of citations, number of publications and the h index using the three databases. From this analysis it can be concluded that the choice of the database affects widely-used citation and evaluation metrics but that bibliometric transfer functions exist to relate the metrics from these three databases. We also investigated the relationship between journal's impact factor and Google Scholar's h5-index. The h5-index is a better measure of a journal's citation than the 2 or 5 year window impact factor.

  12. Citations and the h index of soil researchers and journals in the Web of Science, Scopus, and Google Scholar

    Directory of Open Access Journals (Sweden)

    Budiman Minasny

    2013-10-01

    Full Text Available Citation metrics and h indices differ using different bibliometric databases. We compiled the number of publications, number of citations, h index and year since the first publication from 340 soil researchers from all over the world. On average, Google Scholar has the highest h index, number of publications and citations per researcher, and the Web of Science the lowest. The number of papers in Google Scholar is on average 2.3 times higher and the number of citations is 1.9 times higher compared to the data in the Web of Science. Scopus metrics are slightly higher than that of the Web of Science. The h index in Google Scholar is on average 1.4 times larger than Web of Science, and the h index in Scopus is on average 1.1 times larger than Web of Science. Over time, the metrics increase in all three databases but fastest in Google Scholar. The h index of an individual soil scientist is about 0.7 times the number of years since his/her first publication. There is a large difference between the number of citations, number of publications and the h index using the three databases. From this analysis it can be concluded that the choice of the database affects widely-used citation and evaluation metrics but that bibliometric transfer functions exist to relate the metrics from these three databases. We also investigated the relationship between journal’s impact factor and Google Scholar’s h5-index. The h5-index is a better measure of a journal’s citation than the 2 or 5 year window impact factor.

  13. Retention of low-level radioacrive waste material by soil

    International Nuclear Information System (INIS)

    Essington, E.H.; Fowler, E.B.; Polzer, W.L.

    1979-01-01

    Beacuse of the wide variations in soil and waste characteristics, the degree of radionuclide retention would be expected to vary; knowledge of that variation may be of value in predicting radionuclde mobility. This report discusses results of investigations of radioactive waste/soil interactions as they relate to radionucldie retention and its variability among soils and radionuclides. In soil column leaching studies, radioactive waste solutions were applied to four different soil types; 241 Am, 88 Y, and 172 Hf were retained in the top four cm of soil with better than 90% retained by a protective surface sand layer. Less than 50% of the 85 Sr, 137 Cs, and 83 Rb was retained by the surface sand. No 88 Y, 172 Hf, 85 Sr, 137 Cs, or 83 Rb was detected by gamma counting in the leachate solutions, however, using a more sensitive analytical technique small amounts of 238 Pu, 239 240 Pu and 241 Am were found in leachates from all soils. It appears that release of this small fraction of mobile radionuclide may have a significant long-term impact on the environment. It aslo appears that reliance for attenuation of some radionuclides can not be placed solely on characteristics of the soil matrix

  14. Digging up the Dirt on Soil Safety

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Should middle school science teachers be concerned about students bringing in unknown sources of soil to work on in class as the activity suggests? The science is well intended, but is it safe? What are some possible safety issues that might be of concern in dealing with soil samples? This month's column provides several examples of unsuspecting…

  15. Institutional landmarks in Brazilian research on soil erosion: a historical overview

    Directory of Open Access Journals (Sweden)

    Tiago Santos Telles

    2013-12-01

    Full Text Available The problem of soil erosion in Brazil has been a focus of agricultural scientific research since the 19th century. The aim of this study was to provide a historical overview of the institutional landmarks which gave rise to the first studies in soil erosion and established the foundations of agricultural research in Brazil. The 19th century and beginning of the 20th century saw the founding of a series of institutions in Brazil, such as Botanical Gardens, executive institutions, research institutes, experimental stations, educational institutions of agricultural sciences, as well as the creation and diversification of scientific journals. These entities, each in its own way, served to foster soil erosion research in Brazil. During the Imperial period (1808-1889, discussions focused on soil degradation and conserving the fertility of agricultural land. During the First Republic (1889-1930, with the founding of various educational institutions and consolidation of research on soil degradation conducted by the Agronomic Institute of Campinas in the State of São Paulo, studies focused on soil depletion, identification of the major factors causing soil erosion and the measures necessary to control it. During the New State period (1930-1945, many soil conservation practices were developed and disseminated to combat erosion and field trials were set up, mainly to measure soil and water losses induced by hydric erosion. During the Brazilian New Republic (1945-1964, experiments were conducted throughout Brazil, consolidating soil and water conservation as one of the main areas of Soil Science in Brazil. This was followed by scientific conferences on erosion and the institutionalization of post-graduate studies. During the Military Regime (1964-1985, many research and educational institutions were founded, experimental studies intensified, and coincidently, soil erosion reached alarming levels which led to the development of the no-tillage system.

  16. Statistical methods for determination of background levels for naturally occuring radionuclides in soil at a RCRA facility

    International Nuclear Information System (INIS)

    Guha, S.; Taylor, J.H.

    1996-01-01

    It is critical that summary statistics on background data, or background levels, be computed based on standardized and defensible statistical methods because background levels are frequently used in subsequent analyses and comparisons performed by separate analysts over time. The final background for naturally occurring radionuclide concentrations in soil at a RCRA facility, and the associated statistical methods used to estimate these concentrations, are presented. The primary objective is to describe, via a case study, the statistical methods used to estimate 95% upper tolerance limits (UTL) on radionuclide background soil data sets. A 95% UTL on background samples can be used as a screening level concentration in the absence of definitive soil cleanup criteria for naturally occurring radionuclides. The statistical methods are based exclusively on EPA guidance. This paper includes an introduction, a discussion of the analytical results for the radionuclides and a detailed description of the statistical analyses leading to the determination of 95% UTLs. Soil concentrations reported are based on validated data. Data sets are categorized as surficial soil; samples collected at depths from zero to one-half foot; and deep soil, samples collected from 3 to 5 feet. These data sets were tested for statistical outliers and underlying distributions were determined by using the chi-squared test for goodness-of-fit. UTLs for the data sets were then computed based on the percentage of non-detects and the appropriate best-fit distribution (lognormal, normal, or non-parametric). For data sets containing greater than approximately 50% nondetects, nonparametric UTLs were computed

  17. Soil science basis and the effect of oil contamination on chemical properties of soils

    International Nuclear Information System (INIS)

    Wagner, A.; Miehlich, G.

    1993-01-01

    The changes in soil chemistry properties due to oil contamination and decontamination are examined. One main point of the work is the determination of the effect of oil on the availability of nutrients in the soil. Nutrients are not only present dissolved in the soil solution, but are for the most part reversibly adsorbed by exchangers on loaded surfaces. The clay minerals, the organic substance and iron and manganese oxide act as exchangers. Knowledge on surface structure and reactions in soils contaminated by oil is to be obtained via examination of the exchange behaviour of different bio-elements. The results supply the basis for the cleaning up technique, the judgement of cleaned materials and their reusability. (orig.) [de

  18. Thermopiles - a new thermal desorption technology for recycling highly organic contaminated soils down to natural levels

    International Nuclear Information System (INIS)

    Haemers, J.; Cardot, J.; Falcinelli, U.; Zwaan, H.

    2005-01-01

    The Thermopile R technology, developed by Deep Green, provides an implementation system allowing to treat hydrocarbon and PAH contaminated materials down to natural levels or down to levels where they are treatable with a traditional thermal desorption unit, in a controlled batch system. The materials are indirectly heated while a substantial part of the energy is reused to heat the pile of soil. The system differs from most of the indirect thermal desorption systems by its very high energetic efficiency as well as its ability to be set -up remotely. The system does not face preferential path problems, since the heating medium is only conduction, which is very indifferent with regard to soil type (clay, sand, silt, etc.). That property is critical to an in-depth clean-up with a batch system. Other systems, based on heat, are mostly sending heat vectors (gases, hot air, steam, etc.) through the soil, which implies preferential paths, which are the main cause for not completely cleaning the soil with most batch technologies (down to natural levels). The soil to treat is placed in a pile or in a modular container in which perforated steel pipes are installed along a hexagonal pattern. During treatment those pipes are heated by hot gases (about 600 deg. C) coming from the afterburner. Consequently the soil reaches the contaminant's desorption temperature. The desorbed pollutants are then drawn by convection and diffusion into the heating pipes via the perforations. Once in the pipes the desorbed gases are mixed with the heating gases. They are sucked by the ID fan and sent to the afterburner. The hydrocarbons in gaseous phase are then oxidized in the afterburner. In this manner, they provide a part of the energy needed to heat the soil itself. The pilot unit is also equipped with a purge that allows the evacuation of a part of the gases circulating in the system; Different additional gas treatments can be applied as required by the type of contaminants and the

  19. Effect of spatial resolution of soil data on predictions of eggshell trace element levels in the Rook Corvus frugilegus.

    Science.gov (United States)

    Orłowski, Grzegorz; Siebielec, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2016-12-01

    Although a considerable research effort has gone into studying the dietary pathways of metals to the bodies of laying female birds and their eggs in recent years, no detailed investigations have yet been carried out relating the properties of the biogeochemical environment at large spatial scales to eggshell trace element levels in typical soil-invertebrate feeding birds under natural conditions. We used data from a large-scale nationwide monitoring survey of soil quality in Poland (3724 sampling points from the 43 792 available) to predict levels of five trace elements (copper [Cu], cadmium [Cd], nickel [Ni], zinc [Zn] and lead [Pb]) in Rook Corvus frugilegus eggshells from 42 breeding colonies. Our major aim was to test whether differences exist in the explanatory power of soil data (acidity, content of elements and organic matter, and particle size) used as a correlate of concentrations of eggshell trace elements among four different distances (5, 10, 15 and 20 km) around rookeries. Over all four distances around the rookeries only the concentrations of Cu and Cd in eggshells were positively correlated with those in soil, while eggshell Pb was correlated with the soil Pb level at the two longest distances (15 and 20 km) around the rookeries. The physical properties of soil (primarily the increase in pH) adversely affected eggshell Cd and Pb concentrations. The patterns and factors governing metal bioaccumulation in soil invertebrates and eggshells appear to be coincident, which strongly suggests a general similarity in the biochemical pathways of elements at different levels of the food web. The increasing acidification of arable soil as a result of excessive fertilisation and over-nitrification can enhance the bioavailability of toxic elements to laying females and their eggs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The development of Operational Intervention Levels (OILs) for Soils - A decision support tool in nuclear and radiological emergency response

    Science.gov (United States)

    Lee Zhi Yi, Amelia; Dercon, Gerd; Blackburn, Carl; Kheng, Heng Lee

    2017-04-01

    In the event of a large-scale nuclear accident, the swift implementation of response actions is imperative. For food and agriculture, it is important to restrict contaminated food from being produced or gathered, and to put in place systems to prevent contaminated produce from entering the food chain. Emergency tools and response protocols exist to assist food control and health authorities but they tend to focus on radioactivity concentrations in food products as a means of restricting the distribution and sale of contaminated produce. Few, if any, emergency tools or protocols focus on the food production environment, for example radioactivity concentrations in soils. Here we present the Operational Intervention Levels for Soils (OIL for Soils) concept, an optimization tool developed at the IAEA to facilitate agricultural decision making and to improve nuclear emergency preparedness and response capabilities. Effective intervention relies on the prompt availability of radioactivity concentration data and the ability to implement countermeasures. Sampling in food and agriculture can be demanding because it may involve large areas and many sample types. In addition, there are finite resources available in terms of manpower and laboratory support. Consequently, there is a risk that timely decision making will be hindered and food safety compromised due to time taken to sample and analyse produce. However, the OILs for Soils concept developed based on experience in Japan can help in this situation and greatly assist authorities responsible for agricultural production. OILs for Soils - pre-determined reference levels of air dose rates linked to radionuclide concentrations in soils - can be used to trigger response actions particularly important for agricultural and food protection. Key considerations in the development of the OILs for Soils are: (1) establishing a pragmatic sampling approach to prioritize and optimize available resources and data requirements for

  1. Validation of two gridded soil moisture products over India with in ...

    Indian Academy of Sciences (India)

    2Atmospheric and Climate Sciences Group, Earth & Climate Science Area, National Remote Sensing Centre, ... soil moisture from India Meteorological Department (IMD) are used for the validation of the gridded soil .... the first generation satellite of Global Change ..... urban, inland water, bare soil and land ice) derived.

  2. Stability numerical analysis of soil cave in karst area to drawdown of underground water level

    Science.gov (United States)

    Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei

    2018-05-01

    With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.

  3. A comparison of the Web of Science with publication-level classification systems of science

    Energy Technology Data Exchange (ETDEWEB)

    Perianes-Rodriguez, A.; Ruiz-Castillo, J.

    2016-07-01

    In this paper we propose a new criterion for choosing between a pair of classification systems of science that assign publications (or journals) to a set of scientific fields. Consider the standard normalization procedure in which field mean citations are used as normalization factors. We recommend system A over system B whenever the standard normalization procedure based on A performs better than the when it is based on B. Since the evaluation can be made in terms of either system, the performance assessment requires a double test. In addition, since the assessment of two normalization procedures would be generally biased in favor of the one based on the classification system used for evaluation purposes, ideally a pair of classification systems must be compared using a third, independent classification system for evaluation purposes. We illustrate this strategy by comparing a Web of Science journal-level classification system, consisting of 236 journal subject categories, with two publication-level algorithmically constructed classification systems consisting of 1,363 (G6) and 5,119 (G8) clusters. There are two main findings. (1) The G8 system is found to dominate the G6 system. Therefore, when we have a choice between two classification systems at different granularity levels, we should use the system at the higher level because it typically exhibits a better standard normalization performance. (2) The G8 system and the Web of Science (WoS) journal-level system are found to be non-comparable. Nevertheless, the G8-normalization procedure performs better using the WoS system for evaluation purposes than the WoS-normalization procedure using the G8 system for evaluation purposes. Furthermore, when we use the G6 system for evaluation purposes, the G8-normalization procedure performs better than the WoS-normalization procedure. We conclude that algorithmically constructed classification systems constitute a credible alternative to the WoS system and, by extension, to

  4. Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico

    Science.gov (United States)

    Arsenic (As) and lead (Pb) are two contaminants of concern associated with urban gardening. In Puerto Rico, data currently is limited on As and Pb levels in urban garden soils, soil metal (loid) bioaccessibility, and uptake of As and Pb in soil by edible plants grown in the regio...

  5. Electrokinetics for removal of low-level radioactivity from soil

    Energy Technology Data Exchange (ETDEWEB)

    Pamukcu, S. [Lehigh Univ., Bethlehem, PA (United States); Wittle, J.K. [Electro-Petroleum, Inc., Wayne, PA (United States)

    1993-03-01

    The electrokinetic process is an emerging technology for in situ soil decontamination in which chemical species, both ionic and nonionic, are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. The work presented here describes part of the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentrations of a selected heavy-metal salt solution. These metals included surrogate radionuclides such as Sr, Cs and U, and an anionic species of Cr. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. Removals of some metal species up to 99% were achieved at the anode or cathode end of the soil upon 24 to 48 hours of treatment or a maximum of 1 pore volume of water displacement toward the cathode compartment. Transient pH change through the soil had an effect on the metal movement, as evidenced by accumulation of the metals at the discharge ends of the soil specimens. This accumulation was attributed to the precipitation of the metal and increased cation retention capacity of the clay in high pH environment at the cathode end. In general, the reduced mobility and dissociation of the ionic species as they encounter areas of higher ionic concentration in their path of migration resulted in the accumulation of the metals at the discharge ends of the soil specimens.

  6. Grade Level Differences in High School Students' Conceptions of and Motives for Learning Science

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2017-08-01

    Students' conceptions of learning science and their relations with motive for learning may vary as the education level increases. This study aimed to compare the quantitative patterns in students' conceptions of learning science (COLS) and motives for learning science (MLS) across grade levels by adopting two survey instruments. A total of 768 high school students were surveyed in Taiwan, including 204 eighth graders, 262 tenth graders, and 302 12th graders. In the current research, memorizing, testing, and calculating and practicing were categorized as reproductive conceptions of learning science, while increase of knowledge, applying, understanding and seeing-in-a-new-way were regarded as constructivist conceptions. The results of multivariate analyses of variance (MANOVA) revealed that conceptions of learning science are more constructivist as education level increases. Both tenth graders and 12th graders endorsed understanding, seeing-in-a-new-way, and the constructivist COLS composite more strongly than the eighth graders did. In addition, the results of multigroup structural equation modeling (SEM) analysis indicated that the positive relations between testing and reproductive COLS were stronger as the grade level increased, while the negative relations between reproductive COLS and deep motive were tighter with the increase in grade level.

  7. A study for natural radioactivity levels in some soil samples using gamma spectrometry

    International Nuclear Information System (INIS)

    Mohamed, Yousif Hassab El Rasoul

    1997-05-01

    The purpose of this study was to investigate a few selected soil samples and to study their natural radioactivity using gamma spectrometry. The first sample was a rock phosphate from Nuba mountains region which is being considered as a low cost fertilizer. Another sample came from Miri lake area (Nuba mountains) which is known to have elevated natural radioactivity level. The other four samples came from different other regions in Sudan for comparison. The idea was to identify the radioactive nuclides present in these soil samples, to trace their sources and to determine the activity present in them. (Author)

  8. Inter- and Intra- Field variations in soil compaction levels and subsequent impacts on hydrological extremes

    Science.gov (United States)

    Pattison, Ian; Coates, Victoria

    2015-04-01

    The rural landscape in the UK is dominated by pastoral agriculture, with about 40% of land cover classified as either improved or semi-natural grassland according to the Land Cover Map 2007. Intensification has resulted in greater levels of compaction associated with higher stocking densities. However, there is likely to be a great amount of variability in compaction levels within and between fields due to multiple controlling factors. This research focusses in on two of these factors; firstly animal species, namely sheep, cattle and horses; and secondly field zonation e.g. feeding areas, field gates, open field. Field experiments have been conducted in multiple fields in the River Skell catchment, in Yorkshire, UK, which has an area of 140km2. The effect on physical and hydrologic soil characteristics such as bulk density and moisture contents have been quantified using a wide range of field and laboratory based experiments. Results have highlighted statistically different properties between heavily compacted areas where animals congregate and less-trampled open areas. Furthermore, soil compaction has been hypothesised to contribute to increased flood risk at larger spatial scales. Previous research (Pattison, 2011) on a ~40km2 catchment (Dacre Beck, Lake District, UK) has shown that when soil characteristics are homogeneously parameterised in a hydrological model, downstream peak discharges can be 65% higher for a heavy compacted soil than for a lightly compacted soil. Here we report results from spatially distributed hydrological modelling using soil parameters gained from the field experimentation. Results highlight the importance of both the percentage of the catchment which is heavily compacted and also the spatial distribution of these fields.

  9. [Transfer characteristic and source identification of soil heavy metals from water-level-fluctuating zone along Xiangxi River, three-Gorges Reservoir area].

    Science.gov (United States)

    Xu, Tao; Wang, Fei; Guo, Qiang; Nie, Xiao-Qian; Huang, Ying-Ping; Chen, Jun

    2014-04-01

    Transfer characteristics of heavy metals and their evaluation of potential risk were studied based on determining concentration of heavy metal in soils from water-level-fluctuating zone (altitude:145-175 m) and bank (altitude: 175-185 m) along Xiangxi River, Three Gorges Reservoir area. Factor analysis-multiple linear regression (FA-MLR) was employed for heavy metal source identification and source apportionment. Results demonstrate that, during exposing season, the concentration of soil heavy metals in water-level-fluctuation zone and bank showed the variation, and the concentration of soil heavy metals reduced in shallow soil, but increased in deep soil at water-level-fluctuation zone. However, the concentration of soil heavy metals reduced in both shallow and deep soil at bank during the same period. According to the geoaccumulation index,the pollution extent of heavy metals followed the order: Cd > Pb > Cu > Cr, Cd is the primary pollutant. FA and FA-MLR reveal that in soils from water-level-fluctuation zone, 75.60% of Pb originates from traffic, 62.03% of Cd is from agriculture, 64.71% of Cu and 75.36% of Cr are from natural rock. In soils from bank, 82.26% of Pb originates from traffic, 68.63% of Cd is from agriculture, 65.72% of Cu and 69.33% of Cr are from natural rock. In conclusion, FA-MLR can successfully identify source of heavy metal and compute source apportionment of heavy metals, meanwhile the transfer characteristic is revealed. All these information can be a reference for heavy metal pollution control.

  10. Lead immobilization and phosphorus availability in phosphate-amended, mine-contaminated soils.

    Science.gov (United States)

    Osborne, Lydia R; Baker, Leslie L; Strawn, Daniel G

    2015-01-01

    Over a century of mining activities in the Coeur d'Alene mining district in Idaho have contaminated soils of the downstream basin with lead, arsenic, zinc, and cadmium. Elevated soil-Pb levels are a significant hazard to the health of humans and wildlife in the region. One in situ treatment approach for remediating Pb-contaminated soils is application of phosphorus to promote the formation of lead phosphate minerals that have low solubility. However, this remediation strategy may result in excess P runoff to surface waters, which can lead to eutrophication, particularly when used in riparian areas. Research presented in this paper describes experiments in which monopotassium phosphate (KHPO) solution was applied to two Pb-contaminated soils from the Coeur d'Alene River valley to determine how P loading rates affect both Pb immobilization and P mobility and to determine if an optimal P amendment rate can be predicted. Toxicity characteristic leaching procedure extractions were used to assess changes in Pb availability for uptake by an organism or mobilization through the soil, and Bray extractions were used to assess P availability for leaching out of the soil system. For the two soils tested, increasing phosphate amendment caused decreasing Pb extractability. Phosphorus amendment rates above approximately 70 mg kg, however, did not provide any additional Pb immobilization. Phosphorus availability increased with increasing phosphate application rate. An empirical relationship is presented that predicts extractable Pb as a function of extractable P. This relationship allows for prediction of the amount of Pb that can be immobilized at specified P leaching amounts, such as regulatory levels that have been established to minimize risks for surface water degradation. Results suggest that phosphate can be used to immobilize Pb in contaminated wetland or riparian areas without posing risks of P loading to surface waters. Copyright © by the American Society of Agronomy

  11. The level of 137Cs concentration in Lebanese soils decade after the Chernobyl accident

    International Nuclear Information System (INIS)

    El Samad, Omar

    1999-01-01

    Full text.This paper concerns the effects of fallout from the Chernobyl reactor accident on the environment in Lebanon. On 1 and 2 May 1986, part of the radioactive cloud from Chernobyl was over Lebanon. A description given of the distribution and movement of fallout as well as the type of contamination. As a result of rainfall on those two days, measurable amounts of several radionuclides were deposited on ground surfaces, predominantly by wet deposition. Not much information for the deposition rates of caesium radionuclides in soil is available. However generally, the deposit caesium was quickly fixed in the top soil. The aim of the present work is to identify the level of the 137 Cs contamination twelve years after the Chernobyl accident. Actinides activity levels in soil were measured. The non destructive Gamma-Spectroscopy measurements were performed by using coaxial high sensitivity HPGe-detectors with active and passive shielding to determine the low activity of various radionuclides. More than 60 soil samples were collected from points uniformly distributed throughout the geography of the zone in order to evaluate their activity. The data showed a relatively high 137 Cs concentration, up to 9000 Bq/m 2 in the superficial (0-3 cm) calcium carbonate soil (CaCo3). The average activity of 137 Cs was 50 Bq/Kg dry mass. The horizontal variation was found to be about 40% in the samples, which is in accordance with results found for similar investigations on Turkey and Greece. The depth distribution of total 137 Cs activity was found by fitting the experimental points to a modified exponential function

  12. Levels of Sulfur as an Essential Nutrient Element in the Soil-Crop-Food System in Austria

    Directory of Open Access Journals (Sweden)

    Manfred Sager

    2012-01-01

    Full Text Available Total sulfur data of various agricultural and food items from the lab of the author, have been compiled to develop an understanding of sulfur levels and ecological cycling in Austria. As sulfur level is not an included factor among the quality criteria of soil and fertilizer composition, the database is rather small. Problems in analytical determinations of total sulfur, in particular digestions, are outlined. As a protein component, sulfur is enriched in matrices of animal origin, in particular in egg white. There is substantial excretion from animals and man via urine. Organic fertilizers (manures, composts might contribute significantly to the sulfur budget of soils, which is important for organic farming of crops with high sulfur needs. For soils, drainage is a main route of loss of soluble sulfate, thus pot experiments may yield unrealistic sulfur budgets.

  13. The global SMOS Level 3 daily soil moisture and brightness temperature maps

    Directory of Open Access Journals (Sweden)

    A. Al Bitar

    2017-06-01

    Full Text Available The objective of this paper is to present the multi-orbit (MO surface soil moisture (SM and angle-binned brightness temperature (TB products for the SMOS (Soil Moisture and Ocean Salinity mission based on a new multi-orbit algorithm. The Level 3 algorithm at CATDS (Centre Aval de Traitement des Données SMOS makes use of MO retrieval to enhance the robustness and quality of SM retrievals. The motivation of the approach is to make use of the longer temporal autocorrelation length of the vegetation optical depth (VOD compared to the corresponding SM autocorrelation in order to enhance the retrievals when an acquisition occurs at the border of the swath. The retrieval algorithm is implemented in a unique operational processor delivering multiple parameters (e.g. SM and VOD using multi-angular dual-polarisation TB from MO. A subsidiary angle-binned TB product is provided. In this study the Level 3 TB V310 product is showcased and compared to SMAP (Soil Moisture Active Passive TB. The Level 3 SM V300 product is compared to the single-orbit (SO retrievals from the Level 2 SM processor from ESA with aligned configuration. The advantages and drawbacks of the Level 3 SM product (L3SM are discussed. The comparison is done on a global scale between the two datasets and on the local scale with respect to in situ data from AMMA-CATCH and USDA ARS Watershed networks. The results obtained from the global analysis show that the MO implementation enhances the number of retrievals: up to 9 % over certain areas. The comparison with the in situ data shows that the increase in the number of retrievals does not come with a decrease in quality, but rather at the expense of an increased time lag in product availability from 6 h to 3.5 days, which can be a limiting factor for applications like flood forecast but reasonable for drought monitoring and climate change studies. The SMOS L3 soil moisture and L3 brightness temperature products are delivered using an

  14. Assessing toxic levels of hydrocarbons on microbial degrader communities in vadose zone fill soils

    International Nuclear Information System (INIS)

    Schoenberg, T.H.; Long, S.C.

    1995-01-01

    Authentic fill samples were collected from the vadose zone at a highway travel plaza. The contamination at the site is a combination of gasoline, diesel, and waste oil resulting from leaking underground storage tanks. Microbial assessments including plate counts and specific-degrader enumerations were performed to establish the presence of degrader microbial communities, and thus bioremediation potential. Contaminant levels were estimated in samples by quantifying headspace VOCs in collection jars. Physical soil characteristics including soil grain size distribution and moisture content were measured to evaluate the potential ecological variables that would affect implementation of a bioremediation technology. Toxicity screening using the Microtox trademark acute toxicity assay was used to compare the level of toxicity present among samples. These analyses were used to assess the potential for using in situ bioventing remediation to clean-up the leaking underground storage tank spill study site. High contaminant levels appear to have exerted a toxic effect and resulted in smaller total microbial community sizes in highly contaminated areas (thousands of ppmv) of the site. Microtox trademark EC50 results generally corroborated with the trends of the enumeration experiments. Microbial characterization results indicate that in situ bioremediation would be possible at the study site. Soil heterogeneity appears to pose the greatest challenges to the design and implementation of bioremediation at this site

  15. Adsorption and desorption of Cu2+ on paddy soil aggregates pretreated with different levels of phosphate.

    Science.gov (United States)

    Dai, Jun; Wang, Wenqin; Wu, Wenchen; Gao, Jianbo; Dong, Changxun

    2017-05-01

    Interactions between anions and cations are important for understanding the behaviors of chemical pollutants and their potential risks in the environment. Here we prepared soil aggregates of a yellow paddy soil from the Taihu Lake region, and investigated the effects of phosphate (P) pretreatment on adsorption-desorption of Cu 2+ of soil aggregates, free iron oxyhydrates-removed soil aggregates, goethite, and kaolinite with batch adsorption method. The results showed that Cu 2+ adsorption was reduced on the aggregates pretreated with low concentrations of P, and promoted with high concentrations of P, showing a V-shaped change. Compared with the untreated aggregates, the adsorption capacity of Cu 2+ was reduced when P application rates were lower than 260, 220, 130 and 110mg/kg for coarse, clay, silt and fine sand fractions, respectively. On the contrary, the adsorption capacity of Cu 2+ was higher on P-pretreated soil aggregates than on the control ones when P application rates were greater than those values. However, the desorption of Cu 2+ was enhanced at low levels of P, but suppressed at high levels of P, displaying an inverted V-shaped change over P adsorption. The Cu 2+ adsorption by the aggregate particles with and without P pretreatments was well described by the Freundlich equation. Similar results were obtained on P-pretreated goethite. However, such P effects on Cu 2+ adsorption-desorption were not observed on kaolinite and free iron oxyhydrates-removed soil aggregates. The present results indicate that goethite is one of the main soil substances responsible for the P-induced promotion and inhibition of Cu 2+ adsorption. Copyright © 2016. Published by Elsevier B.V.

  16. Soils Newsletter, Vol. 38, No. 2, January 2016

    International Nuclear Information System (INIS)

    2016-02-01

    In 2015 the Soil and Water Management and Crop Nutrition (SWMCN) Subprogramme held several events to celebrate the “International Year of Soils” (IYS), to raise awareness and improve the understanding on the importance of soil for food security and essential ecosystem functions. The side event on ‘Managing Soils for Climate-Smart Agriculture’ on 16 September 2015 during the 59th IAEA General Conference was well attended with more than 80 participants including many country delegations attending the IAEA General Conference. The four speakers from Member States showcased the successes and impacts in the field as well as their experience on the importance of soils in global food security, the impacts of climate change on soil and the crucial roles of nuclear applications for climate-smart agriculture. Similarly, the one-day conference on 7 December 2015 on “Celebration of the 2015 International Year of Soils: Achievements and Future Challenges”, with the International Union of Soil Science (IUSS), to coincide with World Soil Day on 5 December and to mark the closing of IYS. Speakers from all Regional Soil Science Societies reported on their achievements with regards to managing soils for sustainable crop production and intensification. Working groups discussed future challenges and opportunities for soil research and development, and international partnership and collaboration. The roles of isotopic and nuclear techniques for managing soils to combat land degradation, improve soil fertility and resource use efficiency, while reducing the environmental impacts of agriculture, and improving the nutritional quality of crops were highlighted during the conference. At the event, participants proclaimed the ‘Vienna Soil Declaration: Soil matters for humans and ecosystems’, which sets the framework for future research in soil science and links achievements to the United Nations’ Sustainable Development Goals and global endeavours to combat climate change

  17. An Example Emphasizing Mass-Volume Relationships for Problem Solving in Soils

    Science.gov (United States)

    Heitman, J. L.; Vepraskas, M. J.

    2009-01-01

    Mass-volume relationships are a useful tool emphasized for problem solving in many geo-science and engineering applications. These relationships also have useful applications in soil science. Developing soils students' ability to utilize mass-volume relationships through schematic diagrams of soil phases (i.e., air, water, and solid) can help to…

  18. Spice In Martian Soil

    Science.gov (United States)

    Seiferlin, K.; Spohn, T.; Spice Team

    The Netlander mission offers a unique opportunity to study the surface and the inte- rior of Mars at four different locations at the same time. In addition to real "network"- science, where the presence of four stations is a 'must' to address global science as- pects, local, landing site-related instruments can more than double our knowledge of the surface of Mars, compared to the three landing sites (Viking 1 and 2, Pathfinder) we are currently familiar with. The SPICE instrument will characterize the soil at the landing sites. Force sensors integrated into the seismometer legs (three per station) will determine the mechanical strength of the soil. Thermal sensors will measure the local soil temperature, the thermal inertia and the thermal diffusivity independently, thus allowing us to determine the thermal conductivity and the volumetric heat capac- ity of the soil. These properties will tell us about (1) soil cementation ("duricrust"), (2) volatile exchange with the atmosphere, (3) grain size, (4) near-surface stratigra- phy, and (5) will finally provide ground truth for remote sensing data such as that from Mars Global Surveyor's thermal emission spectrometer.

  19. Connecting NASA science and engineering with earth science applications

    Science.gov (United States)

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  20. Geochemical analysis of leachates from cement/low-level radioactive waste/soil systems

    International Nuclear Information System (INIS)

    Criscenti, L.J.; Serne, R.J.

    1988-09-01

    Laboratory experiments were conducted as part of the Special Waste Form Lysimeters/endash/Arid Program. These experiments were conducted to investigate the performance of solidified low-level nuclear waste in a typical arid, near-surface disposal site, and to evaluate the ability of laboratory tests to predict leaching in actual field conditions. Batch leaching, soil adsorption column, and soil/waste form column experiments were conducted using Portland III cement waste forms containing boiling-water reactor evaporator concentrate and ion-exchange resin waste. In order to understand the reaction chemistry of the cement waste form/soil/ground-water system, the compositions of the leachates from the laboratory experiments were studied with the aid of the MINTEQ ion speciation/solubility and mass transfer computer code. The purpose of this report is to describe the changes in leachate composition that occur during the course of the experiments, to discuss the geochemical modeling results, and to explore the factors controlling the major element chemistry of these leachates. 18 refs., 84 figs., 14 tabs

  1. On the derivation of specific yield and soil water retention characteristics in peatlands from rainfall, microrelief and water level data - Theory and Practice

    Science.gov (United States)

    Dettmann, Ullrich; Bechtold, Michel

    2016-04-01

    Water level depth is one of the crucial state variables controlling the biogeochemical processes in peatlands. For flat soil surfaces, water level depth dynamics as response to boundary fluxes are primarily controlled by the water retention characteristics of the soil in and above the range of the water level fluctuations. For changing water levels, the difference of the integrals of two soil moisture profiles (ΔAsoil), of a lower and a upper water level, is equal to the amount of water received or released by the soil. Dividing ΔAsoil by the water level change, results into a variable that is known as specific yield (Sy). For water level changes approaching the soil surface, changes in soil water storage are small due to the thin unsaturated zone that remains. Consequentially, Sy values approach zero with an abrupt transition to 1 in case of inundation. However, on contrary, observed water level rises due to precipitation events at various locations showed increasing Sy values for water level changes at shallow depths (Sy = precipitation/water level change; Logsdon et al., 2010). The increase of Sy values can be attributed in large parts to the influence of the microrelief on water level changes in these wet landscapes that are characterized by a mosaic of inundated and non-inundated areas. Consequentially, water level changes are dampened by partial inundation. In this situation, total Sy is composed of a spatially-integrated below ground and above ground contribution. We provide a general one-dimensional expression that correctly represents the effect of a microrelief on the total Sy. The one-dimensional expression can be applied for any soil hydraulic parameterizations and soil surface elevation frequency distributions. We demonstrate that Sy is influenced by the microrelief not only when surface storage directly contributes to Sy by (partial) inundation but also when water levels are lower than the minimum surface elevation. With the derived one

  2. Indications for the tracking of elevated nitrogen levels through the fungal route in a soil food web

    International Nuclear Information System (INIS)

    Hogervorst, R.F.; Dijkhuis, M.A.J.; Schaar, M.A. van der; Berg, M.P.; Verhoef, H.A.

    2003-01-01

    Elevated levels of N in soil can be tracked via fungi in the soil food web. - The objective of the present study was to determine the effects of elevated N in dead organic matter on the growth of fungi and to establish the consequences for the development of microbivores. Therefore, three fungal species were cultured on Scots pine litter differing in N content. The growth of the soil fungal species Trichoderma koningii, Penicillium glabrum and Cladosporium cladosporioides was directly influenced by the N content (ranging from 1.25 to 2.19% N) of the substrate. For all three fungal species maximum growth was highest at intermediate N content (1.55%) of the substrate. The fungivorous collembolan Orchesella cincta reached highest asymptotic body mass when fed with C. cladosporioides, grown on litter medium with intermediate N content (1.55%). The growth of O. cincta was lower when fed with C. cladosporioides from litter medium with the highest N content (2.19%). Similar results were obtained in mesocosm experiments in which pine litter with three levels of N (1.11, 1.78, 2.03% N) was used as substrate for the fungi. On litter with the highest N content (2.03%) hyphal length and asymptotic body mass of O. cincta were reduced. The results show that the N content of the substrate determines the growth of both fungi and fungivores, and suggest that elevated levels of N in soil track through the fungal part of the soil food web

  3. Indications for the tracking of elevated nitrogen levels through the fungal route in a soil food web

    Energy Technology Data Exchange (ETDEWEB)

    Hogervorst, R.F.; Dijkhuis, M.A.J.; Schaar, M.A. van der; Berg, M.P.; Verhoef, H.A

    2003-11-01

    Elevated levels of N in soil can be tracked via fungi in the soil food web. - The objective of the present study was to determine the effects of elevated N in dead organic matter on the growth of fungi and to establish the consequences for the development of microbivores. Therefore, three fungal species were cultured on Scots pine litter differing in N content. The growth of the soil fungal species Trichoderma koningii, Penicillium glabrum and Cladosporium cladosporioides was directly influenced by the N content (ranging from 1.25 to 2.19% N) of the substrate. For all three fungal species maximum growth was highest at intermediate N content (1.55%) of the substrate. The fungivorous collembolan Orchesella cincta reached highest asymptotic body mass when fed with C. cladosporioides, grown on litter medium with intermediate N content (1.55%). The growth of O. cincta was lower when fed with C. cladosporioides from litter medium with the highest N content (2.19%). Similar results were obtained in mesocosm experiments in which pine litter with three levels of N (1.11, 1.78, 2.03% N) was used as substrate for the fungi. On litter with the highest N content (2.03%) hyphal length and asymptotic body mass of O. cincta were reduced. The results show that the N content of the substrate determines the growth of both fungi and fungivores, and suggest that elevated levels of N in soil track through the fungal part of the soil food web.

  4. FARM LEVEL DYNAMIC ANALYSIS OF SOIL CONSERVATION: AN APPLICATION TO THE PIEDMONT AREA OF VIRGINIA

    OpenAIRE

    Segarra, Eduardo; Taylor, Daniel B.

    1987-01-01

    A conceptual optimal control theory model which considers farm level decision making with respect to soil management is developed. A simplified version of the theoretical model is applied to the Piedmont area of Virginia. The model includes the productivity impacts of both soil erosion and technological progress. Both the theoretical model and its empirical application are improvements over previous efforts. Results suggest that farmers in the study area can achieve substantial reductions in ...

  5. The agronomic science of spatial and temporal water management:How much, when and where

    Science.gov (United States)

    The agronomic sciences are those that are applied to soil and water management and crop production, including soil, water and plant sciences and related disciplines. The science of spatial and temporal water management includes many agronomic science factors, including soil physics, biophysics, plan...

  6. Soils in our big back yard: characterizing the state, vulnerabilities, and opportunities for detecting changes in soil carbon storage

    Science.gov (United States)

    Harden, Jennifer W.; Loiesel, Julie; Ryals, Rebecca; Lawrence, Corey; Blankinship, Joseph; Phillips, Claire; Bond-Lamberty, Ben; Todd-Brown, Katherine; Vargas, Rodrigo; Hugelius, Gustaf; Nave, Luke; Malhotra, Avni; Silver, Whendee; Sanderman, Jon

    2017-04-01

    A number of diverse approaches and sciences can contribute to a robust understanding of the I. state, II. vulnerabilities, and III. opportunities for soil carbon in context of its potential contributions to the atmospheric C budget. Soil state refers to the current C stock of a given site, region, or ecosystem/landuse type. Soil vulnerabilities refers to the forms and bioreactivity of C stocks, which determine how soil C might respond to climate, disturbance, and landuse perturbations. Opportunities refer to the potential for soils in their current state to increase capacity for and rate of C storage under future conditions, thereby impacting atmospheric C budgets. In order to capture the state, vulnerability, and opportunities for soil C, a robust C accounting scheme must include at least three science needs: (1) a user-friendly and dynamic database with transparent, shared coding in which data layers of solid, liquid, and gaseous phases share relational metadata and allow for changes over time (2) a framework to characterize the capacity and reactivity of different soil types based on climate, historic, and landscape factors (3) a framework to characterize landuse practices and their impact on physical state, capacity/reactivity, and potential for C change. In order to transfer our science information to practicable implementations for land policies, societal and social needs must also include: (1) metrics for landowners and policy experts to recognize conditions of vulnerability or opportunity (2)communication schemes for accessing salient outcomes of the science. Importantly, there stands an opportunity for contributions of data, model code, and conceptual frameworks in which scientists, educators, and decision-makers can become citizens of a shared, scrutinized database that contributes to a dynamic, improved understanding of our soil system.

  7. Desirable levels of exchangeable K and Ca and their concentration in the soil solution to reduce uptake of radioactive Cs by rice plants

    International Nuclear Information System (INIS)

    Sekimoto, Hitoshi; Yamada, Takashi; Hotsuki, Tomoe; Matsuzaki, Akio; Mimura, Tetsuro

    2014-01-01

    K in the soil solution can control the uptake of radioactive Cs by rice plants, but this control is not accomplished only by K; it is affected by other ionic species. It is therefore important to investigate uptake of radioactive Cs from the perspective of the concentration of major cations such as Ca in the soil solution and the levels of exchangeable cations in the soil. To clarify the effects of K and Ca in the soil solution and of the levels of soil exchangeable cations to prevent uptake of radioactive Cs, we conducted a pot experiment and field experiments in a paddy soil in 2011 and 2012. To reduce the uptake of radioactive Cs, it was necessary to achieve a K concentration in the soil solution of 0.5 mmol L"-"1, and a Ca concentration higher than 2 mmol L"-"1 based on the results of the pot experiment. In addition, we obtained the desirable levels of exchangeable cations and the cation exchange capacity (CEC) in the soil from previous reports and the results of our field experiments. On this basis, we propose the following threshold levels for exchangeable cations and CEC in the soil as a standard: 0.53 K cmol_c kg"-"1, 18.0 Ca cmol_c kg"-"1, 2.0 Mg cmol_c kg"-"1, i.e. 25 mg K_2O 100 g"-"1, 505 mg CaO 100 g"-"1, 40 Mg O mg 100 g"-"1, and a CEC of 30 cmol_c kg"-"1. Converting these values into the corresponding levels in the soil solution, we obtained concentrations of 0.71 mmol K L"-"1, 4.22 mmol Ca L"-"1, and 1.35 mmol Mg L"-"1. These levels are within the improving standard for fertility of paddy soils in Japan. Consequently, it will be necessary to improve the fertility of paddy soils to control the uptake of radioactive Cs by rice plants. (author)

  8. GNVQ science at advanced level: motivation and self-esteem

    Science.gov (United States)

    Solomon, J.

    1995-07-01

    An interview study carried out in the pilot year of the new GNVQ in science at A-level has shown that the use of grading criteria, which require independent learning, as a method of assessment is better for students' motivation and self-esteem.

  9. The future of soil protection strategy at the level of European Union at the filed of soil monitoring

    Directory of Open Access Journals (Sweden)

    Ladislav Kubík

    2005-01-01

    Full Text Available European Union deals long with problems of the two components of environment the air and the water. So far soil wasnęt in the main scope of the European Union. The European Union deal now with problems of soil, where we can find question of the soil monitoring. This issue was solve in the framework of the Working group on soil monitoring (WG. The recommendations from the WG are base for deciding of the European Commission, which will have interest to formulate new soil directive. The main tasks of the WG were to review of existing soil monitoring systems, to specify basic soil parameters, indicators, to define soil parameters for each soil threats and to harmonize future soil monitoring activity and soil data.

  10. 'Becquerel screening' device to automatically measure activity level of contaminated soil in flexible containers

    International Nuclear Information System (INIS)

    Okada, Hisashi; Yamaguchi, Yoshihisa; Yamamoto, Shuji

    2014-01-01

    Contaminated soil and incineration ash collected during offsite decontamination work following the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. is being stored in flexible containers. These containers are managed taking their activity level into account in accordance with the Decontamination Guidelines issued by the Ministry of the Environment. Toshiba has developed the 'Becquerel Screening' device that can automatically measure the activity level of the contents of each flexible container simply by placing the container on a palette, without the need to take samples for analysis from the container. The Becquerel Screening device is expected to contribute not only to improved operational efficiency but also to reduced exposure of operators to radiation, because it eliminates the need for direct contact with contaminated soil and ash. (author)

  11. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

    NARCIS (Netherlands)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas J.; Jones, Lucas A.; Kimball, John S.; Koster, Randal D.; Mahanama, Sarith P.; Smith, Edmond B.; Berg, Aaron; Bircher, Simone; Bosch, David; Caldwell, Todd G.; Cosh, Michael; Holifield Collins, Chandra D.; Jensen, Karsten H.; Livingston, Stan; Lopez-baeza, Ernesto; Martínez-fernández, José; Mcnairn, Heather; Moghaddam, Mahta; Pacheco, Anna; Pellarin, Thierry; Prueger, John; Rowlandson, Tracy; Seyfried, Mark; Starks, Patrick; Su, Bob; Thibeault, Marc; Van Der Velde, Rogier; Walker, Jeffrey; Wu, Xiaoling; Zeng, Yijian

    2017-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present

  12. Levels of natural radionuclides in soil samples around a phosphate fertilizer plant

    International Nuclear Information System (INIS)

    Ajmal, P.Y.; Sahu, S.K.; Bhangare, R.C.; Pandit, G.G.; Puranik, V.D.

    2010-01-01

    The present study is aimed at the determination of the activity levels of primordial radionuclides in soil from various locations around a phosphate fertilizer plant and also to figure out the external dose rate due to natural gamma background in the area by mapping the dose rates with the geographical co-ordinates within the plant premises

  13. Radon levels and transport parameters in Atlantic Forest soils

    International Nuclear Information System (INIS)

    Farias, E.E.G. de; Silva Neto, P.C. da; Souza, E.M. de; De Franca, E.J.; Hazin, C.A.

    2016-01-01

    In natural forest soils, the radon transport processes can be significantly intensified due to the contribution of living organism activities to soil porosity. In this paper, the first results of the radon concentrations were obtained for soil gas from the Atlantic Forest, particularly in the Refugio Ecologico Charles Darwin, Brazil. The estimation of permeability and radon exhalation rate were carried out in this conservation unit. For forested soils, radon concentrations as high as 40 kBq m -3 were found. Based on the radon concentrations and on the permeability parameter, the results indicated considerable radon hazard for human occupation in the neighborhood. (author)

  14. Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on the single cell level.

    Science.gov (United States)

    Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian

    2013-12-01

    Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Interaction of Peat Soil and Sulphidic Material Substratum: Role of Peat Layer and Groundwater Level Fluctuations on Phosphorus Concentration

    Directory of Open Access Journals (Sweden)

    Benito Heru Purwanto

    2014-09-01

    Full Text Available Phosphorus (P often becomes limiting factor for plants growth. Phosphorus geochemistry in peatland soil is associated with the presence of peat layer and groundwater level fluctuations. The research was conducted to study the role of peat layer and groundwater level fluctuations on P concentration in peatland. The research was conducted on deep, moderate and shallow peat with sulphidic material as substratum, peaty acid sulphate soil, and potential acid sulphate soil. While P concentration was observed in wet season, in transition from wet to dry season, and in dry season. Soil samples were collected by using peat borer according to interlayer and soil horizon. The results showed that peat layer might act as the main source of P in peatland with sulphidic material substratum. The upper peat layer on sulphidic material caused by groundwater level fluctuations had no directly effect on P concentration in the peat layers. Increased of P concentration in the lowest sulphidic layer might relate to redox reaction of iron in the sulphidic layer and precipitation process. Phosphorus concentration in peatland with sulphidic material as substratum was not influenced by peat thickness. However, depletion or disappearance of peat layer decreased P concentration in soil solution. Disappearance of peat layer means loss of a natural source of P for peatland with sulphidic material as substratum, therefore peat layer must be kept in order to maintain of peatlands.

  16. SOIL SPECTRAL IMAGING: MOVING FROM PROXIMAL SENSING TO SPATIAL QUANTITATIVE DOMAIN

    Directory of Open Access Journals (Sweden)

    E. B. Dor

    2012-07-01

    Full Text Available Imaging spectroscopy (IS is a relatively new technique that has attracted the attention of workers in many fields. In the soil sciences, this technology is not well developed and additional research is required – despite the fact that a large number of soil properties in the soil environment have already been studied from a reflectance perspective with much success (e.g. organic matter, cation exchange capacity, carbonate content and specific surface area. Going from proximal sensing to image spectrometry is not only a journey from the micro to macro scales; it is a lengthy one that is fraught with problems, such as dealing with data having a low signal-to-noise level, contamination of the atmosphere, large data sets, the Bidirectional Reflectance Distribution Function (BRDF effect and more. In this paper, provide a brief history of both near infrared spectroscopy (NIRS and IS approaches and attempt to understand why, despite its promise, IS has not yet been well developed for the soil sciences. We assume that research, education, exposure of the technology to end-users and governmental involvement are the major factors that require attention in this venue. Also provide some personal thoughts on the future of IS in soil and conclude that in 5 to 10 years, this application will have matured into one that is ready to use and well-known among soil scientists, end-users and decision-makers.

  17. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil

    International Nuclear Information System (INIS)

    Rufyikiri, Gervais; Huysmans, Lien; Wannijn, Jean; Hees, May van; Leyval, Corinne; Jakobsen, Iver

    2004-01-01

    Subterranean clover inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown on soil containing six levels of 238 U in the range 0-87 mg kg -1 . Increasing U concentration in soil enhanced the U concentration in roots and shoots of both mycorrhizal and nonmycorrhizal plants but had no significant effects on plant dry matter production or root AM colonization. Mycorrhizas increased the shoot dry matter and P concentration in roots and shoots, while in most cases, it decreased the Ca, Mg and K concentrations in plants. The AM fungus influenced U concentration in plants only in the treatment receiving 87 mg U kg -1 soil. In this case, U concentration in shoots of nonmycorrhizal plants was 1.7 times that of shoots of mycorrhizal plants. These results suggested that mycorrhizal fungi can limit U accumulation by plants exposed to high levels of U in soil. - Plant mycorrhization may decrease U concentration in shoots of plants grown at high level of U in soil

  18. Document Type Profiles in Nature, Science, and PNAS: Journal and Country Level

    Directory of Open Access Journals (Sweden)

    Jielan Ding

    2016-09-01

    Full Text Available Purpose: In this contribution, we want to detect the document type profiles of the three prestigious journals Nature, Science, and Proceedings of the National Academy of Sciences of the United States (PNAS with regard to two levels: journal and country. Design/methodology/approach: Using relative values based on fractional counting, we investigate the distribution of publications across document types at both the journal and country level, and we use (cosine document type profile similarity values to compare pairs of publication years within countries. Findings: Nature and Science mainly publish Editorial Material, Article, News Item and Letter, whereas the publications of PNAS are heavily concentrated on Article. The shares of Article for Nature and Science are decreasing slightly from 1999 to 2014, while the corresponding shares of Editorial Material are increasing. Most studied countries focus on Article and Letter in Nature, but on Letter in Science and PNAS. The document type profiles of some of the studied countries change to a relatively large extent over publication years. Research limitations: The main limitation of this research concerns the Web of Science classification of publications into document types. Since the analysis of the paper is based on document types of Web of Science, the classification in question is not free from errors, and the accuracy of the analysis might be affected. Practical implications: Results show that Nature and Science are quite diversified with regard to document types. In bibliometric assessments, where publications in Nature and Science play a role, other document types than Article and Review might therefore be taken into account. Originality/value: Results highlight the importance of other document types than Article and Review in Nature and Science. Large differences are also found when comparing the country document type profiles of the three journals with the corresponding profiles in all Web of

  19. Molecular environmental science and synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.E. Jr. [Stanford Univ., CA (United States)

    1995-12-31

    Molecular environmental science is a relatively new field but focuses on the chemical and physical forms of toxic and/or radioactive contaminants in soils, sediments, man-made waste forms, natural waters, and the atmosphere; their possible reactions with inorganic and organic compounds, plants, and organisms in the environment; and the molecular-level factors that control their toxicity, bioavailability, and transport. The chemical speciation of a contaminant is a major factor in determining its behavior in the environment, and synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy is one of the spectroscopies of choice to quantitatively determine speciation of heavy metal contaminants in situ without selective extraction or other sample treatment. The use of high-flux insertion device beam lines at synchrotron sources and multi-element array detectors has permitted XAFS studies of metals such as Se and As in natural soils at concentration levels as low as 50 ppm. The X-ray absorption near edge structure of these metals is particularly useful in determining their oxidation state. Examples of such studies will be presented, and new insertion device beam lines under development at SSRL and the Advanced Photon Source for molecular environmental science applications will be discussed.

  20. Science self-efficacy of African Americans enrolled in freshman level physical science courses in two historically black institutions

    Science.gov (United States)

    Prihoda, Belinda Ann

    2011-12-01

    Science education must be a priority for citizens to function and be productive in a global, technological society. African Americans receive fewer science degrees in proportion to the Caucasian population. The primary purposes of this study were to determine the difference between the pretest and posttest science self-efficacy scores of African-American nonscience majors, the difference between the pretest and posttest science self-efficacy scores of African-American science majors, the relationship between science self-efficacy and course grade, the relationship between gender and science self-efficacy score, and the relationship between science self-efficacy score and course withdrawal. This study utilized a Likert survey instrument. All participants were enrolled in freshman level courses in the physical sciences at a historically black institution: a college or university. Participants completed the pretest survey within two weeks after the 12th class day of the semester. Initially, 458 participants completed the pretest survey. The posttest was administered within two weeks before the final exam. Only 245 participants completed the posttest survey. Results indicate that there is a difference in science self-efficacy of science majors and nonscience majors. There was no significant difference between the pretest and posttest science self-efficacy scores of African-American science majors and nonscience majors. There was no significant relationship between science self-efficacy and course grade, gender and science self-efficacy score, and course withdrawal and science self-efficacy score.

  1. Natural radioactivity levels and estimation of radiation exposure from soils in Bahi and Manyoni Districts in Tanzania

    International Nuclear Information System (INIS)

    Nkuba, Leonid L.; Nyanda, Pendo B.

    2017-01-01

    Soils from Bahi and Manyoni districts in Tanzania were analyzed for radioactivity. The radioactivity levels of 226 Ra, 232 Th and 40 K were measured by direct γ‐ray spectrometry using HPGe detector by Compton suppression method. The radioactivity concentration in soil were computed in arithmetic mean. The results from this study have been compared with those from other areas in Tanzania, different countries of the world and the world average radioactivity in the soil. To assess the radiological effects and hazards indices from natural radionuclides ( 226 Ra, 232 Th and 40 K), the absorbed dose rate (DR), the annual effective dose equivalent (AEDE), Excess Lifetime Cancer Risk (ELCR), the radium equivalent activity (Raeq), the external (Hex), the alpha index (Iα) and the radioactivity level index (Iγ) were calculated. Except for DR in all the soil samples; Raeq, Hex and Iα exceeds the recommended limits due to high activity of 226 Ra in Membeta soils. Also Iγ was above the limits due to higher 226 Ra in soils from Membeta and 232 Th in Ilindi and Nala. Whilst the other radiological parameters (AEDE and ELCR) as well as the Raeq, Hex, Iα and Iγ in same areas were far below the recommended limits. However, this does not guarantee the safety. Therefore the probability of occurrence of the health effects from radiation is significant. The study recommends that the soils from Membeta should not be used as building material because they might expose the population to radiation. (author)

  2. Natural radioactivity levels and estimation of radiation exposure from soils in Bahi and Manyoni Districts in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Nkuba, Leonid L.; Nyanda, Pendo B., E-mail: leonid_nkuba@yahoo.co.uk [Tanzania Atomic Energy Commission, Directorate of Radiation Control, Dar es Salaam (Tanzania, United Republic of)

    2017-07-01

    Soils from Bahi and Manyoni districts in Tanzania were analyzed for radioactivity. The radioactivity levels of {sup 226}Ra, {sup 232}Th and {sup 40}K were measured by direct γ‐ray spectrometry using HPGe detector by Compton suppression method. The radioactivity concentration in soil were computed in arithmetic mean. The results from this study have been compared with those from other areas in Tanzania, different countries of the world and the world average radioactivity in the soil. To assess the radiological effects and hazards indices from natural radionuclides ({sup 226}Ra, {sup 232}Th and {sup 40}K), the absorbed dose rate (DR), the annual effective dose equivalent (AEDE), Excess Lifetime Cancer Risk (ELCR), the radium equivalent activity (Raeq), the external (Hex), the alpha index (Iα) and the radioactivity level index (Iγ) were calculated. Except for DR in all the soil samples; Raeq, Hex and Iα exceeds the recommended limits due to high activity of {sup 226}Ra in Membeta soils. Also Iγ was above the limits due to higher {sup 226}Ra in soils from Membeta and {sup 232}Th in Ilindi and Nala. Whilst the other radiological parameters (AEDE and ELCR) as well as the Raeq, Hex, Iα and Iγ in same areas were far below the recommended limits. However, this does not guarantee the safety. Therefore the probability of occurrence of the health effects from radiation is significant. The study recommends that the soils from Membeta should not be used as building material because they might expose the population to radiation. (author)

  3. Assessment of soil variability of South moravian region based on the satellite imagery

    Czech Academy of Sciences Publication Activity Database

    Novák, J.; Lukas, V.; Rodriguez Moreno, Fernando; Křen, J.

    2018-01-01

    Roč. 66, č. 1 (2018), s. 119-129 ISSN 1211-8516 Institutional support: RVO:86652079 Keywords : Coefficient of variation * lpis * ndvi * pca * RapidEye * Remote sensing * sentinel 2 * Soil variability Subject RIV: DF - Soil Science OBOR OECD: Soil science

  4. Effect of organic complexants on the mobility of low-level waste radionuclides in soils: status report

    International Nuclear Information System (INIS)

    Swanson, J.L.

    1981-09-01

    The effects of some organic complexants on the sorption by soil of some elements typical of those present in low-level wastes are being evaluated and procedures are being developed to efficiently obtain valid sorption data. Data have been obtained with Hanford soil and the elements europium, nickel, cobalt, cesium, and strontium. Complexants studied to date include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and humic acid. The sorption of cesium and strontium has been found to be affected very little by EDTA or DTPA, as expected. However, these complexants have been found to greatly reduce the sorption of europium, nickel, or cobalt by the soil. The Eu/EDTA system was found to be well behaved, and the effect of the complexant on the sorption by soil was quantified. With nickel and cobalt, however, kinetic problems have been encountered, and the effects of complexants on the sorption by soil have not yet been quantified. The problems encountered in the nickel and cobalt systems have further emphasized the need for the development of methods to assure the general validity of the data obtained in the experiments. Series of experimental results that looked very good within themselves were found by additional procedures to be artifacts of the conditions used. One procedure that has been of great value in identifying invalid data is that of contacting the equilibrated solution from a soil contact with a second batch of soil. Unless the sorption coefficient in the second contact is equivalent to that in the first contact, the data are likely invalid. Efforts are continuing to develop procedures that will allow generally valid data to be obtained in an efficient manner and to employ such procedures to obtain data in a variety of systems pertinent to low-level waste disposal

  5. Fluorescent probes for understanding soil water repellency: the novel application of a chemist's tool to soil science

    Science.gov (United States)

    Balshaw, Helen M.; Davies, Matthew L.; Doerr, Stefan H.; Douglas, Peter

    2015-04-01

    Food security and production is one of the key global issues faced by society. It has become essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals, and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount, and mixture, in a seemingly unpredictable way. Fluorescent and phosphorescent probes are widely used in chemistry and biochemistry due to their sensitive response to their physical and chemical environment, such as polarity, and viscosity. However, they have to-date not been used to study soil water repellency. Here we present preliminary work on the evaluation of fluorescent probes as tools to study two poorly understood features that determine the degree of wettability for water repellent soils: (i) the distribution of organics on soils; (ii) the changes in polarity at soil surfaces required for water drops to infiltrate. In our initial work we have examined probes adsorbed onto model soils, prepared by adsorption of specific organics onto acid washed sand

  6. Nigerian Journal of Soil and Environmental Research

    African Journals Online (AJOL)

    The Nigerian Journal of Soil and Environmental Research (previously named Nigerian Journal of Soil Research) is an annual publication of the Department of Soil science, Faculty of Agriculture/Institute for Agricultural Research, Ahmadu Bello University, Zaira. The journal accepts articles in English. The journal is ...

  7. Soil moisture remote sensing: State of the science

    Science.gov (United States)

    Satellites (e.g., SMAP, SMOS) using passive microwave techniques, in particular at L band frequency, have shown good promise for global mapping of near-surface (0-5 cm) soil moisture at a spatial resolution of 25-40 km and temporal resolution of 2-3 days. C- and X-band soil moisture records date bac...

  8. Radionuclide content determination in the soil and 210Pb content in the leaves in Novi Sad parks

    International Nuclear Information System (INIS)

    Forkapic, S.; Bikit, I.; Mrdja, D.; Todorovic, N.; Krmar, M.; Slivka, J.; Veskovic, M.; Forkapic, S.)

    2007-01-01

    During the 2005 and 2006 low-level gamma spectrometry measurements of leaves and soil samples from the three greatest city parks were performed on Department of Physics, Faculty of Sciences in Novi Sad. Very susceptible gamma spectrometry method was developed for 210 Pb content determination in the samples of fallen leaves. In order to control radioactivity of soil and transfer of radionuclides to plants, the activity concentrations of radionuclides in the soil were determined by means of two ultra high resolute HPGe detectors [sr

  9. Concepts of soil mapping as a basis for the assessment of soil functions

    Science.gov (United States)

    Baumgarten, Andreas

    2014-05-01

    Soil mapping systems in Europe have been designed mainly as a tool for the description of soil characteristics from a morphogenetic viewpoint. Contrasting to the American or FAO system, the soil development has been in the main focus of European systems. Nevertheless , recent developments in soil science stress the importance of the functions of soils with respect to the ecosystems. As soil mapping systems usually offer a sound and extensive database, the deduction of soil functions from "classic" mapping parameters can be used for local and regional assessments. According to the used pedo-transfer functions and mapping systems, tailored approaches can be chosen for different applications. In Austria, a system mainly for spatial planning purposes has been developed that will be presented and illustrated by means of best practice examples.

  10. Critical water stress levels in Pinus patula seedlings and their ...

    African Journals Online (AJOL)

    Critical water stress levels in Pinus patula seedlings and their relation to measures of seedling morphology. ... Southern Forests: a Journal of Forest Science ... A pot trial was implemented to determine the effect of soil water stress following transplanting on shoot water potential and stomatal conductance of Pinus patula ...

  11. Factors Affecting Soil Quality Maintenance In Northern Katsina State

    African Journals Online (AJOL)

    programs or scientifically based soil management strategies. Soil quality ... envelopment analysis techniques in the reconciliation of two ..... integrated plant production and environmental quality. In ..... Handbook of Soil Science. (Ed). Sumner ...

  12. Effects of biopores on the growth and N-uptake of wheat at three levels of soil moisture

    International Nuclear Information System (INIS)

    Volkmar, K.M.

    1996-01-01

    Roots grow more rapidly through soil spaces such as vacated root channels than through undisturbed soil. This experiment was conducted to determine the extent to which transfer of nutrients is compromised by gaps between the pore wall and the root. Undisturbed cores were obtained from a no-till Dark Brown Chernozemic soil. The cores were divided into three 2.5-cm-thick segments (3.8-6.3 cm, 7.8-10.3 cm, and 11.75-14.25 cm soil layers). The density 200-500 μm (P200) and 500-1000 μm (P500) diameter pores was visually assessed in each segment. The cores were adjusted to water potentials of -0.01, -0.1 and -1.5 MPa by adding K 15 NO 3 -labelled water. Pots containing wheat (Triticum aestivum) plants were placed on top of the cores and the number of roots that appeared at the bottom of the cores, the root length within the cores, and shoot 15 N content were measured after 72 h. Small pore (P200) density had no effect on root number at any moisture level. Large pore (P500) density correlated positively with root number at 0.10 MPa (r 2 0.57) and -1.5 Mpa (r 2 = 0.68). The equation relating shoot 15 N content and root number had a common slope across all moisture treatments, suggesting that the rates of N-uptake per unit root were not compromised by macropore-assisted root growth at the investigated moisture levels. It is unclear if uptake is directly across the pore or via laterals growing outside the pore wall. N-uptake per unit root length of roots growing through soil pores may be compromised at moderate levels of soil moisture. (author). 14 refs., 1 tab., 3 figs

  13. Strontium-90 and cesium-137 in soil

    International Nuclear Information System (INIS)

    1976-01-01

    To determine the total deposits of fallout, Japan Chemical Analysis Center has analyzed surface soil samples collected from 30 prefectures (30 locations) by the commission of Science and Technology Agency of Japanese Government. Soil samples were collected at depths of 0 -- 5 and 5 -- 20 cm on grassland or bare surface at each sampling location. Radiochemical analysis of these samples was carried out using the method recommended by Science and Technology Agency. One-hundred gram of soil was used as one sample for analysis. Results obtained during the period from July 1974 to March 1975 are shown in a table. (J.P.N.)

  14. Seasonal variability of soil aggregate stability

    Czech Academy of Sciences Publication Activity Database

    Rohošková, M.; Kodešová, R.; Jirků, V.; Žigová, Anna; Kozák, J.

    2009-01-01

    Roč. 11, - (2009), , , EGU2009-6341-3-EGU2009-6341-3 ISSN 1029-7006. [European Geosciences Union General Assembly. 19.04.2009-24.04.2009, Vienna] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : seasonal variability * soil aggregate stability * soil types Subject RIV: DF - Soil Science

  15. Soil fertility in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Janssen, B.H.

    1970-01-01

    Soil fertility was studied in the Great Konya Basin, as part of the study carried out by the Department of Tropical Soil Science of the Agricultural University at Wageningen.

    The purpose was to find the agricultural value of the soils, to learn about the main factors governing soil fertility,

  16. Running an open experiment: transparency and reproducibility in soil and ecosystem science

    Science.gov (United States)

    Bond-Lamberty, Ben; Peyton Smith, A.; Bailey, Vanessa

    2016-08-01

    Researchers in soil and ecosystem science, and almost every other field, are being pushed—by funders, journals, governments, and their peers—to increase transparency and reproducibility of their work. A key part of this effort is a move towards open data as a way to fight post-publication data loss, improve data and code quality, enable powerful meta- and cross-disciplinary analyses, and increase trust in, and the efficiency of, publicly-funded research. Many scientists however lack experience in, and may be unsure of the benefits of, making their data and fully-reproducible analyses publicly available. Here we describe a recent ‘open experiment’, in which we documented every aspect of a soil incubation online, making all raw data, scripts, diagnostics, final analyses, and manuscripts available in real time. We found that using tools such as version control, issue tracking, and open-source statistical software improved data integrity, accelerated our team’s communication and productivity, and ensured transparency. There are many avenues to improve scientific reproducibility and data availability, of which is this only one example, and it is not an approach suited for every experiment or situation. Nonetheless, we encourage the communities in our respective fields to consider its advantages, and to lead rather than follow with respect to scientific reproducibility, transparency, and data availability.

  17. Exploring the Self-Reported ICT Skill Levels of Undergraduate Science Students

    Directory of Open Access Journals (Sweden)

    Jef C. Verhoeven

    2015-12-01

    Full Text Available Computers have taken an important place in the training of science students and in the professional life of scientists. It is often taken for granted that most students have mastered basic Information and Communication Technologies (ICT skills; however, it has been shown that not all students are equally proficient in this regard. Starting from theories of socialization and technology acceptance we report how we constructed a structural equation model (SEM to explore the variance in the basic ICT skill levels of science students. We also present the results of a test of this model with university bachelor’s science students. Basic ICT skills were measured using a new, elaborate instrument allowing students to rate their skills in detail. Our results show that science students score high on basic ICT skills and that our SEM explains a large part of the variation in the ICT skill levels of these students. The most explanatory power is coming from four variables: the perceived ease of use and the perceived usefulness of a personal computer, the anxiety for using a personal computer, and students’ belief that ICT is necessary for scientific research.

  18. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    Science.gov (United States)

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications. © 2013.

  19. Examination plan for the soils and low-level radioactive waste forms of the NRC field testing lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.

    1996-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms. These experiments were recently shut down and have been examined in accordance with a detailed waste form and soil sampling plan. Ion-exchange resins from a commercial nuclear power station were solidified into waste forms using portland cement and vinyl ester-styrene. These waste forms were tested to (a) obtain information on performance of waste forms in typical disposal environments, (b) compare field results with bench leach studies, (c) develop a low-level waste data base for use in performance assessment source term calculations, and (d) apply the DUST computer code to compare predicted cumulative release to actual field data. The program, funded by the Nuclear Regulatory Commission (NRC), includes observed radionuclide releases from waste forms at two test sites over 10 years of successful operation. Lysimeters are ideal systems for obtaining actual field test data because, when properly designed and operated, they can be used to isolate soil and waste systems under actual environmental conditions. The purpose of this paper is to present the experimental plan for the examination of the waste forms and soils of the two lysimeter arrays, which have now been shut down. Vertical soil cores have been taken from the soil columns and will be analyzed with radiochemistry to define movement of radionuclides after release from the waste forms. A comparison is made of the DUST-predicted releases to those previously determined and reported from the lysimeter leachate analyses. That comparison uses new partition coefficients (Kd) recently obtained from laboratory analysis of the lysimeter soils and sand. Those DUST code results also will be compared to actual radionuclide movements through the soil columns as determined from soil core analysis

  20. Proceedings of the 25. Brazilian congress on soil science: the soil on the great morpho climatic dominion in Brazil and the sustained development. v. 4; Anais do 25. Congresso brasileiro de ciencia do solo: O solo nos grandes dominios morfoclimaticos do Brasil e o desenvolvimento sustentado. v. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This congress discussed soils science with emphasis in the Brazilian morpho climatic dominion and the sustained development. Topics related to soils physics, chemical, biology, fertility, classification, nutrition, mineralogy, soils and water conservation, fertilizers, pollution and environmental quality. In the fourth volume of the abstracts were presented papers related to use of fertilizers and herbicides

  1. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  2. The effects of the Qinghai–Tibet railway on heavy metals enrichment in soils

    International Nuclear Information System (INIS)

    Zhang, Hua; Wang, Zhaofeng; Zhang, Yili; Hu, Zhongjun

    2012-01-01

    The impact of land transportation on local soil environments is an important topic in environmental and ecological sciences. The rapid development of transportation infrastructure lends increasing importance to studies that identify and evaluate related heavy metal pollution. This paper discusses the effects of railways on soil heavy metal enrichments in the Tibetan plateau. At a representative area along the Haergai–Delingha railway, lead, cadmium, copper, zinc, chromium, nickel, cobalt, and vanadium were measured in 127 topsoil samples (0–10 cm depth). The results indicate that railway transport has a significant effect on the concentration of Zn, Cd and Pb in the soil, with levels of enrichment ranging from no pollution to significant pollution. The affected area was within 20 m of the railway. The soil at Delingha was the most contaminated soil with heavy metals, and the enrichment level of Cd in the soil was the highest along the Qinghai–Tibet railway. The horizontal distributions of the three heavy metals present different characteristics at different sampling sites, which may be due to discrepancies in terrain and vegetation types. Alkaline soils and guardrails along the railway might reduce the effect of soil pollution on local people and animals. -- Highlights: ► Levels of Zn, Cd and Pb in soils are affected by railway transportation. ► Cadmium enrichment is especially high. ► The affected area for these pollutants was within 20 m of the railway. ► The distributions of metal presented different characteristics in different sites.

  3. The effects of the Qinghai-Tibet railway on heavy metals enrichment in soils

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hua [Institute of Geographic Sciences and Natural Resource Research (IGSNRR), CAS, Beijing 100101 (China); Graduate University of Chinese Academy of Sciences, 100049 Beijing (China); Wang, Zhaofeng [Institute of Geographic Sciences and Natural Resource Research (IGSNRR), CAS, Beijing 100101 (China); Zhang, Yili, E-mail: zhangyl@igsnrr.ac.cn [Institute of Geographic Sciences and Natural Resource Research (IGSNRR), CAS, Beijing 100101 (China); Hu, Zhongjun [Institute of Geographic Sciences and Natural Resource Research (IGSNRR), CAS, Beijing 100101 (China); Graduate University of Chinese Academy of Sciences, 100049 Beijing (China)

    2012-11-15

    The impact of land transportation on local soil environments is an important topic in environmental and ecological sciences. The rapid development of transportation infrastructure lends increasing importance to studies that identify and evaluate related heavy metal pollution. This paper discusses the effects of railways on soil heavy metal enrichments in the Tibetan plateau. At a representative area along the Haergai-Delingha railway, lead, cadmium, copper, zinc, chromium, nickel, cobalt, and vanadium were measured in 127 topsoil samples (0-10 cm depth). The results indicate that railway transport has a significant effect on the concentration of Zn, Cd and Pb in the soil, with levels of enrichment ranging from no pollution to significant pollution. The affected area was within 20 m of the railway. The soil at Delingha was the most contaminated soil with heavy metals, and the enrichment level of Cd in the soil was the highest along the Qinghai-Tibet railway. The horizontal distributions of the three heavy metals present different characteristics at different sampling sites, which may be due to discrepancies in terrain and vegetation types. Alkaline soils and guardrails along the railway might reduce the effect of soil pollution on local people and animals. -- Highlights: Black-Right-Pointing-Pointer Levels of Zn, Cd and Pb in soils are affected by railway transportation. Black-Right-Pointing-Pointer Cadmium enrichment is especially high. Black-Right-Pointing-Pointer The affected area for these pollutants was within 20 m of the railway. Black-Right-Pointing-Pointer The distributions of metal presented different characteristics in different sites.

  4. Effect of Calcium Levels on Strontium Uptake by Canola Plants Grown on Different Texture Soils

    International Nuclear Information System (INIS)

    El-Shazly, A.A.; Rezk, M. A.; Abdel-Sabour, M.F.; Mousa, E.A.; Mostafa, M.A.Z.; Lotfy, S.M.; Farid, I.M.; Abbas, M.H.H.; Abbas, H.H.

    2016-01-01

    Canola is considered aphytoremediator where, it can remove adequate quantities of heavy metals when grown on polluted soils.This study aimed to investigate growth performance of canola plants grown on clayey non-calcareous, sandy non-calcareous and sandy clay loam calcareous soils with different CaCO 3 contents. These soils were artificially contaminated with 100 mg Sr kg -1 and cultivated with canola plants under three levels of applied calcium i.e. 0, 60 and 85 mg Ca kg -1 in the form of CaCl 2 . The grown plants were kept under the green house conditions until (pot experiment) maturity. Afterwards, plants were harvested, separated into shoots, roots and seeds, and analyzed for their contents of calcium and strontium. Application of calcium to the sandy soil increased Ca uptake by canola plants whereas, Sr uptake, plant growth and seed yield were reduced. In the other soils, Ca and Sr uptake values were increased with minimized Ca rate. Such increases were associated with significant increases in the plant biomass and crop yield in the clayey soil; whereas, in the sandy clay loam calcareous soil, such increases were insignificant. Increasing the dose of the applied Ca (its higher rate) was associated with significant reduction in the plant growth and seed yield in these two soils. Both the biological concentration factor and the biological accumulation factors were relatively high (>1). The biological transfer factor was also high indicating high translocation of Sr from root to shoot. However, Sr translocation decreased with Ca applications. Accordingly canola plants are highly recommended for phytoextraction of Sr from polluted soils

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J U Chukudebelu. Articles written in Journal of Earth System Science. Volume 123 Issue 3 April 2014 pp 491-502. Evaluation of soil corrosivity and aquifer protective capacity using geoelectrical investigation in Bwari basement complex area, Abuja · A E Adeniji O V ...

  6. Vertical Stratification of Soil Phosphorus as a Concern for Dissolved Phosphorus Runoff in the Lake Erie Basin.

    Science.gov (United States)

    Baker, David B; Johnson, Laura T; Confesor, Remegio B; Crumrine, John P

    2017-11-01

    During the re-eutrophication of Lake Erie, dissolved reactive phosphorus (DRP) loading and concentrations to the lake have nearly doubled, while particulate phosphorus (PP) has remained relatively constant. One potential cause of increased DRP concentrations is P stratification, or the buildup of soil-test P (STP) in the upper soil layer (soil samples (0-5 or 0-2.5 cm) alongside their normal agronomic samples (0-20 cm) ( = 1758 fields). The mean STP level in the upper 2.5 cm was 55% higher than the mean of agronomic samples used for fertilizer recommendations. The amounts of stratification were highly variable and did not correlate with agronomic STPs (Spearman's = 0.039, = 0.178). Agronomic STP in 70% of the fields was within the buildup or maintenance ranges for corn ( L.) and soybeans [ (L.) Merr.] (0-46 mg kg Mehlich-3 P). The cumulative risks for DRP runoff from the large number of fields in the buildup and maintenance ranges exceeded the risks from fields above those ranges. Reducing stratification by a one-time soil inversion has the potential for larger and quicker reductions in DRP runoff risk than practices related to drawing down agronomic STP levels. Periodic soil inversion and mixing, targeted by stratified STP data, should be considered a viable practice to reduce DRP loading to Lake Erie. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Comparison of radionuclide levels in soil, sagebrush, plant litter, cryptogams, and small mammals

    International Nuclear Information System (INIS)

    Landeen, D.S.

    1994-09-01

    Soil, sagebrush, plant litter, cryptogam, and small mammal samples were collected and analyzed for cesium-137, strontium-90, plutonium-238, plutonium 239/240, technetium-99, and iodine-129 from 1981 to 1986 at the US Department of Energy Hanford Site in southeastern Washington State as part of site characterization and environmental monitoring activities. Samples were collected on the 200 Areas Plateau, downwind from ongoing waste management activities. Plant litter, cryptogams, and small mammals are media that are not routinely utilized in monitoring or characterization efforts for determination of radionuclide concentrations. Studies at Hanford, other US Department of Energy sites, and in eastern Europe have indicated that plant litter and cryptogams may serve as effective ''natural'' monitors of air quality. Plant litter in this study consists of fallen leaves from sagebrush and ''cryptogams'' describes that portion of the soil crust composed of mosses, lichens, algae, and fungi. Comparisons of cesium-137 and strontium-90 concentrations in the soil, sagebrush, litter, and cryptogams revealed significantly higher (p<0.05) levels in plant litter and cryptogams. Technetium-99 values were the highest in sagebrush and litter. Plutonium-238 and 239/40 and iodine-129 concentrations never exceeded 0.8 pCi/gm in all media. No evidence of any significant amounts of any radionuclides being incorporated into the small mammal community was discovered. The data indicate that plant litter and cryptogams may be better, indicators of environmental quality than soil or vegetation samples. Augmenting a monitoring program with samples of litter and cryptogams may provide a more accurate representation of radionuclide environmental uptake and/or contamination levels in surrounding ecosystems. The results of this study may be applied directly to other radioecological monitoring conducted at other nuclear sites and to the monitoring of other pollutants

  8. Growth and physiological response of lemongrass (Cymbopogon citratus (D.C.) Stapf.) under different levels of fly ash-amended soil.

    Science.gov (United States)

    Panda, Debabrata; Panda, Dibyajyoti; Padhan, Bandana; Biswas, Meghali

    2018-05-12

    Revegetation with metal tolerant plants for management of fly ash deposits is an important environmental perspective nowadays. Growth performance, photosynthesis, and antioxidant defense of lemongrass (Cymbopogon citratus (D.C.) Stapf.) were evaluated under various combination of fly ash amended with garden soil in order to assess its fly ash tolerance potential. Under low level of fly ash (25%) amended soil, the plant growth parameters such as shoot, root, and total plant biomass as well as metal tolerance index were increased compared to the control plants grown on garden soil, followed by decline under higher concentration of fly ash (50%, 75% and 100%). In addition, leaf photosynthetic rate, stomatal conductance, and photosystem (PS) II activity were not significantly changed under low level of fly ash (25%) amended soil compared to the garden soil but these parameters were significantly decreased further with increase of fly ash concentrations. Furthermore, increase of activities of some antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase over control were noticed in lemongrass under all fly ash treatments. Taken together, the study suggests that lemongrass can be used for phytoremediation of fly ash at 25% amended soil.

  9. Investigation of Primary Education Second Level Students' Motivations toward Science Learning in Terms of Various Factors

    Science.gov (United States)

    Sert Çibik, Ayse

    2014-01-01

    The purpose of this research was to investigate the primary education second level students' motivations towards science learning in terms of various factors. Within the research, the variation of the total motivational scores in science learning according to the gender, class, socio-economic levels, success in science-technology course and…

  10. Using dye tracer for visualizing roots impact on soil structure and soil porous system

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Němeček, K.; Žigová, Anna; Nikodem, A.; Fér, M.

    2015-01-01

    Roč. 70, č. 11 (2015), s. 1439-1443 ISSN 0006-3088 R&D Projects: GA ČR GA526/08/0434 Institutional support: RVO:67985831 Keywords : field sections * macro-scale * micro-scale, * micromorphological images * plant * ponding dye infiltration * roots * soil structure Subject RIV: DF - Soil Science Impact factor: 0.719, year: 2015

  11. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes.

    Science.gov (United States)

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-07-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  12. Southern Africa Journal of Education, Science and Technology ...

    African Journals Online (AJOL)

    BCom Management (Finance (MSU), MCom Strategic Management and Corporate Governance (MSU), Diploma in Education (GTC). Prof. G. Nyamadzawo. BSc (Hons) Agriculture (Soil Science) (UZ), MPhil Agriculture (Soil Science) (UZ), MSc Agriculture (WSU, USA), Diploma in Education, PhD (UZ). ISSN: 1819-3692.

  13. Use of engineered soils and other site modifications for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover

  14. A Multi-Level Systems Perspective for the Science of Team Science

    Science.gov (United States)

    Börner, Katy; Contractor, Noshir; Falk-Krzesinski, Holly J.; Fiore, Stephen M.; Hall, Kara L.; Keyton, Joann; Spring, Bonnie; Stokols, Daniel; Trochim, William; Uzzi, Brian

    2012-01-01

    This Commentary describes recent research progress and professional developments in the study of scientific teamwork, an area of inquiry termed the “science of team science” (SciTS, pronounced “sahyts”). It proposes a systems perspective that incorporates a mixed-methods approach to SciTS that is commensurate with the conceptual, methodological, and translational complexities addressed within the SciTS field. The theoretically grounded and practically useful framework is intended to integrate existing and future lines of SciTS research to facilitate the field’s evolution as it addresses key challenges spanning macro, meso, and micro levels of analysis. PMID:20844283

  15. [Soil seed bank and its correlations with aboveground vegetation and environmental factors in water level fluctuating zone of Danjiangkou Reservoir, Central China].

    Science.gov (United States)

    Liu, Rui-Xue; Zhan, Juan; Shi, Zhi-Hua; Chen, Long-qing

    2013-03-01

    Taking the water level fluctuating zone of the Danjiangkou Reservoir as a case, and by the method of hierarchical cluster analysis, the soil seed banks at 37 sampling plots within the areas of 140-145 m elevation were divided into 6 groups, and the species composition, density, and diversity of the soil seed banks among the groups were compared. The differences between the soil seed banks and the aboveground vegetations were analyzed by S0rensen similarity coefficient, and the correlations among the soil seed banks, aboveground vegetations, and environmental factors were explored by principal component analysis (PCA) and multivariable regression analysis. At the same altitudes of the water level fluctuating zone, the species composition of the soil seed banks had obvious heterogeneity, and the density and diversity indices of the soil seed banks among different groups were great. The similarity coefficient between the soil seed banks and aboveground vegetations was low, and the species number in the soil seed banks was obviously lesser than that in the aboveground vegetations. The density of the soil seed banks was highly positively correlated with the aboveground vegetations coverage and species number and the soil texture, but highly negatively correlated with the soil water-holding capacity and soil porosity.

  16. Infiltration properties of covering soil into the void of buried concrete waste due to fluctuation of ground water level and its prevention

    International Nuclear Information System (INIS)

    Takatsu, Tadashi; Tadano, Hideki; Abe, Satoshi; Imai, Jun; Yanagisawa, Eiji; Mitachi, Toshiyuki

    1999-01-01

    Low level radioactive concrete waste will be produced in future by breaking up the nuclear facilities, and the waste will be disposed in shallow depth of ground. In order to prepare for those situation, it is needed to clarify the infiltration properties of the covering soil into the void of buried concrete waste due to the fluctuation of ground water level and to develop the prevention methods against the infiltration of the covering soil. In this study, full-scale concrete structure specimens were broken up, and were compacted in large scale testing boxes and a series tests changing water level up and down in the concrete waste and covering soil were performed. From the test results, it was found that the appropriate filter installed between the covering soil and the concrete waste, enable us to prevent the infiltration of covering soil into the void of concrete waste. (author)

  17. Knowledge Levels of Pre-Service Science Teachers on Radioactivity

    Directory of Open Access Journals (Sweden)

    Zehra Molu

    2016-09-01

    Full Text Available This study aims to determine the knowledge levels of pre-service science teachers about radioactivity. A knowledge test was administered to 56 pre-service science teachers participated in the General Chemistry I course in the fall semester of 2014-15 academic year. Papers derived from the pre-service science teachers were read and evaluated, and the responses were classified as “accurate", "misconception", "wrong" and "empty" categories for open-ended questions and the responses to the multiple-choice questions were classified as "right" and "wrong". The pre-service science teachers’ correct response rates were between 9 % (definition of “nuclear radiation” concept, question 15 and 86 % (radioactivity uses, question 14 in open-ended questions whereas in multiple choice questions the ratio of correct answers ranged from 5 % (concept definition and nuclear reactions, questions 21, 23 and 33 to 98 % (sample of concept, question 20. Students hold misconceptions on the radioactivity, warning picture, nuclear power plant (questions 1, 13, and 16; isotopes (question 4; natural and artificial nucleus reaction (question 6; age of the rocks (question 8; atomic bomb (question 10; hydrogen bomb (question 11 and core irradiation (question 15.

  18. Physical root-soil interactions

    Science.gov (United States)

    Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice

    2017-12-01

    Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.

  19. Nutrient critical levels and availability in soils cultivated with peach palm (Bactris gasipaes Kunth. in Santo Domingo de Los Tsáchilas, Ecuador

    Directory of Open Access Journals (Sweden)

    Carlos Julio Quezada Crespo

    2017-04-01

    Full Text Available Ecuador is the most important exporter of canned peach palm, however, to date ideal soil fertility characteristics for peach palm growers remain unknown. The aim of this research was to determine optimal levels of soil nutrients for the cultivation of peach palm, specifically with regards to soil cation exchange capacity in order to obtain higher yields. We worked with 20 farmsteads and their soils from the province of Santo Domingo de los Tsáchilas during the second half of 2014. Fields were evaluated based on a relative yield and extractable (modified Olsen nutrient contents in each soil were determined using regression modeling to determine critical levels of each nutrient and specifically to determine the ideal soil cation exchange capacity under peach palm cultivation. Our analysis established critical levels of soil pH (6.3; OM 6.5%; P 12.3 mg.dm-3; K 0.67 cmol.dm-3 K; Ca 5.1 cmol.dm-3 ; Mg 0.97 cmol.dm-3; and S 7.5 mg.dm-3. The ideal Ca: Mg: K soil cation exchange capacity was determined to be 76:14:10.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Devesh Kumar Maurya. Articles written in Journal of Earth System Science. Volume 125 Issue 5 July 2016 pp 935-944. Validation of two gridded soil moisture products over India with in-situ observations · C K Unnikrishnan John P George Abhishek Lodh Devesh Kumar ...

  1. Conceptual Demand of Science Curricula: A Study at the Middle School Level

    Science.gov (United States)

    Calado, Sílvia; Neves, Isabel P.; Morais, Ana M.

    2013-01-01

    This article addresses the issue of the level of conceptual demand of science curricula by analysing the case of the current Portuguese Natural Sciences curriculum for middle school. Conceptual demand is seen in terms of the complexity of cognitive skills, the complexity of scientific knowledge and the intra-disciplinary relations between distinct…

  2. Soil erosion and degradation in Mediterranean Type Ecosystems. The Soil Erosion and Degradation Research Group (SEDER) approach and findings

    Science.gov (United States)

    Cerdà, Artemi; Keesstra, Saskia; Pulido, Manuel; Jordán, Antonio; Novara, Agata; Giménez-Morera, Antonio; Borja, Manuel Esteban Lucas; Francisco Martínez-Murillo, Juan; Rodrigo-Comino, Jesús; Pereira, Paulo; Nadal-Romero, Estela; Taguas, Tani; Úbeda, Xavier; Brevik, Eric C.; Tarolli, Paolo; Bagarello, Vicenzo; Parras Alcantara, Luis; Muñoz-Rojas, Miriam; Oliva, Marc; di Prima, Simone

    2017-04-01

    The Soil Erosion and Degradation Reseach Group (SEDER) is developing a research program since 2002 to assess the soil erosion and degradation processes at the Canyoles River watershed in Eastern Spain. The research study site was selected as representative of the environmental changes that take place in the Mediterranean: abandonment of the agriculture land in the mountains, forest fire expansion, intensification of the agriculture, impact of the infraesturctures such as rail and road embankments, and soil sealing due to the urban expansion. The research is based on the continuous measurements in the Montesa and El Teularet research stations and the sampling of the soils, topographical measurements and the use of rainfall simulators, minidisk infiltrometers, ring infiltrometers and Water Drop Penetration Time tests. The research is moving from a pure scientific approach to a more socio-economic view, and the stakeholders are being researched from a perception point of view. SEDER is also moving from pure to applied science, with the objective to design new managements that will satisfy the stakeholders and will achieve the sustainability. The research is being carried out in vineyards and orchards as they show extremely high erosion rates. But also we are interested in the impact of forest fires and the road embankments. In all three research topics, SEDER wish to find the sustainable managements. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C., Doerr, S. H., Pereira, P., . . . Mataix-Solera, J. (2014). Corrigendum to "wildland fire ash: Production, composition and eco-hydro-geomorphic effects", earth sci. rev. 130 (2014) [103-127]. Earth-Science Reviews, 138, 503. doi:10

  3. Hierarchical Effects of School-, Classroom-, and Student-Level Factors on the Science Performance of Eighth-Grade Taiwanese Students

    Science.gov (United States)

    Tsai, Liang-Ting; Yang, Chih-Chien

    2015-05-01

    This study was conducted to understand the effect of student-, classroom-, and school-level factors on the science performance of 8th-grade Taiwanese students in the Trends in International Mathematics and Science Study (TIMSS) 2011 by using multilevel analysis. A total of 5,042 students from 153 classrooms of 150 schools participated in the TIMSS 2011 study, in which they were required to complete questionnaires. A 3-level multilevel analysis was used to assess the influence of factors at 3 levels on the science performance of 8th-grade Taiwanese students. The results showed that the provision of education resources at home, teachers' level of education, and school climate were the strongest predictor of science performance at the student, classroom, and school level, respectively. It was concluded that the science performance of 8th-grade Taiwanese students is driven largely by individual factors. Classroom-level factors accounted for a smaller proportion of the total variance in science performance than did school-level factors.

  4. Climate Change, Soils, and Human Health

    Science.gov (United States)

    Brevik, Eric C.

    2013-04-01

    According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical

  5. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use

    International Nuclear Information System (INIS)

    Reid, Brian J.; Papanikolaou, Niki D.; Wilcox, Ronah K.

    2005-01-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by 14 C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 μg kg -1 ) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant. - Dissimilar levels of isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use influence inferred risk

  6. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Brian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)]. E-mail: b.reid@uea.ac.uk; Papanikolaou, Niki D. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Wilcox, Ronah K. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by {sup 14}C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 {mu}g kg{sup -1}) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant. - Dissimilar levels of isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use influence inferred risk.

  7. Heavy metals content in degraded agricultural soils of a mountain region related to soil properties

    Science.gov (United States)

    Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume; Zorpas, Antonis

    2017-04-01

    , Manganese and Copper." Soil Science Society of America Journal 42: 421-428. Marques,M.J., R. Jimenez-Ballesta, A. Á lvarez, and R. Bienes. 2007. "Spanish Research on Soil Damage." Science of the Total Environment 378: 1-4. Moral, R., J. Navarro-Pedreño, I. Gómez, and J. Mataix. 1996. "Quantitative Analysis of Organic Residues: Effects of Samples Preparation in the Determination of Metal." Communications in Soil Science and Plant Analysis 27: 753-761. Nelson, D.W., and L.E. Sommers. 1996. "Total Carbon, Organic Carbon, and Organic Matter." In Methods of Soil Analysis. Part 3. Chemical Methods, edited by D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, M.E. Sumner. Madison, WI: American Society of Agronomy.

  8. Macro and micro nutrient uptake parameters and use efficiency in cacao genotypes influenced by deficient to excess levels of soil K

    Science.gov (United States)

    Cacao (Theobroma cacao L.) is an important economic crop for many of the tropical countries. Adequate levels of soil K are essential for good growth and achieving high cocoa bean yields. Soils under cacao invariably have low levels of plant available K to support good cacao growth. Growth chamber ex...

  9. A systemic approach for modeling soil functions

    Science.gov (United States)

    Vogel, Hans-Jörg; Bartke, Stephan; Daedlow, Katrin; Helming, Katharina; Kögel-Knabner, Ingrid; Lang, Birgit; Rabot, Eva; Russell, David; Stößel, Bastian; Weller, Ulrich; Wiesmeier, Martin; Wollschläger, Ute

    2018-03-01

    The central importance of soil for the functioning of terrestrial systems is increasingly recognized. Critically relevant for water quality, climate control, nutrient cycling and biodiversity, soil provides more functions than just the basis for agricultural production. Nowadays, soil is increasingly under pressure as a limited resource for the production of food, energy and raw materials. This has led to an increasing demand for concepts assessing soil functions so that they can be adequately considered in decision-making aimed at sustainable soil management. The various soil science disciplines have progressively developed highly sophisticated methods to explore the multitude of physical, chemical and biological processes in soil. It is not obvious, however, how the steadily improving insight into soil processes may contribute to the evaluation of soil functions. Here, we present to a new systemic modeling framework that allows for a consistent coupling between reductionist yet observable indicators for soil functions with detailed process understanding. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. The non-linear character of these interactions produces stability and resilience of soil with respect to functional characteristics. We anticipate that this new conceptional framework will integrate the various soil science disciplines and help identify important future research questions at the interface between disciplines. It allows the overwhelming complexity of soil systems to be adequately coped with and paves the way for steadily improving our capability to assess soil functions based on scientific understanding.

  10. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    International Nuclear Information System (INIS)

    Prata, Fabio; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges; Lavorenti, Arquimedes

    2003-01-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh 2 PO 4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha -1 of P 2 O 5 , which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L -1 ), with a 14 C radioactivity of 0.233 kBq mL -1 . Four steps of the desorption procedures withCaCl 2 0.01 mol L -1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L -1 ). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm -3 . Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  11. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Directory of Open Access Journals (Sweden)

    Prata Fábio

    2003-01-01

    Full Text Available The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with KH2PO4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha-1 of P2O5, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L-1, with a 14C radioactivity of 0.233 kBq mL-1. Four steps of the desorption procedure with CaCl2 0.01 mol L-1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L-1. Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm-3. Moreover, a small amount of applied glyphosate was extracted (<10%, and the extraction increased with increasing soil phosphorus content.

  12. Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico

    Directory of Open Access Journals (Sweden)

    John Misenheimer

    2018-01-01

    Full Text Available Arsenic (As and lead (Pb are two contaminants of concern associated with urban gardening. In Puerto Rico, data currently is limited on As and Pb levels in urban garden soils, soil metal (loid bioaccessibility, and uptake of As and Pb in soil by edible plants grown in the region. This study examined total and bioaccessible soil As and Pb concentrations and accumulation in 10 commonly grown garden plants collected from three urban community gardens in Puerto Rico. Bioavailability values were predicted using bioaccessibility data to compare site-specific bioavailability estimates to commonly used default exposure assumptions. Total and bioaccessible As levels in study soils ranged from 2 to 55 mg/kg and 1 to 18 mg/kg, respectively. Total and bioaccessible Pb levels ranged from 19 to 172 mg/kg and 17 to 97 mg/kg, respectively. Measured bioaccessibility values corresponded to 19% to 42% bioaccessible As and 61% to 100% bioaccessible Pb when expressed as a percent of total As and Pb respectively. Predicted relative percent bioavailability of soil As and Pb based on measured bioaccessibility values ranged from 18% to 36% and 51% to 85% for As and Pb respectively. Transfer factors (TFs measuring uptake of As in plants from soil ranged from 0 to 0.073 in the edible flesh (fruit or vegetable of plant tissues analyzed and 0.073 to 0.444 in edible leaves. Pb TFs ranged from 0.002 to 0.012 in flesh and 0.023 to 0.204 in leaves. Consistent with TF values, leaves accumulated higher concentrations of As and Pb than the flesh, with the highest tissue concentrations observed in the culantro leaf (3.2 mg/kg dw of As and 8.9 mg/kg dw of Pb. Leaves showed a general but not statistically-significant (α = 0.05 trend of increased As and Pb concentration with increased soil levels, while no trend was observed for flesh tissues. These findings provide critical data that can improve accuracy and reduce uncertainty when conducting site-specific risk determination of

  13. Influence of heavy metals in non-anthropized soils with high levels of primordial radionuclides

    International Nuclear Information System (INIS)

    Bezerra, Jairo Dias; Amaral, Romilton dos Santos; Santos Junior, Jose Araujo dos; Rocha, Edilson Accioly; Oliveira, Jose Valdez Monterazo de; Bispo, Rodrigo Cesar Bezerra

    2011-01-01

    High concentrations of heavy metals in the ecosystem depend naturally geological formation in each area of the planet and of anthropic activities that contribute to contamination of soil, water sources and food produced in these areas. In this context, we highlight the importance in the study of As, Cr and Ba because of the level of toxicity, availability and chemical speciation that have. The study area was chosen to present agricultural activity and milk production on a large scale. This area is located in the rugged region of the state of Pernambuco, in the town of stone, where the arable soil was monitored aiming to determine the levels of these metals. Analyses were performed by the technique of neutron activation analysis coupled with the high-resolution gamma spectrometry. Were analyzed twenty-three soil samples collected from the horizon C. The results obtained varied from values smaller that (0.2 to 6.7) mg.kg -1 for As; (12.1 to 65.5) mg.kg -1 for Cr and (443 a 1,497) mg.kg -1 for Ba. Comparing them with the values established by CONAMA Resolution 420/2009, it was found that the concentrations of Ba are 100% above the value of prevention, and approximately 91% of values above the intervention value. The As and Cr showed 100% of results below the value of prevention. Whereas the study area has no industrial activity, high concentrations are determined for the Ba from natural processes. For the levels found evidence of a possible contamination of water sources and food produced in this region. (author)

  14. Levels of prospective science teachers’ ability to structure 5E model

    Directory of Open Access Journals (Sweden)

    Kaçan Sibel Demir

    2017-01-01

    Full Text Available The research was conducted with 3rd year prospective science students, who study at the science teaching department of a university in Istanbul province. For that purpose, 34 prospective science teachers cooperated and participated in the study. In the study, the prospective teachers were asked to select a certain subject and plan that subject in accordance with the 5E model. Therefore, the objective of the study is to determine the levels of prospective science teachers’ ability to structure the 5E model. The data retrieved from the study were analyzed ad compared through content analysis and percentages. The results of the study suggest that some prospective teachers are not sufficient at each phase of the 5E model, thereby the researchers made suggestions for that situation.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Senthil Kumar. Articles written in Journal of Earth System Science. Volume 119 Issue 5 October 2010 pp 745-751. Soil-gas helium and surface-waves detection of fault zones in granitic bedrock · G K Reddy T Seshunarayana Rajeev Menon P Senthil Kumar · More Details ...

  16. Effects of vegetation and soil-surface cover treatments on the hydrologic behavior of low-level waste trench caps

    International Nuclear Information System (INIS)

    Lopez, E.A.; Barnes, F.J.; Antonio, E.J.

    1988-01-01

    Preliminary results are presented on a three-year field study at Los Alamos National Laboratory to evaluate the influence of different low-level radioactive waste trench cap designs on water balance under natural precipitation. Erosion plots having two different vegetative covers (shrubs and grasses) and with either gravel-mulched or unmulched soil surface treatments have been established on three different soil profiles on a decommissioned waste site. Total runoff and soil loss from each plot is measured after each precipitation event. Soil moisture is measured biweekly while plant canopy cover is measured seasonally. Preliminary results from the first year show that the application of a gravel mulch reduced runoff by 73 to 90%. Total soil loss was reduced by 83 to 93% by the mulch treatment. On unmulched plots, grass cover reduced both runoff and soil loss by about 50% compared to the shrub plots. Continued monitoring of the study site will provide data that will be used to analyze complex interactions between independent variables such rainfall amount and intensity, antecedent soil moisture, and soil and vegetation factors, as they influence water balance, and soil erosion. 18 refs., 2 figs., 3 tabs

  17. Soil as the Central Link in the Hydrological Cycle

    Science.gov (United States)

    Hillel, D.

    2005-05-01

    spatial scales of the two disciplines. Whereas hydrology typically operates on the watershed level, traditional soil science has dealt with phenomena on the scale of a vertical profile or a restricted field. Recent efforts to define soil processes in a catenary sequence in the landscape and concurrent efforts to define the spatial variability of soil properties offer a way to close the gap and thus integrate the sister sciences.

  18. Soil Survey Geographic (SSURGO) - Kinds and Distribution of Soils

    Data.gov (United States)

    California Natural Resource Agency — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  19. Quantifying the heterogeneity of soil compaction, physical soil properties and soil moisture across multiple spatial scales

    Science.gov (United States)

    Coates, Victoria; Pattison, Ian; Sander, Graham

    2016-04-01

    England's rural landscape is dominated by pastoral agriculture, with 40% of land cover classified as either improved or semi-natural grassland according to the Land Cover Map 2007. Since the Second World War the intensification of agriculture has resulted in greater levels of soil compaction, associated with higher stocking densities in fields. Locally compaction has led to loss of soil storage and an increased in levels of ponding in fields. At the catchment scale soil compaction has been hypothesised to contribute to increased flood risk. Previous research (Pattison, 2011) on a 40km2 catchment (Dacre Beck, Lake District, UK) has shown that when soil characteristics are homogeneously parameterised in a hydrological model, downstream peak discharges can be 65% higher for a heavy compacted soil than for a lightly compacted soil. However, at the catchment scale there is likely to be a significant amount of variability in compaction levels within and between fields, due to multiple controlling factors. This research focusses in on one specific type of land use (permanent pasture with cattle grazing) and areas of activity within the field (feeding area, field gate, tree shelter, open field area). The aim was to determine if the soil characteristics and soil compaction levels are homogeneous in the four areas of the field. Also, to determine if these levels stayed the same over the course of the year, or if there were differences at the end of the dry (October) and wet (April) periods. Field experiments were conducted in the River Skell catchment, in Yorkshire, UK, which has an area of 120km2. The dynamic cone penetrometer was used to determine the structural properties of the soil, soil samples were collected to assess the bulk density, organic matter content and permeability in the laboratory and the Hydrosense II was used to determine the soil moisture content in the topsoil. Penetration results show that the tree shelter is the most compacted and the open field area

  20. Uptake and utilization of soil and fertilizer phosphorus by wheat in medium black soils

    International Nuclear Information System (INIS)

    Mahajan, J.P.

    1980-01-01

    A field experiment was conducted using labelled superphosphate to study the uptake and utilization of soil and fertilizer phosphorus by wheat under different soil fertility gradients and phosphorus levels. Grain, straw and total dry matter yield and total P uptake in wheat increased significantly with increasing soil fertility status and P levels (P 0 to P 90 kg P 2 O 5 /ha). Percent P derived from fertilizer increased significantly with increase in P levels but decreased with increasing fertility status of soil. Similar trend was observed in fertilizer P uptake in grain, straw and total dry matter, however, percent utilization of applied P decreased significantly with increasing P levels and fertility status of soil. Soil P uptake increased with increasing fertility status of soil. (author)

  1. Watershed soil Cd loss after long-term agricultural practice and biochar amendment under four rainfall levels.

    Science.gov (United States)

    Ouyang, Wei; Huang, Weijia; Hao, Xin; Tysklind, Mats; Haglund, Peter; Hao, Fanghua

    2017-10-01

    Some heavy metals in farmland soil can be transported into the waterbody, affecting the water quality and sediment at the watershed outlet, which can be used to determine the historical loss pattern. Cd is a typical heavy metal leached from farmland that is related to phosphate fertilizers and carries serious environmental risk. The spatial-vertical pattern of Cd in soil and the vertical trend of Cd in the river sediment core were analyzed, which showed the migration and accumulation of Cd in the watershed. To prevent watershed Cd loss, biochar was employed, and leaching experiments were conducted to investigate the Cd loss from soil depending on the initial concentration. Four rainfall intensities, 1.25 mm/h, 2.50 mm/h, 5.00 mm/h, and 10.00 mm/h, were used to simulate typical rainfall scenarios for the study area. Biochar was prepared from corn straw after pretreatment with ammonium dihydrogen phosphate (ADP) and pyrolysis at 400 °C under anoxic conditions. To identify the effects of biochar amendment on Cd migration, the biochar was mixed with soil for 90 days at concentrations of 0%, 0.5%, 1.0%, 3.0%, and 5.0% soil by weight. The results showed that the Cd leaching load increased as the initial load and rainfall intensity increased and that eluviation caused surface Cd to diffuse to the deep soils. The biochar application caused more of the heavy metals to be immobilized in the amended soil rather than transported into the waterbody. The sorption efficiency of the biochar for Cd increased as the addition level increased to 3%, which showed better performance than the 5% addition level under some initial concentration and rainfall conditions. The research indicated that biochar is a potential material to prevent diffuse heavy metal pollution and that a lower addition makes the application more feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Soil gas radon response to environmental and soil physics variables

    International Nuclear Information System (INIS)

    Thomas, D.M.; Chen, C.; Holford, D.

    1991-01-01

    During the last three years a field study of soil gas radon activities conducted at Poamoho, Oahu, has shown that the primary environmental variables that control radon transport in shallow tropical soils are synoptic and diurnal barometric pressure changes and soil moisture levels. Barometric pressure changes drive advective transport and mixing of soil gas with atmospheric air; soil moisture appears to control soil porosity and permeability to enhance or inhibit advective and diffusive radon transport. An advective barrier test/control experiment has shown that advective exchange of soil gas and air may account for a substantial proportion of the radon loss from shallow soils but does not significantly affect radon activities at depths greater than 2.3 m. An irrigation test/control experiment also suggests that, at soil moisture levels approaching field capacity, saturation of soil macroporosity can halt all advective transport of radon and limit diffusive mobility to that occurring in the liquid phase. The results of the authors field study have been used to further refine and extend a numerical model, RN3D, that has been developed by Pacific Northwest Laboratories to simulate subsurface transport of radon. The field data have allowed them to accurately simulate the steady state soil gas radon profile at their field site and to track transient radon activities under the influence of barometric pressure changes and in response to changes in soil permeability that result from variations in soil moisture levels. Further work is continuing on the model to enable it to properly account for the relative effects of advective transport of soil gas through cracks and diffusive mobility in the bulk soils

  3. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabio [BIOAGRI Labs., Piracicaba, SP (Brazil). Div. de Quimica. Lab. de Radioquimica; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Ciencias Exatas; Lavorenti, Arquimedes [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Secao de Toxicologia

    2003-03-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh{sub 2}PO{sub 4} at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha{sup -1} of P{sub 2}O{sub 5}, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L{sup -1}), with a {sup 14}C radioactivity of 0.233 kBq mL{sup -1}. Four steps of the desorption procedures withCaCl{sub 2} 0.01 mol L{sup -1} and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L{sup -1}). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm{sup -3}. Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  4. Heavy metal levels in soil samples from highly industrialized Lagos ...

    African Journals Online (AJOL)

    Anyakora

    2013-09-05

    Sep 5, 2013 ... The effect of heavy metals on the environment is of serious concern and threatens life in all forms. Environmental ... have affected the quality of soil due to contamination of soil with heavy metals and the consequent effects on the ..... tested for remediation of chromium-contaminated soils. (Collen, 2003).

  5. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    Science.gov (United States)

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  6. Monitor Soil Degradation or Triage for Soil Security? An Australian Challenge

    Directory of Open Access Journals (Sweden)

    Andrea Koch

    2015-04-01

    Full Text Available The Australian National Soil Research, Development and Extension Strategy identifies soil security as a foundation for the current and future productivity and profitability of Australian agriculture. Current agricultural production is attenuated by soil degradation. Future production is highly dependent on the condition of Australian soils. Soil degradation in Australia is dominated in its areal extent by soil erosion. We reiterate the use of soil erosion as a reliable indicator of soil condition/quality and a practical measure of soil degradation. We describe three key phases of soil degradation since European settlement, and show a clear link between inappropriate agricultural practices and the resultant soil degradation. We demonstrate that modern agricultural practices have had a marked effect on reducing erosion. Current advances in agricultural soil management could lead to further stabilization and slowing of soil degradation in addition to improving productivity. However, policy complacency towards soil degradation, combined with future climate projections of increased rainfall intensity but decreased volumes, warmer temperatures and increased time in drought may once again accelerate soil degradation and susceptibility to erosion and thus limit the ability of agriculture to advance without further improving soil management practices. Monitoring soil degradation may indicate land degradation, but we contend that monitoring will not lead to soil security. We propose the adoption of a triaging approach to soil degradation using the soil security framework, to prioritise treatment plans that engage science and agriculture to develop practices that simultaneously increase productivity and improve soil condition. This will provide a public policy platform for efficient allocation of public and private resources to secure Australia’s soil resource.

  7. Bulk monitoring of soil for low level transuranic contamination

    International Nuclear Information System (INIS)

    Mandler, J.W.; Randolph, P.D.

    1976-01-01

    A system using γ-ray analysis was developed to survey the soil surrounding retrieval barrels for liquid radioactive waste containing 239 Pu and 241 Am. The performance of scintillation detectors of various sizes for monitoring soil samples was evaluated

  8. Improvement of strength characteristics of lateritic sub-grade soil ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... Abstract. This paper presents the results of investigation of the behavior of pavement subgrade soil stabilized with shredded polyethylene waste. ... Keywords: Lateritic soil, High density polyethylene (HDPE) waste, Pavement thickness, Sub-grade soil ...

  9. Raising awareness about soil diversity: The Education Programme of the Earth Sciences Museum Alexis Dorofeef, Minas Gerais, Brazil

    Science.gov (United States)

    Muggler, C.

    2012-04-01

    Soils are usually overlooked as part of geodiversity and geoheritage. Increasing the public awareness about soils is a key issue in our changing world. Furthering public awareness involves developing a better understanding of soils, their functions, importance for environment and society, as well as a personal and collective commitment in the stewardship and protection from degradation and loss. This presentation describes the Soil and Environmental Education and Outreach Programme of the Alexis Dorofeef Earth Sciences Museum of the Soil University Department in Viçosa, Brazil. The program has developed different activities linked to formal and non formal education and its main audience are basic education teachers, school children and the general public. The museum acts in different and diverse fronts, supported on a pedagogical background based on Paulo Freire's educational approach, the social-constructivism, which considers social inclusion, knowledge building, horizontal learning and collective action. In its early years, the museum was mainly focused on formal education and this changed with time as our action was reshaped into a broader outreach action stimulated by the new Brazilian government. The museum's indoor activities consist of accompanied thematic visits, hands on experiments, basic school teacher's courses, development of learning materials and methods and professional training. Beyond of the Museum space local interdisciplinary projects with basic education schools are run along with temporary expositions coupled with short courses and workshops with farmers and social movements. We present the results of the changes in awareness about soils among three main groups: school teachers, basic education children and general public. After 10 years of activities, the Soil Education action of the Museum is recognized and well spread among school communities in the town and its neighbourhood. Many school teachers approach the contents and methodologies

  10. Comparison of Capability of Digitizing Methods to Predict Soil classification According to the Soil Taxonomy and World Reference Base for Soil Resources

    Directory of Open Access Journals (Sweden)

    zohreh mosleh

    2017-02-01

    Full Text Available Introduction: Soil classification generally aims to establish a taxonomy based on breaking the soil continuum into homogeneous groups that can highlight the essential differences in soil properties and functions between classes.The two most widely used modern soil classification schemes are Soil Taxonomy (ST and World Reference Base for Soil Resources (WRB.With the development of computers and technology, digital and quantitative approaches have been developed. These new techniques that include the spatial prediction of soil properties or classes, relies on finding the relationships between soil and the auxiliary information that explain the soil forming factors or processes and finally predict soil patterns on the landscape. These approaches are commonly referred to as digital soil mapping (DSM (14. A key component of any DSM mapping activity is the method used to define the relationship between soil observation and auxiliary information (4. Several types of machine learning approaches have been applied for digital soil mapping of soil classes, such as logistic and multinomial logistic regressions (10,12, random forests (15, neural networks (3,13 and classification trees (22,4. Many decisions about the soil use and management are based on the soil differences that cannot be captured by higher taxonomic levels (i.e., order, suborder and great group (4. In low relief areas such as plains, it is expected that the soil forming factors are more homogenous and auxiliary information explaining soil forming factors may have low variation and cannot show the soil variability. Materials and Methods: The study area is located in the Shahrekord plain of Chaharmahal-Va-Bakhtiari province. According tothe semi-detailed soil survey (16, 120 pedons with approximate distance of 750 m were excavated and described according to the “field book for describing and sampling soils” (19. Soil samples were taken from different genetic horizons, air dried and

  11. Nitrogen balance and dynamics in corn under different soil fertility levels using “1“5N isotope tracer technique

    International Nuclear Information System (INIS)

    Rallos, R.V.; Rivera, F.G.; Samar, E.D.; Rojales, J.S.; Anida, A.H.

    2015-01-01

    Nitrogen (N) Fertilizer plays a vital role on the growth and development of any crop. The inefficient N fertilizer utilization contributes to poor crop productivity and environment pollution. This study used the 15N isotope tracer technique to understand the nitrogen balance and dynamics in corn grown during the wet and dry season for low, medium and high N soils in Northern Luzon. The experiments were laid out following the randomized complete block design (RCBD) potassium requirements were applied at optimum level on solid chemical analysis and fertilizer recommendation. The study was able to separate the source of N from applied fertilizer and from the soils, traced using 15N during the 30 days after planting (DAP), 60 DAP and at harvest. Result show that, more than half of N in the plant came directly from added fertilizer during the early stage, which decreased towards harvest period. Fertilizer N yield use efficiency showed negative relationship with the rate of N application and soil fertility levels. Of N fertilization in different soil fertility levels were also established using isotope tracer technique. (author)

  12. Correlation between gamma radiation levels and soil radium concentrations at the Edgemont uranium mill site

    International Nuclear Information System (INIS)

    Wallace, R.G.; Reed, R.P.; Polehn, J.L.; Wilson, G.T.

    1985-01-01

    The Tennessee Valley Authority's uranium mill in Edgemont, South Dakota, is being decommissioned. Approximately 4 million tons of contaminated tailings, building equipment, and contaminated soil and debris on the mill site will be removed to the disposal site located approximately 3 kilometers to the southeast. To minimize recontamination of cleaned areas, tailings removal will progress from the northwest corner to the southeast corner of the mill site. As specific areas are cleaned, surveys will be conducted to determine if the concentrations of radium-226 in soil are within the limits outlined in 40 CFR, Part 192. Conformance with the criteria will be demonstrated by a gamma survey of the area employing the differential, or delta-measurement, technique. This technique involves fitting the detector with a base and a receptacle for a removable high-density filter. By making measurements with and without the filter in place, a gamma radiation level proportional to the radium-226 concentration in soil can be determined. This paper describes the results obtained in the development of the correlation between the gamma survey measurements and the soil radium concentrations

  13. Correlation between gamma radiation levels and soil radium concentrations at the Edgemont uranium mill site

    International Nuclear Information System (INIS)

    Wallace, R.G.; Reed, R.P.; Polehn, J.L.; Wilson, G.T.

    1986-01-01

    The Tennessee Valley Authority's uranium mill in Edgemont, South Dakota is being decommissioned. Approximately 4 million tons of contaminated tailings, building equipment, and contaminated soil and debris on the mill site will be removed to the disposal site located approximately 3 kilometers to the southeast. To minimize recontamination of cleaned areas, tailings removal will progress from the northwest corner to the southeast corner of the mill site. As specific areas are cleaned, surveys will be conducted to determine if the concentrations of radium-226 in soil are within the limits outlined in 40 CFR, Part 192. Conformance with the criteria will be demonstrated by a gamma survey of the area employing the differential, or delta-measurement, technique. This technique involves fitting the detector with a base and a receptacle for a removable high-density filter. By making measurements with and without the filter in place, a gamma radiation level proportional to the radium-226 concentration in soil can be determined. This paper describes the results obtained in the development of the correlation between the gamma survey measurements and the soil radium concentrations

  14. Developing science policy capacity at the state government level: Planning a science and technology policy fellowship program for Colorado and beyond

    Science.gov (United States)

    Druckenmiller, M. L.

    2017-12-01

    There is growing recognition of the potential to advance science policy capacity within state legislatures, where there is most often a shortage of professional backgrounds in the natural sciences, technology, engineering, and medicine. Developing such capacity at the state level should be considered a vital component of any comprehensive national scale strategy to strengthen science informed governance. Toward this goal, the Center for Science and Technology Policy Research at the University of Colorado Boulder is leading a strategic planning process for a Science and Technology Policy Fellowship Program within the Colorado state legislature and executive branch agencies. The intended program will place PhD-level scientists and engineers in one-year placements with decision-makers to provide an in-house resource for targeted policy-relevant research. Fellows will learn the intricacies of the state policymaking process, be exposed to opportunities for science to inform decisions, and develop a deeper understanding of key science and technology topics in Colorado, including water resources, wildfire management, and energy. The program's ultimate goals are to help foster a decision-making arena informed by evidence-based information, to develop new leaders adept at bridging science and policymaking realms, and to foster governance that champions the role of science in society. Parallel to efforts in Colorado, groups from nine other states are preparing similar plans, providing opportunities to share approaches across states and to set the stage for increased science and technology input to state legislative agendas nationwide. Importantly, highly successful and sustainable models exist; the American Association for the Advancement of Science (AAAS) has implemented a federally based fellowship program for over 43 years and the California Council for Science and Technology (CCST) has directed a fellowship program for their state's legislature since 2009. AAAS and CCST

  15. Recommendations to the NRC for soil cover systems over uranium mill tailings and low-level radioactive wastes

    International Nuclear Information System (INIS)

    Bennett, R.D.; Kimbrell, A.F.

    1991-02-01

    The US Army Engineer Waterways Experiment Station (WES) has provided recommendations to the US Nuclear Regulatory Commission (NRC) for the selection placement, compaction, testing, and acceptance of soils proposed to be placed in cover systems over uranium mill tailings and low-level radioactive wastes. The recommendations from WES are contained in three volumes of NUREG/CR-5432. Volume 1 identifies the various soil types and engineering properties that are needed to fulfill important soil cover functions. The identified soils are then ranked according to their capability to perform the low-permeability and filter and drainage functions. Volume 2 provides recommendations for conducting pertinent laboratory and field tests to ensure acceptable soil cover performance. Volume 3 covers recommendations from WES on proper field construction methods including guidance on quality control testing and inspections. Recommendations are given for sealing penetrations (e.g., observation wells) that are required to penetrate covers for environmental monitoring of disposal facility performance. 30 refs., 6 figs., 9 tabs

  16. Assessment of the SMAP Passive Soil Moisture Product

    Science.gov (United States)

    Chan, Steven K.; Bindlish, Rajat; O'Neill, Peggy E.; Njoku, Eni; Jackson, Tom; Colliander, Andreas; Chen, Fan; Burgin, Mariko; Dunbar, Scott; Piepmeier, Jeffrey; hide

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using an L-band (active) radar and an L-band (passive) radiometer. After an irrecoverable hardware failure of the radar on July 7, 2015, the radiometer-only soil moisture product became the only operational Level 2 soil moisture product for SMAP. The product provides soil moisture estimates posted on a 36 kilometer Earth-fixed grid produced using brightness temperature observations from descending passes. Within months after the commissioning of the SMAP radiometer, the product was assessed to have attained preliminary (beta) science quality, and data were released to the public for evaluation in September 2015. The product is available from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center. This paper provides a summary of the Level 2 Passive Soil Moisture Product (L2_SM_P) and its validation against in situ ground measurements collected from different data sources. Initial in situ comparisons conducted between March 31, 2015 and October 26, 2015, at a limited number of core validation sites (CVSs) and several hundred sparse network points, indicate that the V-pol Single Channel Algorithm (SCA-V) currently delivers the best performance among algorithms considered for L2_SM_P, based on several metrics. The accuracy of the soil moisture retrievals averaged over the CVSs was 0.038 cubic meter per cubic meter unbiased root-mean-square difference (ubRMSD), which approaches the SMAP mission requirement of 0.040 cubic meter per cubic meter.

  17. Quantifying the effects of green waste compost application, water content and nitrogen fertilization on nitrous oxide emissions in 10 agricultural soils.

    Science.gov (United States)

    Zhu, Xia; Silva, Lucas C R; Doane, Timothy A; Wu, Ning; Horwath, William R

    2013-01-01

    Common management practices, such as the application of green waste compost, soil moisture manipulation, and nitrogen fertilization, affect nitrous oxide (NO) emissions from agricultural soils. To expand our understanding of how soils interact with these controls, we studied their effects in 10 agricultural soils. Application of compost slightly increased NO emissions in soils with low initial levels of inorganic N and low background emission. For soils in which compost caused a decrease in emission, this decrease was larger than any of the observed increases in the other soils. The five most important factors driving emission across all soils, in order of increasing importance, were native dissolved organic carbon (DOC), treatment-induced change in DOC, native inorganic N, change in pH, and soil iron (Fe). Notable was the prominence of Fe as a regulator of NO emission. In general, compost is a viable amendment, considering the agronomic benefits it provides against the risk of producing a small increase in NO emissions. However, if soil properties and conditions are taken into account, management can recognize the potential effect of compost and thereby reduce NO emissions from susceptible soils, particularly by avoiding application of compost under wet conditions and together with ammonium fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use.

    Science.gov (United States)

    Reid, Brian J; Papanikolaou, Niki D; Wilcox, Ronah K

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by (14)C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 microg kg(-1)) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant.

  19. Dairy heifer manure management, dietary phosphorus, and soil test P effects on runoff phosphorus.

    Science.gov (United States)

    Jokela, William E; Coblentz, Wayne K; Hoffman, Patrick C

    2012-01-01

    Manure application to cropland can contribute to runoff losses of P and eutrophication of surface waters. We conducted a series of three rainfall simulation experiments to assess the effects of dairy heifer dietary P, manure application method, application rate, and soil test P on runoff P losses from two successive simulated rainfall events. Bedded manure (18-21% solids) from dairy heifers fed diets with or without supplemental P was applied on a silt loam soil packed into 1- by 0.2-m sheet metal pans. Manure was either surface-applied or incorporated (Experiment 1) or surface-applied at two rates (Experiment 2) to supply 26 to 63 kg P ha. Experiment 3 evaluated runoff P from four similar nonmanured soils with average Bray P1-extractable P levels of 11, 29, 51, and 75 mg kg. We measured runoff quantity, total P (TP), dissolved reactive P (DRP), and total and volatile solids in runoff collected for 30 min after runoff initiation from two simulated rain events (70 mm h) 3 or 4 d apart. Manure incorporation reduced TP and DRP concentrations and load by 85 to 90% compared with surface application. Doubling the manure rate increased runoff DRP and TP concentrations an average of 36%. In the same experiment, P diet supplementation increased water-extractable P in manure by 100% and increased runoff DRP concentration threefold. Concentrations of solids, TP, and DRP in runoff from Rain 2 were 25 to 75% lower than from Rain 1 in Experiments 1 and 2. Runoff DRP from nonmanured soils increased quadratically with increasing soil test P. These results show that large reductions in P runoff losses can be achieved by incorporation of manure, avoiding unnecessary diet P supplementation, limiting manure application rate, and managing soils to prevent excessive soil test P levels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Soil N mineralization profiles of co-existing woody vegetation islands at the alpine tree line

    Czech Academy of Sciences Publication Activity Database

    Wang, L.; Godbold, Douglas

    2017-01-01

    Roč. 136, 5-6 (2017), s. 881-892 ISSN 1612-4669 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Tree line * Soil N mineralization * in situ field incubation * Soil N availability * Resin capsule * Woody vegetation islands Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 2.017, year: 2016

  1. Soil Sampling Operating Procedure

    Science.gov (United States)

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil samples for field screening or laboratory analysis.

  2. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Shaw, P.; Anderson, B.

    1993-07-01

    INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program

  3. Soil radioactivity levels, radiological maps and risk assessment for the state of Kuwait.

    Science.gov (United States)

    Alazemi, N; Bajoga, A D; Bradley, D A; Regan, P H; Shams, H

    2016-07-01

    An evaluation of the radioactivity levels associated with naturally occurring radioactive materials has been undertaken as part of a systematic study to provide a surface radiological map of the State of Kuwait. Soil samples from across Kuwait were collected, measured and analysed in the current work. These evaluations provided soil activity concentration levels for primordial radionuclides, specifically members of the (238)U and (232)Th decay chains and (40)K which. The (238)U and (232)Th chain radionuclides and (40)K activity concentration values ranged between 5.9 ↔ 32.3, 3.5 ↔ 27.3, and 74 ↔ 698 Bq/kg respectively. The evaluated average specific activity concentrations of (238)U, (232)Th and (40)K across all of the soil samples have mean values of 18, 15 and 385 Bq/kg respectively, all falling below the worldwide mean values of 35, 40 and 400 Bq/kg respectively. The radiological risk factors are associated with a mean of 33.16 ± 2.46 nG/h and 68.5 ± 5.09 Bq/kg for the external dose rate and Radium equivalent respectively. The measured annual dose rates for all samples gives rise to a mean value of 40.8 ± 3.0 μSv/y while the internal and internal hazard indices have been found to be 0.23 ± 0.02 and 0.19 ± 0.01 respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    Science.gov (United States)

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  5. Salinity management using an anionic polymer in a pecan field with calcareous-sodic soil.

    Science.gov (United States)

    Ganjegunte, Girisha K; Sheng, Zhuping; Braun, Robert J

    2011-01-01

    Soil salinity and sodicity have long been recognized as the major concerns for irrigated agriculture in the Trans-Pecos Basin, where fields are being flood irrigated with Rio Grande River water that has elevated salinity. Reclamation of these salt-affected lands is difficult due to fine-texture, high shrink-swell soils with low permeability. Conventional practice of subsoiling to improve soil permeability is expensive and has had limited success on the irrigated soils that have appreciable amounts of readily weatherable Ca minerals. If these native Ca sources can be effectively used to counter sodicity, it can improve soil permeability and reduce amelioration costs. This study evaluated the effects of 3 yr of polyacrylamide (PAM) application at 10 mg L concentration during the first irrigation of the season to evaluate soil permeability, in situ Ca mineral dissolution, and leaching of salts from the effective root zone in a pecan field of El Paso County, TX. Results indicated that PAM application improved water movement throughout the effective root zone that resulted in Na leaching. Polymer application significantly decreased CaCO (estimated based on inorganic C analysis) concentrations in the top 45 cm compared with baseline levels, indicating solubilization and redistribution of calcite. The PAM application also reduced soil electrical conductivity (EC) in the top 60 cm (4.64-2.76 dS m) and sodium adsorption ratio (SAR) from 13.1 to 5.7 mmol L in the top 75-cm depths. As evidence of improved soil conditions, pecan nut yields increased by 34% in PAM-treated fields over the control. Results suggested that PAM application helped in effective use of native Ca sources present in soils of the study site and reduced Na by improving soil permeability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Biodiversity and Biological Degradation of Soil. Upasana Mishra Dolly Wattal Dhar. General Article Volume 9 Issue 1 January 2004 pp 26-33 ... Keywords. Microbial biodiversity; soil science; biogeochemical cycles; sustainable agriculture; ecology ...

  7. Low level measurements of natural radionuclides in soil samples around a coal-fired power plant

    International Nuclear Information System (INIS)

    Rosner, G.; Bunzl, K.; Hoetzl, H.; Winkler, R.

    1984-01-01

    To detect a possible contribution of airborne radioactivity from stack effluents to the soil radioactivity, several radionuclides in the soil around a coal-fired power plant have been determined. A plant situated in a rural region of Bavaria was selected to minimize contributions from other civilisatory sources. The soil sampling network consisted of 5 concentric circles with diameters between 0.4 and 5.2 km around the plant, 16 sampling points being distributed regularly on each circle. Radiochemical analysis techniques for 210 Pb and 210 Po in soil samples of several grams has to be developed. They include a wet dissolution procedure, simultaneous precipitation of lead and polonium as the sulfides, purification via lead sulfate, counting of the lead as the chromate in a low-level beta counter and alpha spectrometric determination of the 210 Po in a gridded ionization chamber. The 238 U, 226 Ra, 232 Th and 40 K were counted by low level gamma spectrometry. Specific activities found were in the range of 0.7 to 2.0 pCi g -1 for 210 Pb and 0.3 to 1.6 pCi g -1 for 226 Ra. The distribution patterns of 210 Po and 210 Pb around the plant were found to be similar. They were different, however, from that of 226 Ra. The highest 210 Pb/ 226 Ra activity ratio was 3.9 at a distance of 0.76 km SSE from the plant. Nevertheless, the evidence is not considered to be sufficient to attribute these observations unambiguously to plant release. (orig.)

  8. Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels

    International Nuclear Information System (INIS)

    Vivas, A.; Voeroes, I.; Biro, B.; Campos, E.; Barea, J.M.; Azcon, R.

    2003-01-01

    Selected ubiquitous microorganisms are important components of Cd tolerance in plants. - The effect of inoculation with indigenous naturally occurring microorganisms [an arbuscular mycorrhizal (AM) fungus and rhizosphere bacteria] isolated from a Cd polluted soil was assayed on Trifolium repens growing in soil contaminated with a range of Cd. One of the bacterial isolate showed a marked PGPR effect and was identified as a Brevibacillus sp. Mycorrhizal colonization also enhanced Trifolium growth and N, P, Zn and Ni content and the dually inoculated (AM fungus plus Brevibacillus sp.) plants achieved further growth and nutrition and less Cd concentration, particularly at the highest Cd level. Increasing Cd level in the soil decreased Zn and Pb shoot accumulation. Coinoculation of Brevibacillus sp. and AM fungus increased shoot biomass over single mycorrhizal plants by 18% (at 13.6 mg Cd kg -1 ), 26% (at 33.0 mg Cd kg -1 ) and 35% (at 85.1 mg Cd kg -1 ). In contract, Cd transfer from soil to plants was substantially reduced and at the highest Cd level Brevibacillus sp. lowered this value by 37.5% in AM plants. Increasing Cd level highly reduced plant mycorrhization and nodulation. Strong positive effect of the bacterium on nodule formation was observed in all treatments. Results show that selected ubiquitous microorganisms, applied as enriched inocula, are important in plant Cd tolerance and development in Cd polluted soils

  9. Integration of Problem-Based Learning and Web-Based Multimedia to Enhance Soil Management Course

    Science.gov (United States)

    Strivelli, R.; Krzic, M.; Crowley, C.; Dyanatkar, S.; Bomke, A.; Simard, S.; Grand, S.

    2012-04-01

    In an attempt to address declining enrolment in soil science programs and the changing learning needs of 21st century students, several universities in North America and around the world have re-organized their soil science curriculum and adopted innovative educational approaches and web-based teaching resources. At the University of British Columbia, Canada, an interdisciplinary team set out to integrate teaching approaches to address this trend. The objective of this project was to develop an interactive web-based teaching resource, which combined a face-to-face problem-based learning (PBL) case study with multimedia to illustrate the impacts of three land-uses on soil transformation and quality. The Land Use Impacts (LUI) tool (http://soilweb.landfood.ubc.ca/luitool/) was a collaborative and concentrated effort to maximize the advantages of two educational approaches: (1) the web's interactivity, flexibility, adaptability and accessibility, and (2) PBL's ability to foster an authentic learning environment, encourage group work and promote the application of core concepts. The design of the LUI case study was guided by Herrington's development principles for web-based authentic learning. The LUI tool presented students with rich multimedia (streaming videos, text, data, photographs, maps, and weblinks) and real world tasks (site assessment and soil analysis) to encourage students to utilize knowledge of soil science in collaborative problem-solving. Preliminary student feedback indicated that the LUI tool effectively conveyed case study objectives and was appealing to students. The resource is intended primarily for students enrolled in an upper level undergraduate/graduate university course titled Sustainable Soil Management but it is flexible enough to be adapted to other natural resource courses. Project planning and an interactive overview of the tool will be given during the presentation.

  10. Effects of low-level radioactive soil contamination and sterilization on the degradation of radiolabeled wheat straw

    International Nuclear Information System (INIS)

    Niedrée, Bastian; Vereecken, Harry; Burauel, Peter

    2012-01-01

    After the explosion of reactor 4 in the nuclear power plant near Chernobyl, huge agricultural areas became contaminated with radionuclides. In this study, we want to elucidate whether 137 Cs and 90 Sr affect microorganisms and their community structure and functions in agricultural soil. For this purpose, the mineralization of radiolabeled wheat straw was examined in lab-scale microcosms. Native soils and autoclaved and reinoculated soils were incubated for 70 days at 20 °C. After incubation, the microbial community structure was compared via 16S and 18S rDNA denaturing gradient gel electrophoresis (DGGE). The radioactive contamination with 137 Cs and 90 Sr was found to have little effect on community structure and no effect on the straw mineralization. The autoclaving and reinoculation of soil had a strong influence on the mineralization and the community structure. Additionally we analyzed the effect of soil treatment on mineralization and community composition. It can be concluded that other environmental factors (such as changing content of dissolved organic carbon) are much stronger regulating factors in the mineralization of wheat straw and that low-level radiation only plays a minor role. - Highlights: ► We observed the impact of contamination with Cs-137 and Sr-90 on soil functions. ► Microbial community was altered slightly. ► Mineralization of wheat straw was not affected. ► Microbes growing on applied straw compete for nutrients with soil microbes.

  11. Combination of soil classification and some selected soil properties ...

    African Journals Online (AJOL)

    The advantage in the combined use of soil classification and top soil analysis for explaining crop yield variation was examined. Soil properties and yields of maize (Zea mays L) on different soil types were measured on farmers' fields for 2 years. Yield prediction improved from 2 per cent at the Order and Association levels to ...

  12. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  13. Monitoring changes in soil water content on adjustable soil slopes of a soil column using time domain reflectometry (TDR) techniques

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhd Tahir; Lakam Anak Mejus; Johari Abdul Latif

    2004-01-01

    Time Domain Reflectometry (TDR) is one of non-destructive methods and widely used in hydrology and soil science for accurate and flexible measurement of soil water content The TDR technique is based on measuring the dielectric constant of soil from the propagation of an electromagnetic pulse traveling along installed probe rods (parallel wire transmission line). An adjustable soil column i.e., 80 cm (L) x 35 cm (H) x 44 cm (W) instrumented with six pairs of vertically installed CS615 reflectometer probes (TDR rods) was developed and wetted under a laboratory simulated rainfall and their sub-surface moisture variations as the slope changes were monitored using TDR method Soil samples for gravimetric determination of water content, converted to a volume basis were taken at selected times and locations after the final TDR reading for every slope change made of the soil column Comparisons of water contents by TDR with those from grawmetric samples at different slopes of soil column were examined. The accuracy was found to be comparable and to some extent dependent upon the variability of the soil. This study also suggests that the response of slope (above 20 degrees) to the gradual increase in water content profile may cause soil saturation faster and increased overland flow (runoff especially on weak soil conditions

  14. Conceptualizing Student Affect for Science and Technology at the Middle School Level: Development and Implementation of a Measure of Affect in Science and Technology (MAST)

    Science.gov (United States)

    Romine, William L.; Sadler, Troy D.; Wulff, Eric P.

    2017-10-01

    We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of affect express their interest and attitudes toward science and technology and gender differences in how students express their affect. We found that affect in science and technology comprises a main dimension, science interest, and four peripheral dimensions: interest in careers in science and technology, attitudes toward science, and interest in attending science class. Of these, careers in science and technology carry the highest affective demand. While males showed higher levels of personal and situational interest in science, a greater interest in careers in science and technology was the biggest contributor to males' higher affect toward science and technology. We argue that whether the MAST is used as a measure of a single construct or multiple subconstructs depends upon specific research or evaluation goals; however, both uses of the MAST yield measures which produce valid inferences for student affect.

  15. Allowable residual contamination levels of radionuclides in soil from pathway analysis

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Baes, C.F. III

    1987-01-01

    The Remedial Action Program (RAP) at Oak Ridge National Laboratory will include well drilling, facility upgrades, and other waste management operations likely to involve soils contaminated with radionuclides. A preliminary protocol and generalized criteria for handling contaminated soils is needed to coordinate and plan RAP activities, but there exists only limited information on contaminate nature and distribution at ORNL RAP sites. Furthermore, projections of long-term decommissioning and closure options for these sites are preliminary. They have adapted a pathway analysis model, DECOM, to quantify risks to human health from radionuclides in soil and used it to outline preliminary criteria for determining the fate of contaminated soil produced during RAP activities. They assumed that the site could be available for unrestricted use immediately upon decontamination. The pathways considered are consumption of food grown on the contaminated soil, including direct ingestion of soil from poorly washed vegetables, direct radiation from the ground surface, inhalation of resuspended radioactive soil, and drinking water from a well drilled through or near the contaminated soil. We will discuss the assumptions and simplifications implicit in DECOM, the site-specific data required, and the results of initial calculations for the Oak Ridge Reservation

  16. COMPARATIVE EFFECTIVENESS OF ANIMAL MANURES ON SOIL ...

    African Journals Online (AJOL)

    Administrator

    tons/ha and 13.4 tons/ha of poultry, goat and dairy cow manure will suffice the requirement of. 40 kg N/ha and 20 ..... supplementation with inorganic P sources. Rate. Manure ... organic and available forms of phosphorus in soils. Soil Science.

  17. Agro-Science

    African Journals Online (AJOL)

    Agro-Science, the journal of the Faculty of Agriculture of the University of Nigeria, ... Health; Soil and Environment, Agricultural Economics, Agricultural Extension, Home Economics, Food and Nutrition; Post Harvest Technology; Agricultural ...

  18. Sensitivity of screening-level toxicity tests using soils from a former petroleum refinery

    International Nuclear Information System (INIS)

    Pauwels, S.; Bureau, J.; Roy, Y.; Allen, B.; Robidoux, P.Y.; Soucy, M.

    1995-01-01

    The authors tested five composite soil samples from a former refinery. The samples included a reference soil (Mineral Oil and Grease, MO and G < 40 ppm), thermally-treated soil, biotreated soil, and two untreated soils. They evaluated toxicity using the earthworm E. foetida, lettuce, cress, barley, Microtox, green algae, fathead minnow, and D. magna. The endpoints measured were lethality, seed germination, root elongation, growth, and bioluminescence. Toxicity, as measured by the number of positive responses, increased as follows: biotreated soil < untreated soil No. 1 < reference soil < thermally-treated soil and untreated soil No. 2. The biotreated soil generated only one positive response, whereas the thermally-treated soil and untreated soil No. 2 generated five positive responses. The most sensitive and discriminant terrestrial endpoint was lettuce root elongation which responded to untreated soil No. 1, thermally-treated soil, and reference soil. The least sensitive was barley seed germination for which no toxicity was detected. The most sensitive and discriminant aquatic endpoint was green algae growth which responded to untreated soil No. 1, thermally-treated soil, and reference soil. The least sensitive was D. magna for which no toxicity was detected. Overall, soil and aqueous extract toxicity was spotty and no consistent patterns emerged to differentiate the five soils. Biotreatment significantly reduced the effects of the contamination. Aqueous toxicity was measured in the reference soil, probably because of the presence of unknown dissolved compounds in the aqueous extract. Finally, clear differences in sensitivity existed among the test species

  19. Field Guide to Soils. Earth Science Curriculum Project Pamphlet Series PS-2.

    Science.gov (United States)

    Foth, Henry; Jacobs, Hyde S.

    Discussed are the importance of soil to plant and animal life, the evolution of a soil profile, and the major kinds of soil in the United States. On a suggested field trip, students examine different kinds of soil profiles; they also measure soil acidity and water-holding capacity. Suggestions for further study are provided along with references…

  20. Radionuclides, Heavy Metals, and Polychlorinated Biphenyls in Soils Collected Around the Perimeter of Low-Level Radioactive Waste Disposal Area G during 2006

    International Nuclear Information System (INIS)

    P. R. Fresquez

    2007-01-01

    Twenty-one soil surface samples were collected in March around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Three more samples were collected in October around the northwest corner after elevated tritium levels were detected on an AIRNET station located north of pit 38 in May. Also, four soil samples were collected along a transect at various distances (48, 154, 244, and 282 m) from Area G, starting from the northeast corner and extending to the Pueblo de San Ildefonso fence line in a northeasterly direction (this is the main wind direction). Most samples were analyzed for radionuclides ( 3 H, 238 Pu, 239,240 Pu, 241 Am, 234 U, 235 U, and 238 U), inorganic elements (Al, Ba, Be, Ca, Cr, Co, Cu, Fe, Mg, Mn, Ni, K, Na, V, Hg, Zn, Sb, As, Cd, Pb, Se, Ag, and Tl) and polychlorinated biphenyl (PCB) concentrations. As in previous years, the highest levels of 3 H in soils (690 pCi/mL) were detected along the south portion of Area G near the 3 H shafts; whereas, the highest concentrations of 241 Am (1.2 pCi/g dry) and the Pu isotopes (1.9 pCi/g dry for 238 Pu and 5 pCi/g dry for 239,240 Pu) were detected along the northeastern portions near the transuranic waste pads. Concentrations of 3 H in three soil samples and 241 Am and Pu isotopes in one soil sample collected around the northwest corner in October increased over concentrations found in soils collected at the same locations earlier in the year. Almost all of the heavy metals, with the exception of Zn and Sb in one sample each, in soils around the perimeter of Area G were below regional statistical reference levels (mean plus three standard deviations) (RSRLs). Similarly, only one soil sample collected on the west side contained PCB concentrations--67 (micro)g/kg dry of aroclor-1254 and 94 (micro)g/kg dry of aroclor-1260. Radionuclide and inorganic element concentrations in soils collected along a transect from Area G to the

  1. Residue determination and levels of glyphosate in surface waters, sediments and soils associated with oil palm plantation in Tasik Chini, Pahang, Malaysia

    Science.gov (United States)

    Mardiana-Jansar, K.; Ismail, B. S.

    2014-09-01

    Levels of glyphosate and its main metabolite were determined in surface water, soil and sediment samples from an oil palm plantation area located at Tasik Chini, Pahang, Malaysia. The optimization analytical method has been developed for the determination of glyphosate herbicide and its metabolite amino-methyl-phosphonic acid (AMPA) in surface waters to a level of 0.1μg/L, while in sediments and soils to a level of 0.5μg/g with a good linearity in the calibration range of 1-100μg/L. The procedure involves a pre-columnderivatization step with 9-fluorenyl-methyl-chloroformate (FMOC-Cl) yielding highly fluorescent derivatives of the analytes which can be determined by HPLC with fluorescence detection. In the field, levels of glyphosate in surface waters ranges from not detected to 1.0mg/L, while in soils and sediments were from not detected to 6.0mg/kg. For AMPA, the residues in surface waters were between not detected to 2.0mg/L, while in soil and sediment samples were from not detected to 5mg/kg. This variation of glyphosate and AMPA levels depended directly on time of pesticide application and the season.

  2. Correlations of soil-gas and indoor radon with geology in glacially derived soils of the northern Great Plains

    International Nuclear Information System (INIS)

    Schumann, R.R.; Owen, D.E.; Peake, R.T.; Schmidt, K.M.

    1990-01-01

    This paper reports that a higher percentage of homes in parts of the northern Great Plains underlain by soils derived from continental glacial deposits have elevated indoor radon levels (greater than 4 pCi/L) than any other area in the country. Soil-gas radon concentrations, surface radioactivity, indoor radon levels, and soil characteristics were studied in areas underlain by glacially-derived soils in North Dakota and Minnesota to examine the factors responsible for these elevated levels. Clay-rich till soils in North Dakota have generally higher soil-gas radon levels, and correspondingly higher indoor radon levels, than the sandy till soils common to west-central Minnesota. Although the proportions of homes with indoor radon levels greater than 4 pCi/L are similar in both areas, relatively few homes underlain by sandy tills have screening indoor radon levels greater than 20 pCi/L, whereas a relatively large proportion of homes underlain by clayey tills have screening indoor radon levels exceeding 20 pCi/L. The higher radon levels in North Dakota are likely due to enhanced emanation from the smaller grains and to relatively higher soil radium concentrations in the clay-rich soils, whereas the generally higher permeability of the sandy till soils in Minnesota allows soil gas to be drawn into structures from a larger source volume, increasing indoor radon levels in these areas

  3. Soil carbon dioxide fluxes in a mixed floodplain forest in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Acosta, Manuel; Dařenová, Eva; Dušek, Jiří; Pavelka, Marian

    2017-01-01

    Roč. 82, SEP (2017), s. 35-42 ISSN 1164-5563 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD15040 Institutional support: RVO:67179843 Keywords : CO2 * Soil temperature * Soil moisture * Spatial heterogeneity * Q10 Subject RIV: DF - Soil Science OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.445, year: 2016

  4. Ammonia Volatilization in Cocoa Farm as Affected by Sugarcane Filter Cake Supply at Different Urea and Soil Moisture Levels

    Directory of Open Access Journals (Sweden)

    Erwin Prastowo

    2015-02-01

    Full Text Available Ammonia  (NH3  volatilization  is  a  crucial  mechanism  in  soil  nitrogen  (N cycle. It accounts for main loss  of N in cocoa  farms  when  environment is  suitable to  promote  the  emission.  A  research  to  locate  a  link  of  several  factors,  namely, sugarcane filter cake  (SFC, urea  and soil moisture content  to NH 3 volatilization,  and  to reveal  cocoa  N  uptake  and  urea  fertilizer  efficiency  was  taken  place  both  in  a laboratory  with  the  incubation  technique,  and  in  a  greenhouse  as  a  pot  trial. The design was completely randomized design in factorial. The soil was Inceptisol from Kaliwining Experimental Station, Jember, East Java, collected from top soil of  a  productive  cocoa  farm.  A  closed  trap  system  was  designed  to  measurevolatilized  NH 3 from  soil  and  SFC  mixture  incubated  for  14  days.  For  the  pot experiment,  cocoa  clone  of  Scavina  6  seedlings  were  grown  for  six  months  withtreatments  involving  series  level  of  SFC  and  series  level  of  urea.  Soil  moisture content influenced volatilized NH3 by reducing 50% emission in where it was more obvious in higher level of urea applied. It was more than 90% in average for the increase in volatilized NH 3roduced by increasing in level of urea from 0 to 0.4 g kg -1 in  overall  level  of  combinations. An increase in urea  level  had  resulted in increase in  soil  pH, and  Parson correlation suggested a direct  link  with  volatilized  NH 3  We found  a  relationship  between  SFC  and volatilized  NH 3 and  their combinations  with soil  moisture  and  urea  content  were  able  to  inhibit  the  emission.  Emission decrease  up  to  28%  was  observed  from  0  to  100  g  SFC  kg-1.  This  inhibition may  have contributed to  the increase in  N cocoa  plant uptake

  5. Soil science, development, and the "elusive nature" of Colombia's Amazonian plains

    OpenAIRE

    Lyons, KM

    2014-01-01

    Since 2000, the productive capacities and contested governance of Amazonian soils emerged as a matter of political concern in the U.S.-Colombia "War on Drugs." State soil scientists are enlisted to engender a classifiable entity whose definition makes it emerge from productivity: good soils are thickly productive, market-oriented, and an entity that can be improved after human action. A network of farmers in the department of Putumayo, however, engages in material practices where soils are le...

  6. Assessment of gamma radiation levels and natural radioactivity in soils along a subtropical river basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Dekun; Yu, Tao [Third Institute of Oceanography, Xiamen (China). Lab. of Marine Isotopic Technology and Environmental Risk Assessment

    2017-07-01

    The activities of natural radionuclides in the environment can be used to assess radiological effects. Monitoring the radiation level in soils is important for public health. It also has important geochemical implications as most of the sediment eroded from river basins is from soil. Therefore, we carried out a soil sampling campaign along a subtropical river basin in southeastern China (Jiulong River). Surface and depth profile soils were collected, and the natural radionuclide activities were measured. The activities of the natural radionuclides {sup 238}U, {sup 232}Th, and {sup 40}K in the surface soils varied from 31.6 to 132.1 Bq kg-dry{sup -1}, 37.8 to 174.0 Bq kg-dry{sup -1}, and 52.3 to 596.2 Bq kg-dry{sup -1}, with average values of 56.7±30.3 Bq kg-dry{sup -1}, 86.7±41.3 Bq kg-dry{sup -1}, and 352.8±190.6 Bq kg-dry{sup -1}, respectively. The absorbed gamma dose in air and the annual effective dose equivalent (AEDE) in surface soils along the river basin were both higher than the world average. In the depth profiles, excess {sup 210}Pb ({sup 210}Pbex) decreased with depth and significant correlation between {sup 210}Pbex and TOC was observed, suggesting that they are affected by similar processes (leaching and sorption).

  7. Thinking and Countermeasures for Rational Utilization of Soil Fertility in Modern Agriculture Developping

    Directory of Open Access Journals (Sweden)

    WENG Bo-qi

    2014-02-01

    Full Text Available Soil is not only an important foundation for agricultural production, but also is the safeguard of human survival. Soil quality is close-ly related with food safety and argo-ecological environment. Soil fertility is the support of modern agricultural development. Multiple disci-plines and specialties are involved in researches of soil cultivating process. Nowadays, the understanding of soil fertility has changed from a-gricultural production to environmental security and resource exploitation, even larger scales to ecological health and global soil change. In this review, the characteristics and inherent link between soil and agriculture were comprehensive expounded from the aspects of long-term fertilization trials, soil cultivation techniques, and modern agriculture development. The challenge and prospect faced in soil science research field were also analyzed. Finally, several suggestions and countermeasures were proposed to the researches of soil science in future.

  8. The rocky flats controversy on radionuclide soil action levels

    International Nuclear Information System (INIS)

    Earle, T.C.

    2004-01-01

    This report describes how stakeholder involvement processes led to the successful resolution of a dispute over radionuclide soil action levels at the Rocky Flats Site near Denver, Colorado. During the Cold War Era, Rocky Flats, a plutonium fabrication plant, was part of the American government's multi-site nuclear weapons production facilities. Although the Rocky Flats plant had significant positive effects on the local economy, it became a target of public protest due to concerns over both public safety in the area surrounding the site and global nuclear proliferation. In the late 1980's, local safety concerns led to investigations by state and federal agencies. In 1992, with the Cold War ended, the Department of Energy decided to decommission the Rocky Flats site and to begin the long process of decontamination. (author)

  9. A one-dimensional model for simulating soil water movement ...

    African Journals Online (AJOL)

    ... regression analysis revealed the relati-onship to be exponential. The values of calculated and measured soil water content and total evapotranspiration decreased with number of days after rain or irrigation. The nodal soil water content also decreased with the soil depth. (Journal of Applied Science and Technology: 2001 ...

  10. Soil, Food Security and Human Health

    Science.gov (United States)

    Oliver, Margaret

    2017-04-01

    science, agronomy, agricultural sustainability, toxicology, epidemiology and the medical sciences will promote greater understanding of the complex relationships between soil and human health.

  11. Levels of toxic elements in soils of abandoned waste dump site

    African Journals Online (AJOL)

    GRACE

    2006-07-03

    Jul 3, 2006 ... Correlation coefficient (r value) between heavy metals in soils and some soil factor. Factor. Pb. Ni. Cr ... Isirimah NO, Igwe C, Iwegbue CMA (2003). Important Ions in ... Laboratory Manual for the Analysis of. Soils, Plants and ...

  12. Effects of multisensory resources on the achievement and science attitudes of seventh-grade suburban students taught science concepts on and above grade level

    Science.gov (United States)

    Roberts, Patrice Helen

    This research was designed to determine the relationships among students' achievement scores on grade-level science content, on science content that was three years above-grade level, on attitudes toward instructional approaches, and learning-styles perceptual preferences when instructional approaches were multisensory versus traditional. The dependent variables for this investigation were scores on achievement posttests and scores on the attitude survey. The independent variables were the instructional strategy and students' perceptual preferences. The sample consisted of 74 educationally oriented seventh-grade students. The Learning Styles Inventory (LSI) (Dunn, Dunn, & Price, 1990) was administered to determine perceptual preferences. The control group was taught seventh-grade and tenth-grade science units using a traditional approach and the experimental group was instructed on the same units using multisensory instructional resources. The Semantic Differential Scale (SDS) (Pizzo, 1981) was administered to reveal attitudinal differences. The traditional unit included oral reading from the textbook, completing outlines, labeling diagrams, and correcting the outlines and diagrams as a class. The multisensory unit included five instructional stations established in different sections of the classroom to allow students to learn by: (a) manipulating Flip Chutes, (b) using Electroboards, (c) assembling Task Cards, (d) playing a kinesthetic Floor Game, and (e) reading an individual Programmed Learning Sequence. Audio tapes and scripts were provided at each location. Students circulated in groups of four from station to station. The data subjected to statistical analyses supported the use of a multisensory, rather than a traditional approach, for teaching science content that is above-grade level. T-tests revealed a positive and significant impact on achievement scores (p < 0.0007). No significance was detected on grade-level achievement nor on the perceptual

  13. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  14. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  15. Low level measurements of natural radionuclides in soil samples around a coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Bunzl, K.; Hoetzl, H.; Winkler, R. (Gesellschaft fuer Strahlen- und Umweltforschung m.b.H. Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Strahlenschutz)

    1984-06-15

    To detect a possible contribution of airborne radioactivity from stack effluents to the soil radioactivity, several radionuclides in the soil around a coal-fired power plant have been determined. A plant situated in a rural region of Bavaria was selected to minimize contributions from other civilisatory sources. The soil sampling network consisted of 5 concentric circles with diameters between 0.4 and 5.2 km around the plant, 16 sampling points being distributed regularly on each circle. Radiochemical analysis techniques for /sup 210/Pb and /sup 210/Po in soil samples of several grams has to be developed. They include a wet dissolution procedure, simultaneous precipitation of lead and polonium as the sulfides, purification via lead sulfate, counting of the lead as the chromate in a low-level beta counter and alpha spectrometric determination of the /sup 210/Po in a gridded ionization chamber. The /sup 238/U, /sup 226/Ra, /sup 232/Th and /sup 40/K were counted by low level gamma spectrometry. Specific activities found were in the range of 0.7 to 2.0 pCi g/sup -1/ for /sup 210/Pb and 0.3 to 1.6 pCi g/sup -1/ for /sup 226/Ra. The distribution patterns of /sup 210/Po and /sup 210/Pb around the plant were found to be similar. They were different, however, from that of /sup 226/Ra. The highest /sup 210/Pb//sup 226/Ra activity ratio was 3.9 at a distance of 0.76 km SSE from the plant. Nevertheless, the evidence is not considered to be sufficient to attribute these observations unambiguously to plant release.

  16. Soils in urban and industrial environments

    International Nuclear Information System (INIS)

    Burghardt, W.

    1994-01-01

    Urban areas are expanding rapidly. Therefore the interest in soil science activities on urban and industrial sites grows. The paper gives an overview of the research and mapping activities in Germany. A model of soils in urban ecosystems shows the relationships of development of soils and soil quality to land use. The water regime of soils is influenced by the characteristics of urban landscape and sealing. Of special interest are the typical substrates. Some properties of soils which develop on tipped substrates of natural material are discussed. Of importance are technological substrates as rubble, ash, slag, waste material and sludges in urban environments. Proposals of classification of urban and industrial soils are presented. For proper use by the municipal authorities availability and application of information on urban soils must be a part of research. (orig.) [de

  17. Interconnection between precipitation density, soil contamination levels and 90Sr and 137Cs content in food stuffs

    International Nuclear Information System (INIS)

    Knizhnikov, V.A.; Petukhova, Eh.V.

    1980-01-01

    Presented are the data dynamically characterizing the density of radioactive fallout, contamination of soil and the main kinds of food stuffs with 137 Cs and 90 Sr. It is shown that 90 Sr contamination of bakery products in the country within the whole period of observation is in direct dependence on the density of atmospheric fallouts as a whole in the northern hemisphere. In the reverse, 90 Sr potato contamination primarily correlates with nuclide content in the soil. The dependence between milk contamination and fallout density has an intermediate character as compared with the above types of food stuffs. The same is true for 137 Cs, but a clear tendency to a faster decrease in the level of food stuffs contamination is observed. The importance of the soil way in food stuffs contamination and peculiarities of nuclide migration in food stuffs from various types of soil are considered

  18. An overview on the history of pedology and soil mapping in Italy

    Science.gov (United States)

    Calzolari, C.

    2012-04-01

    In Italy, the word pedology (pedologia) was introduced in a text book as synonym of soil science for the first time in 1904 by Vinassa de Regny. In the literature, the term cohabitates with the words agrology (agrologia), agro-geology (agro-geologia), agricultural geognostic (geognostica agraria), geopedology (geo-pedologia) used in different historical moments by differently rooted soil scientists. When early pedologists started with systematic studies of soils, their characteristics and geography, they were strongly influenced by their cultural background, mainly geology and agro-chemistry. Along the time, the soil concept evolved, as did the concept of pedology, and this is somehow witnessed by the use of different Italian words with reference to soil: suolo, terreno, terra. Differently from agro-chemists, early pedologists based the soil study on the field description of soil profile. This was firstly based on the vertical differentiation between humus rich layers and "inactive" layers and later on, as long as the discipline evolved, on the presence of genetic horizons. The first complete soil map of Italy is dated 1928. Its Author, the geologist De Angelis d'Ossat, was the president of the organising committee of the 1924 International Soil Conference of Rome, where the International Society of Soil Science was founded. The map was based on the geological map of Italy, drafted in scale 1:1,000,000 after the creation of the Kingdom of Italy in 1861. The internal disputes within the Geological Society, together with the scarce interest of most of geologists for soil, did not facilitate the birth of a central soil survey. Soil mapping was mainly conducted by universities and research institutes, and we had to wait until 1953 for a new soil map (scale 1:3,125,000) at national level to be realised by Paolo Principi, based on literature data. In 1966 a new 1:1,000,000 soil map of Italy was eventually published by a national committee, led by Fiorenzo Mancini. This

  19. SOIL - A new open access journal of the European Geosciences Union

    Science.gov (United States)

    Brevik, Eric; Mataix-Solera, Jorge; Pereg, Lily; Quinton, John; Six, Johan; Van Oost, Kristof; Cerdà, Artemi

    2014-05-01

    The Soil System Sciences (SSS) division of the EGU has been a strong and growing international research force in the last few years. Since the first EGU meeting with SSS participation in 2004 where 200 abstracts were presented in 7 sessions, the contribution of the SSS division has grown considerably, with 1,427 abstracts presented in 57 SSS sessions at the 2013 EGU General Assembly. After 10 years of active participation, the SSS Division has developed a new open access journal, SOIL, which will serve the whole EGU membership. SOIL intends to publish scientific research that will contribute to understanding the Soil System and its interaction with humans and the entire Earth System. The scope of the journal will include all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (Soils and plants, Soils and water, Soils and atmosphere, Soils and biogeochemical cycling, Soils and the natural environment, Soils and the human environment, Soils and food security, Soils and biodiversity, Soils and global change, Soils and health, Soil as a resource, Soil systems, Soil degradation (chemical, physical and biological), Soil protection and remediation (including soil monitoring), Soils and methodologies). Manuscript types considered for publication in SOIL are original research articles, review articles, short communications, forum articles, and letters to the editors. SOIL will also publish up to two special issues on thematic subjects per year and encourages conveners of innovative sessions at the EGU meeting to submit proposals for special issues to the executive editor who oversees special issues. As with other EGU journals, SOIL has a two-stage publication process. In the first stage, papers that pass a rapid access-review by one of the editors will immediately be published in SOIL Discussions (SOIL-D). Papers will then be subject to interactive public discussion, during which the

  20. Nitrogen cycle: approach in Science textbooks for the junior Higt Level 1

    Directory of Open Access Journals (Sweden)

    Angela Fernandes Campos

    2008-01-01

    Full Text Available This paper features as its theme the approach to Nitrogen Cycle in textbooks. The goal is to tell whether the Science textbooks focus on an adequate approach to such a cycle, so that it meets the teacher`s needs. This content was defined because we understand that its study is of the utmost importance, due to the fact that on such a cycle depend nature`s energetic balance, the preservation of the richness of the soil in nutrients and the formation of the nitrogenous compounds which are vital to the organism of all living beings. The research work was carried out by means of the analysis of the Science textbooks recommended by The Textbook Guide 2005, taking into account that, supposedly, upon being approved and suggested by PNLD, they are already qualified to be adopted by teachers. With this research, we came to the conclusion that there are different limits when the Nitrogen Cycle is approached in textbooks. Such finding is not enough for the solution to a real problem; it is believed, however, that perceiving the existence of that problem and understanding what causes is to happen tends to make a possible answer to such a question less distant and conflicting.