WorldWideScience

Sample records for level optical interconnects

  1. Optical interconnects

    CERN Document Server

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical

  2. Misalignment corrections in optical interconnects

    Science.gov (United States)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  3. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography

    NARCIS (Netherlands)

    Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index

  4. Nanophotonic Devices for Optical Interconnect

    DEFF Research Database (Denmark)

    Van Thourhout, D.; Spuesens, T.; Selvaraja, S.K.

    2010-01-01

    We review recent progress in nanophotonic devices for compact optical interconnect networks. We focus on microdisk-laser-based transmitters and discuss improved design and advanced functionality including all-optical wavelength conversion and flip-flops. Next we discuss the fabrication uniformity...... of the passive routing circuits and their thermal tuning. Finally, we discuss the performance of a wavelength selective detector....

  5. Optical interconnect for large-scale systems

    Science.gov (United States)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  6. Digital optical interconnects for photonic computing

    Science.gov (United States)

    Guilfoyle, Peter S.; Stone, Richard V.; Zeise, Frederick F.

    1994-05-01

    A 32-bit digital optical computer (DOC II) has been implemented in hardware utilizing 8,192 free-space optical interconnects. The architecture exploits parallel interconnect technology by implementing microcode at the primitive level. A burst mode of 0.8192 X 1012 binary operations per sec has been reliably demonstrated. The prototype has been successful in demonstrating general purpose computation. In addition to emulating the RISC instruction set within the UNIX operating environment, relational database text search operations have been implemented on DOC II.

  7. Integrated Optical Interconnect Architectures for Embedded Systems

    CERN Document Server

    Nicolescu, Gabriela

    2013-01-01

    This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.   Provides state-of-the-art research on the use of optical interconnects in Embedded Systems; Begins with coverage of the basics for high-performance computing and optical interconnect; Includes a variety of on-chip optical communication topologies; Features coverage of system integration and opti...

  8. Optical Interconnects for Future Data Center Networks

    CERN Document Server

    Bergman, Keren; Tomkos, Ioannis

    2013-01-01

    Optical Interconnects for Future Data Center Networks covers optical networks and how they can provide high bandwidth, energy efficient interconnects with increased communication bandwidth. This volume, with contributions from leading researchers in the field, presents an integrated view of the expected future requirements of data centers and serves as a reference for some of the most advanced and promising solutions proposed by researchers from leading universities, research labs, and companies. The work also includes several novel architectures, each demonstrating different technologies such as optical circuits, optical switching, MIMO optical OFDM, and others. Additionally, Optical Interconnects for Future Data Center Networks provides invaluable insights into the benefits and advantages of optical interconnects and how they can be a promising alternative for future data center networks.

  9. Optical Interconnection Via Computer-Generated Holograms

    Science.gov (United States)

    Liu, Hua-Kuang; Zhou, Shaomin

    1995-01-01

    Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.

  10. Electro-optic techniques for VLSI interconnect

    Science.gov (United States)

    Neff, J. A.

    1985-03-01

    A major limitation to achieving significant speed increases in very large scale integration (VLSI) lies in the metallic interconnects. They are costly not only from the charge transport standpoint but also from capacitive loading effects. The Defense Advanced Research Projects Agency, in pursuit of the fifth generation supercomputer, is investigating alternatives to the VLSI metallic interconnects, especially the use of optical techniques to transport the information either inter or intrachip. As the on chip performance of VLSI continues to improve via the scale down of the logic elements, the problems associated with transferring data off and onto the chip become more severe. The use of optical carriers to transfer the information within the computer is very appealing from several viewpoints. Besides the potential for gigabit propagation rates, the conversion from electronics to optics conveniently provides a decoupling of the various circuits from one another. Significant gains will also be realized in reducing cross talk between the metallic routings, and the interconnects need no longer be constrained to the plane of a thin film on the VLSI chip. In addition, optics can offer an increased programming flexibility for restructuring the interconnect network.

  11. Si micro photonics for optical interconnection

    International Nuclear Information System (INIS)

    Wada, K.; Ahn, D.H.; Lim, D.R.; Michel, J.; Kimerling, L.C.

    2006-01-01

    This paper reviews current status of silicon microphotonics and the recent prototype of on-chip optical interconnection. Si microphotonics pursues complementary metal oxide semiconductor (CMOS)-compatibility of photonic devices to reduce the materials diversity eventually to integrate on Si chips. Fractal optical H-trees have been implemented on a chip and found to be a technology breakthrough beyond metal interconnection. It has shown that large RC time constants associated with metal can be eliminated at least long distant data communication on a chip, and eventually improve yield and power issues. This has become the world's first electronic and photonic integrated circuits (EPICs) and the possibility of at least 10 GHz clocking for personal computers has been demonstrated

  12. Towards energy aware optical networks and interconnects

    Science.gov (United States)

    Glesk, Ivan; Osadola, Tolulope; Idris, Siti

    2013-10-01

    In a today's world, information technology has been identified as one of the major factors driving economic prosperity. Datacenters businesses have been growing significantly in the past few years. The equipments in these datacenters need to be efficiently connected to each other and also to the outside world in order to enable effective exchange of information. This is why there is need for highly scalable, energy savvy and reliable network connectivity infrastructure that is capable of accommodating the large volume of data being exchanged at any time within the datacenter network and the outside network in general. These devices that can ensure such effective connectivity currently require large amount of energy in order to meet up with these increasing demands. In this paper, an overview of works being done towards realizing energy aware optical networks and interconnects for datacenters is presented. Also an OCDMA approach is discussed as potential multiple access technique for future optical network interconnections. We also presented some challenges that might inhibit effective implementation of the OCDMA multiplexing scheme.

  13. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    Science.gov (United States)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  14. Optics vs copper: from the perspective of "Thunderbolt" interconnect technology

    Science.gov (United States)

    Cheng, Hengju; Krause, Christine; Ko, Jamyuen; Gao, Miaobin; Liu, Guobin; Wu, Huichin; Qi, Mike; Lam, Chun-Chit

    2013-02-01

    Interconnect technology has been progressed at a very fast pace for the past decade. The signaling rates have steadily increased from 100:Mb/s to 25Gb/s. In every generation of interconnect technology evolution, optics always seems to take over at first, however, at the end, the cost advantage of copper wins over. Because of this, optical interconnects are limited to longer distance links where the attenuation in copper cable is too large for the integrated circuits to compensate. Optical interconnect has long been viewed as the premier solution in compared with copper interconnect. With the release of Thunderbolt technology, we are entering a new era in consumer electronics that runs at 10Gb/s line rate (20Gb/s throughput per connector interface). Thunderbolt interconnect technology includes both active copper cables and active optical cables as the transmission media which have very different physical characteristics. In order for optics to succeed in consumer electronics, several technology hurdles need to be cleared. For example, the optical cable needs to handle the consumer abuses such as pinch and bend. Also, the optical engine used in the active optical cable needs to be physically very small so that we don't change the looks and feels of the cable/connector. Most importantly, the cost of optics needs to come down significantly to effectively compete with the copper solution. Two interconnect technologies are compared and discussed on the relative cost, power consumption, form factor, density, and future scalability.

  15. Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    Science.gov (United States)

    Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)

    1996-01-01

    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  16. Integrated optoelectronic materials and circuits for optical interconnects

    International Nuclear Information System (INIS)

    Hutcheson, L.D.

    1988-01-01

    Conventional interconnect and switching technology is rapidly becoming a critical issue in the realization of systems using high speed silicon and GaAs based technologies. In recent years clock speeds and on-chip density for VLSI/VHSIC technology has made packaging these high speed chips extremely difficult. A strong case can be made for using optical interconnects for on-chip/on-wafer, chip-to-chip and board-to-board high speed communications. GaAs integrated optoelectronic circuits (IOC's) are being developed in a number of laboratories for performing Input/Output functions at all levels. In this paper integrated optoelectronic materials, electronics and optoelectronic devices are presented. IOC's are examined from the standpoint of what it takes to fabricate the devices and what performance can be expected

  17. Optical backplane interconnect switch for data processors and computers

    Science.gov (United States)

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  18. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko

    2013-01-01

    We experimentally assess the performance of a 64 × 64 optical switch fabric used for ns-speed optical cell switching in supercomputer optical interconnects. More specifically, we study four alternative modulation formats and detection schemes, namely, 10-Gb/s nonreturn-to-zero differential phase-...

  19. Design of a highly parallel board-level-interconnection with 320 Gbps capacity

    Science.gov (United States)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.; Bauer, H.

    2012-01-01

    A parallel board-level interconnection design is presented consisting of 32 channels, each operating at 10 Gbps. The hardware uses available optoelectronic components (VCSEL, TIA, pin-diodes) and a combination of planarintegrated free-space optics, fiber-bundles and available MEMS-components, like the DMD™ from Texas Instruments. As a specific feature, we present a new modular inter-board interconnect, realized by 3D fiber-matrix connectors. The performance of the interconnect is evaluated with regard to optical properties and power consumption. Finally, we discuss the application of the interconnect for strongly distributed system architectures, as, for example, in high performance embedded computing systems and data centers.

  20. Free-Space Optical Interconnect Employing VCSEL Diodes

    Science.gov (United States)

    Simons, Rainee N.; Savich, Gregory R.; Torres, Heidi

    2009-01-01

    Sensor signal processing is widely used on aircraft and spacecraft. The scheme employs multiple input/output nodes for data acquisition and CPU (central processing unit) nodes for data processing. To connect 110 nodes and CPU nodes, scalable interconnections such as backplanes are desired because the number of nodes depends on requirements of each mission. An optical backplane consisting of vertical-cavity surface-emitting lasers (VCSELs), VCSEL drivers, photodetectors, and transimpedance amplifiers is the preferred approach since it can handle several hundred megabits per second data throughput.The next generation of satellite-borne systems will require transceivers and processors that can handle several Gb/s of data. Optical interconnects have been praised for both their speed and functionality with hopes that light can relieve the electrical bottleneck predicted for the near future. Optoelectronic interconnects provide a factor of ten improvement over electrical interconnects.

  1. Optical interconnect technologies for high-bandwidth ICT systems

    Science.gov (United States)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  2. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    Science.gov (United States)

    Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  3. Ring-array processor distribution topology for optical interconnects

    Science.gov (United States)

    Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.

    1992-01-01

    The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.

  4. 32 x 16 CMOS smart pixel array for optical interconnects

    Science.gov (United States)

    Kim, Jongwoo; Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Choquette, Kent D.; Kiamilev, Fouad E.

    2000-05-01

    Free space optical interconnects can increase throughput capacities and eliminate much of the energy consumption required for `all electronic' systems. High speed optical interconnects can be achieved by integrating optoelectronic devices with conventional electronics. Smart pixel arrays have been developed which use optical interconnects. An individual smart pixel cell is composed of a vertical cavity surface emitting laser (VCSEL), a photodetector, an optical receiver, a laser driver, and digital logic circuitry. Oxide-confined VCSELs are being developed to operate at 850 nm with a threshold current of approximately 1 mA. Multiple quantum well photodetectors are being fabricated from AlGaAs for use with the 850 nm VCSELs. The VCSELs and photodetectors are being integrated with complementary metal oxide semiconductor (CMOS) circuitry using flip-chip bonding. CMOS circuitry is being integrated with a 32 X 16 smart pixel array. The 512 smart pixels are serially linked. Thus, an entire data stream may be clocked through the chip and output electrically by the last pixel. Electrical testing is being performed on the CMOS smart pixel array. Using an on-chip pseudo random number generator, a digital data sequence was cycled through the chip verifying operation of the digital circuitry. Although, the prototype chip was fabricated in 1.2 micrometers technology, simulations have demonstrated that the array can operate at 1 Gb/s per pixel using 0.5 micrometers technology.

  5. 100 GHz Externally Modulated Laser for Optical Interconnects Applications

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Pang, Xiaodan; Iglesias Olmedo, Miguel

    2017-01-01

    We report on a 116 Gb/s on-off keying (OOK), four pulse amplitude modulation (PAM) and 105-Gb/s 8-PAM optical transmitter using an InP-based integrated and packaged externally modulated laser for high-speed optical interconnects with up to 30 dB static extinction ratio and over 100-GHz 3-d......B bandwidth with 2 dB ripple. In addition, we study the tradeoff between power penalty and equalizer length to foresee transmission distances with standard single mode fiber....

  6. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  7. Interconnected Levels of Multi-Stage Marketing

    DEFF Research Database (Denmark)

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...... must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other...... in a multi-stage marketing context. This understanding assists managers in assessing and balancing different aspects of multi- stage marketing. The triadic perspective also offers avenues for further research....

  8. High-speed VCSEL-based optical interconnects

    Science.gov (United States)

    Ishak, Waguih S.

    2001-11-01

    Vertical Cavity Surface Emitting Lasers (VCSEL) have made significant inroads into commercial realization especially in the area of data communications. Single VCSEL devices are key components in Gb Ethernet Transceivers. A multi-element VCSEL array is the key enabling technology for high-speed multi Gb/s parallel optical interconnect modules. In 1996, several companies introduced a new generation of fiber optic products based VCSEL technology such as multimode fiber transceivers for the ANSI Fiber Channel and Gigabit Ethernet IEEE 802.3 standards. VCSELs offer unique advantages over its edge-emitting counterparts in several areas. These include low-cost (LED-like) manufacturability, low current operation and array integrability. As data rates continue to increase, VCSELs offer the advantage of being able to provide the highest modulation bandwidth per milliamp of modulation current. Currently, most of the VCSEL-based products use short (780 - 980 nm) wavelength lasers. However, significant research efforts are taking place at universities and industrial research labs around the world to develop reliable, manufacturable and high-power long (1300 - 1550 nm) wavelength VCSELs. These lasers will allow longer (several km) transmission distances and will help alleviate some of the eye-safety issues. Perhaps, the most important advantage of VCSELs is the ability to form two-dimensional arrays much easier than in the case of edge-emitting lasers. These arrays (single and two-dimensional) will allow a whole new family of applications, specifically in very high-speed computer and switch interconnects.

  9. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  10. Holistic design in high-speed optical interconnects

    Science.gov (United States)

    Saeedi, Saman

    Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking. In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy eciency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The

  11. Multimode polymer waveguides for high-speed optical interconnects

    Science.gov (United States)

    Bamiedakis, N.; Ingham, J. D.; Penty, R. V.; White, I. H.; DeGroot, J. V.; Clapp, T. V.

    2017-11-01

    Polymeric multimode waveguides are of particular interest for optical interconnections in short-reach data links. In some applications, for example in space-borne systems, the use of advanced materials with outstanding performance in extreme environments is required (temperature and radiation). In this paper therefore, we present novel siloxane polymers suitable for these applications. The materials are used to form straight, 90° bent and spiral polymer waveguides by low-cost conventional photolithographic techniques on FR4 substrates. The samples have been tested to investigate their propagation characteristics and demonstrate their potential for high-speed data links. Overall, there is strong evidence that these multimode waveguides can be successfully employed as high-speed short-reach data links. Their excellent thermal properties, their low cost and the simple fabrication process indicate their suitability for a wide range of space applications.

  12. Crosstalk in dynamic optical interconnects in photorefractive crystals

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Petersen, Paul Michael; Buchhave, Preben

    1994-01-01

    We have investigated the crosstalk between two neighboring gratings in photorefractive Bi12SiO20 optical interconnects. The gratings are induced by the interference between one reference beam and two object beams. By applying a suitable phase shift in one of the object beams, we can selectively...... switch off one of the gratings. The crosstalk between the two gratings is experimentally determined from the diffraction efficiency in the remaining grating before and after applying the phase shift. The magnitude of the crosstalk is determined by the intensity ratio between the reference beam intensity...... and the object beam intensity. Crosstalk can be avoided by choosing a certain intensity ratio between the reference and the object beams....

  13. Interconnection test framework for the CMS level-1 trigger system

    International Nuclear Information System (INIS)

    Hammer, J.; Magrans de Abril, M.; Wulz, C.E.

    2012-01-01

    The Level-1 Trigger Control and Monitoring System is a software package designed to configure, monitor and test the Level-1 Trigger System of the Compact Muon Solenoid (CMS) experiment at CERN's Large Hadron Collider. It is a large and distributed system that runs over 50 PCs and controls about 200 hardware units. The objective of this paper is to describe and evaluate the architecture of a distributed testing framework - the Interconnection Test Framework (ITF). This generic and highly flexible framework for creating and executing hardware tests within the Level-1 Trigger environment is meant to automate testing of the 13 major subsystems interconnected with more than 1000 links. Features include a web interface to create and execute tests, modeling using finite state machines, dependency management, automatic configuration, and loops. Furthermore, the ITF will replace the existing heterogeneous testing procedures and help reducing both maintenance and complexity of operation tasks. (authors)

  14. Printed polymer photonic devices for optical interconnect systems

    Science.gov (United States)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  15. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  16. Chip-Level Electromigration Reliability for Cu Interconnects

    International Nuclear Information System (INIS)

    Gall, M.; Oh, C.; Grinshpon, A.; Zolotov, V.; Panda, R.; Demircan, E.; Mueller, J.; Justison, P.; Ramakrishna, K.; Thrasher, S.; Hernandez, R.; Herrick, M.; Fox, R.; Boeck, B.; Kawasaki, H.; Haznedar, H.; Ku, P.

    2004-01-01

    Even after the successful introduction of Cu-based metallization, the electromigration (EM) failure risk has remained one of the most important reliability concerns for most advanced process technologies. Ever increasing operating current densities and the introduction of low-k materials in the backend process scheme are some of the issues that threaten reliable, long-term operation at elevated temperatures. The traditional method of verifying EM reliability only through current density limit checks is proving to be inadequate in general, or quite expensive at the best. A Statistical EM Budgeting (SEB) methodology has been proposed to assess more realistic chip-level EM reliability from the complex statistical distribution of currents in a chip. To be valuable, this approach requires accurate estimation of currents for all interconnect segments in a chip. However, no efficient technique to manage the complexity of such a task for very large chip designs is known. We present an efficient method to estimate currents exhaustively for all interconnects in a chip. The proposed method uses pre-characterization of cells and macros, and steps to identify and filter out symmetrically bi-directional interconnects. We illustrate the strength of the proposed approach using a high-performance microprocessor design for embedded applications as a case study

  17. High Speed PAM -8 Optical Interconnects with Digital Equalization based on Neural Network

    DEFF Research Database (Denmark)

    Gaiarin, Simone; Pang, Xiaodan; Ozolins, Oskars

    2016-01-01

    We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission.......We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission....

  18. Novel Ethernet Based Optical Local Area Networks for Computer Interconnection

    NARCIS (Netherlands)

    Radovanovic, Igor; van Etten, Wim; Taniman, R.O.; Kleinkiskamp, Ronny

    2003-01-01

    In this paper we present new optical local area networks for fiber-to-the-desk application. Presented networks are expected to bring a solution for having optical fibers all the way to computers. To bring the overall implementation costs down we have based our networks on short-wavelength optical

  19. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    Science.gov (United States)

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary.

  20. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    Science.gov (United States)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  1. Four-port mode-selective silicon optical router for on-chip optical interconnect.

    Science.gov (United States)

    Jia, Hao; Zhou, Ting; Fu, Xin; Ding, Jianfeng; Zhang, Lei; Yang, Lin

    2018-04-16

    We propose and demonstrate a four-port mode-selective optical router on a silicon-on-insulator platform. The passive routing property ensures that the router consumes no power to establish the optical links. For each port, input signals with different modes are selectively routed to the target ports through the pre-designed architecture. In general, the device intrinsically supports broadcasting of multiplexed signals from one port to the other three ports through mode division multiplexing. In some applications, the input signal from one port would only be sent to another port as in reconfigurable optical routers. The prototype is constructed by mode multiplexers/de-multiplexers and single-mode interconnect waveguides between them. The insertion losses for all optical links are lower than 8.0 dB, and the largest optical crosstalk values are lower than -18.7 dB and -22.0 dB for the broadcasting and port-to-port routing modes, respectively, at the wavelength range of 1525-1565 nm. In order to verify the routing functionality, a 40-Gbps bidirectional data transmission experiment is performed. The device offers a promising building block for passive routing by utilizing the dimension of the modes.

  2. Nonlinear optical properties of interconnected gold nanoparticles on silicon

    Science.gov (United States)

    Lesuffleur, Antoine; Gogol, Philippe; Beauvillain, Pierre; Guizal, B.; Van Labeke, D.; Georges, P.

    2008-12-01

    We report second harmonic generation (SHG) measurements in reflectivity from chains of gold nanoparticles interconnected with metallic bridges. We measured more than 30 times a SHG enhancement when a surface plasmon resonance was excited in the chains of nanoparticles, which was influenced by coupling due to the electrical connectivity of the bridges. This enhancement was confirmed by rigorous coupled wave method calculations and came from high localization of the electric field at the bridge. The introduction of 10% random defects into the chains of nanoparticles dropped the SHG by a factor of 2 and was shown to be very sensitive to the fundamental wavelength.

  3. Optical pulse coupling in a photorefractive crystal, propagation of encoded pulses in an optical fiber, and phase conjugate optical interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Yao, X.S.

    1992-01-01

    In Part I, the author presents a theory to describe the interaction between short optical pulses in a photorefractive crystal. This theory provides an analytical framework for pulse coherence length measurements using a photorefractive crystal. The theory also predicts how a pulse changes its temporal shape due to its coupling with another pulse in a photorefractive crystal. The author describes experiments to demonstrate how photorefractive coupling alters the temporal shape and the frequency spectrum of an optical pulse. The author describes a compact optical field correlator. Using this correlator, the author measured the field cross-correlation function of optical pulses using a photorefractive crystal. The author presents a more sophisticated theory to describe the photorefractive coupling of optical pulses that are too short for the previous theory to be valid. In Part II of this dissertation, the author analyzes how the group-velocity dispersion and the optical nonlinearity of an optical fiber ruin an fiberoptic code-division multiple-access (CDMA) communication system. The author treats the optical fiber's nonlinear response with a novel approach and derives the pulse propagation equation. Through analysis and numerically simulations, the author obtains the maximum and the maximum allowed peak pulse power, as well as the minimum and the maximum allowed pulse width for the communication system to function properly. The author simulates how the relative misalignment between the encoding and the decoding masks affects the system's performance. In Part III the author demonstrates a novel optical interconnection device based on a mutually pumped phase conjugator. This device automatically routes light from selected information-sending channels to selected information-receiving channels, and vice versa. The phase conjugator eliminates the need for critical alignment. It is shown that a large number of optical channels can be interconnected using this

  4. Low-cost and high-capacity short-range optical interconnects using graded-index plastic optical fiber

    NARCIS (Netherlands)

    Tangdiongga, E.; Yang, H.; Lee, S.C.J.; Okonkwo, C.M.; Boom, van den H.P.A.; Randel, S.; Koonen, A.M.J.

    2010-01-01

    We demonstrate a transmission rate of 51.8 Gb/s over 100-meters of perfluorinated multimode graded-index plastic optical fiber using discrete multitone modulation. The results prove suitability of plastic fibers for low-cost high-capacity optical interconnects.

  5. Indium phosphide (InP) for optical interconnects

    NARCIS (Netherlands)

    Lebby, M.; Ristic, S.; Calabretta, N.; Stabile, R.; Tekin, T.; Pitwon, R.; Håkansson, A.; Pleros, N.

    2016-01-01

    We present InP as the incumbent technology for data center transceiver and switching optics. We review the most popular InP monolithic integration approaches in light of photonic integration being recognized as an increasingly important technology for data center optics. We present Multi-Guide

  6. Survivable resource orchestration for optically interconnected data center networks.

    Science.gov (United States)

    Zhang, Qiong; She, Qingya; Zhu, Yi; Wang, Xi; Palacharla, Paparao; Sekiya, Motoyoshi

    2014-01-13

    We propose resource orchestration schemes in overlay networks enabled by optical network virtualization. Based on the information from underlying optical networks, our proposed schemes provision the fewest data centers to guarantee K-connect survivability, thus maintaining resource availability for cloud applications under any failure.

  7. Opto-VLSI-based reconfigurable free-space optical interconnects architecture

    DEFF Research Database (Denmark)

    Aljada, Muhsen; Alameh, Kamal; Chung, Il-Sug

    2007-01-01

    is the Opto-VLSI processor which can be driven by digital phase steering and multicasting holograms that reconfigure the optical interconnects between the input and output ports. The optical interconnects architecture is experimentally demonstrated at 2.5 Gbps using high-speed 1×3 VCSEL array and 1......×3 photoreceiver array in conjunction with two 1×4096 pixel Opto-VLSI processors. The minimisation of the crosstalk between the output ports is achieved by appropriately aligning the VCSEL and PD elements with respect to the Opto-VLSI processors and driving the latter with optimal steering phase holograms....

  8. Fast and Scalable Fabrication of Microscopic Optical Surfaces and its Application for Optical Interconnect Devices

    Science.gov (United States)

    Summitt, Christopher Ryan

    The use of optical interconnects is a promising solution to the increasing demand for high speed mass data transmission used in integrated circuits as well as device to device data transfer applications. For the purpose, low cost polymer waveguides are a popular choice for routing signal between devices due to their compatibility with printed circuit boards. In optical interconnect, coupling from an external light source to such waveguides is a critical step, thus a variety of couplers have been investigated such as grating based couplers [1,2], evanescent couplers [3], and embedded mirrors [4-6]. These couplers are inherently micro-optical components which require fast and scalable fabrication for mass production with optical quality surfaces/structures. Low NA laser direct writing has been used for fast fabrication of structures such as gratings and Fresnel lenses using a linear laser direct writing scheme, though the length scale of such structures are an order of magnitude larger than the spot size of the focused laser of the tool. Nonlinear writing techniques such as with 2-photon absorption offer increased write resolution which makes it possible to fabricate sub-wavelength structures as well as having a flexibility in feature shape. However it does not allow a high speed fabrication and in general are not scalable due to limitations of speed and area induced by the tool's high NA optics. To overcome such limitations primarily imposed by NA, we propose a new micro-optic fabrication process which extends the capabilities of 1D, low NA, and thus fast and scalable, laser direct writing to fabricate a structure having a length scale close to the tool's spot size, for example, a mirror based and 45 degree optical coupler with optical surface quality. The newly developed process allows a high speed fabrication with a write speed of 2600 mm²/min by incorporating a mask based lithography method providing a blank structure which is critical to creating a 45 degree

  9. Polymer-based optical interconnects using nanoimprint lithography

    NARCIS (Netherlands)

    Boersma, A.; Wiegersma, S.; Offrein, B.J.; Duis, J.; Delis, J.; Ortsiefer, M.; Steenberge, G. van; Karpinen, M.; Blaaderen, A. van; Corbett, B.

    2013-01-01

    The increasing request for higher data speeds in the information and communication technology leads to continuously increasing performance of microprocessors. This has led to the introduction of optical data transmission as a replacement of electronic data transmission in most transmission

  10. Scalability analysis methodology for passive optical interconnects in data center networks using PAM

    Science.gov (United States)

    Lin, R.; Szczerba, Krzysztof; Agrell, Erik; Wosinska, Lena; Tang, M.; Liu, D.; Chen, J.

    2017-11-01

    A framework is developed for modeling the fundamental impairments in optical datacenter interconnects, i.e., the power loss and the receiver noises. This framework makes it possible, to analyze the trade-offs between data rates, modulation order, and number of ports that can be supported in optical interconnect architectures, while guaranteeing that the required signal-to-noise ratios are satisfied. To the best of our knowledge, this important assessment methodology is not yet available. As a case study, the trade-offs are investigated for three coupler-based top-of-rack interconnect architectures, which suffer from serious insertion loss. The results show that using single-port transceivers with 10 GHz bandwidth, avalanche photodiode detectors, and quadratical pulse amplitude modulation, more than 500 ports can be supported.

  11. Multi-gigabit optical interconnects for next-generation on-board digital equipment

    Science.gov (United States)

    Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2017-11-01

    Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.

  12. Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects

    DEFF Research Database (Denmark)

    Vernoux, Christian; Chen, Yiting; Markey, Laurent

    2018-01-01

    We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the socalled "plasmonic arc" working at 1.55μm...

  13. CWDM for very-short-reach and optical-backplane interconnections

    Science.gov (United States)

    Laha, Michael J.

    2002-06-01

    Course Wavelength Division Multiplexing (CWDM) provides access to next generation optical interconnect data rates by utilizing conventional electro-optical components that are widely available in the market today. This is achieved through the use of CWDM multiplexers and demultiplexers that integrate commodity type active components, lasers and photodiodes, into small optical subassemblies. In contrast to dense wavelength division multiplexing (DWDM), in which multiple serial data streams are combined to create aggregate data pipes perhaps 100s of gigabits wide, CWDM uses multiple laser sources contained in one module to create a serial equivalent data stream. For example, four 2.5 Gb/s lasers are multiplexed to create a 10 Gb/s data pipe. The advantages of CWDM over traditional serial optical interconnects include lower module power consumption, smaller packaging, and a superior electrical interface. This discussion will detail the concept of CWDM and design parameters that are considered when productizing a CWDM module into an industry standard optical interconnect. Additionally, a scalable parallel CWDM hybrid architecture will be described that allows the transport of large amounts of data from rack to rack in an economical fashion. This particular solution is targeted at solving optical backplane bottleneck problems predicted for the next generation terabit and petabit routers.

  14. Investigation and experimental validation of the contribution of optical interconnects in the SYMPHONIE massively parallel computer

    International Nuclear Information System (INIS)

    Scheer, Patrick

    1998-01-01

    Progress in microelectronics lead to electronic circuits which are increasingly integrated, with an operating frequency and an inputs/outputs count larger than the ones supported by printed circuit board and back-plane technologies. As a result, distributed systems with several boards cannot fully exploit the performance of integrated circuits. In synchronous parallel computers, the situation is worsen since the overall system performances rely on the efficiency of electrical interconnects between the integrated circuits which include the processing elements (PE). The study of a real parallel computer named SYMPHONIE shows for instance that the system operating frequency is far smaller than the capabilities of the microelectronics technology used for the PE implementation. Optical interconnections may cancel these limitations by providing more efficient connections between the PE. Especially, free-space optical interconnections based on vertical-cavity surface-emitting lasers (VCSEL), micro-lens and PIN photodiodes are compatible with the required features of the PE communications. Zero bias modulation of VCSEL with CMOS-compatible digital signals is studied and experimentally demonstrated. A model of the propagation of truncated gaussian beams through micro-lenses is developed. It is then used to optimise the geometry of the detection areas. A dedicated mechanical system is also proposed and implemented for integrating free-space optical interconnects in a standard electronic environment, representative of the one of parallel computer systems. A specially designed demonstrator provides the experimental validation of the above physical concepts. (author) [fr

  15. The CERN Host Interface and the optical interconnect

    International Nuclear Information System (INIS)

    McLaren, R.A.; Berners Lee, T.J.; Burckhart, D.

    1988-01-01

    Interfaces between Digital Equipment Corporation's VAX series computers and VMEbus and FASTBUS have been designed as part of the CERN Host Interface (CHI) project. Both the VMEbus and the FASTBUS interface share a common architecture which includes a powerful MC680x0 central processing unit, large data memories and a link port to connect to different members of the VAX family. Software support allows user software to be split between the VAX and the CHI processors whilst an enhanced VAX/VMS driver reduces operating system overheads. In addition an optical link allows the FASTBUS or VMEbus crate to be up to 1 kilometer from the host computer. (author). 12 refs, 3 diagrams

  16. Porous silicon based micro-opto-electro-mechanical-systems (MOEMS) components for free space optical interconnects

    Science.gov (United States)

    Song, Da

    2008-02-01

    One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical

  17. Optical interconnects for in-plane high-speed signal distribution at 10 Gb/s: Analysis and demonstration

    Science.gov (United States)

    Chang, Yin-Jung

    With decreasing transistor size, increasing chip speed, and larger numbers of processors in a system, the performance of a module/system is being limited by the off-chip and off-module bandwidth-distance products. Optical links have moved from fiber-based long distance communications to the cabinet level of 1m--100m, and recently to the backplane-level (10cm--1m). Board-level inter-chip parallel optical interconnects have been demonstrated recently by researchers from Intel, IBM, Fujitsu, NTT and a few research groups in universities. However, the board-level signal/clock distribution function using optical interconnects, the lightwave circuits, the system design, a practically convenient integration scheme committed to the implementation of a system prototype have not been explored or carefully investigated. In this dissertation, the development of a board-level 1 x 4 optical-to-electrical signal distribution at 10Gb/s is presented. In contrast to other prototypes demonstrating board-level parallel optical interconnects that have been drawing much attention for the past decade, the optical link design for the high-speed signal broadcasting is even more complicated and the pitch between receivers could be varying as opposed to fixed-pitch design that has been widely-used in the parallel optical interconnects. New challenges for the board-level high-speed signal broadcasting include, but are not limited to, a new optical link design, a lightwave circuit as a distribution network, and a novel integration scheme that can be a complete radical departure from the traditional assembly method. One of the key building blocks in the lightwave circuit is the distribution network in which a 1 x 4 multimode interference (MMI) splitter is employed. MMI devices operating at high data rates are important in board-level optical interconnects and need to be characterized in the application of board-level signal broadcasting. To determine the speed limitations of MMI devices, the

  18. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    Science.gov (United States)

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  19. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    Science.gov (United States)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  20. Silicon photonic IC embedded optical-PCB for high-speed interconnect application

    Science.gov (United States)

    Kallega, Rakshitha; Nambiar, Siddharth; Kumar, Abhai; Ranganath, Praveen; Selvaraja, Shankar Kumar

    2018-02-01

    Optical-Printed Circuit Board (PCB) is an emerging optical interconnect technology to bridge the gap between the board edge and the processing module. The technology so far has been used as a broadband transmitter using polymer waveguides in the PCB. In this paper, we report a Silicon Nitride based photonic IC embedded in the PCB along with the polymers as waveguides in the PCB. The motivation for such integration is to bring routing capability and to reduce the power loss due to broadcasting mode.

  1. Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides.

    Science.gov (United States)

    Kang, Minsu; Park, Junghyun; Lee, Il-Min; Lee, Byoungho

    2009-01-19

    A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

  2. Ultra-precision fabrication of high density micro-optical backbone interconnections for data center and mobile application

    Science.gov (United States)

    Lohmann, U.; Jahns, J.; Wagner, T.; Werner, C.

    2012-10-01

    A microoptical 3D interconnection scheme and fabricated samples of this fiberoptical multi-channel interconnec- tion with an actual capacity of 144 channels were shown. Additionally the aspects of micrometer-fabrication of such microoptical interconnection modules in the view of alignment-tolerances were considered. For the realiza- tion of the interconnection schemes, the approach of planar-integrated free space optics (PIFSO) is used with its well known advantages. This approach offers the potential for complex interconnectivity, and yet compact size.

  3. CATO: a CAD tool for intelligent design of optical networks and interconnects

    Science.gov (United States)

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse

    1997-10-01

    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  4. Optical interconnects based on VCSELs and low-loss silicon photonics

    Science.gov (United States)

    Aalto, Timo; Harjanne, Mikko; Karppinen, Mikko; Cherchi, Matteo; Sitomaniemi, Aila; Ollila, Jyrki; Malacarne, Antonio; Neumeyr, Christian

    2018-02-01

    Silicon photonics with micron-scale Si waveguides offers most of the benefits of submicron SOI technology while avoiding most of its limitations. In particular, thick silicon-on-insulator (SOI) waveguides offer 0.1 dB/cm propagation loss, polarization independency, broadband single-mode (SM) operation from 1.2 to >4 µm wavelength and ability to transmit high optical powers (>1 W). Here we describe the feasibility of Thick-SOI technology for advanced optical interconnects. With 12 μm SOI waveguides we demonstrate efficient coupling between standard single-mode fibers, vertical-cavity surface-emitting lasers (VCSELs) and photodetectors (PDs), as well as wavelength multiplexing in small footprint. Discrete VCSELs and PDs already support 28 Gb/s on-off keying (OOK), which shows a path towards 50-100 Gb/s bandwidth per wavelength by using more advanced modulation formats like PAM4. Directly modulated VCSELs enable very power-efficient optical interconnects for up to 40 km distance. Furthermore, with 3 μm SOI waveguides we demonstrate extremely dense and low-loss integration of numerous optical functions, such as multiplexers, filters, switches and delay lines. Also polarization independent and athermal operation is demonstrated. The latter is achieved by using short polymer waveguides to compensate for the thermo-optic effect in silicon. New concepts for isolator integration and polarization rotation are also explained.

  5. 8-dimensional lattice optimized formats in 25-GBaud/s VCSEL based IM/DD optical interconnections

    DEFF Research Database (Denmark)

    Lu, Xiaofeng; Tafur Monroy, Idelfonso

    2015-01-01

    Temporally combined 4- and 8-dimensional lattice grids optimized modulation formats for VCSEL based IM/DD short-reach optical inter-connections has been proposed and investigated numerically together with its conventional counterpart PAM-4. © 2015 OSA.......Temporally combined 4- and 8-dimensional lattice grids optimized modulation formats for VCSEL based IM/DD short-reach optical inter-connections has been proposed and investigated numerically together with its conventional counterpart PAM-4. © 2015 OSA....

  6. Low energy routing platforms for optical interconnects using active plasmonics integrated with Silicon Photonics

    DEFF Research Database (Denmark)

    Vyrsokinos, K.; Papaioannou, S.; Kalavrouziotis, D.

    2013-01-01

    technologies to cope with the massive amount of data moving across all hierarchical communication levels, namely rack-to-rack, backplane, chip-to-chip and even on-chip interconnections. Plasmonics comes indeed as a disruptive technology that enables seamless interoperability between light beams and electronic...

  7. Three Dimensionally Interconnected Silicon Nanomembranes for Optical Phased Array (OPA) and Optical True Time Delay (TTD) Applications

    Science.gov (United States)

    2012-06-01

    Joshi, C. Batten, Y. Kwon, S . Beamer, I Shamim , K. Asanovic, and V. Stojanovic, in NOCS 󈧍 Proceedings of the 2009 3rd ACM/IEEE international...Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) University of Texas,Microelectronic Research Center, Nanophotonics and Optical Interconnects

  8. Optical interconnection for a polymeric PLC device using simple positional alignment.

    Science.gov (United States)

    Ryu, Jin Hwa; Kim, Po Jin; Cho, Cheon Soo; Lee, El-Hang; Kim, Chang-Seok; Jeong, Myung Yung

    2011-04-25

    This study proposes a simple cost-effective method of optical interconnection between a planar lightwave circuit (PLC) device chip and an optical fiber. It was conducted to minimize and overcome the coupling loss caused by lateral offset which is due to the process tolerance and the dimensional limitation existing between PLC device chips and fiber array blocks with groove structures. A PLC device chip and a fiber array block were simultaneously fabricated in a series of polymer replication processes using the original master. The dimensions (i.e., width and thickness) of the under-clad of the PLC device chip were identical to those of the fiber array block. The PLC device chip and optical fiber were aligned by simple positional control for the vertical direction of the PLC device chip under a particular condition. The insertion loss of the proposed 1 x 2 multimode optical splitter device interconnection was 4.0 dB at 850 nm and the coupling loss was below 0.1 dB compared with single-fiber based active alignment.

  9. Channel-Selectable Optical Link Based on a Silicon Microring for on-Chip Interconnection

    International Nuclear Information System (INIS)

    Qiu Chen; Hu Ting; Wang Wan-Jun; Yu Ping; Jiang Xiao-Qing; Yang Jian-Yi

    2012-01-01

    A channel-selectable optical link based on a silicon microring resonator is proposed and demonstrated. This optical link consists of the wavelength-tunable microring modulators and the filters, defined on a silicon-on-insulator (SOI) platform. With a p—i—n junction embedded in the microring modulator, light at the resonant wavelength of the ring resonator is modulated. The 2 nd -order microring add-drop filter routes the modulated light. The channel selectivity is demonstrated by heating the microrings. With a thermal tuning efficiency of 5.9 mW/nm, the filter drop port response was successfully tuned with 0.8 nm channel spacing. We also show that modulation can be achieved in these channels. This device aims to offer flexibility and increase the bandwidth usage efficiency in optical interconnection

  10. Physical-layer network coding for passive optical interconnect in datacenter networks.

    Science.gov (United States)

    Lin, Rui; Cheng, Yuxin; Guan, Xun; Tang, Ming; Liu, Deming; Chan, Chun-Kit; Chen, Jiajia

    2017-07-24

    We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.

  11. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Christopher Sean; Wilt, David Morgan

    1999-06-30

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  12. Interconnected levels of multi-stage marketing: A triadic approach

    OpenAIRE

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. ...

  13. Three-dimensional crossbar interconnection using planar-integrated free-space optics and digital mirror-device

    Science.gov (United States)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.

    2011-01-01

    We consider the implementation of a dynamic crossbar interconnect using planar-integrated free-space optics (PIFSO) and a digital mirror-device™ (DMD). Because of the 3D nature of free-space optics, this approach is able to solve geometrical problems with crossings of the signal paths that occur in waveguide optical and electrical interconnection, especially for large number of connections. The DMD device allows one to route the signals dynamically. Due to the large number of individual mirror elements in the DMD, different optical path configurations are possible, thus offering the chance for optimizing the network configuration. The optimization is achieved by using an evolutionary algorithm for finding best values for a skewless parallel interconnection. Here, we present results and experimental examples for the use of the PIFSO/DMD-setup.

  14. Time-division optical interconnects for local-area and micro-area networks

    Science.gov (United States)

    Krol, Mark F.; Boncek, Raymond K.; Johns, Steven T.; Stacy, John L.

    1991-12-01

    This report describes the development of an optical Time-Division Multiple-Access (TDMA) interconnect suitable for applications in local-area and micro-area networks. The advantages of using time-division techniques instead of frequency-division, wavelength-division, or code-division techniques in a shared-medium environment are discussed in detail. Furthermore, a detailed description of the TDMA architecture is presented along with various experiments pertaining to the actual components needed to implement the system. Finally, experimental data is presented for an actual optical TDMA test bed. The experimental data demonstrates the feasibility of the architecture, and shows that currently the system has the capability to accommodate up to 50 channels. The bit-error-rate per channel was measured to be less than 10(exp -9) for pseudo-random bit-sequences.

  15. Cost-effective parallel optical interconnection module based on fully passive-alignment process

    Science.gov (United States)

    Son, Dong Hoon; Heo, Young Soon; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Sung Chang

    2017-11-01

    In optical interconnection technology, high-speed and large data transitions with low error rate and cost reduction are key issues for the upcoming 8K media era. The researchers present notable types of optical manufacturing structures of a four-channel parallel optical module by fully passive alignment, which are able to reduce manufacturing time and cost. Each of the components, such as vertical-cavity surface laser/positive-intrinsic negative-photodiode array, microlens array, fiber array, and receiver (RX)/transmitter (TX) integrated circuit, is integrated successfully using flip-chip bonding, die bonding, and passive alignment with a microscope. Clear eye diagrams are obtained by 25.78-Gb/s (for TX) and 25.7-Gb/s (for RX) nonreturn-to-zero signals of pseudorandom binary sequence with a pattern length of 231 to 1. The measured responsivity and minimum sensitivity of the RX are about 0.5 A/W and ≤-6.5 dBm at a bit error rate (BER) of 10-12, respectively. The optical power margin at a BER of 10-12 is 7.5 dB, and cross talk by the adjacent channel is ≤1 dB.

  16. Power-aware transceiver design for half-duplex bidirectional chip-to-chip optical interconnects

    International Nuclear Information System (INIS)

    Sangirov Jamshid; Ukaegbu Ikechi Augustine; Lee Tae-Woo; Park Hyo-Hoon; Sangirov Gulomjon

    2013-01-01

    A power-aware transceiver for half-duplex bidirectional chip-to-chip optical interconnects has been designed and fabricated in a 0.13 μm complementary metal–oxide–semiconductor (CMOS) technology. The transceiver can detect the presence and absence of received signals and saves 55% power in Rx enabled mode and 45% in Tx enabled mode. The chip occupies an area of 1.034 mm 2 and achieves a 3-dB bandwidth of 6 GHz and 7 GHz in Tx and Rx modes, respectively. The disabled outputs for the Tx and Rx modes are isolated with 180 dB and 139 dB, respectively, from the enabled outputs. Clear eye diagrams are obtained at 4.25 Gbps for both the Tx and Rx modes. (semiconductor integrated circuits)

  17. A full-duplex working integrated optoelectronic device for optical interconnect

    Science.gov (United States)

    Liu, Kai; Fan, Huize; Huang, Yongqing; Duan, Xiaofeng; Wang, Qi; Ren, Xiaomin; Wei, Qi; Cai, Shiwei

    2018-05-01

    In this paper, a full-duplex working integrated optoelectronic device is proposed. It is constructed by integrating a vertical cavity surface emitting laser (VCSEL) unit above a resonant cavity enhanced photodetector (RCE-PD) unit. Analysis shows that, the VCSEL unit has a threshold current of 1 mA and a slop efficiency of 0.66 W/A at 849.7 nm, the RCE-PD unit obtains its maximal absorption quantum efficiency of 90.24% at 811 nm with a FWHM of 4 nm. Moreover, the two units of the proposed integrated device can work independently from each other. So that the proposed integrated optoelectronic device can work full-duplex. It can be applied for single fiber bidirectional optical interconnects system.

  18. INTERCONNECTING NETWORKS WITH DIFFERENT LEVELS OF SECURITY – A PRESENT NATO PROBLEM

    Directory of Open Access Journals (Sweden)

    LIVIU TATOMIR

    2016-07-01

    Full Text Available A situation often met in the Romanian Armed Forces in recent years is the need for interconnecting two networks (domains with different levels of classification. Considering that the Romanian armed troops are involved in numerous missions with NATO partners, solutions, already implemented across the organization, are considered to be applied in domestic systems, also. This paper presents the solutions adopted by NATO in order to solve the problem of cross -domains interconnections. We present the maturity level reached by these solutions and the possibility of implementing these solutions in the Romanian Armed Forces, with or without specific adaptation to our own rules and regulations. The goal is to use a NATO already proved solution to our national classified networks.

  19. Performance Evaluation of a SOA-based Rack-To-Rack Switch for Optical Interconnects Exploiting NRZ-DPSK

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Prince, Kamau

    2012-01-01

    We experimentally study the transmission performance of 10-Gb/s NRZ-DPSK through concatenated AWG MUX/DMUXs and SOAs employed in an optimized 64×64 optical supercomputer interconnect architecture. NRZ-DPSK offers 9-dB higher dynamic range compared to conventional IM/DD....

  20. Single event effect ground test results for a fiber optic data interconnect and associated electronics

    International Nuclear Information System (INIS)

    LaBel, K.A.; Hawkins, D.K.; Cooley, J.A.; Stassinopoulos, E.G.; Seidleck, C.M.; Marshall, P.; Dale, C.; Gates, M.M.; Kim, H.S.

    1994-01-01

    As spacecraft unlock the potential of fiber optics for spaceflight applications, system level bit error rates become of concern to the system designer. The authors present ground test data and analysis on candidate system components

  1. Protocol and Topology Issues for Wide-Area Satellite Interconnection of Terrestrial Optical LANs

    Science.gov (United States)

    Parraga, N.

    2002-01-01

    Apart from broadcasting, the satellite business is targeting niche markets. Wide area interconnection is considered as one of these niche markets, since it addresses operators and business LANs (B2B, business to business) in remote areas where terrestrial infrastructure is not available. These LANs - if high-speed - are typically based on optical networks such as SONET. One of the advantages of SONET is its architecture flexibility and capacity to transport all kind of applications including multimedia with a range of different transmission rates. The applications can be carried by different protocols among which the Internet Protocol (IP) or the Asynchronous Transfer Mode (ATM) are the most prominent ones. Thus, the question arises how these protocols can be interconnected via the satellite segment. The paper addresses several solutions for interworking with different protocols. For this investigation we distinguish first of all between the topology and the switching technology of the satellites. In case of a star network with transparent satellite, the satellite protocol consists of physical layer and data layer which can be directly interconnected with layer 2 interworking function to their terrestrial counterparts in the SONET backbone. For regenerative satellites the situation is more complex: here we need to distinguish the types of transport protocols being used in the terrestrial and satellite segment. Whereas IP, ATM, MPEG dominate in the terrestrial networks, satellite systems usually do not follow these standards. Some might employ minor additions (for instance, satellite specific packet headers), some might be completely proprietary. In general, interworking must be done for the data plane on top of layer 2 (data link layer), whereas for the signaling plane the interworking is on top of layer 3. In the paper we will discuss the protocol stacks for ATM, IP, and MPEG with a regenerative satellite system. As an example we will use the EuroSkyWay satellite

  2. Low-cost optical interconnect module for parallel optical data links

    Science.gov (United States)

    Noddings, Chad; Hirsch, Tom J.; Olla, M.; Spooner, C.; Yu, Jason J.

    1995-04-01

    We have designed, fabricated, and tested a prototype parallel ten-channel unidirectional optical data link. When scaled to production, we project that this technology will satisfy the following market penetration requirements: (1) up to 70 meters transmission distance, (2) at least 1 gigabyte/second data rate, and (3) 0.35 to 0.50 MByte/second volume selling price. These goals can be achieved by means of the assembly innovations described in this paper: a novel alignment method that is integrated with low-cost, few chip module packaging techniques, yielding high coupling and reducing the component count. Furthermore, high coupling efficiency increases projected reliability reducing the driver's power requirements.

  3. Development of a technology for fabricating low-cost parallel optical interconnects

    Science.gov (United States)

    Van Steenberge, Geert; Hendrickx, Nina; Geerinck, Peter; Bosman, Erwin; Van Put, Steven; Van Daele, Peter

    2006-04-01

    We present a fabrication technology for integrating polymer waveguides and 45° micromirror couplers into standard electrical printed circuit boards (PCBs). The most critical point that is being addressed is the low-cost manufacturing and the compatibility with current PCB production. The latter refers to the processes as well as material compatibility. In the fist part the waveguide fabrication technology is discussed, both photo lithography and laser ablation are proposed. It is shown that a frequency tripled Nd-YAG laser (355 nm) offers a lot of potential for defining single mode interconnections. Emphasis is on multimode waveguides, defined by KrF excimer laser (248 nm) ablation using acrylate polymers. The first conclusion out of loss spectrum measurements is a 'yellowing effect' of laser ablated waveguides, leading to an increased loss at shorter wavelengths. The second important conclusion is a potential low loss at a wavelength of 850 nm, 980 nm and 1310 nm. This is verified at 850 nm by cut-back measurements on 10-cm-long waveguides showing an average propagation loss of 0.13 dB/cm. Photo lithographically defined waveguides using inorganic-organic hybrid polymers show an attenuation loss of 0.15 dB/cm at 850 nm. The generation of debris and the presence of microstructures are two main concerns for KrF excimer laser ablation of hybrid polymers. In the second part a process for embedding metal coated 45° micromirrors in optical waveguiding layers is described. Mirrors are selectively metallized using a lift-off process. Filling up the angled via without the presence of air bubbles and providing a flat surface above the mirror is only possible by enhancing the cladding deposition process with ultrasound agitation. Initial loss measurements indicate an excess mirror loss of 1.5 dB.

  4. Fabrication of a novel gigabit/second free-space optical interconnect - photodetector characterization and testing and system development

    Science.gov (United States)

    Savich, Gregory R.

    2004-01-01

    The time when computing power is limited by the copper wire inherent in the computer system and not the speed of the microprocessor is rapidly approaching. With constant advances in computer technology, many researchers believe that in only a few years, optical interconnects will begin to replace copper wires in your Central Processing Unit (CPU). On a more macroscopic scale, the telecommunications industry has already made the switch to optical data transmission as, to date, fiber optic technology is the only reasonable method of reliable, long range data transmission. Within the span of a decade, we will see optical technologies move from the macroscopic world of the telecommunications industry to the microscopic world of the computer chip. Already, the communications industry is marketing commercially available optical links to connect two personal computers, thereby eliminating the need for standard and comparatively slow wired and wireless Ethernet transfers and greatly increasing the distance the computers can be separated. As processing demands continue to increase, the realm of optical communications will continue to move closer to the microprocessor and quite possibly onto the microprocessor itself. A day may come when copper connections are used only to supply power, not transfer data. This summer s work marks some of the beginning stages of a 5 to 10 year, long-term research project to create and study a free-space, 1 Gigabit/sec optical interconnect. The research will result in a novel fabricated, chip-to-chip interconnect consisting of a Vertical Cavity Surface Emitting Laser (VCSEL) Diode linked through free space to a Metal- Semiconductor-Metal (MSM) Photodetector with the possible integration of microlenses for signal focusing and Micro-Electromechanical Systems (MEMS) devices for optical signal steering. The advantages, disadvantages, and practicality of incorporating flip-chip mounting technologies will also be addressed. My work began with the

  5. Switching Fabric Based on Multi-Level LVDS Compatible Interconnect, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Switching fabric (SF) is the key component of the next generation of back plane interconnects. Low power, TID and SEU resistant and high bandwidth upgradeable...

  6. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  7. Multi-level infrastructure of interconnected testbeds of large-scale wireless sensor networks (MI2T-WSN)

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2012-06-01

    Full Text Available are still required for further testing before the real implementation. In this paper we propose a multi-level infrastructure of interconnected testbeds of large- scale WSNs. This testbed consists of 1000 sensor motes that will be distributed into four...

  8. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    Science.gov (United States)

    Van Erps, Jürgen; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-01

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  9. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    Energy Technology Data Exchange (ETDEWEB)

    Van Erps, Jürgen, E-mail: jurgen.van.erps@vub.ac.be; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-15

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  10. Analytical Model based on Green Criteria for Optical Backbone Network Interconnection

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Pedersen, Jens Myrup

    2011-01-01

    Key terms such as Global warming, Green House Gas emissions, or Energy efficiency are currently on the scope of scientific research. Regarding telecommunications networks, wireless applications, routing protocols, etc. are being designed following this new “Green” trend. This work contributes...... to the evaluation of the environmental impact of networks from physical interconnection point of view. Networks deployment, usage, and disposal are analyzed as contributing elements to ICT’s (Information and Communications Technology) CO2 emissions. This paper presents an analytical model for evaluating...

  11. Interconnecting wearable devices with nano-biosensing implants through optical wireless communications

    Science.gov (United States)

    Johari, Pedram; Pandey, Honey; Jornet, Josep M.

    2018-02-01

    Major advancements in the fields of electronics, photonics and wireless communication have enabled the development of compact wearable devices, with applications in diverse domains such as fitness, wellness and medicine. In parallel, nanotechnology is enabling the development of miniature sensors that can detect events at the nanoscale with unprecedented accuracy. On this matter, in vivo implantable Surface Plasmon Resonance (SPR) nanosensors have been proposed to analyze circulating biomarkers in body fluids for the early diagnosis of a myriad of diseases, ranging from cardiovascular disorders to different types of cancer. In light of these results, in this paper, an architecture is proposed to bridge the gap between these two apparently disjoint paradigms, namely, the commercial wearable devices and the advanced nano-biosensing technologies. More specifically, this paper thoroughly assesses the feasibility of the wireless optical intercommunications of an SPR-based nanoplasmonic biochip -implanted subcutaneously in the wrist-, with a nanophotonic wearable smart band which is integrated by an array of nano-lasers and photon-detectors for distributed excitation and measurement of the nanoplasmonic biochip. This is done through a link budget analysis which captures the peculiarities of the intra-body optical channel at (sub) cellular level, the strength of the SPR nanosensor reflection, as well as the capabilities of the nanolasers (emission power, spectrum) and the nano photon-detectors (sensitivity and noise equivalent power). The proposed analysis guides the development of practical communication designs between the wearable devices and nano-biosensing implants, which paves the way through early-stage diagnosis of severe diseases.

  12. Standard Hardware Acquisition and Reliability Program's (SHARP's) efforts in incorporating fiber optic interconnects into standard electronic module (SEM) connectors

    Science.gov (United States)

    Riggs, William R.

    1994-05-01

    SHARP is a Navy wide logistics technology development effort aimed at reducing the acquisition costs, support costs, and risks of military electronic weapon systems while increasing the performance capability, reliability, maintainability, and readiness of these systems. Lower life cycle costs for electronic hardware are achieved through technology transition, standardization, and reliability enhancement to improve system affordability and availability as well as enhancing fleet modernization. Advanced technology is transferred into the fleet through hardware specifications for weapon system building blocks of standard electronic modules, standard power systems, and standard electronic systems. The product lines are all defined with respect to their size, weight, I/O, environmental performance, and operational performance. This method of defining the standard is very conducive to inserting new technologies into systems using the standard hardware. This is the approach taken thus far in inserting photonic technologies into SHARP hardware. All of the efforts have been related to module packaging; i.e. interconnects, component packaging, and module developments. Fiber optic interconnects are discussed in this paper.

  13. IM/DD vs. 4-PAM Using a 1550-nm VCSEL over Short-Range SMF/MMF Links for Optical Interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Rodes Lopez, Roberto; Prince, Kamau

    2013-01-01

    We experimentally compare the performance of 10.9-Gb/s IM/DD and 5-GBd 4-PAM modulation formats over 5-km SMF and 1-km MMF links, employing a commercially-available 1550-nm VCSEL as an enabling technology for use in optical interconnects.......We experimentally compare the performance of 10.9-Gb/s IM/DD and 5-GBd 4-PAM modulation formats over 5-km SMF and 1-km MMF links, employing a commercially-available 1550-nm VCSEL as an enabling technology for use in optical interconnects....

  14. Application of the fractional Fourier transform to the design of LCOS based optical interconnects and fiber switches.

    Science.gov (United States)

    Robertson, Brian; Zhang, Zichen; Yang, Haining; Redmond, Maura M; Collings, Neil; Liu, Jinsong; Lin, Ruisheng; Jeziorska-Chapman, Anna M; Moore, John R; Crossland, William A; Chu, D P

    2012-04-20

    It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance.

  15. Comparative study on stained InGaAs quantum wells for high-speed optical-interconnect VCSELs

    Science.gov (United States)

    Li, Hui; Jia, Xiaowei

    2018-05-01

    The gain-carrier characteristics of InGaAs quantum well for 980 nm high-speed, energy-efficient vertical-cavity surface-emitting lasers are investigated. We specially studied the potentially InGaAs quantum well designs can be used for the active region of energy-efficient, temperature-stable 980-nm VCSEL, which introduced a quantum well gain peak wavelength-to-cavity resonance wavelength offset to improve the dynamic performance at high operation temperature. Several candidate quantum wells are being compared in theory and measurement. We found that ∼5 nm InGaAs QW with ∼6 nm barrier thickness is suitable for the active region of high-speed optical interconnect 980 nm VCSELs, and no significant improvement in the 20% range of In content of InGaAs QWs. The results are useful for next generation green photonic device design.

  16. Interconnection Guidelines

    Science.gov (United States)

    The Interconnection Guidelines provide general guidance on the steps involved with connecting biogas recovery systems to the utility electrical power grid. Interconnection best practices including time and cost estimates are discussed.

  17. State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nobler, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States. Using data from more than 30,000 residential (up to 10 kilowatts) and small commercial (10-50 kilowatts) PV systems, installed from 2012 to 2014, we assess the range in project completion timelines nationally (across 87 utilities in 16 states) and in five states with active solar markets (Arizona, California, New Jersey, New York, and Colorado).

  18. SC-FDE for MMF short reach optical interconnects using directly modulated 850 nm VCSELs

    DEFF Research Database (Denmark)

    Teichmann, Victor S. C.; Barreto, Andre N.; Pham, Tien Thang

    2012-01-01

    We propose the use of single-carrier frequency-domain equalization (SC-FDE) for the compensation of modal dispersion in short distance optical links using multimode fibers and 850 nm VCSELs. By post-processing of experimental data, we demonstrate, at 7.9% overhead, the error-free transmission (ov...

  19. Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Deng, Lei; Rodes Lopez, Roberto

    2013-01-01

    -shift keying (QPSK)/16-ary quadrature amplitude modulation (16QAM) with direct detection, over SMF (100m and 5km) and MMF (100m and 1km) short-range links, for their potential application in low-cost rack-to-rack optical interconnects. Moreover, we assess the performance of quaternary-pulse amplitude...

  20. SU-8 Lenses: Simple Methods of Fabrication and Application in Optical Interconnection Between Fiber/LED and Microstructures

    Science.gov (United States)

    Nguyen, Minh-Hang; Nguyen, Hai-Binh; Nguyen, Tuan-Hung; Vu, Xuan-Manh; Lai, Jain-Ren; Tseng, Fan-Gang; Chen, Te-Chang; Lee, Ming-Chang

    2016-05-01

    This paper presents two facile methods to fabricate off-plane lenses made of SU-8, an epoxy-based negative photoresist from MicroChem, on glass for optical interconnection. The methods allow the fabrication of lenses with flexible spot size and focal length depending on SU-8 well size and SU-8 drop volume and viscosity. In the first method, SU-8 drops were applied directly into patterned SU-8 wells with Teflon-coated micropipettes, and were baked to become (a)-spherical lenses. The lens shape and size were mainly determined by SU-8 viscosity, ratio of drop volume to well volume, and baking temperature and time. In the second method, a glass substrate with SU-8 patterned wells was emerged in diluted SU-8, then drawn up and baked to form lenses. The lens shapes and sizes were mainly determined by SU-8 viscosity and well volume. By the two methods, SU-8 lenses were successfully fabricated with spot sizes varying in range from micrometers to hundred micrometers, and focal lengths varying in range of several millimeters, depending on the lens rim diameters and aspheric sag height. Besides, on-plane SU-8 lenses were fabricated by photolithography to work in conjunction with the off-plane SU-8 lenses. The cascaded lenses produced light spots reduced to several micrometers, and they can be applied as a coupler for light coupling from fiber/Light-emitting diode (LED) to microstructures and nanostructures. The results open up the path for fabricating novel optical microsystems for optical communication and optical sensing applications.

  1. Graphical user interfaces for teaching and design of GRIN lenses in optical interconnections

    International Nuclear Information System (INIS)

    Gómez-Varela, A I; Bao-Varela, C

    2015-01-01

    The use of graphical user interfaces (GUIs) enables the implementation of practical teaching methodologies to make the comprehension of a given subject easier. GUIs have become common tools in science and engineering education, where very often, the practical implementation of experiences in a laboratory involves much equipment and many people; they are an efficient and inexpensive solution to the lack of resources. The aim of this work is to provide primarily physics and engineering students with a series of GUIs to teach some configurations in optical communications using gradient-index (GRIN) lenses. The reported GUIs are intended to perform a complementary role in education as part of a ‘virtual lab’ to supplement theoretical and practical sessions and to reinforce the knowledge acquired by the students. In this regard, a series of GUIs to teach and research the implementation of GRIN lenses in optical communications applications (including a GRIN light deflector and a beam-size controller, a GRIN fibre lens for fibre-coupling purposes, planar interconnectors, and an anamorphic self-focusing lens to correct astigmatism in laser diodes) was designed using the environment GUIDE developed by MATLAB. Numerical examples using available commercial GRIN lens parameter values are presented. (paper)

  2. 24-ch microlens-integrated no-polish connector for optical interconnection with polymer waveguides

    Science.gov (United States)

    Shiraishi, Takashi; Yagisawa, Takatoshi; Ikeuchi, Tadashi; Daikuhara, Osamu; Tanaka, Kazuhiro

    2013-02-01

    We successfully developed a new 24-ch optical connector for polymer waveguides. The connector consists of a transparent thermoplastic resin that has two rectangular slits on one side for alignment of the waveguide films and integrated microlens arrays on the other side for coupling to the MT connector. Two 12-ch waveguide films were cut to a 3-mm width. The thickness of each waveguide film was controlled at 100 μm. The waveguide films were inserted into the slits until they touched the bottom face of the slit. Ultraviolet curing adhesive was used to achieve a short hardening process. The expanded beam in the transparent material is focused by the microlens arrays formed on the connector surface. This lens structure enables assembly without the need for a polishing process. We designed the lens for coupling between a step-index 40-μm rectangular waveguide and a graded-index 50-μm fiber. We achieved low-loss optical coupling by designing a method of providing asymmetric magnification between the horizontal and vertical directions in order to compensate for the asymmetric numerical aperture of the waveguide. The typical measured coupling losses from/to the waveguide to/from the fiber were 1.2 dB and 0.6 dB, respectively. The total coupling loss was as small as that of a physical contact connection.

  3. Board-to-Board Free-Space Optical Interconnections Passing through Boards for a Bookshelf-Assembled Terabit-Per-Second-Class ATM Switch.

    Science.gov (United States)

    Hirabayashi, K; Yamamoto, T; Matsuo, S; Hino, S

    1998-05-10

    We propose free-space optical interconnections for a bookshelf-assembled terabit-per-second-class ATM switch. Thousands of arrayed optical beams, each having a rate of a few gigabits per second, propagate vertically to printed circuit boards, passing through some boards, and are connected to arbitrary transmitters and receivers on boards by polarization controllers and prism arrays. We describe a preliminary experiment using a 1-mm-pitch 2 x 2 beam-collimator array that uses vertical-cavity surface-emitting laser diodes. These optical interconnections can be made quite stable in terms of mechanical shock and temperature fluctuation by the attachment of reinforcing frames to the boards and use of an autoalignment system.

  4. Add/drop filters based on SiC technology for optical interconnects

    International Nuclear Information System (INIS)

    Vieira, M; Vieira, M A; Louro, P; Fantoni, A; Silva, V

    2014-01-01

    In this paper we demonstrate an add/drop filter based on SiC technology. Tailoring of the channel bandwidth and wavelength is experimentally demonstrated. The concept is extended to implement a 1 by 4 wavelength division multiplexer with channel separation in the visible range. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure. Several monochromatic pulsed lights, separately or in a polychromatic mixture illuminated the device. Independent tuning of each channel is performed by steady state violet bias superimposed either from the front and back sides. Results show that, front background enhances the light-to-dark sensitivity of the long and medium wavelength channels and quench strongly the others. Back violet background has the opposite behaviour. This nonlinearity provides the possibility for selective removal or addition of wavelengths. An optoelectronic model is presented and explains the light filtering properties of the add/drop filter, under different optical bias conditions

  5. Spatial-phase code-division multiple-access system with multiplexed Fourier holography switching for reconfigurable optical interconnection

    Science.gov (United States)

    Takasago, Kazuya; Takekawa, Makoto; Shirakawa, Atsushi; Kannari, Fumihiko

    2000-05-01

    A new, to our knowledge, space-variant optical interconnection system based on a spatial-phase code-division multiple-access technique with multiplexed Fourier holography is described. In this technique a signal beam is spread over wide spatial frequencies by an M -sequence pseudorandom phase code. At a receiver side a selected signal beam is properly decoded, and at the same time its spatial pattern is shaped with a Fourier hologram, which is recorded by light that is encoded with the same M -sequence phase mask as the desired signal beam and by light whose spatial beam pattern is shaped to a signal routing pattern. Using the multiplexed holography, we can simultaneously route multisignal flows into individually specified receiver elements. The routing pattern can also be varied by means of switching the encoding phase code or replacing the hologram. We demonstrated a proof-of-principle experiment with a doubly multiplexed hologram that enables simultaneous routing of two signal beams. Using a numerical model, we showed that the proposed scheme can manage more than 250 routing patterns for one signal flow with one multiplexed hologram at a signal-to-noise ratio of 5.

  6. Transurban interconnectivities

    DEFF Research Database (Denmark)

    Jørgensen, Claus Møller

    2012-01-01

    This essay discusses the interpretation of the revolutionary situations of 1848 in light of recent debates on interconnectivity in history. The concept of transurban interconnectivities is proposed as the most precise concept to capture the nature of interconnectivity in 1848. It is argued....... It is argued that circulating political communication accounts for similarities with respect to political agenda, organisational form and political repertoire evident in urban settings across Europe. This argument is supported by a series of examples of local organisation and local appropriations of liberalism...

  7. Approximate analytical method to evaluate diffraction crosstalk in free-space optical interconnects systems that use circular microlenses with finite uniform apertures

    Science.gov (United States)

    Al-Ababneh, Nedal

    2014-07-01

    We propose an accurate analytical model to calculate the optical crosstalk of a first-order free space optical interconnects system that uses microlenses with circular apertures. The proposed model is derived by evaluating the resulted finite integral in terms of an infinite series of Bessel functions. Compared to the model that uses complex Gaussian functions to expand the aperture function, it is shown that the proposed model is superior in estimating the crosstalk and provides more accurate results. Moreover, it is shown that the proposed model gives results close to that of the numerical model with superior computational efficiency.

  8. Non-contact optical Liquid Level Sensors

    Science.gov (United States)

    Kiseleva, L. L.; Tevelev, L. V.; Shaimukhametov, R. R.

    2016-06-01

    Information about characteristics of the optical liquid level sensor are present. Sensors are used to control of the light level limit fluid - water, kerosene, alcohol, solutions, etc. Intrinsically safe, reliable and easy to use. The operating principle of the level sensor is an optoelectronic infrared device.

  9. The significance of the interconnection of second-level cooperatives and their peer-associated cooperatives for productivity growth

    International Nuclear Information System (INIS)

    Martínez-Victoria, M.; Maté-Sánchez-Val, M.L.; Arcas-Lario, N.

    2017-01-01

    Cooperatives are especially important in current agri-food markets. These companies have responded to the current demand requirements with greater market orientation strategies to attract and satisfy customers. To do so, cooperatives have adopted different collaboration alternatives. In Spain, the most common alliance between cooperatives is materialised in second-level cooperatives, which are cooperatives integrated by at least two first-level cooperatives. The aim of this study was to analyse the interaction effects between first- and second level agri-food cooperatives on their productive growth and its components. To get this purpose, a Cobb-Douglas specification with spatial econometrics techniques was applied to evaluate this relationship. We included a spatial connectivity matrix to establish the interconnection among cooperatives of first- and second-level. Our results show a positive interaction effect highlighting the importance of these alliances on the productivity growth in the agri-food sector. The scarce amount of empirical papers explaining how second-level cooperatives influence the performance of first-level cooperatives shows the relevance of our study.

  10. The significance of the interconnection of second-level cooperatives and their peer-associated cooperatives for productivity growth

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Victoria, M.; Maté-Sánchez-Val, M.L.; Arcas-Lario, N.

    2017-09-01

    Cooperatives are especially important in current agri-food markets. These companies have responded to the current demand requirements with greater market orientation strategies to attract and satisfy customers. To do so, cooperatives have adopted different collaboration alternatives. In Spain, the most common alliance between cooperatives is materialised in second-level cooperatives, which are cooperatives integrated by at least two first-level cooperatives. The aim of this study was to analyse the interaction effects between first- and second level agri-food cooperatives on their productive growth and its components. To get this purpose, a Cobb-Douglas specification with spatial econometrics techniques was applied to evaluate this relationship. We included a spatial connectivity matrix to establish the interconnection among cooperatives of first- and second-level. Our results show a positive interaction effect highlighting the importance of these alliances on the productivity growth in the agri-food sector. The scarce amount of empirical papers explaining how second-level cooperatives influence the performance of first-level cooperatives shows the relevance of our study.

  11. Interconnected networks

    CERN Document Server

    2016-01-01

    This volume provides an introduction to and overview of the emerging field of interconnected networks which include multi layer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave – understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant – for example regarding diffusion, robustness and competition – the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.

  12. Observations and a linear model of water level in an interconnected inlet-bay system

    Science.gov (United States)

    Aretxabaleta, Alfredo; Ganju, Neil K.; Butman, Bradford; Signell, Richard

    2017-01-01

    A system of barrier islands and back-barrier bays occurs along southern Long Island, New York, and in many coastal areas worldwide. Characterizing the bay physical response to water level fluctuations is needed to understand flooding during extreme events and evaluate their relation to geomorphological changes. Offshore sea level is one of the main drivers of water level fluctuations in semienclosed back-barrier bays. We analyzed observed water levels (October 2007 to November 2015) and developed analytical models to better understand bay water level along southern Long Island. An increase (∼0.02 m change in 0.17 m amplitude) in the dominant M2 tidal amplitude (containing the largest fraction of the variability) was observed in Great South Bay during mid-2014. The observed changes in both tidal amplitude and bay water level transfer from offshore were related to the dredging of nearby inlets and possibly the changing size of a breach across Fire Island caused by Hurricane Sandy (after December 2012). The bay response was independent of the magnitude of the fluctuations (e.g., storms) at a specific frequency. An analytical model that incorporates bay and inlet dimensions reproduced the observed transfer function in Great South Bay and surrounding areas. The model predicts the transfer function in Moriches and Shinnecock bays where long-term observations were not available. The model is a simplified tool to investigate changes in bay water level and enables the evaluation of future conditions and alternative geomorphological settings.

  13. Performance evaluation of multi-stratum resources integration based on network function virtualization in software defined elastic data center optical interconnect.

    Science.gov (United States)

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young

    2015-11-30

    Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.

  14. Interconnected levels of Multi-Stage Marketing – A Triadic approach

    DEFF Research Database (Denmark)

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other......Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...... different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...

  15. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes

    Directory of Open Access Journals (Sweden)

    Meryem Beklioğlu

    2017-02-01

    Full Text Available Eutrophication continues to be the most important problem preventing a favorable environmental state and detrimentally impacting the ecosystem services of lakes. The current study describes the results of analyses of 20 year monitoring data from two interconnected Anatolian lakes, Lakes Mogan and Eymir, receiving sewage effluents and undergoing restoration. The first step of restoration in both lakes was sewage effluent diversion. Additionally, in hypertrophic Lake Eymir, biomanipulation was conducted, involving removal of benthi-planktivorous fish and prohibition of pike fishing. The monitoring period included high (H and low (L water levels (WL enabling elucidation of the effects of hydrological changes on lake restoration. In shallower Lake Mogan, macrophyte abundance increased after the sewage effluent diversion in periods with low water levels even at turbid water. In comparatively deeper Lake Eymir, the first biomanipulation led to a clear water state with abundant macrophyte coverage. However, shortly after biomanipulation, the water clarity declined, coinciding with low water level (LWL periods during which nutrient concentrations increased. A second biomanipulation was conducted, mostly during high water level (HWL period, resulting in a major decrease in nutrient concentrations and clearer water, but without an expansion of macrophytes. We conclude that repetitive fish removal may induce recovery but its success may be confounded by high availability of nutrients and adverse hydrological conditions.

  16. The Master level optics laboratory at the Institute of Optics

    Science.gov (United States)

    Adamson, Per

    2017-08-01

    The master level optics laboratory is a biannual, intensive laboratory course in the fields of geometrical, physical and modern optics. This course is intended for the master level student though Ph.D. advisors which often recommend it to their advisees. The students are required to complete five standard laboratory experiments and an independent project during a semester. The goals of the laboratory experiments are for the students to get hands-on experience setting up optical laboratory equipment, collecting and analyzing data, as well as to communicate key results. The experimental methods, analysis, and results of the standard experiments are submitted in a journal style report, while an oral presentation is given for the independent project.

  17. Processing and Prolonged 500 C Testing of 4H-SiC JFET Integrated Circuits with Two Levels of Metal Interconnect

    Science.gov (United States)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2015-01-01

    Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype IC's with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3- and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient. Improved reproducibility remains to be accomplished.

  18. High-speed highly temperature stable 980 nm VCSELs operating at 25 Gb/s at up to 85 °C for short reach optical interconnects

    Science.gov (United States)

    Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter

    2011-03-01

    The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.

  19. Fluorescent optical liquid-level sensor

    International Nuclear Information System (INIS)

    Weiss, Jonathan D.

    2000-01-01

    An optical method of detecting a liquid level is presented that uses fluorescence radiation generated in an impurity-doped glass or plastic slab. In operation, the slab is inserted into the liquid and pump light is coupled into it so that the light is guided by the slab-air interface above the liquid and escapes into the liquid just below its surface. Since the fluorescence is generated only in that section of the slab above the liquid, the fluorescence power will monotonically decrease with increasing liquid level. Thus, a relationship can be established between any signal proportional to it and the liquid level. Because optical fibers link the pump source and the detector of fluorescence radiation to the sensor, no electrical connections are needed in or near the liquid. Their absence vastly decreases the hazard associated with placing a liquid-level sensor in a potentially explosive environment. A laboratory prototype, consisting of a methyl styrene slab doped with an organic dye, has been built and successfully tested in water. Its response to liquid level when pumped by a tunable argon-ion laser at 476, 488, and 496 nm, and by a blue LED, is presented and shown to be consistent with theory. The fluorescence spectra, optical efficiency, temperature, and other effects are also presented and discussed. (c) 2000 Society of Photo-Optical Instrumentation Engineers

  20. Architecture-Level Exploration of Alternative Interconnection Schemes Targeting 3D FPGAs: A Software-Supported Methodology

    Directory of Open Access Journals (Sweden)

    Kostas Siozios

    2008-01-01

    Full Text Available In current reconfigurable architectures, the interconnection structures increasingly contribute more to the delay and power consumption. The demand for increased clock frequencies and logic density (smaller area footprint makes the problem even more important. Three-dimensional (3D architectures are able to alleviate this problem by accommodating a number of functional layers, each of which might be fabricated in different technology. However, the benefits of such integration technology have not been sufficiently explored yet. In this paper, we propose a software-supported methodology for exploring and evaluating alternative interconnection schemes for 3D FPGAs. In order to support the proposed methodology, three new CAD tools were developed (part of the 3D MEANDER Design Framework. During our exploration, we study the impact of vertical interconnection between functional layers in a number of design parameters. More specifically, the average gains in operation frequency, power consumption, and wirelength are 35%, 32%, and 13%, respectively, compared to existing 2D FPGAs with identical logic resources. Also, we achieve higher utilization ratio for the vertical interconnections compared to existing approaches by 8% for designing 3D FPGAs, leading to cheaper and more reliable devices.

  1. Low power laser driver design in 28nm CMOS for on-chip and chip-to-chip optical interconnect

    Science.gov (United States)

    Belfiore, Guido; Szilagyi, Laszlo; Henker, Ronny; Ellinger, Frank

    2015-09-01

    This paper discusses the challenges and the trade-offs in the design of laser drivers for very-short distance optical communications. A prototype integrated circuit is designed and fabricated in 28 nm super-low-power CMOS technology. The power consumption of the transmitter is 17.2 mW excluding the VCSEL that in our test has a DC power consumption of 10 mW. The active area of the driver is only 0.0045 mm2. The driver can achieve an error-free (BER < 10 -12) electrical data-rate of 25 Gbit/s using a pseudo random bit sequence of 27 -1. When the driver is connected to the VCSEL module an open optical eye is reported at 15 Gbit/s. In the tested bias point the VCSEL module has a measured bandwidth of 10.7 GHz.

  2. Optical resonance and two-level atoms

    CERN Document Server

    Allen, L

    1987-01-01

    ""Coherent and lucid…a valuable summary of a subject to which [the authors] have made significant contributions by their own research."" - Contemporary PhysicsOffering an admirably clear account of the basic principles behind all quantum optical resonance phenomena, and hailed as a valuable contribution to the literature of nonlinear optics, this distinguished work provides graduate students and research physicists probing fields such as laser physics, quantum optics, nonlinear optics, quantum electronics, and resonance optics an ideal introduction to the study of the interaction of electroma

  3. Application of quantum-dot multi-wavelength lasers and silicon photonic ring resonators to data-center optical interconnects

    Science.gov (United States)

    Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.

    2018-02-01

    Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.

  4. Evidence of Processing Non-Idealities in 4H-SiC Integrated Circuits Fabricated with Two Levels of Metal Interconnect

    Science.gov (United States)

    Spry, David J.; Neudeck, Philip G.; Liangyu, Chen; Evans, Laura J.; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.

    2015-01-01

    The fabrication and prolonged 500 C electrical testing of 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) with two levels of metal interconnect is reported in another submission to this conference proceedings. While some circuits functioned more than 1000 hours at 500 C, the majority of packaged ICs from this wafer electrically failed after less than 200 hours of operation in the same test conditions. This work examines the root physical degradation and failure mechanisms believed responsible for observed large discrepancies in 500 C operating time. Evidence is presented for four distinct issues that significantly impacted 500 C IC operational yield and lifetime for this wafer.

  5. Enhanced Device and Circuit-Level Performance Benchmarking of Graphene Nanoribbon Field-Effect Transistor against a Nano-MOSFET with Interconnects

    Directory of Open Access Journals (Sweden)

    Huei Chaeng Chin

    2014-01-01

    Full Text Available Comparative benchmarking of a graphene nanoribbon field-effect transistor (GNRFET and a nanoscale metal-oxide-semiconductor field-effect transistor (nano-MOSFET for applications in ultralarge-scale integration (ULSI is reported. GNRFET is found to be distinctly superior in the circuit-level architecture. The remarkable transport properties of GNR propel it into an alternative technology to circumvent the limitations imposed by the silicon-based electronics. Budding GNRFET, using the circuit-level modeling software SPICE, exhibits enriched performance for digital logic gates in 16 nm process technology. The assessment of these performance metrics includes energy-delay product (EDP and power-delay product (PDP of inverter and NOR and NAND gates, forming the building blocks for ULSI. The evaluation of EDP and PDP is carried out for an interconnect length that ranges up to 100 μm. An analysis, based on the drain and gate current-voltage (Id-Vd and Id-Vg, for subthreshold swing (SS, drain-induced barrier lowering (DIBL, and current on/off ratio for circuit implementation is given. GNRFET can overcome the short-channel effects that are prevalent in sub-100 nm Si MOSFET. GNRFET provides reduced EDP and PDP one order of magnitude that is lower than that of a MOSFET. Even though the GNRFET is energy efficient, the circuit performance of the device is limited by the interconnect capacitances.

  6. A General Micro-Level Modeling Approach to Analyzing Interconnected SDGs: Achieving SDG 6 and More through Multiple-Use Water Services (MUS

    Directory of Open Access Journals (Sweden)

    Ralph P. Hall

    2017-02-01

    Full Text Available The 2030 agenda presents an integrated set of Sustainable Development Goals (SDGs and targets that will shape development activities for the coming decade. The challenge now facing development organizations and governments is how to operationalize this interconnected set of goals and targets through effective projects and programs. This paper presents a micro-level modeling approach that can quantitatively assess the impacts associated with rural water interventions that are tailored to specific communities. The analysis focuses on how a multiple-use water services (MUS approach to SDG 6 could reinforce a wide range of other SDGs and targets. The multilevel modeling framework provides a generalizable template that can be used in multiple sectors. In this paper, we apply the methodology to a dataset on rural water services from Mozambique to show that community-specific equivalents of macro-level variables used in the literature such as Cost of Illness (COI avoided can provide a better indication of the impacts of a specific intervention. The proposed modeling framework presents a new frontier for designing projects in any sector that address the specific needs of communities, while also leveraging the knowledge gained from previous projects in any country. The approach also presents a way for agencies and organizations to design projects or programs that bridge sectors/disciplines (water, irrigation, health, energy, economic development, etc. to advance an interconnected set of SDGs and targets.

  7. In-memory interconnect protocol configuration registers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  8. In-memory interconnect protocol configuration registers

    Science.gov (United States)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  9. Comprehensive evaluation of global energy interconnection development index

    Science.gov (United States)

    Liu, Lin; Zhang, Yi

    2018-04-01

    Under the background of building global energy interconnection and realizing green and low-carbon development, this article constructed the global energy interconnection development index system which based on the current situation of global energy interconnection development. Through using the entropy method for the weight analysis of global energy interconnection development index, and then using gray correlation method to analyze the selected countries, this article got the global energy interconnection development index ranking and level classification.

  10. Interconnection network architectures based on integrated orbital angular momentum emitters

    Science.gov (United States)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  11. Multi-net optimization of VLSI interconnect

    CERN Document Server

    Moiseev, Konstantin; Wimer, Shmuel

    2015-01-01

    This book covers layout design and layout migration methodologies for optimizing multi-net wire structures in advanced VLSI interconnects. Scaling-dependent models for interconnect power, interconnect delay and crosstalk noise are covered in depth, and several design optimization problems are addressed, such as minimization of interconnect power under delay constraints, or design for minimal delay in wire bundles within a given routing area. A handy reference or a guide for design methodologies and layout automation techniques, this book provides a foundation for physical design challenges of interconnect in advanced integrated circuits.  • Describes the evolution of interconnect scaling and provides new techniques for layout migration and optimization, focusing on multi-net optimization; • Presents research results that provide a level of design optimization which does not exist in commercially-available design automation software tools; • Includes mathematical properties and conditions for optimal...

  12. Interconnection between precipitation density, soil contamination levels and 90Sr and 137Cs content in food stuffs

    International Nuclear Information System (INIS)

    Knizhnikov, V.A.; Petukhova, Eh.V.

    1980-01-01

    Presented are the data dynamically characterizing the density of radioactive fallout, contamination of soil and the main kinds of food stuffs with 137 Cs and 90 Sr. It is shown that 90 Sr contamination of bakery products in the country within the whole period of observation is in direct dependence on the density of atmospheric fallouts as a whole in the northern hemisphere. In the reverse, 90 Sr potato contamination primarily correlates with nuclide content in the soil. The dependence between milk contamination and fallout density has an intermediate character as compared with the above types of food stuffs. The same is true for 137 Cs, but a clear tendency to a faster decrease in the level of food stuffs contamination is observed. The importance of the soil way in food stuffs contamination and peculiarities of nuclide migration in food stuffs from various types of soil are considered

  13. A two-level voltage source inverter with differentially sinusoidal pulse width modulation used in the interconnection system of a wind turbine generator

    Directory of Open Access Journals (Sweden)

    Alexandros C. Charalampidis

    2014-10-01

    Full Text Available This study analyses an interconnection system based on differentially sinusoidal pulse width modulation, used for the interconnection to the grid of a variable speed wind turbine. The modulation technique used provides specific advantages in comparison with the commonly used sinusoidal pulse width modulation (SPWM technique, such as lower DC bus voltage requirements, smaller switching losses for the same switching frequency as well as less higher harmonic content in the voltage waveforms produced. The respective control system is also described in detail. Thus this study provides a guide enabling the design of any interconnection system based on this modulation technique.

  14. A Methodology for Physical Interconnection Decisions of Next Generation Transport Networks

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Madsen, Ole Brun

    2011-01-01

    of possibilities when designing the physical network interconnection. This paper develops and presents a methodology in order to deal with aspects related to the interconnection problem of optical transport networks. This methodology is presented as independent puzzle pieces, covering diverse topics going from......The physical interconnection for optical transport networks has critical relevance in the overall network performance and deployment costs. As telecommunication services and technologies evolve, the provisioning of higher capacity and reliability levels is becoming essential for the proper...... development of Next Generation Networks. Currently, there is a lack of specific procedures that describe the basic guidelines to design such networks better than "best possible performance for the lowest investment". Therefore, the research from different points of view will allow a broader space...

  15. Silicon photonic dynamic optical channel leveler with external feedback loop.

    Science.gov (United States)

    Doylend, J K; Jessop, P E; Knights, A P

    2010-06-21

    We demonstrate a dynamic optical channel leveler composed of a variable optical attenuator (VOA) integrated monolithically with a defect-mediated photodiode in a silicon photonic waveguide device. An external feedback loop mimics an analog circuit such that the photodiode directly controls the VOA to provide blind channel leveling within +/-1 dB across a 7-10 dB dynamic range for wavelengths from 1530 nm to 1570 nm. The device consumes approximately 50 mW electrical power and occupies a 6 mm x 0.1 mm footprint per channel. Dynamic leveling is accomplished without tapping optical power from the output path to the photodiode and thus the loss penalty is minimized.

  16. Increased levels of NOTCH1, NF-kappaB, and other interconnected transcription factors characterize primitive sets of hematopoietic stem cells.

    Science.gov (United States)

    Panepucci, Rodrigo Alexandre; Oliveira, Lucila Habib B; Zanette, Dalila Luciola; Viu Carrara, Rita de Cassia; Araujo, Amélia Goes; Orellana, Maristela Delgado; Bonini de Palma, Patrícia Vianna; Menezes, Camila C B O; Covas, Dimas Tadeu; Zago, Marco Antonio

    2010-03-01

    As previously shown, higher levels of NOTCH1 and increased NF-kappaB signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow (BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells (CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency (than expected by chance) of NF-kappaB-binding sites (BS), including potentially novel NF-kappaB targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappaB, and other important TFs on more primitive HSC sets.

  17. System-Level Operational and Adequacy Impact Assessment of Photovoltaic and Distributed Energy Storage, with Consideration of Inertial Constraints, Dynamic Reserve and Interconnection Flexibility

    Directory of Open Access Journals (Sweden)

    Lingxi Zhang

    2017-07-01

    Full Text Available The growing penetration of solar photovoltaic (PV systems requires a fundamental understanding of its impact at a system-level. Furthermore, distributed energy storage (DES technologies, such as batteries, are attracting great interest owing to their ability to provide support to systems with large-scale renewable generation, such as PV. In this light, the system-level impacts of PV and DES are assessed from both operational and adequacy perspectives. Different control strategies for DES are proposed, namely: (1 centralised, to support system operation in the presence of increasing requirements on system ramping and frequency control; and (2 decentralised, to maximise the harnessing of solar energy from individual households while storing electricity generated by PV panels to provide system capacity on request. The operational impacts are assessed by deploying a multi-service unit commitment model with consideration of inertial constraints, dynamic reserve allocation, and interconnection flexibility, while the impacts on adequacy of supply are analysed by assessing the capacity credit of PV and DES through different metrics. The models developed are then applied to different future scenarios for the Great Britain power system, whereby an electricity demand increase due to electrification is also considered. The numerical results highlight the importance of interconnectors to provide flexibility. On the other hand, provision of reserves, as opposed to energy arbitrage, from DES that are integrated into system operation is seen as the most effective contribution to improve system performance, which in turn also decreases the role of interconnectors. DES can also contribute to providing system capacity, but to an extent that is limited by their individual and aggregated energy availability under different control strategies.

  18. Investigation of PAM-4 for extending reach in data center interconnect applications

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Teipen, Brian; Eiselt, Nicklas

    2015-01-01

    Optical four-level pulse amplitude modulation (PAM-4) is being widely studied for various short-reach optical interfaces, motivated by the need to keep cost structure low, and to increase link capacity despite various constraints in component bandwidth. When considering PAM-4 in applications...... with reach significantly greater than 10km, such as in extended data center interconnects which require optical amplification, impairments such as chromatic dispersion, optical filtering, and ASE must be controlled. We investigate and report on requirements of PAM-4 for extended-reach, data center...

  19. Fiber bundle probes for interconnecting miniaturized medical imaging devices

    Science.gov (United States)

    Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning

    2017-02-01

    Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.

  20. Brookhaven segment interconnect

    International Nuclear Information System (INIS)

    Morse, W.M.; Benenson, G.; Leipuner, L.B.

    1983-01-01

    We have performed a high energy physics experiment using a multisegment Brookhaven FASTBUS system. The system was composed of three crate segments and two cable segments. We discuss the segment interconnect module which permits communication between the various segments

  1. The Laser Level as an Optics Laboratory Tool

    Science.gov (United States)

    Kutzner, Mickey

    2013-01-01

    For decades now, the laser has been used as a handy device for performing ray traces in geometrical optics demonstrations and laboratories. For many ray- trace applications, I have found the laser level 3 to be even more visually compelling and easy for student use than the laser pointer.

  2. Universality in level spacing fluctuations of a chaotic optical billiard

    Energy Technology Data Exchange (ETDEWEB)

    Laprise, J.F.; Hosseinizadeh, A.; Lamy-Poirier, J. [Departement de Physique, Universite Laval, Quebec, Quebec G1V 0A6 (Canada); Zomorrodi, R. [Departement de Physique, Universite Laval, Quebec, Quebec G1V 0A6 (Canada)] [Centre de Recherche Universite Laval Robert Giffard, Quebec, Quebec G1J 2G3 (Canada); Kroeger, J. [Physics Department and Center for Physics of Materials, McGill University, Montreal, Quebec H3A 2T8 (Canada)] [Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6 (Canada); Kroeger, H., E-mail: hkroger@phy.ulaval.c [Departement de Physique, Universite Laval, Quebec, Quebec G1V 0A6 (Canada)] [Functional Neurobiology, University of Utrecht, 3584 CH Utrecht (Netherlands)

    2010-04-19

    We study chaotic behavior of a classical optical stadium billiard model. We construct a matrix of time-of-travel along trajectories corresponding to a set of boundary points. We carry out a level spacing fluctuation analysis and compute the Dyson-Mehta spectral rigidity. The distribution of time-of-travel is approximately described by a Gaussian. The results for level spacing distribution and spectral rigidity show universal behavior.

  3. Benefits of transmission interconnections

    International Nuclear Information System (INIS)

    Lyons, D.

    2006-01-01

    The benefits of new power transmission interconnections from Alberta were discussed with reference to the challenges and measures needed to move forward. Alberta's electricity system has had a long period of sustained growth in generation and demand and this trend is expected to continue. However, no new interconnections have been built since 1985 because the transmission network has not expanded in consequence with the growth in demand. As such, Alberta remains weakly interconnected with the rest of the western region. The benefits of stronger transmission interconnections include improved reliability, long-term generation capability, hydrothermal synergies, a more competitive market, system efficiencies and fuel diversity. It was noted that the more difficult challenges are not technical. Rather, the difficult challenges lie in finding an appropriate business model that recognizes different market structures. It was emphasized that additional interconnections are worthwhile and will require significant collaboration among market participants and governments. It was concluded that interties enable resource optimization between systems and their benefits far exceed their costs. tabs., figs

  4. Multilevel Dual Damascene copper interconnections

    Science.gov (United States)

    Lakshminarayanan, S.

    C, 500oC and 600oC for Ti, TiN and Ta barriers respectively. Via resistivity on the order of 10-9/ /Omegacm2 was measured for Cu/Ta/Cu interfaces and no degradation in the via resistance was observed upto 600oC on the 2 μm and 3 μm wide contact windows. Characterization of diode leakage and subthreshold currents of CMOS transistors fabricated with Ta adhesion layers, showed the failure of the Ta barrier at 450oC. Despite the good barrier performance of the CVD TiN films, obtaining low contact resistivity may be a concern. The potential use of Cu-Mg alloy as the backend metallization has also been studied. Fully encapsulated wiring has been fabricated by causing the Mg to out- diffuse towards the Cu/SiO2 interfaces and the free copper surface. The inter-connects exhibited good stability and oxidation resistance, but via resistances were extremely high, probably due to the presence of insulating films like MgO or MgF2 at the interface between the two metal levels. It may be possible to decrease the via resistance to values comparable to Cu/Ta/Cu by altering the process flow and using a suitable via clean. When used at the contact level, undesirable interaction with the CoSi2 film was observed at temperatures as low as 350oC. Another problem was the high contact resistance at the Cu-Mg/CoSi2 interface. Hence the use of this alloy as a contact fill material is not feasible at this time. An additional barrier layer may be required between the Cu-Mg and CoSi2 films to protect the integrity of the silicide and provide low contact resistance.

  5. Quantum state preparation using multi-level-atom optics

    International Nuclear Information System (INIS)

    Busch, Th; Deasy, K; Chormaic, S Nic

    2007-01-01

    One of the most important characteristics for controlling processes on the quantum scale is the fidelity or robustness of the techniques being used. In the case of single atoms localized in micro-traps, it was recently shown that the use of time-dependent tunnelling interactions in a multi-trap setup can be viewed as analogous to the area of multi-level optics. The atom's centre-of-mass can then be controlled with a high fidelity, using a STIRAP-type process. Here, we review previous work that led to the development of multi-level atom optics and present two examples of our most recent work on quantum state preparation

  6. Optical gain in an optically driven three-level ? system in atomic Rb vapor

    Science.gov (United States)

    Ballmann, C. W.; Yakovlev, V. V.

    2018-06-01

    In this work, we report experimentally achieved optical gain of a weak probe beam in a three-level ? system in a low density Rubidium vapor cell driven by a single pump beam. The maximum measured gain of the probe beam was about 0.12%. This work could lead to new approaches for enhancing molecular spectroscopy applications.

  7. Variation Tolerant On-Chip Interconnects

    CERN Document Server

    Nigussie, Ethiopia Enideg

    2012-01-01

    This book presents design techniques, analysis and implementation of high performance and power efficient, variation tolerant on-chip interconnects.  Given the design paradigm shift to multi-core, interconnect-centric designs and the increase in sources of variability and their impact in sub-100nm technologies, this book will be an invaluable reference for anyone concerned with the design of next generation, high-performance electronics systems. Provides comprehensive, circuit-level explanation of high-performance, energy-efficient, variation-tolerant on-chip interconnect; Describes design techniques to mitigate problems caused by variation; Includes techniques for design and implementation of self-timed on-chip interconnect, delay variation insensitive communication protocols, high speed signaling techniques and circuits, bit-width independent completion detection and process, voltage and temperature variation tolerance.                          

  8. Recent Development of SOFC Metallic Interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  9. Low power interconnect design

    CERN Document Server

    Saini, Sandeep

    2015-01-01

    This book provides practical solutions for delay and power reduction for on-chip interconnects and buses.  It provides an in depth description of the problem of signal delay and extra power consumption, possible solutions for delay and glitch removal, while considering the power reduction of the total system.  Coverage focuses on use of the Schmitt Trigger as an alternative approach to buffer insertion for delay and power reduction in VLSI interconnects. In the last section of the book, various bus coding techniques are discussed to minimize delay and power in address and data buses.   ·         Provides practical solutions for delay and power reduction for on-chip interconnects and buses; ·         Focuses on Deep Sub micron technology devices and interconnects; ·         Offers in depth analysis of delay, including details regarding crosstalk and parasitics;  ·         Describes use of the Schmitt Trigger as a versatile alternative approach to buffer insertion for del...

  10. Interconnecting with VIPs

    Science.gov (United States)

    Collins, Robert

    2013-01-01

    Interconnectedness changes lives. It can even save lives. Recently the author got to witness and be part of something in his role as a teacher of primary science that has changed lives: it may even have saved lives. It involved primary science teaching--and the climate. Robert Collins describes how it is all interconnected. The "Toilet…

  11. CAISSON: Interconnect Network Simulator

    Science.gov (United States)

    Springer, Paul L.

    2006-01-01

    Cray response to HPCS initiative. Model future petaflop computer interconnect. Parallel discrete event simulation techniques for large scale network simulation. Built on WarpIV engine. Run on laptop and Altix 3000. Can be sized up to 1000 simulated nodes per host node. Good parallel scaling characteristics. Flexible: multiple injectors, arbitration strategies, queue iterators, network topologies.

  12. Photovoltaic sub-cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  13. Electromagnetism and interconnections

    CERN Document Server

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  14. Optical pulse characteristics of sonoluminescence at low acoustic drive levels

    Science.gov (United States)

    Arakeri, Vijay H.; Giri, Asis

    2001-06-01

    From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E 58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. 94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well.

  15. Optical pulse characteristics of sonoluminescence at low acoustic drive levels

    International Nuclear Information System (INIS)

    Arakeri, Vijay H.; Giri, Asis

    2001-01-01

    From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E >58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. >94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well

  16. Interconnectivity: Benefits and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Access to affordable and reliable electricity supplies is a basic prerequisite for economic and social development, prosperity, health, education and all other aspects of modern society. Electricity can be generated both near and far from the consumption areas as transmission lines, grid interconnections and distribution systems can transport it to the final consumer. In the vast majority of countries, the electricity sector used to be owned and run by the state. The wave of privatisation and market introduction in a number of countries and regions which started in the late 1980's has in many cases involved unbundling of generation from transmission and distribution (T and D). This has nearly everywhere exposed transmission bottlenecks limiting the development of well-functioning markets. Transmission on average accounts for about 10-15% of total final kWh cost paid by the end-user but it is becoming a key issue for effective operation of liberalised markets and for their further development. An integrated and adequate transmission infrastructure is of utmost importance for ensuring the delivery of the most competitively priced electricity, including externalities, to customers, both near and far from the power generating facilities. In this report, the role of interconnectivity in the development of energy systems is examined with the associated socio-economic, environmental, financial and regulatory aspects that must be taken into account for successful interconnection projects.

  17. Interconnection of Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Emerson [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-19

    This is a presentation on interconnection of distributed energy resources, including the relationships between different aspects of interconnection, best practices and lessons learned from different areas of the U.S., and an update on technical advances and standards for interconnection.

  18. Interconnection policy: a theoretical survey

    Directory of Open Access Journals (Sweden)

    César Mattos

    2003-01-01

    Full Text Available This article surveys the theoretical foundations of interconnection policy. The requirement of an interconnection policy should not be taken for granted in all circumstances, even considering the issue of network externalities. On the other hand, when it is required, an encompassing interconnection policy is usually justified. We provide an overview of the theory on interconnection pricing that results in several different prescriptions depending on which problem the regulator aims to address. We also present a survey on the literature on two-way interconnection.

  19. Optoelectronic interconnects for 3D wafer stacks

    Science.gov (United States)

    Ludwig, David; Carson, John C.; Lome, Louis S.

    1996-01-01

    Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.

  20. LHC beampipe interconnection

    CERN Document Server

    Particle beams circulate for around 10 hours in the Large Hadron Collider (LHC). During this time, the particles make four hundred million revolutions of the machine, travelling a distance equivalent to the diameter of the solar system. The beams must travel in a pipe which is emptied of air, to avoid collisions between the particles and air molecules (which are considerably bigger than protons). The beam pipes are pumped down to an air pressure similar to that on the surface of the moon. Much of the LHC runs at 1.9 degrees above absolute zero. When material is cooled, it contracts. The interconnections must absorb this contraction whilst maintaining electrical connectivity.

  1. The Enhanced Segment Interconnect for FASTBUS data communications

    International Nuclear Information System (INIS)

    Machen, D.R.; Downing, R.W.; Kirsten, F.A.; Nelson, R.O.

    1987-01-01

    The Enhanced Segment Interconnect concept (ESI) for improved FASTBUS data communications is a development supported by the U.S. Department of Energy under the Small Business Innovation Research (SBIR) program. The ESI will contain both the Segment Interconnect (SI) Tyhpe S-1 and an optional buffered interconnect for store-and-forward data communications; fiber-optic-coupled serial ports will provide optional data paths. The ESI can be applied in large FASTBUS-implemented physics experiments whose data-set or data-transmission distance requirements dictate alternate approaches to data communications. This paper describes the functions of the ESI and the status of its development, now 25% complete

  2. Cost based interconnection charges as a way to induce competition

    DEFF Research Database (Denmark)

    Falch, Morten

    The objective of this paper is to analyse the relationship between regulation of interconnection charges and the level of competition. One of the most important issues in the debate on interconnect regulation has been use of forward looking costs for setting of interconnection charges. This debat...... has been ongoing within the EU as well as in US. This paper discusses the European experiences and in particular the Danish experiences with use of cost based interconnection charges, and their impact on competition in the telecom market....

  3. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    Science.gov (United States)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  4. Optimized eight-dimensional lattice modulation format for IM-DD 56 Gb/s optical interconnections using 850 nm VCSELs

    DEFF Research Database (Denmark)

    Lu, Xiaofeng; Tatarczak, Anna; Lyubopytov, Vladimir

    2017-01-01

    In this paper a novel eight-dimensional lattice optimized modulation format, Block Based 8-dimensional/8-level (BB8), is proposed, taking into account the tradeoff between high performance and modulation simplicity. We provide an experimental performance comparison with its n-level pulse amplitude...... threshold. A simplified bit-to-symbol mapping and corresponding symbol-to-bit demapping algorithms, together with a hyperspace hard-decision, are designed specifically for applications of short-reach data links. These algorithms are expected to use affordable computational resources with relatively low...

  5. Fuel cell system with interconnect

    Science.gov (United States)

    Goettler, Richard; Liu, Zhien

    2017-12-12

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  6. Policy issues in interconnecting networks

    Science.gov (United States)

    Leiner, Barry M.

    1989-01-01

    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented.

  7. Epidemics on interconnected networks

    Science.gov (United States)

    Dickison, Mark; Havlin, S.; Stanley, H. E.

    2012-06-01

    Populations are seldom completely isolated from their environment. Individuals in a particular geographic or social region may be considered a distinct network due to strong local ties but will also interact with individuals in other networks. We study the susceptible-infected-recovered process on interconnected network systems and find two distinct regimes. In strongly coupled network systems, epidemics occur simultaneously across the entire system at a critical infection strength βc, below which the disease does not spread. In contrast, in weakly coupled network systems, a mixed phase exists below βc of the coupled network system, where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  8. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  9. Location constrained resource interconnection

    International Nuclear Information System (INIS)

    Hawkins, D.

    2008-01-01

    This presentation discussed issues related to wind integration from the perspective of the California Independent System Operator (ISO). Issues related to transmission, reliability, and forecasting were reviewed. Renewable energy sources currently used by the ISO were listed, and details of a new transmission financing plan designed to address the location constraints of renewable energy sources and provide for new transmission infrastructure was presented. The financing mechanism will be financed by participating transmission owners through revenue requirements. New transmission interconnections will include network facilities and generator tie-lines. Tariff revisions have also been implemented to recover the costs of new facilities and generators. The new transmission project will permit wholesale transmission access to areas where there are significant energy resources that are not transportable. A rate impact cap of 15 per cent will be imposed on transmission owners to mitigate short-term costs to ratepayers. The presentation also outlined energy resource area designation plans, renewable energy forecasts, and new wind technologies. Ramping issues were also discussed. It was concluded that the ISO expects to ensure that 20 per cent of its energy will be derived from renewable energy sources. tabs., figs

  10. Area array interconnection handbook

    CERN Document Server

    Totta, Paul A

    2012-01-01

    Microelectronic packaging has been recognized as an important "enabler" for the solid­ state revolution in electronics which we have witnessed in the last third of the twentieth century. Packaging has provided the necessary external wiring and interconnection capability for transistors and integrated circuits while they have gone through their own spectacular revolution from discrete device to gigascale integration. At IBM we are proud to have created the initial, simple concept of flip chip with solder bump connections at a time when a better way was needed to boost the reliability and improve the manufacturability of semiconductors. The basic design which was chosen for SLT (Solid Logic Technology) in the 1960s was easily extended to integrated circuits in the '70s and VLSI in the '80s and '90s. Three I/O bumps have grown to 3000 with even more anticipated for the future. The package families have evolved from thick-film (SLT) to thin-film (metallized ceramic) to co-fired multi-layer ceramic. A later famil...

  11. Interconnecting heterogeneous database management systems

    Science.gov (United States)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  12. Optimal interconnection and renewable targets for north-west Europe

    International Nuclear Information System (INIS)

    Lynch, Muireann Á.; Tol, Richard S.J.; O'Malley, Mark J.

    2012-01-01

    We present a mixed-integer, linear programming model for determining optimal interconnection for a given level of renewable generation using a cost minimisation approach. Optimal interconnection and capacity investment decisions are determined under various targets for renewable penetration. The model is applied to a test system for eight regions in Northern Europe. It is found that considerations on the supply side dominate demand side considerations when determining optimal interconnection investment: interconnection is found to decrease generation capacity investment and total costs only when there is a target for renewable generation. Higher wind integration costs see a concentration of wind in high-wind regions with interconnection to other regions. - Highlights: ► We use mixed-integer linear programming to determine optimal interconnection locations for given renewable targets. ► The model is applied to a test system for eight regions in Northern Europe. ► Interconnection reduces costs only when there is a renewable target. ► Wind integration costs affect the interconnection portfolio.

  13. Controlling the optical bistability and multistability in a two-level pumped-probe system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Sahrai, Mostafa; Masoumeh Mousavi, Seyede

    2010-01-01

    We study the behavior of the optical bistability (OB) and multistability (OM) in a two-level pumped-probe atomic system by means of a unidirectional ring cavity. We show that the optical bistability in a two-level atomic system can be controlled by adjusting the intensity of the pump field and the detuning between two fields. We find that applying the pumping field decreases the threshold of the optical bistability.

  14. Universal Interconnection Technology Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Sheaffer, P.; Lemar, P.; Honton, E. J.; Kime, E.; Friedman, N. R.; Kroposki, B.; Galdo, J.

    2002-10-01

    The Universal Interconnection Technology (UIT) Workshop - sponsored by the U.S. Department of Energy, Distributed Energy and Electric Reliability (DEER) Program, and Distribution and Interconnection R&D - was held July 25-26, 2002, in Chicago, Ill., to: (1) Examine the need for a modular universal interconnection technology; (2) Identify UIT functional and technical requirements; (3) Assess the feasibility of and potential roadblocks to UIT; (4) Create an action plan for UIT development. These proceedings begin with an overview of the workshop. The body of the proceedings provides a series of industry representative-prepared papers on UIT functions and features, present interconnection technology, approaches to modularization and expandability, and technical issues in UIT development as well as detailed summaries of group discussions. Presentations, a list of participants, a copy of the agenda, and contact information are provided in the appendices of this document.

  15. Encoding arbitrary grey-level optical landscapes for trapping and manipulation using GPC

    DEFF Research Database (Denmark)

    Alonzo, Carlo Amadeo; Rodrigo, Peter John; Palima, Darwin

    2007-01-01

    review the analysis of the GPC method with emphasis on efficiently producing speckle-free two-dimensional grey-level light Patterns. Numerical simulations are applied to construct 8-bit grey-level optical potential landscapes with high fidelity and optical throughput via the GPC method. Three types...

  16. Cryogenic Liquid Level-Sensing using Fiber-Optic Strain Sensor (FOSS) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong innovators have developed a highly accurate method for measuring liquid levels using optical fibers. Unlike liquid level gauges that rely on discrete...

  17. Exploration of operator method digital optical computers for application to NASA

    Science.gov (United States)

    1990-01-01

    Digital optical computer design has been focused primarily towards parallel (single point-to-point interconnection) implementation. This architecture is compared to currently developing VHSIC systems. Using demonstrated multichannel acousto-optic devices, a figure of merit can be formulated. The focus is on a figure of merit termed Gate Interconnect Bandwidth Product (GIBP). Conventional parallel optical digital computer architecture demonstrates only marginal competitiveness at best when compared to projected semiconductor implements. Global, analog global, quasi-digital, and full digital interconnects are briefly examined as alternative to parallel digital computer architecture. Digital optical computing is becoming a very tough competitor to semiconductor technology since it can support a very high degree of three dimensional interconnect density and high degrees of Fan-In without capacitive loading effects at very low power consumption levels.

  18. Effects of optical feedback in a birefringence-Zeeman dual frequency laser at high optical feedback levels

    International Nuclear Information System (INIS)

    Mao Wei; Zhang Shulian

    2007-01-01

    Optical feedback effects are studied in a birefringence-Zeeman dual frequency laser at high optical feedback levels. The intensity modulation features of the two orthogonally polarized lights are investigated in both isotropic optical feedback (IOF) and polarized optical feedback (POF). In IOF, the intensities of both beams are modulated simultaneously, and four zones, i.e., the e-light zone, the o-light and e-light zone, the o-light zone, and the no-light zone, are formed in a period corresponding to a half laser wavelength displacement of the feedback mirror. In POF, the two orthogonally polarized lights will oscillate alternately. Strong mode competition can be observed, and it affects the phase difference between the two beams greatly. The theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed

  19. Simple and reusable fibre-to-chip interconnect with adjustable coupling eficiency

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Parriaux, Olivier M.; Kley, Ernst-Bernhard

    1997-01-01

    A simple, efficient and reusable fiber-to-chip interconnect is presented. The interconnect is based on a V-groove (wet- chemically etched) in silicon, combined with a loose-mode Si3N4-channel waveguide. The loose-mode waveguide is adiabatically tapered to the integrated optical (sensor) circuitry.

  20. Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects

    Science.gov (United States)

    Peter, Geoffrey John M.

    With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component. In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter. A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect

  1. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  2. 16-level differential phase shift keying (D16PSK) in direct detection optical communication systems

    DEFF Research Database (Denmark)

    Sambaraju, R.; Tokle, Torger; Jensen, J.B.

    2006-01-01

    Optical 16-level differential phase shift keying (D16PSK) carrying four bits for every symbol is proposed for direct detection optical communication systems. Transmitter and receiver schematics are presented, and the receiver sensitivity is discussed. We numerically investigate the impact...

  3. Nonlinear optics at the single-photon level inside a hollow core fiber

    DEFF Research Database (Denmark)

    Hofferberth, Sebastian; Peyronel, Thibault; Liang, Qiyu

    2011-01-01

    Cold atoms inside a hollow core fiber provide an unique system for studying optical nonlinearities at the few-photon level. Confinement of both atoms and photons inside the fiber core to a diameter of just a few wavelengths results in high electric field intensity per photon and large optical...

  4. Robust design of head interconnect for hard disk drive

    Science.gov (United States)

    Gao, X. K.; Liu, Q. H.; Liu, Z. J.

    2005-05-01

    Design of head interconnect is one of the important issues for hard disk drives with higher data rate and storage capacity. The impedance of interconnect and electromagnetic coupling influence the quality level of data communication. Thus an insightful study on how the trace configuration affects the impedance and crosstalk is necessary. An effective design approach based on Taguchi's robust design method is employed therefore in an attempt to realize impedance matching and crosstalk minimization with the effects of uncontrollable sources taken into consideration.

  5. A metallic buried interconnect process for through-wafer interconnection

    International Nuclear Information System (INIS)

    Ji, Chang-Hyeon; Herrault, Florian; Allen, Mark G

    2008-01-01

    In this paper, we present the design, fabrication process and experimental results of electroplated metal interconnects buried at the bottom of deep silicon trenches with vertical sidewalls. A manual spray-coating process along with a unique trench-formation process has been developed for the electroplating of a metal interconnection structure at the bottom surface of the deep trenches. The silicon etch process combines the isotropic dry etch process and conventional Bosch process to fabricate a deep trench with angled top-side edges and vertical sidewalls. The resulting trench structure, in contrast to the trenches fabricated by wet anisotropic etching, enables spray-coated photoresist patterning with good sidewall and top-side edge coverage while maintaining the ability to form a high-density array of deep trenches without excessive widening of the trench opening. A photoresist spray-coating process was developed and optimized for the formation of electroplating mold at the bottom of 300 µm deep trenches having vertical sidewalls. A diluted positive tone photoresist with relatively high solid content and multiple coating with baking between coating steps has been experimentally proven to provide high quality sidewall and edge coverage. To validate the buried interconnect approach, a three-dimensional daisy chain structure having a buried interconnect as the bottom connector and traces on the wafer surface as the top conductor has been designed and fabricated

  6. Cellular structures with interconnected microchannels

    Science.gov (United States)

    Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian

    2018-01-30

    A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to melt infiltration.

  7. Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system

    Science.gov (United States)

    Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail

    2018-05-01

    We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.

  8. Bi cluster-assembled interconnects produced using SU8 templates

    International Nuclear Information System (INIS)

    Partridge, J G; Matthewson, T; Brown, S A

    2007-01-01

    Bi clusters with an average diameter of 25 nm have been deposited from an inert gas aggregation source and assembled into thin-film interconnects which are formed between planar electrical contacts and supported on Si substrates passivated with Si 3 N 4 or thermally grown oxide. A layer of SU8 (a negative photoresist based on EPON SU-8 epoxy resin) is patterned using optical or electron-beam lithography, and it defines the position and dimensions of the cluster film. The conduction between the contacts is monitored throughout the deposition/assembly process, and subsequent I(V) characterization is performed in situ. Bi cluster-assembled interconnects have been fabricated with nanoscale widths and with up to 1:1 thickness:width aspect ratios. The conductivity of these interconnects has been increased, post-deposition, using a simple thermal annealing process

  9. Optical, gravitational, and kinesthetic determinants of judged eye level

    Science.gov (United States)

    Stoper, Arnold E.; Cohen, Malcolm M.

    1989-01-01

    Subjects judged eye level, defined in three distinct ways relative to three distinct reference planes: a gravitational horizontal, giving the gravitationally referenced eye level (GREL); a visible surface, giving the surface-referenced eye level (SREL); and a plane fixed with respect to the head, giving the head-referenced eye level (HREL). The information available for these judgements was varied by having the subjects view an illuminated target that could be placed in a box which: (1) was pitched at various angles, (2) was illuminated or kept in darkness, (3) was moved to different positions along the subject's head-to-foot body axis, and (4) was viewed with the subjects upright or reclining. The results showed: (1) judgements of GREL made in the dark were 2.5 deg lower than in the light, with a significantly greater variability; (2) judged GREL was shifted approximately half of the way toward SREL when these two eye levels did not coincide; (3) judged SREL was shifted about 12 percent of the way toward HREL when these two eye levels did not coincide, (4) judged HREL was shifted about half way toward SREL when these two eye level did not coincide and when the subject was upright (when the subject was reclining, HREL was shifted approx. 90 percent toward SREL); (5) the variability of the judged HREL in the dark was nearly twice as great with the subject reclining than with the subject upright. These results indicate that gravity is an important source of information for judgement of eye level. In the absence of information concerning the direction of gravity, the ability to judge HREL is extremely poor. A visible environment does not seem to afford precise information as to judgements of direction, but it probably does afford significant information as to the stability of these judgements.

  10. Fusion-bonded fluidic interconnects

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are

  11. Regulatory Issues Surrounding Merchant Interconnection

    International Nuclear Information System (INIS)

    Kuijlaars, Kees-Jan; Zwart, Gijsbert

    2003-11-01

    We discussed various issues concerning the regulatory perspective on private investment in interconnectors. One might claim that leaving investment in transmission infrastructure to competing market parties is more efficient than relying on regulated investment only (especially in the case of long (DC) lines connecting previously unconnected parts of the grids, so that externalities from e.g. loop flows do not play a significant role). We considered that some aspects of interconnection might reduce these market benefits. In particular, the large fixed costs of interconnection construction may lead to significant under investment (due to both first mover monopoly power and the fact that part of generation cost efficiencies realised by interconnection are not captured by the investor itself, and remain external to the investment decision). Second, merchant ownership restricts future opportunities for adaptation of regulation, as would be required e.g. for introduction of potentially more sophisticated methods of congestion management or market splitting. Some of the disadvantages of merchant investment may be mitigated however by a suitable regulatory framework, and we discussed some views in this direction. The issues we discussed are not intended to give a complete framework, and detailed regulation will certainly involve many more specific requirements. Areas we did not touch upon include e.g. the treatment of deep connection costs, rules for operation and maintenance of the line, and impact on availability of capacity on other interconnections

  12. Regulatory Issues Surrounding Merchant Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Kuijlaars, Kees-Jan; Zwart, Gijsbert [Office for Energy Regulation (DTe), The Hague (Netherlands)

    2003-11-01

    We discussed various issues concerning the regulatory perspective on private investment in interconnectors. One might claim that leaving investment in transmission infrastructure to competing market parties is more efficient than relying on regulated investment only (especially in the case of long (DC) lines connecting previously unconnected parts of the grids, so that externalities from e.g. loop flows do not play a significant role). We considered that some aspects of interconnection might reduce these market benefits. In particular, the large fixed costs of interconnection construction may lead to significant under investment (due to both first mover monopoly power and the fact that part of generation cost efficiencies realised by interconnection are not captured by the investor itself, and remain external to the investment decision). Second, merchant ownership restricts future opportunities for adaptation of regulation, as would be required e.g. for introduction of potentially more sophisticated methods of congestion management or market splitting. Some of the disadvantages of merchant investment may be mitigated however by a suitable regulatory framework, and we discussed some views in this direction. The issues we discussed are not intended to give a complete framework, and detailed regulation will certainly involve many more specific requirements. Areas we did not touch upon include e.g. the treatment of deep connection costs, rules for operation and maintenance of the line, and impact on availability of capacity on other interconnections.

  13. Local Network Wideband Interconnection Alternatives.

    Science.gov (United States)

    1984-01-01

    signal. 3.2.2 Limitations Although satellites offer the advantages of insensitivity to distance, point-to-multipoint communication capability and...Russell, the CATV franchisee for the town of Bedford, has not yit set rates for leasing channels on their network. If this network were interconnected

  14. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Hans Martin

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observ...

  15. Light Path Model of Fiber Optic Liquid Level Sensor Considering Residual Liquid Film on the Wall

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The working principle of the refractive-type fiber optic liquid level sensor is analyzed in detail based on the light refraction principle. The optic path models are developed in consideration of common simplification and the residual liquid film on the glass tube wall. The calculating formulae for the model are derived, constraint conditions are obtained, influencing factors are discussed, and the scopes and skills of application are analyzed through instance simulations. The research results are useful in directing the correct usage of the fiber optic liquid level sensor, especially in special cases, such as those involving viscous liquid in the glass tube monitoring.

  16. Oxygenation level and hemoglobin concentration in experimental tumor estimated by diffuse optical spectroscopy

    Science.gov (United States)

    Orlova, A. G.; Kirillin, M. Yu.; Volovetsky, A. B.; Shilyagina, N. Yu.; Sergeeva, E. A.; Golubiatnikov, G. Yu.; Turchin, I. V.

    2017-07-01

    Using diffuse optical spectroscopy the level of oxygenation and hemoglobin concentration in experimental tumor in comparison with normal muscle tissue of mice have been studied. Subcutaneously growing SKBR-3 was used as a tumor model. Continuous wave fiber probe diffuse optical spectroscopy system was employed. Optical properties extraction approach was based on diffusion approximation. Decreased blood oxygen saturation level and increased total hemoglobin content were demonstrated in the neoplasm. The main reason of such differences between tumor and norm was significant elevation of deoxyhemoglobin concentration in SKBR-3. The method can be useful for diagnosis of tumors as well as for study of blood flow parameters of tumor models with different angiogenic properties.

  17. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    International Nuclear Information System (INIS)

    Sabourin, D; Snakenborg, D; Dufva, M

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observation. The interconnection block method is scalable, flexible and supports high interconnection density. The average pressure limit of the interconnection block was near 5.5 bar and all individual results were well above the 2 bar threshold considered applicable to most microfluidic applications

  18. Encoding arbitrary grey-level optical landscapes for trapping and manipulation using GPC

    DEFF Research Database (Denmark)

    Alonzo, Carlo Amadeo; Rodrigo, Peter John; Palima, Darwin

    2007-01-01

    With the aid of phase-only spatial light modulators (SLM), generalized phase contrast (GPC) has been applied with great success to the projection of binary light patterns through arbitrary-NA microscope objectives for real-time three-dimensional manipulation of microscopic particles. Here, we...... review the analysis of the GPC method with emphasis on efficiently producing speckle-free two-dimensional grey-level light Patterns. Numerical simulations are applied to construct 8-bit grey-level optical potential landscapes with high fidelity and optical throughput via the GPC method. Three types...... of patterns were constructed: geometric block patterns, multi-level optical trap arrays, and optical obstacle arrays. Non-periodic patterns were accurately projected with an average of 80% diffraction efficiency. Periodic patterns yielded even higher diffraction efficiencies, averaging 94%, by the utilization...

  19. Fused Silica Final Optics for Inertial Fusion Energy: Radiation Studies and System-Level Analysis

    International Nuclear Information System (INIS)

    Latkowski, Jeffery F.; Kubota, Alison; Caturla, Maria J.; Dixit, Sham N.; Speth, Joel A.; Payne, Stephen A.

    2003-01-01

    The survivability of the final optic, which must sit in the line of sight of high-energy neutrons and gamma rays, is a key issue for any laser-driven inertial fusion energy (IFE) concept. Previous work has concentrated on the use of reflective optics. Here, we introduce and analyze the use of a transmissive final optic for the IFE application. Our experimental work has been conducted at a range of doses and dose rates, including those comparable to the conditions at the IFE final optic. The experimental work, in conjunction with detailed analysis, suggests that a thin, fused silica Fresnel lens may be an attractive option when used at a wavelength of 351 nm. Our measurements and molecular dynamics simulations provide convincing evidence that the radiation damage, which leads to optical absorption, not only saturates but that a 'radiation annealing' effect is observed. A system-level description is provided, including Fresnel lens and phase plate designs

  20. 47 CFR 90.477 - Interconnected systems.

    Science.gov (United States)

    2010-10-01

    ... part and medical emergency systems in the 450-470 MHz band, interconnection will be permitted only... operating on frequencies in the bands below 800 MHz are not subject to the interconnection provisions of...

  1. Experimental Comparison of 56 Gbit/s PAM-4 and DMT for Data Center Interconnect Applications

    DEFF Research Database (Denmark)

    Eiselt, Nicklas; Dochhan, Annika; Griesser, Helmut

    2016-01-01

    Four-level pulse amplitude modulation (PAM-4) and discrete multi-tone transmission (DMT) in combination with intensity modulation and direct-detection are two promising approaches for a low-power and low-cost solution for the next generation of data center interconnect applications. We experiment......Four-level pulse amplitude modulation (PAM-4) and discrete multi-tone transmission (DMT) in combination with intensity modulation and direct-detection are two promising approaches for a low-power and low-cost solution for the next generation of data center interconnect applications. We...... experimentally investigate and compare both modulation formats at a data rate of 56 Gb/s and a transmission wavelength of 1544 nm using the same experimental setup. We show that PAM-4 outperforms double sideband DMT and also vestigial sideband DMT for the optical back-to-back (b2b) case and also...... for a transmission distance of 80 km SSMF in terms of required OSNR at a FEC-threshold of 3.8e-3. However, it is also pointed out that both versions of DMT do not require any optical dispersion compensation to transmit over 80 km SSMF while this is essential for PAM-4. Thus, implementation effort and cost may...

  2. 25-Hydroxyvitamin D levels in acute monosymptomatic optic neuritis

    DEFF Research Database (Denmark)

    Pihl-Jensen, Gorm; Frederiksen, Jette Lautrup

    2015-01-01

    (1) predict risk of RRMS and (2) are associated with visual tests of ON severity. A cross-sectional study was conducted of mean 25HVITDL differences between ON (n = 164) and MS (n = 948) patients and of prevalence of 25HVITDL deficiency (sample t test, χ (2) test......). Associations between 25HVITDL and (1) clinical ON severity, (2) paraclinical findings suggestive of MS [logistic regression (LRA), Spearman correlation] and (3) hazard of MS development [Cox (C) RA] in ON patients were assessed. 25HVITDL were deseasonalized before analysis. The mean levels were 47.6 (ON.......031). Forty-one ON patients developed MS during the study. Multivariate CRA showed no effect on hazard of MS (HR: 0.991, p 0.284). No association was found between 25HVITDL and visual tests (acuity, contrast vision) or OCT RNFL or GCL thickness. The study indicates a high prevalence of 25HVITD deficiency...

  3. Controlling the optical bistability and transmission coefficient in a four-level atomic medium

    International Nuclear Information System (INIS)

    Asadpour, Seyyed Hossein; Eslami-Majd, Abdullah

    2012-01-01

    A novel four level atomic configuration is proposed for controlling the optical bistability and transmission coefficient with application on all-optical switching. Two circularly polarized components from a weak linearly-polarized probe beam are interacted separately by two transitions of this medium. A coherent coupling field has derived another atomic transition. It is demonstrated that the transmission coefficient of two orthogonally polarized beams at different frequencies can be achieved by adjusting the magnitude of the external magnetic field. It is found that the threshold of the optical bistability can be controlled by magnitude of the external magnetic field. Also, it is shown that optical bistability can be converted to optical multistability by switching the two orthogonally polarized beams. - Highlights: ► An inverted Y-type four level atomic system is proposed. ► Transmission coefficient can be controlled by a novel interesting parameter. ► Optical bistability and multistability can be achieved via external magnetic field. ► It is shown that our proposed model is suitable for all optical switching application.

  4. Fusion-bonded fluidic interconnects

    International Nuclear Information System (INIS)

    Fazal, I; Elwenspoek, M C

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are discussed in terms of the homogeneity and strength of fusion bond. High pressure testing shows that the bond strength is large enough for most applications of fluidic interconnects. The bond strength for 525 µm thick silicon, with glass tubes having an outer diameter of 6 mm and with a wall thickness of 2 mm, is more than 60 bars after annealing at a temperature of 800 °C

  5. System interconnection studies using WASP

    Energy Technology Data Exchange (ETDEWEB)

    Bayrak, Y [Turkish Electricity Generation and Transmission Corp., Ankara (Turkey)

    1997-09-01

    The aim of this paper is to describe the application of WASP as a modelling tool for determining the development of two electric systems with interconnections. A case study has been carried out to determine the possibilities of transfer of baseload energy between Turkey and a neighboring country. The objective of this case study is to determine the amount of energy that can be transferred, variations of Loss Probability (LOLP) and unserved energy, and the cost of additional generation with interconnection. The break-even cost will be determined to obtain the minimum charge rate at which TEAS (Turkish Electricity Generation-Transmission Corp.) needs to sell the energy in order to recover the costs. The minimum charge rate for both capacity and energy will be estimated without considering extra capacity additions, except for the ones needed by the Turkish system alone. (author). 2 figs, 3 tabs.

  6. Design and construction of an optical sensor for liquid level control

    International Nuclear Information System (INIS)

    Razani, M.; Golnabi, H.; Dabbaghian, M. H.; Dariani, R. S.; Vaziri, N.; Hojabri, A.

    2010-01-01

    Design and construction of an optical sensor for liquid level control is reported here. Operation of this sensor is based on the intensity modulation. The modulated light intensity is detected by total internal reflection in a prism. The variation of output intensity is measured by an optical detector and is monitored by a digital voltmeter. This optical fiber sensor is used for water level measurement in this experiment. For a white light source, the output voltage in the case of low water level is equal to 480 mV and when the water level reaches to prism reduced to 8 mV. Height measurement accuracy in this system is about ±1mm.

  7. Driving Interconnected Networks to Supercriticality

    Directory of Open Access Journals (Sweden)

    Filippo Radicchi

    2014-04-01

    Full Text Available Networks in the real world do not exist as isolated entities, but they are often part of more complicated structures composed of many interconnected network layers. Recent studies have shown that such mutual dependence makes real networked systems potentially exposed to atypical structural and dynamical behaviors, and thus there is an urgent necessity to better understand the mechanisms at the basis of these anomalies. Previous research has mainly focused on the emergence of atypical properties in relation to the moments of the intra- and interlayer degree distributions. In this paper, we show that an additional ingredient plays a fundamental role for the possible scenario that an interconnected network can face: the correlation between intra- and interlayer degrees. For sufficiently high amounts of correlation, an interconnected network can be tuned, by varying the moments of the intra- and interlayer degree distributions, in distinct topological and dynamical regimes. When instead the correlation between intra- and interlayer degrees is lower than a critical value, the system enters in a supercritical regime where dynamical and topological phases are no longer distinguishable.

  8. 18 CFR 292.306 - Interconnection costs.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any electric...

  9. Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, Apratim, E-mail: apratim.majumder@utah.edu; Wan, Xiaowen; Masid, Farhana; Menon, Rajesh [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Pollock, Benjamin J.; Andrew, Trisha L. [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Soppera, Olivier [Mulhouse Institute for Material Sciences, CNRS LRC 7228, BP2488, Mulhouse 68200 (France)

    2016-06-15

    Absorbance-Modulation-Optical Lithography (AMOL) has been previously demonstrated to be able to confine light to deep sub-wavelength dimensions and thereby, enable patterning of features beyond the diffraction limit. In AMOL, a thin photochromic layer that converts between two states via light exposure is placed on top of the photoresist layer. The long wavelength photons render the photochromic layer opaque, while the short-wavelength photons render it transparent. By simultaneously illuminating a ring-shaped spot at the long wavelength and a round spot at the short wavelength, the photochromic layer transmits only a highly confined beam at the short wavelength, which then exposes the underlying photoresist. Many photochromic molecules suffer from a giant mismatch in quantum yields for the opposing reactions such that the reaction initiated by the absorption of the short-wavelength photon is orders of magnitude more efficient than that initiated by the absorption of the long-wavelength photon. As a result, large intensities in the ring-shaped spot are required for deep sub-wavelength nanopatterning. In this article, we overcome this problem by using the long-wavelength photons to expose the photoresist, and the short-wavelength photons to confine the “exposing” beam. Thereby, we demonstrate the patterning of features as thin as λ/4.7 (137 nm for λ = 647 nm) using extremely low intensities (4-30 W/m{sup 2}, which is 34 times lower than that required in conventional AMOL). We further apply a rigorous model to explain our experiments and discuss the scope of the reverse-AMOL process.

  10. Two-level modulation scheme to reduce latency for optical mobile fronthaul networks.

    Science.gov (United States)

    Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung; Chang, Gee-Kung

    2016-10-31

    A system using optical two-level orthogonal-frequency-division-multiplexing (OFDM) - amplitude-shift-keying (ASK) modulation is proposed and demonstrated to reduce the processing latency for the optical mobile fronthaul networks. At the proposed remote-radio-head (RRH), the high data rate OFDM signal does not need to be processed, but is directly launched into a high speed photodiode (HSPD) and subsequently emitted by an antenna. Only a low bandwidth PD is needed to recover the low data rate ASK control signal. Hence, it is simple and provides low-latency. Furthermore, transporting the proposed system over the already deployed optical-distribution-networks (ODNs) of passive-optical-networks (PONs) is also demonstrated with 256 ODN split-ratios.

  11. Optical Resonance of A Three-Level System in Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Nguyen Van Hieu

    2017-11-01

    Full Text Available The optical resonance of a three-level system of the strongly correlated electrons in the twolevel semiconductor quantum dot interacting with the linearly polarized monochromatic electromagnetic radiation is studied. With the application of the Green function method the expressions of the state vectors and the energies of the stationary states of the system in the regime of the optical resonance are derived. The Rabi oscillations of the electron populations at different levels as well as the Rabi splitting of the peaks in the photon emission spectra are investigated. PACS numbers: 71.35.-y, 78.55.-m, 78.67.Hc

  12. A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding

    Directory of Open Access Journals (Sweden)

    David Sánchez Montero

    2012-05-01

    Full Text Available A low-cost intensity-based polymer optical fiber (POF sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S., and sensitivity around 0.5 V per bend are obtained. Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S.

  13. Generation adequacy and transmission interconnection in regional electricity markets

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Saguan, Marcelo; Finon, Dominique; Pignon, Virginie

    2009-01-01

    The power system capacity adequacy has public good features that cannot be entirely solved by electricity markets. Regulatory intervention is then necessary and established methods have been used to assess adequacy and help regulators to fix this market failure. In regional electricity markets, transmission interconnections play an important role in contributing to adequacy. However, the adequacy problem and related policy are typically considered at a national level. This paper presents a simple model to study how the interconnection capacity interacts with generation adequacy. First results indicate that increasing interconnection capacity between systems improves adequacy up to a certain level; further increases do not procure additional adequacy improvements. Furthermore, besides adequacy improvement, increasing transmission capacity under asymmetric adequacy criteria or national system characteristics could create several concerns about externalities. These results imply that regional coordination of national adequacy policies is essential to internalise adequacy of cross-border effects.

  14. Epidemic spreading on interconnected networks.

    Science.gov (United States)

    Saumell-Mendiola, Anna; Serrano, M Ángeles; Boguñá, Marián

    2012-08-01

    Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.

  15. Interconnect mechanisms in microelectronic packaging

    Science.gov (United States)

    Roma, Maria Penafrancia C.

    alloy showed differences in adhesion strength and IMC formation. Bond strength by wire pull testing showed the 95Ag alloy with higher values while shear bond testing showed the 88Ag higher bond strength. Use of Cu pillars in flip chips and eutectic bonding in wafer level chip scale packages are direct consequences of diminishing interconnect dimension as a result of the drive for miniaturization. The combination of Cu-Sn interdiffusion, Kirkendall mechanism and heterogeneous vacancy precipitation are the main causes of IMC and void formation in Cu pillar - Sn solder - Cu lead frame sandwich structure. However, adding a Ni barrier agent showed less porous IMC layer as well as void formation as a result of the modified Cu and Sn movement well as the void formation. Direct die to die bonding using Al-Ge eutectic bonds is necessary when 3D integration is needed to reduce the footprint of a package. Hermeticity and adhesion strength are a function of the Al/Ge thickness ratio, bonding pressure, temperature and time. Scanning Electron Microscope (SEM) and Focused Ion Beam (FIB) allowed imaging of interfacial microstructures, porosity, grain morphology while Scanning Transmission Electron microscope (STEM) provided diffusion profile and confirmed interdiffusion. Ion polishing technique provided information on porosity and when imaged using backscattered mode, grain structure confirmed mechanical deformation of the bonds. Measurements of the interfacial bond strength are made by wire pull tests and ball shear tests based on existing industry standard tests. However, for the Al-Ge eutectic bonds, no standard strength is available so a test is developed using the stud pull test method using the Dage 4000 Plus to yield consistent results. Adhesion strengths of 30-40 MPa are found for eutectic bonded packages however, as low as 20MPa was measured in low temperature bonded areas.

  16. Power inverter with optical isolation

    Science.gov (United States)

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  17. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    Science.gov (United States)

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  18. Cross-border versus cross-sector interconnectivity in renewable energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2017-01-01

    renewable energy, the energy system has to be more flexible in terms of decoupling demand and production. This paper investigates two potential ways to increase flexibility. The first is the interconnection between energy systems, for instance between two countries, labelled as cross-border interconnection...... systems that represent Northern and Southern Europe. Both systems go through three developmental steps that increase the cross-sector interconnectivity. At each developmental step an increasing level of transmission capacities is examined to identify the benefits of cross-border interconnectivity...

  19. Interconnect fatigue design for terrestrial photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  20. Visualizing interconnections among climate risks

    Science.gov (United States)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is

  1. Interconnect rise time in superconducting integrating circuits

    International Nuclear Information System (INIS)

    Preis, D.; Shlager, K.

    1988-01-01

    The influence of resistive losses on the voltage rise time of an integrated-circuit interconnection is reported. A distribution-circuit model is used to present the interconnect. Numerous parametric curves are presented based on numerical evaluation of the exact analytical expression for the model's transient response. For the superconducting case in which the series resistance of the interconnect approaches zero, the step-response rise time is longer but signal strength increases significantly

  2. Warpage Characteristics and Process Development of Through Silicon Via-Less Interconnection Technology.

    Science.gov (United States)

    Shen, Wen-Wei; Lin, Yu-Min; Wu, Sheng-Tsai; Lee, Chia-Hsin; Huang, Shin-Yi; Chang, Hsiang-Hung; Chang, Tao-Chih; Chen, Kuan-Neng

    2018-08-01

    In this study, through silicon via (TSV)-less interconnection using the fan-out wafer-level-packaging (FO-WLP) technology and a novel redistribution layer (RDL)-first wafer level packaging are investigated. Since warpage of molded wafer is a critical issue and needs to be optimized for process integration, the evaluation of the warpage issue on a 12-inch wafer using finite element analysis (FEA) at various parameters is presented. Related parameters include geometric dimension (such as chip size, chip number, chip thickness, and mold thickness), materials' selection and structure optimization. The effect of glass carriers with various coefficients of thermal expansion (CTE) is also discussed. Chips are bonded onto a 12-inch reconstituted wafer, which includes 2 RDL layers, 3 passivation layers, and micro bumps, followed by using epoxy molding compound process. Furthermore, an optical surface inspector is adopted to measure the surface profile and the results are compared with the results from simulation. In order to examine the quality of the TSV-less interconnection structure, electrical measurement is conducted and the respective results are presented.

  3. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  4. Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

    International Nuclear Information System (INIS)

    Slavcheva, G.; Hess, O.

    2005-01-01

    We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms

  5. Electrical and optical deep level spectroscopy on Os doped p-InP

    International Nuclear Information System (INIS)

    Parveen, S.; Zafar, N.; Khan, A.; Qureshi, U.S.; Iqbal, M.Z.

    1997-01-01

    Transition metal (TM) impurities are introduced for obtaining semi insulating (III-V) compound semiconductors used as base material for electronic and optoelectronic devices. TM doping introduces near mid gap levels which are used to compensate shallow level donors and acceptors in (III-V) compound semiconductors. The study of electrical properties of heavier transition metals in InP has been turned to an active field of research owing to their potential to produce thermally stable semi insulating substrate materials. Osmium has been tried for this purpose in our work. InP: Os samples have been grown by low pressure metalorganic chemical vapour deposition (LP-MOCVD). Optical and electrical Deep Level Transient Spectroscopy Techniques have been used to characterise osmium related deep level defects in the p-type samples. Three majority carrier (Hole) emitting levels OsA, OsB, OsC and one minority carrier (electron) emitting level Osl are observed in the DLTS and ODLTS measurements on p-type InP:Os. ON optical injection, only Osl appears and all other majority carrier emitting levels disappear dramatically. Special emphasis is given to the detailed comparison by ODLTS and EDLTS, which yields important information on the relative capture cross-sections of Osmium induced levels in p-InP. (author)

  6. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug 'n' play functionality

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Bundgaard, Frederik; Geschke, Oliver

    2008-01-01

    A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for interconn...... external metal ferrules and the system. Theoretical calculations are made to dimension and model the integrated fluidic interconnection. Leakage tests are performed on the interconnections, in order to experimentally confirm the model, and detect its limits....

  7. All-Optical Network Subsystems Using Integrated SOA-Based Optical Gates and Flip-Flops for Label-Swapped Netorks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Holm-Nielsen, Pablo Villanueva; Kehayas, E.

    2006-01-01

    In this letter, we demonstrate that all-optical network subsystems, offering intelligence in the optical layer, can be constructed by functional integration of integrated all-optical logic gates and flip-flops. In this context, we show 10-Gb/s all-optical 2-bit label address recognition......-level advantages of these all-optical subsystems combined with their realization with compact integrated devices, suggest that they are strong candidates for future packet/label switched optical networks....... by interconnecting two optical gates that perform xor operation on incoming optical labels. We also demonstrate 40-Gb/s all-optical wavelength-switching through an optically controlled wavelength converter, consisting of an integrated flip-flop prototype device driven by an integrated optical gate. The system...

  8. Interconnection blocks with minimal dead volumes permitting planar interconnection to thin microfluidic devices

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Martin

    2010-01-01

    We have previously described 'Interconnection Blocks' which are re-usable, non-integrated PDMS blocks which allowing multiple, aligned and planar microfluidic interconnections. Here, we describe Interconnection Block versions with zero dead volumes that allow fluidic interfacing to flat or thin s...

  9. Design of an Electro-Optic Modulator for High Speed Communications

    Science.gov (United States)

    Espinoza, David

    The telecommunications and computer technology industries have been requiring higher communications speeds at all levels for devices, components and interconnected systems. Optical devices and optical interconnections are a viable alternative over other traditional technologies such as copper-based interconnections. Latency reductions can be achieved through the use of optical interconnections. Currently, a particular architecture for optical interconnections is being studied at the University of Colorado at Boulder in the EMT/NANO project, called Broadcast Optical Interconnects for Global Communication in Many-Core Chip Multiprocessor. As with most types of networks, including optical networks, one of the most important components are modulators. Therefore adequate design and fabrication techniques for modulators contribute to higher modulation rates which lead to improve the efficiency and reductions in the latency of the optical network. Electro-optical modulators are presented in this study as an alternative to achieve this end. In recent years, nonlinear optical (NLO) materials have been used for the fabrication of high-speed electro-optical modulators. Polymers doped with chromophores are an alternative among NLO materials because they can develop large electro-optic coefficients and low dielectric constants. These two factors are critical for achieving high-speed modulation rates. These polymer-based electro-optical modulators can be fabricated using standard laboratory techniques, such as polymer spin-coating onto substrates, UV bleaching to achieve a refractive index variation and poling techniques to align the chromophores in cured polymers. The design of the electro-optic modulators require the use of the optical parameters of the materials to be used. Therefore the characterization of these materials is a required previous step. This characterization is performed by the fabrication of chromophores-doped polymer samples and conducting transmission and

  10. Network interconnections: an architectural reference model

    NARCIS (Netherlands)

    Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.

    1985-01-01

    One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for

  11. Epidemics in interconnected small-world networks

    NARCIS (Netherlands)

    Liu, M.; Li, D.; Qin, P.; Liu, C.; Wang, H.; Wang, F.

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks

  12. Colligation, Or the Logical Inference of Interconnection

    DEFF Research Database (Denmark)

    Falster, Peter

    1998-01-01

    laws or assumptions. Yet interconnection as an abstract concept seems to be without scientific underpinning in pure logic. Adopting a historical viewpoint, our aim is to show that the reasoning of interconnection may be identified with a neglected kind of logical inference, called "colligation...

  13. Colligation or, The Logical Inference of Interconnection

    DEFF Research Database (Denmark)

    Franksen, Ole Immanuel; Falster, Peter

    2000-01-01

    laws or assumptions. Yet interconnection as an abstract concept seems to be without scientific underpinning in oure logic. Adopting a historical viewpoint, our aim is to show that the reasoning of interconnection may be identified with a neglected kind of logical inference, called "colligation...

  14. The Impact of Subsampling on MODIS Level-3 Statistics of Cloud Optical Thickness and Effective Radius

    Science.gov (United States)

    Oreopoulos, Lazaros

    2004-01-01

    The MODIS Level-3 optical thickness and effective radius cloud product is a gridded l deg. x 1 deg. dataset that is derived from aggregation and subsampling at 5 km of 1 km, resolution Level-2 orbital swath data (Level-2 granules). This study examines the impact of the 5 km subsampling on the mean, standard deviation and inhomogeneity parameter statistics of optical thickness and effective radius. The methodology is simple and consists of estimating mean errors for a large collection of Terra and Aqua Level-2 granules by taking the difference of the statistics at the original and subsampled resolutions. It is shown that the Level-3 sampling does not affect the various quantities investigated to the same degree, with second order moments suffering greater subsampling errors, as expected. Mean errors drop dramatically when averages over a sufficient number of regions (e.g., monthly and/or latitudinal averages) are taken, pointing to a dominance of errors that are of random nature. When histograms built from subsampled data with the same binning rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The results in this paper provide guidance to users of MODIS Level-3 optical thickness and effective radius cloud products on the range of errors due to subsampling they should expect and perhaps account for, in scientific work with this dataset. In general, subsampling errors should not be a serious concern when moderate temporal and/or spatial averaging is performed.

  15. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  16. Amplification without inversion, fast light and optical bistability in a duplicated two-level system

    International Nuclear Information System (INIS)

    Ebrahimi Zohravi, Lida; Vafafard, Azar; Mahmoudi, Mohammad

    2014-01-01

    The optical properties of a weak probe field in a duplicated two-level system are investigated in multi-photon resonance (MPR) condition and beyond it. It is shown that by changing the relative phase of applied fields, the absorption switches to the amplification without inversion in MPR condition. By applying the Floquet decomposition to the equations of motion beyond MPR condition, it is shown that the phase-dependent behavior is valid only in MPR condition. Moreover, it is demonstrated that the group velocity of light pulse can be controlled by the intensity of the applied fields and the gain-assisted superluminal light propagation (fast light) is obtained in this system. In addition, the optical bistability (OB) behavior of the system is studied beyond MPR condition. We apply an indirect incoherent pumping field to the system and it is found that the group velocity and OB behavior of the system can be controlled by the incoherent pumping rate. - Highlights: • We studied the optical properties of DTL system under MPR condition and beyond it. • By changing the relative phase, the absorption switches to the amplification without inversion in MPR condition. • The gain-assisted superluminal light propagation (fast light) is obtained in this system. • The optical bistability (OB) behavior of the system is studied beyond MPR condition. • The incoherent pumping rate has a major role in controlling the group velocity and OB behavior of the system

  17. A design of optical modulation system with pixel-level modulation accuracy

    Science.gov (United States)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  18. Algorithm for Optimizing Bipolar Interconnection Weights with Applications in Associative Memories and Multitarget Classification

    Science.gov (United States)

    Chang, Shengjiang; Wong, Kwok-Wo; Zhang, Wenwei; Zhang, Yanxin

    1999-08-01

    An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.

  19. Monitoring of glucose levels in mouse blood with noninvasive optical methods

    International Nuclear Information System (INIS)

    Ullah, H; Ikram, M; Ahmed, E

    2014-01-01

    We report the quantification/monitoring of glucose levels in a blood sample using optical diffuse reflectance (ODR) underlying variations in optical parameters with a white light source (at peak wavelength ∼600 nm and range 450–850 nm) and in blood in vivo using M-mode optical coherence tomography (OCT) in terms of the translational diffusion coefficient (D T ). In the ODR experiments, we have investigated two types of mono-dispersive particles, i.e. polystyrene microspheres (PMSs) with diameters of 1.4 μm (variable concentrations) and 2.6 μm (fixed concentration) in a water phantom by observing changes in the reduced scattering coefficient. We believe that these differences in optical properties will be helpful for the understanding and optimal use of laser applications in blood glucometry without piercing the skin. In the OCT experiments, this idea of glucose monitoring was applied on an in vivo normal mouse without injection of glucose intravenously to provide the threshold levels by envisioning/identifying a blood vessel by speckle variance (SV-OCT) using a dorsal skinfold mouse windows chamber model. We report an average value of translation decorrelation time τ T = 41.18 ± 1.92 ms and D T = 8.90 × 10 −14  m 2  s −1 underlying the dynamic light scattering (DLS). Our results have a potential application in the quantification of higher glucose levels in vivo administrated intravenously. (paper)

  20. Shallow Levels Characterization in Epitaxial GaAs by Acousto-Optic Reflectance Shallow Levels Characterization in Epitaxial GaAs by Acousto-Optic Reflectance

    Directory of Open Access Journals (Sweden)

    O. G. Ibarra-Manzano

    2012-02-01

    Full Text Available Optical spectra of light reflection are detected under an influence of ultrasonic wave (UWon a GaAs wafer. The differential spectrum is calculated as a difference between those taken under UW and without that influence on a sample. This acousto-optic differential reflectance(AODR spectrum contains some bands that represent the energetic levels of the shallow centers in a sample. A physical basis of this technique is related to a perturbation of local states by UW. Here, a method is developed for characterization of local states at the surfaces and interfaces in crystals and low-dimensional epitaxial structures based on microelectronics materials. A theoretical model is presented to explain AODR spectra. Also, experiments using epitaxial GaAs structures doped by Te were made. Finally, theoretical and experimental results show that acousto-optic reflectance is an effective tool for characterization of shallow trapping centers in epitaxial semiconductor structures.En este trabajo, utilizamos el espectro de la luz reflejada en una muestra de Arsenuro de Galio (GaAs bajo la influencia de una onda ultrasónica. El diferencial espectral es calculado como una diferencia entre el espectro del material obtenido bajo la influencia del ultrasonido y aquél obtenido sin dicha influencia. Este diferencial de reflectancia espectral acusto-óptico (AODR contiene algunas bandas que representan los niveles energéticos de los centros en la superficie de la muestra. Esta técnica está basada en la perturbación de los estados locales generada por el ultrasonido. Particularmente, este trabajo presenta un método para caracterizar los estados locales en la superficie y las interfaces en los cristales, así como estructuras epiteliales de baja dimensión basadas en materiales semiconductores. Para ello, se presenta un modelo teórico para explicar dicho espectro de reflectancia diferencial (AODR. También se realizaron experimentos con estructuras de GaAs epitelial

  1. Multiple-aperture optical design for micro-level cameras using 3D-printing method

    Science.gov (United States)

    Peng, Wei-Jei; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Lin, Wen-Lung; Yu, Zong-Ru; Chou, Hsiao-Yu; Chen, Fong-Zhi; Fu, Chien-Chung; Wu, Chong-Syuan; Huang, Chao-Tsung

    2018-02-01

    The design of the ultra miniaturized camera using 3D-printing technology directly printed on to the complementary metal-oxide semiconductor (CMOS) imaging sensor is presented in this paper. The 3D printed micro-optics is manufactured using the femtosecond two-photon direct laser writing, and the figure error which could achieve submicron accuracy is suitable for the optical system. Because the size of the micro-level camera is approximately several hundreds of micrometers, the resolution is reduced much and highly limited by the Nyquist frequency of the pixel pitch. For improving the reduced resolution, one single-lens can be replaced by multiple-aperture lenses with dissimilar field of view (FOV), and then stitching sub-images with different FOV can achieve a high resolution within the central region of the image. The reason is that the angular resolution of the lens with smaller FOV is higher than that with larger FOV, and then the angular resolution of the central area can be several times than that of the outer area after stitching. For the same image circle, the image quality of the central area of the multi-lens system is significantly superior to that of a single-lens. The foveated image using stitching FOV breaks the limitation of the resolution for the ultra miniaturized imaging system, and then it can be applied such as biomedical endoscopy, optical sensing, and machine vision, et al. In this study, the ultra miniaturized camera with multi-aperture optics is designed and simulated for the optimum optical performance.

  2. Upgrade of the cathode strip chamber level 1 trigger optical links at CMS

    International Nuclear Information System (INIS)

    Ecklund, K; Liu, J; Matveev, M; Padley, P; Madorsky, A

    2012-01-01

    At the Large Hadron Collider (LHC) at CERN, the CMS experiment's Level 1 Trigger system for the endcap Cathode Strip Chambers (CSC) has 180 optical links to transmit Level 1 trigger primitives from 60 peripheral crates to the CSC Track Finder (CSCTF) which reconstructs muon candidates. Currently there is a limit of 3 trigger primitives per crate serving a cluster of 9 chambers. With the anticipated LHC luminosity increase up to 10 35 cm −2 s −1 at full energy of 7 TeV/beam the Muon Port Card (MPC), which transmits the primitives, the receiver in the CSCTF (Sector Processor) and the optical transmission system itself need to be upgraded. At the same time it is very desirable to preserve all the old optical links intact for compatibility with the present Track Finder during transition period. We present here the results of our efforts in the past two years to upgrade the MPC board, including the hardware developments, data transmission tests and latency measurements.

  3. Effects of advanced process approaches on electromigration degradation of Cu on-chip interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.A.

    2007-07-12

    This thesis provides a methodology for the investigation of electromigration (EM) in Cu-based interconnects. An experimental framework based on in-situ scanning electron microscopy (SEM) investigations was developed for that purpose. It is capable to visualize the EM-induced void formation and evolution in multi-level test structures in real time. Different types of interconnects were investigated. Furthermore, stressed and unstressed samples were studied applying advanced physical analysis techniques in order to obtain additional information about the microstructure of the interconnects as well as interfaces and grain boundaries. These data were correlated to the observed degradation phenomena. Correlations of the experimental results to recently established theoretical models were highlighted. Three types of Cu-based interconnects were studied. Pure Cu interconnects were compared to Al-alloyed (CuAl) and CoWP-coated interconnects. The latter two represent potential approaches that address EM-related reliability concerns. It was found that in such interconnects the dominant diffusion path is no longer the Cu/capping layer interface for interconnects as in pure Cu interconnects. Instead, void nucleation occurs at the bottom Cu/barrier interface with significant effects from grain boundaries. Moreover, the in-situ investigations revealed that the initial void nucleation does not occur at the cathode end of the lines but several micrometers away from it. The mean times-to-failure of CuAl and CoWP-coated interconnects were increased by at least one order of magnitude compared to Cu interconnects. The improvements were attributed to the presence of foreign metal atoms at the Cu/capping layer interface. Post-mortem EBSD investigations were used to reveal the microstructure of the tested samples. The data were correlated to the in-situ observations. (orig.)

  4. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  5. Optical bistability in the oscillation of an inhomogeneously broadened quasi-three-level laser

    International Nuclear Information System (INIS)

    Liu, Junhai; Tian, Xueping

    2013-01-01

    A theoretical modeling analysis is presented to study the optical bistability exhibited in the oscillation of an inhomogeneously broadened quasi-three-level laser. All the major characteristics of optical bistability depend on two normalized parameters, f and x a , which are defined by f = I sat,a /I sat,m and x a = 2α a0 p a /δ and are related to measurable properties of the laser medium. In comparison with the case of a homogeneously broadened laser, the essential condition for the occurrence of such bistability, f a /(x a + 1), turns out to be the same, whereas the intensities at the up- and down-thresholds are substantially increased and the bistability range is reduced. (paper)

  6. Inversion of double-difference measurements from optical levelling for the Groningen gas field

    Directory of Open Access Journals (Sweden)

    P. A. Fokker

    2015-11-01

    Full Text Available Hydrocarbon extraction lead to compaction of the gas reservoir which is visible as subsidence on the surface. Subsidence measurements can therefore be used to better estimate reservoir parameters. Total subsidence is derived from the result of the measurement of height differences between optical benchmarks. The procedure from optical height difference measurements to absolute subsidence is an inversion, and the result is often used as an input for consequent inversions on the reservoir. We have used the difference measurements directly to invert for compaction of the Groningen gas reservoir in the Netherlands. We have used a linear inversion exercise to update an already existing reservoir compaction model of the field. This procedure yielded areas of increased and decreased levels of compaction compared to the existing compaction model in agreement with observed discrepancies in porosity and aquifer activity.

  7. Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities

    Science.gov (United States)

    Kowligy, Abijith S.

    Over the last two decades, the emergence of quantum information science has uncovered many practical applications in areas such as communications, imaging, and sensing where harnessing quantum features of Nature provides tremendous benefits over existing methods exploiting classical physical phenomena. In this effort, one of the frontiers of research has been to identify and utilize quantum phenomena that are not susceptible to environmental and parasitic noise processes. Quantum photonics has been at the forefront of these studies because it allows room-temperature access to its inherently quantum-mechanical features, and allows leveraging the mature telecommunication industry. Accompanying the weak environmental influence, however, are also weak optical nonlinearities. Efficient nonlinear optical interactions are indispensible for many of the existing protocols for quantum optical computation and communication, e.g. high-fidelity entangling quantum logic gates rely on large nonlinear responses at the one- or few-photon-level. While this has been addressed to a great extent by interfacing photons with single quantum emitters and cold atomic gases, scalability has remained elusive. In this work, we identify the macroscopic second-order nonlinear polarization as a robust platform to address this challenge, and utilize the recent advances in the burgeoning field of optical microcavities to enhance this nonlinear response. In particular, we show theoretically that by using the quantum Zeno effect, low-noise, single-photon-level optical nonlinearities can be realized in lithium niobate whispering-gallery-mode microcavities, and present experimental progress toward this goal. Using the measured strength of the second-order nonlinear response in lithium niobate, we modeled the nonlinear system in the strong coupling regime using the Schrodinger picture framework and theoretically demonstrated that the single-photon-level operation can be observed for cavity lifetimes in

  8. Continuous Fuel Level Sensor Based on Spiral Side-Emitting Optical Fiber

    Directory of Open Access Journals (Sweden)

    Chengrui Zhao

    2012-01-01

    Full Text Available A continuous fuel level sensor using a side-emitting optical fiber is introduced in this paper. This sensor operates on the modulation of the light intensity in fiber, which is caused by the cladding’s acceptance angle change when it is immersed in fuel. The fiber is bent as a spiral shape to increase the sensor’s sensitivity by increasing the attenuation coefficient and fiber’s submerged length compared to liquid level. The attenuation coefficients of fiber with different bent radiuses in the air and water are acquired through experiments. The fiber is designed as a spiral shape with a steadily changing slope, and its response to water level is simulated. The experimental results taken in water and aviation kerosene demonstrate a performance of 0.9 m range and 10 mm resolution.

  9. Deep-level optical spectroscopy investigation of N-doped TiO2 films

    International Nuclear Information System (INIS)

    Nakano, Yoshitaka; Morikawa, Takeshi; Ohwaki, Takeshi; Taga, Yasunori

    2005-01-01

    N-doped TiO 2 films were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 deg. C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined from x-ray photoelectron spectroscopy measurements. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at ∼1.18 and ∼2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. Additionally, the 2.48 eV band is newly introduced by the N doping and contributes to band-gap narrowing by mixing with the O 2p valence band

  10. SSC [Superconducting Super Collider] magnet mechanical interconnections

    International Nuclear Information System (INIS)

    Bossert, R.C.; Niemann, R.C.; Carson, J.A.; Ramstein, W.L.; Reynolds, M.P.; Engler, N.H.

    1989-03-01

    Installation of superconducting accelerator dipole and quadrupole magnets and spool pieces in the SSC tunnel requires the interconnection of the cryostats. The connections are both of an electrical and mechanical nature. The details of the mechanical connections are presented. The connections include piping, thermal shields and insulation. There are seven piping systems to be connected. These systems must carry cryogenic fluids at various pressures or maintain vacuum and must be consistently leak tight. The interconnection region must be able to expand and contract as magnets change in length while cooling and warming. The heat leak characteristics of the interconnection region must be comparable to that of the body of the magnet. Rapid assembly and disassembly is required. The magnet cryostat development program is discussed. Results of quality control testing are reported. Results of making full scale interconnections under magnet test situations are reviewed. 11 figs., 4 tabs

  11. The Interconnections of the LHC Cryomagnets

    CERN Document Server

    Jacquemod, A; Skoczen, Blazej; Tock, J P

    2001-01-01

    The main components of the LHC, the next world-class facility in high-energy physics, are the twin-aperture high-field superconducting cryomagnets to be installed in the existing 26.7-km long tunnel. After installation and alignment, the cryomagnets have to be interconnected. The interconnections must ensure the continuity of several functions: vacuum enclosures, beam pipe image currents (RF contacts), cryogenic circuits, electrical power supply, and thermal insulation. In the machine, about 1700 interconnections between cryomagnets are necessary. The interconnections constitute a unique system that is nearly entirely assembled in the tunnel. For each of them, various operations must be done: TIG welding of cryogenic channels (~ 50 000 welds), induction soldering of main superconducting cables (~ 10 000 joints), ultrasonic welding of auxiliary superconducting cables (~ 20 000 welds), mechanical assembly of various elements, and installation of the multi-layer insulation (~ 200 000 m2). Defective junctions cou...

  12. Epidemics in interconnected small-world networks.

    Science.gov (United States)

    Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  13. Epidemics in interconnected small-world networks.

    Directory of Open Access Journals (Sweden)

    Meng Liu

    Full Text Available Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  14. Optical bistability and multistability in a three-level Δ-type atomic system under the nonresonant condition

    International Nuclear Information System (INIS)

    Ai-Xi, Chen; Zhi-Ping, Wang; De-Hai, Chen; Yan-Qiu, Xu

    2009-01-01

    Under a nonresonant condition, we theoretically investigate hybrid absorptive-dispersive optical bistability and multistability behaviours in a three-level Δ-type system by using a microwave field to drive a hyperfine transition between two upper excited states inside a unidirectional ring cavity. We find that the optical bistability and multistability behaviours can be controlled by adjusting the intensity of the microwave field or the intensity of the coherent coupling field. Furthermore, our studies show an interesting phenomenon of the transition from the optical bistability to the optical multistability only by changing the negative detuning of the coupling field into the positive detuning of the coupling field. (classical areas of phenomenology)

  15. Influence of Fano interference and incoherent processes on optical bistability in a four-level quantum dot nanostructure

    International Nuclear Information System (INIS)

    Hossein Asadpour, Seyyed; Solookinejad, G; Panahi, M; Ahmadi Sangachin, E

    2016-01-01

    Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily. (paper)

  16. AN AUTOMATIC OPTICAL AND SAR IMAGE REGISTRATION METHOD USING ITERATIVE MULTI-LEVEL AND REFINEMENT MODEL

    Directory of Open Access Journals (Sweden)

    C. Xu

    2016-06-01

    Full Text Available Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.

  17. Continuous liquid level detection based on two parallel plastic optical fibers in a helical structure

    Science.gov (United States)

    Zhang, Yingzi; Hou, Yulong; Zhang, Yanjun; Hu, Yanjun; Zhang, Liang; Gao, Xiaolong; Zhang, Huixin; Liu, Wenyi

    2018-02-01

    A simple and low-cost continuous liquid-level sensor based on two parallel plastic optical fibers (POFs) in a helical structure is presented. The change in the liquid level is determined by measuring the side-coupling power in the passive fiber. The side-coupling ratio is increased by just filling the gap between the two POFs with ultraviolet-curable optical cement, making the proposed sensor competitive. The experimental results show that the side-coupling power declines as the liquid level rises. The sensitivity and the measurement range are flexible and affected by the geometric parameters of the helical structure. A higher sensitivity of 0.0208 μW/mm is acquired for a smaller curvature radius of 5 mm, and the measurement range can be expanded to 120 mm by enlarging the screw pitch to 40 mm. In addition, the reversibility and temperature dependence are studied. The proposed sensor is a cost-effective solution offering the advantages of a simple fabrication process, good reversibility, and compensable temperature dependence.

  18. Fuel level sensor based on polymer optical fiber Bragg gratings for aircraft applications

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Sáez-Rodríguez, D.

    2016-01-01

    on capacitive, ultrasonic and electric techniques, however they suffer from intrinsic safety concerns in explosive environments combined with issues relating to reliability and maintainability. In the last few years, optical fiber liquid level sensors (OFLLSs) have been reported to be safe and reliable...... in diaphragms is investigated in detail. The mPOFBGs are embedded in two different types of diaphragms and their performance is investigated with aviation fuel for the first time, in contrast to our previous works, where water was used. Our new system exhibits a high performance when compared with other...

  19. Optical dating results of beachrock, eolic dunes and sediments applied to sea-level changes study

    International Nuclear Information System (INIS)

    Tatumi, S.H.; Kowata, E.A.; Gozzi, G.; Kassab, L.R.P.; Suguio, K.; Barreto, A.M.F.; Bezerra, F.H.R.

    2003-01-01

    Quartz and feldspar crystals were selected from the samples as eolic dunes, beach-rock and marine terraces, all collected in the coast area of Paraiba State, located in northeastern Brazil, in order to obtain ages of deposition of the sediments. It is a systematic study in the area. The results of the ages will be used in local sea-level changes study and a correlation between highstands of marine oxygen-isotopes stages will be made. Optically stimulated luminescence and thermoluminescence have been measured and the regeneration method with multiple aliquot protocol was applied to obtain the paleodose values. Preliminaries ages spanning 3.2-229 kyr were evaluated

  20. Optical dating results of beachrock, eolic dunes and sediments applied to sea-level changes study

    Energy Technology Data Exchange (ETDEWEB)

    Tatumi, S.H. E-mail: tatumi@fatecsp.br; Kowata, E.A.; Gozzi, G.; Kassab, L.R.P.; Suguio, K.; Barreto, A.M.F.; Bezerra, F.H.R

    2003-05-01

    Quartz and feldspar crystals were selected from the samples as eolic dunes, beach-rock and marine terraces, all collected in the coast area of Paraiba State, located in northeastern Brazil, in order to obtain ages of deposition of the sediments. It is a systematic study in the area. The results of the ages will be used in local sea-level changes study and a correlation between highstands of marine oxygen-isotopes stages will be made. Optically stimulated luminescence and thermoluminescence have been measured and the regeneration method with multiple aliquot protocol was applied to obtain the paleodose values. Preliminaries ages spanning 3.2-229 kyr were evaluated.

  1. Ultra-High Capacity Silicon Photonic Interconnects through Spatial Multiplexing

    Science.gov (United States)

    Chen, Christine P.

    The market for higher data rate communication is driving the semiconductor industry to develop new techniques of writing at smaller scales, while continuing to scale bandwidth at low power consumption. Silicon photonic (SiPh) devices offer a potential solution to the electronic interconnect bandwidth bottleneck. SiPh leverages the technology commensurate of decades of fabrication development with the unique functionality of next-generation optical interconnects. Finer fabrication techniques have allowed for manufacturing physical characteristics of waveguide structures that can support multiple modes in a single waveguide. By refining modal characteristics in photonic waveguide structures, through mode multiplexing with the asymmetric y-junction and microring resonator, higher aggregate data bandwidth is demonstrated via various combinations of spatial multiplexing, broadening applications supported by the integrated platform. The main contributions of this dissertation are summarized as follows. Experimental demonstrations of new forms of spatial multiplexing combined together exhibit feasibility of data transmission through mode-division multiplexing (MDM), mode-division and wavelength-division multiplexing (MDM-WDM), and mode-division and polarization-division multiplexing (MDM-PDM) through a C-band, Si photonic platform. Error-free operation through mode multiplexers and demultiplexers show how data can be viably scaled on multiple modes and with existing spatial domains simultaneously. Furthermore, we explore expanding device channel support from two to three arms. Finding that a slight mismatch in the third arm can increase crosstalk contributions considerably, especially when increasing data rate, we explore a methodical way to design the asymmetric y-junction device by considering its angles and multiplexer/demultiplexer arm width. By taking into consideration device fabrication variations, we turn towards optimizing device performance post

  2. Methodology for assessing the impacts of distributed generation interconnection

    Directory of Open Access Journals (Sweden)

    Luis E. Luna

    2011-06-01

    Full Text Available This paper proposes a methodology for identifying and assessing the impact of distributed generation interconnection on distribution systems using Monte Carlo techniques. This methodology consists of two analysis schemes: a technical analysis, which evaluates the reliability conditions of the distribution system; on the other hand, an economic analysis that evaluates the financial impacts on the electric utility and its customers, according to the system reliability level. The proposed methodology was applied to an IEEE test distribution system, considering different operation schemes for the distributed generation interconnection. The application of each one of these schemes provided significant improvements regarding the reliability and important economic benefits for the electric utility. However, such schemes resulted in negative profitability levels for certain customers, therefore, regulatory measures and bilateral contracts were proposed which would provide a solution for this kind of problem.

  3. Compound semiconductor optical waveguide switch

    Science.gov (United States)

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  4. Epidemics spreading in interconnected complex networks

    International Nuclear Information System (INIS)

    Wang, Y.; Xiao, G.

    2012-01-01

    We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.

  5. Epidemics spreading in interconnected complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of High Performance Computing, Agency for Science, Technology and Research (A-STAR), Singapore 138632 (Singapore); Xiao, G., E-mail: egxxiao@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2012-09-03

    We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.

  6. Comparison of self-written waveguide techniques and bulk index matching for low-loss polymer waveguide interconnects

    Science.gov (United States)

    Burrell, Derek; Middlebrook, Christopher

    2016-03-01

    Polymer waveguides (PWGs) are used within photonic interconnects as inexpensive and versatile substitutes for traditional optical fibers. The PWGs are typically aligned to silica-based optical fibers for coupling. An epoxide elastomer is then applied and cured at the interface for index matching and rigid attachment. Self-written waveguides (SWWs) are proposed as an alternative to further reduce connection insertion loss (IL) and alleviate marginal misalignment issues. Elastomer material is deposited after the initial alignment, and SWWs are formed by injecting ultraviolet (UV) light into the fiber or waveguide. The coupled UV light cures a channel between the two differing structures. A suitable cladding layer can be applied after development. Such factors as longitudinal gap distance, UV cure time, input power level, polymer material selection and choice of solvent affect the resulting SWWs. Experimental data are compared between purely index-matched samples and those with SWWs at the fiber-PWG interface. It is shown that writing process. Successfully fabricated SWWs reduce overall processing time and enable an effectively continuous low-loss rigid interconnect.

  7. Cross-border versus cross-sector interconnectivity in renewable energy systems

    International Nuclear Information System (INIS)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2017-01-01

    In the transition to renewable energy systems, fluctuating renewable energy, such as wind and solar power, plays a large and important role. This creates a challenge in terms of meeting demands, as the energy production fluctuates based on weather patterns. To utilise high amounts of fluctuating renewable energy, the energy system has to be more flexible in terms of decoupling demand and production. This paper investigates two potential ways to increase flexibility. The first is the interconnection between energy systems, for instance between two countries, labelled as cross-border interconnection, and the second is cross-sector interconnection, i.e., the integration between different parts of an energy system, for instance heat and electricity. This paper seeks to compare the types of interconnectivity and discuss to which extent they are mutually beneficial. To do this, the study investigates two energy systems that represent Northern and Southern Europe. Both systems go through three developmental steps that increase the cross-sector interconnectivity. At each developmental step an increasing level of transmission capacities is examined to identify the benefits of cross-border interconnectivity. The results show that while both measures increase the system utilisation of renewable energy and the system efficiency, the cross-sector interconnection gives the best system performance. To analyse the possible interaction between cross-sector and cross-border interconnectivity, two main aspects have to be clarified. The first part defines the approach and the second is the construction of the two archetypes. - Highlights: • A method to investigate system integration and system interconnection is suggested. • The implementation is investigated across a Northern and Southern energy system. • The study identifies benefits of system integration and system interconnection. • The performance of the energy system benefits most from system integration.

  8. Competitive Advantage of Interconnected Firms

    DEFF Research Database (Denmark)

    Nell, Phillip Christopher; Andersson, Ulf

    We model the complex interplay between firm-level variables, notably capabilities and performance, and relationship-level variables: relationship-specific assets and network context. We test how the network context of individual exchange relationships as well as firm-level capabilities jointly af...

  9. The high speed interconnect system architecture and operation

    Science.gov (United States)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  10. Thermal Runaways in LHC Interconnections: Experiments

    CERN Document Server

    Willering, G P; Bottura, L; Scheuerlein, C; Verweij, A P

    2011-01-01

    The incident in the LHC in September 2008 occurred in an interconnection between two magnets of the 13 kA dipole circuit. This event was traced to a defect in one of the soldered joints between two superconducting cables stabilized by a copper busbar. Further investigation revealed defective joints of other types. A combination of (1) a poor contact between the superconducting cable and the copper stabilizer and (2) an electrical discontinuity in the stabilizer at the level of the connection can lead to an unprotected quench of the busbar. Once the heating power in the unprotected superconducting cable exceeds the heat removal capacity a thermal run-away occurs, resulting in a fast melt-down of the non-stabilized cable. We have performed a thorough investigation of the conditions upon which a thermal run-away in the defect can occur. To this aim, we have prepared heavily instrumented samples with well-defined and controlled defects. In this paper we describe the experiment, and the analysis of the data, and w...

  11. Determining optimal interconnection capacity on the basis of hourly demand and supply functions of electricity

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Meunier, William; Coquentin, Alexandre

    2017-01-01

    Interconnections for cross-border electricity flows are at the heart of the project to create a common European electricity market. At the time, increase in production from variable renewables clustered during a limited numbers of hours reduces the availability of existing transport infrastructures. This calls for higher levels of optimal interconnection capacity than in the past. In complement to existing scenario-building exercises such as the TYNDP that respond to the challenge of determining optimal levels of infrastructure provision, the present paper proposes a new empirically-based methodology to perform Cost-Benefit analysis for the determination of optimal interconnection capacity, using as an example the French-German cross-border trade. Using a very fine dataset of hourly supply and demand curves (aggregated auction curves) for the year 2014 from the EPEX Spot market, it constructs linearized net export (NEC) and net import demand curves (NIDC) for both countries. This allows assessing hour by hour the welfare impacts for incremental increases in interconnection capacity. Summing these welfare increases over the 8 760 hours of the year, this provides the annual total for each step increase of interconnection capacity. Confronting welfare benefits with the annual cost of augmenting interconnection capacity indicated the socially optimal increase in interconnection capacity between France and Germany on the basis of empirical market micro-data. (authors)

  12. Probabilistic interconnection between interdependent networks promotes cooperation in the public goods game

    International Nuclear Information System (INIS)

    Wang, Baokui; Chen, Xiaojie; Wang, Long

    2012-01-01

    Most previous works study the evolution of cooperation in a structured population by commonly employing an isolated single network. However, realistic systems are composed of many interdependent networks coupled with each other, rather than an isolated single one. In this paper, we consider a system including two interacting networks with the same size, entangled with each other by the introduction of probabilistic interconnections. We introduce the public goods game into such a system, and study how the probabilistic interconnection influences the evolution of cooperation of the whole system and the coupling effect between two layers of interdependent networks. Simulation results show that there exists an intermediate region of interconnection probability leading to the maximum cooperation level in the whole system. Interestingly, we find that at the optimal interconnection probability the fraction of internal links between cooperators in two layers is maximal. Also, even if initially there are no cooperators in one layer of interdependent networks, cooperation can still be promoted by probabilistic interconnection, and the cooperation levels in both layers can more easily reach an agreement at the intermediate interconnection probability. Our results may be helpful in understanding cooperative behavior in some realistic interdependent networks and thus highlight the importance of probabilistic interconnection on the evolution of cooperation. (paper)

  13. Modification of optical properties by adiabatic shifting of resonances in a four-level atom

    Science.gov (United States)

    Dutta, Bibhas Kumar; Panchadhyayee, Pradipta

    2018-04-01

    We describe the linear and nonlinear optical properties of a four-level atomic system, after reducing it to an effective two-level atomic model under the condition of adiabatic shifting of resonances driven by two coherent off-resonant fields. The reduced form of the Hamiltonian corresponding to the two-level system is obtained by employing an adiabatic elimination procedure in the rate equations of the probability amplitudes for the proposed four-level model. For a weak probe field operating in the system, the nonlinear dependence of complex susceptibility on the Rabi frequencies and the detuning parameters of the off-resonant driving fields makes it possible to exhibit coherent control of single-photon and two-photon absorption and transparency, the evolution of enhanced Self-Kerr nonlinearity and noticeable dispersive switching. We have shown how the quantum interference results in the generic four-level model at the adiabatic limit. The present scheme describes the appearance of single-photon transparency without invoking any exact two-photon resonance.

  14. Two-dimensional optoelectronic interconnect-processor and its operational bit error rate

    Science.gov (United States)

    Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.

    2004-10-01

    Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.

  15. A reference model for space data system interconnection services

    Science.gov (United States)

    Pietras, John; Theis, Gerhard

    1993-01-01

    The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).

  16. Power System Study for Renewable Energy Interconnection in Malaysia

    International Nuclear Information System (INIS)

    Askar, O F; Ramachandaramurthy, V K

    2013-01-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  17. Power System Study for Renewable Energy Interconnection in Malaysia

    Science.gov (United States)

    Askar, O. F.; Ramachandaramurthy, V. K.

    2013-06-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  18. Molded, wafer level optics for long wave infra-red applications

    Science.gov (United States)

    Franks, John

    2016-05-01

    For many years, the Thermal Imaging market has been driven by the high volume consumer market. The first signs of this came with the launch of night vision systems for cars, first by Cadillac and Honda and then, more successfully by BMW, Daimler and Audi. For the first time, simple thermal imaging systems were being manufactured at the rate of more than 10,000 units a year. This step change in volumes enabled a step change in system costs, with thermal imaging moving into the consumer's price range. Today we see that the consumer awareness and the consumer market continues to increase with the launch of a number of consumer focused smart phone add-ons. This has brought a further step change in system costs, with the possibility to turn your mobile phone into a thermal imager for under $250. As the detector technology has matured, the pixel pitches have dropped from 50μm in 2002 to 12 μm or even 10μm in today's detectors. This dramatic shrinkage in size has had an equally dramatic effect on the optics required to produce the image on the detector. A moderate field of view that would have required a focal length of 40mm in 2002 now requires a focal length of 8mm. For wide field of view applications and small detector formats, focal lengths in the range 1mm to 5mm are becoming common. For lenses, the quantity manufactured, quality and costs will require a new approach to high volume Infra-Red (IR) manufacturing to meet customer expectations. This, taken with the SwaP-C requirements and the emerging requirement for very small lenses driven by the new detectors, suggests that wafer scale optics are part of the solution. Umicore can now present initial results from an intensive research and development program to mold and coat wafer level optics, using its chalcogenide glass, GASIR®.

  19. EUROPEAN ENERGY INTERCONNECTION EFFECTS ON THE ROMANIAN ECONOMY

    Directory of Open Access Journals (Sweden)

    Ionescu Mihaela

    2014-07-01

    Full Text Available In this paper the author wants to exemplify the extent to which economic growth in Romania is influenced by the current power system infrastructure investments in Europe. Electricity transmission infrastructure in Romania is at a turning point. The high level of security of supply, delivery efficiency in a competitive internal market are dependent on significant investment, both within the country and across borders. Since the economic crisis makes investment financing is increasingly difficult, it is necessary that they be targeted as well. The European Union has initiated the “Connecting Europe” through which investments are allocated to European energy network interconnection of energy. The action plan for this strategy will put a greater emphasis on investments that require hundreds of billions of euro in new technologies, infrastructure, improve energy intensity, low carbon energy technologies. Romania's energy challenge will depend on the new interconnection modern and smart, both within the country and other European countries, energy saving practices and technologies. This challenge is particularly important as Romania has recovered severe gaps in the level of economic performance compared to developed countries. Such investment will have a significant impact on transmission costs, especially electricity, while network tariffs will rise slightly. Some costs will be higher due to support programs in renewable energy nationwide.Measures are more economically sustainable to maintain or even reinforce the electricity market, which system can be flexible in order to address any issues of adequacy. These measures include investments in border infrastructure (the higher the network, so it is easier to evenly distribute energy from renewable sources, to measure demand response and energy storage solutions.An integrated European infrastructure will ensure economic growth in countries interconnected and thus Romania. Huge energy potential of

  20. Fiber optic fluorescence detection of low-level porphyrin concentrations in preclinical and clinical studies

    Science.gov (United States)

    Mang, Thomas S.; McGinnis, Carolyn; Khan, S.

    1990-07-01

    A significant clinical problem in the local treatment of cutaneous metastases of breast cancer (by any modality--surgery, radiation therapy or photodynainic therapy) is the fact that the disease almost always extends beyond the boundary of visible lesions in the form of microscopic deposits. These deposits may be distant from the site of visible disease but are often in close proximity to it and are manifested sooner or later by the development of recurrent lesions at the border of the treated area, thus the "marginal miss" in radiation therapy, the "rim recurrence" in photodynamic therapy, and the "incisional recurrence" following surgical excision. More intelligent use of these treatment modalities demands the ability to detect microscopic deposits of tumor cells using non-invasive methodology. In vivo fluorescence measurements have been made possible by the development of an extremely sensitive fiber optic in vivo fluorescence photometer. The instrument has been used to verify that fluorescence correlated with injected porphyrin levels in various tissues. The delivery of light to excite and detect background fluorescence as well as photosensitizer fluorescence in tissues has been accomplished using two HeNe lasers emitting at 632.8 nm and 612 nm delivered through a single quartz fiber optic. Chopping at different frequencies, contributions of fluorescence may be separated. Fluorescence is picked up via a 400 micron quartz fiber optic positioned appropriately near the target tissue. Validation of these levels was made by extraction of the drug from the tissues with resultant quantitation. Recently, an extensive study was undertaken to determine if fluorescence could be used for the detection of occult, clinically non-palpable metastases in the lymph node of rats. This unique model allowed for the detection of micrometastases in lymph nodes using very low injected doses of the photosensitizer Photofrin II. Data obtained revealed the ability to detect on the order

  1. The next generation in optical transport semiconductors: IC solutions at the system level

    Science.gov (United States)

    Gomatam, Badri N.

    2005-02-01

    In this tutorial overview, we survey some of the challenging problems facing Optical Transport and their solutions using new semiconductor-based technologies. Advances in 0.13um CMOS, SiGe/HBT and InP/HBT IC process technologies and mixed-signal design strategies are the fundamental breakthroughs that have made these solutions possible. In combination with innovative packaging and transponder/transceiver architectures IC approaches have clearly demonstrated enhanced optical link budgets with simultaneously lower (perhaps the lowest to date) cost and manufacturability tradeoffs. This paper will describe: *Electronic Dispersion Compensation broadly viewed as the overcoming of dispersion based limits to OC-192 links and extending link budgets, *Error Control/Coding also known as Forward Error Correction (FEC), *Adaptive Receivers for signal quality monitoring for real-time estimation of Q/OSNR, eye-pattern, signal BER and related temporal statistics (such as jitter). We will discuss the theoretical underpinnings of these receiver and transmitter architectures, provide examples of system performance and conclude with general market trends. These Physical layer IC solutions represent a fundamental new toolbox of options for equipment designers in addressing systems level problems. With unmatched cost and yield/performance tradeoffs, it is expected that IC approaches will provide significant flexibility in turn, for carriers and service providers who must ultimately manage the network and assure acceptable quality of service under stringent cost constraints.

  2. Chip-package nano-structured copper and nickel interconnections with metallic and polymeric bonding interfaces

    Science.gov (United States)

    Aggarwal, Ankur

    With the semiconductor industry racing toward a historic transition, nano chips with less than 45 nm features demand I/Os in excess of 20,000 that support computing speed in terabits per second, with multi-core processors aggregately providing highest bandwidth at lowest power. On the other hand, emerging mixed signal systems are driving the need for 3D packaging with embedded active components and ultra-short interconnections. Decreasing I/O pitch together with low cost, high electrical performance and high reliability are the key technological challenges identified by the 2005 International Technology Roadmap for Semiconductors (ITRS). Being able to provide several fold increase in the chip-to-package vertical interconnect density is essential for garnering the true benefits of nanotechnology that will utilize nano-scale devices. Electrical interconnections are multi-functional materials that must also be able to withstand complex, sustained and cyclic thermo-mechanical loads. In addition, the materials must be environmentally-friendly, corrosion resistant, thermally stable over a long time, and resistant to electro-migration. A major challenge is also to develop economic processes that can be integrated into back end of the wafer foundry, i.e. with wafer level packaging. Device-to-system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Downscaling traditional solder bump interconnect will not satisfy the thermo-mechanical reliability requirements at very fine pitches of the order of 30 microns and less. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. A novel chip-package interconnection technology is

  3. Carbon nanotube and graphene nanoribbon interconnects

    CERN Document Server

    Das, Debaprasad

    2014-01-01

    "The book, Caron Nanotube and Graphene Nanoribbon Interconnects, authored by Drs. Debapraad Das and Hafizur Rahaman serves as a good source of material on CNT and GNR interconnects for readers who wish to get into this area and also for practicing engineers who would like to be updated in advances of this field."-Prof. Ashok Srivastava, Louisiana State University, Baton Rouge, USA"Mathematical analysis included in each and every chapter is the main strength of the materials. ... The book is very precise and useful for those who are working in this area. ... highly focused, very compact, and easy to apply. ... This book depicts a detailed analysis and modelling of carbon nanotube and graphene nanoribbon interconnects. The book also covers the electrical circuit modelling of carbon nanotubes and graphene nanoribbons."-Prof. Chandan Kumar Sarkar, Jadavpur University, Kolkata, India.

  4. Packaging and interconnection for superconductive circuitry

    International Nuclear Information System (INIS)

    Anacker, W.

    1976-01-01

    A three dimensional microelectronic module packaged for reduced signal propagation delay times including a plurality of circuit carrying means, which may comprise unbacked chips, with integrated superconductive circuitry thereon is described. The circuit carrying means are supported on their edges and have contact lands in the vicinity of, or at, the edges to provide for interconnecting circuitry. The circuit carrying means are supported by supporting means which include slots to provide a path for interconnection wiring to contact the lands of the circuit carrying means. Further interconnecting wiring may take the form of integrated circuit wiring on the reverse side of the supporting means. The low heat dissipation of the superconductive circuitry allows the circuit carrying means to be spaced approximately no less than 30 mils apart. The three dimensional arrangement provides lower random propagation delays than would a planar array of circuits

  5. A novel technique for die-level post-processing of released optical MEMS

    International Nuclear Information System (INIS)

    Elsayed, Mohannad Y; Beaulieu, Philippe-Olivier; Briere, Jonathan; Ménard, Michaël; Nabki, Frederic

    2016-01-01

    This work presents a novel die-level post-processing technique for dies including released movable structures. The procedure was applied to microelectromechanical systems (MEMS) chips that were fabricated in a commercial process, SOIMUMPs from MEMSCAP. It allows the performance of a clean DRIE etch of sidewalls on the diced chips enabling the optical testing of the pre-released MEMS mirrors through the chip edges. The etched patterns are defined by photolithography using photoresist spray coating. The photoresist thickness is tuned to create photoresist bridges over the pre-released gaps, protecting the released structures during subsequent wet processing steps. Then, the chips are subject to a sequence of wet and dry etching steps prior to dry photoresist removal in O 2 plasma. Processed micromirrors were tested and found to rotate similarly to devices without processing, demonstrating that the post-processing procedure does not affect the mechanical performance of the devices significantly. (technical note)

  6. Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level

    International Nuclear Information System (INIS)

    Herrmann, S.; Senger, A.; Moehle, K.; Nagel, M.; Kovalchuk, E. V.; Peters, A.

    2009-01-01

    We present an improved laboratory test of Lorentz invariance in electrodynamics by testing the isotropy of the speed of light. Our measurement compares the resonance frequencies of two orthogonal optical resonators that are implemented in a single block of fused silica and are rotated continuously on a precision air bearing turntable. An analysis of data recorded over the course of one year sets a limit on an anisotropy of the speed of light of Δc/c∼1x10 -17 . This constitutes the most accurate laboratory test of the isotropy of c to date and allows to constrain parameters of a Lorentz violating extension of the standard model of particle physics down to a level of 10 -17 .

  7. Fiber optic liquid-level sensor using a long fiber Bragg grating

    Science.gov (United States)

    Ricchiuti, Amelia L.; Barrera, David; Nonaka, Koji; Sales, Salvador

    2013-05-01

    A technique for liquid-level sensors based on a long fiber Bragg grating (FBG) is presented and experimentally demonstrated. The measurement system is based on the measurement of the central frequency distribution of the FBG based on time-frequency domain analysis. A short optical pulse is injected into a 10-cm long FBG mounted in a container. The back-reflected pulse is scanned by means of an oscilloscope. When part of the grating is immersed in a liquid having temperature higher than the surrounding ambient, the structure of the uniform grating is distorted and its time-frequency response changes. A spatial resolution of 2 mm, given by the input pulse duration, and a 10-cm long measurement range are achieved. Liquid-temperature sensing has also been implemented by scanning the spectral response of the FBG by means of a CW laser and an OSA.

  8. Millimeter-wave interconnects for microwave-frequency quantum machines

    Science.gov (United States)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  9. Laser printing of 3D metallic interconnects

    Science.gov (United States)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  10. Scanning microscopy of magnetic domains using the Fe 3p core level transverse magneto-optical Kerr effect

    Science.gov (United States)

    Friedrich, J.; Rozhko, I.; Voss, J.; Hillebrecht, F. U.; Kisker, E.; Wedemeier, V.

    1999-04-01

    We demonstrate the feasibility of the vacuum ultraviolet analog to visible-light magneto-optical imaging of magnetic structures using the resonantly enhanced transverse magneto-optical Kerr effect at core level thresholds with incident p-polarized radiation. The advantages are element specificity and a variable information depth. We used the scanning x-ray microscope at HASYLAB capable of obtaining about 1 μm resolution by means of its focusing ellipsoidal ring mirror. The p-polarized component of the reflected light was selected using multilayer reflection at an additional plane mirror downstream to the sample. Micrographs of the optical reflectivity were taken in the vicinity of the Fe 3p core level threshold at 53.7 and 56.5 eV photon energy where the magneto-optical effect is of opposite sign. Magnetic domains are visible in the difference of both recorded images.

  11. Regulate or deregulate. Influencing network interconnection charges

    Energy Technology Data Exchange (ETDEWEB)

    Van De Wielle, B.

    2003-06-01

    We study the choice between regulating interconnection charges or delegating their determination to the operators, both in a non-mature and a mature market. Three regulatory regimes are considered: full, cost-based and bill-and-keep. Delegation corresponds to bargaining about the interconnection charges using the regulatory schemes as disagreement outcomes. Applying regulation benefits the consumers. Under full regulation, access charges account for asymmetries and allow a unique Ramsey price. Delegation benefits the operators. In a mature market delegation robs the government of any market influence. In a non-mature market government preferences coincide with those of the largest operator and are disadvantageous for entry.

  12. A 45° saw-dicing process applied to a glass substrate for wafer-level optical splitter fabrication for optical coherence tomography

    Science.gov (United States)

    Maciel, M. J.; Costa, C. G.; Silva, M. F.; Gonçalves, S. B.; Peixoto, A. C.; Ribeiro, A. Fernando; Wolffenbuttel, R. F.; Correia, J. H.

    2016-08-01

    This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro opto-electromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final micro-integrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3 mm s-1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/assembly with other optical micro components for OCT integrated imaging.

  13. Interacting Social Processes on Interconnected Networks.

    Directory of Open Access Journals (Sweden)

    Lucila G Alvarez-Zuzek

    Full Text Available We propose and study a model for the interplay between two different dynamical processes -one for opinion formation and the other for decision making- on two interconnected networks A and B. The opinion dynamics on network A corresponds to that of the M-model, where the state of each agent can take one of four possible values (S = -2,-1, 1, 2, describing its level of agreement on a given issue. The likelihood to become an extremist (S = ±2 or a moderate (S = ±1 is controlled by a reinforcement parameter r ≥ 0. The decision making dynamics on network B is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S = +1 or against (S = -1 the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β. Starting from a polarized case scenario in which all agents of network A hold positive orientations while all agents of network B have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β, the two-network system reaches a consensus in the positive state (initial state of network A when the reinforcement overcomes a crossover value r*(β, while a negative consensus happens for r βc. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r*, β*.

  14. Routing and Disaster Awareness in Optical Networks

    NARCIS (Netherlands)

    Muhammad Iqbal, M.A.F.

    2016-01-01

    Optical networks facilitate the configurations of high-speed network connections with tremendous bandwidth between the optical switches. Optical switches are interconnected by optical fibers that act as the mediums in which data are transferred using lightpaths. Due to the importance of optical

  15. Green interconnecting materials for semiconductor industry

    NARCIS (Netherlands)

    Matin, M.A.; Vellinga, W.P.; Geers, M.G.D.; Sawada, K.; Ishida, M.

    2009-01-01

    Interconnecting materials experience a complex thermo-mechanical load in applications. This may lead to the formation of macroscopic cracks resulting from induced stresses of the differences in thermal expansion coefficients on a sample scale (since different materials are involved) and on a grain

  16. Electric network interconnection of Mashreq Arab Countries

    International Nuclear Information System (INIS)

    El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-01-01

    Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabia power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking

  17. Health and the environment: Examining some interconnections

    International Nuclear Information System (INIS)

    Nair, G.; Castelino, J.; Parr, R.M.

    1994-01-01

    In various ways, the IAEA is working with national and international agencies to broaden scientific understanding of the interconnections between the environment and human health. Often nuclear and related technologies are applied in the search for answers to complex and puzzling questions. This article highlights some of that work, illustrating the dimensions of both the problems and the potential solutions

  18. Systems theory of interconnected port contact systems

    NARCIS (Netherlands)

    Eberard, D.; Maschke, B.M.; Schaft, A.J. van der

    2005-01-01

    Port-based network modeling of a large class of complex physical systems leads to dynamical systems known as port-Hamiltonian systems. The key ingredient of any port-Hamiltonian system is a power-conserving interconnection structure (mathematically formalized by the geometric notion of a Dirac

  19. Experimental demonstration of titanium nitride plasmonic interconnects

    DEFF Research Database (Denmark)

    Kinsey, N.; Ferrera, M.; Naik, G. V.

    2014-01-01

    An insulator-metal-insulator plasmonic interconnect using TiN, a CMOS-compatible material, is proposed and investigated experimentally at the telecommunication wavelength of 1.55 mu m. The TiN waveguide was shown to obtain propagation losses less than 0.8 dB/mm with a mode size of 9.8 mu m...

  20. Nominate an Organization | Distributed Generation Interconnection

    Science.gov (United States)

    Collaborative | NREL Nominate an Organization Nominate an Organization Do you know of an organization doing high-quality, innovative work on the interconnection of distributed generation? Want to practices by nominating an organization to be profiled in an online case study! Please include your

  1. Adapting Memory Hierarchies for Emerging Datacenter Interconnects

    Institute of Scientific and Technical Information of China (English)

    江涛; 董建波; 侯锐; 柴琳; 张立新; 孙凝晖; 田斌

    2015-01-01

    Efficient resource utilization requires that emerging datacenter interconnects support both high performance communication and efficient remote resource sharing. These goals require that the network be more tightly coupled with the CPU chips. Designing a new interconnection technology thus requires considering not only the interconnection itself, but also the design of the processors that will rely on it. In this paper, we study memory hierarchy implications for the design of high-speed datacenter interconnects—particularly as they affect remote memory access—and we use PCIe as the vehicle for our investigations. To that end, we build three complementary platforms: a PCIe-interconnected prototype server with which we measure and analyze current bottlenecks; a software simulator that lets us model microarchitectural and cache hierarchy changes;and an FPGA prototype system with a streamlined switchless customized protocol Thunder with which we study hardware optimizations outside the processor. We highlight several architectural modifications to better support remote memory access and communication, and quantify their impact and limitations.

  2. Patterned electrodeposition of interconnects using microcontact printing

    NARCIS (Netherlands)

    Hovestad, A.; Rendering, H.; Maijenburg, A.W.

    2012-01-01

    Microcontact printing combined with electroless deposition is a potential low cost technique to make electrical interconnects for opto-electronic devices. Microcontact printed inhibitors locally prevent electroless deposition resulting in a pre-defined pattern of metal tracks. The inhibition of

  3. An architectural model for network interconnection

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Vissers, C.A.; Kalin, T.

    1983-01-01

    This paper presents a technique of successive decomposition of a common users' activity to illustrate the problems of network interconnection. The criteria derived from this approach offer a structuring principle which is used to develop an architectural model that embeds heterogeneous subnetworks

  4. Identifying influential spreaders in interconnected networks

    International Nuclear Information System (INIS)

    Zhao, Dawei; Li, Lixiang; Huo, Yujia; Yang, Yixian; Li, Shudong

    2014-01-01

    Identifying the most influential spreaders in spreading dynamics is of the utmost importance for various purposes for understanding or controlling these processes. The existing relevant works are limited to a single network. Most real networks are actually not isolated, but typically coupled and affected by others. The properties of epidemic spreading have recently been found to have some significant differences in interconnected networks from those in a single network. In this paper, we focus on identifying the influential spreaders in interconnected networks. We find that the well-known k-shell index loses effectiveness; some insignificant spreaders in a single network become the influential spreaders in the whole interconnected networks while some influential spreaders become no longer important. The simulation results show that the spreading capabilities of the nodes not only depend on their influence for the network topology, but also are dramatically influenced by the spreading rate. Based on this perception, a novel index is proposed for measuring the influential spreaders in interconnected networks. We then support the efficiency of this index with numerical simulations. (paper)

  5. Laser printed interconnects for flexible electronics

    Science.gov (United States)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  6. Optical wireless link between a nanoscale antenna and a transducing rectenna.

    Science.gov (United States)

    Dasgupta, Arindam; Mennemanteuil, Marie-Maxime; Buret, Mickaël; Cazier, Nicolas; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2018-05-18

    Initiated as a cable-replacement solution, short-range wireless power transfer has rapidly become ubiquitous in the development of modern high-data throughput networking in centimeter to meter accessibility range. Wireless technology is now penetrating a higher level of system integration for chip-to-chip and on-chip radiofrequency interconnects. However, standard CMOS integrated millimeter-wave antennas have typical size commensurable with the operating wavelength, and are thus an unrealistic solution for downsizing transmitters and receivers to the micrometer and nanometer scale. Herein, we demonstrate a light-in and electrical signal-out, on-chip wireless near-infrared link between a 220 nm optical antenna and a sub-nanometer rectifying antenna converting the transmitted optical energy into direct electrical current. The co-integration of subwavelength optical functional devices with electronic transduction offers a disruptive solution to interface photons and electrons at the nanoscale for on-chip wireless optical interconnects.

  7. Review of Interconnection Practices and Costs in the Western States

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Volpi, Christina M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manning, David [Western Interstate Energy Board (WIEB); McAllister, Richard [Western Interstate Energy Board (WIEB)

    2018-04-27

    The objective of this report is to evaluate the nature of barriers to interconnecting distributed PV, assess costs of interconnection, and compare interconnection practices across various states in the Western Interconnection. The report addresses practices for interconnecting both residential and commercial-scale PV systems to the distribution system. This study is part of a larger, joint project between the Western Interstate Energy Board (WIEB) and the National Renewable Energy Laboratory (NREL), funded by the U.S. Department of Energy, to examine barriers to distributed PV in the 11 states wholly within the Western Interconnection.

  8. Multi-power-level Energy Saving Management for Passive Optical Networks

    OpenAIRE

    Taheri, Mina; Ansari, Nirwan

    2014-01-01

    Environmental concerns have motivated network designers to further reduce energy consumption of access networks. This paper focuses on reducing energy consumption of Ethernet passive optical network (EPON) as one of the most efficient transmission technologies for broadband access. In EPON, the downstream traffic is sent from the optical line terminal (OLT) located at the central office to all optical network units (ONUs). Each ONU checks all arrival downstream packets and selects the downstr...

  9. A FEMTOSECOND-LEVEL FIBER-OPTICS TIMING DISTRIBUTION SYSTEM USING FREQUENCY-OFFSET INTERFEROMETRY

    International Nuclear Information System (INIS)

    Staples, J.W.; Byrd, J.; Doolittle, L.; Huang, G.; Wilcox, R.

    2008-01-01

    An optical fiber-based frequency and timing distribution system based on the principle of heterodyne interferometry has been in development at LBNL for several years. The fiber drift corrector has evolved from an RF-based to an optical-based system, from mechanical correctors (piezo and optical trombone) to fully electronic, and the electronics from analog to fully digital, all using inexpensive off-the-shelf commodity fiber components. Short-term optical phase jitter and long-term phase drift are both in the femtosecond range over distribution paths of 2 km or more

  10. Chip-To-Chip Optical Interconnection Using MEMS Mirrors

    Science.gov (United States)

    2009-03-26

    power generated through a resistor is a function of this common current but different resistances, different amounts of heat are generated in the two...Chiu, “Modeling and control of piezo - electric cantilever beam micro mirror and micro laser arrays to reduce image band- ing in electrophotographic

  11. MEMS Lens Scanners for Free-Space Optical Interconnects

    Science.gov (United States)

    2011-12-15

    electrothermal linear micromotors ,” Journal of Micromechanics and Microengineering, vol. 14, no. 2, pp. 226– 234, 2004. [59] Hyuck Choo and R. S. Muller...84] Mei Lin Chan et al., “Low friction liquid bearing mems micromotor ,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical

  12. Report on electricity interconnection management and use. June 2008

    International Nuclear Information System (INIS)

    2008-06-01

    Apart from some concrete advances in interconnection management, the most striking event of 2007 has to be the emergence of a consensus at European level on the general principles of the target mechanisms for interconnection management. Three major projects currently undergoing development by the TSOs and the exchanges - the setting up of a single auction platform for allocating long- and medium-term products and of 'flow-based' market coupling in the Central-West region (Belgium, Luxemburg, the Netherlands, Germany, France), and in the France-UK-Ireland region, the introduction of reciprocal balancing exchanges on the France-England interconnection - should lay the foundations for the future management of congestion on interconnections in Europe. The completion of these projects, planned for the end of 2008 for the single auction platform project in the Central-West region and for mid-2009 for the other two, will be an important turning point in the construction of the European electricity market. This will be one of the successes of the Regional Initiatives process launched by ERGEG just over two years ago. However, this should not hide the fact that the regulators have experienced many difficulties during the regional integration of the markets and that the market operators have the general impression that this process could progress much more quickly. These difficulties and this relative slowness are mainly explained by: - a lack of consensus on the target market design the national markets would gradually tend towards, - a lack of harmonisation of the powers and competencies of the regulators when it comes to cross-border trades, the immediate consequence of which is a lack of incentives for TSOs to accelerate market integration. Several sizeable challenges await all the stakeholders over the coming months and years if market integration is to be a success: - How can the 'third legislative package' give all the necessary competencies

  13. Essays on optimal capacity and optimal regulation of interconnection infrastructures

    Science.gov (United States)

    Boffa, Federico

    The integration between geographically differentiated markets or between vertically related industries generate effects on welfare that depend on the structure of the underlying markets. My thesis investigates the impact of geographical interconnection on welfare, and illustrates welfare-enhancing modes of regulation of vertically integrated industries and of geographically integrated markets. The first chapter analyzes the effects of interconnection between two formerly fully-separated markets under the assumptions that producers in the two markets are capacity-constrained, and tacitly collude whenever it is rational for them to do so. I find that there exists a set of assumptions under which interconnection brings about greater collusion, hence it reduces overall welfare. The second chapter analyzes the optimal interconnection capacity allocation mechanism for a benevolent electricity regulator when generation is not competitive. The regulator's intervention should not only ensure that interconnection capacity is efficiently allocated to the most efficient firms, but it should also induce a higher welfare in the upstream generation market. In a two-node setting, with one firm per node, I show that the regulatory intervention becomes more effective as the cost asymmetries between the two firms become more pronounced. The third chapter illustrates a regulation mechanism for vertically related industries. Ownership shares of the upstream industry (that displays economies of scale) are allocated to the downstream (competitive) firms in proportion to their shares in the final goods market. I show that the mechanism combines the benefits of vertical integration with those of vertical separation. The advantages of vertical integration consist in avoiding double marginalization, and in internalizing the reduction in average cost resulting from the upstream increase in output; on the other hand, vertical separation allows to preserve the competitiveness of the downstream

  14. Optical transmission of low-level signals with high dynamic range using the optically-coupled current-mirror architecture

    Energy Technology Data Exchange (ETDEWEB)

    Camin, Daniel V. [Dipartimento di Fisica dell' Universita degli Studi di Milano and INFN, Milan (Italy)]. E-mail: Daniel.Victor.Camin@mi.infn.it; Grassi, Valerio [Dipartimento di Fisica dell' Universita degli Studi di Milano and INFN, Milan (Italy); De Donato, Cinzia [Dipartimento di Fisica dell' Universita degli Studi di Milano and INFN, Milan (Italy)

    2007-03-01

    In this paper we illustrate the application of a novel circuit architecture, the Optically-Coupled Current-Mirror (OCCM), conceived for the linear transmission of analogue signals via fibre optics. We installed 880 OCCMs in the PMTs of the first two telescopes of the cosmic-ray experiment Pierre Auger. The Pierre Auger Observatory (PAO) has been designed to increase the statistics of cosmic-rays with energies above 10{sup 18}eV. Two different techniques have been adopted: the Surface Detector (SD) modules that comprise 1600 tanks spaced each other by 1.5km within an area of 3000km{sup 2}. On the other side there are four buildings, the Optical Stations (OS), in which six telescopes are installed in each one of the four OS, at the periphery of the site, looking inwards. The telescopes are sensitive to the UV light created at the moment a high-energy shower develops in the atmosphere and is within the field-of-view (FOV) of the telescopes. The PAO is located in the Northern Patagonia, not far from the Cordillera de Los Andes, in Argentina. Both detector types, FD telescopes and SD modules, are sensitive to the UV light resulting from the interaction of high-energy particles and the nitrogen molecules in the atmosphere. The UV-sensitive telescopes operate only at night when the sky is completely dark. Otherwise, the light collected by the telescopes may give origin to severe damage in particular if those telescopes point at twilight or to artificial light sources. The duty cycle of the telescope's operation is therefore limited to about 10% or slightly more than that, if data are taken also when there is a partial presence of the Moon. The SD modules establish, independently of the telescopes, the geometry of the event. At the same time a shower reconstruction is performed using the telescope's data, independently of the SD modules. Use of both sets of data, taken by the FD telescopes and by the SD modules, allows the hybrid reconstruction that significantly

  15. Optical transmission of low-level signals with high dynamic range using the optically-coupled current-mirror architecture

    International Nuclear Information System (INIS)

    Camin, Daniel V.; Grassi, Valerio; De Donato, Cinzia

    2007-01-01

    In this paper we illustrate the application of a novel circuit architecture, the Optically-Coupled Current-Mirror (OCCM), conceived for the linear transmission of analogue signals via fibre optics. We installed 880 OCCMs in the PMTs of the first two telescopes of the cosmic-ray experiment Pierre Auger. The Pierre Auger Observatory (PAO) has been designed to increase the statistics of cosmic-rays with energies above 10 18 eV. Two different techniques have been adopted: the Surface Detector (SD) modules that comprise 1600 tanks spaced each other by 1.5km within an area of 3000km 2 . On the other side there are four buildings, the Optical Stations (OS), in which six telescopes are installed in each one of the four OS, at the periphery of the site, looking inwards. The telescopes are sensitive to the UV light created at the moment a high-energy shower develops in the atmosphere and is within the field-of-view (FOV) of the telescopes. The PAO is located in the Northern Patagonia, not far from the Cordillera de Los Andes, in Argentina. Both detector types, FD telescopes and SD modules, are sensitive to the UV light resulting from the interaction of high-energy particles and the nitrogen molecules in the atmosphere. The UV-sensitive telescopes operate only at night when the sky is completely dark. Otherwise, the light collected by the telescopes may give origin to severe damage in particular if those telescopes point at twilight or to artificial light sources. The duty cycle of the telescope's operation is therefore limited to about 10% or slightly more than that, if data are taken also when there is a partial presence of the Moon. The SD modules establish, independently of the telescopes, the geometry of the event. At the same time a shower reconstruction is performed using the telescope's data, independently of the SD modules. Use of both sets of data, taken by the FD telescopes and by the SD modules, allows the hybrid reconstruction that significantly improves the data

  16. Underwater wireless optical communications: From system-level demonstrations to channel modelling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-09

    In this paper, we discuss about recent experimental advances in underwater wireless optical communications (UWOC) over various underwater channel water types using different modulation schemes as well as modelling and describing the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.

  17. Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications

    Science.gov (United States)

    Voelkel, Reinhard; Gong, Li; Rieck, Juergen; Zheng, Alan

    2012-11-01

    Micro-optics is an indispensable key enabling technology (KET) for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the last decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks (supercomputer, ROADM), bringing high-speed internet to our homes (FTTH). Even our modern smart phones contain a variety of micro-optical elements. For example, LED flashlight shaping elements, the secondary camera, and ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by semiconductor industry. Thousands of components are fabricated in parallel on a wafer. We report on the state of the art in wafer-based manufacturing, testing, packaging and present examples and applications for micro-optical components and systems.

  18. Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.

    Science.gov (United States)

    Bai, Jing; Citrin, D S

    2008-08-18

    In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

  19. Phase dependence of optical bistability and multistability in a four-level quantum system near a plasmonic nanostructure

    International Nuclear Information System (INIS)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H.

    2016-01-01

    The optical bistability and multistability properties of a four-level quantum system near a plasmonic nanostructure embedded in a unidirectional ring cavity are studied theoretically. Two orthogonal circularly polarized laser fields with the same frequency, different phases and electric fields amplitude are interacted by four-level quantum system. It is found that in the presence of the plasmonic nanostructure, the bistable behaviors related to one of the laser fields propagating through the unidirectional ring cavity can be modified by relative phase and amplitude control of another laser fields. Our obtained results show that the optical bistability can be converted into the optical multistability by varying the value of distance between the quantum system and the surface of the plasmonic nanostructure. Moreover, it is shown that under specific condition related to the distance, the lasing without population inversion can be obtained

  20. Phase dependence of optical bistability and multistability in a four-level quantum system near a plasmonic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H., E-mail: Rahimpour@guilan.ac.ir [Computational Nanophysics Laboratory (CNL), Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)

    2016-01-14

    The optical bistability and multistability properties of a four-level quantum system near a plasmonic nanostructure embedded in a unidirectional ring cavity are studied theoretically. Two orthogonal circularly polarized laser fields with the same frequency, different phases and electric fields amplitude are interacted by four-level quantum system. It is found that in the presence of the plasmonic nanostructure, the bistable behaviors related to one of the laser fields propagating through the unidirectional ring cavity can be modified by relative phase and amplitude control of another laser fields. Our obtained results show that the optical bistability can be converted into the optical multistability by varying the value of distance between the quantum system and the surface of the plasmonic nanostructure. Moreover, it is shown that under specific condition related to the distance, the lasing without population inversion can be obtained.

  1. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  2. Development and operation of interconnections in a restructuring context

    International Nuclear Information System (INIS)

    2003-01-01

    In many countries the electrical network is not fully interconnected and the best technical solution to achieve interconnection has to be found. At the same time the electricity industry is being restructured and interconnecting independent energy markets presents technical challenges. It is therefore timely to consider interconnection development and operation options: examine the benefits of interconnecting electrical networks and the development strategies, review the interconnection design options and the technologies available, identify the operational issues, the security problems of large interconnected systems, the protection issues, consider the impact of the restructuring of the electrical supply industry, assess the political, environmental and social implications of interconnections. reorganized in slovenia from 5-7 april 2004. (author)

  3. National Offshore Wind Energy Grid Interconnection Study Full Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  4. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  5. Copper Nanowire Production for Interconnect Applications

    Science.gov (United States)

    Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)

    2014-01-01

    A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

  6. Architecture for on-die interconnect

    Science.gov (United States)

    Khare, Surhud; More, Ankit; Somasekhar, Dinesh; Dunning, David S.

    2016-03-15

    In an embodiment, an apparatus includes: a plurality of islands configured on a semiconductor die, each of the plurality of islands having a plurality of cores; and a plurality of network switches configured on the semiconductor die and each associated with one of the plurality of islands, where each network switch includes a plurality of output ports, a first set of the output ports are each to couple to the associated network switch of an island via a point-to-point interconnect and a second set of the output ports are each to couple to the associated network switches of a plurality of islands via a point-to-multipoint interconnect. Other embodiments are described and claimed.

  7. Accurate Modeling Method for Cu Interconnect

    Science.gov (United States)

    Yamada, Kenta; Kitahara, Hiroshi; Asai, Yoshihiko; Sakamoto, Hideo; Okada, Norio; Yasuda, Makoto; Oda, Noriaki; Sakurai, Michio; Hiroi, Masayuki; Takewaki, Toshiyuki; Ohnishi, Sadayuki; Iguchi, Manabu; Minda, Hiroyasu; Suzuki, Mieko

    This paper proposes an accurate modeling method of the copper interconnect cross-section in which the width and thickness dependence on layout patterns and density caused by processes (CMP, etching, sputtering, lithography, and so on) are fully, incorporated and universally expressed. In addition, we have developed specific test patterns for the model parameters extraction, and an efficient extraction flow. We have extracted the model parameters for 0.15μm CMOS using this method and confirmed that 10%τpd error normally observed with conventional LPE (Layout Parameters Extraction) was completely dissolved. Moreover, it is verified that the model can be applied to more advanced technologies (90nm, 65nm and 55nm CMOS). Since the interconnect delay variations due to the processes constitute a significant part of what have conventionally been treated as random variations, use of the proposed model could enable one to greatly narrow the guardbands required to guarantee a desired yield, thereby facilitating design closure.

  8. Development of Interconnect Technologies for Particle Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Mani [Univ. of California, Davis, CA (United States)

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  9. France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes.

    Science.gov (United States)

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-06-13

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo's severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution.

  10. Optical frequency divider with division uncertainty at the 10-21 level

    Institute of Scientific and Technical Information of China (English)

    Yuan Yao; Yanyi Jiang; Hongfu Yu; Zhiyi Bi; Longsheng Ma

    2016-01-01

    Optical clocks with unprecedented accuracy of 10-18 promise innovations in many research areas.heir applications rely to a large extent on the ability of precisely converting the frequency from one optical clock to another,or particularly to the frequencies in the iber telecom band for long-distance transmission.his report demonstrates a low-noise,high-precision optical frequency divider,which realizes accurate optical frequency conversion and enables precise measurement of optical frequency ratios.By measuring against the frequency ratio between the fundamental and the second harmonic of a 1064-nm laser instead of a second copy of the same system,we demonstrate that the optical frequency divider has a fractional frequency division instability of 6×10-19 at 1 s and a fractional frequency division uncertainty of 1.4×10-21.he remarkable numbers can support frequency division of the best optical clocks in the world without frequency-conversion-caused degradation of their performance.

  11. Interconnection of psychology, color and design

    OpenAIRE

    Minchuk, A. M.; Kudryashova, Aleksandra Vladimirovna

    2016-01-01

    The paper presents the direct interconnection between color, design and psychology on the basis of theoretical and historical analysis. It describes the peculiarities of how peopleperceive color. In the paper some of the historical details concerning the way our ancestors used color are presented and the modern scientific discoveries in the field of psychology, which give the evidence of the great psychological, emotional and physical influence of color on a person are shown as well. The pape...

  12. Computer simulation of electromigration in microelectronics interconnect

    OpenAIRE

    Zhu, Xiaoxin

    2014-01-01

    Electromigration (EM) is a phenomenon that occurs in metal conductor carrying high density electric current. EM causes voids and hillocks that may lead to open or short circuits in electronic devices. Avoiding these failures therefore is a major challenge in semiconductor device and packaging design and manufacturing, and it will become an even greater challenge for the semiconductor assembly and packaging industry as electronics components and interconnects get smaller and smaller. According...

  13. Viewing Integrated-Circuit Interconnections By SEM

    Science.gov (United States)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  14. High-density hybrid interconnect methodologies

    International Nuclear Information System (INIS)

    John, J.; Zimmermann, L.; Moor, P.De; Hoof, C.Van

    2003-01-01

    Full text: The presentation gives an overview of the state-of-the-art of hybrid integration and in particular the IMEC technological approaches that will be able to address future hybrid detector needs. The dense hybrid flip-chip integration of an array of detectors and its dedicated readout electronics can be achieved with a variety of solderbump techniques such as pure Indium or Indium alloys, Ph-In, Ni/PbSn, but also conducting polymers... Particularly for cooled applications or ultra-high density applications, Indium solderbump technology (electroplated or evaporated) is the method of choice. The state-of-the-art of solderbump technologies that are to a high degree independent of the underlying detector material will be presented and examples of interconnect densities between 5x1E4cm-2 and 1x1E6 cm-2 will be demonstrated. For several classes of detectors, flip-chip integration is not allowed since the detectors have to be illuminated from the top. This applies to image sensors for EUV applications such as GaN/AlGaN based detectors and to MEMS-based sensors. In such cases, the only viable interconnection method has to be through the (thinned) detector wafer followed by a solderbump-based integration. The approaches for dense and ultra-dense through-the-wafer interconnect 'vias' will be presented and wafer thinning approaches will be shown

  15. The first LHC sector is fully interconnected

    CERN Multimedia

    2006-01-01

    Sector 7-8 is the first sector of the LHC to become fully operational. All the magnets, cryogenic line, vacuum chambers and services are interconnected. The cool down of this sector can soon commence. LHC project leader Lyn Evans, the teams from CERN's AT/MCS, AT/VAC and AT/MEL groups, and the members of the IEG consortium celebrate the completion of the first LHC sector. The 10th of November was a red letter day for the LHC accelerator teams, marking the completion of the first sector of the machine. The magnets of sector 7-8, together with the cryogenic line, the vacuum chambers and the distribution feedboxes (DFBs) are now all completely interconnected. Sector 7-8 has thus been closed and is the first LHC sector to become operational. The interconnection work required several thousand electrical, cryogenic and insulating connections to be made on the 210 interfaces between the magnets in the arc, the 30 interfaces between the special magnets and the interfaces with the cryogenic line. 'This represent...

  16. Implementation of interconnect simulation tools in spice

    Science.gov (United States)

    Satsangi, H.; Schutt-Aine, J. E.

    1993-01-01

    Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages.

  17. The variability of interconnected wind plants

    International Nuclear Information System (INIS)

    Katzenstein, Warren; Fertig, Emily; Apt, Jay

    2010-01-01

    We present the first frequency-dependent analyses of the geographic smoothing of wind power's variability, analyzing the interconnected measured output of 20 wind plants in Texas. Reductions in variability occur at frequencies corresponding to times shorter than ∼24 h and are quantified by measuring the departure from a Kolmogorov spectrum. At a frequency of 2.8x10 -4 Hz (corresponding to 1 h), an 87% reduction of the variability of a single wind plant is obtained by interconnecting 4 wind plants. Interconnecting the remaining 16 wind plants produces only an additional 8% reduction. We use step change analyses and correlation coefficients to compare our results with previous studies, finding that wind power ramps up faster than it ramps down for each of the step change intervals analyzed and that correlation between the power output of wind plants 200 km away is half that of co-located wind plants. To examine variability at very low frequencies, we estimate yearly wind energy production in the Great Plains region of the United States from automated wind observations at airports covering 36 years. The estimated wind power has significant inter-annual variability and the severity of wind drought years is estimated to be about half that observed nationally for hydroelectric power.

  18. Interconnecting Multidiscilinary Data Infrastructures: From Federation to Brokering Framework

    Science.gov (United States)

    Nativi, S.

    2014-12-01

    Standardization and federation activities have been played an essential role to push interoperability at the disciplinary and cross-disciplinary level. However, they demonstrated not to be sufficient to resolve important interoperability challenges, including: disciplinary heterogeneity, cross-organizations diversities, cultural differences. Significant international initiatives like GEOSS, IODE, and CEOS demonstrated that a federation system dealing with global and multi-disciplinary domain turns out to be rater complex, raising more the already high entry level barriers for both Providers and Users. In particular, GEOSS demonstrated that standardization and federation actions must be accompanied and complemented by a brokering approach. Brokering architecture and its implementing technologies are able to implement an effective interoperability level among multi-disciplinary systems, lowering the entry level barriers for both data providers and users. This presentation will discuss the brokering philosophy as a complementary approach for standardization and federation to interconnect existing and heterogeneous infrastructures and systems. The GEOSS experience will be analyzed, specially.

  19. Fiber optics in SHIVA

    International Nuclear Information System (INIS)

    Severyn, J.; Parker, J.

    1978-01-01

    SHIVA is a twenty arm laser which is controlled with a network of fifty computers, interconnected with digital fiber optic links. Three different fiber optic systems employed on the Shiva laser will be described. Two of the systems are for digital communications, one at 9600 baud and the other at 1 megabaud. The third system uses fiber optics to distribute diagnostic triggers with subnanosecond jitter

  20. Energetic diversification in the interconnected electric system

    International Nuclear Information System (INIS)

    Villanueva M, C.; Beltran M, H.; Serrano G, J.A.

    2007-01-01

    In the interconnected electric system of Mexico the demanded electricity in different timetable periods it is synthesized in the annual curve of load duration, which is characterized by three regions. The energy in every period is quantified according to the under curve areas in each region, which depend of the number of hours in that the power demand exceeds the minimum and the intermediate demands respectively that are certain percentages of the yearly maximum demand. In that context, the generating power stations are dispatched according to the marginal costs of the produced electricity and the electric power to be generated every year by each type of central it is located in some of the regions of the curve of load duration, as they are their marginal costs and their operation characteristic techniques. By strategic reasons it is desirable to diversify the primary energy sources that are used in the national interconnected system to generate the electricity that demand the millions of consumers that there are in Mexico. On one hand, when intensifying the use of renewable sources and of nucleo electric centrals its decrease the import volumes of natural gas, which has very volatile prices and it is a fuel when burning in the power stations produces hothouse gases that are emitted to the atmosphere. On the other hand, when diversifying the installed capacity of the different central types in the interconnected system, a better adaptation of the produced electricity volumes is achieved by each type to the timetable variation, daily, weekly and seasonal of the electric demand, as one manifests this in the curve of load duration. To exemplify a possible diversification plan of the installed capacity in the national interconnected system that includes nucleo electric centrals and those that use renewable energy, charts are presented that project of 2005 at 2015 the capacity, energy and ost of the electricity of different central types, located in each one of the

  1. Preliminary analysis of the relationship between serum lutein and zeaxanthin levels and macular pigment optical density

    Directory of Open Access Journals (Sweden)

    Fujimura S

    2016-10-01

    Full Text Available Shigeto Fujimura,1,2 Kohei Ueda,1 Yoko Nomura,1 Yasuo Yanagi3,4 1Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo, 2Department of Ophthalmology, Kanazawa University School of Medicine, Ishikawa, Japan; 3Singapore Eye Research Institute, 4Medical Retina Department, Singapore National Eye Centre, Singapore Purpose: To assess the relationship between combined serum lutein and zeaxanthin (L+Z concentration and macular pigment optical density (MPOD, and to investigate the effect of L+Z+docosahexaenoic acid (DHA dietary supplementation on the spatial distribution of MPOD.Methods: Twenty healthy fellow eyes with unilateral wet age-related macular degeneration or chronic central serous chorioretinopathy were included. All participants received a dietary supplement for 6 months that contained 20 mg L, 1 mg Z, and 200 mg DHA. The best-corrected visual acuity and contrast sensitivity (CS were measured at baseline and at 1, 3, and 6 months. Serum L+Z concentrations were measured at baseline and at 3 months. MPOD was calculated at each time point using fundus autofluorescent images.Results: Serum L+Z concentration was correlated with MPOD at 1°–2° eccentricity at baseline (r=0.63, P=0.003 and 3 months (r=0.53, P=0.015. Serum L+Z concentration increased by a factor of 2.3±1.0 (P<0.0001. At 6 months, MPOD was significantly higher compared to the baseline level at 0°–0.25° (P=0.034 and 0.25°–0.5° (P=0.032 eccentricity. CS improved after 3 or 6 months of L+Z+DHA supplementation (P<0.05.Conclusion: Juxtafoveal MPOD was associated with serum L+Z concentration. Foveal MPOD was increased by L+Z+DHA dietary supplementation. Keywords: fundus autofluorescence, supplement, spatial distribution

  2. Characterization of majority and minority carrier deep levels in p-type GaN:Mg grown by molecular beam epitaxy using deep level optical spectroscopy

    International Nuclear Information System (INIS)

    Armstrong, A.; Caudill, J.; Ringel, S. A.; Corrion, A.; Poblenz, C.; Mishra, U. K.; Speck, J. S.

    2008-01-01

    Deep level defects in p-type GaN:Mg grown by molecular beam epitaxy were characterized using steady-state photocapacitance and deep level optical spectroscopy (DLOS). Low frequency capacitance measurements were used to alleviate dispersion effects stemming from the deep Mg acceptor. Use of DLOS enabled a quantitative survey of both deep acceptor and deep donor levels, the latter being particularly important due to the limited understanding of minority carrier states for p-type GaN. Simultaneous electron and hole photoemissions resulted in a convoluted deep level spectrum that was decoupled by emphasizing either majority or minority carrier optical emission through control of the thermal filling time conditions. In this manner, DLOS was able to resolve and quantify the properties of deep levels residing near both the conduction and valence bandedges in the same sample. Bandgap states through hole photoemission were observed at E v +3.05 eV, E v +3.22 eV and E v +3.26 eV. Additionally, DLOS revealed levels at E c -3.24 eV and E c -2.97 eV through electron emission to the conduction band with the former attributed to the Mg acceptor itself. The detected deep donor concentration is less than 2% of activated [Mg] and demonstrates the excellent quality of the film

  3. Economic and environmental benefits of interconnected systems. The Spanish example

    International Nuclear Information System (INIS)

    Chicharro, A.S.; Dios Alija, R. de

    1996-01-01

    The interconnected systems provide large technical and economic benefits which, evaluated and contrasted with the associated network investment cost, usually produce important net savings. There are continental electrical systems formed by many interconnected subsystems. The optimal size of an interconnection should be defined within an economic background. It is necessary to take into account the global environmental effects. The approach and results of studies carried out by Red Electrica is presented, in order to analyse both economic and environmental benefits resulting from an increase in the present Spanish interconnection capacities. From both economic and environmental points of view, the development of the interconnected systems is highly positive. (author)

  4. Crosstalk in modern on-chip interconnects a FDTD approach

    CERN Document Server

    Kaushik, B K; Patnaik, Amalendu

    2016-01-01

    The book provides accurate FDTD models for on-chip interconnects, covering most recent advancements in materials and design. Furthermore, depending on the geometry and physical configurations, different electrical equivalent models for CNT and GNR based interconnects are presented. Based on the electrical equivalent models the performance comparison among the Cu, CNT and GNR-based interconnects are also discussed in the book. The proposed models are validated with the HSPICE simulations. The book introduces the current research scenario in the modeling of on-chip interconnects. It presents the structure, properties, and characteristics of graphene based on-chip interconnects and the FDTD modeling of Cu based on-chip interconnects. The model considers the non-linear effects of CMOS driver as well as the transmission line effects of interconnect line that includes coupling capacitance and mutual inductance effects. In a more realistic manner, the proposed model includes the effect of width-dependent MFP of the ...

  5. Carbon nanotubes for interconnects process, design and applications

    CERN Document Server

    Dijon, Jean; Maffucci, Antonio

    2017-01-01

    This book provides a single-source reference on the use of carbon nanotubes (CNTs) as interconnect material for horizontal, on-chip and 3D interconnects. The authors demonstrate the uses of bundles of CNTs, as innovative conducting material to fabricate interconnect through-silicon vias (TSVs), in order to improve the performance, reliability and integration of 3D integrated circuits (ICs). This book will be first to provide a coherent overview of exploiting carbon nanotubes for 3D interconnects covering aspects from processing, modeling, simulation, characterization and applications. Coverage also includes a thorough presentation of the application of CNTs as horizontal on-chip interconnects which can potentially revolutionize the nanoelectronics industry. This book is a must-read for anyone interested in the state-of-the-art on exploiting carbon nanotubes for interconnects for both 2D and 3D integrated circuits. Provides a single-source reference on carbon nanotubes for interconnect applications; Includes c...

  6. Decentralised output feedback control of Markovian jump interconnected systems with unknown interconnections

    Science.gov (United States)

    Li, Li-Wei; Yang, Guang-Hong

    2017-07-01

    The problem of decentralised output feedback control is addressed for Markovian jump interconnected systems with unknown interconnections and general transition rates (TRs) allowed to be unknown or known with uncertainties. A class of decentralised dynamic output feedback controllers are constructed, and a cyclic-small-gain condition is exploited to dispose the unknown interconnections so that the resultant closed-loop system is stochastically stable and satisfies an H∞ performance. With slack matrices to cope with the nonlinearities incurred by unknown and uncertain TRs in control synthesis, a novel controller design condition is developed in linear matrix inequality formalism. Compared with the existing works, the proposed approach leads to less conservatism. Finally, two examples are used to illustrate the effectiveness of the new results.

  7. Controlling the optical bistability via quantum interference in a four-level N-type atomic system

    International Nuclear Information System (INIS)

    Sahrai, M.; Asadpour, S.H.; Mahrami, H.; Sadighi-Bonabi, R.

    2011-01-01

    We investigate the optical bistability (OB) and optical multi-stability (OM) in a four-level N-type atomic system. The effect of spontaneously generated coherence (SGC) on OB and OM is then discussed. It is found that SGC makes the medium phase dependent, so the optical bistability and multi-stability threshold can be controlled via relative phase between applied fields. We realize that the frequency detuning of probe and coupling fields with the corresponding atomic transition plays an important role in creation OB and OM. Moreover, the effect of laser coupling fields and an incoherent pumping field on reduction of OB and OM threshold is then discussed. - Highlights: → We modulate the optical bistability (OB) in a four-level N-type atomic system. The effect of spontaneously generated coherence on OB is discussed. → Spontaneously generated coherence makes the medium phase dependent. → The frequency of coupling field can reduce OB threshold. → We discuss the effect of an incoherent pumping field on reduction of OB threshold.

  8. Individual pore and interconnection size analysis of macroporous ceramic scaffolds using high-resolution X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jerban, Saeed, E-mail: saeed.jerban@usherbrooke.ca; Elkoun, Saïd, E-mail: Said.Elkoun@usherbrooke.ca

    2016-08-15

    The pore interconnection size of β-tricalcium phosphate scaffolds plays an essential role in the bone repair process. Although, the μCT technique is widely used in the biomaterial community, it is rarely used to measure the interconnection size because of the lack of algorithms. In addition, discrete nature of the μCT introduces large systematic errors due to the convex geometry of interconnections. We proposed, verified and validated a novel pore-level algorithm to accurately characterize the individual pores and interconnections. Specifically, pores and interconnections were isolated, labeled, and individually analyzed with high accuracy. The technique was verified thoroughly by visually inspecting and verifying over 3474 properties of randomly selected pores. This extensive verification process has passed a one-percent accuracy criterion. Scanning errors inherent in the discretization, which lead to both dummy and significantly overestimated interconnections, have been examined using computer-based simulations and additional high-resolution scanning. Then accurate correction charts were developed and used to reduce the scanning errors. Only after the corrections, both the μCT and SEM-based results converged, and the novel algorithm was validated. Material scientists with access to all geometrical properties of individual pores and interconnections, using the novel algorithm, will have a more-detailed and accurate description of the substitute architecture and a potentially deeper understanding of the link between the geometric and biological interaction. - Highlights: •An algorithm is developed to analyze individually all pores and interconnections. •After pore isolating, the discretization errors in interconnections were corrected. •Dummy interconnections and overestimated sizes were due to thin material walls. •The isolating algorithm was verified through visual inspection (99% accurate). •After correcting for the systematic errors, algorithm was

  9. Environmental Regulation Impacts on Eastern Interconnection Performance

    Energy Technology Data Exchange (ETDEWEB)

    Markham, Penn N [ORNL; Liu, Yilu [ORNL; Young II, Marcus Aaron [ORNL

    2013-07-01

    In the United States, recent environmental regulations will likely result in the removal of nearly 30 GW of oil and coal-fired generation from the power grid, mostly in the Eastern Interconnection (EI). The effects of this transition on voltage stability and transmission line flows have previously not been studied from a system-wide perspective. This report discusses the results of power flow studies designed to simulate the evolution of the EI over the next few years as traditional generation sources are replaced with environmentally friendlier ones such as natural gas and wind.

  10. Interconnectivity and the Electronic Academic Library

    Directory of Open Access Journals (Sweden)

    Donald E. Riggs

    1988-03-01

    Full Text Available 無Due to the emphasis on the use of computing networks on campuses and to the very nature of more information being accessible to library users only via electronic means, we are witnessing a migration to electronic academic libraries. this new type of library is being required to have interconnections with the campus' other online information/data systems. Arizona State University libraries have been provided the opportunity to develop an electronic library that will be the focal point of a campus-wide information/data network.

  11. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  12. Mechanics of ultra-stretchable self-similar serpentine interconnects

    International Nuclear Information System (INIS)

    Zhang, Yihui; Fu, Haoran; Su, Yewang; Xu, Sheng

    2013-01-01

    Graphical abstract: We developed analytical models of flexibility and elastic-stretchability for self-similar interconnect. The analytic solutions agree very well with the finite element analyses, both demonstrating that the elastic-stretchability more than doubles when the order of self-similar structure increases by one. Design optimization yields 90% and 50% elastic stretchability for systems with surface filling ratios of 50% and 70% of active devices, respectively. The analytic models are useful for the development of stretchable electronics that simultaneously demand large coverage of active devices, such as stretchable photovoltaics and electronic eye-ball cameras. -- Abstract: Electrical interconnects that adopt self-similar, serpentine layouts offer exceptional levels of stretchability in systems that consist of collections of small, non-stretchable active devices in the so-called island–bridge design. This paper develops analytical models of flexibility and elastic stretchability for such structures, and establishes recursive formulae at different orders of self-similarity. The analytic solutions agree well with finite element analysis, with both demonstrating that the elastic stretchability more than doubles when the order of the self-similar structure increases by one. Design optimization yields 90% and 50% elastic stretchability for systems with surface filling ratios of 50% and 70% of active devices, respectively

  13. Complexity in neuronal noise depends on network interconnectivity.

    Science.gov (United States)

    Serletis, Demitre; Zalay, Osbert C; Valiante, Taufik A; Bardakjian, Berj L; Carlen, Peter L

    2011-06-01

    "Noise," or noise-like activity (NLA), defines background electrical membrane potential fluctuations at the cellular level of the nervous system, comprising an important aspect of brain dynamics. Using whole-cell voltage recordings from fast-spiking stratum oriens interneurons and stratum pyramidale neurons located in the CA3 region of the intact mouse hippocampus, we applied complexity measures from dynamical systems theory (i.e., 1/f(γ) noise and correlation dimension) and found evidence for complexity in neuronal NLA, ranging from high- to low-complexity dynamics. Importantly, these high- and low-complexity signal features were largely dependent on gap junction and chemical synaptic transmission. Progressive neuronal isolation from the surrounding local network via gap junction blockade (abolishing gap junction-dependent spikelets) and then chemical synaptic blockade (abolishing excitatory and inhibitory post-synaptic potentials), or the reverse order of these treatments, resulted in emergence of high-complexity NLA dynamics. Restoring local network interconnectivity via blockade washout resulted in resolution to low-complexity behavior. These results suggest that the observed increase in background NLA complexity is the result of reduced network interconnectivity, thereby highlighting the potential importance of the NLA signal to the study of network state transitions arising in normal and abnormal brain dynamics (such as in epilepsy, for example).

  14. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    Science.gov (United States)

    Schaefer, C.; Coble, C.; Mason, S.; Young, M.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; hide

    2017-01-01

    Carbon dioxide (CO2) levels on board the International Space Station (ISS) have typically averaged 2.3 to 5.3 mmHg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow (CBF). Increased CBF leads to elevated intracranial pressure (ICP), a factor leading to visual disturbances, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve and optical coherence tomography (OCT) provide surrogate measurements of ICP; in-flight measurements of both were implemented as enhanced screening tools for the Visual Impairment/Intracranial Pressure (VIIP) syndrome. This analysis examines the relationships between ambient CO2 levels on ISS, ultrasound and OCT measures of the eye in an effort to understand how CO2 may possibly be associated with VIIP and to inform future analysis of in-flight VIIP data.

  15. GENERATION Y: INTERCONNECTED AT LOCAL LEVEL WITH ROMANIAN ENTREPRENEURIAL TRENDS

    Directory of Open Access Journals (Sweden)

    Oana-Georgiana CIOBANU

    2015-08-01

    Full Text Available Entrepreneurship is now recognized as the fundamental economic basis for development of the country. It is considered as an active, determinant and orientated factor of the development of national economy.International business circles approach entrepreneurship as the driving force, aspiring towards globalization, ensuring the flow of goods and services. The objective of this study is to conduct a comprehensive analysis of Romanian entrepreneurial ecosystem as well as motivating and supporting Generation Y in developing entrepreneurial initiative. Small Businesses represent the future of Romania. Own business offers the opportunity to express abilities and talent, for the application of the professional experience, for personal development. The purpose of this scientific approach is to propose a comprehensive analysis through a questionnaire distributed to the representatives of Generation Y from “Stefan cel Mare” University of Suceava. The survey had 118 respondentsbetween 20-35 years old,students of local University,of which were validated only 100 questionnaires and followed the way the younger Generation Y, regards entrepreneurship as a possible launch rail, on the labor market or even more, if it has been involved in the development of business environment,supporting and generating start-ups and designing trends and policies to encourage the prospective young entrepreneurs.

  16. Multichannel all–optical switch based on a thin slab of resonant two–level emitters

    Directory of Open Access Journals (Sweden)

    Malikov Ramil

    2017-01-01

    Full Text Available We discuss the possibility of using a thin layer of inhomogeneously broadened resonant emitters as a multichannel all–optical switch. Switching time from the lower stable branch of the system's bistable characteristics to the upper one and vice versa, which determines the speed of operation of a bistable device, is studied.

  17. A fibre optic fluorescence sensor to measure redox level in tissues

    Science.gov (United States)

    Zhang, Wen Qi; Morrison, Janna L.; Darby, Jack R. T.; Plush, Sally; Sorvina, Alexandra; Brooks, Doug; Monro, Tanya M.; Afshar Vahid, Shahraam

    2018-01-01

    We report the design of a fibre optic-based redox detection system for investigating differences in metabolic activities of tissues. Our system shows qualitative agreement with the results collected from a commercial two- photon microscope system. Thus, demonstrating the feasibility of building an ex vivo and in vivo redox detection system that is low cost and portable.

  18. The Quality Control of the LHC Continuous Cryostat Interconnections

    CERN Document Server

    Bertinelli, F; Bozzini, D; Cruikshank, P; Fessia, P; Grimaud, A; Kotarba, A; Maan, W; Olek, S; Poncet, A; Russenschuck, Stephan; Savary, F; Sulek, Z; Tock, J P; Tommasini, D; Vaudaux, L; Williams, L

    2008-01-01

    The interconnections between the Large Hadron Collider (LHC) magnets have required some 40 000 TIG welded joints and 65 000 electrical splices. At the level of single joints and splices, non-destructive techniques find limited application: quality control is based on the qualification of the process and of operators, on the recording of production parameters and on production samples. Visual inspection and process audits were the main techniques used. At the level of an extended chain of joints and splices - from a 53.5 m half-cell to a complete 2.7 km arc sector - quality control is based on vacuum leak tests, electrical tests and RF microwave reflectometry that progressively validated the work performed. Subsequent pressure tests, cryogenic circuits flushing with high pressure helium and cool-downs revealed a few unseen or new defects. This paper presents an overview of the quality control techniques used, seeking lessons applicable to similar large, complex projects.

  19. Measurement of amino acid levels in the vitreous humor of rats after chronic intraocular pressure elevation or optic nerve transection.

    Science.gov (United States)

    Levkovitch-Verbin, Hana; Martin, Keith R G; Quigley, Harry A; Baumrind, Lisa A; Pease, Mary Ellen; Valenta, Danielle

    2002-10-01

    To investigate whether the levels of free amino acids and protein in the vitreous of rat eyes are altered with chronic intraocular pressure (IOP) elevation or after optic nerve transection. The concentrations of 20 amino acids in the vitreous humor were measured by high-performance liquid chromatography in both eyes of 41 rats with unilateral IOP elevation induced by translimbal photocoagulation. Eyes were studied 1 day and 1, 2, 4, and 9 weeks after initial IOP elevation. The same amino acids were measured in 41 rats 1 day and 2, 4, and 9 weeks after unilateral transection of the orbital optic nerve. The intravitreal protein level was assayed in additional 22 rats with IOP elevation and 12 rats after nerve transection. Two masked observers evaluated the amount of optic nerve damage with a semiquantitative, light-microscopic technique. In rats with experimental glaucoma, amino acid concentrations were unchanged 1 day after treatment. At 1 week, 4 of 20 amino acids (aspartate, proline, alanine, and lysine) were higher than in control eyes ( 0.05). Vitreous protein level was significantly higher in glaucomatous eyes than their paired controls at 1 day ( 0.01).

  20. Phase-controlled all-optical switching based on coherent population oscillation in a two-level system

    International Nuclear Information System (INIS)

    Liao, Ping; Yu, Song; Luo, Bin; Shen, Jing; Gu, Wanyi; Guo, Hong

    2011-01-01

    We theoretically propose a scheme of phase-controlled all-optical switching due to the effect of degenerate four-wave mixing (FWM) and coherent population oscillation (CPO) in a two-level system driven by a strong coupling field and two weak symmetrically detuned fields. The results show that the phase of the FWM field can be utilized to switch between constructive and destructive interference, which can lead to the transmission or attenuation of the probe field and thus switch the field on or off. We also find the intensity of the coupling field and the propagation distance have great influence on the performance of the switching. In our scheme, due to the quick response in semiconductor systems, a fast all-optical switching can be realized at low light level. -- Highlights: ► We study a new all-optical switching based on coherent population oscillation. ► The phase of the FWM field can be utilized to switch the probe field on or off. ► A fast and low-light-level switching can be realized in semiconductors.

  1. Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells

    Science.gov (United States)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of red blood cells (RBCs) in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e., measuring hemoglobin sO2) is feasible from dispersed RBCs at the single capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. We present a numerical study of backscattering spectra from single RBCs based on the first-order Born approximation, considering practical factors: RBC orientations, size variation, and deformations. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different mean cellular hemoglobin content and different deformations of RBCs. This study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single capillary level using backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single capillary level.

  2. National Offshore Wind Energy Grid Interconnection Study

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  3. Thermoelectric Coolers with Sintered Silver Interconnects

    Science.gov (United States)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  4. Interconnected ponds operation for flood hazard distribution

    Science.gov (United States)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  5. Message Passing Framework for Globally Interconnected Clusters

    International Nuclear Information System (INIS)

    Hafeez, M; Riaz, N; Asghar, S; Malik, U A; Rehman, A

    2011-01-01

    In prevailing technology trends it is apparent that the network requirements and technologies will advance in future. Therefore the need of High Performance Computing (HPC) based implementation for interconnecting clusters is comprehensible for scalability of clusters. Grid computing provides global infrastructure of interconnecting clusters consisting of dispersed computing resources over Internet. On the other hand the leading model for HPC programming is Message Passing Interface (MPI). As compared to Grid computing, MPI is better suited for solving most of the complex computational problems. MPI itself is restricted to a single cluster. It does not support message passing over the internet to use the computing resources of different clusters in an optimal way. We propose a model that provides message passing capabilities between parallel applications over the internet. The proposed model is based on Architecture for Java Universal Message Passing (A-JUMP) framework and Enterprise Service Bus (ESB) named as High Performance Computing Bus. The HPC Bus is built using ActiveMQ. HPC Bus is responsible for communication and message passing in an asynchronous manner. Asynchronous mode of communication offers an assurance for message delivery as well as a fault tolerance mechanism for message passing. The idea presented in this paper effectively utilizes wide-area intercluster networks. It also provides scheduling, dynamic resource discovery and allocation, and sub-clustering of resources for different jobs. Performance analysis and comparison study of the proposed framework with P2P-MPI are also presented in this paper.

  6. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    International Nuclear Information System (INIS)

    Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin

    2011-01-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. (interdisciplinary physics and related areas of science and technology)

  7. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    Directory of Open Access Journals (Sweden)

    Xie Yiwei

    2017-12-01

    Full Text Available Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  8. Barriers and drivers of new interconnections between EU and non-EU electricity systems. Economic and regulatory aspects

    International Nuclear Information System (INIS)

    Van Werven, M.J.N.; Van Oostvoorn, F.

    2006-05-01

    Interconnection of different electricity systems offers several advantages and benefits. In the first place it provides reliability and increases the robustness of the system. Furthermore, it increases economic efficiency and reduces the possibility to abuse market power. Price differences are the signal that efficiency gains can be obtained. To make a sound decision whether to invest in new interconnection capacity, the causes behind the price differences should be well understood. Price differences must originate from structural, long-term causes. Differences in primary resources, fuel mix and load patterns are such causes. It is important to note that price differences that result from the difference between regulatory structures (lack of level playing field) may not be structural and therefore may not justify investment in interconnection capacity. Next to advantages and benefits, interconnection is faced with costs and barriers. Firstly, there are investment costs, which are high for building new interconnections, and there are energy losses that are caused by transporting electricity. A third possible barrier is congestion within the EU, which impedes the imported electricity to freely flow to demand areas (and hinders the export of electricity to neighbouring regions). Furthermore, interconnection may create loop flows. In addition, interconnection could lead to an increasing import dependency, which may create political resistance. And finally, there may be opposition from residents in the areas where the transmission and interconnection lines have to be built. Concerning regulatory issues, trade between markets is more likely to be impeded or distorted if market designs and rules between countries/regions differ substantially. Regulatory issues that are of relevance comprise rules concerning the timing of gate closure, imbalance arrangements, the firmness of transmission access rights, the type of tariff regulation, unbundling, the ownership of

  9. Economic Valuation of Reserves on Cross Border Interconnections; A Danish Case Study

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa; Rather, Zakir Hussain; Hu, Weihao

    2014-01-01

    regions that plan for high penetration of intermittent renewables. Extreme intermittency in the nature of wind power imposes elevated risk levels to power system operation. This every day challenge of wind dominant power systems necessitate the crucial role of operating reserves. In this paper, we propose...... benefit of reserve provision provided by cross border interconnections. The focus here will be on reserve services from abundant hydropower resource in Norway, taking advantage of fast VSC-based HVDC interconnection that is expected to be commissioned in immediate coming years....

  10. Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii

    Science.gov (United States)

    2012-01-01

    Background Immunomagnetic separation (IMS) and immunoassays are widely used for pathogen detection. However, novel technology platforms with highly selective antibodies are essential to improve detection sensitivity, specificity and performance. In this study, monoclonal antibodies (MAbs) against Internalin A (InlA) and p30 were generated and used on paramagnetic beads of varying diameters for concentration, as well as on fiber-optic sensor for detection. Results Anti-InlA MAb-2D12 (IgG2a subclass) was specific for Listeria monocytogenes and L. ivanovii, and p30-specific MAb-3F8 (IgM) was specific for the genus Listeria. At all bacterial concentrations (103–108 CFU/mL) tested in the IMS assay; the 1-μm diameter MyOne beads had significantly higher capture efficiency (P Listeria antibody (9 %). Furthermore, capture efficiency for MyOne-2D12 was highly specific for L. monocytogenes and L. ivanovii. Subsequently, we captured L. monocytogenes by MyOne-2D12 and MyOne-3F8 from hotdogs inoculated with mono- or co-cultures of L. monocytogenes and L. innocua (10–40 CFU/g), enriched for 18 h and detected by fiber-optic sensor and confirmed by plating, light-scattering, and qPCR assays. The detection limit for L. monocytogenes and L. ivanovii by the fiber-optic immunosensor was 3 × 102 CFU/mL using MAb-2D12 as capture and reporter antibody. Selective media plating, light-scattering, and qPCR assays confirmed the IMS and fiber-optic results. Conclusions IMS coupled with a fiber-optic sensor using anti-InlA MAb is highly specific for L. monocytogenes and L. ivanovii and enabled detection of these pathogens at low levels from buffer or food. PMID:23176167

  11. Compact Interconnection Networks Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary

  12. Current Solutions: Recent Experience in Interconnecting Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.

    2003-09-01

    This report catalogues selected real-world technical experiences of utilities and customers that have interconnected distributed energy assets with the electric grid. This study was initiated to assess the actual technical practices for interconnecting distributed generation and had a particular focus on the technical issues covered under the Institute of Electrical and Electronics Engineers (IEEE) 1547(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems.

  13. Self-Rerouting and Curative Interconnect Technology (SERCUIT)

    Science.gov (United States)

    2017-12-01

    SPECIAL REPORT RDMR-CS-17-01 SELF-REROUTING AND CURATIVE INTERCONNECT TECHNOLOGY (SERCUIT) Shiv Joshi Concepts to Systems, Inc...Final 4. TITLE AND SUBTITLE Self-Rerouting and Curative Interconnect Technology (SERCUIT) 5. FUNDING NUMBERS 6. AUTHOR(S) Shiv Joshi...concepts2systems.com (p) 434-207-5189 x (f) Click to view full size Title Contract Number SELF-REROUTING AND CURATIVE INTERCONNECT TECHNOLOGY (SERCUIT) W911W6-17-C-0029

  14. Application of Trapezoidal-Shaped Characteristic Basis Functions to Arrays of Electrically Interconnected Antenna Elements

    NARCIS (Netherlands)

    Maaskant, R.; Mittra, R.; Tijhuis, A.G.; Graglia, R.D.

    2007-01-01

    This paper describes a novel technique for generating the characteristic basis functions (CBFs) used to represent the surface currents on finite arrays of electrically interconnected antenna elements. The CBFs are high-level basis functions, defined on subdomains in which the original problem is

  15. Best Practices for Teaming and Collaboration in the Interconnected Systems Framework

    Science.gov (United States)

    Splett, Joni W.; Perales, Kelly; Halliday-Boykins, Colleen A.; Gilchrest, Callie E.; Gibson, Nicole; Weist, Mark D.

    2017-01-01

    The Interconnected Systems Framework (ISF) blends school mental health practices, systems, and resources into all levels of a multitiered system of supports (e.g., positive behavior interventions and supports). The ISF aims to improve mental health and school performance for all students by emphasizing effective school-wide promotion and…

  16. Interconnection of the Degree of Risk and Life Cycle of the “Green Construction” Investment Projects

    OpenAIRE

    Lepehova Natalia; Shoshinov Vitaly

    2017-01-01

    This article analyses interconnection of the degree of risk and the life cycle of the “green building” investment projects, which is structured according to the life cycle. Main stages of the implementation of investment and construction project were considered, interconnection of the project life cycle and the level of project risk were presented in the form of graphical model, proposed a mathematical model of the risk calculation at different stages of the project life cycle, which is a fun...

  17. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  18. Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system

    International Nuclear Information System (INIS)

    Park, Sung Jong; Park, Chang Yong; Yoon, Tai Hyun

    2005-01-01

    A scheme of optical polarization modulation of a linearly polarized infrared probe field is studied in a degenerate four-level Yb atomic system. We have observed an anomalous transmission spectra of two circular polarization components of the probe field exhibiting an enhanced two-photon absorption and a three-photon gain with comparable magnitude, leading to the lossless transmission and enhanced circular dichroism. We carried out a proof-of-principle experiment of fast optical polarization modulation in such a system by modulating the polarization state of the coupling field. The observed enhanced two-photon absorption and three-photon gain of the probe field are due to the result of competing atomic coherence effects

  19. Distributed Energy Resources Interconnection Systems: Technology Review and Research Needs

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, N. R.

    2002-09-01

    Interconnecting distributed energy resources (DER) to the electric utility grid (or Area Electric Power System, Area EPS) involves system engineering, safety, and reliability considerations. This report documents US DOE Distribution and Interconnection R&D (formerly Distributed Power Program) activities, furthering the development and safe and reliable integration of DER interconnected with our nation's electric power systems. The key to that is system integration and technology development of the interconnection devices that perform the functions necessary to maintain the safety, power quality, and reliability of the EPS when DER are connected to it.

  20. Financial viability of the Sonora-Baja California interconnection line

    International Nuclear Information System (INIS)

    Alonso, G.; Ortega, G.

    2017-09-01

    In the Development Program of the National Electricity Sector 2015-2029, an electric interconnection line between Sonora and Baja California (Mexico) is proposed, this study analyzes the financial viability of this interconnection line based on the maximum hourly and seasonal energy demand between both regions and proposes alternatives for the supply of electric power that supports the economic convenience of this interconnection line. The results show that additional capacity is required in Sonora to cover the maximum demands of both regions since in the current condition of the National Electric System the interconnection line is not justified. (Author)

  1. 78 FR 73239 - Small Generator Interconnection Agreements and Procedures

    Science.gov (United States)

    2013-12-05

    ... Electronics Engineers (IEEE) Standard 1547 for Interconnecting Distributed Resources with Electric Power... discriminatory manner.\\38\\ \\37\\ The Electricity Consumers Resource Council, American Chemistry Council, American...

  2. Asynchronous decentralized method for interconnected electricity markets

    International Nuclear Information System (INIS)

    Huang, Anni; Joo, Sung-Kwan; Song, Kyung-Bin; Kim, Jin-Ho; Lee, Kisung

    2008-01-01

    This paper presents an asynchronous decentralized method to solve the optimization problem of interconnected electricity markets. The proposed method decomposes the optimization problem of combined electricity markets into individual optimization problems. The impact of neighboring markets' information is included in the objective function of the individual market optimization problem by the standard Lagrangian relaxation method. Most decentralized optimization methods use synchronous models of communication to exchange updated market information among markets during the iterative process. In this paper, however, the solutions of the individual optimization problems are coordinated through an asynchronous communication model until they converge to the global optimal solution of combined markets. Numerical examples are presented to demonstrate the advantages of the proposed asynchronous method over the existing synchronous methods. (author)

  3. Virtual interconnection platform initiative scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kou, Gefei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pan, Zuohong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); King Jr., Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    Due to security and liability concerns, the research community has limited access to realistic large-scale power grid models to test and validate new operation and control methodologies. It is also difficult for industry to evaluate the relative value of competing new tools without a common platform for comparison. This report proposes to develop a large-scale virtual power grid model that retains basic features and represents future trends of major U.S. electric interconnections. This model will include realistic power flow and dynamics information as well as a relevant geospatial distribution of assets. This model will be made widely available to the research community for various power system stability and control studies and can be used as a common platform for comparing the efficacies of various new technologies.

  4. New transmission interconnection reduces consumer costs

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-09-15

    The Central American electric interconnection system (SIEPAC) project will involve the construction of a 1830 km 230 kV transmission system that will link Guatemala, El Salvador, Honduras, Costa Rica, Nicaragua, and Panama. The system is expected to alleviate the region's power shortages and reduce electricity costs for consumers. Costs for the SIEPAC project have been estimated at $370 million. The system will serve approximately 37 million customers, and will include 15 substations. The contract for building the electrical equipment has been awarded to Schweitzer Engineering Laboratories (SEL) who plan to manufacture components at a plant in Mexico. The equipment will include high speed line protection, automation, and control systems. Line current differential systems and satellite-synchronized clocks will also be used. The new transmission system is expected to be fully operational by 2009. 1 fig.

  5. SIDES - Segment Interconnect Diagnostic Expert System

    International Nuclear Information System (INIS)

    Booth, A.W.; Forster, R.; Gustafsson, L.; Ho, N.

    1989-01-01

    It is well known that the FASTBUS Segment Interconnect (SI) provides a communication path between two otherwise independent, asynchronous bus segments. The SI is probably the most important module in any FASTBUS data acquisition network since it's failure to function can cause whole segments of the network to be inaccessible and sometimes inoperable. This paper describes SIDES, an intelligent program designed to diagnose SI's both in situ as they operate in a data acquisition network, and in the laboratory in an acceptance/repair environment. The paper discusses important issues such as knowledge acquisition; extracting knowledge from human experts and other knowledge sources. SIDES can benefit high energy physics experiments, where SI problems can be diagnosed and solved more quickly. Equipment pool technicians can also benefit from SIDES, first by decreasing the number of SI's erroneously turned in for repair, and secondly as SIDES acts as an intelligent assistant to the technician in the diagnosis and repair process

  6. Interconnection between thyroid hormone signalling pathways and parvovirus cytotoxic functions.

    Science.gov (United States)

    Vanacker, J M; Laudet, V; Adelmant, G; Stéhelin, D; Rommelaere, J

    1993-01-01

    Nonstructural (NS) proteins of autonomous parvoviruses can repress expression driven by heterologous promoters, an activity which thus far has not been separated from their cytotoxic effects. It is shown here that, in transient transfection assays, the NS-1 protein of the parvovirus minute virus of mice (MVMp) activates the promoter of the human c-erbA1 gene, encoding the thyroid hormone (T3) receptor alpha. The endogenous c-erbA1 promoter is also a target for induction upon MVMp infection. Moreover, T3 was found to up-modulate the level of cell sensitivity to parvovirus attack. These data suggest an interconnection between T3 signalling and NS cytotoxic pathways. Images PMID:8230488

  7. Operational Plan Ontology Model for Interconnection and Interoperability

    Science.gov (United States)

    Long, F.; Sun, Y. K.; Shi, H. Q.

    2017-03-01

    Aiming at the assistant decision-making system’s bottleneck of processing the operational plan data and information, this paper starts from the analysis of the problem of traditional expression and the technical advantage of ontology, and then it defines the elements of the operational plan ontology model and determines the basis of construction. Later, it builds up a semi-knowledge-level operational plan ontology model. Finally, it probes into the operational plan expression based on the operational plan ontology model and the usage of the application software. Thus, this paper has the theoretical significance and application value in the improvement of interconnection and interoperability of the operational plan among assistant decision-making systems.

  8. Electric power grid interconnection in Northeast Asia

    International Nuclear Information System (INIS)

    Yun, Won-Cheol; Zhang, Zhong Xiang

    2006-01-01

    In spite of regional closeness, energy cooperation in Northeast Asia has remained unexplored. However, this situation appears to be changing. The government of South Korea seems to be very enthusiastic for power grid interconnection between the Russian Far East and South Korea to overcome difficulties in finding new sites for building power facilities to meet its need for increased electricity supplies. This paper analyzes the feasibility of this electric power grid interconnection route. The issues addressed include electricity market structures; the prospects for electric power industry restructuring in the Russian Federation and South Korea; the political issues related to North Korea; the challenges for the governments involved and the obstacles anticipated in moving this project forward; project financing and the roles and concerns from multilateral and regional banks; and institutional framework for energy cooperation. While there are many technical issues that need to be resolved, we think that the great challenge lies in the financing of this commercial project. Thus, the governments of the Russian Federation and South Korea involved in the project need to foster the development of their internal capital markets and to create confidence with international investors. To this end, on energy side, this involves defining a clear energy policy implemented by independent regulators, speeding up the already started but delayed reform process of restructuring electric power industry and markets, and establishing a fair and transparent dispute resolution mechanism in order to reduce non-commercial risks to a minimum. The paper argues that establishing a framework for energy cooperation in this region will contribute positively towards that end, although views differ regarding its specific form. Finally, given that North Korea has a crucial transit role to play and faces a very unstable political situation, it is concluded that moving the project forward needs to be

  9. Concentration of sunlight to solar-surface levels using non-imaging optics

    Science.gov (United States)

    Gleckman, Philip; O'Gallagher, Joseph; Winston, Roland

    1989-05-01

    An account is given of the design and operational principles of a solar concentrator that employs nonimaging optics to achieve a solar flux equal to 56,000 times that of ambient sunlight, yielding temperatures comparable to, and with further development of the device, exceeding those of the solar surface. In this scheme, a parabolic mirror primary concentrator is followed by a secondary concentrator, designed according to the edge-ray method, which is filled with a transparent oil. The device may be used in materials-processing, waste-disposal, and solar-pumped laser applications.

  10. Cerebrospinal fluid neurofilament light chain levels predict visual outcome after optic neuritis

    DEFF Research Database (Denmark)

    Modvig, Signe; Degn, M; Sander, B

    2016-01-01

    BACKGROUND: Optic neuritis is a good model for multiple sclerosis relapse, but currently no tests can accurately predict visual outcome. OBJECTIVE: The purpose of this study was to examine whether cerebrospinal fluid (CSF) biomarkers of tissue damage and remodelling (neurofilament light chain (NF......-L, β=-1.1, p=0.0150 for GC-IPL). Complete/incomplete remission was determined based on LCVA from 30 healthy controls. NF-L had a positive predictive value of 91% and an area under the curve (AUC) of 0.79 for incomplete remission. CONCLUSION: CSF NF-L is a promising biomarker of visual outcome after...

  11. Nanoantenna couplers for metal-insulator-metal waveguide interconnects

    Science.gov (United States)

    Onbasli, M. Cengiz; Okyay, Ali K.

    2010-08-01

    State-of-the-art copper interconnects suffer from increasing spatial power dissipation due to chip downscaling and RC delays reducing operation bandwidth. Wide bandwidth, minimized Ohmic loss, deep sub-wavelength confinement and high integration density are key features that make metal-insulator-metal waveguides (MIM) utilizing plasmonic modes attractive for applications in on-chip optical signal processing. Size-mismatch between two fundamental components (micron-size fibers and a few hundred nanometers wide waveguides) demands compact coupling methods for implementation of large scale on-chip optoelectronic device integration. Existing solutions use waveguide tapering, which requires more than 4λ-long taper distances. We demonstrate that nanoantennas can be integrated with MIM for enhancing coupling into MIM plasmonic modes. Two-dimensional finite-difference time domain simulations of antennawaveguide structures for TE and TM incident plane waves ranging from λ = 1300 to 1600 nm were done. The same MIM (100-nm-wide Ag/100-nm-wide SiO2/100-nm-wide Ag) was used for each case, while antenna dimensions were systematically varied. For nanoantennas disconnected from the MIM; field is strongly confined inside MIM-antenna gap region due to Fabry-Perot resonances. Major fraction of incident energy was not transferred into plasmonic modes. When the nanoantennas are connected to the MIM, stronger coupling is observed and E-field intensity at outer end of core is enhanced more than 70 times.

  12. An optical liquid level sensor based on core-offset fusion splicing method using polarization-maintaining fiber

    Science.gov (United States)

    Lou, Weimin; Chen, Debao; Shen, Changyu; Lu, Yanfang; Liu, Huanan; Wei, Jian

    2016-01-01

    A simple liquid level sensor using a small piece of hydrofluoric acid (HF) etched polarization maintaining fiber (PMF), with SMF-PMF-SMF fiber structure based on Mach- Zehnder interference (MZI) mechanism is proposed. The core-offset fusion splicing method induced cladding modes interfere with the core mode. Moreover, the changing liquid level would influence the optical path difference of the MZI since the effective refractive indices of the air and the liquid is different. Both the variations of the wavelength shifts and power intensity attenuation corresponding to the liquid level can be obtained with a sensitivity of 0.4956nm/mm and 0.2204dB/mm, respectively.

  13. Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications.

    Science.gov (United States)

    Yura, Harold T; Fields, Renny A

    2011-06-20

    Level crossing statistics is applied to the complex problem of atmospheric turbulence-induced beam wander for laser propagation from ground to space. A comprehensive estimate of the single-axis wander angle temporal autocorrelation function and the corresponding power spectrum is used to develop, for the first time to our knowledge, analytic expressions for the mean angular level crossing rate and the mean duration of such crossings. These results are based on an extension and generalization of a previous seminal analysis of the beam wander variance by Klyatskin and Kon. In the geometrical optics limit, we obtain an expression for the beam wander variance that is valid for both an arbitrarily shaped initial beam profile and transmitting aperture. It is shown that beam wander can disrupt bidirectional ground-to-space laser communication systems whose small apertures do not require adaptive optics to deliver uniform beams at their intended target receivers in space. The magnitude and rate of beam wander is estimated for turbulence profiles enveloping some practical laser communication deployment options and suggesting what level of beam wander effects must be mitigated to demonstrate effective bidirectional laser communication systems.

  14. Optical and Microcantilever-Based Sensors for Real-Time In Situ Characterization of High-Level Waste

    International Nuclear Information System (INIS)

    Braun, Gilbert M.; Bryan, Samuel

    2002-01-01

    Fundamental research is being conducted to develop sensors for strontium that can be used in real-time to characterize high-level waste (HLW) process streams. Two fundamentally different approaches are being pursued, which have in common the dependence on highly selective molecular recognition agents. In one approach, an array of chemically selective sensors with sensitive fluorescent probes to signal the presence of the constituent of interest are coupled to fiber optics for remote analytical applications. The second approach employs sensitive microcantilever sensors that have been demonstrated to have unprecedented sensitivity in solution for Cs+ and CrO4 -. Selectivity in microcantilever-based sensors is achieved by modifying the surface of a gold-coated cantilever with a monolayer coating of an alkanethiol derivative of the molecular recognition agent. The approaches are complementary since fiber optic sensors can be deployed in the highly alkaline environment of HLW, bu t a method of immobilizing a fluorescent molecular recognition agents in a polymer film or bead on the surface of the optical fiber has yet to be demonstrated. The microcantilever-based sensors function by converting molecular complexation into surface stress, and they have been demonstrated to have the requisite sensitivity. However, we will investigate method of protecting Si or SiN microcantilever sensors in the highly alkaline environment of HLW while maintaining high selectivity. One objective of this project is to develop Sr(II) molecular recognition agents with rapidly established equilibria needed for real-time analysis, and initial research will focus on calixarene-crown ethers as a platform. Sensors for alkali metal ions, hydroxide, and temperature will be part of the array of sensor elements that will be demonstrated in this program for both the cantilever and fiber optic sensor approaches

  15. Updating Small Generator Interconnection Procedures for New Market Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Fox, K.; Stanfield, S.; Varnado, L.; Culley, T.; Sheehan, M.

    2012-12-01

    Federal and state regulators are faced with the challenge of keeping interconnection procedures updated against a backdrop of evolving technology, new codes and standards, and considerably transformed market conditions. This report is intended to educate policymakers and stakeholders on beneficial reforms that will keep interconnection processes efficient and cost-effective while maintaining a safe and reliable power system.

  16. 14 CFR 29.957 - Flow between interconnected tanks.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  17. Robert Aymar seals the last interconnect in the LHC

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    The LHC completes the circle. On 7 November, in a brief ceremony in the LHC tunnel, CERN Director General Robert Aymar (Photo 1) sealed the last interconnect between the main magnets of the Large Hadron Collider (LHC). Jean-Philippe Tock, leader of the Interconnections team, tightens the last bolt (Photos 4-8).

  18. Circuit and interconnect design for high bit-rate applications

    NARCIS (Netherlands)

    Veenstra, H.

    2006-01-01

    This thesis presents circuit and interconnect design techniques and design flows that address the most difficult and ill-defined aspects of the design of ICs for high bit-rate applications. Bottlenecks in interconnect design, circuit design and on-chip signal distribution for high bit-rate

  19. Optical preparation of H2 rovibrational levels with almost complete population transfer

    Science.gov (United States)

    Dong, Wenrui; Mukherjee, Nandini; Zare, Richard N.

    2013-08-01

    Using stimulated Raman adiabatic passage (SARP), it is possible, in principle, to transfer all the population in a rovibrational level of an isolated diatomic molecule to an excited rovibrational level. We use an overlapping sequence of pump (532 nm) and dump (683 nm) single-mode laser pulses of unequal fluence to prepare isolated H2 molecules in a molecular beam. In a first series of experiments we were able to transfer more than half the population to an excited rovibrational level [N. Mukherjee, W. R. Dong, J. A. Harrison, and R. N. Zare, J. Chem. Phys. 138(5), 051101-1051101-4 (2013)], 10.1063/1.4790402. Since then, we have achieved almost complete transfer (97% ± 7%) of population from the H2 (v = 0, J = 0) ground rovibrational level to the H2 (v = 1, J = 0) excited rovibrational level. An explanation is presented of the SARP process and how these results are obtained.

  20. Mapping of interconnection of climate risks

    Science.gov (United States)

    Yokohata, Tokuta; Tanaka, Katsumasa; Nishina, Kazuya; Takanashi, Kiyoshi; Emori, Seita; Kiguchi, Masashi; Iseri, Yoshihiko; Honda, Yasushi; Okada, Masashi; Masaki, Yoshimitsu; Yamamoto, Akitomo; Shigemitsu, Masahito; Yoshimori, Masakazu; Sueyoshi, Tetsuo; Iwase, Kenta; Hanasaki, Naota; Ito, Akihiko; Sakurai, Gen; Iizumi, Toshichika; Oki, Taikan

    2015-04-01

    Anthropogenic climate change possibly causes various impacts on human society and ecosystem. Here, we call possible damages or benefits caused by the future climate change as "climate risks". Many climate risks are closely interconnected with each other by direct cause-effect relationship. In this study, the major climate risks are comprehensively summarized based on the survey of studies in the literature using IPCC AR5 etc, and their cause-effect relationship are visualized by a "network diagram". This research is conducted by the collaboration between the experts of various fields, such as water, energy, agriculture, health, society, and eco-system under the project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). First, the climate risks are classified into 9 categories (water, energy, food, health, disaster, industry, society, ecosystem, and tipping elements). Second, researchers of these fields in our project survey the research articles, and pick up items of climate risks, and possible cause-effect relationship between the risk items. A long list of the climate risks is summarized into ~130, and that of possible cause-effect relationship between the risk items is summarized into ~300, because the network diagram would be illegible if the number of the risk items and cause-effect relationship is too large. Here, we only consider the risks that could occur if climate mitigation policies are not conducted. Finally, the chain of climate risks is visualized by creating a "network diagram" based on a network graph theory (Fruchtman & Reingold algorithm). Through the analysis of network diagram, we find that climate risks at various sectors are closely related. For example, the decrease in the precipitation under the global climate change possibly causes the decrease in river runoff and the decrease in soil moisture, which causes the changes in crop production. The changes in crop production can have an impact on society by

  1. A one-semester course in modeling of VSLI interconnections

    CERN Document Server

    Goel, Ashok

    2015-01-01

    Quantitative understanding of the parasitic capacitances and inductances, and the resultant propagation delays and crosstalk phenomena associated with the metallic interconnections on the very large scale integrated (VLSI) circuits has become extremely important for the optimum design of the state-of-the-art integrated circuits. More than 65 percent of the delays on the integrated circuit chip occur in the interconnections and not in the transistors on the chip. Mathematical techniques to model the parasitic capacitances, inductances, propagation delays, crosstalk noise, and electromigration-induced failure associated with the interconnections in the realistic high-density environment on a chip will be discussed. A One-Semester Course in Modeling of VLSI Interconnections also includes an overview of the future interconnection technologies for the nanotechnology circuits.

  2. Fuel cell electrode interconnect contact material encapsulation and method

    Science.gov (United States)

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  3. Next generation space interconnect research and development in space communications

    Science.gov (United States)

    Collier, Charles Patrick

    2017-11-01

    Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.

  4. Solar-cell interconnect design for terrestrial photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-01-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  5. Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%

    Energy Technology Data Exchange (ETDEWEB)

    Arafat, Yeasir; Dutta, Indranath; Panat, Rahul, E-mail: Rahul.panat@wsu.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99163 (United States)

    2015-08-24

    Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high level of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.

  6. The element level time domain (ELTD) method for the analysis of nano-optical systems: I. Nondispersive media

    Science.gov (United States)

    Fallahi, Arya; Oswald, Benedikt; Leidenberger, Patrick

    2012-04-01

    We study a 3-dimensional, dual-field, fully explicit method for the solution of Maxwell's equations in the time domain on unstructured, tetrahedral grids. The algorithm uses the element level time domain (ELTD) discretization of the electric and magnetic vector wave equations. In particular, the suitability of the method for the numerical analysis of nanometer structured systems in the optical region of the electromagnetic spectrum is investigated. The details of the theory and its implementation as a computer code are introduced and its convergence behavior as well as conditions for stable time domain integration is examined. Here, we restrict ourselves to non-dispersive dielectric material properties since dielectric dispersion will be treated in a subsequent paper. Analytically solvable problems are analyzed in order to benchmark the method. Eventually, a dielectric microlens is considered to demonstrate the potential of the method. A flexible method of 2nd order accuracy is obtained that is applicable to a wide range of nano-optical configurations and can be a serious competitor to more conventional finite difference time domain schemes which operate only on hexahedral grids. The ELTD scheme can resolve geometries with a wide span of characteristic length scales and with the appropriate level of detail, using small tetrahedra where delicate, physically relevant details must be modeled.

  7. Analytical studies on pump-induced optical resonances in an M-type six-level system

    International Nuclear Information System (INIS)

    Ghosh, Saswata; Mandal, Swapan

    2010-01-01

    In the domain of semiclassical formulation and for the Doppler-free atom-field interaction, we construct the optical Bloch equations involving an M-type six-level system coupled to two pump fields and a probe field. The response of the system is probed for different pump-induced transitions in double and triple-resonance situations. In order to obtain the coherent lineshapes (absorptive and dispersive), we use the usual perturbation method for obtaining the approximate analytical solutions to these coupled optical Bloch equations for the density matrix elements. The interferences between the probability amplitudes for different energy levels (dipole allowed and dipole forbidden) are taken care of. For off-resonance pump positions, the linewidths of the three probe transitions are insensitive to the pump Rabi frequencies. On the other hand, the shifts of the three resonance peaks are extremely sensitive to the pump Rabi frequencies. However, for on-resonance pump conditions, the sensitivities of pump Rabi frequencies on the linewidths of the resonance peaks and on the shifts of the resonance peak positions are opposite to those of their off-resonance counterparts. In particular, we have shown the asymmetric and symmetric Rabi splittings under different physical conditions, for non-zero and near-zero probe detuning, respectively. The Rabi splitting under triple-resonance conditions, significantly, modifies the dispersive lineshape at the centre of the absorption line. The two- and three-photon absorptions are also reported for different off-resonant pump positions.

  8. 76 FR 45248 - PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C...

    Science.gov (United States)

    2011-07-28

    ...-002; Docket No. EL11-20-001] PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C.; Supplemental Notice of Staff Technical Conference On June 13, 2011, the Commission issued... Resources Services, Inc., Maryland Public Service Commission, Monitoring Analytics, L.L.C., National Rural...

  9. 76 FR 39870 - PJM Interconnection, LLC; PJM Power Providers Group v. PJM Interconnection, LLC; Notice of Date...

    Science.gov (United States)

    2011-07-07

    .... EL11-20-001] PJM Interconnection, LLC; PJM Power Providers Group v. PJM Interconnection, LLC; Notice of... Sell Offers for Planned Generation Capacity Resources submitted into PJM's Reliability Pricing Model... presents an opportunity to exercise buyer market power; (2) whether the Fixed Resource Requirement (FRR...

  10. Interconnection issues in Ontario : a status check

    International Nuclear Information System (INIS)

    Helbronner, V.

    2010-01-01

    This PowerPoint presentation discussed wind and renewable energy interconnection issues in Ontario. The province's Green Energy Act established a feed-in tariff (FIT) program and provided priority connection access to the electricity system for renewable energy generation facilities that meet regulatory requirements. As a result of the province's initiatives, Hydro One has identified 20 priority transmission expansion projects and is focusing on servicing renewable resource clusters. As of October 2010, the Ontario Power Authority (OPA) has received 1469 MW of FIT contracts executed for wind projects. A further 5953 MW of wind projects are awaiting approval. A Korean consortium is now planning to develop 2500 MW of renewable energy projects in the province. The OPA has also been asked to develop an updated transmission expansion plan. Transmission/distribution availability tests (TAT/DAT) have been established to determine if there is sufficient connection availability for FIT application projects. Economic connection tests (ECTs) are conducted to assess whether grid upgrade costs to enable additional FIT capacity are justifiable. When projects pass the ECT, grid upgrades needed for the connection included in grid expansion plans. Ontario's long term energy plan was also reviewed. tabs., figs.

  11. Microtexture of Strain in electroplated copper interconnects

    International Nuclear Information System (INIS)

    Spolenak, R.; Barr, D.L.; Gross, M.E.; Evans-Lutterodt, K.; Brown, W.L.; Tamura, N.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Valek, B.C.; Bravman, J.C.; Flinn, P.; Marieb, T.; Keller, R.R.; Batterman, B.W.; Patel, J.R.

    2001-01-01

    The microstructure of narrow metal conductors in the electrical interconnections on IC chips has often been identified as of major importance in the reliability of these devices. The stresses and stress gradients that develop in the conductors as a result of thermal expansion differences in the materials and of electromigration at high current densities are believed to be strongly dependent on the details of the grain structure. The present work discusses new techniques based on microbeam x-ray diffraction (MBXRD) that have enabled measurement not only of the microstructure of totally encapsulated conductors but also of the local stresses in them on a micron and submicron scale. White x-rays from the Advanced Light Source were focused to a micron spot size by Kirkpatrick-Baez mirrors. The sample was stepped under the micro-beam and Laue images obtained at each sample location using a CCD area detector. Microstructure and local strain were deduced from these images. Cu lines with widths ranging from 0.8 mm to 5 mm and thickness of 1 mm were investigated. Comparisons are made between the capabilities of MBXRD and the well established techniques of broad beam XRD, electron back scatter diffraction (EBSD) and focused ion beam imagining (FIB)

  12. Advances in optical information processing V; Proceedings of the Meeting, Orlando, FL, Apr. 21-24, 1992

    Science.gov (United States)

    Pape, Dennis R.

    Consideration is given to the following topics: transition of optical processing into systems (TOPS), optical signal processing, optical signal processing devices, optical image processing, Russian optical information processing, optical interconnects, and optical computing. Particular papers are presented on an acoustooptic range-Doppler processor design for radar insertion, an optical SAR processor and target recognition system, an advanced magnetooptic spatial light modulator device development update, an algorithm for controlling speckle-noise parameters, optical image processing in Russia, a massively parallel optical interconnect for long data stream convolution, and a reprogrammable digital optical coprocessor. (For individual items see A93-27718 to A93-27723)

  13. Reliability of Ceramic Column Grid Array Interconnect Packages Under Extreme Temperatures

    Science.gov (United States)

    Ramesham, Rajeshuni

    2011-01-01

    A paper describes advanced ceramic column grid array (CCGA) packaging interconnects technology test objects that were subjected to extreme temperature thermal cycles. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide were assembled, inspected nondestructively, and, subsequently, subjected to ex - treme-temperature thermal cycling to assess reliability for future deep-space, short- and long-term, extreme-temperature missions. The test hardware consisted of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The package is 33 33 mm with a 27 27 array of 80%/20% Pb/Sn columns on a 1.27-mm pitch. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of the increasing number of thermal cycles. Several catastrophic failures were observed after 137 extreme-temperature thermal cycles, as per electrical resistance measurements, and then the tests were continued through 1,058 thermal cycles to corroborate and understand the test results. X-ray and optical inspection have been made after thermal cycling. Optical inspections were also conducted on the CCGA vs. thermal cycles. The optical inspections were conclusive; the x-ray images were not. Process qualification and assembly is required to optimize the CCGA assembly, which is very clear from the x-rays. Six daisy chains were open out of seven daisy chains, as per experimental test data reported. The daisy chains are open during the cold cycle, and then recover during the hot cycle, though some of them also opened during the hot thermal cycle..

  14. Analysis of macular and nerve fiber layer thickness in multiple sclerosis patients according to severity level and optic neuritis episodes.

    Science.gov (United States)

    Soler García, A; Padilla Parrado, F; Figueroa-Ortiz, L C; González Gómez, A; García-Ben, A; García-Ben, E; García-Campos, J M

    2016-01-01

    Quantitative assessment of macular and nerve fibre layer thickness in multiple sclerosis patients with regard to expanded disability status scale (EDSS) and presence or absence of previous optic neuritis episodes. We recruited 62 patients with multiple sclerosis (53 relapsing-remitting and 9 secondary progressive) and 12 disease-free controls. All patients underwent an ophthalmological examination, including quantitative analysis of the nerve fibre layer and macular thickness using optical coherence tomography. Patients were classified according to EDSS as A (lower than 1.5), B (between 1.5 and 3.5), and C (above 3.5). Mean nerve fibre layer thickness in control, A, B, and C groups was 103.35±12.62, 99.04±14.35, 93.59±15.41, and 87.36±18.75μm respectively, with statistically significant differences (P<.05). In patients with no history of optic neuritis, history of episodes in the last 3 to 6 months, or history longer than 6 months, mean nerve fibre layer thickness was 99.25±13.71, 93.92±13.30 and 80.07±15.91μm respectively; differences were significant (P<.05). Mean macular thickness in control, A, B, and C groups was 220.01±12.07, 217.78±20.02, 217.68±20.77, and 219.04±24.26μm respectively. Differences were not statistically significant. The mean retinal nerve fibre layer thickness in multiple sclerosis patients is related to the EDSS level. Patients with previous optic neuritis episodes have a thinner retinal nerve fibre layer than patients with no history of these episodes. Mean macular thickness is not correlated to EDSS level. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Phonon induced optical gain in a current carrying two-level quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari-asl, Amir, E-mail: amir.eskandari.asl@gmail.com [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 1983963113 (Iran, Islamic Republic of); School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5531, Tehran, Iran (Iran, Islamic Republic of)

    2017-05-15

    In this work we consider a current carrying two level quantum dot (QD) that is coupled to a single mode phonon bath. Using self-consistent Hartree-Fock approximation, we obtain the I-V curve of QD. By considering the linear response of our system to an incoming classical light, we see that depending on the parametric regime, the system could have weak or strong light absorption or may even show lasing. This lasing occurs at high enough bias voltages and is explained by a population inversion considering side bands, while the total electron population in the higher level is less than the lower one. The frequency at which we have the most significant lasing depends on the level spacing and phonon frequency and not on the electron-phonon coupling strength.

  16. High sensitivity optical fiber liquid level sensor based on a compact MMF-HCF-FBG structure

    Science.gov (United States)

    Zhang, Yunshan; Zhang, Weigang; Chen, Lei; Zhang, Yanxin; Wang, Song; Yan, Tieyi

    2018-05-01

    An ultra-high sensitivity fiber liquid level sensor based on wavelength demodulation is proposed and demonstrated. The sensor is composed of a segment of multimode fiber and a large aperture hollow-core fiber assisted by a fiber Bragg grating (FBG). Interference occurs due to core mismatching and different modes with different effective refractive indices. The experimental results show that the liquid level sensitivity of the sensor is 1.145 nm mm‑1, and the linearity is up to 0.996. The dynamic temperature compensation of the sensor can be achieved by cascading an FBG. Considering the high sensitivity and compact structure of the sensor, it can be used for real-time intelligent monitoring of tiny changes in liquid level.

  17. Quantum iSWAP gate in optical cavities with a cyclic three-level system

    Science.gov (United States)

    Yan, Guo-an; Qiao, Hao-xue; Lu, Hua

    2018-04-01

    In this paper we present a scheme to directly implement the iSWAP gate by passing a cyclic three-level system across a two-mode cavity quantum electrodynamics. In the scheme, a three-level Δ -type atom ensemble prepared in its ground state mediates the interaction between the two-cavity modes. For this theoretical model, we also analyze its performance under practical noise, including spontaneous emission and the decay of the cavity modes. It is shown that our scheme may have a high fidelity under the practical noise.

  18. Pulsed laser planarization of metal films for multilevel interconnects

    International Nuclear Information System (INIS)

    Tuckerman, D.B.; Schmitt, R.L.

    1985-05-01

    Multilevel interconnect schemes for integrated circuits generally require one or more planarization steps, in order to maintain an acceptably flat topography for lithography and thin-film step coverage on the higher levels. Traditional approaches have involved planarization of the interlevel insulation (dielectric) layers, either by spin-on application (e.g., polyimide), or by reflow (e.g., phosphosilicate glass). We have pursued an alternative approach, in which each metal level is melted (hence planarized) using a pulsed laser prior to patterning. Short (approx.1 μs) pulses are used to preclude undesirable metallurgical reactions between the film, adhesion or barrier layer, and dielectric layer. Laser planarization of metals is particularly well suited to multilevel systems which include ground or power planes. Results are presented for planarization of gold films on SiO 2 dielectric layers using a flashlamp-pumped dye laser. The pulse duration is approx.1 μs, which allows the heat pulse to uniformly penetrate the gold while not penetrating substantially through the underlying SiO 2 (hence not perturbing the lower levels of metal). Excellent planarization of the gold films is achieved (less than 0.1 μm surface roughness, even starting with extreme topographic variations), as well as improved conductivity. To demonstrate the process, numerous planarized two-layer structures (transmission lines under a ground plane) were fabricated and characterized. 9 refs., 2 figs

  19. Signal Integrity Analysis in Single and Bundled Carbon Nanotube Interconnects

    International Nuclear Information System (INIS)

    Majumder, M.K.; Pandya, N.D.; Kaushik, B.K.; Manhas, S.K.

    2013-01-01

    Carbon nanotube (CN T) can be considered as an emerging interconnect material in current nano scale regime. They are more promising than other interconnect materials such as Al or Cu because of their robustness to electromigration. This research paper aims to address the crosstalk-related issues (signal integrity) in interconnect lines. Different analytical models of single- (SWCNT), double- (DWCNT), and multiwalled CNTs (MWCNT) are studied to analyze the crosstalk delay at global interconnect lengths. A capacitively coupled three-line bus architecture employing CMOS driver is used for accurate estimation of crosstalk delay. Each line in bus architecture is represented with the equivalent RLC models of single and bundled SWCNT, DWCNT, and MWCNT interconnects. Crosstalk delay is observed at middle line (victim) when it switches in opposite direction with respect to the other two lines (aggressors). Using the data predicted by ITRS 2012, a comparative analysis on the basis of crosstalk delay is performed for bundled SWCNT/DWCNT and single MWCNT interconnects. It is observed that the overall crosstalk delay is improved by 40.92% and 21.37% for single MWCNT in comparison to bundled SWCNT and bundled DWCNT interconnects, respectively.

  20. U.S. Laws and Regulations for Renewable Energy Grid Interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Geller, Nina [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Rapidly declining costs of wind and solar energy technologies, increasing concerns about the environmental and climate change impacts of fossil fuels, and sustained investment in renewable energy projects all point to a not-so-distant future in which renewable energy plays a pivotal role in the electric power system of the 21st century. In light of public pressures and market factors that hasten the transition towards a low-carbon system, power system planners and regulators are preparing to integrate higher levels of variable renewable generation into the grid. Updating the regulations that govern generator interconnections and operations is crucial to ensure system reliability while creating an enabling environment for renewable energy development. This report presents a chronological review of energy laws and regulations concerning grid interconnection procedures in the United States, highlighting the consequences of policies for renewable energy interconnections. Where appropriate, this report places interconnection policies and their impacts on renewable energy within the broader context of power market reform.

  1. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    Science.gov (United States)

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  2. Analysis of interconnecting energy systems over a synchronized life cycle

    International Nuclear Information System (INIS)

    Nian, Victor

    2016-01-01

    Highlights: • A methodology is developed for evaluating a life cycle of interconnected systems. • A new concept of partial temporal boundary is introduced via quantitative formulation. • The interconnecting systems are synchronized through the partial temporal boundary. • A case study on the life cycle of the coal–uranium system is developed. - Abstract: Life cycle analysis (LCA) using the process chain analysis (PCA) approach has been widely applied to energy systems. When applied to an individual energy system, such as coal or nuclear electricity generation, an LCA–PCA methodology can yield relatively accurate results with its detailed process representation based on engineering data. However, there are fundamental issues when applying conventional LCA–PCA methodology to a more complex life cycle, namely, a synchronized life cycle of interconnected energy systems. A synchronized life cycle of interconnected energy systems is established through direct interconnections among the processes of different energy systems, and all interconnecting systems are bounded within the same timeframe. Under such a life cycle formation, there are some major complications when applying conventional LCA–PCA methodology to evaluate the interconnecting energy systems. Essentially, the conventional system and boundary formulations developed for a life cycle of individual energy system cannot be directly applied to a life cycle of interconnected energy systems. To address these inherent issues, a new LCA–PCA methodology is presented in this paper, in which a new concept of partial temporal boundary is introduced to synchronize the interconnecting energy systems. The importance and advantages of these new developments are demonstrated through a case study on the life cycle of the coal–uranium system.

  3. Genomic Predictability of Interconnected Biparental Maize Populations

    Science.gov (United States)

    Riedelsheimer, Christian; Endelman, Jeffrey B.; Stange, Michael; Sorrells, Mark E.; Jannink, Jean-Luc; Melchinger, Albrecht E.

    2013-01-01

    Intense structuring of plant breeding populations challenges the design of the training set (TS) in genomic selection (GS). An important open question is how the TS should be constructed from multiple related or unrelated small biparental families to predict progeny from individual crosses. Here, we used a set of five interconnected maize (Zea mays L.) populations of doubled-haploid (DH) lines derived from four parents to systematically investigate how the composition of the TS affects the prediction accuracy for lines from individual crosses. A total of 635 DH lines genotyped with 16,741 polymorphic SNPs were evaluated for five traits including Gibberella ear rot severity and three kernel yield component traits. The populations showed a genomic similarity pattern, which reflects the crossing scheme with a clear separation of full sibs, half sibs, and unrelated groups. Prediction accuracies within full-sib families of DH lines followed closely theoretical expectations, accounting for the influence of sample size and heritability of the trait. Prediction accuracies declined by 42% if full-sib DH lines were replaced by half-sib DH lines, but statistically significantly better results could be achieved if half-sib DH lines were available from both instead of only one parent of the validation population. Once both parents of the validation population were represented in the TS, including more crosses with a constant TS size did not increase accuracies. Unrelated crosses showing opposite linkage phases with the validation population resulted in negative or reduced prediction accuracies, if used alone or in combination with related families, respectively. We suggest identifying and excluding such crosses from the TS. Moreover, the observed variability among populations and traits suggests that these uncertainties must be taken into account in models optimizing the allocation of resources in GS. PMID:23535384

  4. First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors

    Science.gov (United States)

    Mckeeman, I.; Fusiek, G.; Perry, M.; Johnston, M.; Saafi, M.; Niewczas, P.; Walsh, M.; Khan, S.

    2016-09-01

    In this work we present the first large-scale demonstration of metal packaged fibre Bragg grating sensors developed to monitor prestress levels in prestressed concrete. To validate the technology, strain and temperature sensors were mounted on steel prestressing strands in concrete beams and stressed up to 60% of the ultimate tensile strength of the strand. We discuss the methods and calibration procedures used to fabricate and attach the temperature and strain sensors. The use of induction brazing for packaging the fibre Bragg gratings and welding the sensors to prestressing strands eliminates the use of epoxy, making the technique suitable for high-stress monitoring in an irradiated, harsh industrial environment. Initial results based on the first week of data after stressing the beams show the strain sensors are able to monitor prestress levels in ambient conditions.

  5. Optical Mass Gauging System for Measuring Liquid Levels in a Reduced Gravity Environment

    Science.gov (United States)

    Sullenberger, Ryan M.; Munoz, Wesley M.; Lyon, Matt P.; Vogel, Kenny; Yalin, Azer P.; Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    A compact and rugged fiber-coupled liquid volume sensor designed for flight on a sounding rocket platform is presented. The sensor consists of a Mach-Zehnder interferometer capable of measuring the amount of liquid contained in a tank under any gravitational conditions, including a microgravity environment, by detecting small changes in the index of refraction of the gas contained within a sensing region. By monitoring changes in the interference fringe pattern as the system undergoes a small compression provided by a piston, the ullage volume of a tank can be directly measured allowing for a determination of the liquid volume. To demonstrate the technique, data are acquired using two tanks containing different volumes of liquid, which are representative of the levels of liquid in a tank at different time periods during a mission. The two tanks are independently exposed to the measurement apparatus, allowing for a determination of the liquid level in each. In a controlled, laboratory test of the unit, the system demonstrated a capability of measuring a liquid level in an individual tank of 10.53 mL with a 2% error. The overall random uncertainty for the flight system is higher than that one test, at +/- 1.5 mL.

  6. On-chip photonic interconnects a computer architect's perspective

    CERN Document Server

    Nitta, Christopher J; Akella, Venkatesh

    2013-01-01

    As the number of cores on a chip continues to climb, architects will need to address both bandwidth and power consumption issues related to the interconnection network. Electrical interconnects are not likely to scale well to a large number of processors for energy efficiency reasons, and the problem is compounded by the fact that there is a fixed total power budget for a die, dictated by the amount of heat that can be dissipated without special (and expensive) cooling and packaging techniques. Thus, there is a need to seek alternatives to electrical signaling for on-chip interconnection appli

  7. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A [Duke University Medical Center, Durham, NC (United States); Ge, Y [University of North Carolina at Charlotte, Charlotte, NC (United States)

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH

  8. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    International Nuclear Information System (INIS)

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A; Ge, Y

    2014-01-01

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH

  9. The influence of curvature configuration on the characteristic of alcohol gel insertion jacket of polymer optical fiber liquid level sensor

    Science.gov (United States)

    Arumnika, N.; Kuswanto, H.

    2018-04-01

    This study aimed to determine the effect of curvature configuration to sensitivities and linearities of Polymer Optical Fiber (POF) water level sensor. POF type SH-4001-1.3 has been used in this study. The jacket of POF of 20 cm was removed. Transparent piped inserted by alcohol gel has been used to replace the jacket. This is head of a sensor. The head of a sensor is curved with variations of the specified path length, peel length, the width of curvature, the height of curvature and waveform. Configuration A (20 cm, 34 cm, 6 cm, 2 cm, 1 wave), configuration B (20 cm, 34 cm, 8 cm, 2 cm, 1 wave), configuration C (20 cm, 34 cm, 9 cm, 2 cm, ½ wave), configuration D (20 cm, 34 cm, 10 cm, 2 cm, ½ wave). The head of a sensor inserted into the water tank. The light source inserted to one end POF is a He-Ne laser light with a power of 5 mW and a wavelength of 632.8 nm. Power output at the other end received by the Optical Power Meter (OPM). The curvature configuration the head sensor of POF affects the output. Configuration A has good sensitivity, however good linearity given by configuration.

  10. Optical properties and defect levels in a surface layer found on CuInSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abulfotuh, F.; Wangensteen, T.; Ahrenkiel, R.; Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    In this paper the authors have used photoluminescence (PL) and wavelength scanning ellipsometry (WSE) to clarify the relationship among the electro-optical properties of copper indium diselenide (CIS) thin films, the type and origin of dominant defect states, and device performance. The PL study has revealed several shallow acceptor and donor levels dominating the semiconductor. PL emission from points at different depths from the surface of the CIS sample has been obtained by changing the angle of incidence of the excitation laser beam. The resulting data were used to determine the dominant defect states as a function of composition gradient at the surface of the chalcopyrite compound. The significance of this type of measurement is that it allowed the detection of a very thin layer with a larger bandgap (1.15-1.26 eV) than the CIS present on the surface of the CIS thin films. The presence of this layer has been correlated by several groups to improvement of the CIS cell performance. An important need that results from detecting this layer on the surface of the CIS semiconductor is the determination of its thickness and optical constants (n, k) as a function of wavelength. The thickness of this surface layer is about 500 {Angstrom}.

  11. Traceable X,Y self-calibration at single nm level of an optical microscope used for coherence scanning interferometry

    Science.gov (United States)

    Ekberg, Peter; Mattsson, Lars

    2018-03-01

    Coherence scanning interferometry used in optical profilers are typically good for Z-calibration at nm-levels, but the X,Y accuracy is often left without further notice than typical resolution limits of the optics, i.e. of the order of ~1 µm. For the calibration of metrology tools we rely on traceable artefacts, e.g. gauge blocks for traditional coordinate measurement machines, and lithographically mask made artefacts for microscope calibrations. In situations where the repeatability and accuracy of the measurement tool is much better than the uncertainty of the traceable artefact, we are bound to specify the uncertainty based on the calibration artefact rather than on the measurement tool. This is a big drawback as the specified uncertainty of a calibrated measurement may shrink the available manufacturing tolerance. To improve the uncertainty in X,Y we can use self-calibration. Then, we do not need to know anything more than that the artefact contains a pattern with some nominal grid. This also gives the opportunity to manufacture the artefact in-house, rather than buying a calibrated and expensive artefact. The self-calibration approach we present here is based on an iteration algorithm, rather than the traditional mathematical inversion, and it leads to much more relaxed constrains on the input measurements. In this paper we show how the X,Y errors, primarily optical distortions, within the field of view (FOV) of an optical coherence scanning interferometry microscope, can be reduced with a large factor. By self-calibration we achieve an X,Y consistency in the 175  ×  175 µm2 FOV of ~2.3 nm (1σ) using the 50×  objective. Besides the calibrated coordinate X,Y system of the microscope we also receive, as a bonus, the absolute positions of the pattern in the artefact with a combined uncertainty of 6 nm (1σ) by relying on a traceable 1D linear measurement of a twin artefact at NIST.

  12. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads

    OpenAIRE

    Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.

    2013-01-01

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and ...

  13. Optical RISC computer

    Science.gov (United States)

    Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Zeise, Frederick F.

    1993-07-01

    A second generation digital optical computer (DOC II) has been developed which utilizes a RISC based operating system as its host. This 32 bit, high performance (12.8 GByte/sec), computing platform demonstrates a number of basic principals that are inherent to parallel free space optical interconnects such as speed (up to 1012 bit operations per second) and low power 1.2 fJ per bit). Although DOC II is a general purpose machine, special purpose applications have been developed and are currently being evaluated on the optical platform.

  14. Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism.

    Science.gov (United States)

    Kino, Saiko; Omori, Suguru; Katagiri, Takashi; Matsuura, Yuji

    2016-02-01

    A mid-infrared attenuated total reflection (ATR) spectroscopy system employing hollow optical fibers and a trapezoidal multi-reflection ATR prism has been developed to measure blood glucose levels. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. An analysis of in vivo measurements of human inner lip mucosa revealed clear signatures of glucose in the difference spectra between ones taken during the fasting state and ones taken after ingestion of glucose solutions. A calibration plot based on the absorption peak at 1155 cm(-1) that originates from the pyranose ring structure of glucose gave measurement errors less than 20%.

  15. The Fiber Optic Subsystem Components on Express Logistics Carrier for International Space Station

    Science.gov (United States)

    Ott, Melanie N.; Switzer, Robert; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; Day, Lance

    2009-01-01

    ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.

  16. Full-color, large area, transmissive holograms enabled by multi-level diffractive optics.

    Science.gov (United States)

    Mohammad, Nabil; Meem, Monjurul; Wan, Xiaowen; Menon, Rajesh

    2017-07-19

    We show that multi-level diffractive microstructures can enable broadband, on-axis transmissive holograms that can project complex full-color images, which are invariant to viewing angle. Compared to alternatives like metaholograms, diffractive holograms utilize much larger minimum features (>10 µm), much smaller aspect ratios (30 mm ×30 mm). We designed, fabricated and characterized holograms that encode various full-color images. Our devices demonstrate absolute transmission efficiencies of >86% across the visible spectrum from 405 nm to 633 nm (peak value of about 92%), and excellent color fidelity. Furthermore, these devices do not exhibit polarization dependence. Finally, we emphasize that our devices exhibit negligible absorption and are phase-only holograms with high diffraction efficiency.

  17. Opto-Electronic and Interconnects Hierarchical Design Automation System (OE-IDEAS)

    National Research Council Canada - National Science Library

    Turowski, M

    2004-01-01

    As microelectronics technology continues to advance, the associated electrical interconnection technology is not likely to keep pace, due to many parasitic effects appearing in metallic interconnections...

  18. Knowledge Access in Rural Inter-connected Areas Network ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Knowledge Access in Rural Inter-connected Areas Network (KariaNet) - Phase II ... the existing network to include two thematic networks on food security and rural ... Woman conquering male business in Yemen : Waleya's micro-enterprise.

  19. Knowledge Access in Rural Inter-connected Areas Network ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Knowledge Access in Rural Inter-connected Areas Network (KariaNet) - Phase II ... poor by sharing innovations, best practices and indigenous knowledge using ... A third thematic network - on knowledge management strategies - will play an ...

  20. Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, S M; Safari, L; Mahmoudi, M [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Sahrai, M, E-mail: sahrai@tabrizu.ac.i [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2010-08-28

    The effect of quantum interference on the optical properties of a pumped-probe three-level V-type atomic system is investigated. The probe absorption, dispersion, group index and optical bistability beyond the two-photon resonance condition are discussed. It is found that the optical properties of a medium in the frequency of the probe field, in general, are phase independent. The phase dependence arises from a scattering of the coupling field into the probe field at a frequency which in general differs from the probe field frequency. It is demonstrated that beyond the two-photon resonance condition the phase sensitivity of the medium will disappear.

  1. Interconnected Power Systems Mexico-Guatemala financed by BID

    International Nuclear Information System (INIS)

    Martinez, Veronica

    2003-01-01

    The article describes the plans for the interconnection of the electric power systems of Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, Panama and Mexico within the project Plan Pueba Panama. The objective of the interconnection is to create an electric market in the region that contributes to reduce costs and prices. The project will receive a financing of $37.5 millions of US dollars from the Banco Intrameramericano de Desarrollo (BID)

  2. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  3. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  4. Load shedding scheme in the south/southeastern interconnected system

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Filho, Xisto; Couri, J J.G.; Gomes, P; Almeida, P C [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1988-12-31

    This paper presents some characteristics of the Brazilian interconnected system and discusses the load shedding scheme in its different stages considering the beginning of operation of the Itaipu power plant. The present situation of the South and Southeastern load shedding scheme combination is also commented. Finally, the interconnected system evolution and the effects on the load shedding schemes are discussed. 4 refs., 5 figs., 2 tabs.

  5. Recovery Act - CAREER: Sustainable Silicon -- Energy-Efficient VLSI Interconnect for Extreme-Scale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Patrick [Oregon State Univ., Corvallis, OR (United States)

    2014-01-31

    The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou­ sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on­ chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.

  6. Magneto-optical transmission-reflection beam splitter for multi-level atoms

    International Nuclear Information System (INIS)

    Murphy, J.E.; Goodman, P.; Sidorov, A.I.

    1994-01-01

    An atomic de Broglie wave beam splitter is proposed. The interaction of multi-level atoms (J g = 1 - J e = 0) with a laser beam in the presence of a static magnetic field leads to the partial transmission and reflection of the atomic beam. The coherent splitting of the atomic beam occurs due to non-adiabatic transitions between different dressed states in the vicinity of avoided crossings. The transition probabilities and populations of split beams are dependent on the value of the magnetic field, laser detuning, and the ratio between different polarization components in the laser beam. For optimal conditions the population of each of the two transmitted and two reflected beams is 25 per cent. For cooled atoms it is possible to obtain splitting angles of 80 mrad. The effect of spontaneous emission during the atom-light interaction was estimated and for a reasonable detuning losses were reduced to less than 10 per cent. 14 refs., 1 tab., 6 figs

  7. Optical Computers and Space Technology

    Science.gov (United States)

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela

    1995-01-01

    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  8. An efficient network for interconnecting remote monitoring instruments and computers

    International Nuclear Information System (INIS)

    Halbig, J.K.; Gainer, K.E.; Klosterbuer, S.F.

    1994-01-01

    Remote monitoring instrumentation must be connected with computers and other instruments. The cost and intrusiveness of installing cables in new and existing plants presents problems for the facility and the International Atomic Energy Agency (IAEA). The authors have tested a network that could accomplish this interconnection using mass-produced commercial components developed for use in industrial applications. Unlike components in the hardware of most networks, the components--manufactured and distributed in North America, Europe, and Asia--lend themselves to small and low-powered applications. The heart of the network is a chip with three microprocessors and proprietary network software contained in Read Only Memory. In addition to all nonuser levels of protocol, the software also contains message authentication capabilities. This chip can be interfaced to a variety of transmission media, for example, RS-485 lines, fiber topic cables, rf waves, and standard ac power lines. The use of power lines as the transmission medium in a facility could significantly reduce cabling costs

  9. Financial Economy and Financial System: Basis of Structural Interconnection

    Directory of Open Access Journals (Sweden)

    Khorosheva Olena I.

    2014-02-01

    Full Text Available The goal of the article lies in identification of grounds of interconnection of the financial economy and financial system. The study was conducted with consideration of main provisions of the theory of finance and concept of financial economy, which is a set of means used in the process of reproduction of finance by their owner for formation and / or maintenance of the own system of values in the viable state. For the first time ever the structure of the financial system is identified as an aggregate of financial economies and financial market. The article justifies a necessity of expansion of boundaries of perception of the state financial economy, which is offered to include public financial economy of the state level and the set of financial economies of the state as a subject of economic activity. Such an approach forms a base for justification of the synthesis of participation of the state in financial relations as the owner and as the basic macro-economic regulator. Prospects of further study in this direction are: development of classification of financial economies; revelation of specific features of impact of shadow finance on development of the national financial economy; and assessment of possibilities of inclusion of structured financial products into the system of values of financial economies in Ukraine.

  10. RapidIO as a multi-purpose interconnect

    Science.gov (United States)

    Baymani, Simaolhoda; Alexopoulos, Konstantinos; Valat, Sébastien

    2017-10-01

    RapidIO (http://rapidio.org/) technology is a packet-switched high-performance fabric, which has been under active development since 1997. Originally meant to be a front side bus, it developed into a system level interconnect which is today used in all 4G/LTE base stations world wide. RapidIO is often used in embedded systems that require high reliability, low latency and scalability in a heterogeneous environment - features that are highly interesting for several use cases, such as data analytics and data acquisition (DAQ) networks. We will present the results of evaluating RapidIO in a data analytics environment, from setup to benchmark. Specifically, we will share the experience of running ROOT and Hadoop on top of RapidIO. To demonstrate the multi-purpose characteristics of RapidIO, we will also present the results of investigating RapidIO as a technology for high-speed DAQ networks using a generic multi-protocol event-building emulation tool. In addition we will present lessons learned from implementing native ports of CERN applications to RapidIO.

  11. Preparing tomorrow's network today: RTE at the crossroads of the European electricity system. Cross-border electricity interconnections Key issues and figures - 2014 Edition

    International Nuclear Information System (INIS)

    2014-10-01

    The interconnected electricity transmission network is a key element for ensuring security of supply, the creation of a single market and the integration of renewable energies. RTE and its European partners provide strengthened coordination by the use of interconnections to ensure solidarity between European countries. Interconnections also allow an electricity supplier to sell its energy to a customer located in another country in Europe. They contribute on a European scale to optimising the use of production means and in particular the integration of variable renewable energies. RTE, within the EnTSo-E (European Network of Transmission System Operators for Electricity), contributes to the publication of a common vision of the future of networks by 2030. The needs for new interconnection capacity are identified in the ten-year European network development plan (TYnDP) on the basis of a cost-benefit analysis. France is interconnected to all its neighbours via many cross-border links. However interconnection capacity with the various countries and its use differ widely. The usage profile of the interconnections is specific to each border and varies according to: - the characteristics of the production mix of each country, and in particular the level of production of renewable energies. - the level of consumption, which depends on the season, the type of day (working or non-working) the time of day, etc. - import and export capacity, which may be different depending on the internal constraints of the networks of each country

  12. Cyclic deformation-induced solute transport in tissue scaffolds with computer designed, interconnected, pore networks: experiments and simulations.

    Science.gov (United States)

    Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L

    2009-08-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.

  13. Estimation of surface-level PM2.5 concentration using aerosol optical thickness through aerosol type analysis method

    Science.gov (United States)

    Chen, Qi-Xiang; Yuan, Yuan; Huang, Xing; Jiang, Yan-Qiu; Tan, He-Ping

    2017-06-01

    Surface-level particulate matter is closely related to column aerosol optical thickness (AOT). Previous researches have successfully used column AOT and different meteorological parameters to estimate surface-level PM concentration. In this study, the performance of a selected linear model that estimates surface-level PM2.5 concentration was evaluated following the aerosol type analysis method (ATAM) for the first time. We utilized 443 daily average data for Xuzhou, Jiangsu province, collected using Aerosol Robotic Network (AERONET) during the period October 2013 to April 2016. Several parameters including atmospheric boundary layer height (BLH), relative humidity (RH), and effective radius of the aerosol size distribution (Ref) were used to assess the relationship between the column AOT and PM2.5 concentration. By including the BLH, ambient RH, and effective radius, the correlation (R2) increased from 0.084 to 0.250 at Xuzhou, and with the use of ATAM, the correlation increased further to 0.335. To compare the results, 450 daily average data for Beijing, pertaining to the same period, were utilized. The study found that model correlations improved by varying degrees in different seasons and at different sites following ATAM. The average urban industry (UI) aerosol ratios at Xuzhou and Beijing were 0.792 and 0.451, respectively, demonstrating poorer air conditions at Xuzhou. PM2.5 estimation at Xuzhou showed lower correlation (R2 = 0.335) compared to Beijing (R2 = 0.407), and the increase of R2 at Xuzhou and Beijing site following use of ATAM were 33.8% and 12.4%, respectively.

  14. Study of interconnection of financial and tax accounting of profit in Russia and abroad

    Directory of Open Access Journals (Sweden)

    Labyntsev Mykola T.

    2013-03-01

    Full Text Available The article analyses the degree of interconnection of financial and tax accounting of profit in Russia and some foreign countries – USA, France and Germany. The legal principle – common law or unified law – is taken as a criterion. The article shows that existence of the system of tax accounting by one tax (organisation profit tax separately from the financial accounting in Russia from 2002 is not rational. At present Russia actively develops a variant of making financial accounting and tax accounting closer without a principal reconstruction of norms of tax legislation. Low level of interconnection of tax accounting and financial accounting is characteristic for the USA, which is one of the founders of the British-American (British-American-Dutch in interpretation of some authors accounting model. The level of interconnection of norms of financial and tax accounting is rather high in France and Germany and the taxation policy of the theoretical base of the accounting system, which allows speaking about the French-German accounting model.

  15. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Jason (General Electric, Schenectady, NY); Walling, Reigh (General Electric, Schenectady, NY); Peter, William (SunPower, Richmond, CA); Von Engeln, Edi (NV Energy, Reno, NV); Seymour, Eric (AEI, Fort Collins, CO); Nelson, Robert (Siemens Wind Turbines, Orlando, FL); Casey, Leo (Satcon, Boston, MA); Ellis, Abraham; Barker, Chris. (SunPower, Richmond, CA)

    2012-02-01

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  16. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Science.gov (United States)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  17. 76 FR 16405 - Notice of Attendance at PJM INterconnection, L.L.C., Meetings

    Science.gov (United States)

    2011-03-23

    ... INterconnection, L.L.C., Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C., (PJM...: Docket No. EL05-121, PJM Interconnection, L.L.C. Docket No. ER06-456, PJM Interconnection, L.L.C. Docket...

  18. Electrode and interconnect for miniature fuel cells using direct methanol feed

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor)

    2004-01-01

    An improved system for interconnects in a fuel cell. In one embodiment, the membranes are located in parallel with one another, and current flow between them is facilitated by interconnects. In another embodiment, all of the current flow is through the interconnects which are located on the membranes. The interconnects are located between two electrodes.

  19. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  20. Ship Detection in Optical Remote Sensing Images Based on Wavelet Transform and Multi-Level False Alarm Identification

    Directory of Open Access Journals (Sweden)

    Fang Xu

    2017-09-01

    Full Text Available Ship detection by Unmanned Airborne Vehicles (UAVs and satellites plays an important role in a spectrum of related military and civil applications. To improve the detection efficiency, accuracy, and speed, a novel ship detection method from coarse to fine is presented. Ship targets are viewed as uncommon regions in the sea background caused by the differences in colors, textures, shapes, or other factors. Inspired by this fact, a global saliency model is constructed based on high-frequency coefficients of the multi-scale and multi-direction wavelet decomposition, which can characterize different feature information from edge to texture of the input image. To further reduce the false alarms, a new and effective multi-level discrimination method is designed based on the improved entropy and pixel distribution, which is robust against the interferences introduced by islands, coastlines, clouds, and shadows. The experimental results on optical remote sensing images validate that the presented saliency model outperforms the comparative models in terms of the area under the receiver operating characteristic curves core and the accuracy in the images with different sizes. After the target identification, the locations and the number of the ships in various sizes and colors can be detected accurately and fast with high robustness.

  1. Lifetime-based optical sensor for high-level pCO2 detection employing fluorescence resonance energy transfer

    International Nuclear Information System (INIS)

    Bueltzingsloewen, Christoph von; McEvoy, Aisling K.; McDonagh, Colette; MacCraith, Brian D.

    2003-01-01

    An optical sensor for the measurement of high levels of carbon dioxide in gas phase has been developed. It is based on fluorescence resonance energy transfer (FRET) between a long-lifetime ruthenium polypyridyl complex and the pH-active disazo dye Sudan III. The donor luminophore and the acceptor dye are both immobilised in a hydrophobic silica sol-gel/ethyl cellulose hybrid matrix material. Tetraoctylammonium hydroxide (TOA-OH) is used as an internal buffering system. Fluorescence lifetime is measured in the frequency domain, using low-cost phase modulation measurement technology. The use of Sudan III as an acceptor dye has enabled the sensor to have a dynamic range up to 100% carbon dioxide. The sensor displays 11.2 deg. phase shift between the limit of detection (LOD) of 0.06 and 100% CO 2 with a resolution of better than 2%. The encapsulation in the silica/polymer hybrid material has provided the sensor with good mechanical and chemical stability. The effect of molecular oxygen, humidity and temperature on the sensor performance was studied in detail

  2. Tracing the spatiotemporally resolved inactivation of optically arranged bacteria by photofunctional microparticles at the single-cell level (Conference Presentation)

    Science.gov (United States)

    Barroso Peña, Alvaro; Grüner, Malte; Forbes, Taylor; Denz, Cornelia; Strassert, Cristian A.

    2016-09-01

    Antimicrobial Photodynamic Inactivation (PDI) represents an attractive alternative in the treatment of infections by antibiotic-resistant pathogenic bacteria. In PDI a photosensitizer (PS) is administered to the site of the biological target in order to generate cytotoxic singlet oxygen which reacts with the biological membrane upon application of harmless visible light. Established methods for testing the photoinduced cytotoxicity of PSs rely on the observation of the whole bacterial ensemble providing only a population-averaged information about the overall produced toxicity. However, for a deeper understanding of the processes that take place in PDI, new methods are required that provide simultaneous regulation of the ROS production, monitoring the subsequent damage induced in the bacteria cells, and full control of the distance between the bacteria and the center of the singlet oxygen production. Herein we present a novel method that enables the quantitative spatio-time-resolved analysis at the single cell level of the photoinduced damage produced by transparent microspheres functionalized with PSs. For this purpose, a methodology was introduced to monitor phototriggered changes with spatiotemporal resolution employing holographic optical tweezers and functional fluorescence microscopy. The defined distance between the photoactive particles and individual bacteria can be fixed under the microscope before the photosensitization process, and the photoinduced damage is monitored by tracing the fluorescence turn-on of a suitable marker. Our methodology constitutes a new tool for the in vitro design and analysis of photosensitizers, as it enables a quantitative response evaluation of living systems towards oxidative stress.

  3. The impact of increased interconnection on electricity systems with large penetrations of wind generation. A case study of Ireland and Great Britain

    International Nuclear Information System (INIS)

    Denny, E.; Tuohy, A.; Keane, A.; Flynn, D.; O'Malley, M.; Meibom, P.; Mullane, A.

    2010-01-01

    Increased interconnection has been highlighted as potentially facilitating the integration of wind generation in power systems by increasing the flexibility to balance the variable wind output. This paper utilizes a stochastic unit commitment model to simulate the impacts of increased interconnection for the island of Ireland with large penetrations of wind generation. The results suggest that increased interconnection should reduce average prices in Ireland, and the variability of those prices. The simulations also suggest that while increased interconnection may reduce carbon dioxide emissions in Ireland, Great Britain would experience an increase in emissions, resulting in total emissions remaining almost unchanged. The studies suggest that increased interconnection would not reduce excess wind generation. This is because under unit commitment techniques which incorporate wind power forecasts in the scheduling decisions, wind curtailment is minimal even with low levels of interconnection. As would be expected an increase in interconnection should improve system adequacy considerably with a significant reduction in the number of hours when the load and reserve constraints are not met. (author)

  4. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    Science.gov (United States)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  5. Performance of WCN diffusion barrier for Cu multilevel interconnects

    Science.gov (United States)

    Lee, Seung Yeon; Ju, Byeong-Kwon; Kim, Yong Tae

    2018-04-01

    The electrical and thermal properties of a WCN diffusion barrier have been studied for Cu multilevel interconnects. The WCN has been prepared using an atomic layer deposition system with WF6-CH4-NH3-H2 gases and has a very low resistivity of 100 µΩ cm and 96.9% step coverage on the high-aspect-ratio vias. The thermally stable WCN maintains an amorphous state at 800 °C and Cu/WCN contact resistance remains within a 10% deviation from the initial value after 700 °C. The mean time to failure suggests that the Cu/WCN interconnects have a longer lifetime than Cu/TaN and Cu/WN interconnects because WCN prevents Cu migration owing to the stress evolution from tensile to compressive.

  6. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  7. All-zigzag graphene nanoribbons for planar interconnect application

    Science.gov (United States)

    Chen, Po-An; Chiang, Meng-Hsueh; Hsu, Wei-Chou

    2017-07-01

    A feasible "lightning-shaped" zigzag graphene nanoribbon (ZGNR) structure for planar interconnects is proposed. Based on the density functional theory and non-equilibrium Green's function, the electron transport properties are evaluated. The lightning-shaped structure increases significantly the conductance of the graphene interconnect with an odd number of zigzag chains. This proposed technique can effectively utilize the linear I-V characteristic of asymmetric ZGNRs for interconnect application. Variability study accounting for width/length variation and the edge effect is also included. The transmission spectra, transmission eigenstates, and transmission pathways are analyzed to gain the physical insights. This lightning-shaped ZGNR enables all 2D material-based devices and circuits on flexible and transparent substrates.

  8. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem

    2017-11-21

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  9. Carbon nanotube based VLSI interconnects analysis and design

    CERN Document Server

    Kaushik, Brajesh Kumar

    2015-01-01

    The brief primarily focuses on the performance analysis of CNT based interconnects in current research scenario. Different CNT structures are modeled on the basis of transmission line theory. Performance comparison for different CNT structures illustrates that CNTs are more promising than Cu or other materials used in global VLSI interconnects. The brief is organized into five chapters which mainly discuss: (1) an overview of current research scenario and basics of interconnects; (2) unique crystal structures and the basics of physical properties of CNTs, and the production, purification and applications of CNTs; (3) a brief technical review, the geometry and equivalent RLC parameters for different single and bundled CNT structures; (4) a comparative analysis of crosstalk and delay for different single and bundled CNT structures; and (5) various unique mixed CNT bundle structures and their equivalent electrical models.

  10. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem; Khan, S. M.; Nour, Maha A.; Rehman, M. U.; Rojas, J. P.; Hussain, Muhammad Mustafa

    2017-01-01

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  11. Natural gas and electrical interconnections in the Mediterranean Basin

    International Nuclear Information System (INIS)

    Grenon, M.

    1992-01-01

    Intermediate and long term socio-economical and energetic scenarios have shown that mediterranean basin countries will know a great growth of energy demand, particularly power demand. The first part of this paper describes the main projects for the establishment of interconnected natural gas systems through Mediterranean sea, by pipelines (Algeria-Tunisia-Libya project, Algeria-Morocco-Spain project, Libya-Italy project). The second part describes the main projects of electrical networks with the establishment of undersea links between Spain and Morocco, and between Italy and Tunisia; beefing up the interconnections between the North African countries; and developing ties in the Near East (from Egypt to Turkey)

  12. EEG simulation by 2D interconnected chaotic oscillators

    International Nuclear Information System (INIS)

    Kubany, Adam; Mhabary, Ziv; Gontar, Vladimir

    2011-01-01

    Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  13. Fundamentals of reliability engineering applications in multistage interconnection networks

    CERN Document Server

    Gunawan, Indra

    2014-01-01

    This book presents fundamentals of reliability engineering with its applications in evaluating reliability of multistage interconnection networks. In the first part of the book, it introduces the concept of reliability engineering, elements of probability theory, probability distributions, availability and data analysis.  The second part of the book provides an overview of parallel/distributed computing, network design considerations, and more.  The book covers a comprehensive reliability engineering methods and its practical aspects in the interconnection network systems. Students, engineers, researchers, managers will find this book as a valuable reference source.

  14. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    Science.gov (United States)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  15. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  16. Supplemental Information for New York State Standardized Interconnection Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narang, David J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mather, Barry A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kroposki, Benjamin D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-24

    This document is intended to aid in the understanding and application of the New York State Standardized Interconnection Requirements (SIR) and Application Process for New Distributed Generators 5 MW or Less Connected in Parallel with Utility Distribution Systems, and it aims to provide supplemental information and discussion on selected topics relevant to the SIR. This guide focuses on technical issues that have to date resulted in the majority of utility findings within the context of interconnecting photovoltaic (PV) inverters. This guide provides background on the overall issue and related mitigation measures for selected topics, including substation backfeeding, anti-islanding and considerations for monitoring and controlling distributed energy resources (DER).

  17. Compact models and performance investigations for subthreshold interconnects

    CERN Document Server

    Dhiman, Rohit

    2014-01-01

    The book provides a detailed analysis of issues related to sub-threshold interconnect performance from the perspective of analytical approach and design techniques. Particular emphasis is laid on the performance analysis of coupling noise and variability issues in sub-threshold domain to develop efficient compact models. The proposed analytical approach gives physical insight of the parameters affecting the transient behavior of coupled interconnects. Remedial design techniques are also suggested to mitigate the effect of coupling noise. The effects of wire width, spacing between the wires, wi

  18. Nano/CMOS architectures using a field-programmable nanowire interconnect

    International Nuclear Information System (INIS)

    Snider, Gregory S; Williams, R Stanley

    2007-01-01

    A field-programmable nanowire interconnect (FPNI) enables a family of hybrid nano/CMOS circuit architectures that generalizes the CMOL (CMOS/molecular hybrid) approach proposed by Strukov and Likharev, allowing for simpler fabrication, more conservative process parameters, and greater flexibility in the choice of nanoscale devices. The FPNI improves on a field-programmable gate array (FPGA) architecture by lifting the configuration bit and associated components out of the semiconductor plane and replacing them in the interconnect with nonvolatile switches, which decreases both the area and power consumption of the circuit. This is an example of a more comprehensive strategy for improving the efficiency of existing semiconductor technology: placing a level of intelligence and configurability in the interconnect can have a profound effect on integrated circuit performance, and can be used to significantly extend Moore's law without having to shrink the transistors. Compilation of standard benchmark circuits onto FPNI chip models shows reduced area (8 x to 25 x), reduced power, slightly lower clock speeds, and high defect tolerance-an FPNI chip with 20% defective junctions and 20% broken nanowires has an effective yield of 75% with no significant slowdown along the critical path, compared to a defect-free chip. Simulations show that the density and power improvements continue as both CMOS and nano fabrication parameters scale down, although the maximum clock rate decreases due to the high resistance of very small (<10 nm) metallic nanowires

  19. Network inter-connectivity and capacity reservation behaviour: an investigation of the Belgian gas transmission network

    International Nuclear Information System (INIS)

    Cuijpers, Ch.; Woitrin, D.

    2009-01-01

    Lack of cross-border integration explains largely why natural gas markets remain basically national in scope, with levels of concentration similarly high as when the liberalization process commenced. This paper presents the results of an assessment of the upstream/downstream capacity of the Belgian natural gas transmission network which is highly interconnected with adjacent networks and fosters important transit activities. It is shown that the tendency to a better market coupling still suffers from important mismatches of capacity provisions on both sides of cross-border interconnections. Moreover, shippers use gas transmission networks more and more from a commercial portfolio perspective which goes beyond the traditional security of supply purpose of network designs. Capacity booking rates appear to be significantly higher than the underlying physical gas flows. From these findings, the paper contributes to a better understanding of the market barrier created by contractual congestion at cross-border interconnection points. The paper argues that contractual congestion is a symptom of suboptimal cooperation of adjacent network operators and lack of effective mechanisms to bring booked but non-used capacity back to the market, rather than an indicator for an overall need to increase investment budgets. (authors)

  20. A sewing-enabled stitch-and-transfer method for robust, ultra-stretchable, conductive interconnects

    International Nuclear Information System (INIS)

    Rahimi, Rahim; Ochoa, Manuel; Yu, Wuyang; Ziaie, Babak

    2014-01-01

    Fabricating highly stretchable and robust electrical interconnects at low-cost remains an unmet challenge in stretchable electronics. Previously reported stretchable interconnects require complicated fabrication processes with resulting devices exhibiting limited stretchability, poor reliability, and large gauge factors. Here, we demonstrate a novel sew-and-transfer method for rapid fabrication of low-cost, highly stretchable interconnects. Using a commercial sewing machine and double-thread stitch with one of the threads being water soluble polyvinyl alcohol (PVA), thin zigzag-pattern metallic wires are sewn into a polymeric film and are subsequently transferred onto a stretchable elastomeric substrate by dissolving PVA in warm water. The resulting structures exhibit extreme stretchability (exceeding 500% strain for a zigzag angle of 18 °) and robustness (capable of withstanding repeated stretch-and-release cycles of 15000 at 110% strain, 50000 at 55% strain, and  > 120000 at 30% strain without any noticeable change in resistance even at maximum strain levels). Using this technique, we demonstrate a stretchable inductive strain sensor for monitoring balloon expansion in a Foley urinary catheter capable of detecting the balloon diameter change from 9 mm to 38 mm with an average sensitivity of 4 nH/mm. (paper)

  1. Performance analysis and comparison of a minimum interconnections direct storage model with traditional neural bidirectional memories.

    Science.gov (United States)

    Bhatti, A Aziz

    2009-12-01

    This study proposes an efficient and improved model of a direct storage bidirectional memory, improved bidirectional associative memory (IBAM), and emphasises the use of nanotechnology for efficient implementation of such large-scale neural network structures at a considerable lower cost reduced complexity, and less area required for implementation. This memory model directly stores the X and Y associated sets of M bipolar binary vectors in the form of (MxN(x)) and (MxN(y)) memory matrices, requires O(N) or about 30% of interconnections with weight strength ranging between +/-1, and is computationally very efficient as compared to sequential, intraconnected and other bidirectional associative memory (BAM) models of outer-product type that require O(N(2)) complex interconnections with weight strength ranging between +/-M. It is shown that it is functionally equivalent to and possesses all attributes of a BAM of outer-product type, and yet it is simple and robust in structure, very large scale integration (VLSI), optical and nanotechnology realisable, modular and expandable neural network bidirectional associative memory model in which the addition or deletion of a pair of vectors does not require changes in the strength of interconnections of the entire memory matrix. The analysis of retrieval process, signal-to-noise ratio, storage capacity and stability of the proposed model as well as of the traditional BAM has been carried out. Constraints on and characteristics of unipolar and bipolar binaries for improved storage and retrieval are discussed. The simulation results show that it has log(e) N times higher storage capacity, superior performance, faster convergence and retrieval time, when compared to traditional sequential and intraconnected bidirectional memories.

  2. Access to long-term capacity for electric interconnections: towards a single European set of rules

    International Nuclear Information System (INIS)

    2010-05-01

    Guaranteeing firmness of interconnection capacity (or compensating curtailments based on the daily market prices) is a key element to the design of the integrated European electricity market. However, although the European energy regulators are on the way to reaching a consensus on the target to be met in terms of firmness, there is less consensus on how this target can be reached, which means the two following key questions will have to be duly addressed: - How can we improve confidence in the daily price references used to compensate interconnection capacity holders in cases of curtailment? - How can we encourage transmission system operators to allocate a maximum of financially firm capacity, at a lesser cost for network users? In the short-term, in the absence of appropriate incentive mechanisms to maximise capacity, the regulators have no other choice but to guarantee transmission system operators that costs related to firmness of capacity allocated at the different time frames will be covered. In this perspective, transitory solutions can be implemented by regulators in order to limit the risk borne by network users (for example, by introducing caps on price differentials and/or on the budget available for compensating curtailments). The choices in terms of capacity and how it is distributed between the different time frames (daily, monthly, annual and multi-annual) are also important decision variables, as these could limit the risk borne by network users. In such, as they are responsible for guaranteeing the interests of network users, the regulators should decide what level of capacity should be made available to the market. This decision should be taken in close collaboration with the network operators, who have all the expertise needed in terms of calculating capacity. Finally, on the interconnections where a market-coupling mechanism exists, the regulators should ask the transmission system operators to allocate the long-term interconnection capacity in

  3. Changes in ground-level PM mass concentration and column aerosol optical depth over East Asia during 2004-2014

    Science.gov (United States)

    Nam, J.; Kim, S. W.; Park, R.; Yoon, S. C.; Sugimoto, N.; Park, J. S.; Hong, J.

    2015-12-01

    Multi-year records of moderate resolution imaging spectroradiometer (MODIS), ground-level particulate matter (PM) mass concentration, cloud-aerosol lidar with orthogonal polarization (CALIOP), and ground-level lidar were analyzed to investigate seasonal and annual changes of aerosol optical depth (AOD) and PM mass concentration over East Asia. Least mean square fit method is applied to detect the trends and their magnitudes for each selected regions and stations. Eleven-year MODIS measurements show generally increasing trends in both AOD (1.18 % yr-1) and Ångström exponent (0.98 % yr-1), especially over the east coastal industrialized region in China. Monthly variation of AOD show maximum value at April-July, which were related to the progress of summer monsoon rain band and stationary continental air mass on the northeast of Asia. Increasing trends of AOD were found for eight cites in China (0.80 % yr-1) and Seoul site, Korea (0.40 % yr-1), whereas no significant change were shown in Gosan background site (0.04 % yr-1) and decreasing trend at five background sites in Japan (-0.42 % yr-1). Contrasting to AOD trend, all fifteen sites in China (-1.28 % yr-1), Korea (-2.77 % yr-1), and Japan (-2.03 % yr-1) showed decreasing trend of PM10 mass concentration. Also, PM2.5 mass concentration at Beijing, Seoul, Rishiri, and Oki show significant decreasing trend of -1.16 % yr-1. To further discuss the opposite trend of surface PM mass concentration and column AOD, we investigate vertical aerosol profile from lidar measurements. AOD estimated for planetary boundary layer (surface~1.5 km altitude; AODPBL) from CALIOP measurements over East China show decreasing trend of -1.71 % yr-1 over the period of 2007-2014, wherever AOD estimated for free troposphere (1.5 km~5 km altitude; AODFT) show increasing trend of 2.92 % yr-1. In addition, ground-level lidar measurements in Seoul show decreasing AODPBL trend of -2.57 % yr-1, whereas, AODFT show no significant change (-0.44 % yr

  4. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  5. Controllable generation and propagation of ultraslow optical solitons via parameters management in a five-level hyper inverted-Y atomic system

    International Nuclear Information System (INIS)

    Si Liugang; Lue Xinyou; Li Jiahua; Hao Xiangying; Wang Meng

    2009-01-01

    The dynamics of generation and propagation of ultraslow optical solitons in a lifetime-broadened five-level hyper inverted-Y atomic system are investigated. Due to the novel absorption and dispersion properties of this system which provide the necessary ingredients for making the probe field propagate nearly transparent in three regimes, the generation of bright or dark optical solitons can be controlled with parameters management by actively manipulating the dispersion, the nonlinearity and the gain (absorption coefficient) via adjusting the corresponding one-, two- and three-photon detunings and the Rabi frequencies.

  6. Induced dual EIT and EIA resonances with optical trapping phenomenon in near/far fields in the N-type four-level system

    Science.gov (United States)

    Osman, Kariman I.; Joshi, Amitabh

    2017-01-01

    The optical trapping phenomenon is investigated in the probe absorptive susceptibility spectra, during the interaction of four-level N-type atomic system with three transverse Gaussian fields, in a Doppler broadened medium. The system was studied under different temperature settings of 87Rb atomic vapor as well as different non-radiative decay rate. The system exhibits a combination of dual electromagnetically induced transparency with electromagnetically induced absorption (EIA) or transparency (EIT) resonances simultaneously in near/far field. Also, the optical trapping phenomenon is considerably affected by the non-radiative decay rate.

  7. A tangent-ring optical TWDM-MAN enabling three-level transregional reconfigurations and shared protections by multipoint distributed control

    Science.gov (United States)

    Gou, Kaiyu; Gan, Chaoqin; Zhang, Xiaoyu; Zhang, Yuchao

    2018-03-01

    An optical time-and-wavelength-division-multiplexing metro-access network (TWDM-MAN) is proposed and demonstrated in this paper. By the reuse of tangent-ring optical distribution network and the design of distributed control mechanism, ONUs needing to communicate with each other can be flexibly accessed to successfully make up three kinds of reconfigurable networks. By the nature advantage of ring topology in protection, three-level comprehensive protections covering both feeder and distribution fibers are also achieved. Besides, a distributed wavelength allocation (DWA) is designed to support efficient parallel upstream transmission. The analyses including capacity, congestion and transmission simulation show that this network has a great performance.

  8. Characteristics of via-hole interconnections fabricated by using an inkjet printing method

    International Nuclear Information System (INIS)

    Yang, Yong Suk; You, In Kyu; Koo, Jae Bon; Lee, Sang Seok; Lim, Sang Chul; Kang, Seong Youl; Noh, Yong Young

    2010-01-01

    Inkjet printing is a familiar technique that creates and releases droplets of fluid on demand and precisely deposits those droplets on a substrate. It has received increased attention for its novelty and ability to produce patterned and template material structures. In the application of electronic interconnection fabrication, drop-on-demand inkjet printers especially offer the advantages of contactless printing and eliminat the use of a die or photomask. In this study, we created a via-hole interconnecting structure through a polymer insulator layer by using an inkjet printing. When the droplets of Ag ink were dropped onto a PMMA/Au/Cr/SiO 2 /Si area and the Ag film was annealed at high temperatures, the Ag ink containing solvents penetrated into the PMMA layer and generated the conducting paths between the top Ag and the bottom Au electrodes by partial dissolution and swelling of the polymer. The surface and the cross-sectional topologies of the formed via-holes were investigated by using an optical microscope and a field emission transmission electron microscope.

  9. Encoded low swing for ultra low power interconnect

    NARCIS (Netherlands)

    Krishnan, R.; Pineda de Gyvez, J.

    2003-01-01

    We present a novel encoded-low swing technique for ultra low power interconnect. Using this technique and an efficient circuit implementation, we achieve an average of 45.7% improvement in the power-delay product over the schemes utilizing low swing techniques alone, for random bit streams. Also, we

  10. Distributed Robustness Analysis of Interconnected Uncertain Systems Using Chordal Decomposition

    DEFF Research Database (Denmark)

    Pakazad, Sina Khoshfetrat; Hansson, Anders; Andersen, Martin Skovgaard

    2014-01-01

    Large-scale interconnected uncertain systems commonly have large state and uncertainty dimensions. Aside from the heavy computational cost of performing robust stability analysis in a centralized manner, privacy requirements in the network can also introduce further issues. In this paper, we util...

  11. Interconnecting Microgrids via the Energy Router with Smart Energy Management

    Directory of Open Access Journals (Sweden)

    Yingshu Liu

    2017-08-01

    Full Text Available A novel and flexible interconnecting framework for microgrids and corresponding energy management strategies are presented, in response to the situation of increasing renewable-energy penetration and the need to alleviate dependency on energy storage equipment. The key idea is to establish complementary energy exchange between adjacent microgrids through a multiport electrical energy router, according to the consideration that adjacent microgrids may differ substantially in terms of their patterns of energy production and consumption, which can be utilized to compensate for each other’s instant energy deficit. Based on multiport bidirectional voltage source converters (VSCs and a shared direct current (DC power line, the energy router serves as an energy hub, and enables flexible energy flow among the adjacent microgrids and the main grid. The analytical model is established for the whole system, including the energy router, the interconnected microgrids and the main grid. Various operational modes of the interconnected microgrids, facilitated by the energy router, are analyzed, and the corresponding control strategies are developed. Simulations are carried out on the Matlab/Simulink platform, and the results have demonstrated the validity and reliability of the idea for microgrid interconnection as well as the corresponding control strategies for flexible energy flow.

  12. FDTD technique based crosstalk analysis of bundled SWCNT interconnects

    International Nuclear Information System (INIS)

    Duksh, Yograj Singh; Kaushik, Brajesh Kumar; Agarwal, Rajendra P.

    2015-01-01

    The equivalent electrical circuit model of a bundled single-walled carbon nanotube based distributed RLC interconnects is employed for the crosstalk analysis. The accurate time domain analysis and crosstalk effect in the VLSI interconnect has emerged as an essential design criteria. This paper presents a brief description of the numerical method based finite difference time domain (FDTD) technique that is intended for estimation of voltages and currents on coupled transmission lines. For the FDTD implementation, the stability of the proposed model is strictly restricted by the Courant condition. This method is used for the estimation of crosstalk induced propagation delay and peak voltage in lossy RLC interconnects. Both functional and dynamic crosstalk effects are analyzed in the coupled transmission line. The effect of line resistance on crosstalk induced delay, and peak voltage under dynamic and functional crosstalk is also evaluated. The FDTD analysis and the SPICE simulations are carried out at 32 nm technology node for the global interconnects. It is observed that the analytical results obtained using the FDTD technique are in good agreement with the SPICE simulation results. The crosstalk induced delay, propagation delay, and peak voltage obtained using the FDTD technique shows average errors of 4.9%, 3.4% and 0.46%, respectively, in comparison to SPICE. (paper)

  13. The myth of interconnected plastids and related phenomena.

    Science.gov (United States)

    Schattat, Martin H; Barton, Kiah A; Mathur, Jaideep

    2015-01-01

    Studies spread over nearly two and a half centuries have identified the primary plastid in autotrophic algae and plants as a pleomorphic, multifunctional organelle comprising of a double-membrane envelope enclosing an organization of internal membranes submerged in a watery stroma. All plastid units have been observed extending and retracting thin stroma-filled tubules named stromules sporadically. Observations on living plant cells often convey the impression that stromules connect two or more independent plastids with each other. When photo-bleaching techniques were used to suggest that macromolecules such as the green fluorescent protein could flow between already interconnected plastids, for many people this impression changed to conviction. However, it was noticed only recently that the concept of protein flow between plastids rests solely on the words "interconnected plastids" for which details have never been provided. We have critically reviewed botanical literature dating back to the 1880s for understanding this term and the phenomena that have become associated with it. We find that while meticulously detailed ontogenic studies spanning nearly 150 years have established the plastid as a singular unit organelle, there is no experimental support for the idea that interconnected plastids exist under normal conditions of growth and development. In this review, while we consider several possibilities that might allow a single elongated plastid to be misinterpreted as two or more interconnected plastids, our final conclusion is that the concept of direct protein flow between plastids is based on an unfounded assumption.

  14. Load frequency control of three area interconnected hydro-thermal ...

    African Journals Online (AJOL)

    This paper present analysis on dynamic performance of Load Frequency Control (LFC) of three area interconnected hydrothermal reheat power system by the use of Artificial Intelligent and PI Controller. In the proposed scheme, control methodology developed using conventional PI controller, Artificial Neural Network ...

  15. Optimal interconnect ATPG under a ground-bounce constraint

    NARCIS (Netherlands)

    Hollmann, H.D.L.; Marinissen, E.J.; Vermeulen, B.

    In order to prevent ground bounce, Automatic Test Pattern Generation (ATPG) algorithms for wire interconnects have recently been extended with the capability to restrict the maximal Hamming distance between any two consecutive test patterns to a user-defined integer, referred to as the

  16. Time analysis of interconnection network implemented on the honeycomb architecture

    Energy Technology Data Exchange (ETDEWEB)

    Milutinovic, D [Inst. Michael Pupin, Belgrade (Yugoslavia)

    1996-12-31

    Problems of time domains analysis of the mapping of interconnection networks for parallel processing on one form of uniform massively parallel architecture of the cellular type are considered. The results of time analysis are discussed. It is found that changing the technology results in changing the mapping rules. 17 refs.

  17. Area analysis of interconnection networks implemented on the honeycomb architecture

    Energy Technology Data Exchange (ETDEWEB)

    Milutinovic, D

    1996-12-31

    The are utilization of interconnection networks for parallel processing on one form of uniform parallel architecture of cellular type is analyzed. Formulae for the number of cells necessity to realize a networks and the efficiency factor of the system are derived. 15 refs.

  18. 14 CFR 25.957 - Flow between interconnected tanks.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  19. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat

    2017-09-01

    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  20. Ultra-stretchable Interconnects for high-density stretchable electronics

    NARCIS (Netherlands)

    Shafqat, S.; Hoefnagels, J.P.M.; Savov, A.; Joshi, S.; Dekker, R.; Geers, M.G.D.

    2017-01-01

    The exciting field of stretchable electronics (SE) promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for