WorldWideScience

Sample records for level nuclear waste-contaminated

  1. Disposal of high level nuclear wastes: Thermodynamic equilibrium and environment ethics

    Institute of Scientific and Technical Information of China (English)

    RANA Mukhtar Ahmed

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes.

  2. Disposal of high level nuclear wastes: thermodynamic equilibrium and environment ethics

    International Nuclear Information System (INIS)

    Rana, M.A.

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes. (authors)

  3. Disposal of slightly contaminated radioactive wastes from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    With regard to the disposal of solid wastes, nuclear power plants basically have two options, disposal in a Part 61 licensed low-level waste site, or receive approval pursuant to 20.2002 for disposal in a manner not otherwise authorized by the NRC. Since 1981, the staff has reviewed and approved 30 requests for disposal of slightly contaminated radioactive materials pursuant to Section 20.2002 (formerly 20.302) for nuclear power plants located in non-Agreement States. NRC Agreement States have been delegated the authority for reviewing and approving such disposals (whether onsite or offsite) for nuclear power plants within their borders. This paper describes the characteristics of the waste disposed of, the review process, and the staff`s guidelines.

  4. Alpha-contaminated waste from reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Sumner, W.

    1982-01-01

    The anticipated alpha-waste production rates from the Barnwell Nuclear Fuel Reprocessing plant is discussed. The estimated alpha-waste production rate from the 1500 metric ton/year plant is about 85,000 ft 3 /year at the 10 nCi/g limit. Most of this waste is estimated to come from the separation facility, and the major waste sources were cladding, which was 27%, and low-level contact-handled general process trash, which was estimated at 32% of the total. It was estimated that 45% of the waste was combustible and 72% of the waste was compactible. These characteristics could have a significant impact on the final volumes as disposed. Changing the alpha-waste limit from 10 nCi/g to 100 nCi/g was estimated to reduce the amount of alpha waste produced by about 20%. Again, the uncertainty in this value obviously has to be substantial. One has to recognize that these estimates were just that; they were not based on any operating experience. The total plutonium losses to waste, including the high-level waste, was estimated to be 1.5%. The cladding waste was estimated to be contaminated with alpha emitters to the extent of 10 4 to 10 5 nCi/g

  5. High level nuclear wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.

    1987-01-01

    The transformations involved in the nuclear fuels during the burn-up at the power nuclear reactors for burn-up levels of 33.000 MWd/th are considered. Graphs and data on the radioactivity variation with the cooling time and heat power of the irradiated fuel are presented. Likewise, the cycle of the fuel in light water reactors is presented and the alternatives for the nuclear waste management are discussed. A brief description of the management of the spent fuel as a high level nuclear waste is shown, explaining the reprocessing and giving data about the fission products and their radioactivities, which must be considered on the vitrification processes. On the final storage of the nuclear waste into depth geological burials, both alternatives are coincident. The countries supporting the reprocessing are indicated and the Spanish programm defined in the Plan Energetico Nacional (PEN) is shortly reviewed. (author) 8 figs., 4 tabs

  6. Geomicrobiology of High Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    International Nuclear Information System (INIS)

    Fredrickson, Jim K.; Zachara, John M.; Balkwill, David L.; Kennedy, David W.; Li, Shu-Mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 7 CFU g-1 but viable microorganisms were recovered from 11 of 16 samples including several of the most radioactive ones (e.g., > 10 ?Ci/g 137Cs). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known Gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples but other high G+C phyla were also represented including Rhodococcus and Nocardia. Two isolates from the second most radioactive sample (>20 ?Ci 137Cs g-1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20kGy. Many of the Gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that Gram-positive bacteria, predominantly high G+C phyla, are indigenous to Hanford vadose sediments and some are effective at surviving the extreme physical and chemical stress associated with radioactive waste

  7. Clearance of very low level radioactive waste in spanish nuclear power plants

    International Nuclear Information System (INIS)

    Alvarez Mir, F.

    2001-01-01

    According to present Spanish legislation a radioactive waste is defined as any material or waste product, without any possible planned use, that contains or is contaminated with radionuclides in concentrations or activity levels higher than those established by the Regulatory Authorities. Legally, this situation allows to develop a conventional management of very low level radioactive waste, by checking the negligibility of their radiological impact, and thus obtaining the corresponding Authorization to treat them as conventional waste. This presentation describes the clearance project of contaminated oils from spanish nuclear power plants. The on-site management includes: -) preliminary settling, centrifugation and filtration; -) oil purification; and -) radiological characterization. The off-site management includes the following operations: -) transportation to the facility where treatment is developed (dilution); -) temporary storage (decay); -) transportation to the place where final management is carried out; -) oil burning (dilution); and management of ashes and other combustion products. An annual amount of 70 m 3 /year (63 MBq) of very low contaminated oil with a specific concentration of 1 Bq/g could be disposed off. (A.C.)

  8. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  9. Nuclear waste

    International Nuclear Information System (INIS)

    1990-01-01

    Each year, nuclear power plants, businesses, hospitals, and universities generate more than 1 million cubic feet of hardware, rags, paper, liquid waste, and protective clothing that have been contaminated with radioactivity. While most of this waste has been disposed of in facilities in Nevada, South Carolina, and Washington state, recent legislation made the states responsible - either individually, or through groups of states called compacts - for developing new disposal facilities. This paper discusses the states' progress and problems in meeting facility development milestones in the law, federal and state efforts to resolve issues related to mixed waste (low-level waste that also contains hazardous chemicals) and waste with very low levels of radioactivity, and the Department of Energy's progress in discharging the federal government's responsibility under the law to manage the most hazardous low-level waste

  10. Nuclear waste - the unsolved problem

    International Nuclear Information System (INIS)

    Boyle, S.

    1986-01-01

    Nuclear waste is identified and the problems created by reprocessing are mentioned. The disposal option for low, intermediate and high-level radioactive wastes are discussed. Sites where disposal has taken place have been found to be unsatisfactory because of contamination and radionuclide migration. The Nuclear Industry Radioactive Waste Executive (NIREX) is not seen as having any more credibility than the other nuclear authorities involved (BNFL, UKAEA, CEGB). Until an adequate, publically acceptable, method of disposing of the wastes already created has been found the author states that no more should be created. (U.K.)

  11. Concerning enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material

    International Nuclear Information System (INIS)

    1988-01-01

    The Atomic Safety Commission of Japan, after examining a report submitted by the Science and Technology Agency concerning the enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material, has approved the plan given in the report. Thus, laws and regulations concerning procedures for application for waste burying business, technical standards for implementation of waste burying operation, and measures to be taken for security should be established to ensure the following. Matters to be described in the application for the approval of such business and materials to be attached to the application should be stipulated. Technical standards concerning inspection of waste burying operation should be stipulated. Measures to be taken for the security of waste burying facilities and security concerning the transportation and disposal of nuclear fuel material should be stipulated. Matters to be specified in the security rules should be stipulated. Matters to be recorded by waste burying business operators, measures to be taken to overcome dangers and matters to be reported to the Science and Technology Agency should be stipulated. (Nogami, K.)

  12. Fifth international conference on radioactive waste management and environmental remediation -- ICEM '95: Proceedings. Volume 2: Management of low-level waste and remediation of contaminated sites and facilities

    International Nuclear Information System (INIS)

    Slate, S.; Baker, R.; Benda, G.

    1995-01-01

    The objective of this conference is the broad international exchange of information on technologies, operations, management approaches, economics, and public policies in the critical areas of radioactive waste management and environmental remediation. The ICEM '95 technical program includes four parallel program tracks: Low/intermediate-level waste management; High-level waste, spent fuel, nuclear material management; Environmental remediation and facility D and D; and Major institutional issues in environmental management. Volume 2 contains approximately 200 papers divided into the following topical sections: Characterization of low and intermediate level waste; Treatment of low and intermediate level waste; LLW disposal and near-surface contaminant migration; Characterization and remediation of contaminated sites; and Decontamination and decommissioning technologies and experience. Papers have been processed separately for inclusion on the data base

  13. Development of a facility for fabricating nuclear waste canisters from radioactively contaminated steel

    International Nuclear Information System (INIS)

    Logan, J.A.; Larsen, M.M.

    1986-01-01

    This paper describes design of a facility and processes capable of using radioactively contaminated waste steel as the principal raw material for fabricating stainless steel canisters to be used for disposal of nuclear high-level waste. By such action, expenditure (i.e., permanent loss to society) of thousands of tons of uncontaminated chromium and nickel to fabricate such canisters can be avoided. Moreover, the cost and risks involved in disposing of large accumulations of radioactively contaminated steel as low-level radioactive waste (LLRW), that would otherwise be necessary, can also be avoided. The canister fabrication processes (involving centrifugal casting) described herein have been tested and proven for this application. The performance characteristics of stainless steel canisters so fabricated have been tested and agreed to by the organizations that have been involved in this development work (Battelle Memorial Institute, DuPont, EGandG and the Savannah River Laboratory) as equivalent to the performance characteristics of canisters fabricated of uncontaminated wrought stainless steel. It is estimated that the production cost for fabricating canisters by the methods described will not differ greatly from the production cost using uncontaminated wrought steel, and the other costs avoided by not having to dispose of the contaminated steel as LLRW could cause this method to produce the lowest ultimate overall costs

  14. Radioactive contamination at dumping sites for nuclear waste in the Kara Sea. Results from the Russian-Norwegian 1993 expedition to the Kara Sea

    Energy Technology Data Exchange (ETDEWEB)

    Strand, P; Rudjord, A L [Statens Straalevern, Oesteraas (Norway); Salbu, B [Norges Landbrukshoegskole, Vollebekk (Norway); and others

    1994-11-01

    During the 1993 Joint Russian-Norwegian Expedition to the Kara Sea, three dumping sites for nuclear waste were investigated: The Tsivolky Bay, the Stepovogo bay and an area in the open Kara Sea (The Novaya Zemlya Trough). Dumped waste was localized and inspected in the Tsivolky Bay and in the Stepovogo Bay using side scanning sonar and underwater camera. In the Stepovogo Bay, the dumped nuclear submarine no. 601, containing spent nuclear fuel was localized. Samples of waters, sediments and biota were collected at nine stations and later analyzed for several radionuclides (gammaemitters, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu and {sup 241}Am). The analyses of the samples al the following conclusions to be drawn: (1) Elevated levels of {sup 137}Cs and {sup 90}Sr and presence of {sup 60}Co were observed in the inner part of the Stepovogo Bay, and in one sample collected close to the hull of the dumped nuclear submarine in the Stepovogo Bay. {sup 60}Co was also observed in the Tsivolky Bay. This radioactive contamination most likely originates from the dumped radioactive material. It may be due to leaching from the waste. (2) The enhanced levels of contamination caused by dumped nuclear waste are still low and restricted to small areas. Thus, radiation doses from the existing contamination would be negligible. Radioactive contamination outside these areas is similar to the activity levels in the open Kara Sea. 46 refs.

  15. Radioactive contamination at dumping sites for nuclear waste in the Kara Sea. Results from the Russian-Norwegian 1993 expedition to the Kara Sea

    International Nuclear Information System (INIS)

    Strand, P.; Rudjord, A.L.; Salbu, B.

    1994-11-01

    During the 1993 Joint Russian-Norwegian Expedition to the Kara Sea, three dumping sites for nuclear waste were investigated: The Tsivolky Bay, the Stepovogo bay and an area in the open Kara Sea (The Novaya Zemlya Trough). Dumped waste was localized and inspected in the Tsivolky Bay and in the Stepovogo Bay using side scanning sonar and underwater camera. In the Stepovogo Bay, the dumped nuclear submarine no. 601, containing spent nuclear fuel was localized. Samples of waters, sediments and biota were collected at nine stations and later analyzed for several radionuclides (gammaemitters, 90 Sr, 238 Pu, 239,240 Pu and 241 Am). The analyses of the samples al the following conclusions to be drawn: 1) Elevated levels of 137 Cs and 90 Sr and presence of 60 Co were observed in the inner part of the Stepovogo Bay, and in one sample collected close to the hull of the dumped nuclear submarine in the Stepovogo Bay. 60 Co was also observed in the Tsivolky Bay. This radioactive contamination most likely originates from the dumped radioactive material. It may be due to leaching from the waste. 2) The enhanced levels of contamination caused by dumped nuclear waste are still low and restricted to small areas. Thus, radiation doses from the existing contamination would be negligible. Radioactive contamination outside these areas is similar to the activity levels in the open Kara Sea. 46 refs

  16. The main rules regarding the management of solid waste and liquid effluent contaminated during use at nuclear medicine departments

    International Nuclear Information System (INIS)

    Boudouin, E.

    2011-01-01

    This article describes the key requirements applicable to the management of contaminated medical waste and effluent from hospitals and health care centres, and more especially from nuclear medicine departments that use radionuclides for the purposes of diagnosis (in vivo or in vitro) or in patient treatment. It also presents the key management regulations, making a distinction between contaminated solid waste and contaminated liquid waste from such nuclear medicine departments. (author)

  17. Decontamination processes for low level radioactive waste metal objects

    International Nuclear Information System (INIS)

    Longnecker, E.F.; Ichikawa, Sekigo; Kanamori, Osamu

    1996-01-01

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan's radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan's population, half that of the USA, lives in an area slightly smaller than that of California's. If everyone's backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan's contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R ampersand D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESC

  18. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  19. Ecological risk assessment of deep geological disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Hart, D.R.; Lush, D.L.; Acton, D.W.

    1993-01-01

    Contaminant fate and transport models, radiological dosimetry models, chemical dose-response models and population dynamic models were used to estimate ecological risks to moose and brook trout populations arising from a proposed high-level nuclear waste repository. Risks from potential contaminant releases were compared with risks from physical habitat alteration in constructing a repository and service community, and with risks from increased hunting and fish pressure in the area. For a reference environment typical of a proposed location somewhere in the Canadian Shield, preliminary results suggest that the population consequences of contaminant release will be minor relative to those of habitat alteration and natural resource use

  20. Other-than-high-level waste

    International Nuclear Information System (INIS)

    Bray, G.R.

    1976-01-01

    The main emphasis of the work in the area of partitioning transuranic elements from waste has been in the area of high-level liquid waste. But there are ''other-than-high-level wastes'' generated by the back end of the nuclear fuel cycle that are both large in volume and contaminated with significant quantities of transuranic elements. The combined volume of these other wastes is approximately 50 times that of the solidified high-level waste. These other wastes also contain up to 75% of the transuranic elements associated with waste generated by the back end of the fuel cycle. Therefore, any detailed evaluation of partitioning as a viable waste management option must address both high-level wastes and ''other-than-high-level wastes.''

  1. Nuclear Wastes in the Arctic: An Analysis of Arctic and Other Regional Impacts from Soviet Nuclear Contamination

    National Research Council Canada - National Science Library

    1995-01-01

    ..., and from radioactive releases from both past and future nuclear activities in the region. The report presents what is known and unknown about this waste and contamination and how it may affect public health...

  2. Surface contamination technology in decommissioning of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Ishiguro, Hideharu

    2012-01-01

    Surface contamination measurement is the most basic technology in radiation control of the nuclear and radiation facilities. Loose surface contamination causes internal exposure through airborne contamination. Surface contamination measurement is recently more important in the waste management such as confirmation of decontamination factor, contamination survey of carried-out materials from radioactive control area, and application of clearance level. This report describes the base of surface contamination standards, meaning of contamination in decommissioning, relationship between clearance level and surface contamination, and current technology of surface contamination measurement. (author)

  3. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  4. Liquid level measurement in high level nuclear waste slurries

    International Nuclear Information System (INIS)

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs

  5. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination

    Directory of Open Access Journals (Sweden)

    Dean Kyne

    2016-07-01

    Full Text Available Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  6. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination.

    Science.gov (United States)

    Kyne, Dean; Bolin, Bob

    2016-07-12

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  7. Nuclear waste management; La gestion des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H.

    2008-07-01

    The author gives an overview of the main issues related to the use of nuclear energy: the management and the environmental impact of wastes. After having outlined the different radiological consequences of different radionuclides, he proposes an approximate assessment of waste production which may depend on reactor technology, and which needs a distinction between low level, intermediate level, and high level wastes. He discusses the differences between primary energies and final energies, and how to consider nuclear energy and its wastes within this classification. Then, considering the deep geological storage, he describes how contamination may occur and the risks for the population as well as for the environment. After having evoked the use of breeder reactors and its separation-transmutation issues, the author briefly comments the nuclear waste financing issue

  8. Storage of High Level Nuclear Waste in Germany

    Directory of Open Access Journals (Sweden)

    Dietmar P. F. Möller

    2007-01-01

    Full Text Available Nuclear energy is very often used to generate electricity. But first the energy must be released from atoms what can be done in two ways: nuclear fusion and nuclear fission. Nuclear power plants use nuclear fission to produce electrical energy. The electrical energy generated in nuclear power plants does not produce polluting combustion gases but a renewable energy, an important fact that could play a key role helping to reduce global greenhouse gas emissions and tackling global warming especially as the electricity energy demand rises in the years ahead. This could be assumed as an ideal win-win situation, but the reverse site of the medal is that the production of high-level nuclear waste outweighs this advantage. Hence the paper attempt to highlight the possible state-of-art concepts for the safe and sustaining storage of high-level nuclear waste in Germany.

  9. Contaminant transport modelling in tidal influenced water body for low level liquid waste discharge out

    International Nuclear Information System (INIS)

    Singh, Sanjay; Naidu, Velamala Simhadri

    2018-01-01

    Low level liquid waste is generated from nuclear reactor operation and reprocessing of spent fuel. This waste is discharged into the water body after removing bulk of its radioactivity. Dispersion of contaminant mainly depends on location of outfall and hydrodynamics of water body. For radiological impact assessment, in most of the analytical formulations, source term is taken as continuous release. However, this may not be always true as the water level is influenced by tidal movement and the selected outfall may come under intertidal zone in due course of the tidal cycle. To understand these phenomena, a case study has been carried out to evaluate hydrodynamic characteristics and dilution potential of outfall located in inter-tidal zone using numerical modelling

  10. Phytoextraction of low level U-contaminated soil

    International Nuclear Information System (INIS)

    Vandenhove, H.A.; Hees, M. van

    2002-01-01

    The nuclear fuel cycle may be a source of environmental contamination. Uranium exploitation produces large quantities of wastes but also accidental spills at nuclear fuel production, reprocessing or waste treatment plants have led to soil contamination with uranium. U-contaminated soil is generally excavated, packaged and removed which is a costly enterprise. Soil washing has also shown promising in removing U from contaminated soil, but results in the generation of liquid wastes and the deterioration of soil properties. In contrast, phytoextraction, the use of plants to remove contaminants from polluted soil, allows for in situ treatment and does not generate liquid wastes. Furthermore, the contaminated site is covered by plants during phytoextraction and wind and water erosion will be reduced. The phytoextraction potential depends on the amount of radionuclides extracted and the biomass produced. Hyper-accumulating plants often have a low biomass production. Moreover, uranium soil-to-plant transfer factors (TF: ratio of U concentration in dry plant tissue to concentration in soil) rarely exceed a value of 0.1 gg -1 . With a TF of 0.1 gg -1 and a biomass yield of 15t dry weigh ha -1 only 0.1% of the soil uranium will be annually immobilised in the plant biomass. These figures clearly show that the phytoextraction option is not a feasible remediation option, unless the uranium bioavailability could be drastically increased. It was shown that citric acid addition to highly contaminated U contaminated soil increased the U-accumulation of Brassica juncea 1000-fold. The objective of the present paper is to find out if low level U contaminated soil can be phytoextracted in order to achieve proposed release limits

  11. Low-level nuclear waste in Washington State

    International Nuclear Information System (INIS)

    Williams, H.

    1986-01-01

    A commercial disposal site for low-level nuclear wastes opened at Hanford in 1965. By 1971 a total of six were in operation: Hanford, Nevada, South Carolina, Kentucky, New York State, and Illinois. The history of the operation of these sites is described. Only the first three listed are still open. The effects of the large volumes of waste expected from Three Mile Island are described. This paper examines the case history of Hanford operations with low-level waste disposal for lessons that might apply in other states being considered for disposal sites

  12. High-level nuclear waste disposal: Ethical considerations

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1985-01-01

    Popular skepticism about, and moral objections to, recent legislation providing for the management and permanent disposal of high-level radioactive wastes have derived their credibility from two major sources: government procrastination in enacting waste disposal program, reinforcing public perceptions of their unprecedented danger and the inflated rhetoric and pretensions to professional omnicompetence of influential scientists with nuclear expertise. Ethical considerations not only can but must provide a mediating framework for the resolution of such a polarized political controversy. Implicit in moral objections to proposals for permanent nuclear waste disposal are concerns about three ethical principles: fairness to individuals, equitable protection among diverse social groups, and informed consent through due process and participation

  13. Answers to your questions on high-level nuclear waste

    International Nuclear Information System (INIS)

    1987-11-01

    This booklet contains answers to frequently asked questions about high-level nuclear wastes. Written for the layperson, the document contains basic information on the hazards of radiation, the Nuclear Waste Management Program, the proposed geologic repository, the proposed monitored retrievable storage facility, risk assessment, and public participation in the program

  14. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    Science.gov (United States)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  15. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    International Nuclear Information System (INIS)

    Duffo, Gustavo S.; Farina, Silvia B.; Schulz, Fatima M.; Marotta, Francesca

    2010-01-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  16. Nuclear Waste Management under Approaching Disaster

    NARCIS (Netherlands)

    Ilg, Patrick; Gabbert, Silke; Weikard, Hans Peter

    2017-01-01

    This article compares different strategies for handling low- and medium-level nuclear waste buried in a retired potassium mine in Germany (Asse II) that faces significant risk of uncontrollable brine intrusion and, hence, long-term groundwater contamination. We survey the policy process that has

  17. Treatment of low-level liquid radioactive wastes by electrodialysis

    International Nuclear Information System (INIS)

    DelDebbio, J.A.; Donovan, R.I.

    1986-01-01

    This paper presents the results of pilot plant studies on the use of electrodialysis (ED) for the removal of radioactive and chemical contaminants from acidic low-level radioactive wastes resulting from nuclear fuel reprocessing operations. Decontamination efficiencies are reported for strontium-90, cesium-137, iodine-129, ruthenium-106 and mercury. Data for contaminant adsorption on ED membranes and liquid waste volumes generated are also presented

  18. US program for the immobilization of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1979-01-01

    A program has been developed for long-term management of high-level nuclear waste. The Savannah River Operations Office of the US Department of Energy is acting as the lead office for this program with technical advice from the E.I. du Pont de Nemours and Company. The purpose of the long-term program is to immobilize the DOE high-level waste in forms that act as highly efficient barriers against radionuclide release to the disposal site and to provide technology for similar treatment of commercial high-level waste in case reprocessing of commercial nuclear fuels is ever resumed. Descriptions of existing DOE and commercial wastes, program strategy, program expenditures, development of waste forms, evaluation and selection of waste forms, regulatory aspects of waste form selection, project schedules, and cost estimates for immobilization facilities are discussed

  19. Management of commercial high-level and transuranium-contaminated radioactive wastes. Environmental statement

    International Nuclear Information System (INIS)

    1974-09-01

    This Draft Environmental Statement is issued to assess the environmental impact of the AEC's program to manage commercial high-level and transuranium-contaminated radioactive wastes. These are the types of commercial radioactive wastes for which AEC custody is required by present or anticipated regulations. The program consists of three basic parts: development of a Retrievable Surface Storage Facility (RSSF) for commercial high-level waste, using existing technology; evaluating geological formations and sites for the development of a Geological Disposal Pilot Plant (GDPP) which would lead to permanent disposal; and providing retrievable storage for the transuranium-contaminated waste pending availability of permanent disposal. Consideration has been given to all environmental aspects of the program, using waste generation projections through the year 2000. Radiological and other impacts of implementing the program are expected to be minimal, but will be discussed in further environmental statements which will support budget actions for specific repositories. The alternatives discussed in this Draft Environmental Statement are presented. (U.S.)

  20. An assessment of the long-term impact of chemically toxic contaminants from the disposal of nuclear fuel waste

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Garisto, N.C.; Barnard, J.W.

    1987-01-01

    This paper presents a study on the potential for impact on man of chemically toxic contaminants associated with the Canadian concept for the disposal of nuclear fuel waste. The elements of concern are determined through a series of screening criteria such as elemental abundances and solubilities. A systems variability analysis approach is then used to predict the possible concentrations of these elements that may arise in the biosphere. These concentrations are compared with environmental guidelines such as permissible levels in drinking water. Conclusions are made regarding the potential for the chemically toxic contaminants to have an impact on man. 54 refs

  1. Symposium on the development of nuclear waste policy: Siting the high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) attempted to formulate a viable national policy for managing the disposal of high-level nuclear wastes. The NWPA authorized the selection of two repository sites: the first to be constructed in the West and a second site developed in the eastern United States. A detailed process for site selection was outlined in the NWPA. In addition, the NWPA authorized open-quotes the development of a waste transportation system; required the Department of Energy (DOE) to submit a proposal to construct a facility for monitored retrievable storage (MRS) after conducting a study of the need for, and feasibility of such a facility; and required the President to evaluate the use of the repositories ... for the disposal of high-level waste resulting from defense activitiesclose quotes (DOE, 1988, p. 1). A series of provisions granting oversight participation to states and Indian tribes, as well as a compensation package for the ultimate host state were also included. Responsibility for implementing the NWPA was assigned to DOE

  2. Immobilisation of high level nuclear reactor wastes in SYNROC

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E; Kesson, S E; Ware, N G; Hibberson, W; Major, A [Australian National Univ., Canberra. Inst. of Advanced Studies

    1979-03-15

    It is stated that the elements occurring in high-level nuclear reactor wastes can be safely immobilised by incorporating them within the crystal lattices of the constituent minerals of a synthetic rock (SYNROC). The preferred form of SYNROC can accept up to 20% of high level waste calcine to form dilute solid solutions. The constituent minerals, or close structural analogues, have survived in a wide range of geochemical environments for periods of 20 to 2,000 Myr whilst immobilising the same elements present in nuclear wastes. SYNROC is unaffected by leaching for 24 hours in pure water or 10 wt % NaCl solution at high temperatures and pressure whereas borosilicate glasses completely decompose in a few hours in much less severe hydrothermal conditions. The combination of these leaching results with the geological evidence of long-term stability indicates that SYNROC would be vastly superior to glass in its capacity to safely immobilise nuclear wastes, when buried in a suitable geological repository. A dense, compact, mechanically strong form of SYNROC suitable for geological disposal can be produced by a process as economical as that which incorporates radioactive waste in borosilicate glasses.

  3. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  4. Management options for food production systems affected by a nuclear accident. Task 6: landspreading as a waste disposal option for contaminated milk

    International Nuclear Information System (INIS)

    Marchant, J.K.; Nisbet, A.F.

    2002-01-01

    In the event of a nuclear accident, there may be significant quantities of agricultural produce that are contaminated with radionuclides and require disposal. The disposal of milk would be of particular concern, since the quantities of milk classed as waste could be substantial and extensive environmental damage could be caused if this was not disposed of appropriately. As part of contingency planning for potential nuclear accidents, the identification of practicable options for disposal of contaminated milk is therefore important. One of the potential options is disposal by landspreading. This report sets out the current legal position of the landspreading of contaminated milk on farmland, provides information on the current extent of landspreading by farmers and assesses the practicability of landspreading contaminated milk according to the following criteria: technical feasibility, capacity, cost, environmental impact, radiological impact and acceptability. Milk contaminated with radionuclides could be defined as a radioactive waste or an agricultural waste. If it were defined as a radioactive waste it would require disposal under the Radioactive Substances Act 1993. Decisions concerning the definition of contaminated milk area matter for the relevant government departments. In this report it was assumed that the milk would be defined as an agricultural waste. The Code of Good Agricultural Practice for the Protection of Water provides farmers with practical guidance for avoiding water pollution and the Code of Good Agricultural Practice for the Protection of Air provides them with practical guidance for avoiding air pollution. Farmers should follow both of these codes when landspreading milk. According to the Animal By-products Order, 1999 milk contaminated with radionuclides above the levels specified by the European Council at which marketing would be prohibited would constitute high risk material; landspreading would not then be permitted. This, however

  5. Science, society, and America's nuclear waste: Unit 1, Nuclear waste

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 1 in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  6. A research on the environmental impact on nearby waters range at low-level radioactive waste water drain from the Dayawan nuclear power station

    International Nuclear Information System (INIS)

    Zhang Chunling; Xu Zitu; Xiao Zhang.

    1987-01-01

    The possible influence of the low-level radioactive waste water drain from the Dayawan nuclear power station upon nearby waters range is discussed. The contents of the article contains the numerical simulation on tidal currents and pollutant diffusion, the calculation of concentration distribution of radioactive contaminants in the water area and of polluted field, and the criterion on radioactive contaminant influence on nearby residents and aquatic biologicals. The result shows that when the Dayawan nuclear power station is on normal operation and after the low-level radioactive waste water has been drained off into the sea, the radioactive concentration is even lower than the natural background radiation just out-side the area of about 4 km 2 round the water outlet. As a result, it won't cause any danger to the water environment. Due to the fact that the concentration of the low-level radioactive waste water from the nuclear power station fully accords with the national standard GB4792-84 and the sea water quality sandard GBH2, 3-82. It is no harm to either residents and aquatic biologicals or ecological balance

  7. Modeling by GASP-IV simulation of high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Kurstedt, H.A. Jr.; DePorter, E.L.; Turek, J.L.; Funk, S.K.; Rasbach, C.E.

    1981-01-01

    High-level nuclear waste generated by defense-oriented and commercial nuclear energy activities are to be stored ultimately in underground repositories. Research continues on the waste-form and waste-form processing. DOE managers must coordinate the results of this research, the capacities and availability times of the permanent geologic storage repositories, and the capacities and availability times of interim storage facilities (pending availability of permanent repositories). Comprehensive and active DOE program-management information systems contain predicted generation of nuclear wastes from defense and commercial activities; milestones on research on waste-forms; and milestones on research and development, design, acquisition, and construction of facilities and repositories. A GASP IV simulation model is presented which interfaces all of these data. The model accepts alternate management decisions; relates all critical milestones, all research and development data, and the generation of waste nuclear materials; simulates the passage of time; then, predicts the impact of those alternate decisions on the availability of storage capacity for waste nuclear materials. 3 references, 3 figures

  8. Nuclear waste

    International Nuclear Information System (INIS)

    1989-01-01

    This paper reviews the Department of Energy's management of underground single-shell waste storage tanks at its Hanford, Washington, site. The tanks contain highly radioactive and nonradioactive hazardous liquid and solid wastes from nuclear materials production. Hundreds of thousands of gallons of these wastes have leaked, contaminating the soil, and a small amount of leaked waste has reached the groundwater. DOE does not collect sufficient data to adequately trace the migration of the leaks through the soil, and studies predicting the eventual environmental impact of tank leaks do not provide convincing support for DOE's conclusion that the impact will be low or nonexistent. DOE can do more to minimize the environmental risks associated with leaks. To reduce the environmental impact of past leaks, DOE may be able to install better ground covering over the tanks to reduce the volume of precipitation that drains through the soil and carries contaminants toward groundwater

  9. Monitoring of plutonium contaminated solid waste streams

    International Nuclear Information System (INIS)

    Birkhoff, G.; Notea, A.

    1977-01-01

    The planning of a system for monitoring Pu contaminated solid waste streams, from the nuclear fuel cycle, is considered on the basis of given facility waste management program. The inter relations between the monitoring system and the waste management objectives are stressed. Selection criteria with pertinent data of available waste monitors are given. Example of monitoring systems planning are presented and discussed

  10. Low-level nuclear waste tested for fertilizer value

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The nuclear power industry keeps coming up with proposals for getting rid of radioactive waste - burying it deep in the ground, sinking it at sea and even sending it into space reports Common Cause magazine under a headline, The Latest in Recycling. At its Sequoyah Fuels facility in Oklahoma, Kerr-McGee manufactures fuel for nuclear power plants, generating a low-level radioactive liquid waste product called raphinate. After processing to remove radioactive substances, Kerr-McGee has gotten approval from the Nuclear Regulatory Commission to use the nitrogen-rich residue as a fertilizer - but not to market it. As a result, Kerr-McGee is reported to be buying up thousands of acres of land on which to spread raphinate. The acreage is used to grow hay, which the company has gotten an okay to sell. The recycling effort hasn't exactly won neighborhood friends for the company, noted Common Cause. According to Kerr-McGee's corporate communications direct, When you say to somebody, Sequoyah Fuels is putting nuclear waste (on farmland), people jump up a wall

  11. Low-level waste management at the Nuclear Research Center

    International Nuclear Information System (INIS)

    Montanez, O.; Blanco, D.; Vallarino, V.; Calisto, W.

    1986-01-01

    A general overview of low-level radioactive waste management at the Nuclear Investigation Centre (CIN) of Uruguay is presented. The CIN is a pilot centre of research and development of techniques for implementing measurements for radioactive waste storage and control. (M.C.K.) [pt

  12. Status of the high-level nuclear waste disposal program in Japan

    International Nuclear Information System (INIS)

    Uematsu, K.

    1985-01-01

    The Japan Atomic Energy Commission (JAEC) initiated a high-level radioactive waste disposal program in 1976. Since then, the Advisory Committee on Radioactive Waste Management of JAEC has revised the program twice. The latest revision was issued in 1984. The committee recommended a four-phase program and the last phase calls for the beginning of emplacement of the high-level nuclear waste into a selected repository in the Year 2000. The first phase is already completed, and the second phase of this decade calls for the selection of a candidate disposal site and the conducting of the RandD of waste disposal in an underground research laboratory and in a hot test facility. This paper covers the current status of the high-level nuclear waste disposal program in Japan

  13. The main rules regarding the management of solid waste and liquid effluent contaminated during use at nuclear medicine departments; Les principales regles de gestion des dechets solides et des effluents liquides contamines dans les services de medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Boudouin, E. [Autorite de Surete Nucleaire, Direction des rayonnements ionisants et de la sante, 75 - Paris (France)

    2011-02-15

    This article describes the key requirements applicable to the management of contaminated medical waste and effluent from hospitals and health care centres, and more especially from nuclear medicine departments that use radionuclides for the purposes of diagnosis (in vivo or in vitro) or in patient treatment. It also presents the key management regulations, making a distinction between contaminated solid waste and contaminated liquid waste from such nuclear medicine departments. (author)

  14. Electrokinetic remediation of plutonium-contaminated nuclear site wastes: Results from a pilot-scale on-site trial

    International Nuclear Information System (INIS)

    Agnew, Kieran; Cundy, Andrew B.; Hopkinson, Laurence; Croudace, Ian W.; Warwick, Phillip E.; Purdie, Philip

    2011-01-01

    This paper examines the field-scale application of a novel low-energy electrokinetic technique for the remediation of plutonium-contaminated nuclear site soils, using soil wastes from the Atomic Weapons Establishment (AWE) Aldermaston site, Berkshire, UK as a test medium. Soils and sediments with varying composition, contaminated with Pu through historical site operations, were electrokinetically treated at laboratory-scale with and without various soil pre-conditioning agents. Results from these bench-scale trials were used to inform a larger on-site remediation trial, using an adapted containment pack with battery power supply. 2.4 m 3 (ca. 4 tonnes) of Pu-contaminated soil was treated for 60 days at a power consumption of 33 kW h/m 3 , and then destructively sampled. Radiochemical data indicate mobilisation of Pu in the treated soil, and migration (probably as a negatively charged Pu-citrate complex) towards the anodic compartment of the treatment cell. Soil in the cathodic zone of the treatment unit was remediated to a level below free-release disposal thresholds (1.7 Bq/g, or <0.4 Bq/g above background activities). The data show the potential of this method as a low-cost, on-site tool for remediation of radioactively contaminated soils and wastes which can be operated remotely on working sites, with minimal disruption to site infrastructure or operations.

  15. Electrokinetic applications for environmental restoration, waste volume reduction, and contaminant containment systems

    International Nuclear Information System (INIS)

    Lomasney, H.L.; Lomasney, C.A.

    1996-01-01

    In the US and all over the world, following over 50 years of nuclear arms production operations, the magnitude of resultant environmental damage is only beginning to surface. The US Department of Energy estimates that by the year 2070, the total volume of high-level waste, transuranic waste, low-level waste, and low-level mixed waste, generated as a result of past and current nuclear activities, will exceed 20 million cubic meters. In Russia, it is reported that more than 30% of all groundwater is contaminated with agricultural and industrial chemical waste. Government agencies today are faced with the responsibility of developing technologies that are suitable for dealing with severe environmental contamination and accumulating waste inventories. In response to this demand, applications of electrokinetics have emerged in the field of environmental waste management as alternatives for environmental decontamination and ecological protection. Electrokinetics involves the movement of charged species under the influence of an applied electric field and is applicable in several areas of environmental waste management, including cleanup of soil and groundwater, barrier detection, and emergency or protective fencing. The worldwide interest in this technology has steadily escalated over the past decade. Today, state-of-the-art applications of electrokinetics have been demonstrated in the US, The Netherlands, Russia, The Ukraine, and India. This paper addresses the latest advances in the various applications of this technology as well as the most significant breakthroughs in the history of electrokinetics

  16. Managing the nation's nuclear waste. Overview: Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1985-10-01

    Signed into law by the President on January 7, 1983, the Nuclear Waste Policy Act established a national policy for safely storing, transporting, and disposing of spent nuclear fuel and high-level radioactive waste. This overview presents the following information on the Nuclear Waste Policy Act: (1) background; (2) permanent repository; (3) siting guidelines and mission plan; (4) monitored retrievable storage; and (5) nuclear waste funds. (DT)

  17. Managing the high level waste nuclear regulatory commission licensing process

    International Nuclear Information System (INIS)

    Baskin, K.P.

    1992-01-01

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  18. Nuclear waste package fabricated from concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400 0 C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs

  19. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  20. Nuclear waste issue

    International Nuclear Information System (INIS)

    Ryhanen, V.

    2000-01-01

    A prerequisite for future use of nuclear energy in electricity production is safe management of the radioactive wastes generated by nuclear power industry. A number of facilities have been constructed for different stages of nuclear waste management around the world, for example for conditioning of different kind of process wastes and for intermediate storage of spent nuclear fuel. Difficulties have often been encountered particularly when trying to advance plans for final stage of waste management, which is permanent disposal in stable geological formations. The main problems have not been technical, but poor public acceptance and lack of necessary political decisions have delayed the progress in many countries. However, final disposal facilities are already in operation for low- and medium-level nuclear wastes. The most challenging task is the development of final disposal solutions for long-lived high-level wastes (spent fuel or high-level reprocessing waste). The implementation of deep geological repositories for these wastes requires persistent programmes for technology development, siting and safety assessments, as well as for building public confidence in long-term safety of the planned repositories. Now, a few countries are proceeding towards siting of these facilities, and the first high-level waste repositories are expected to be commissioned in the years 2010 - 2020. (author)

  1. Current technics and management strategy for Pu-contaminated wastes at PNC

    International Nuclear Information System (INIS)

    1981-02-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) was designated as a leading organization for the Pu-contaminated waste technology program in Japan. For this purpose, number of efforts in the research and development are proceeding. That is, Pu-contaminated waste technology including volume reduction system and the immobilization of wastes is being developed. The design of a Pu-contaminated waste treatment facility (PWTF) is being made for the demonstration of the technology developed. Studies are in progress to find the criteria for waste products in disposal. The current procedures and strategy for the management of Pu-contaminated wastes at PNC are described as follows: current and future management; technology development including controlled air incineration, acid digestion, immobilization melting, dismantling, and liquid waste treatment; the Pu-contaminated waste treatment facility. (J.P.N.)

  2. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  3. America's nuclear waste backlog

    International Nuclear Information System (INIS)

    Benenson, R.

    1981-01-01

    This report discusses three topics: concern and controversy relating to nuclear waste; high-level waste storage and politics of waste disposal. The most pressing waste disposal problem concerns spent fuel assemblies from commercial nuclear power plants. It was expected that commercial spent fuel would be sent to commercial reprocessing plants. The feasibility of commercial reprocessing in the United States is contingent on the expansion of the nuclear power industry. The current high-level liquid waste inventory is about 77 million gallons. These are stored at Richland, Washington; Aiken, South Carolina; and Idaho Falls, Idaho. The only commercial high-level wastes ever produced are stored at the defunct reprocessing facility at West Valley, New York. A high-level waste repository must be capable of isolating wastes that will remain dangerous for thousands of years. Salt has long been considered the most suitable medium for high-level and transuranic waste disposal. The timetable for opening a deep geological repository is one of the issues that will have to be dealt with by Congress. The 97th Congress appears ready to act on high-level nuclear waste legislation. Even opponents of nuclear expansion admit the necessity of legislation. Even if Congress gets its act together, it does not mean that the nuclear waste issue is gone. There are still unknowns - future of reprocessing, the needs and demands of the military; the health of the nuclear power industry; the objections of residents in potential site areas; the possibility of a state veto, and the unsolved technological problems in geologic site selection

  4. Cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    1989-01-01

    The purposes of the report are to provide an overview of the methodology and technology available to clean up contaminated areas and to give preliminary guidance on matters related to the planning, implementation and management of such cleanups. This report provides an integrated overview of important aspects related to the cleanup of very large areas contaminated as a result of a serious nuclear accident, including information on methods and equipment available to: characterize the affected area and the radioactive fallout; stabilize or isolate the contamination; and clean up contaminated urban, rural and forested areas. The report also includes brief sections on planning and management considerations and the transport and disposal of the large volumes of wastes arising from such cleanups. For the purposes of this report, nuclear accidents which could result in the deposition of decontamination over large areas if the outer containment fails badly include: 1) An accident with a nuclear weapon involving detonation of the chemical high explosive but little, if any, nuclear fission. 2) A major loss of medium/high level liquid waste (HLLW) due to an explosion/fire at a storage site for such waste. 3) An accident at a nuclear power plant (NPP), for example a loss of coolant accident, which results in some core disruption and fuel melting. 4) An accident at an NPP involving an uncontrolled reactivity excursion resulting in the violent ejection of a reactor core material and rupture of the containment building. 117 refs, 32 figs, 12 tabs

  5. Geostatistical methodology for waste optimization of contaminated premises - 59344

    International Nuclear Information System (INIS)

    Desnoyers, Yvon; Dubot, Didier

    2012-01-01

    The presented methodological study illustrates a Geo-statistical approach suitable for radiological evaluation in nuclear premises. The waste characterization is mainly focused on floor concrete surfaces. By modeling the spatial continuity of activities, Geo-statistics provide sound methods to estimate and map radiological activities, together with their uncertainty. The multivariate approach allows the integration of numerous surface radiation measurements in order to improve the estimation of activity levels from concrete samples. This way, a sequential and iterative investigation strategy proves to be relevant to fulfill the different evaluation objectives. Waste characterization is performed on risk maps rather than on direct interpolation maps (due to bias of the selection on kriging results). The use of several estimation supports (punctual, 1 m 2 , room) allows a relevant radiological waste categorization thanks to cost-benefit analysis according to the risk of exceeding a given activity threshold. Global results, mainly total activity, are similarly quantified to precociously lead the waste management for the dismantling and decommissioning project. This paper recalled the geo-statistics principles and demonstrated how this methodology provides innovative tools for the radiological evaluation of contaminated premises. The relevance of this approach relies on the presence of a spatial continuity for radiological contamination. In this case, geo-statistics provides reliable activity estimates, uncertainty quantification and risk analysis, which are essential decision-making tools for decommissioning and dismantling projects of nuclear installations. Waste characterization is then performed taking all relevant information into account: historical knowledge, surface measurements and samples. Thanks to the multivariate processing, the different investigation stages can be rationalized as regards quantity and positioning. Waste characterization is finally

  6. Status of commercial nuclear high-level waste disposal. Special report

    International Nuclear Information System (INIS)

    Dau, G.J.; Williams, R.F.

    1976-09-01

    The results of this review, presented in the form of a functional description of high level waste management system, shows that technology is available to dispose of nuclear waste safely by several different processes. The most attractive alternative in terms of available technology and shortness of time to demonstrate it at commercial scale is a system that converts the waste to a solid by immobilizing the radioactive elements in a glass matrix. Brief comments are also given on international efforts in high level waste management and advanced disposal concepts

  7. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  8. Application of exemption principles to low-level waste disposal and recycle of wastes from nuclear facilities

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Hemming, C.R.; O'Donnell, F.R.; Linsley, G.S.

    1988-04-01

    The International Atomic Energy Agency (IAEA) and other international groups are considering exempting from regulatory control certain radiation sources and practices, initially under the general heading of de minimis. A significant fraction of the wastes from industry, research, medicine, and the nuclear fuel cycle are contaminated to such low levels that the associated risks to health are trivial. IAEA work has been conducted by Advisory Groups to establish principles for exemption, and to apply the principles to various areas of waste management. In the second area, the main objectives have been to illustrate a methodology for developing practical radiological criteria through the application of the IAEA preliminary exemption principles, to establish generic criteria, and to determine the practicability of the preliminary exemption principles. The method used relies on a modeling assessment of the potential radiation exposure pathways and scenarios for individuals and population groups following the unrestricted release of materials. This paper describes the IAEA's assessment methodology and presents the generic results expressed in terms of the limiting activity concentration in municipal waste and in low-activity materials for recycle and reuse. 2 refs., 2 tabs

  9. Contaminated Land Remediation on decommissioned nuclear facilities: an optimized approach

    International Nuclear Information System (INIS)

    Sauer, Emilie

    2016-01-01

    contaminated by low activities of 137 Cs (0,26 Bq/g median activity), diffused and unstructured in the zone, - Two layers have a specifically higher activity, but remain low: the 0/50 cm layer under the platform (0,69 Bq/kg 137 Cs) and the 3 m/3 m 50 layer (0,58 Bq/g 137 Cs) - The platform source term represents 80% of the global Source Term (platform + soils) The reference approach of the French Nuclear Authority (i.e. removing any artificial activity) is disproportionate here to the risks (10 00 m 3 of low level waste of soils would be produced). An optimized approach is being proposed. EDF demonstrated compliance between the land and all foreseeable uses, with an impact of the soil activities of 8 10 -3 μSv/y for a realistic use (fisherman in the river close to the nuclear site). The spatial distribution of the source term brought EDF to establish a technical and economic strategy. It involved optimizing soil excavations (only the first 0/50 cm layer of soils) to reduce the source term as far as reasonably achievable, taking into account technical difficulties, quantities of low level waste produced, sustainable management and workers' safety. If accepted by the French Regulator, this approach would reduce significantly radiological waste production and set an example for the other EDF nuclear licensed sites undergoing decommissioning. (authors)

  10. Management of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: With the increasing use of nuclear energy throughout the world for the generation of electric power and, especially, the use of the plutonium cycle for fast breeder reactors (FBRs), close attention has to be given to the safe management of alpha-contaminated wastes arising from spent-fuel reprocessing or mixed fuel fabrication Appropriate handling, conditioning and disposal of these wastes is, therefore, an activity of highest importance to ensure adequate protection of man and his environment from the potential hazard they pose over long periods of time. As the generation of alpha-contaminated waste is expected to increase considerably in the 1990s, when FBRs and the associated plutonium recycling will reach an industrial scale, it was felt timely to review the present state of the art in this area. The symposium organized jointly by the IAEA and the Commission of European Communities (CEC) was the first international symposium dealing with this specific topic. Its principle aim was to serve as 'zero-point' stating the present technical knowledge in view of the future needs for the management of alpha-contaminated wastes, before an industrial scale of production will be reached. The programme of the symposium was drawn up in eight sessions and covered the following topics: general policies; general practices; volume reduction techniques (two sessions); conditioning; alpha-monitoring; actinides partitioning; and disposal options. A variety of techniques has been investigated in various countries for several years for managing alpha-contaminated wastes. The first target was to reduce the volume of the wastes and to study matrices for the immobilization of waste radionuclides with a view to final waste disposal. At present, operational experience has been gained at different nuclear laboratories and facilities. At the same time various disposal options have been investigated. Some of the major items discussed at the symposium might be concluded as follows

  11. Low-risk alternative waste forms for problematic high-level and long-lived nuclear wastes

    International Nuclear Information System (INIS)

    Stewart, M.W.A.; Begg, B.D.; Moricca, S.; Day, R.A.

    2006-01-01

    Full text: The highest cost component the nuclear waste clean up challenge centres on high-level waste (HLW) and consequently the greatest opportunity for cost and schedule savings lies with optimising the approach to HLW cleanup. The waste form is the key component of the immobilisation process. To achieve maximum cost savings and optimum performance the selection of the waste form should be driven by the characteristics of the specific nuclear waste to be immobilised, rather than adopting a single baseline approach. This is particularly true for problematic nuclear wastes that are often not amenable to a single baseline approach. The use of tailored, high-performance, alternative waste forms that include ceramics and glass-ceramics, coupled with mature process technologies offer significant performance improvements and efficiency savings for a nuclear waste cleanup program. It is the waste form that determines how well the waste is locked up (chemical durability), and the number of repository disposal canisters required (waste loading efficiency). The use of alternative waste forms for problematic wastes also lowers the overall risk by providing high performance HLW treatment alternatives. The benefits tailored alternative waste forms bring to the HLW cleanup program will be briefly reviewed with reference to work carried out on the following: The HLW calcines at the Idaho National Laboratory; SYNROC ANSTO has developed a process utilising a glass-ceramic combined with mature hot-isostatic pressing (HIP) technology and has demonstrated this at a waste loading of 80 % and at a 30 kg HIP scale. The use of this technology has recently been estimated to result in a 70 % reduction in waste canisters, compared to the baseline borosilicate glass technology; Actinide-rich waste streams, particularly the work being done by SYNROC ANSTO with Nexia Solutions on the Plutonium-residues wastes at Sellafield in the UK, which if implemented is forecast to result in substantial

  12. Siting high-level nuclear waste repositories: A progress report for Rhode Island

    International Nuclear Information System (INIS)

    Frohlich, R.K.; Vild, B.F.

    1986-03-01

    In this booklet, we will not try to argue the pros and cons of nuclear power or weapons production. We will focus instead on the issue of nuclear waste disposal. With the passage of the Nuclear Waste Policy Act (NWPA) of 1982, the US Congress and the President charged federal and state regulators with the responsibility of settling that issue by the end of this century - with extensive public involvement. This booklet, now in its second printing, is designed to explain the nature of ''high-level'' nuclear waste, the essential criteria for its safe and permanent disposal, and Rhode Island's participation in the federal repository program. It has been funded from a USDOE grant derived from a utility-financed Nuclear Waste Fund established under the NWPA. 17 refs., 10 figs., 2 tabs

  13. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  14. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  15. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  16. Allowable residual contamination levels: transuranic advanced disposal systems for defense waste

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1982-01-01

    An evaluation of advanced disposal systems for defense transuranic (TRU) wastes is being conducted using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. For defense TRU wastes at the Hanford Site near Richland, Washington, various advanced disposal techniques are being studied to determine their potential for application. This paper presents a discussion of the results of the first stage of the TRU advanced disposal systems project

  17. Bioremediation of uranium contaminated soils and wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1998-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs

  18. Four themes that underlie the high-level nuclear waste management program

    International Nuclear Information System (INIS)

    Sprecher, W.M.

    1989-01-01

    In 1982, after years of deliberation and in response to mounting pressures from environmental, industrial, and other groups, the US Congress enacted the Nuclear Waste Policy Act (NWPA) of 1982, which was signed into law by the President in January 1983. That legislation signified a major milestone in the nation's management of high-level nuclear waste, since it represented a consensus among the nation's lawmakers to tackle a problem that had evaded solution for decades. Implementation of the NWPA has proven to be exceedingly difficult, as attested by the discord generated by the US Department of Energy's (DOE's) geologic repository and monitored retrievable storage (MRS) facility siting activities. The vision that motivated the crafters of the 1982 act became blurred as opposition to the law increased. After many hearings that underscored the public's concern with the waste management program, the Congress enacted the Nuclear Waste Policy Amendments Act of 1987 (Amendments Act), which steamlined and focused the program, while establishing three independent bodies: the MRS Review Commission, the Nuclear Waste Technical Review Board, and the Office of the Nuclear Waste Negotiator. Yet, even as the program evolves, several themes characterizing the nation's effort to solve the waste management problem continue to prevail. The first of these themes has to do with social consciousness, and the others that follow deal with technical leadership, public involvement and risk perceptions, and program conservatism

  19. Decontamination flowsheet development for a waste oil containing mixed radioactive contaminants

    International Nuclear Information System (INIS)

    Vijayan, S.; Buckley, L.P.

    1993-01-01

    The majority of waste oils contaminated with both radioactive and hazardous components are generated in nuclear power plant, research lab. and uranium-refinery operations. The waste oils are complex, requiring a detailed examination of the waste management strategies and technology options. It may appear that incineration offers a total solution, but this may not be true in all cases. An alternative approach is to decontaminate the waste oils to very low contaminant levels, so that the treated oils can be reused, burned as fuel in boilers, or disposed of by commercial incineration. This paper presents selected experimental data and evaluation results gathered during the development of a decontamination flowsheet for a specific waste oil stores at Chalk River Labs. (CRL). The waste oil contains varying amounts of lube oils, grease, paint, water, particulates, sludge, light chloro- and fluoro-solvents, polychlorinated biphenyls (PCB), complexing chemicals, uranium, chromium, iron, arsenic and manganese. To achieve safe management of this radioactive and hazardous waste, several treatment and disposal methods were screened. Key experiments were performed at the laboratory-scale to confirm and select the most appropriate waste-management scheme based on technical, environmental and economic criteria. The waste-oil-decontamination flowsheet uses a combination of unit operations, including prefiltration, acid scrubbing, and aqueous-leachage treatment by precipitation, microfiltration, filter pressing and carbon adsorption. The decontaminated oil containing open-quotes de minimisclose quotes levels of contaminants will undergo chemical destruction of PCBs and final disposal by incineration. The recovered uranium will be recycled to a uranium milling process

  20. Evaluating non-incinerative treatment of organically contaminated low level mixed waste

    International Nuclear Information System (INIS)

    Shuck, D.L.; Wade, J.F.

    1993-01-01

    This investigation examines the feasibility of using non-incinerator technologies effectively to treat organically contaminated mixed waste. If such a system is feasible now, it would be easier to license because it would avoid the stigma that incineration has in the publics' perception. As other DOE facilities face similar problems, this evaluation is expected to be of interest to both DOE and the attendees of WM'93. This investigation considered treatment to land disposal restriction (LDR) standards of 21 different low level mixed (LLM) waste streams covered by the Rocky Flats Federal Facilities Compliance Agreement (FFCA) agreement with the Environmental Protection Agency (EPA). Typically the hazardous components consists of organic solvent wastes and the radioactive component consists of uranic/transuranic wastes. Limited amounts of cyanide and lead wastes are also involved. The primary objective of this investigation was to identify the minimum number of non-thermal unit processes needed to effectively treat this collection of mixed waste streams

  1. Contaminant migration at two low-level radioactive waste sites in arid western United States - a review

    International Nuclear Information System (INIS)

    Wilshire, H.G.; Friedman, I.

    1999-01-01

    Contamination of the unsaturated zone and ground water at the Beatty, Nevada and Richland, Washington low-level radioactive waste sites shows that pathways exist for rapid lateral and vertical migration of contaminants through unconsolidated clastic sediments that comprise the 100 m-thick unsaturated zones of those arid disposal sites. Disposal of liquid wastes at the Beatty site until 1975 may have contributed to rapid migration of contaminants, but negligible amounts of liquid wastes reportedly were disposed at the Richland LLRW site and similar problems of contaminant migration exist. Pathways for vertical migration in the unsaturated zone include fractures and, at Richland, clastic dikes; lateral migration pathways likely are facies-controlled. Disturbance of the disposal sites contributed to increased infiltration of the unlined waste trenches after closure; simulations that used Beatty sample data show dramatic increases in recharge with disturbances necessary to develop the site. Because neither and arid climate nor presence of a thick unsaturated zone offer effective barriers to ground-water contamination, reliance on those factors at proposed sites such as Ward Valley, California and elsewhere is unwarranted. (orig.)

  2. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  3. Defense Waste Management Plan for buried transuranic-contaminated waste, transuranic-contaminated soil, and difficult-to-certify transuranic waste

    International Nuclear Information System (INIS)

    1987-06-01

    GAO recommended that DOE provide specific plans for permanent disposal of buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; cost estimates for permanent disposal of all TRU waste, including the options for the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; and specific discussions of environmental and safety issues for the permanent disposal of TRU waste. Purpose of this document is to respond to the GAO recommendations by providing plans and cost estimates for the long-term isolation of the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste. This report also provides cost estimates for processing and certifying stored and newly generated TRU waste, decontaminating and decommissioning TRU waste processing facilities, and interim operations

  4. DOE's plan for buried transuranic (TRU) contaminated waste

    International Nuclear Information System (INIS)

    Mathur, J.; D'Ambrosia, J.; Sease, J.

    1987-01-01

    Prior to 1970, TRU-contaminated waste was buried as low-level radioactive waste. In the Defense Waste Management Plan issued in 1983, the plan for this buried TRU-contaminated waste was to monitor the buried waste, take remedial actions, and to periodically evaluate the safety of the waste. In March 1986, the General Accounting Office (GAO) recommended that the Department of Energy (DOE) provide specific plans and cost estimates related to buried TRU-contaminated waste. This plan is in direct response to the GAO request. Buried TRU-contaminated waste and TRU-contaminated soil are located in numerous inactive disposal units at five DOE sites. The total volume of this material is estimated to be about 300,000 to 500,000 m 3 . The DOE plan for TRU-contaminated buried waste and TRU-contaminated soil is to characterize the disposal units; assess the potential impacts from the waste on workers, the surrounding population, and the environment; evaluate the need for remedial actions; assess the remedial action alternatives; and implement and verify the remedial actions as appropriate. Cost estimates for remedial actions for the buried TRU-contaminated waste are highly uncertain, but they range from several hundred million to the order of $10 billion

  5. Nuclear waste landscapes

    International Nuclear Information System (INIS)

    Solomon, B.D.; Cameron, D.M.

    1990-01-01

    In this paper the authors explore the time dimension in nuclear waste disposal, with the hope of untangling future land use issues for a full range of radioactive waste facilities. The longevity and hazards presented by nuclear reactor irradiated (spent) fuel and liquid reprocessing waste are well known. Final repositories for these highly radioactive wastes, to be opened early in the 21st Century, are to be located deep underground in rural locations throughout the developed world. Safety concerns are addressed by engineered and geological barriers containing the waste containers, as well as through geographic isolation from heavily populated areas. Yet nuclear power plants (as well as other applications of atomic energy) produce an abundance of other types of radioactive wastes. These materials are generally known as low level wastes (LLW) in the United States, though their level of longevity and radioactivity can vary dramatically

  6. Methodology for determining acceptable residual radioactive contamination levels at decommissioned nuclear facilities/sites

    International Nuclear Information System (INIS)

    Watson, E.C.; Kennedy, W.E. Jr.; Hoenes, G.R.; Waite, D.A.

    1979-01-01

    The ultimate disposition of decommissioned nuclear facilities and their surrrounding sites depends upon the degree and type of residual contamination. Examination of existing guidelines and regulations has led to the conclusion that there is a need for a general method to derive residual radioactive contamination levels that are acceptable for public use of any decommissioned nuclear facility or site. This paper describes a methodology for determining acceptable residual radioactive contamination levels based on the concept of limiting the annual dose to members of the public. It is not the purpose of this paper to recommend or even propose dose limits for the exposure of the public to residual radioactive contamination left at decommissioned nuclear facilities or sites. Unrestricted release of facilities and/or land is based on the premise that the potential annual dose to any member of the public using this property from all possible exposure pathways will not exceed appropriate limits as may be defined by Federal regulatory agencies. For decommissioned land areas, consideration should be given to people living directly on previously contaminated areas, growing crops, grazing food animals and using well water. Mixtures of radionuclides in the residual contamination representative of fuel reprocessing plants, light water reactors and their respective sites are presented. These mixtures are then used to demonstrate the methodology. Example acceptable residual radioactive contamination levels, based on an assumed maximum annual dose of one millirem, are calculated for several selected times following shutdown of a facility. It is concluded that the methodology presented in this paper results in defensible acceptable residual contamination levels that are directly relatable to risk assessment with the proviso that an acceptable limit to the maximum annual dose will be established. (author)

  7. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification

  8. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  9. Ceramic process and plant design for high-level nuclear waste immobilization

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKisson, R.L.; De Wames, R.E.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    In the last 3 years, significant advances in ceramic technology for high-level nuclear waste solidification have been made. Product quality in terms of leach-resistance, compositional uniformity, structural integrity, and thermal stability promises to be superior to borosilicate glass. This paper addresses the process effectiveness and preliminary designs for glass and ceramic immobilization plants. The reference two-step ceramic process utilizes fluid-bed calcination (FBC) and hot isostatic press (HIP) consolidation. Full-scale demonstration of these well-developed processing steps has been established at DOE and/or commercial facilities for processing radioactive materials. Based on Savannah River-type waste, our model predicts that the capital and operating cost for the solidification of high-level nuclear waste is about the same for the ceramic and glass options. However, when repository costs are included, the ceramic option potentially offers significantly better economics due to its high waste loading and volume reduction. Volume reduction impacts several figures of merit in addition to cost such as system logistics, storage, transportation, and risk. The study concludes that the ceramic product/process has many potential advantages, and rapid deployment of the technology could be realized due to full-scale demonstrations of FBC and HIP technology in radioactive environments. Based on our finding and those of others, the ceramic innovation not only offers a viable backup to the glass reference process but promises to be a viable future option for new high-level nuclear waste management opportunities

  10. Status of the United States' high-level nuclear waste disposal program

    International Nuclear Information System (INIS)

    Rusche, B.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 is a remarkable piece of legislation in that there is general agreement on its key provisions. Nevertheless, this is a program intended to span more than a century, with some choices by Congress, states, Indian tribes and the nuclear power industry yet to be made. The crafters of the Act clearly recognized this. And further, the crafters recognized ''. . .that. . .state, Indian tribe and public participation in the planning and development of repositories is essential in order to promote public confidence in the safety of disposal of such waste and spent fuel . . . High-level radioactive waste and spent nuclear fuel have become major subjects of public concern, and appropriate precautions must be taken to ensure that such waste and spent fuel do not adversely affect the public health and safety and the environment for this or future generations

  11. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  12. Social impacts of hazardous and nuclear facilities and events: Implications for Nevada and the Yucca Mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Freudenburg, W.R.; Carter, L.F.; Willard, W.; Lodwick, D.G.; Hardert, R.A.; Levine, A.G.; Couch, S.R.; Edelstein, M.R.

    1992-05-01

    Social impacts of a nuclear waste repository are described. Various case studies are cited such as Rocky Flats Plant, the Feed Materials Production Center, and Love Canal. The social impacts of toxic contamination, mitigating environmental stigma and loss of trust are also discussed

  13. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  14. Gas generation from radiolytic attack of TRU-contaminated hydrogenous waste

    International Nuclear Information System (INIS)

    Zerwekh, A.

    1979-06-01

    In 1970, the Waste Management and Transportation Division of the Atomic Energy Commission ordered a segregation of transuranic (TRU)-contaminated solid wastes. Those below a contamination level of 10 nCi/g could still be buried; those above had to be stored retrievably for 20 y. The possibility that alpha-radiolysis of hydrogenous materials might produce toxic, corrosive, and flammable gases in retrievably stored waste prompted an investigation of gas identities and generation rates in the laboratory and field. Typical waste mixtures were synthesized and contaminated for laboratory experiments, and drums of actual TRU-contaminated waste were instrumented for field testing. Several levels of contamination were studied, as well as pressure, temperature, and moisture effects. G (gas) values were determined for various waste matrices, and degradation products were examined

  15. Case histories of EA documents for nuclear waste

    International Nuclear Information System (INIS)

    Vocke, R.W.

    1985-01-01

    Nuclear power programs and policies in the United States have been subject to environmental assessment under the National Environmental Policy Act (NEPA) since 1971. NEPA documentation prepared for programmatic policy decision-making within the nuclear fuel cycle and concurrent federal policy are examined as they relate to radioactive waste management in this paper. Key programmatic environmental impact statements that address radioactive waste management include: the Atomic Energy Commission document on management of commercial high-level and transuranium-contaminated radioactive waste, which focussed on development of engineered retrievable surface storage facilities (RSSF); the Nuclear Regulatory Commission (NRC) document on use of recycled plutonium in mixed oxide fuel in light water cooled reactors, which focussed on plutonium recycle and RSSF; the NRC statement on handling of spent light water power reactor fuel, which focussed on spent fuel storage; and the Department of Energy (DOE) statement on management of commercially generated radioactive wastes, which focussed on development of deep geologic repositories. DOE is currently pursuing the deep geologic repository option, with monitored retrievable storage as a secondary option

  16. Robotics and remote handling concepts for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    McAffee, Douglas; Raczka, Norman; Schwartztrauber, Keith

    1997-01-01

    This paper summarizes preliminary remote handling and robotic concepts being developed as part of the US Department of Energy's (DOE) Yucca Mountain Project. The DOE is currently evaluating the Yucca Mountain Nevada site for suitability as a possible underground geologic repository for the disposal of high level nuclear waste. The current advanced conceptual design calls for the disposal of more than 12,000 high level nuclear waste packages within a 225 km underground network of tunnels and emplacement drifts. Many of the waste packages may weigh as much as 66 tonnes and measure 1.8 m in diameter and 5.6 m long. The waste packages will emit significant levels of radiation and heat. Therefore, remote handling is a cornerstone of the repository design and operating concepts. This paper discusses potential applications areas for robotics and remote handling technologies within the subsurface repository. It also summarizes the findings of a preliminary technology survey which reviewed available robotic and remote handling technologies developed within the nuclear, mining, rail and industrial robotics and automation industries, and at national laboratories, universities, and related research institutions and government agencies

  17. Process for treating waste water having low concentrations of metallic contaminants

    Science.gov (United States)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  18. Distinguishing method for contamination/radio-activation of radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Takuji; Kato, Keiichiro; Koda, Satoshi.

    1994-01-01

    The present invention concerns a method of distinguishing the contamination/radio-activation of radioactive wastes used in processing wastes generated upon dismantling of exhausted nuclear reactors. Especially, contaminated/radio-activation is distinguished for wastes having openings such as pipes and valves, by utilizing scattering of γ-rays or γ-ray to β-ray ratio. That is, ratio of scattered γ-rays and direct γ-rays or ratio of β-rays and γ-rays from radioactive wastes are measured and compared by a radiation detector, to distinguish whether the radioactive wastes contaminated materials or radio-activated materials. For example, when an object to be measured having an opening is contaminated at the inner side, the radiation detector facing to the opening mainly detects high direct γ-rays emitted from the object to be measured while a radiation detector not facing the opening mainly detects high scattered γ-rays relatively. On the other hand, when the object is a radio-activated material, any of the detectors detect scattered γ-rays, so that they can be distinguished by these ratios. (I.S.)

  19. Geology of high-level nuclear waste disposal: an introduction

    International Nuclear Information System (INIS)

    Roxbugh, I.S.

    1987-01-01

    Hazardous waste is produced by the nuclear fuel cycle from mining and milling of uranium ore, refinement and enrichment, reactor use, and during reprocessing of spent fuel. Waste can be classified according to origin, physical state, and levels of radioactivity and radiotoxicity. The method of the long-term waste disposal is based on the degree of the hazard and the length of time (1000 years to millions of years) for the waste to become safe. The International Atomic Energy Agency (IAEA) has classified radioactive waste into five categories (I-V) based on the amount of radioactivity and heat output of the waste. The text is concerned mainly with the two most hazardous categories (I and II). Disposal at various geological sites using proven mining, engineering, and deep drilling techniques has been proposed and studied. An ideal geological repository would have (1) minimum ground water movement, (2) geochemical and mineralogical properties to retard or immobilize the effects of the nuclear waste from reaching the biosphere, (3) thermochemical properties to allow for heat loading without damage, and (4) structural strength for the operational period. Types of geological environments (both undersea and on land) include evaporites, crystalline rocks, and argillaceous deposits. European and North American case histories are described, and there is a glossary and an extensive list of references in this concise review

  20. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid

    International Nuclear Information System (INIS)

    Sung, J.; Kim, J.; Lee, Y.; Seol, J.; Ryu, J.; Park, K.

    2011-01-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 deg. C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined. (authors)

  1. Transport of Spent Nuclear Fuels, High and Intermediate Level Wastes: A Continuous Challenge

    International Nuclear Information System (INIS)

    Otton, C.; Blachet, L.

    2009-01-01

    For more than 45 years TN International has been involved in the radioactive materials transportation field. Since the beginning the used nuclear fuel transportation has been its core business. During all these years TN International, now part of AREVA, has been able to anticipate and fulfil the needs for new transport or storage casks design to fit the nuclear industry evolutions. A whole fleet of casks able to transport all the materials of the nuclear fuel cycle has been developed. In this presentation we will focus on the casks for the spent fuel, high level waste and intermediate level waste transportation. Answering to the constant evolution of the nuclear industry transport needs is a challenge that TN International faces routinely. Concerning the spent nuclear fuel transportation, TN International has developed in the early 80's a fleet of TN12 type casks fitted with several types of baskets able to safely transport all the spent fuel from the nuclear power plant or the research laboratories to AREVA La Hague plant. The current challenge is the design of a new transport cask generation taking into account the needs of the industry for the next 30 years. The replacement of the TN12 cask generation is to be scheduled as the regulations have changed and the fuel characteristics have evolved. The new generation of casks will take into account all the technical evolutions made during the TN12 thirty years of use. MOX spent fuel has now its dedicated cask: the TN112 which certificate of approval has been obtained in July 2008. This cask is able to transport 12 MOX spent fuel elements with a short cooling time. The first loading of the cask has been performed in 2008 in the EDF nuclear power plant of Saint-Laurent-des-Eaux. Concerning the high level waste such as the La Hague vitrified residues a whole fleet of casks has been developed such as the TN 28 VT dedicated to transport, the TN81 and TN85 dedicated to transport and storage. These casks have permitted the

  2. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  3. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  4. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Science.gov (United States)

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  5. Chemical digestion of low level nuclear solid waste material

    International Nuclear Information System (INIS)

    Cooley, C.R.; Lerch, R.E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230 0 --300 0 C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue. 6 claims, no drawings

  6. Incineration process for plutonium-contaminated waste

    International Nuclear Information System (INIS)

    Vincent, J.J.; Longuet, T.; Cartier, R.; Chaudon, L.

    1992-01-01

    A reprocessing plant with an annual throughput of 1600 metric tons of fuel generates 50 m 3 of incinerable α-contaminated waste. The reference treatment currently adopted for these wastes is to embed them in cement grout, with a resulting conditioned waste volume of 260 m 3 . The expense of mandatory geological disposal of such volumes justifies examination of less costly alternative solutions. After several years of laboratory and inactive pilot-scale research and development, the Commissariat a l'Energie Atomique has developed a two-step incineration process that is particularly suitable for α-contaminated chlorinated plastic waste. A 4 kg-h -1 pilot unit installed at the Marcoule Nuclear Center has now logged over 3500 hours in operation, during which the operating parameters have been optimized and process performance characteristics have been determined. Laboratory research during the same period has also determined the volatility of transuranic nuclides (U, Am and Pu) under simulated incineration conditions. A 100 g-h -1 laboratory prototype has been set up to obtain data for designing the industrial pilot facility

  7. Treatment and immobilization of intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    Lerch, R.E.; Greenhalgh, W.O.; Partridge, J.A.; Richardson, G.L.

    1979-01-01

    A new program underway at the Hanford Engineering Development Laboratory (HEDL) to develop and demonstrate treatment and immobilization technologies for intermediate-level wastes (ILW) generated in the nuclear fuel cycle is discussed. ILW are defined as those liquid and solid radioactive wastes, other than high-level wastes and fuel cladding hulls, that in packaged form have radiation dose readings greater than 200 millirem/hr at the packaged surface and 10 millirem/hr at three feet from the surface. The IAEA value of 10 4 Ci/m 3 for ILW defines the upper limit. For comparative purposes, reference is also made to certain aspects of low-level radioactive wastes (LLW). Initial work has defined the sources, quantities and types of wastes which comprise ILW. Because of the wide differences in composition (e.g., acids, salt solutions, resins and zeolites, HEPA filters, etc.) the wastes may require different treatments, particularly those wastes containing volatile contaminants. The various types of ILW have been grouped into categories amenable to similar treatment. Laboratory studies are underway to define treatment technologies for liquid ILW which contain volatile contaminants and to define immobilization parameters for the residues resulting from treatment of ILW. Immobilization agents initially being evaluated for the various residues include cement, urea-formaldehyde, and bitumen although other immobilization agents will be studied. The program also includes development of acceptable test procedures for the final immobilized products as well as development of proposed criteria for storage, transportation, and disposal of the immobilized ILW

  8. Design and operation of off-gas cleaning systems at high level liquid waste conditioning facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The immobilization of high level liquid wastes from the reprocessing of irradiated nuclear fuels is of great interest and serious efforts are being undertaken to find a satisfactory technical solution. Volatilization of fission product elements during immobilization poses the potential for the release of radioactive substances to the environment and necessitates effective off-gas cleaning systems. This report describes typical off-gas cleaning systems used in the most advanced high level liquid waste immobilization plants and considers most of the equipment and components which can be used for the efficient retention of the aerosols and volatile contaminants. In the case of a nuclear facility consisting of several different facilities, release limits are generally prescribed for the nuclear facility as a whole. Since high level liquid waste conditioning (calcination, vitrification, etc.) facilities are usually located at fuel reprocessing sites (where the majority of the high level liquid wastes originates), the off-gas cleaning system should be designed so that the airborne radioactivity discharge of the whole site, including the emission of the waste conditioning facility, can be kept below the permitted limits. This report deals with the sources and composition of different kinds of high level liquid wastes and describes briefly the main high level liquid waste solidification processes examining the sources and characteristics of the off-gas contaminants to be retained by the off-gas cleaning system. The equipment and components of typical off-gas systems used in the most advanced (large pilot or industrial scale) high level liquid waste solidification plants are described. Safety considerations for the design and safe operation of the off-gas systems are discussed. 60 refs, 31 figs, 17 tabs

  9. Nuclear waste for NT

    International Nuclear Information System (INIS)

    Nelson, Brendan

    2005-01-01

    The Northern Territory may be powerless to block the dumping of low-level nuclear waste in the Territory under legislation introduced into Parliament by Minister for Education Science and Training, Dr Brendan Nelson, in October. Despite strong opposition to the dumping of nuclear waste in the NT, the Australian Government will be able to send waste to one of the three nominated Commonwealth-owned Defence sites within the NT under the Commonwealth Radioactive Waste Management Bill 2005 and the Commonwealth Radioactive Waste Management (Related Amendment) Bill 2005. The Bills veto recently drafted NT legislation designed to scuttle the plans. Low-level nuclear waste is stored at more than 100 sites around Australia, including hospitals, factories, universities and defence facilities. Medical isotopes produced at Lucas Heights and provided for medical procedures are the source of much of this waste, including some 16 cubic metres currently held at Darwin Hospital. Dr Nelson stressed that the Government would take all die necessary steps to comply with safety and regulatory precautions, including handling waste in line with relevant environmental, nuclear safety and proliferation safeguards

  10. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  11. Report on the state of radiation contamination in disaster waste

    International Nuclear Information System (INIS)

    Onishi, Yuko; Sasaki, Satoru; Yamada, Norikazu; Kawasaki, Satoru

    2011-09-01

    Fukushima Prefecture faces extreme difficulties in disposing of waste generated from the tsunami disaster (hereinafter referred to as disaster waste) and contaminated with radioactive material released from the crippled Fukushima Dai-ichi Nuclear Power Station. Although the waste should be treated according to the level of radioactivity, there are only air dose rates and radionuclide analyses of soil due to monitoring around the Fukushima Dai-ichi Nuclear Power Station and there has been no information on the radioactivity concentration of the disaster waste. The radioactivity concentration of the disaster waste was investigated by sampling measurement and in-situ Ge measurement at 20 temporary disaster waste storages in Fukushima Prefecture excluding the evacuation zone and 'deliberate evacuation zone.' JNES carried out this investigation upon a request from the Nuclear and Industrial Safety Agency. The investigation revealed that the measured radioactivity concentrations of the disaster waste lumps were enveloped within the soil monitoring readings in Fukushima Prefecture and also within a correlated curve between the air dose rates obtained from air dose rate readings around the disaster waste and the radioactivity concentrations of it. With these correlation curves, the radioactivity concentration of the disaster waste is estimated to be less than 8,000 Bq/kg at almost all places in the affected area excluding the evacuation zone and 'deliberate evacuation zone.' Measurements by in-situ Ge showed that the radioactivity of the disaster waste which had been expected to be more than 8,000 Bq/kg was less than 8,000 Bq/kg. (author)

  12. Sulphate in Liquid Nuclear Waste: from Production to Containment

    Energy Technology Data Exchange (ETDEWEB)

    Lenoir, M.; Grandjean, A.; Ledieu, A.; Dussossoy, J.L.; Cau Dit Coumes, C.; Barre, Y.; Tronche, E. [CEA Marcoule, DEN/DTCD/SECM/LDMC, Batiment 208 BP17171, Bagnols sur Ceze, 30207 (France)

    2009-06-15

    Nuclear industry produces a wide range of low and intermediate level liquid radioactive wastes which can include different radionuclides such as {sup 90}Sr. In La Hague reprocessing plant and in the nuclear research centers of CEA (Commissariat a l'Energie Atomique), the coprecipitation of strontium with barium sulphate is the technique used to treat selectively these contaminated streams with the best efficiency. After the decontamination process, low and intermediate level activity wastes incorporating significant quantities of sulphate are obtained. The challenge is to find a matrix easy to form and with a good chemical durability which is able to confine this kind of nuclear waste. The current process used to contain sulphate-rich nuclear wastes is bituminization. However, in order to improve properties of containment matrices and simplify the process, CEA has chosen to supervise researches on other materials such as cements or glasses. Indeed, cements are widely used for the immobilization of a variety of wastes (low and intermediate level wastes) and they may be an alternative matrix to bitumen. Even if Portland cement, which is extensively used in the nuclear industry, presents some disadvantages for the containment of sulphate-rich nuclear wastes (risk of swelling and cracking due to delayed ettringite formation), other cement systems, such as calcium sulfo-aluminate binders, may be valuable candidates. Another matrix to confine sulphate-rich waste could be the glass. One of the advantages of this material is that it could also immobilize sulphate containing high level nuclear waste which is present in some countries. This waste comes from the use of ferrous sulfamate as a reducing agent for the conversion of Pu{sup 4+} to Pu{sup 3+} in the partitioning stage of the actinides during reprocessing. Sulphate solubility in borosilicate glasses has already been studied in CEA at laboratory and pilot scales. At a pilot scale, low level liquid waste has been

  13. Alpha-contaminated waste management workshop

    International Nuclear Information System (INIS)

    1982-12-01

    These proceedings are published to provide a record of the oral presentations made at the DOE Alpha-Contaminated Workshop held in Gaithersburg, Maryland, on August 10-13, 1982. The papers are transcriptions of these oral presentations and, as such, do not contain as significant detail as will be found in the reviewed papers to be published in the periodical Nuclear and Chemical Waste Management in the first issue for 1983. These transcriptions have been reviewed by the speakers and some illustrations have been provided, but these contain only the preliminary information that will be provided in the technical papers to be published in the periodical. These papers have been grouped under the following headings: source terms; disposal technology and practices for alpha-contaminated waste; risk analyses and safety assessments. These papers in addition to those dealing with legislative and regulatory aspects have been abstracted and indexed for the Energy Data Base

  14. Incineration as a radioactive waste volume reduction process for CEA nuclear centers

    International Nuclear Information System (INIS)

    Atabek, R.; Chaudon, L.

    1994-01-01

    Incineration processes represent a promising solution for waste volume reduction, and will be increasingly used in the future. The features and performance specifications of low-level waste incinerators with capacities ranging from 10 to 20 kg - h -1 at the Fontenay-aux-Roses, Grenoble and Cadarache nuclear centers in France are briefly reviewed. More extensive knowledge of low-level wastes produced in facilities operated by the Commissariat a l'Energie Atomique (CEA) has allowed us to assess the volume reduction obtained by processing combustible waste in existing incinerators. Research and development work is in progress to improve management procedures for higher-level waste and to build facilities capable of incinerating α - contaminated waste. (authors). 6 refs., 5 figs., 1 tab

  15. The scope and nature of the problem of high level nuclear waste disposal

    International Nuclear Information System (INIS)

    Jennekens, J.

    1981-09-01

    The disposal of high level nuclear waste poses a challenge to the Canadian technical and scientific communities, but a much greater challenge to government and industry leaders who must convince the public that the so-called 'problem' can be resolved by a pragmatic approach utilizing existing skills and knowledge. This paper outlines the objectives of radioactive waste management, the quantities of high level waste expected to be produced by the Canadian nuclear power program, the regulatory process which will apply and the government initiatives which have been and will be taken to ensure that the health, safety, security, and environmental interests of the public will be protected. (author)

  16. Will America's nuclear waste be laid to rest

    Energy Technology Data Exchange (ETDEWEB)

    Charles, D

    1991-12-14

    The Waste Isolation Pilot Plant (WIPP) in New Mexico, was designed to store waste from the United States (U.S.) nuclear weapons production in deep repositories under the naturally occurring salt beds. However no waste can be put into the repository until safety checks, designed as nuclear reactor safety standards, have been satisfactorily completed to the U.S. congress's satisfaction. While political controversy reigns the WIPP structure stands empty and steel drums of radioactive waste remain at the U.S. nuclear weapons factories. Proponents say costly capital investment is being wasted, opponents that people and the environment would be at risk of contamination if safety standards were not understood and adhered to. (UK).

  17. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  18. Future health physics prospects in high-level nuclear waste management

    International Nuclear Information System (INIS)

    Waite, D.A.; Mayberry, J.J.

    1986-01-01

    The objective of this presentation is to provide an overview of health physics activities anticipated to be required at a high-level nuclear waste repository and to project the numbers of health physics personnel expected to be required to carry out these activities. Health physics personnel receiving consideration in the projections include the health physics manager, shift supervisors, area supervisors, health physicists, and technologists. Phases of the repository addressed are construction, operation, retrieval, and decommissioning. Specific topics discussed in the process of developing the projections are: (a) the basic features of a geologic repository, (b) the staffing requirements of such a repository, (c) health physics involvement in repository operations, and (d) the anticipated schedule for operation of repositories in the United States. A quantitative assessment of future health physics prospects in high-level nuclear waste management is included

  19. Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.

    Science.gov (United States)

    Hoffman, Darleane C.; Choppin, Gregory R.

    1986-01-01

    Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)

  20. Risk perception on management of nuclear high-level and transuranic waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Lawrence A. [Colorado Christian Univ., Lakewood, CO (United States)

    1994-08-15

    The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

  1. Risk perception on management of nuclear high-level and transuranic waste storage

    International Nuclear Information System (INIS)

    Dees, L.A.

    1994-01-01

    The Department of Energy's program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE's management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive

  2. Estimation of doses from radioactively contaminated disaster wastes reused for pavements

    International Nuclear Information System (INIS)

    Sawaguchi, Takuma; Takeda, Seiji; Kimura, Hideo; Tanaka, Tadao

    2015-01-01

    It is desirable that the disaster wastes contaminated by radioactive cesium after the severe accident at the Fukushima Nuclear Plant are reused as much as possible in order to minimize the quantity to be disposed of. Ministry of the Environment showed the policy that the wastes containing cesium of higher concentration than the clearance level (100 Bq/kg) were reusable as materials of construction such as subbase course materials of pavements under controlled condition with measures to lower exposure doses. In this study, in order to provide technical information for making a guideline on the use of contaminated concrete materials recycled from disaster wastes as pavement, doses for workers and the public were estimated, and the reusable concentration of radioactive cesium in the wastes was evaluated. It was shown that the external exposure of the public (children) residing near the completed pavement gave the minimum radiocesium concentration in order to comply with the dose criteria. The recycled concrete materials whose average concentration of cesium lower than 2,700 Bq/kg can be used as the subbase course materials of pavements. (author)

  3. Design and manufacturing of nuclear non destructive measurement systems and coupled metrology in order to quantify the radionuclides contaminating the wastes and the processes of the nuclear industry

    International Nuclear Information System (INIS)

    Saurel, N.

    2013-01-01

    The non-destructive nuclear measurement has to provide responses for the main challenges of the nuclear industry such as nuclear facility safety, health, environmental impact, performance, reliability and cost control. The goal of the non-destructive nuclear measurement is to characterize, without any deterioration, an object contaminated by one or more radionuclides. The passive or active nuclear measurement are utilized for quantifying the radionuclides in the effluents, the liquid and solid wastes and the nuclear material hold-up. It is also deployed for the process control. In this case, it is a standard production control but, the most of the time, it controls the validity of the safety domain of the production unit. The results of these measurements are used to establish the radiological inventory or the nuclear material balance. The radiological inventory is needed for the nuclear wastes outlets while the nuclear material balance is needed to follow through with the criticality units. The most important objective is to give the quantitative and/or qualitative value and its uncertainty are confident of the radionuclides contaminating the object. This contaminated object might be of different geometrical shapes, sizes or physico-chemical compositions. In order to be efficient, the non-destructive nuclear measurement has to include the apparatus, the measurement actions, the settings and the use of the coupled methodologies. I relate, in this memoir, my main research and development works that I drove or in which I took part for achieving these goals. These works are about the metrology of nuclear radiations and are used in three main types of measurement which are the gamma spectrometry, the alpha spectrometry and the passive or active neutron counting. (author) [fr

  4. Microwave energy for post-calcination treatment of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary

  5. Management of very low level waste from decommissioning of the A-1 Jaslovske Bohunice nuclear power plant in Slovakia

    International Nuclear Information System (INIS)

    Burclova, J.; Konecny, L.; Mrskova, A.

    2000-01-01

    Efforts were made to accelerate decommissioning, particularly of the nuclear power plant A1 of the HWGCR type. Progress made and current developments in this subject area are reviewed. Radioactive waste categories are described along with release criteria. An overview is provided on contaminated scrap and the sorting of contaminated soil and concrete. (author)

  6. Disposal of waste from the cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    1992-01-01

    The report provides an overview of the methodology and technology available to load, transport and dispose of large volumes of contaminated material arising from the cleanup of areas after a nuclear accident and includes data on the planning, implementation, management and costing of such activities. To demonstrate the use of this information, three cleanup and disposal scenarios are examined, ranging from disposal in many small mounds or trenches within the contaminated area to disposal in a large facility away from the plant. As in the two companion reports, it is assumed that the population has been evacuated from the affected area. The report reviews the generic types of low level radioactive waste which are likely to arise from such a cleanup. The report does not deal with the recovery and disposal of intermediate and high level radioactive material on or near the plant site. This material will have to be recovered, packaged, transported and stored on-site or disposed of at an appropriate facility. These operations should be done by specialist teams using shielded or remotely operated equipment. Also not included are methods of in situ stabilization of contamination, for example ploughing to bury the top contaminated layer at a suitable depth. These techniques, which are likely to be widely used in part of the evacuated are, are discussed in IAEA Technical Reports Series No. 300, Vienna, 1989. 50 refs, 18 figs, 4 tabs

  7. Radiation management for infectious waste from nuclear medicine studies

    International Nuclear Information System (INIS)

    Kondo, Yuji; Takeuchi, Yasuyuki; Masumoto, Kazuya

    2003-01-01

    An industrial waste management service has refused to collect medical waste from our hospital owing to radioactive contamination found in the waste in July 2000. An investigation revealed that the ''three-way stopcock'' and handling diapers used for radioisotope examination were the radioactive contaminants. We therefore reconsidered the system of medical waste maintenance especially for radioactive materials. Since February 2001, we have resumed radiation maintenance by following the manual for the handling diapers of patients administered radiopharmaceuticals issued by five organizations associated with Japan Radiological Society (JRS), Japanese Society of Radiological Technology (JSRT), the Japanese Society of Nuclear Medicine (JSNM), the Japanese Society of Nuclear Medicine Technology (JSNMT), and Japan Association on Radiological Protection in Medicine (JARPM). A major change was to check the radioactive waste at the individual departments and at a centralized check system. This eliminated the problem of dumping radioactive material into medical waste as well as resolving the concerns of the industrial waste management service. (author)

  8. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    International Nuclear Information System (INIS)

    Preston, E.L.

    1986-01-01

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management

  9. Methodology for evaluating radiological consequences of the management of very low-level solide waste arising from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Smith, G.M.; Hemming, C.R.; Clark, J.M.; Chapuis, A.M.; Garbay, H.

    1985-01-01

    In this report a methodology is described, and illustrated by examples, for the evaluation of individual doses and collective dose commitments arising as a result of various management modes for very low-level solid wastes arising from the decommissioning of nuclear power plants. Estimates have been made of the masses of materials activated and contaminated to within three concentration limits, 0.37, 3.7 and 37 Bq g-1, at three times after reactor shutdown, 5 y, 25 y and 100 y. The disposal options considered are shallow land burial, at a municipal landfill site or at the reactor site, and disposal on the seabed in coastal waters or the deep ocean. It is assumed that there is no special treatment to reduce or eliminate the potential radiological hazard. Consideration has also been given to the radiological impact of recycling of contaminated steel. The radiological impacts of all the management options for the wastes considered were found to be small. It may therefore be acceptable to allow such very low-level wastes to be disposal of without special restrictions provided that the level and type of activity of the wastes can be verified. In addition the health detriment cost associated with all the management options is small, so it is likely that other factors such as transport and engineering costs will be more important in final decisions about the management of these wastes

  10. Waste management - nuclear style

    International Nuclear Information System (INIS)

    McCall, P.

    1977-01-01

    Possible ways of disposing of highly radioactive wastes arising from the United Kingdom nuclear industry are briefly reviewed: projecting into outer space, dumping in containers in the ocean, or storage on land. The problems in each case and, in particular, the risks of environmental contamination from marine or land disposal, are discussed. (U.K.)

  11. Social impacts of hazardous and nuclear facilities and events: Implications for Nevada and the Yucca Mountain high-level nuclear waste repository; [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Freudenburg, W.R. [Wisconsin Univ., Madison, WI (United States); Carter, L.F.; Willard, W. [Washington State Univ., Pullman, WA (United States); Lodwick, D.G. [Miami Univ., Oxford, OH (United States); Hardert, R.A. [Arizona State Univ., Tempe, AZ (United States); Levine, A.G. [State Univ. of New York, Buffalo, NY (United States). Dept. of Sociology; Kroll-Smith, S. [New Orleans Univ., LA (United States); Couch, S.R. [Pennsylvania State Univ., University Park, PA (United States); Edelstein, M.R. [Ramapo College, Mahwah, NJ (United States)

    1992-05-01

    Social impacts of a nuclear waste repository are described. Various case studies are cited such as Rocky Flats Plant, the Feed Materials Production Center, and Love Canal. The social impacts of toxic contamination, mitigating environmental stigma and loss of trust are also discussed.

  12. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The Koeberg nuclear power station, planned to come on stream in 1984, is expected to save South Africa some six million t/annum of coal, and to contribute some 10 per cent of the country's electricity requirements. The use of nuclear energy will provide for growing national energy needs, and reduce high coal transport costs for power generation at the coast. In the long term, however, it gives rise to the controversial question of nuclear waste storage. The Atomic Energy Corporation of South Africa Ltd (AEC) recently announced the purchase of a site in Namaqualand (NW Cape) for the storage of low-level radioactive waste. The Nuclear Development Corporation of South Africa (Pty) Ltd, (NUCOR) will develop and operate the site. The South African Mining and Engineering Journal interviewed Dr P.D. Toens, manager of the Geology Department and Mr P.E. Moore, project engineer, on the subject of nuclear waste, the reasons behind Nucor's choice of site and the storage method

  13. Process and associated equipment for decontaminating, cleaning all surfaces which are covered with transferrable contamination of a nuclear nature, without creating other wastes

    International Nuclear Information System (INIS)

    Tiesse, J.-C.G.; Chauvet, S.; Chabert, R.E.; Dezu, M.D.

    1989-01-01

    The invention relates to a process for removing all transferrable contamination of a nuclear nature without creating new nuclear contamination wastes. This process is characterised by the following three stages: spraying and covering the contaminated surfaces with dry ice, without causing any blast; spraying a jet of steam or hot air on to the coated surfaces from very close range; forced ventilation causing total evaporation of the dry ice, bringing about the phenomenon of sublimation. The device for applying the process comprises a dry ice emitter and a spray nozzle for water vapour at a temperature in excess of 70 0 C. (author)

  14. The utility of system-level RAM analysis and standards for the US nuclear waste management system

    International Nuclear Information System (INIS)

    Rod, S.R.; Adickes, M.D.; Paul, B.K.

    1992-03-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing a system to manage spent nuclear fuel and high-level radioactive waste in accordance with the Nuclear Waste Policy Act of 1982 and its subsequent amendments. Pacific Northwest Laboratory (PNL) is assisting OCRWM in its investigation of whether system-level reliability, availability, and maintainability (RAM) requirements are appropriate for the waste management system and, if they are, what appropriate form should be for such requirements. Results and recommendations are presented

  15. Should the U.S. proceed to consider licensing deep geological disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Curtiss, J.R.

    1993-01-01

    The United States, as well as other countries facing the question of how to handle high-level nuclear waste, has decided that the most appropriate means of disposal is in a deep geologic repository. In recent years, the Radioactive Waste Management Committee of the Nuclear Energy Agency has developed several position papers on the technical achievability of deep geologic disposal, thus demonstrating the serious consideration of deep geologic disposal in the international community. The Committee has not, as yet, formally endorsed disposal in a deep geologic repository as the preferred method of handling high-level nuclear waste. The United States, on the other hand, has studied the various methods of disposing of high-level nuclear waste, and has determined that deep geologic disposal is the method that should be developed. The purpose of this paper is to present a review of the United States' decision on selecting deep geologic disposal as the preferred method of addressing the high-level waste problem. It presents a short history of the steps taken by the U.S. in determining what method to use, discusses the NRC's waste Confidence Decision, and provides information on other issues in the U.S. program such as reconsideration of the final disposal standard and the growing inventory of spent fuel in storage

  16. Management of radioactive wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1976-01-01

    The increased emphasis in many countries on the development and utilization of nuclear power is leading to an expansion of all sectors of the nuclear fuel cycle, giving rise to important policy issues and radioactive-waste management requirements. Consequently, the IAEA and the Nuclear Energy Agency of OECD felt that it would be timely to review latest technology for the management of the radioactive wastes arising from nuclear fuel cycle facilities, to identify where important advances have been made, and to indicate those areas where further technological development is needed. Beginning in 1959, the IAEA, either by itself or jointly with OECD/NEA has held seven international symposia on the management of radioactive wastes. The last symposium, on the management of radioactive wastes from fuel reprocessing, was held jointly by the IAEA and OECD/NEA in Paris in November 1972. An objective of the 1976 symposium was to update the information presented at the previous symposia with the latest technological developments and thinking regarding the management and disposal of all categories of radioactive wastes. Consequently, although the scope of the symposium was rather broad, attention was focussed on operational experience and progress in unresolved areas of radioactive waste management. The programme dealt primarily with the solidification of liquid radioactive wastes and disposal of the products, especially the high-level fission products and actinide-containing waste from fuel reprocessing. Other topics covered policy and planning, treatment of hulls and solvent, management of plutonium-contaminated waste, and removal of gaseous radionuclides. The major topic of interest was the current state of the technology for the reduction and incorporation of the high-level radioactive liquid from fuel reprocessing into solid forms, such as calcines, glasses or ceramics, for safe interim storage and eventual disposal. The approaches to vitrification ranged from two stage

  17. Overview of the management of solid low level radioactive waste at Sellafield and Drigg

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Rob [British Nuclear Fuels, Cumbria (United Kingdom); Hagger, Richard C. [BNFL, Warrington (United Kingdom)

    2003-07-01

    Low level radioactive wastes have been disposed of in the United Kingdom in ner-surface facilities for over 40 years. This has mainly been at the Drigg disposal site on the Cumbrian coast, some six kilometres to the south of the Sellafield nuclear reprocessing site. The Drigg site also receives waste from a wide range of sources including nuclear power stations, nuclear fuel cycle facilities, isotope manufacturing sites, universities, general industry and cleanup of historically contaminated sites. Disposals until the late 1980s were solely by tipping essentially loose wastes into excavated trenches. More recently, trench disposals have been phased out in preference to emplacement of containerised, conditioned wastes in concrete vaults. This paper is principally from the perspective of a disposal facility operator. Firstly the regulatory framework to low level waste disposal is outlined. This is then followed by a review of practices and projects associated with the Sellafield and Drigg sits and also some of the supporting technical work.

  18. Nuclear waste management: storage and disposal aspects

    International Nuclear Information System (INIS)

    Patterson, B.D.; Dave, S.A.; O'Connell, W.J.

    1980-01-01

    Long-term disposal of nuclear wastes must resolve difficulties arising chiefly from the potential for contamination of the environment and the risk of misuse. Alternatives available for storage and disposal of wastes are examined in this overview paper. Guidelines and criteria which may govern in the development of methods of disposal are discussed

  19. Nuclear waste repository in basalt: a design description

    International Nuclear Information System (INIS)

    Ritchie, J.S.; Schmidt, B.

    1982-01-01

    The conceptual design of a nuclear waste repository in basalt is described. Nuclear waste packages are placed in holes drilled into the floor of tunnels at a depth of 3700 ft. About 100 miles of tunnels are required to receive 35,000 packages. Five shafts bring waste packages, ventilation air, excavated rock, personnel, material, and services to and from the subsurface. The most important surface facility is the waste handling building, located over the waste handling shaft, where waste is received and packaged for storage. Two independent ventilation systems are provided to avoid potential contamination of spaces that do not contain nuclear waste. Because of the high temperatures at depth, an elaborate air chilling system is provided. Because the waste packages deliver a considerable amount of heat energy to the rock mass, particular attention is paid to heat transfer and thermal stress studies. 3 references, 31 figures, 3 tables

  20. Management of commercial high-level nuclear waste in the United States

    International Nuclear Information System (INIS)

    Mann, S.A.

    1981-01-01

    The Nuclear Waste Policy Act of 1982 (Act), enacted by the 97th Congress in December and signed into law on Jan 7, 1983, by President Reagan, brings a whole new perspective to the nation's nuclear waste management effort. An elaborate set of near-term requirements and actions have to be accomplished within the first 180 days of this Act. As an initial step, Secretary of Energy Donald P. Hodel has established a Nuclear Waste Policy Act (NWPA) project office. The director of the NWPA project office, Robert L. Morgan, is responsible for the department's initial activities to implement the Act until the Office of Civilian Radioactive Waste Management, established by Section 304 of the Act, is activated. The Act requires major efforts in two primary areas: disposal and storage of spent fuel and high-level waste. Efforts in the former area are to be financed by fees collected from utilities and placed into a Nuclear Waste Fund for disposal services. The Act provides for federal storage of up to 1900 tons of spent fuel for those utilities that the Nuclear Regulatory Commission (NRC) determines cannot reasonably provide sufficient additional on-site storage. This federal storage is to be financed through utility-user fees that are placed into an Interim Storage Fund. The Act also provides for cooperative research, development, and demonstration activities at utility sites and federal sites. These activities are to be jointly funded by the utilities and the federal government. Lastly, there are generic research and development (RandD) activities in the spent fuel area that are funded from general appropriations. Mandated milestones have been established by the Act in the areas of gologic repository, fund management, monitored retrievable storage, and spent fuel storage

  1. Mineral-modeled ceramics for long-term storage of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Vance, E.R.

    1980-01-01

    Over the past ten years, Penn State's Materials Research Laboratory has done extensive work on mineral-modeled ceramics for high-level nuclear waste storage. These ceramics are composed of several mineral analogues that form a monolithic polycrystalline aggregate. Mineral-modeling can be made in a similar fashion to nuclear waste glasses, and their naturally occurring analogues are known to last millions, and even billions, of years in hot, wet conditions. It is believed that such ceramics could reduce dispersal of radionuclides by leaching to a minimum

  2. Improved polyphase ceramic form for high-level defense nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Morgan, P.E.D.; Clarke, D.R.; Flintoff, J.J.; Shaw, T.M.

    1983-01-01

    An improved ceramic nuclear waste form and fabrication process have been developed using simulated Savannah River Plant defense high-level waste compositions. The waste form provides flexibility with respect to processing conditions while exhibiting superior resistance to ground water leaching than other currently proposed forms. The ceramic, consolidated by hot-isostatic pressing at 1040 0 C and 10,000 psi, is composed of six major phases, nepheline, zirconolite, a murataite-type cubic phase, magnetite-type spinel, a magnetoplumbite solid solution, and perovskite. The waste form provides multiple crystal lattice sites for the waste elements, minimizes amorphous intergranular material, and can accommodate waste loadings in excess of 60 wt %. The fabrication of the ceramic can be accomplished with existing manufacturing technology and eliminates the effects of radionuclide volatilization and off-gas induced corrosion experienced with the molten processes for vitreous form production

  3. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  4. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 4 (The Waste Management System) in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  5. [Disposal of radioactive contaminated waste from Ga-68-PET - calculation of a clearance level for Ge-68].

    Science.gov (United States)

    Solle, Alexander; Wanke, Carsten; Geworski, Lilli

    2017-03-01

    Ga-68-labeled radiotracers, particularly used for the detection of neuroendocrine tumors by means of Ga-68-DOTA-TATE or -DOTA-TOC or for the diagnosis of prostate cancer by means of Ga-68-labeled antigens (Ga 68-PSMA), become increasingly important. In addition to the high sensitivity and specificity of these radiopharmaceuticals, the short-lived radionuclide Ga-68 offers almost ideal nuclear characteristics for use in PET. Ga-68 is obtained from a germanium-gallium-generator system, so that the availability of Ga-68-labeled radiotracers is independent of an on-site-cyclotron regardless of the short half-life of Ga-68 of about 68minutes. Regarding the disposal of the radioactively contaminated waste from the preparation of the radiopharmaceutical, the eluted Ga-68 has to be considered to be additionally contaminated with its parent nuclide Ge-68. Due to this production-related impurity in combination with the short half-life of Ga-68, the radioactive waste has to be considered to be contaminated with Ge-68 and Ga-68 in radioactive equilibrium (hereafter referred to as Ge-68+). As there are no clearance levels for Ge-68+ given in the German Radiation Protection Ordinance, this work presents a method to calculate the missing value basing on a recommendation of the German Radiation Protection Commission in combination with simple geometric models of practical radiation protection. Regarding the relevant exposure scenarios, a limit value for the unrestricted clearance of Ge-68+ of 0.4 Bq/g was determined. Copyright © 2016. Published by Elsevier GmbH.

  6. Disposal of radioactive contaminated waste from Ga-68-PET. Calculation of a clearance level for Ge-68+

    International Nuclear Information System (INIS)

    Solle, Alexander; Wanke, Carsten; Geworksi, Lilli

    2017-01-01

    Ga-68-labeled radiotracers, particularly used for the detection of neuroendocrine tumors by means of Ga-68-DOTA-TATE or -DOTA-TOC or for the diagnosis of prostate cancer by means of Ga-68-labeled antigens (Ga 68-PSMA), become increasingly important. In addition to the high sensitivity and specificity of these radiopharmaceuticals, the short-lived radionuclide Ga-68 offers almost ideal nuclear characteristics for use in PET. Ga-68 is obtained from a germanium-gallium-generator system, so that the availability of Ga-68-labeled radiotracers is independent of an on-site-cyclotron regardless of the short half-life of Ga-68 of about 68 minutes. Regarding the disposal of the radioactively contaminated waste from the preparation of the radiopharmaceutical, the eluted Ga-68 has to be considered to be additionally contaminated with its parent nuclide Ge-68. Due to this production-related impurity in combination with the short half-life of Ga-68, the radioactive waste has to be considered to be contaminated with Ge-68 and Ga-68 in radioactive equilibrium (hereafter referred to as Ge-68+). As there are no clearance levels for Ge-68+ given in the German Radiation Protection Ordinance, this work presents a method to calculate the missing value basing on a recommendation of the German Radiation Protection Commission in combination with simple geometric models of practical radiation protection. Regarding the relevant exposure scenarios, a limit value for the unrestricted clearance of Ge-68+ of 0.4 Bq/g was determined.

  7. Radiological protection from radioactive waste management in existing exposure situations resulting from a nuclear accident.

    Science.gov (United States)

    Sugiyama, Daisuke; Hattori, Takatoshi

    2013-01-01

    In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management.

  8. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  9. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions

  10. Mathematical modelling of heat production in deep geological repository of high-level nuclear waste

    International Nuclear Information System (INIS)

    Kovanda, O.

    2017-01-01

    Waste produced by nuclear industry requires special handling. Currently, there is a research taking place, focused at possibilities of nuclear waste storage in deep geological repositories, hosted in stable geological environment. The high-level nuclear waste produces significant amount of heat for a long time, which can affect either environment outside of or within the repository in a negative way. Therefore to reduce risks, it is desirable to know the principles of such heat production, which can be achieved using mathematical modeling. This thesis comes up with a general model of heat production-time dependency, dependable on initial composition of the waste. To be able to model real situations, output of this thesis needs to be utilized in an IT solution. (authors)

  11. An instrumentation and control philosophy for high-level nuclear waste processing facilities

    International Nuclear Information System (INIS)

    Weigle, D.H.

    1990-01-01

    The purpose of this paper is to present an instrumentation and control philosophy which may be applied to high-level nuclear waste processing facilities. This philosophy describes the recommended criteria for automatic/manual control, remote/local control, remote/local display, diagnostic instrumentation, interlocks, alarm levels, and redundancy. Due to the hazardous nature of the process constituents of a high-level nuclear waste processing facility, it is imperative that safety and control features required for accident-free operation and maintenance be incorporated. A well-instrumented and controlled process, while initially more expensive in capital and design costs, is generally safer and less expensive to operate. When the long term cost savings of a well designed process is coupled with the high savings enjoyed by accident avoidance, the benefits far outweigh the initial capital and design costs

  12. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Rosselli, R.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established two separate special bank accounts: the Nuclear Waste Fund (NWF) was established to finance all of the Federal Government activities associated with the disposal of High-Level Waste (HLW) or Spent Nuclear Fuel (SNF). The Interim Storage Fund (ISF) is the financial mechanism for the provision of Federal Interim Storage capacity, not to exceed 1900 metric tons of SNF at civilian power reactors. The management of these funds is discussed. Since the two funds are identical in features and the ISF has not yet been activated, the author's remarks are confined to the Nuclear Waste Fund. Three points discussed include legislative features, current status, and planned activities

  13. Low-level radioactive waste management in EDF nuclear power plants (FRANCE)

    International Nuclear Information System (INIS)

    Boussard, C.

    1991-01-01

    This paper shows some recent examples of Low-level radioactive waste management in EDF nuclear power plants: - Radioactive liquid wastes proceeding from steam generators leaching (NOGENT SUR SEINE-1 REACTOR) - Thermal insulation proceeding from heat exchanger and blower (CHINON-2 REACTOR) - Old iron from reactor dismantling (CHINON-3 REACTOR, MARCOULE G1 REACTOR, MARCOULE G2-G3 REACTORS) - fresh air filter and fire detector - CHINON-2 REACTOR breaker chambers

  14. Identification of contaminants of concern for the postclosure assessment of the concept for the disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Mehta, K.K.

    1994-03-01

    The concept for the disposal of Canada's nuclear fuel waste involves the isolation of irradiated fuel in corrosion-resistant containers emplaced din din a vault located deep in crystalline rock of the Canadian Shield. To estimate potential impacts on members of a critical group far into the future, a postclosure assessment evaluates the long-term safety of the concept. Although the nuclear fuel waste from CANDU (Canada Deuterium Uranium) power generating stations contains several hundreds of potentially toxic radionuclides and chemical elements (referred to as contaminants), many of these would not lead to significant impacts. This report provides an upper bound on estimated radiation dose and chemical toxicity effects on humans from all potentially toxic contaminants, and it identifies those that require detailed consideration in the postclosure assessment. This report also examines the origins and properties of the contaminants. Properties of interest include radioactive half-life, inventory, mobility in groundwaters and sorption on rock, degree of toxicity, and precursors and progeny (or parents and daughters) for members of a decay chain. The report considers how these properties affect the behaviour of different contaminants in different parts of the disposal system. The discussion leads to suggested methods of treatment of different contaminants when simulating their fate within the disposal system. In particular, recommendations are made on how the actinide decay chains can be simplified for study in the postclosure assessment. (author). 56 refs., 22 tabs., 12 figs

  15. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  16. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is the teachers guide to unit 4, (The Waste Management System), of a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  17. Reduction and resource recycling of high-level radioactive wastes through nuclear transmutation with PHITS code

    International Nuclear Information System (INIS)

    Fujita, Reiko

    2017-01-01

    In the ImPACT program of the Cabinet Office, programs are underway to reduce long-lived fission products (LLFP) contained in high-level radioactive waste through nuclear transmutation, or to recycle/utilize useful nuclear species. This paper outlines this program and describes recent achievements. This program consists of five projects: (1) separation/recovery technology, (2) acquisition of nuclear transmutation data, (3) nuclear reaction theory model and simulation, (4) novel nuclear reaction control and development of elemental technology, and (5) discussions on process concept. The project (1) develops a technology for dissolving vitrified solid, a technology for recovering LLFP from high-level waste liquid, and a technology for separating odd and even lasers. Project (2) acquires the new nuclear reaction data of Pd-107, Zr-93, Se-79, and Cs-135 using RIKEN's RIBF or JAEA's J-PARC. Project (3) improves new nuclear reaction theory and structural model using the nuclear reaction data measured in (2), improves/upgrades nuclear reaction simulation code PHITS, and proposes a promising nuclear transmutation pathway. Project (4) develops an accelerator that realizes the proposed transmutation route and its elemental technology. Project (5) performs the conceptual design of the process to realize (1) to (4), and constructs the scenario of reducing/utilizing high-level radioactive waste to realize this design. (A.O.)

  18. Nuclear waste management. Pioneering solutions from Finland

    International Nuclear Information System (INIS)

    Rasilainen, Kari

    2016-01-01

    Presentation outline: Background: Nuclear energy in Finland; Nuclear Waste Management (NWM) Experiences; Low and Intermediate Level Waste (LILW); High Level Waste - Deep Geological Repository (DGR); NWM cost estimate in Finland; Conclusions: World-leading expert services

  19. Volume reduction of low-level contaminated metal waste by melting: selection of method and conceptual plan

    International Nuclear Information System (INIS)

    Copeland, G.L.; Heestand, R.L.; Mateer, R.S.

    1978-06-01

    A review of the literature and prior experience led to selection of induction melting as the most promising method for volume reduction of low-level transuranic contaminated metal waste. The literature indicates that melting with the appropriate slags significantly lowers the total contamination level of the metals by preferentially concentrating contaminants in the smaller volume of slag. Surface contamination not removed to the slag is diluted in the ingot and is contained uniformly in the metal. This dilution and decontamination offers the potential of lower cost disposal such as shallow burial rather than placement in a national repository. A processing plan is proposed as a model for economic analysis of the collection and volume reduction of contaminated metals. Further development is required to demonstrate feasibility of the plan

  20. The Texas approach to the management of low-level radioactive waste after 1992

    International Nuclear Information System (INIS)

    Jacobi, L.R.

    1992-01-01

    By 1993, Texas licensees will be producing 52000 ft 3 of low level radioactive waste (LLRW) containing 11000 Ci of Radioactivity. The three operating pressurized water reactors will produce 63% of the waste volume and greater than 90% of the radioactivity. While the majority of the waste is solid LLRW, some of it, such as liquid scintillation vials and bulk liquids from hospitals, universities, and research facilities, is mixed waste. Most of this waste can be shipped out of state and incinerated, but 60 ft 3 of lead contaminated waste from nuclear power plants and other industrial plants requires land disposal

  1. Prolixe-prototype reprocessing unit for irradiating wastes contamined with alpha emitters

    International Nuclear Information System (INIS)

    Madic, C.; Sontag, R.

    1987-01-01

    A large number of hot cells are employed for research on nuclear fuel reprocessing and the production of isotope of transuranium elements. These activities generate solid wastes highly contaminated with alpha, beta, gamma emitters. The Prolixe hot cell was built in order to: 1/ reprocess the solid wastes contaminated with alpha, beta, gamma emitters produced in the Radiochemistry building: 2/ produce package wastes storable in shallow-ground disposal sites: 3/ develop a process sufficiently flexible to make it applicable to waste produced in other installations. The process is based on waste leaching after grinding. Depending on the type of wastes the leaching reactant will have a different composition 1/ nitric acid solution for cellulose waste: 2/ nitric solutions containing Ag(II) for other material. The complete process should achieve: 1/ a high waste volume reduction factor: 2/ the production of immobilized waste packages storage in shallow-ground disposal sites: 3/ the recycling of transuranium elements: 4/ the generation of a minimal volume of effluents. This process can be considered as an alternative process to incineration for the reprocessing of solid wastes highly contaminated with alpha, beta, gamma emitters

  2. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  3. OCRWM International Cooperation in Nuclear Waste Management

    International Nuclear Information System (INIS)

    Jackson, R.; Levich, R.; Strahl, J.

    2002-01-01

    With the implementation of nuclear power as a major energy source, the United States is increasingly faced with the challenges of safely managing its inventory of spent nuclear materials. In 2002, with 438 nuclear power facilities generating electrical energy in 31 nations around the world, the management of radioactive material including spent nuclear fuel and high-level radioactive waste, is an international concern. Most of the world's nuclear nations maintain radioactive waste management programs and have generally accepted deep geologic repositories as the long-term solution for disposal of spent nuclear fuel and high-level radioactive waste. Similarly, the United States is evaluating the feasibility of deep geologic disposal at Yucca Mountain, Nevada. This project is directed by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM), which has responsibility for managing the disposition of spent nuclear fuel produced by commercial nuclear power facilities along with U.S. government-owned spent nuclear fuel and high-level radioactive waste. Much of the world class science conducted through the OCRWM program was enhanced through collaboration with other nations and international organizations focused on resolving issues associated with the disposition of spent nuclear fuel and high-level radioactive waste

  4. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Murphy, W.M.; Kovach, L.A.

    1995-01-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research related to geologic disposal of HLW

  5. Solid waste generation in reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    North, E.D.

    1975-01-01

    Estimates are made of the solid wastes generated annually from a 750-ton/year plant (such as the NFS West Valley plant): high-level waste, hulls, intermediate level waste, failed equipment, HEPA filters, spent solvent, alpha contaminated combustible waste, and low specific activity waste. The annual volume of each category is plotted versus the activity level

  6. The role of equilibrium leach testing in understanding the behaviour of nuclear wastes under disposal conditions

    International Nuclear Information System (INIS)

    Biddle, P.; Rees, J.H.

    1988-01-01

    Results from the equilibrium leach testing of a range of intermediate level nuclear wastes have been modelled using sorption and solubility data obtained in experiments with individual radionuclides. The wastes involved were AGR hulls, Magnox cladding wastes, combustible plutonium-contaminated materials and ferric/aluminium hydroxide flocs. The test has an important role in validating near-field models, and helps to build confidence in disposal assessments. (author)

  7. On-site storage of high level nuclear waste: Attitudes and perceptions of local residents

    International Nuclear Information System (INIS)

    Bassett, G.W. Jr.; Jenkins-Smith, H.C.; Silva, C.

    1996-01-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and - more generally - the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three countries where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste. 24 refs., 7 figs., 5 tabs

  8. On-site storage of high level nuclear waste: attitudes and perceptions of local residents.

    Science.gov (United States)

    Bassett, G W; Jenkins-Smith, H C; Silva, C

    1996-06-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and-more generally-the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three counties where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste.

  9. Fair rules for siting a high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Easterling, D.

    1992-01-01

    Geologic repositories are designed to resolve the ever-growing problem of high-level nuclear waste, but these facilities invite intense local opposition due to the perceived severity of the risks and the possibility of stigma effects. This analysis examines whether the perceived fairness of the siting process affects local residents' support for hosting a repository. In particular, a survey of 1,001 Nevada residents is used to test the hypothesis that an individual's willingness to accept a local repository will increase if he or she is convinced that this is the safest disposal option available. A logistic analysis indicates that beliefs regarding relative suitability have an independent effect on the acceptability of a local repository (i.e., Yucca Mountain). The article then considers the question of how to implement an optimizing strategy for siting facilities, comparing an idealized strategy against the original Nuclear Waste Policy Act (NWPA) of 1982 and the Amendments Act of 1987. Although choosing the safest site seems as if it could enhance public acceptance of the repository program, there is currently little prospect of identifying the best option to the high-level waste problem and, as a results, little chance of gaining the public support that is necessary to promote a successful siting outcome. 81 refs., 1 fig., 5 tabs

  10. Latest movements associated with radioactive contamination and disaster waste management

    International Nuclear Information System (INIS)

    Omura, Tomomi

    2012-01-01

    As for the radioactive contamination countermeasures taken for the accident of the Fukushima Daiichi Nuclear Station of Tokyo Electric Power Company, this paper introduces in the digest version the following movements from early March to early April 2012. (1) Organizational structure. Inauguration of Nuclear Regulatory Agency, and the organizational structure of Fukushima Environment Regeneration Office of the Ministry of the Environment. (2) The Act on Special Measures concerning the Handling of Radioactive Pollution. Publication by the Ministry of the Environment on decontamination plan for three municipalities belonging to Special Decontamination Area, decontamination plan for Intensive Contamination Survey Area, new construction of disposal sites for designated waste with the level exceeding 8,000 Bq / kg, and disaster waste direct treatment project and substitute treatment project in Fukushima Prefecture. (3) Radiation exposure countermeasures. Lawmaker-initiated registration plan by Democratic Party, Liberal Democratic Party, and New Komeito. (4) Technological evaluation. Publication of the results of Decontamination Technology Demonstration Test Projects by the Cabinet Office, the Ministry of the Environment, and Fukushima Prefecture. (5) Monitoring. Full-scale implementation of radioactivity monitoring plan in Tokyo Bay in Fiscal 2012. (6) Disaster waste countermeasures. Request of the government to the local governments on the wide-area treatment of wreckage, active request to the Cement Association in cooperation with the treatment of wreckage, and positive replies from of 22 prefectures / cities regarding the acceptance of wide-area wreckage treatment. (O.A.)

  11. Nuclear waste: the political realities

    International Nuclear Information System (INIS)

    Arnott, D.

    1983-01-01

    The land dumping of nuclear waste has again come to the attention of anti-nuclear groups, environmentalists and the media, following the announcement of the proposed sites for intermediate-level nuclear waste at Billingham and Bedford. Opposition has already surfaced on a large scale, with public meetings in both areas and a revitalisation of the waste dumping network. This article explains some of the political realities in the nuclear debate, and suggests how we can tackle the issue of waste dumping, remembering that, even if the industry closes tomorrow, there are vast quantities of waste which must be safely and democratically dealt with. (author)

  12. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-01-01

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used

  13. Treatment of solid radioactive waste: The incineration of low level radioactive waste

    International Nuclear Information System (INIS)

    Dirks, F.; Hempelmann, W.

    1982-01-01

    Nuclear facilities produce large quantities of burnable solid radioactive waste which incineration can reduce in volume and change into a form capable of ultimate storage. Experiments over many years were carried out at the Karlsruhe Nuclear Research Center to determine the boundary conditions for the design and construction of incineration plants for radioactive waste. On the basis of those experiments a test facility was started up in 1971. This operating facility consists of a shaft furnace lined with ceramics with a downstream series of ceramic flue gas filters. In 1976 the plant was exchanged by the installation of a pilot facility for burning organic solvents and of a flue gas scrubber. The plant has so far been in operation for more than 28000 hours and has processed in excess of 1500 to of solid and some 300 m 3 of liquid low level radioactive wastes. Various repairs and interventions were carried out without greatly impairing availability, which was 81 % on the average. The plant design is being used by various licensees in Japan and Europe; three plants are either in operation or completed, three more are under construction or in the planning stage. On the basis of the available process an incineration plant for alpha contaminated waste will be built at the Karlsruhe Nuclear Research Center in the next few years. (orig.)

  14. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  15. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on Functional Design Criteria for a Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    Hambley, D.F.; Russell, J.E.; Busch, J.S.; Harrison, W.; Edgar, D.E.; Tisue, M.W.

    1984-08-01

    This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) draft report entitled Functional Design Criteria for High-Level Nuclear Waste Repository in Salt, dated January 23, 1984. Recommendations are given for improving the ONWI draft report

  16. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    International Nuclear Information System (INIS)

    Dippre, M. A.

    2003-01-01

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  17. Waste processing system for product contaminated with radioactivity

    International Nuclear Information System (INIS)

    Sotoyama, Koichi; Takaya, Jun-ichi; Takahashi, Suehiro.

    1987-01-01

    Purpose: To enable to processing contaminated products while separating them into metals at high contamination level and non-metals at low contamination level. Constitution: Pulverized radioactive wastes conveyed on a conveyor belt are uniformly irradiated by a ring-illumination device and then they are picked-up by a television camera or the like. The picked-up signals are sent to an image processing device, applied with appropriate binarization and metal objects are separated by utilizing the light absorbing property of non-metal and light reflection property of metals. The graviational center for the metal object is calculated from the binarized image, the positional information is provided to a robot controller and the metal object is transferred to another position by a robot. Since only the metal object at high radioactive contamination level can be taken out separately, it is no more necessary to process the entire wastes as the high level decontamination products, to thereby provide an economical advantage. (Sekiya, K.)

  18. Nuclear safety requirements for upgrading the National Repository for Radioactive Wastes-Baita Bihor

    International Nuclear Information System (INIS)

    Vladescu, Gabriela; Necula, Daniela

    2000-01-01

    The upgrading project of National Repository for Radioactive Wastes-Baita Bihor is based on the integrated concept of nuclear safety. Its ingredients are the following: A. The principles of nuclear safety regarding the management of radioactive wastes and radioprotection; B. Safety objectives for final disposal of low- and intermediate-level radioactive wastes; C. Safety criteria for final disposal of low- and intermediate-level radioactive wastes; D. Assessment of safety criteria fulfillment for final disposal of low- and intermediate-level radioactive wastes. Concerning the nuclear safety in radioactive waste management the following issues are considered: population health protection, preventing transfrontier contamination, future generation radiation protection, national legislation, control of radioactive waste production, interplay between radioactive waste production and management, radioactive waste repository safety. The safety criteria of final disposal of low- and intermediate-level radioactive wastes are discussed by taking into account the geological and hydrogeological configuration, the physico-chemical and geochemical characteristics, the tectonics and seismicity conditions, extreme climatic potential events at the mine location. Concerning the requirements upon the repository, the following aspects are analyzed: the impact on environment, the safety system reliability, the criticality control, the filling composition to prevent radioactive leakage, the repository final sealing, the surveillance. Concerning the radioactive waste, specific criteria taken into account are the radionuclide content, the chemical composition and stability, waste material endurance to heat and radiation. The waste packaging criteria discussed are the mechanical endurance, materials toughness and types as related to deterioration caused by handling, transportation, storing or accidents. Fulfillment of safety criteria is assessed by scenarios analyses and analyses of

  19. What are Spent Nuclear Fuel and High-Level Radioactive Waste?

    International Nuclear Information System (INIS)

    2002-01-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository

  20. Who regulates the disposal of low-level radioactive waste under the Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Mostaghel, D.M.

    1988-01-01

    The present existence of immense quantities of low-level nuclear waste, a federal law providing for state or regional control of such waste disposal, and a number of state disposal laws challenged on a variety of constitutional grounds underscore what currently may be the most serious problem in nuclear waste disposal: who is to regulate the disposal of low-level nuclear wastes. This problem's origin may be traced to crucial omissions in the Atomic Energy Act of 1946 and its 1954 amendments (AEA) that concern radioactive waste disposal. Although the AEA states that nuclear materials and facilities are affected with the public interest and should be regulated to provide for the public health and safety, the statute fails to prescribe specific guidelines for any nuclear waste disposal. The Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) grants states some control over radioactive waste disposal, an area from which they were previously excluded by the doctrine of federal preemption. This Comment discusses the question of who regulates low-level radioactive waste disposal facilities by examining the following: the constitutional doctrines safeguarding federal government authority; area of state authority; grants of specific authority delegations under the LLRWPA and its amendment; and finally, potential problems that may arise depending on whether ultimate regulatory authority is deemed to rest with single states, regional compacts, or the federal government

  1. Case histories of environmental assessment documents for nuclear waste

    International Nuclear Information System (INIS)

    Vocke, R.W.

    1985-01-01

    Nuclear power programs and policies in the United States have been subject to environmental assessment under the National Environmental Policy Act (NEPA) since 1971. NEPA documentation prepared for programmatic policy decision-making fuel cycle and concurrent federal policy are examined as they relate to radioactive waste management in this paper. Key programmatic environmental impact statements that address radioactive waste management include: the Atomic Energy Commission document on management of commercial high level and transuranium-contaminated radioactive waste, which focussed on development of engineered retrievable surface storage facilities (RSSF); the Nuclear Regulatory Commission (NRC) document on use of recycled plutonium in mixed oxide fuel in light water cooled reactors, which focussed on plutonium recycle and RSSF; the NRC statement on handling of spent light water power reactor fuel, which focussed on spent fuel storage; and the Department of Energy (DOE) statement on management of commercially generated radioactive wastes, which focussed on development of deep geologic repositories. DOE is currently pursuing the deep geologic repository option, with monitored retrievable storage as a secondary option

  2. Development of performance assessment methodology for nuclear waste isolation in geologic media

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Cranwell, R.M.; Davis, P.A.

    1986-01-01

    The analysis of the processes involved in the burial of nuclear wastes can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are ground-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the US Nuclear Regulatory Commission

  3. Nuclear waste management policy in France

    International Nuclear Information System (INIS)

    Lefevre, J.F.

    1983-01-01

    The object of the nuclear waste management policy in France has always been to protect the worker and the public from unacceptable risks. The means and the structures developed to reach this objective, however, have evolved with time. One fact has come out ever more clearly over the years: Nuclear waste problems cannot be considered in a piecemeal fashion. The French nuclear waste management structure and policy aim at just this global approach. Responsibilities have been distributed between the main partners: the waste producers and conditioners, the research teams, the safety authorities, and the long-term waste manager, National Radioactive Waste Management Agency. The main technical options adopted for waste forms are embedding in hydraulic binders, bitumen, or thermosetting resins for low-level waste (LLW) and medium-level waste (MLW), and vitrification for high-level, liquid wastes. One shallow land disposal site for LLW and MLW has been in operation since 1969, the Centre of La Manche. Alpha-bearing and high-level waste will be disposed of by deep geological storage, possibly in granite formations. Further RandD aims mainly at improving present-day practices, developing more durable, long-term, alpha-bearing waste for all solid waste forms and going into all aspects of deep geological disposal characterization

  4. Management of low level waste generated from ISER

    International Nuclear Information System (INIS)

    Mizushina, Tomoyuki

    1987-01-01

    Low level wastes are generated during nuclear power plant operation. In the case of ISER, low level wastes from the reactor are basically the same as of existing light water reactors. Various low level wastes, including solid, liquid and gaseous, are listed and discussed. In normal operation, high-activity wastes are not subjected to any treatment. For contaminated equipment or reactor parts, it may be desirable to transfer most of the activity to liquid phase through an appropriate decontamination procedure. Highly active solid wastes are usually fixed in a solid form through incorporation into either concrete or asphalt as containment material. Decantation and filtration treatments are usually sufficient before dilution and release of liquid wastes into the environment. Except for ordinary gas filtration, there in normally no other treatment. Under certain circumstances, however, it may be important to apply the decay storage before release to the atmosphere. In accidental circumstances, specific filtration is recommended or even sometimes needed. There are some alternatives for storage and-or disposal of low level wastes. In many cases, shallow land burial is chosen as a realistic method for storage and-or disposal of solid waste. In chosing a disposal method, the radiation dose rate from solid wastes or the specific activity should be taken into account. Boric acid is a retarder for cement setting. This effect of boric acid is inhibited by adding a complexing agent before mixing the waste with cement. (Nogami, K.)

  5. Long-lived legacy: Managing high-level and transuranic waste at the DOE Nuclear Weapons Complex. Background paper

    International Nuclear Information System (INIS)

    1991-05-01

    The document focuses on high-level and transuranic waste at the DOE nuclear weapons complex. Reviews some of the critical areas and aspects of the DOE waste problem in order to provide data and further analysis of important issues. Partial contents, High-Level Waste Management at the DOE Weapons Complex, are as follows: High-Level Waste Management: Present and Planned; Amount and Distribution; Current and Potential Problems; Vitrification; Calcination; Alternative Waste Forms for the Idaho National Engineering Laboratory; Technologies for Pretreatment of High-Level Waste; Waste Minimization; Regulatory Framework; Definition of High-Level Waste; Repository Delays and Contingency Planning; Urgency of High-Level Tank Waste Treatment; Technologies for High-Level Waste Treatment; Rethinking the Waste Form and Package; Waste Form for the Idaho National Engineering Laboratory; Releases to the Atmosphere; Future of the PUREX Plant at Hanford; Waste Minimization; Tritium Production; International Cooperation; Scenarios for Future HLW Production. Partial contents of Chapter 2, Managing Transuranic Waste at the DOE Nuclear Weapons Complex, are as follows: Transuranic Waste at Department of Energy Sites; Amount and Distribution; Waste Management: Present and Planned; Current and Potential Problems; Three Technologies for Treating Retrievably Stored Transuranic Waste; In Situ Vitrification; The Applied Research, Development, Demonstration, Testing, and Evaluation Plan (RDDT ampersand E); Actinide Conversion (Transmutation); Waste Minimization; The Regulatory Framework; Definition of, and Standards for, Disposal of Transuranic Waste; Repository Delays; Alternative Storage and Disposal Strategies; Remediation of Buried Waste; The Waste Isolation Pilot Plant; Waste Minimization; Scenarios for Future Transuranic Waste Production; Conditions of No-Migration Determination

  6. Vitrification of transuranic and beta-gamma contaminated solid wastes

    International Nuclear Information System (INIS)

    Dukes, M.D.

    1980-06-01

    Vitrification of solid transuranic contaminated (TRU) wastes alone and with high-level liquid wastes (HLLW) was studied. Homogeneous glasses containing 20 to 30 wt % ash were made by using glass frits previously developed at the Savannah River Plant and Pacific Northwest Laboratories. If the ash is vitrified along with the HLLW, 1.0 wt % as can be added to the waste forms without affecting their quality. This loading of ash is well above the loading required by the relative amounts of HLLW and TRU ash that will be processed at the Savannah River Plant. Vitrification of TRU-contaminated electropolishing sludges and high efficiency particular air filter materials along with HLLW would require an increase in the quantity of glass to be produced. However, if these TRU-contaminated solids were vitrified with the HLLW, the addition of low-level beta-gamma contaminated ash would require no further increase in glass production

  7. Identification of contaminants of concern for the postclosure assessment of the concept for the disposal of Canada`s nuclear fuel waste

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, B W; Mehta, K K

    1994-03-01

    The concept for the disposal of Canada`s nuclear fuel waste involves the isolation of irradiated fuel in corrosion-resistant containers emplaced din din a vault located deep in crystalline rock of the Canadian Shield. To estimate potential impacts on members of a critical group far into the future, a postclosure assessment evaluates the long-term safety of the concept. Although the nuclear fuel waste from CANDU (Canada Deuterium Uranium) power generating stations contains several hundreds of potentially toxic radionuclides and chemical elements (referred to as contaminants), many of these would not lead to significant impacts. This report provides an upper bound on estimated radiation dose and chemical toxicity effects on humans from all potentially toxic contaminants, and it identifies those that require detailed consideration in the postclosure assessment. This report also examines the origins and properties of the contaminants. Properties of interest include radioactive half-life, inventory, mobility in groundwaters and sorption on rock, degree of toxicity, and precursors and progeny (or parents and daughters) for members of a decay chain. The report considers how these properties affect the behaviour of different contaminants in different parts of the disposal system. The discussion leads to suggested methods of treatment of different contaminants when simulating their fate within the disposal system. In particular, recommendations are made on how the actinide decay chains can be simplified for study in the postclosure assessment. (author). 56 refs., 22 tabs., 12 figs.

  8. Status report on the Nuclear Regulatory Commission regulations for land disposal of low-level radioactive wastes and geologic repository disposal of high-level wastes

    International Nuclear Information System (INIS)

    Browning, R.E.; Bell, M.J.; Dragonette, K.S.; Johnson, T.C.; Roles, G.W.; Lohaus, P.H.; Regnier, E.P.

    1984-01-01

    On 27 December 1982, the United States Nuclear Regulatory Commission (NRC) amended its regulations to provide specific requirements for licensing the land disposal of low-level radioactive wastes. The regulations establish performance objectives for land disposal of waste; technical requirements for the siting, design, operations, and closure activities for a near-surface disposal facility; technical requirements concerning waste form and classification that waste generators must meet for the land disposal of waste; institutional requirements; financial assurance requirements; and administrative and procedural requirements for licensing a disposal facility. Waste generators must comply with the waste form and classification provisions of the new rule, on 27 December 1983, one year later. During this implementation period, licensees must develop programmes to ensure compliance with the new waste form and classification provisions. The NRC is also promulgating regulations specifying the technical criteria for disposal of high-level radioactive wastes in geological repositories. The proposed rule was published for public comment in July 1981. Public comments have been received and considered by the Commission staff. The Commission will soon approve and publish a revised final rule. While the final rule being considered by the Commission is fundamentally the same as the proposed rule, provisions have been added to permit flexibility in the application of numerical criteria, some detailed design requirements have been deleted, and other changes have been made in response to comments. The rule is consistent with the recently enacted Nuclear Waste Policy Act of 1982. (author)

  9. The modeling of contaminant flow during proposed treatment of U.S. Department of Energy low-level radioactive mixed wastes

    International Nuclear Information System (INIS)

    Dolak, D.A.; Wilkins, B.D.; Kotek, T.J.; Wang, Y.Y.; Meshkov, N.K.

    1995-01-01

    Estimations of waste materials throughput and the potential radiological and chemical releases resulting from the proposed treatment of US Department of Energy (DOE) low-level mixed wastes (LLMWs) were used to support analyses of risks and costs associated with various waste management alternatives outlined in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS). The modeling of material flow and contaminant releases through a consolidated waste management flowchart was performed by the WASTE MGMT computational model developed by Argonne National Laboratory. This paper (1) briefly describes the process used to model estimated material and contaminant flow through the proposed treatment scenarios for the EM PEIS, (2) discusses the key site- and/or waste-stream-dependent factors involved in the determination of radiological and chemical emissions, and (3) explains the assumptions used to integrate the available LLMW database with the computational model

  10. Radioactive contamination from dumped nuclear waste in the Kara Sea--results from the joint Russian-Norwegian expeditions in 1992-1994.

    Science.gov (United States)

    Salbu, B; Nikitin, A I; Strand, P; Christensen, G C; Chumichev, V B; Lind, B; Fjelldal, H; Bergan, T D; Rudjord, A L; Sickel, M; Valetova, N K; Føyn, L

    1997-08-25

    Russian-Norwegian expeditions to the Kara Sea and to dumping sites in the fjords of Novaya Zemlya have taken place annually since 1992. In the fjords, dumped objects were localised with sonar and ROV equipped with underwater camera. Enhanced levels of 137Cs, 60Co, 90Sr and 239,240Pu in sediments close to dumped containers in the Abrosimov and Stepovogo fjords demonstrated that leaching from dumped material has taken place. The contamination was inhomogeneously distributed and radioactive particles were identified in the upper 10 cm of the sediments. 137Cs was strongly associated with sediments, while 90Sr was more mobile. The contamination was less pronounced in the areas where objects presumed to be reactor compartments were located. The enhanced level of radionuclides observed in sediments close to the submarine in Stepovogo fjord in 1993 could, however, not be confirmed in 1994. Otherwise, traces of 60Co in sediments were observed in the close vicinity of all localised objects. Thus, the general level of radionuclides in waters, sediments and biota in the fjords is, somewhat higher or similar to that of the open Kara Sea, i.e. significantly lower than in other adjacent marine systems (e.g. Irish Sea, Baltic Sea, North Sea). The main sources contributing to radioactive contamination were global fallout from atmospheric nuclear weapon tests, river transport from Ob and Yenisey, marine transport of discharges from Sellafield, UK and fallout from Chernobyl. Thus, the radiological impact to man and the arctic environment of the observed leakages from dumped radioactive waste today, is considered to be low. Assuming all radionuclides are released from the waste, preliminary assessments indicate a collective dose to the world population of less than 50 man Sv.

  11. Public Acceptance of Low-Level Waste Disposal Critical to the Nuclear Renaissance

    International Nuclear Information System (INIS)

    Sonny Goldston, W.T.

    2009-01-01

    The disposal of various Low-Level Waste (LLW) forms projected to result from the operation of a pilot or large scale Advanced Fuel Cycle Initiative Programs' (formally known as Global Nuclear Energy Partnership (GNEP)) reprocessing and vitrification plants requires the DOE LLW program and regulatory structure to be utilized in its present form due to the limited availability of Nuclear Regulatory Commission licensed commercial LLW disposal facilities to handle wastes with radionuclide concentrations that are greater than Nuclear Regulatory Commission (NRC) Class A limits. This paper will describe the LLW forms and the regulatory structures and facilities available to dispose of this waste. Then the paper discusses the necessity of an excellent public involvement program to ensure the success of an effective technical solution. All of the decisions associated with the management of these wastes are of interest to the public and successful program implementation would be impossible without including the public up-front in the program formulation. Serious problems can result if program decisions are made without public involvement, and if the public is informed after key decisions are made. This paper will describe the regulatory and public involvement program and their effects on the decisions concerning the disposal of Low-Level Radioactive Waste (LLW) at the Savannah River Site (SRS). An extensive public communications effort resulted in endorsement of changes in disposal practices by the SRS Citizens Advisory Board that was critical to the success of the program. A recommendation will be made to install a public involvement program that is similar to the SRS Citizens Advisory Board in order to ensure the success of the AFCI programs in view of the limited availability to handle the wastes from the program and the public acceptance of change that will be required. (authors)

  12. The waste bin: nuclear waste dumping and storage in the Pacific

    International Nuclear Information System (INIS)

    Branch, J.B.

    1984-01-01

    Relatively small amounts of nuclear waste have been stored on Pacific islands and dumped into the Pacific Ocean since 1945. Governments of Pacific countries possessing nuclear power plants are presently seeking permanent waste storage and disposal solutions at Pacific sites including subseabed emplacement of high-level nuclear wastes and ocean dumping of low-level wastes. This article examines these plans and the response of Pacific islanders in their development of policies and international strategies to ban the proposed dumping on a regional basis. Island governments are preparing for a Regional Convention during which a treaty concerned with radioactive waste storage and disposal will be signed. (Author)

  13. Waste management practices in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Dickson, H.W.

    1979-01-01

    Several thousand sites exist in the United States where nuclear activities have been conducted over the past 30 to 40 years. Questions regarding potential public health hazards due to residual radioactivity and radiation fields at abandoned and inactive sites have prompted careful ongoing review of these sites by federal agencies including the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). In some instances, these reviews are serving to point out poor low-level waste management practices of the past. Many of the sites in question lack adequate documentation on the radiological conditions at the time of release for unrestricted use or were released without appropriate restrictions. Recent investigations have identified residual contamination and radiation levels on some sites which exceed present-day standards and guidelines. The NRC, DOE, and Environmental Protection Agency are all involved in developing decontamination and decommissioning (D and D) procedures and guidelines which will assure that nuclear facilities are decommissioned in a manner that will be acceptable to the nuclear industry, various regulatory agencies, other stakeholders, and the general public

  14. Radioactive waste management for a radiologically contaminated hospitalized patient

    International Nuclear Information System (INIS)

    Pina Jomir, G.; Michel, X.; Lecompte, Y.; Chianea, N.; Cazoulat, A.

    2015-01-01

    Radioactive waste management in the post-accidental phase following caring for a radiologically contaminated patient in a hospital decontamination facility must be anticipated at a local level to be truly efficient, as the volume of waste could be substantial. This management must comply with the principles set out for radioactive as well as medical waste. The first step involves identification of radiologically contaminated waste based on radioactivity measurement for volume reduction. Then, the management depends on the longest radioactive half-life of contaminative radionuclides. For a half-life inferior to 100 days, wastes are stored for their radioactivity to decay for at least 10 periods before disposal like conventional medical waste. Long-lived radioactive waste management implies treatment of liquid waste and special handling for sorting and packaging before final elimination at the French National Agency for Radioactive Waste Management (ANDRA). Following this, highly specialized waste management skills, financial responsibility issues and detention of non-medical radioactive sources are questions raised by hospital radioactive waste management in the post-accidental phase. (authors)

  15. Vitrification technology for treating low-level waste from nuclear facilities

    International Nuclear Information System (INIS)

    Oniki, Toshiro; Nabemoto, Toyonobu; Fukui, Toshiki

    2016-01-01

    The development of technologies for treating nuclear waste generated by nuclear power plants and reprocessing plants during their operation or decommissioning is underway both in Japan and abroad. Of the many types of treatment technologies that have been developed, vitrification technology is attracting attention as being the most promising technology for converting such waste into a stable state. As a brief review of technical developments aimed at reducing nuclear waste and finding a solution to the final disposal issue, this paper describes approaches to completing the development of vitrification technology in Japan, including IHI's activities. (author)

  16. Levels of surface contamination with radioactive materials at workplaces of nuclear research centre at Rez

    International Nuclear Information System (INIS)

    Hoelgye, Z.; Nemcova, I.; Kasikova, M.; Popper, J.; Chysky, J.

    1983-01-01

    A hygiene supervision unit at workplaces of the nuclear Research Institute in Rez monitored on a long-term basis surface contamination with radioactive substances. Surface contamination was found at workplaces with open sources. Of the 4343 monitored places action levels were only exceeded in 13 cases. The obtained data were used for typifying workplaces with the highest level of surface contamination, to determine in certain instances the mechanism of the escape of radioactive substances from insulating facilities and to determine the rate of the spread of the radioactive substance into adjacent non-active workplaces. (author)

  17. Bounding Values for Low-Level-Waste Transport Exemptions and Disposal

    International Nuclear Information System (INIS)

    Elam, K.R.; Hopper, C.M.; Lichtenwalter, J.J.; Parks, C.V.

    1999-01-01

    Characterizations and bounding computational results determined by the Oak Ridge National Laboratory have been offered to the U.S. Nuclear Regulatory Commission as supporting technical bases for regulatory considerations in the packaging, transport, retrievable emplacement and disposal of radioactive low-level waste contaminated with fissile materials. The fissile materials included 100 wt % U, 10 wt % U in uranium, 100 wt % U, 100 wt % Pu, or plutonium as less than 235 235 233 239 76 wt % Pu, more than 12 wt % Pu, and less than 12 wt % Pu. The considered waste matrixes 239 240 241 included silicon dioxide, carbon, light water and polyethylene, heavy water, or beryllium with summary examinations of other potential matrixes. The limiting concentrations and geometries for these bounding conjectured low-level-waste matrixes are presented in this paper

  18. Studies on disposal of low-level radioactive wastes in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.; Yalcintas, M.G.

    1989-08-01

    The Turkish Government is in the process of planning two nuclear reactors in Turkey. Studies have begun for improved control of low level wastes (LLW) in Turkey before establishment of these reactors. In this study, the PRESTO-II (Prediction of Radiation Exposures form Shallow Trench Operations) computer code is used to assess the risk associated with the shallow land disposal of low level waste (LLW) in various sites in Turkey. PRESTO-II is a computer code developed under the United States Environmental Protection Agency, Department of Energy and Nuclear Regulatory Commission funding to evaluate possible health effects from radioactive releases from shallow, radioactive waste disposal trenches and from areas contaminated with operational spillage. A preliminary simulation using the PRESTO-II computer code has been run for the site in Koteyli, Balikesir, Turkey. This example simulation was performed using the same radionuclide data set believed representative of the LLW disposal facility in Barnwell, South Carolina. Site environmental variables were selected to typify credible worst case exposure scenarios. Radionuclide inventories are primarily based on estimated waste composition rather than measured values. 9 refs., 4 figs., 1 tab

  19. Decontamination of stainless steel canisters that contain high-level waste

    International Nuclear Information System (INIS)

    Bray, L.A.

    1987-01-01

    At the West Valley Nuclear Services Company (WVNSC) in West Valley, New York, high-level radioactive waste (HLW) will be vitrified into a borosilicate glass form and poured into large, stainless steel canisters. During the filling process, volatile fission products, principally 137 Cs, condense on the exterior of the canisters. The smearable contamination that remains on the canisters after they are filled and partially cooled must be removed from the canisters' exterior surfaces prior to their storage and ultimate shipment to a US Department of Energy (DOE) repository for disposal. A simple and effective method was developed for decontamination of HLW canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. The process employs a reduction-oxidation system [Ce(III)/Ce(IV)] in nitric acid solution to chemically mill the surface of stainless steel, similar to the electropolishing process, but without the need for an applied electrical current. Contaminated canisters are simply immersed in the solution at controlled temperature and Ce(IV) concentration levels

  20. Contamination control aspects of attaching waste drums to the WIPP Waste Characterization Chamber

    International Nuclear Information System (INIS)

    Rubick, L.M.; Burke, L.L.

    1998-01-01

    Argonne National Laboratory West (ANL-W) is verifying the characterization and repackaging of contact-handled transuranic (CH-TRU) mixed waste in support of the Waste Isolation Pilot Program (WIPP) project located in Carlsbad, New Mexico. The WIPP Waste Characterization Chamber (WCC) was designed to allow opening of transuranic waste drums for this process. The WCC became operational in March of 1994 and has characterized approximately 240 drums of transuranic waste. The waste drums are internally contaminated with high levels of transuranic radionuclides. Attaching and detaching drums to the glove box posed serious contamination control problems. Prior to characterizing waste, several drum attachment techniques and materials were evaluated. An inexpensive HEPA filter molded into the bagging material helps with venting during detachment. The current techniques and procedures used to attach and detach transuranic waste drums to the WCC are described

  1. The exemption of regulatory control for the management of low level radioactive wastes

    International Nuclear Information System (INIS)

    Ortiz, M.T.; Carboneras, P.

    1993-01-01

    A high number of wastes produced in different fields of science and technology, as well as nuclear power plants, contain a significant volume of byproducts contaminated with radioisotopes, having a very low radioactive level. This kind of wastes might be managed as ordinary wastes by conventional methods or even reused. In order to carry out this procedure, a new regulation exempting these products from the regulatory control normatives would be necessary. This paper analyzes the big advantages of introducing these exemptions (costs recycling, radioactive wastes minimization) and how they follow the recommendations of ICRP, IAEA, EC and NRC

  2. Nuclear power plants waste management practices in France

    International Nuclear Information System (INIS)

    Matsuda, Fumio

    1998-01-01

    This survey offers a complete review concerning the nuclear power plants waste management in France from generation to disposal, as well as future evolutions. Fundamental Safety Rule specified by the government defines safety objectives, design bases for surface disposals and preliminary terms for acceptance of waste packages on the surface disposal site. A governmental decree authorizes the creation of CSA (Centre de Stockage de l'Aude; French surface repository), and defines the limits of radiological inventory of the disposal facility. The national waste agency ANDRA was established in 1979 by government (turned into public in 1991), and ANDRA defines the technical specifications involving acceptance criteria of the waste packages. The main feature of the French management includes; Comprehensive quality assurance program that encompasses all area of the management. Centralized installation for the melting of contaminated scrap metals and incineration of low level technological wastes. Mobile unit for common treatment of ion exchange resin. Concrete package assuring the long term containment. Complete tracking system of wastes from generation to disposal. This survey would be useful in the consideration of Japanese waste management including miscellaneous wastes, high βγ wastes, large metallic wastes, etc. (author)

  3. High-level waste immobilization program: an overview

    International Nuclear Information System (INIS)

    Bonner, W.R.

    1979-09-01

    The High-Level Waste Immobilization Program is providing technology to allow safe, affordable immobilization and disposal of nuclear waste. Waste forms and processes are being developed on a schedule consistent with national needs for immobilization of high-level wastes stored at Savannah River, Hanford, Idaho National Engineering Laboratory, and West Valley, New York. This technology is directly applicable to high-level wastes from potential reprocessing of spent nuclear fuel. The program is removing one more obstacle previously seen as a potential restriction on the use and further development of nuclear power, and is thus meeting a critical technological need within the national objective of energy independence

  4. Overview of the NRC nuclear waste management program

    International Nuclear Information System (INIS)

    Malaro, J.C.

    1976-01-01

    The NRC has firmly established waste management as a high-priority effort and has made the commitment to act rapidly and methodically to establish a sound regulatory base for licensing waste management activities. We believe the priorities for NRC work in waste management are consistent with the needs of the overall national waste management program. Present licensing procedures and criteria are adequate for the short term, and priority attention is being given to the longer term, when the quantities of waste to be managed will be greater and licensing demands will increase. Recognizing that its decision will affect industry, other governmental jurisdictions, private interest groups, and the public at large, NRC has encouraged and will continue to encourage their participation in planning our program. We also recognize that the problems of nuclear waste management are international in scope. Many waste management problems (e.g., potential for contamination of oceans and atmosphere, need for isolation of some wastes for longer periods than governments and political boundaries have remained stable in the past), require a set of internationally acceptable and accepted solutions. The wastes from the U.S. nuclear industry will account for only about one third of the nuclear waste generated in the world. Therefore, we propose to cooperate and where appropriate take the lead in establishing acceptable worldwide policies, standards and procedures for handling nuclear wastes

  5. Development of performance assessment methodology for nuclear waste isolation in geologic media

    Science.gov (United States)

    Bonano, E. J.; Chu, M. S. Y.; Cranwell, R. M.; Davis, P. A.

    The burial of nuclear wastes in deep geologic formations as a means for their disposal is an issue of significant technical and social impact. The analysis of the processes involved can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are ground-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the U.S. Nuclear Regulatory Commission.

  6. BPEO/BPM in recycling of low level waste metal in the UK - 16210

    International Nuclear Information System (INIS)

    Dodd, Kevin; Robinson, Joe; Lindberg, Maria

    2009-01-01

    Best Practicable Environmental Option (BPEO) and Best Practicable Means (BPM) are concepts well established in the nuclear industry to help guide and inform waste management decision making. The recycling of contaminated metal waste in the UK is not well established, with the majority of waste disposed of at the Low Level Waste Repository (LLWR) at Drigg. This paper presents an overview of the Strategic BPEO study completed by Studsvik examining the options for low level metal waste management and a subsequent BPM study completed in support of a proposed metals recycling service. The environmental benefits of recycling metals overseas is further examined through the application of life cycle analysis to the metals recycling process. The methodologies used for both studies are discussed and the findings of these studies presented. These indicate that recycling contaminated metal is the preferred option, using overseas facilities until UK facilities are available. The BPM for metals recycling is discussed in detail and indicates that a tool box for processing metal waste is required to ensure BPM is applied on a case by case basis. This is supported by effective management of waste transport and waste acceptance criteria. Whilst the transport of contaminated metal overseas for treatment adds to the environmental burden of metals recycling, this when compared with the production of virgin metal, is shown to remain beneficial. The results of the Studsvik studies demonstrate the benefits of recycling metals, the options available for such a service and challenges that remain. (authors)

  7. Levels for the specific activity at disposing low-level contaminated municipal wastes

    International Nuclear Information System (INIS)

    Poschner, J.; Schaller, G.

    1995-01-01

    Using radioecological models, nuclide specific values were calculated for the specific activity of low contaminated radioactive waste, which is disposed in conventional waste deposits or burned in incineration plants. The calculation of these values is based on a limit of 10 μSv effective dose in one year, i.e. effective dose possibly resulting from waste disposal or burning should not exceed a 'de-minimis'-value of some 10 μSv per year. The applied radioecological models describe exposure of the public by direct radiation, inhalation and ingestion for the operational period of a deposit or an incineration plant, but also cover post-operational scenarios, collecting and sorting of waste and road accidents of the waste-truck. Referring to the dose limit of 10 μSv/a, a value for the specific activity of waste was calculated for each scenario and each radionuclide considered. The smallest of these values for a radionuclide, the 'basic value' was rounded to a 'reference value'. For about 600 radionuclides reference values were derived. About 90% of the reference values are ranging between 1 and 1 000 Bq/g. For about 90% of the radionuclides direct radiation or inhalation at the deposit proved to be the critical path of exposure. (orig.) [de

  8. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  9. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  10. Salvaging of nuclear waste by nuclear-optical converters

    Science.gov (United States)

    Karelin, A. V.; Shirokov, R. V.

    2007-06-01

    In modern conditions of power consumption growing in Russia, apparently, it is difficult to find alternative to further development of nuclear power engineering. The negative party of nuclear power engineering is the spent fuel of nuclear reactors (radioactive waste). The gaseous and fluid radioactive waste furbished of highly active impurity, dumps in atmosphere or pools. The highly active fluid radioactive waste stores by the way of saline concentrates in special tanks in surface layers of ground, above the level of groundwaters. A firm radioactive waste bury in pods from a stainless steel in underground workings, salt deposits, at the bottom of oceans. However this problem can be esteemed in a positive direction, as irradiation is a hard radiation, which one can be used as a power source in nuclear - optical converters with further conversion of optical radiation into the electric power with the help of photoelectric converters. Thus waste at all do not demand special processing and exposure in temporary storehouses. And the electricity can be worked out in a constant mode within many years practically without gang of a stimulus source, if a level of a residual radioactivity and the half-lives of component are high enough.

  11. Waste reduction by separation of contaminated soils during environmental restoration

    International Nuclear Information System (INIS)

    Roybal, J.A.; Conway, R.; Galloway, B.; Vinsant, E.; Slavin, P.; Guerin, D.

    1998-06-01

    During cleanup of contaminated sites, Sandia National Laboratories, New Mexico (SNL/NM) frequently encounters soils with low-level radioactive contamination. The contamination is not uniformly distributed, but occurs within areas of clean soil. Because it is difficult to characterize heterogeneously contaminated soils in detail and to excavate such soils precisely using heavy equipment, it is common for large quantities of uncontaminated soil to be removed during excavation of contaminated sites. This practice results in the commingling and disposal of clean and contaminated material as low-level waste (LLW), or possibly low-level mixed waste (LLMW). Until recently, volume reduction of radioactively contaminated soil depended on manual screening and analysis of samples, which is a costly and impractical approach and does not uphold As Low As Reasonably Achievable (ALARA) principles. To reduce the amount of LLW and LLMW generated during the excavation process, SNL/NM is evaluating two alternative technologies. The first of these, the Segmented Gate System (SGS), is an automated system that located and removes gamma-ray emitting radionuclides from a host matrix (soil, sand, dry sludge). The matrix materials is transported by a conveyor to an analyzer/separation system, which segregates the clean and contaminated material based on radionuclide activity level. The SGS was used to process radioactively contaminated soil from the excavation of the Radioactive Waste Landfill. The second technology, Large Area Gamma Spectroscopy (LAGS), utilizes a gamma spec analyzer suspended over a slab upon which soil is spread out to a uniform depth. A counting period of approximately 30 minutes is used to obtain a full-spectrum analysis for the isotopes of interest. The LAGS is being tested on the soil that is being excavated from the Classified Waste Landfill

  12. United Kingdom. Development plan for the eventual closure of the UK Drigg nuclear surface low level waste disposal facility

    International Nuclear Information System (INIS)

    2001-01-01

    The Drigg site, owned and operated by BNFL, is the UK's principal site for the disposal of low level radioactive waste. The site has operated since 1959 and receives wastes from a wide range of sources including nuclear power stations, nuclear fuel cycle facilities, isotope manufacturing sites, universities, general industry and cleanup of historically contaminated sites. Disposals until the late 1980s were solely by tipping essentially loose wastes into excavated trenches. More recently, trench disposals have been phased out in preference to emplacement of containerised, conditioned wastes in concrete vaults. The standardised wasteform consists of high force compacted (or non-compactable) waste immobilised within 20 m 3 steel overpack containers by the addition of cementitious grout. Larger items of wastes are grouted directly, in situ in the vault. The disposal trenches have been completed with an interim cap, as will the vaults when filled. It is currently estimated that sufficient capacity remains at Drigg for disposals to continue until at least 2050. Post-operations it is planned that the site will enter a phase including shut down of operational facilities, emplacement of long term site closure features including a final closure cap and then to an institutional management phase. Planning has therefore been carried out as to the strategy for eventual closure of the site. This closure strategy is also underpinned by an engineering evaluation studies programme to develop and evaluate appropriate closure measures including assessment of the long term performance of such measures. This appendix summarizes some of this work

  13. High-level waste solidification system for the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    Carrell, J.R.; Holton, L.K.; Siemens, D.H.

    1982-01-01

    A preconceptual design for a waste conditioning and solidification system for the immobilization of the high-level liquid wastes (HLLW) stored at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York was completed in 1981. The preconceptual design was conducted as part of the Department of Energy's (DOE) West Valley Demonstration Project, which requires a waste management demonstration at the WNYNSC. This paper summarizes the bases, assumptions, results and conclusions of the preconceptual design study

  14. Geology of high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Roxburgh, I.S.

    1988-01-01

    The concept of geological disposal is set out by describing the major rock types in terms of their ability to isolate high-level nuclear waste. The advantages and problems posed by particular rock formations are explored and the design and construction of geological repositories is considered, along with the methods used to estimate their safety. It gives special consideration to the use of sea-covered rock and sediment as well as the on-land situation. Throughout the book the various principles and problems inherent in geological disposal are explained and illustrated by reference to a multitude of European and North American case studies, backed up by a large number of tables, figures and an extensive bibliography

  15. High-level nuclear waste borosilicate glass: A compendium of characteristics

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Bates, J.K.; Ebert, W.L.; Feng, X.; Mazer, J.J.; Wronkiewicz, D.J.; Sproull, J.; Bourcier, W.L.; McGrail, B.P.

    1992-01-01

    With the imminent startup, in the United States, of facilities for vitrification of high-level nuclear waste, a document has been prepared that compiles the scientific basis for understanding the alteration of the waste glass products under the range of service conditions to which they may be exposed during storage, transportation, and eventual geologic disposal. A summary of selected parts of the content of this document is provided. Waste glass alterations in a geologic repository may include corrosion of the glass network due to groundwater and/or water vapor contact. Experimental testing results are described and interpreted in terms of the underlying chemical reactions and physical processes involved. The status of mechanistic modeling, which can be used for long-term predictions, is described and the remaining uncertainties associated with long-term simulations are summarized

  16. Nuclear waste. DOE's program to prepare high-level radioactive waste for final disposal

    International Nuclear Information System (INIS)

    Bannerman, Carl J.; Owens, Ronald M.; Dowd, Leonard L.; Herndobler, Christopher S.; Purvine, Nancy R.; Stenersen, Stanley G.

    1989-11-01

    years later than the schedule established in early 1984, and the cost could be about $1.1 billion, more than double the 1984 cost estimate. DOE has plans for immobilization facilities at the other two Sites, but unresolved issues could affect the reliability of current cost and schedule estimates; the Hanford facility, currently in the design phase, has an estimated immobilization completion date of 2008, but this date assumes that Hanford's defense mission nuclear processing activities will end in the mid 1990s and only the waste stored in Hanford's double-shell tanks will be immobilized; the INEL facility is currently in such an early planning phase that DOE has not yet selected the waste immobilization technology that it will use. The waste may be transformed into a glass-ceramic or other material instead of being vitrified. DOE expects to make this decision in 1993. Section 1 contains an overview of DOE's high-level waste immobilization program. Sections 2 through 5 contain more detailed information about each of the four projects

  17. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  18. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  19. Nuclear waste: A cancer cure?

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In a marriage of strange bedfellows, scientists at one of the country's most contaminated nuclear waste sites are collaborating with medical researchers to turn nuclear waste into an experimental therapy for cancer. Patients with Hodgkin's disease and brain, ovarian, and breast cancers may be able to receive the new radiatio-based treatments in the next five to ten years. Recently, scientists at the Hanford site found a way to chemically extract a pure form of the radioisotope yttrium-90 from strontium-90, a by-product of plutonium production. Yttrium-90 is being tested in clinical trials at medical centers around the country as a treatment for various types of cancers, and the initial results are encouraging. The advantage of yttrium-90 over other radioisotopes is its short half-life

  20. The role equilibrium leach testing in understanding the behaviour of nuclear wastes under disposal conditions

    International Nuclear Information System (INIS)

    Biddle, P.; Rees, J.H.

    1988-01-01

    Results from the equilibrium leach testing of a range of intermediate level nuclear wastes have been modelled successfully using sorption and solubility data obtained in experiments with individual radionuclides. The wastes involved included fuel cladding (after removal of irradiated fuel for reprocessing), combustible plutonium-contaminated materials and ferric/aluminium hydroxide flocs. The test has an important role in validating nearfield models, and helps to build confidence in disposal assessments. (orig.)

  1. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  2. Consignment of Very Low Level Waste (VLLW) from the Winfrith dragon reactor containment building

    International Nuclear Information System (INIS)

    Shuler, K.

    2008-01-01

    The United Kingdom Atomic Energy Authority (UKAEA), CH2M Hill and AMEC are implementing innovative technical approaches in the decommissioning of redundant nuclear plant. These approaches will form the basis of lessons learned and best practices to be applied to future decommissioning work across the United Kingdom. This paper highlights the approach used for categorizing waste from the Dragon Decommissioning Project as Very Low Level Waste (VLLW), a category typically used by hospitals and laboratories for small quantities of waste contaminated with radioisotopes. (authors)

  3. The political challenges of nuclear waste

    International Nuclear Information System (INIS)

    Andren, Mats; Strandberg, Urban

    2005-01-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review , 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'

  4. Overview of management of low and intermediate level radioactive wastes at the Institute for Nuclear Research for to save management of the waste from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The national policy of radioactive waste management fully complies with the international requirements established by 'Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management and with the EURATOM treaty, directives, recommendations and policy of radioactive waste management promoted at the level of the European Union. The Institute for Nuclear Research Pitesti (INR) has its own Radwaste Treatment Plant. The object of activity is to treat and condition radioactive waste resulted from the nuclear facility. According to the National Nuclear Program, the institute is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by Cernavoda NPP. For all these, in accordance with the Governmental order no. 11/2003, INR shall must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from decommissioning activities. (authors)

  5. Radiochemical methodologies applied to analytical characterization of low and intermediate level wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Monteiro, Roberto Pellacani G.; Júnior, Aluísio Souza R.; Kastner, Geraldo F.; Temba, Eliane S.C.; Oliveira, Thiago C. de; Amaral, Ângela M.; Franco, Milton B.

    2017-01-01

    The aim of this work is to present radiochemical methodologies developed at CDTN/CNEN in order to answer a program for isotopic inventory of radioactive wastes from Brazilian Nuclear Power Plants. In this program some radionuclides, 3 H, 14 C, 55 Fe, 59 Ni, 63 Ni, 90 Sr, 93 Zr, 94 Nb, 99 Tc, 129 I, 235 U, 238 U, 238 Pu, 239 + 240 Pu, 241 Pu, 242 Pu, 241 Am, 242 Cm e 243 + 244 Cm, were determined in Low Level Wastes (LLW) and Intermediate Level Wastes (ILW) and a protocol of analytical methodologies based on radiochemical separation steps and spectrometric and nuclear techniques was established. (author)

  6. Nuclear waste inventory characterization for mixer pumps and long length equipment removed from Hanford waste tanks

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1998-01-01

    The removal and disposition of contaminated equipment from Hanford high-level nuclear waste tanks presents many challenges. One of which is the characterization of radioactive contaminants on components after removal. A defensible assessment of the radionuclide inventory of the components is required for disposal packaging and classification. As examples of this process, this paper discusses two projects: the withdrawal of thermocouple instrument tubes from Tank 101-AZ, and preparation for eventual replacement of the hydrogen mitigation mixer pump in Tank 101-SY. Emphasis is on the shielding analysis that supported the design of radiation detection systems and the interpolation of data recorded during the equipment retrieval operations

  7. Public reactions to nuclear waste: Citizens' views of repository siting

    International Nuclear Information System (INIS)

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada

  8. A plan for Soviet nuclear waste

    International Nuclear Information System (INIS)

    Stone, R.

    1992-01-01

    If environmentalist forces are successful, the Russian government may soon establish the country's first comprehensive program for dealing with nuclear waste. Later this month the Russian parliament, back from its summer recess, is expected to begin considering a bill on this topic. A draft copy indicates that Russia is starting with the basics: It orders the government to develop a means of insulting waste from the environment, to form a national waste processing program, and to create a registry for tracking where spent atomic fuel is stored or buried. The bill comes on the heels of a November 1991 decree by Russian President Boris Yeltsin to step up efforts to deal with nuclear waste issues and to create a government registry of nuclear waste disposal sites by 1 January 1993. The former Soviet Union has come under fire from environmentalists for dumping low- and intermediate-level nuclear wastes in the Arctic Ocean and for improperly storing waste at sites in the southern Urals and Belarus. Adding to the bill's urgency is the fact that Russia is considering sites for underground repositories for high-level waste at Tomsk, Krasnoyarsk, Chelyabinsk, and on the Kola Peninsula

  9. Development of thermal conditioning technology for Alpha-containment wastes: Alpha-contaminated waste incineration technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Hyung; Kim, Jeong Guk; Yang, Hee Chul; Choi, Byung Seon; Jeong, Myeong Soo

    1999-03-01

    As the first step of a 3-year project named 'development of alpha-contaminated waste incineration technology', the basic information and data were reviewed, while focusing on establishment of R and D direction to develop the final goal, self-supporting treatment of {alpha}- wastes that would be generated from domestic nuclear industries. The status on {alpha} waste incineration technology of advanced states was reviewed. A conceptual design for {alpha} waste incineration process was suggested. Besides, removal characteristics of volatile metals and radionuclides in a low-temperature dry off-gas system were investigated. Radiation dose assessments and some modification for the Demonstration-scale Incineration Plant (DSIP) at Korea Atomic Energy Research Institute (KAERI) were also done.

  10. Development of thermal conditioning technology for Alpha-containment wastes: Alpha-contaminated waste incineration technology

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Kim, Jeong Guk; Yang, Hee Chul; Choi, Byung Seon; Jeong, Myeong Soo

    1999-03-01

    As the first step of a 3-year project named 'development of alpha-contaminated waste incineration technology', the basic information and data were reviewed, while focusing on establishment of R and D direction to develop the final goal, self-supporting treatment of α- wastes that would be generated from domestic nuclear industries. The status on α waste incineration technology of advanced states was reviewed. A conceptual design for α waste incineration process was suggested. Besides, removal characteristics of volatile metals and radionuclides in a low-temperature dry off-gas system were investigated. Radiation dose assessments and some modification for the Demonstration-scale Incineration Plant (DSIP) at Korea Atomic Energy Research Institute (KAERI) were also done

  11. Inventory of contaminants in waste wood; Inventering av foeroreningar i returtrae

    Energy Technology Data Exchange (ETDEWEB)

    Jermer, Joeran; Ekvall, Annika; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden)

    2001-03-01

    Waste wood is increasingly used as fuel in Sweden. It is of Swedish origin as well as imported, mainly from Germany and the Netherlands. The waste wood is contaminated by e.g. paint and wood preservatives and objects of metal, glass, plastics etc. The contaminants may cause technical problems such as deposits and corrosion as well as plugging of air openings. The present study has focussed on potential contaminants in waste wood that could cause problems of technical as well as environmental nature. The major chemical contaminants are surface treatments (paints etc) and wood preservatives. The surface treatments contribute in particular to contaminants of zinc and lead. In some cases zinc has been found to cause severe deposits in the furnaces. Surface treatments also contribute to increased levels of sodium, chlorine, sulphur and nitrogen. Preservative-treated wood is the most important source of increased levels of copper, chromium and arsenic in the waste wood. Waste wood imported from Germany contains less arsenic but the same amount of copper and chromium as Swedish waste wood. The contents of mercury in German waste wood can be expected to be higher than in waste wood of Swedish origin. The fraction consisting of wood-based panels is comparably free from contaminants but as a result of the high contents of adhesives wood-based panels contribute to a higher proportion of nitrogen in waste wood than in forest residues. A great number of non-wood compounds (such as plastics and metals) do also contaminate waste wood. By careful and selective demolition and various sorting procedures most non-wood compounds will be separated from the waste wood. Waste sorting analyses carried out indicate that the waste wood contains approximately 1% non-wood compounds, mainly plastic and metal compounds, glass, dirt, concrete, bricks and gypsum. This may seem to be a small proportion, but if large amounts of waste wood are incinerated the non-wood compounds will inevitably cause

  12. The waste management program VUB-AZ: An integrated solution for nuclear biomedical waste management

    International Nuclear Information System (INIS)

    Covens, P.; Sonck, M.; Eggermont, G.; Meert, D.

    2001-01-01

    Due to escalating costs and the lack of acceptance of near-surface disposal facilities, the University of Brussels (VUB) and its Academic hospital (AZ) have developed an on-site waste storage program in collaboration with Canberra Europe. This programme is based on selective collection, measurement before decay, storage for decay of short-lived radionuclides, measurement after decay and eventual clearance as non-nuclear waste. It has proved its effectiveness over the past 5 years. Effective characterisation for on-site storage for decay of short-lived radionuclides makes selective collection of waste streams mandatory and requires motivated and trained laboratory staff. Dynamic optimisation of this selective collection increases the efficiency of the storage for decay programme. The accurate qualitative and quantitative measurement of nuclear biomedical waste before decay has several advantages such as verification of correct selective collection, optimisation of the decay period and possibility of clearance below the minimal detectable activity. In the research phase of the program several measurement techniques were investigated. The following measurement concept was selected. Closed PE drums containing low density solid waste materials contaminated with small amounts of β/γ-or pure β-emitting radionuclides are assessed for specific activity by the Canberra measurement unit for nuclear biomedical waste, based on a HPGe-detector. Liquid waste containing (β/γ-emitters are characterised by the same technique while for pure β-emitting liquid waste a Packard liquid scintillation counter is used. Measurement results are obtained by using the gamma-spectroscopy software Genie-2000. A user-friendly interface, based on Procount-2000 and optimised by Canberra for the characterisation of nuclear biomedical waste, has increased the sample throughput of the measurement concept. The MDA (minimal detectable activity) of different radionuclides obtained by the measurement

  13. Disposal of high level and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1991-01-01

    The waste products from the nuclear industry are relatively small in volume. Apart from a few minor gaseous and liquid waste streams, containing readily dispersible elements of low radiotoxicity, all these products are processed into stable solid packages for disposal in underground repositories. Because the volumes are small, and because radioactive wastes are latecomers on the industrial scene, a whole new industry with a world-wide technological infrastructure has grown up alongside the nuclear power industry to carry out the waste processing and disposal to very high standards. Some of the technical approaches used, and the Regulatory controls which have been developed, will undoubtedly find application in the future to the management of non-radioactive toxic wastes. The repository site outlined would contain even high-level radioactive wastes and spent fuels being contained without significant radiation dose rates to the public. Water pathway dose rates are likely to be lowest for vitrified high-level wastes with spent PWR fuel and intermediate level wastes being somewhat higher. (author)

  14. German Spent Nuclear Fuel Legacy: Characteristics and High-Level Waste Management Issues

    Directory of Open Access Journals (Sweden)

    A. Schwenk-Ferrero

    2013-01-01

    Full Text Available Germany is phasing-out the utilization of nuclear energy until 2022. Currently, nine light water reactors of originally nineteen are still connected to the grid. All power plants generate high-level nuclear waste like spent uranium or mixed uranium-plutonium dioxide fuel which has to be properly managed. Moreover, vitrified high-level waste containing minor actinides, fission products, and traces of plutonium reprocessing loses produced by reprocessing facilities has to be disposed of. In the paper, the assessments of German spent fuel legacy (heavy metal content and the nuclide composition of this inventory have been done. The methodology used applies advanced nuclear fuel cycle simulation techniques in order to reproduce the operation of the German nuclear power plants from 1969 till 2022. NFCSim code developed by LANL was adopted for this purpose. It was estimated that ~10,300 tonnes of unreprocessed nuclear spent fuel will be generated until the shut-down of the ultimate German reactor. This inventory will contain ~131 tonnes of plutonium, ~21 tonnes of minor actinides, and 440 tonnes of fission products. Apart from this, ca.215 tonnes of vitrified HLW will be present. As fission products and transuranium elements remain radioactive from 104 to 106 years, the characteristics of spent fuel legacy over this period are estimated, and their impacts on decay storage and final repository are discussed.

  15. Technologies for destruction of long-lived radionuclides in high-level nuclear waste - overview and requirements

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1993-01-01

    A major issue surrounding current nuclear power generation is the management and disposal of long-lived, high-level waste (HLW). The planned and scientifically acceptable destination for this waste is in deep underground, geologically stable, repositories. However, public concerns surrounding such disposal of long-lived nuclear wastes and other issues such as proliferation and safety negatively affect the potential role that nuclear power can play in meeting current and future national energy needs. This paper and this topical session on nuclear waste minimization, management, and remediation focus on two nuclear systems and their associated technologies that have the potential to address concerns surrounding long-lived radionuclides in HLW. Both systems offer technology applicable to HLW from current light water reactors (LWRs). In addition, these systems represent advanced nuclear power concepts that have important features associated with integrated management of wastes long-term fuel supplies, and enhanced safety. The first system is the integral fast reactor (IFR) concept. This system incorporates a metal-fueled fast reactor coupled with chemical separations based on pyroprocessing to produce power while burning long-lived actinide waste. The IFR applications include the burning of actinides from current LWR spent fuel and energy production in a breeder environment. The second concept, accelerator transmutation of waste (ATW), is based on an accelerator-induced intense source of thermal neutrons and is aimed at the destruction of long-lived actinides and fission products. This concept can be applied to long-lived radionuclides in spent-fuel HLW as well as a future fission power source built around use of natural thorium or uranium as fuels coupled with concurrent waste destruction

  16. Long-term high-level waste technology program

    International Nuclear Information System (INIS)

    1980-04-01

    The Department of Energy (DOE) is conducting a comprehensive program to isolate all US nuclear wastes from the human environment. The DOE Office of Nuclear Energy - Waste (NEW) has full responsibility for managing the high-level wastes resulting from defense activities and additional responsiblity for providing the technology to manage existing commercial high-level wastes and any that may be generated in one of several alternative fuel cycles. Responsibilities of the Three Divisions of DOE-NEW are shown. This strategy document presents the research and development plan of the Division of Waste Products for long-term immobilization of the high-level radioactive wastes resulting from chemical processing of nuclear reactor fuels and targets. These high-level wastes contain more than 99% of the residual radionuclides produced in the fuels and targets during reactor operations. They include essentially all the fission products and most of the actinides that were not recovered for use

  17. Development of agency guidance for nuclear industry submissions for conditioning intermediate level waste

    International Nuclear Information System (INIS)

    2001-01-01

    The project was carried out by RM Consultants with the overall intention of providing the Environment Agency with a sound basis on which to develop guidance on the conditioning of intermediate level waste (ILW). Waste producers are currently in the process of retrieving and conditioning many of its ILW waste streams. This is at a time where the nature and timing of any future disposal route for these wastes is uncertain. The Agency is concerned that decisions taken on how ILW should be conditioned take into account matters of interest to the Agency, such as the future disposability of wastes, the production of secondary wastes and releases to the environment. This study provides information on the arrangements by which waste producers' proposals for the conditioning of intermediate level waste are assessed, and on the Agency's role in liaising with the Nuclear Installations Inspectorate, waste producers and Nirex. The report makes recommendations on the content and handling of waste producers' proposals in order that the Agency can satisfy itself that the environmental impact of waste conditioning and the disposability of the resultant waste packages is addressed in a timely and consistent manner

  18. Plutonium contaminated solid waste programs at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Johson, L.J.; Jordan, H.S.

    1975-01-01

    Development of handling and storage criteria for plutonium contaminated solid waste materials is discussed. Data from corrosion and radiolytic attack studies are reviewed. Instrumentation systems developed for solid waste management applications at the 10nCi Pu/g waste material level is described and their sensitivity and operational limitations reviewed. Current programs for the environmental risk analysis of past waste disposal areas and for development of technology for the volume reduction and chemical stabilization of transuranic contaminated solid waste is outlined

  19. Application of intrinsic germanium spectral gamma-ray logging for characterization of high-level nuclear waste tank leaks

    International Nuclear Information System (INIS)

    Brodeur, J.R.; Kiesler, J.P.; Kos, S.E.; Koizumi, C.J.; Nicaise, W.F.; Price, R.K.

    1993-11-01

    Spectral gamma-ray logging with a high-resolution, intrinsic germanium logging system was completed in boreholes surrounding two high-level nuclear waste tanks at the US Department of Energy's Hanford Site. The purpose was to characterize the concentrations of man-made radionuclides in the unsaturated zone sediments and identify any new leaks from the tanks. An intrinsic germanium detection system was used for this work because it was important to positively identify the specific radionuclides and to precisely assay those radionuclides. The spectral gamma log data were processed and displayed as log plots for each individual borehole and as three-dimensional plots of 137 Cs radionuclide concentrations. These data were reviewed to identify the sources of the contamination. The investigation did not uncover a new or active leak from either of the tanks. Most of the contamination found could be related to known pipeline leaks, to surface contamination from aboveground liquid spills, or to leaks from other tanks. The current spectral gamma ray data now provide a new baseline from which to compare future log data and identify any changes in the radioelement concentration

  20. Assessment of the Characteristic Aggregates during a Decontamination of Contaminated Concrete Waste

    International Nuclear Information System (INIS)

    Min, B. Y.; Choi, W. K.; Oh, W. Z.; Jung, C. H.; Park, J. W.

    2008-01-01

    During a decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete wastes are generated. The exposure to radiation over many years could be hazardous to human health. In Korea, the decontamination and decommissioning of the retired TRIGA MARK II and III research reactors and a uranium conversion plant at the Korea Atomic Energy Research Institute (KAERI) has been under way. Hundreds of tons of concrete wastes are expected from the D and D of these facilities. Typically, the contaminated layer is only 1∼10mm thick because cementitious materials are porous media, the penetration of radionuclides may occur up to several centimeters from the surface of a material. Contaminated concrete waste can be of two forms, either a surface or bulk contamination. Bulk contamination usually arises from a neutron activation of nuclides during the service life on a component. Surface activity can be a loose contamination arising from a deposition of nuclides from an interfacing medium, and it also can be tightly bound. Most of the dismantled concrete wastes are slightly contaminated rather than activated. This decontamination can be accomplished during the course of a separation of the concrete wastes contaminated with radioactive materials through a thermal treatment step of the radionuclide (e.g. cesium and strontium), transportation of the radionuclide to fine aggregates through a mechanical treatment step such as a crushing, milling and sieving. Produced fine powder (paste) should be stabilized for the final disposal. Melting technology has been known as the one of the most effective technologies for a stabilization and volume reduction to the paste. Therefore, a melting may be a last step in the decontamination of a contaminated paste. The aim of this study was to establish the separation conditions for an optimum decontamination for the treatment of concrete wastes contaminated with radionuclides. The separation tests had been

  1. Materials aspects of nuclear waste isolation

    International Nuclear Information System (INIS)

    Bennett, J.W.

    1984-01-01

    This paper is intended to provide an overview of the nuclear waste repository performance requirements and the roles which we expect materials to play in meeting these requirements. The objective of the U.S. Dept. of Energy's (DOE) program is to provide for the safe, permanent isolation of high-level radioactive wastes from the public. The Nuclear Waste Policy Act of 1982 (the Act) provides the mandate to accomplish this objective by establishing a program timetable, a schedule of procedures to be followed, and program funding (1 mil/kwhr for all nuclear generated electricity). The centerpiece of this plan is the design and operation of a mined geologic repository system for the permanent isolation of radioactive wastes. A nuclear waste repository contains several thousand acres of tunnels and drifts into which the nuclear waste will be emplaced, and several hundred acres for the facilities on the surface in which the waste is received, handled, and prepared for movement underground. With the exception of the nuclear material-related facilities, a repository is similar to a standard mining operation. The difference comes in what a repository is supposed to do - to contain an isolate nuclear waste from man and the environment

  2. Environmentally sound disposal of wastes: Multipurpose offshore islands offer safekeeping, continuous monitoring of hazardous, nuclear wastes

    International Nuclear Information System (INIS)

    Tengelsen, W.E.

    1995-01-01

    Solid wastes have become a health threat to all municipalities and safe disposal costs are increasing for coastal cities. Onland dumps have become a continuing source of pollution, existing landfill sites should be eliminated. Ocean dumping is rules out because of the threat to aquatic resources but pollutants deep-sixed in the past should be isolated from the ocean environment before they further harm the aquatic food chain. And there are still no totally satisfactory solutions for nuclear waste disposal, especially for high-level wastes. A practical answer to our waste disposal problem is to build waterproof storage vault islands offshore to safely contain all past and futuer solid wastes so they would not mix with the ocean waters. Contaminated dredged spoil and construction materials can be safely included, in turn providing free shielding for nuclear waste stored in special vault chambers. Offshore islands can be built to ride out erthquakes and the ocean's waters provide a stable temperature environment. Building modular structures in large quantities reduces per-unit costs; implementing these islands creates quality jobs and an economic stimulus. The island's tops become valuable waterfront property for commercial, institutional, educational, infrastructural, and recreational uses; tenants and users provide the revenues that make this island concept self-supporting

  3. Should high-level nuclear waste be disposed of at geographically dispersed sites?

    International Nuclear Information System (INIS)

    Bassett, G.W. Jr.

    1992-01-01

    Consideration of the technical feasibility of Yucca Mountain in Nevada as the site for a high-level nuclear waste repository has led to an intense debate regarding the economic, social, and political impacts of the repository. Impediments to the siting process mean that the nuclear waste problem is being resolved by adhering to the status quo, in which nuclear waste is stored at scattered sites near major population centers. To assess the merits of alternative siting strategies--including both the permanent repository and the status quo- we consider the variables that would be included in a model designed to select (1) the optimal number of disposal facilities, (2) the types of facilities (e.g., permanent repository or monitored retrievable facility), and (3) the geographic location of storage sites. The objective function in the model is an all-inclusive measure of social cost. The intent of the exercise is not to demonstrate the superiority of any single disposal strategy; uncertainties preclude a conclusive proof of optimality for any of the disposal options. Instead, we want to assess the sensitivity of a variety of proposed solutions to variations in the physical, economic, political, and social variables that influence a siting strategy

  4. Treatment and immobilization of intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Lerch, R.E.; Greenhalgh, W.O.; Partridge, J.A.; Richardson, G.L.

    1977-01-01

    This paper discusses a new program underway to develop and demonstrate treatment and immobilization technologies for intermediate level wastes (ILW) generated in the nuclear fuel cycle. Initial work has defined the sources, quantities and types of wastes which comprise ILW. Laboratory studies are underway to define treatment technologies for liquid ILW which contains volatile contaminants and to define immobilization parameters for the residues resulting from treatment of ILW. Immobilization agents initially being evaluated for the various residues include cement, urea-formaldehyde, and bitumen although other immobilization agents will be studied. The program also includes development of acceptable test procedures for the final immobilized products as well as development of proposed criteria for storage, transportation, and disposal of the immobilized ILW. 20 figures, 10 tables

  5. International high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    Lin, W.

    1996-01-01

    Although nuclear technologies benefit everyone, the associated nuclear wastes are a widespread and rapidly growing problem. Nuclear power plants are in operation in 25 countries, and are under construction in others. Developing countries are hungry for electricity to promote economic growth; industrialized countries are eager to export nuclear technologies and equipment. These two ingredients, combined with the rapid shrinkage of worldwide fossil fuel reserves, will increase the utilization of nuclear power. All countries utilizing nuclear power produce at least a few tens of tons of spent fuel per year. That spent fuel (and reprocessing products, if any) constitutes high-level nuclear waste. Toxicity, long half-life, and immunity to chemical degradation make such waste an almost permanent threat to human beings. This report discusses the advantages of utilizing repositories for disposal of nuclear wastes

  6. Seismic design of low-level nuclear waste repositories and toxic waste management facilities

    International Nuclear Information System (INIS)

    Chung, D.H.; Bernreuter, D.L.

    1984-01-01

    Identification of the elements of typical hazardous waste facilities (HFWs) that are the major contributors to the risk are focussed on as the elements which require additional considerations in the design and construction of low-level nuclear waste management repositories and HWFs. From a recent study of six typical HWFs it was determined that the factors that contribute most to the human and environmental risk fall into four basic categories: geologic and seismological conditions at each HWF; engineered structures at each HWF; environmental conditions at each HWF; and nature of the material being released. In selecting and carrying out the six case studies, three groups of hazardous waste facilities were examined: generator industries which treat or temporarily store their own wastes; generator facilities which dispose of their own hazardous wastes on site; and industries in the waste treatment and disposal business. The case studies have a diversity of geologic setting, nearby settlement patterns, and environments. Two sites are above a regional aquifer, two are near a bay important to regional fishing, one is in rural hills, and one is in a desert, although not isolated from nearby towns and a groundwater/surface-water system. From the results developed in the study, it was concluded that the effect of seismic activity on hazardous facilities poses a significant risk to the population. Fifteen reasons are given for this conclusion

  7. Development of anodic stripping voltametry for the determination of palladium in high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, T. K. [North Carolina State University, Raleigh (United States); Sharma, H. S.; Affarwal, S. K. [Bhabha Atomic Research Centre, Mumbai (India); Jain, P. C. [Meerut College, Meerut (India)

    2012-12-15

    Deposition potential, deposition time, square wave frequency, rotation speed of the rotating disc electrode, and palladium concentration were studied on a Glassy Carbon Electrode (GCE) in 0.01M HCl for the determination of palladium in High Level Nuclear Waste (HLNW) by anodic stripping voltammetry. Experimental conditions were optimized for the determination of palladium at two different, 10-8 and 10-7 M, levels. Error and standard deviation of this method were under 1% for all palladium standard solutions. The developed technique was successfully applied as a subsidiary method for the determination of palladium in simulated high level nuclear waste with very good precision and high accuracy (under 1 % error and standard deviation).

  8. Heat transfer effects in vertically emplaced high level nuclear waste container

    International Nuclear Information System (INIS)

    Moujaes, S.F.; Lei, Y.M.

    1994-01-01

    Modeling free convection heat transfer in an cylindrical annular enclosure is still an active area of research and an important problem to be addressed in the high level nuclear waste repository. For the vertically emplaced waste container, the air gap which is between the container shell and the rock borehole, have an important role of dissipating heat to surrounding rack. These waste containers are vertically emplaced in the borehole 300 meters below ground, and in a horizontal grid of 30 x 8 meters apart. The borehole will be capped after the container emplacement. The expected initial heat generated is between 3--4.74 kW per container depending on the type of waste. The goal of this study is to use a computer simulation model to find the borehole wall, air-gap and the container outer wall temperature distributions

  9. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  10. Oxygen incineration process for treatment of alpha-contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes.

  11. Measurement methodology for fulfilling of waste acceptance criteria for low and intermediate level radioactive waste in storages - 59016

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Langer, F.; Schultheis, R.

    2012-01-01

    with half life longer than Cs-137, whereas intermediate level waste is sub-classified as short lived waste and long lived waste. Long lived isotopes are mainly alpha emitters which result from contamination of the RAW by nuclear fuel material and its fission and breeding products. The sub-classification is made on base of mass specific alpha activity of the waste. Before being sent to storage the waste has to be treated. This includes volume reduction by combustion or compaction, depending on the physical properties of the waste, as well as immobilisation by grouting, saving thereby storage space and costs. After the treatment the waste is filled into packages preferably drums or containers. Before the waste is sent to the waste storage a passport is generated which includes all relevant data to show that the waste package fulfils the requirements as defined by the waste storage operating company. NUKEM Technologies has developed a large number of monitors for a radiological waste characterisation. The preferred methods are non-destructive, allowing high throughput and giving detailed information. Parameters that cannot be measured after treatment, have to be measured during the treatment process or data has to be collected from available sources like the origin of the waste or from the waste deliverer. To optimise this process NUKEM Technologies has developed a tracking system which traces the waste during treatment starting from delivery and finishing by the transportation to the final storage. (authors)

  12. Science, society, and America's nuclear waste: Unit 2, Ionizing radiation

    International Nuclear Information System (INIS)

    1992-01-01

    ''Science, Society and America's Nuclear Waste'' is a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  13. Applications and mechanisms of laser ablation for elemental analysis of nuclear wastes and contaminated soils

    International Nuclear Information System (INIS)

    Langford, S.C.; Dickinson, J.T.

    1996-01-01

    Survey methods for compositional analysis of nuclear wastes and contaminated soils are under development to support characterization prior to treatment and continued monitoring during remediation. Laser ablation in conjunction with optical spectroscopy and mass spectroscopy are attractive because of the safety and convenience of minimal sample handling and very small sampling volume. However, the signal intensities in analytic applications depend sensitively on the physical state of the sample (e.g., particle morphology, defect concentration, impurities, and presence of liquids). In this work, the authors examine how solid and condensed state properties of the sample affect the laser-substrate interaction, and the dynamic electronic, physical, and chemical processes which ultimately generate the signals that are detected for analytic purposes

  14. Instrument reliability for high-level nuclear-waste-repository applications

    International Nuclear Information System (INIS)

    Rogue, F.; Binnall, E.P.; Armantrout, G.A.

    1983-01-01

    Reliable instrumentation will be needed to evaluate the characteristics of proposed high-level nuclear-wasted-repository sites and to monitor the performance of selected sites during the operational period and into repository closure. A study has been done to assess the reliability of instruments used in Department of Energy (DOE) waste repository related experiments and in other similar geological applications. The study included experiences with geotechnical, hydrological, geochemical, environmental, and radiological instrumentation and associated data acquisition equipment. Though this paper includes some findings on the reliability of instruments in each of these categories, the emphasis is on experiences with geotechnical instrumentation in hostile repository-type environments. We review the failure modes, rates, and mechanisms, along with manufacturers modifications and design changes to enhance and improve instrument performance; and include recommendations on areas where further improvements are needed

  15. Attitudes of the public about nuclear wastes

    International Nuclear Information System (INIS)

    Rankin, W.L.; Nealey, S.M.

    1978-01-01

    The disposal of nuclear wastes has become an important public issue in the past few years. In 1960, only a very small percentage of the American public questioned the safety of waste disposal methods, and no one opposed nuclear power for waste disposal reasons. By 1974, however, a slight majority of the public believed that the disposal of nuclear wastes was a serious problem associated with nuclear power, and from 1975 on, a small percentage of the public has opposed nuclear power for waste disposal reasons. More individuals believe that the technology is not available for acceptable waste management compared to the number of individuals who believe that the technology does exist. However, a majority of the public believe that modern technology can solve the waste disposal problem. Finally, nuclear technologists evaluate waste disposal problems differently from other groups. For instance, nuclear technologists believe that short-term safety is more important than long-term safety regarding waste disposal, while other groups, especially environmentalists, believe that long-term safety is more important than short-term safety. Nuclear technologists are willing to accept a higher level of waste management-related risk than other groups and evaluate waste disposal problems as being less severe than other societal problems

  16. Mechanical properties of nuclear waste glasses

    International Nuclear Information System (INIS)

    Connelly, A.J.; Hand, R.J.; Bingham, P.A.; Hyatt, N.C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  17. Technologies for destruction of long-lived radionuclides in high-level nuclear waste: Overview and requirements

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1993-01-01

    This paper, and this topical session on Nuclear Waste Minimization, Management and Remediation, focuses on two nuclear systems, and their associated technologies, that have the potential to address concerns surrounding long-lived radionuclides in high-level waste. Both systems offer technology applicable to HLW from present light-water reactors (LWR). Additionally these systems represent advanced nuclear power concepts that have important features associated with integrated management of wastes, long-term fuel supplies, and enhanced safety. The first system is the Integral Fast Reactor (IFR) concept. This system incorporates a metal-fueled fast reactor coupled with chemical separations based on pyroprocessing to produce power while simultaneously burning long-lived actinide waste. IFR applications include burning of actinides from current LWR spent fuel and energy production in a breeder environment. The second concept, Accelerator Transmutation of Waste (ATW), is based upon an accelerator-induced intense source of thermal neutrons and is aimed at destruction of long-lived actinides and fission products. This concept can be applied to long-lived radionuclides in spent fuel HLW as well as a future fission power source built around use of natural thorium or uranium as fuels coupled with concurrent waste destruction

  18. Treatment of animal wastes contaminated with radioisotopes

    International Nuclear Information System (INIS)

    Morikawa, Naotake

    1979-01-01

    With increase of isotope utilizations as tracers in medicine, pharmacy, agriculture, biology and others, the management of resultant organic waste liquids and animal wastes is becoming a major problem. For the animal wastes contaminated with radioisotopes, numbers of studies and tests showed that drying them fully and the subsequent suitable disposal would be the most feasible procedures. This new method is being carried out since last year, which will shortly take the place of the keeping in formalin. For the drying, two alternative processes in particular are being investigated. As the one, freeze-drying apparatuses consist of refrigerating and freeze-drying devices. As the other, microwave-drying apparatuses feature rapid dehydration. The following matters are described: problems emerged in the course of studies and test; the drying processes, i.e. freeze-drying and microwave-drying, and their respective characteristics; and views of the Nuclear Safety Bureau, Science and Technology Agency, on animal waste drying. (J.P.N.)

  19. Classification of low-level radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Stanford, R.E.L.

    1984-01-01

    The NRC regulation, 10 CFR Part 61, establishes three classes of wastes designated A, B, and C based on listed concentrations of specific nuclides. The NRC Branch Technical Position (BTP) relative to the required compliance program focused on extensive waste stream sampling and analysis as a means of compliance. To meet the above regulatory requirements, an engineering analysis approach for quantifying the concentrations and amounts of radionuclides of classification concern was developed as an alternative to an extensive and difficult waste sampling and analysis program. Essentially this methodology involves a material balance of radionuclides which for the most part originate in the reactor core and are transported to the waste streams by reactor coolants and whose concentration in the coolant is primarily a function of fuel performance. The use of scaling factors between readily measured key radionuclides and others required for classification have been published in Report AIF/NESP-027 entitled, Methodologies for Classification of Low-Level Radioactive Wastes from Nuclear Power Plants. Since then data from about 1000 samples on nuclide concentrations in various reactor waste streams from 65 units at 40 sites was collated, analyzed and evaluated to confirm the calculational methodology in AIF/NESP-027. In summary, the approach and results of the engineering analysis methodology were validated

  20. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad; El Amin, Mohamed F.; Sun, Shuyu

    2015-01-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since

  1. State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1992

    International Nuclear Information System (INIS)

    1992-01-01

    The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada's responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency's oversight responsibilities: (1) Assure that the health and safety of Nevada's citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository

  2. Effects on the environment of the dumping of nuclear wastes

    International Nuclear Information System (INIS)

    1990-07-01

    Nationally and internationally accepted procedures and technologies are available for the safe handling and disposal of radioactive wastes. Authorized waste disposal practices are designed to ensure that there will be no significant impacts on man and his environment. 'Dumping' of nuclear wastes may result in the elimination of one or more of the multibarriers of protection inherent in an effective radioactive waste management system, thereby increasing the risk of radiological exposure to man and his environment. Quantitative assessments of the degree of environmental contamination and of the resulting hazards to man depend on the specific conditions surrounding the 'uncontrolled disposal' of radioactive waste. These include the nature and activity level of the waste, the physical form of the waste, the package that the waste is contained in and the characteristics of the dumping site. Depending on the scenario envisaged, the consequences of 'uncontrolled disposal' could vary from being insignificant to a situation where there is a significant hazard to an exposed population group. International transactions involving nuclear wastes are taking place between countries on the basis of bilateral agreements and under strict regulatory supervision so that radioactive wastes are transferred safely from one controlled area to another. Such transactions may increase in the future with increased international co-operation in sharing common waste repositories. No evidence exists that confirms that transboundary dumping of radioactive waste has occurred. Investigation of alleged dumping of radioactive wastes by the International Atomic Energy Agency has revealed that the 'suspect wastes' did not contain radioactive material. 2 tabs

  3. Future Shock in Nuclear Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Frishman, Steve [Nevada Agency for Nuclear Projects, Carson City, NV (United States)

    2006-09-15

    The United States Environmental Protection Agency (EPA) astonished many in the high-level nuclear waste management community when it proposed, in August 2005, new Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada. The new standards set a compliance period of one million years for a Yucca Mountain high-level nuclear waste repository. The first 10,000 years after repository closure would be governed by a health-based individual dose limit of 15 millirems per year (0.15 mSv/year), with the remaining time period subject to a background-based individual dose limit of 350 millirems per year (3.5 mSv/year). EPA's proposed standards for a Yucca Mountain nuclear waste repository represent an astonishing break with principles embedded in regulatory policies for protection of the public from radiation effects imposed by activities such as generation of electricity from nuclear power reactors and storage and disposal of radioactive wastes.

  4. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  5. Contamination by trace elements at e-waste recycling sites in Bangalore, India.

    Science.gov (United States)

    Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2009-06-01

    The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.

  6. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    International Nuclear Information System (INIS)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions

  7. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  8. Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.

    Science.gov (United States)

    North, D Warner

    2013-01-01

    The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again. © 2012 Society for Risk Analysis.

  9. United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    Stewart, L.

    2004-01-01

    The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas

  10. NWTS program criteria for mined geologic disposal of nuclear waste: functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel

    International Nuclear Information System (INIS)

    1982-07-01

    The Department of Energy (DOE) has primary federal responsibility for the development and implementation of safe and environmentally acceptable nuclear waste disposal methods. Currently, the principal emphasis in the program is on emplacement of nuclear wastes in mined geologic repositories well beneath the earth's surface. A brief description of the mined geologic disposal system is provided. The National Waste Terminal Storage (NWTS) program was established under DOE's predecessor, the Energy Research and Development Administration, to provide facilities for the mined geologic disposal of radioactive wastes. The NWTS program includes both the development and the implementation of the technology necessary for designing, constructing, licensing, and operating repositories. The program does not include the management of processing radioactive wastes or of transporting the wastes to repositories. The NWTS-33 series, of which this document is a part, provides guidance for the NWTS program in the development and implementation of licensed mined geologic disposal systems for solidified high-level and transuranic (TRU) wastes. This document presents the functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel. A separate document to be developed, NWTS-33(4b), will present the requirements and criteria for waste packages for TRU wastes. The hierarchy and application of these requirements and criteria are discussed in Section 2.2

  11. Transuranic contaminated waste container characterization and data base. Revision I

    International Nuclear Information System (INIS)

    Kniazewycz, B.G.

    1980-05-01

    The Nuclear Regulatory Commission (NRC) is developing regulations governing the management, handling and disposal of transuranium (TRU) radioisotope contaminated wastes as part of the NRC's overall waste management program. In the development of such regulations, numerous subtasks have been identified which require completion before meaningful regulations can be proposed, their impact evaluated and the regulations implemented. This report was prepared to assist in the development of the technical data base necessary to support rule-making actions dealing with TRU-contaminated wastes. An earlier report presented the waste sources, characteristics and inventory of both Department of Energy (DOE) generated and commercially generated TRU waste. In this report a wide variety of waste sources as well as a large TRU inventory were identified. The purpose of this report is to identify the different packaging systems used and proposed for TRU waste and to document their characteristics. This document then serves as part of the data base necessary to complete preparation and initiate implementation of TRU waste container and packaging standards and criteria suitable for inclusion in the present TRU waste management program. It is the purpose of this report to serve as a working document which will be used as appropriate in the TRU Waste Management Program. This report, and those following, will be compatible not only in format, but also in reference material and direction

  12. Current high-level waste solidification technology

    International Nuclear Information System (INIS)

    Bonner, W.F.; Ross, W.A.

    1976-01-01

    Technology has been developed in the U.S. and abroad for solidification of high-level waste from nuclear power production. Several processes have been demonstrated with actual radioactive waste and are now being prepared for use in the commercial nuclear industry. Conversion of the waste to a glass form is favored because of its high degree of nondispersibility and safety

  13. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms

    International Nuclear Information System (INIS)

    Barber, D. B.; Singh, D.; Strain, R. V.; Tlustochowicz, M.; Wagh, A. S.

    1998-01-01

    The technology of room-temperature-setting phosphate ceramics or Ceramicretetrademark technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicretetrademark technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR number s ign AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactions between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicretetrademark process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicretetrademark technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility

  14. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  15. General procedure to characterize hazardous waste contaminated with radionuclides

    International Nuclear Information System (INIS)

    Vokal, A.; Svoboda, K.; Necasova, M.

    2002-04-01

    The report is structured as follows: Overview of current status of characterization of hazardous wastes contaminated with radionuclides (HWCTR) in the Czech Republic (Legislative aspects; Categorization of HWCwR; Overview of HWCwR emerging from workplaces handling ionizing radiation sources; Mixed waste management in the Czech Republic); General procedure to characterized wastes of the HWCwR type (Information needed from the waste producer; Waste analysis plan - description of waste treatment facilities, verification of wastes, selection of waste parameters followed, selection of sampling method, selection of test methods, selection of frequency of analyses; Radiation protection plan; Non-destructive methods of verification of waste - radiography/tomography, dosimetric inspection, measuring instrumentation, methods usable for the determination of volume and surface activities of materials; Non-destructive invasive methods - internal pressure measurement and gas analysis, endoscopic examination, visual inspection; Destructive methods - sampling, current equipment at Nuclear Research Institute Rez; Identification of hazardous components in waste - chemical screening of mixed wastes; Assessment of immobilization waste matrices; Assessment of packaging; Safety analyses; QA and QC). (P.A.)

  16. Development of performance assessment methodology for nuclear waste isolation in geologic media

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Cranwell, R.M.; Davis, P.A.

    1985-01-01

    The burial of nuclear wastes in deep geologic formations as a means for their disposal is an issue of significant technical and social impact. The analysis of the processes involved can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are gound-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the US Nuclear Regulatory Commission. The approach followed consists of a description of the overall system (waste, facility, and site), scenario selection and screening, consequence modeling (source term, ground-water flow, radionuclide transport, biosphere transport, and health effects), and uncertainty and sensitivity analysis

  17. Levels for the specific activity at disposing low-level contaminated municipal wastes

    International Nuclear Information System (INIS)

    Poschner, J.; Schaller, G.

    1993-12-01

    Using radioecological models, nuclide-specific ''basic values'' were established for the specific activity of radioactive contaminated waste. These basic values were determined in order to avoid dose equivalents of more than 10 μSv/a (de minimis concept) when disposing the waste in conventional waste deposits or burning it in incineration plants. The basic values vary within 16 orders of magnitude, ranging between 4.3E-02 Bq/g for Cm-250 and 2.2E+14 Bq/g for Po-212. About 82% of the basic values are between 1 Bq/g und 1000 Bq/g. The critical exposure for most of the radionuclides is that from direct radiation or inhalation at the slag-deposit. For 54% of the radionuclides the basic value for the specific activity of waste is lower at least by a factor of 10 than the 10 -4 -fold value per gram of the release limit (German Radiation Protection Ordinance). Appropriate nuclide-specific and dose-related limits were derived from these basic values. The respective limits are ranging between 1E-01 Bq/g and 1E+07 Bq/g. About 95% of the limits are between 1 Bq/g and 1000 Bq/g. (orig./HP) [de

  18. Remediation of radiocesium-contaminated liquid waste, soil, and ash: a mini review since the Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Ding, Dahu; Zhang, Zhenya; Lei, Zhongfang; Yang, Yingnan; Cai, Tianming

    2016-02-01

    The radiation contamination after the Fukushima Daiichi Nuclear Power Plant accident attracts considerable concern all over the world. Many countries, areas, and oceans are greatly affected by the emergency situation other than Japan. An effective remediation strategy is in a highly urgent demand. Though plenty of works have been carried out, progressive achievements have not yet been well summarized. Here, we review the recent advances on the remediation of radiocesium-contaminated liquid waste, soil, and ash. The overview of the radiation contamination is firstly given. Afterwards, the current remediation strategies are critically reviewed in terms of the environmental medium. Special attentions are paid on the adsorption/ion exchange and electrically switched ion exchange methods. Finally, the present review outlines the possible works to do for the large-scale application of the novel remediation strategies.

  19. Remediation of Soil at Nuclear Sites

    International Nuclear Information System (INIS)

    Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

    2000-01-01

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

  20. The management of intermediate level wastes in Sweden

    International Nuclear Information System (INIS)

    Hultgren, Aa.; Thegerstroem, C.

    1980-01-01

    A brief overview of current practices and research in Sweden on the management of intermediate level wastes is given. Intermediate level wastes include spent resins, filters and core components from the six power reactors in operation; radioactive wastes from nuclear fuel development at Studsvik and from non-nuclear applications are a minor contribution. (Auth.)

  1. Automated methodology for estimating waste streams generated from decommissioning contaminated facilities

    International Nuclear Information System (INIS)

    Toth, J.J.; King, D.A.; Humphreys, K.K.; Haffner, D.R.

    1994-01-01

    As part of the DOE Programmatic Environmental Impact Statement (PEIS), a viable way to determine aggregate waste volumes, cost, and direct labor hours for decommissioning and decontaminating facilities is required. In this paper, a methodology is provided for determining waste streams, cost and direct labor hours from remediation of contaminated facilities. The method is developed utilizing U.S. facility remediation data and information from several decommissioning programs, including reactor decommissioning projects. The method provides for rapid, consistent analysis for many facility types. Three remediation scenarios are considered for facility D ampersand D: unrestricted land use, semi-restricted land use, and restricted land use. Unrestricted land use involves removing radioactive components, decontaminating the building surfaces, and demolishing the remaining structure. Semi-restricted land use involves removing transuranic contamination and immobilizing the contamination on-site. Restricted land use involves removing the transuranic contamination and leaving the building standing. In both semi-restricted and restricted land use scenarios, verification of containment with environmental monitoring is required. To use the methodology, facilities are placed in a building category depending upon the level of contamination, construction design, and function of the building. Unit volume and unit area waste generation factors are used to calculate waste volumes and estimate the amount of waste generated in each of the following classifications: low-level, transuranic, and hazardous waste. Unit factors for cost and labor hours are also applied to the result to estimate D ampersand D cost and labor hours

  2. Volume reduction by crystallization of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Grant, D.C.; Murray, A.P.

    1982-01-01

    Low-level radioactive wastes containing boric acid, borax, or sodium sulfate, with radioactive contaminants, are generated during the operation of nuclear power plants. These wastes require disposal, and as such, it is economically and environmentally desirable to reduce their volume. Crystallization was examined in the laboratory as a means of accomplishing this. The crystallizer was operated in both of two modes: evaporative cooling and total evaporation. A 12 wt% boric acid waste feed was concentrated to a 40 to 45 wt% slurry in both modes of operation. Using pure boric acid, a slurry containing over 60 wt% was obtained. An 18.5 wt% borax waste feed was concentrated to 50 wt% in the total evaporative mode and 70 wt% in the evaporatively cooled mode. A 22 wt% sodium sulfate feed was concentrated to a 78 wt% slurry in the total evaporative mode. For all of the feeds, this represents a 4- to 5-fold volume reduction by the crystallizer

  3. Management of low- and intermediate level waste in Sweden

    International Nuclear Information System (INIS)

    Carlsson, Jan

    1999-01-01

    This presentation describes how the management of radioactive waste is organised in Sweden, where Swedish law places the responsibility for such management with the waste generators. The four nuclear utilities have formed a joint company, the Swedish Nuclear Fuel and Waste Management Co., SKB, to handle the nuclear waste. The Swedish waste management system includes a final repository for short-lived low level waste (LLW) and intermediate level waste (ILW) and an interim storage facility for spent nuclear fuel and long-lived waste. Some very low-level, short-lived waste is disposed of in shallow-land repositories at the nuclear power stations. The final repository is situated in underground rock caverns close to the Forsmark nuclear power plant. The rock caverns have been excavated to a depth of more than 50 m beneath the Baltic Sea floor. LLW is compacted into bales or packaged in metal drums or cases that can be transported in standard freight containers. Radioactive materials used in other sectors such as hospitals are collected and packaged at Studsvik and later deposited in the deep repository. ILW is mixed with cement or bitumen and cast in cement or steel boxes or metal drums. The final repository has different chambers for different kinds of waste. The environmental impact of the repository is negligible. Because Sweden's nuclear power plants and the SKB facilities all are located on the coast, all the waste transport can be conducted by sea. The costs of managing and disposing of Sweden's nuclear waste are small compared to the price of electricity

  4. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide timely and concise information on radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc)

  5. Field testing an OREX reg-sign based open-quotes point of generationclose quotes low-level radioactive waste reduction program at FP ampersand L's St. Lucie Plant

    International Nuclear Information System (INIS)

    Payne, K.; Haynes, B.

    1996-01-01

    Nuclear power facilities, both commercial and government operated, generate material called Dry Active Waste (DAW). DAW is a by-product of maintenance and operation of the power systems which contain radioactive materials. DAW can be any material contaminated with radioactive particles as long as it is not a fluid, typically: paper, cardboard, wood, plastics, cloth, and any other solid which is contaminated and determined to be dry. DAW is generated when any material is exposed to loose radioactive particles and subsequently becomes contaminated. In the United States, once a material is contaminated it must be treated as radioactive waste and disposed of in accordance with the requirements of Title 10 of the Code of Federal Regulations. Problems facing all commercial and non-commercial nuclear facilities are escalating costs of processing DAW and volumetric reduction of the DAW generated. Currently, approximately 85% of all DAW generated at a typical facility is comprised of anti-contamination clothing and protective barrier materials. Facilities that generate low-level radioactive waste need to dramatically reduce their waste volumes. This curtailment is required for several reasons: the number of radioactive waste repositories now accepting new waste is limited; the current cost of burial at an operating dump site is significant. Costs can be as high as $4,000 for a single 55 gallon drum; the cost of burial is constantly increasing; onsite storage of low-level radioactive waste is costly and results in a burial fee at plant decommissioning

  6. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  7. Transuranic contaminated waste functional definition and implementation

    International Nuclear Information System (INIS)

    Kniazewycz, B.G.

    1980-03-01

    The purpose of this report is to examine the problem(s) of TRU waste classification and to document the development of an easy-to-apply standard(s) to determine whether or not this waste package should be emplaced in a geologic repository for final disposition. Transuranic wastes are especially significant because they have long half-lives and some are rather radiotoxic. Transuranic radionuclides are primarily produced by single or multiple neutron capture by U-238 in fuel elements during the operation of a nuclear reactor. Reprocessing of spent fuel elements attempts to remove plutonium, but since the separation is not complete, the resulting high-activity liquids still contain some plutonium as well as other transuranics. Likewise, transuranic contamination of low-activity wastes also occurs when the transuranic materials are handled or processed, which is primarily at federal facilities involved in R and D and nuclear weapons production. Transuranics are persistent in the environment and, as a general rule, are strongly retained by soils. They are not easily transported through most food chains, although some reconcentration does take place in the aquatic food chain. They pose no special biological hazard to humans upon ingestion because they are weakly absorbed from the gastrointestional tract. A greater hazard results from inhalation since they behave like normal dust and fractionate accordingly

  8. Radiochemical methodologies applied to analytical characterization of low and intermediate level wastes from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Roberto Pellacani G.; Júnior, Aluísio Souza R.; Kastner, Geraldo F.; Temba, Eliane S.C.; Oliveira, Thiago C. de; Amaral, Ângela M.; Franco, Milton B., E-mail: rpgm@cdtn.br, E-mail: reisas@cdtn.br, E-mail: gfk@cdtn.br, E-mail: esct@cdtn.br, E-mail: tco@cdtn.br, E-mail: ama@cdtn.br, E-mail: francom@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The aim of this work is to present radiochemical methodologies developed at CDTN/CNEN in order to answer a program for isotopic inventory of radioactive wastes from Brazilian Nuclear Power Plants. In this program some radionuclides, {sup 3}H, {sup 14}C, {sup 55}Fe, {sup 59}Ni, {sup 63}Ni, {sup 90}Sr, {sup 93}Zr, {sup 94}Nb, {sup 99}Tc, {sup 129}I, {sup 235}U, {sup 238}U, {sup 238}Pu, {sup 239}+{sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 241}Am, {sup 242}Cm e {sup 243}+{sup 244}Cm, were determined in Low Level Wastes (LLW) and Intermediate Level Wastes (ILW) and a protocol of analytical methodologies based on radiochemical separation steps and spectrometric and nuclear techniques was established. (author)

  9. Remote installation of risers on underground nuclear waste storage tanks

    International Nuclear Information System (INIS)

    Jackson, J.P.; Gessner, R.F.

    1988-03-01

    The West Valley Demonstration Project was established to solidify 2120 m 3 (560,000) gallons of high-level nuclear waste generated during six years of commercial nuclear fuel reprocessing. This liquid will be processed to remove radioactive elements which, with the remaining sludge, will be combined with glass formers and be converted into borosilicate glass. Risers were installed on the high-level tank for installation of pumps which will be used to remove the liquid and sludge. The extensive use of remote technology was required to install the risers and to minimize operator exposure to high levels of radiation and contamination. The riser installation required remotely: drilling through two feet of concrete shielding; installing pump access pipes which are welded to the tank top; and cutting holes in tanks located 3658 mm (12) feet below ground. These operations were successfully completed 13 times without exposing personnel to high-level radiation or contamination. Specially designed remote equipment was developed for each step of this operation. Extensive operator training in the use of this equipment was performed on a tank with low radiation prior to work on the high-level tank. This paper discusses the application of remote technology that assured a quality job was safely accomplished. 3 refs., 18 figs., 2 tabs

  10. Treatment of heterogeneous mixed wastes: Enzyme degradation of cellulosic materials contaminated with hazardous organics and toxic and radioactive metals

    International Nuclear Information System (INIS)

    Vanderberg, L.A.; Foreman, T.M.; Attrep, M. Jr.; Brainard, J.R.; Sauer, N.

    1999-01-01

    The redirection and downsizing of the US Department of Energy's nuclear weapons complex requires that many facilities be decontaminated and decommissioned (D and D). At Los Alamos National Laboratory, much of the low-level radioactive, mixed, and hazardous/chemical waste volume handled by waste management operations was produced by D and D and environmental restoration activities. A combination of technologies--air stripping and biodegradation of volatile organics, enzymatic digestion of cellulosics, and metal ion extraction--was effective in treating a radiologically contaminated heterogeneous paint-stripping waste. Treatment of VOCs using a modified bioreactor avoided radioactive contamination of byproduct biomass and inhibition of biodegradation by toxic metal ions in the waste. Cellulase digestion of bulk cellulose minimized the final solid waste volume by 80%. Moreover, the residue passed TCLP for RCRA metals. Hazardous metals and radioactivity in byproduct sugar solutions were removed using polymer filtration, which employs a combination of water-soluble chelating polymers and ultrafiltration to separate and concentrate metal contaminants. Polymer filtration was used to concentrate RCRA metals and radioactivity into <5% of the original wastewater volume. Permeate solutions had no detectable radioactivity and were below RCRA-allowable discharge limits for Pb and Cr

  11. Laboratory development of methods for centralized treatment of liquid low-level waste at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Arnold, W.D.; Bostick, D.T.; Burgess, M.W.; Taylor, P.A.; Perona, J.J.; Kent, T.E.

    1994-10-01

    Improved centralized treatment methods are needed in the management of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). LLLW, which usually contains radioactive contaminants at concentrations up to millicurie-per-liter levels, has accumulated in underground storage tanks for over 10 years and has reached a volume of over 350,000 gal. These wastes have been collected since 1984 and are a complex mixture of wastes from past nuclear energy research activities. The waste is a highly alkaline 4-5 M NaNO 3 solution with smaller amounts of other salts. This type of waste will continue to be generated as a consequence of future ORNL research programs. Future LLLW (referred to as newly generated LLLW or NGLLLW) is expected to a highly alkaline solution of sodium carbonate and sodium hydroxide with a smaller concentration of sodium nitrate. New treatment facilities are needed to improve the manner in which these wastes are managed. These facilities must be capable of separating and reducing the volume of radioactive contaminants to small stable waste forms. Treated liquids must meet criteria for either discharge to the environment or solidification for onsite disposal. Laboratory testing was performed using simulated waste solutions prepared using the available characterization information as a basis. Testing was conducted to evaluate various methods for selective removal of the major contaminants. The major contaminants requiring removal from Melton Valley Storage Tank liquids are 90 Sr and 137 Cs. Principal contaminants in NGLLLW are 9O Sr, 137 Cs, and 106 Ru. Strontium removal testing began with literature studies and scoping tests with several ion-exchange materials and sorbents

  12. Nuclear waste repository research at the micro- to nanoscale

    Science.gov (United States)

    Schäfer, T.; Denecke, M. A.

    2010-04-01

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  13. Evaluation of ultrafiltration membranes for treating low-level radioactive contaminated liquid waste

    International Nuclear Information System (INIS)

    Koenst, J.W.; Roberts, R.C.

    1978-01-01

    A series of experiments were performed on Waste Disposal Facility (WD) influent using Romicon hollow fiber ultrafiltration modules with molecular weight cutoffs ranging from 2000 to 80,000. The rejection of conductivity was low in most cases. The rejection of radioactivity ranged from 90 to 98%, depending on the membrane type and on the feed concentration. Typical product activity ranged from 7 to 100 dis/min/ml of alpha radiation. Experiments were also performed on alpha-contaminated laundry wastewater. Results ranged from 98 to >99.8%, depending on the membrane type. This yielded a product concentration of less than 0.1 dis/min/ml of alpha radiation. Tests on PP-Building decontamination water yielded rejections of 85 to 88% alpha radiation depending on the membrane type. These experiments show that the ability to remove radioactivity by membrane is a function of the contents of the waste stream because the radioactivity in the wastewater is in various forms: ionic, polymeric, colloidal, and absorbed onto suspended solids. Although removal of suspended or colloidal material is very high, removal of ionic material is not as effective. Alpha-contaminated laundry wastewater proved to be the easiest to decontaminate, whereas the low-level PP-Building decontamination water proved to be the most difficult to decontaminate. Decontamination of the WD influent, a combined waste stream, varied considerably from day to day because of its constantly changing makeup. The WD influent was also treated with various substances, such as polyelectrolytes, complexing agents, and coagulants, to determine if these additives would aid in the removal of radioactive material from the various wastewaters by complexing the ionic species. At the present time, none of the additives evaluated has had much effect; but experiments are continuing

  14. Swedish nuclear waste efforts

    International Nuclear Information System (INIS)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981

  15. Allowable residual contamination levels for decommissioning. Part 2. A summary of example results

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1985-01-01

    This paper contains a description of the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for decommissioning facilities in the 100 Areas of the Hanford Site. ARCL results are presented both for surface contamination remaining in facilities (in dpm/100 cm 2 ) and for unconfined surface and confined subsurface soil conditions (in pCi/g). Two confined soil conditions are considered: contamination at depths between 1 and 4 m, and contamination at depths greater than or equal to 5 m. A set of worksheets are discussed for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations, to consider the impacts of radioactive decay, and to predict instrument responses. Finally, a comparison is made between the unrestricted release ARCL values for the 100 Area facilities and existing decommissioning and land disposal regulations. For surface contamination, the comparison shows good agreement for a selected annual dose limit. For soil contamination, the comparison shows good agreement if reasonable modification factors are applied to account for the differences in modeling soil contamination and licensed low-level waste. 6 references, 1 figures, 4 tables

  16. Waste Minimization Policy at the Romanian Nuclear Power Plant

    International Nuclear Information System (INIS)

    Andrei, V.; Daian, I.

    2002-01-01

    The radioactive waste management system at Cernavoda Nuclear Power Plant (NPP) in Romania was designed to maintain acceptable levels of safety for workers and to protect human health and the environment from exposure to unacceptable levels of radiation. In accordance with terminology of the International Atomic Energy Agency (IAEA), this system consists of the ''pretreatment'' of solid and organic liquid radioactive waste, which may include part or all of the following activities: collection, handling, volume reduction (by an in-drum compactor, if appropriate), and storage. Gaseous and aqueous liquid wastes are managed according to the ''dilute and discharge'' strategy. Taking into account the fact that treatment/conditioning and disposal technologies are still not established, waste minimization at the source is a priority environmental management objective, while waste minimization at the disposal stage is presently just a theoretical requirement for future adopted technologies . The necessary operational and maintenance procedures are in place at Cernavoda to minimize the production and contamination of waste. Administrative and technical measures are established to minimize waste volumes. Thus, an annual environmental target of a maximum 30 m3 of radioactive waste volume arising from operation and maintenance has been established. Within the first five years of operations at Cernavoda NPP, this target has been met. The successful implementation of the waste minimization policy has been accompanied by a cost reduction while the occupational doses for plant workers have been maintained at as low as reasonably practicable levels. This paper will describe key features of the waste management system along with the actual experience that has been realized with respect to minimizing the waste volumes at the Cernavoda NPP

  17. Process for solidifying high-level nuclear waste

    Science.gov (United States)

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  18. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2011-01-01

    Due to the use of nuclear energy about 17.000 t (27.000 m 3 ) of high level waste and about 300.000 m 3 of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear graphite

  19. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M; Neumeier, S; Bosbach, D [eds.

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  20. Low-waste technology of prevention, decontamination and localization of radioactive contamination

    International Nuclear Information System (INIS)

    Kizhnerov, L. V.; Konstantinov, Ye. A.; Prokopenko, V. A.; Sorokin, N. M.

    1997-01-01

    The report presents the results of research in developing a low-waste technology of prevention, decontamination and localization of radioactive contamination founded on the of easily removed protective polymeric coating based on water and alcohol latexes and dispersion of polymers with special activating additives. The developed technology provides for the reduction of weakly fixed radioactive contamination of non-painted and painted surfaces to admissible levels (as a rule), it securely prevents and localizes contamination and does not generate secondary liquid radioactive wastes

  1. Fabrication and closure development of corrosion resistant containers for Nevada's Yucca Mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.; Domian, H.A.; LaCount, D.F.; Robitz, E.S.; Stein, K.O.

    1989-11-01

    US Congress and the President have determined that the Yucca Mountain site in Nevada is to be characterized to determine its suitability for construction of the first US high-level nuclear waste repository. Work in connection with this site is carried out within the Yucca Mountain Project (YMP). Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing, developing, and projecting the performance of the waste package for the permanent storage of high-level nuclear waste. Babcock ampersand Wilcox (B ampersand W) is involved with the YMP as a subcontractor to LLNL. B ampersand W's role is to recommend and demonstrate a method for fabricating the metallic waste container and a method for performing the final closure of the container after it has been filled with waste. Various fabrication and closure methods are under consideration for the production of containers. This paper presents progress to date in identifying and evaluating the candidate manufacturing processes. 2 refs., 2 figs., 4 tabs

  2. Nuclear waste

    International Nuclear Information System (INIS)

    1992-05-01

    The Nuclear Waste Policy Act of 1982, as amended in 1987, directed the Secretary of Energy to, among other things, investigate Yucca Mountain, Nevada, as a potential site for permanently disposing of highly radioactive wastes in an underground repository. In April 1991, the authors testified on Yucca Mountain project expenditures before your Subcommittee. Because of the significance of the authors findings regrading DOE's program management and expenditures, you asked the authors to continue reviewing program expenditures in depth. As agreed with your office, the authors reviewed the expenditures of project funds made available to the Department of Energy's (DOE) Lawrence Livermore National Laboratory, which is the lead project contractor for developing a nuclear waste package that wold be used for disposing of nuclear waste at Yucca Mountain. This report discusses the laboratory's use of nuclear waste funds to support independent research projects and to manage Yucca Mountain project activities. It also discusses the laboratory's project contracting practices

  3. Nuclear waste

    International Nuclear Information System (INIS)

    Pligt, J. van der

    1989-01-01

    This chapter present a brief overview of the current situation of siting radioactive wastes. This is followed by an overview of various psychological approaches attempting to analyse public reactions to nuclear facilities. It will be argued that public reactions to nuclear waste factilities must be seen in the context of more general attitudes toward nuclear energy. The latter are not only based upon perceptions of the health and environmental risks but are built on values, and sets of attributes which need not be similar to the representations o the experts and policy-makers. The issue of siting nuclear waste facilities is also embedded in a wider moral and political domain. This is illustrated by the importance of equity issues in siting radioactive wastes. In the last section, the implications of the present line of argument for risk communication and public participation in decisions about siting radioactive wastes will be briefly discussed. (author). 49 refs

  4. Levels and risk factors of antimony contamination in human hair from an electronic waste recycling area, Guiyu, China.

    Science.gov (United States)

    Huang, Yue; Ni, Wenqing; Chen, Yaowen; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2015-05-01

    The primitive electronic waste (e-waste) recycling has brought a series of environmental pollutants in Guiyu, China. Antimony is one of the important metal contaminants and has aroused the global concerns recently. We aimed to investigate concentrations of antimony in human hair from Guiyu and compared them with those from a control area where no e-waste recycling exists, and assessed the potential risk factors. A total of 205 human hair samples from Guiyu and 80 samples from Jinping were collected for analysis. All volunteers were asked to complete a questionnaire including socio-demographic characteristics and other possible factors related to hair antimony exposure. The concentrations of hair antimony were analyzed using atomic absorption spectrophotometer. Our results indicated that the level of hair antimony in volunteers from Guiyu (median, 160.78; range, 6.99-4412.59 ng/g) was significantly higher than those from Jinping (median, 61.74; range, 2.98-628.43 ng/g). The residents who engaged in e-waste recycling activities in Guiyu had higher hair antimony concentrations than others (P recycling. Multiple stepwise regression analysis indicated that hair antimony concentrations were associated with education level (β = -0.064), the time of residence in Guiyu (β = 0.112), living house also served as e-waste workshop (β = 0.099), the work related to e-waste (β = 0.169), and smoking (β = 0.018). The elevated hair antimony concentrations implied that the residents in Guiyu might be at high risk of antimony contamination, especially the e-waste recycling workers. Work related to e-waste recycling activities and long-time residence in Guiyu contributed to the high hair antimony exposure.

  5. Radioactive waste management in the VS military nuclear industry

    International Nuclear Information System (INIS)

    Kobal'chuk, O.V.; Kruglov, A.K.; Sokolova, I.D.; Smirnov, Yu.V.

    1989-01-01

    Organization and plans of radioactive waste management in the US military nuclear industry, determining transition from the policy of temporal waste storage to their final and safe disposal are presented. Programs of long-term management of high-level, transuranium and low-level wastes, the problems of the work financing and the structure of management activities related to the radioactive waste processing military nuclear industry enterprises are considered

  6. Low-level radioactive waste research program plan

    International Nuclear Information System (INIS)

    O'Donnell, E.; Lambert, J.

    1989-11-01

    The Waste Management Branch, Division of Engineering, Office of Nuclear Regulatory Research, has developed a strategy for conducting research on issues of concern to the US Nuclear Regulatory Commission (NRC) in its efforts to ensure safe disposal of low-level radioactive waste (LLW). The resulting LLW research program plan provides an integrated framework for planning the LLW research program to ensure that the program and its products are responsive and timely for use in NRC's LLW regulatory program. The plan discusses technical and scientific issues and uncertainties associated with the disposal of LLW, presents programmatic goals and objectives for resolving them, establishes a long-term strategy for conducting the confirmatory and investigative research needed to meet these goals and objectives, and includes schedules and milestones for completing the research. Areas identified for investigation include waste form and other material concerns, failure mechanisms and radionuclide releases, engineered barrier performance, site characterization and monitoring, and performance assessment. The plan proposes projects that (1) analyze and test actual LLW and solidified LLW under laboratory and field conditions to determine leach rates and radionuclide releases, (2) examine the short- and long-term performance of concrete-enhanced LLW burial structures and high-integrity containers, and (3) attempt to predict water movement and contaminant transport through low permeability saturated media and unsaturated porous media. 4 figs., 3 tabs

  7. Sources to environmental radioactive contamination from nuclear activities in the former USSR

    International Nuclear Information System (INIS)

    Polikarpov, G.G.; Aarkrog, A.

    1993-01-01

    There is three major sites of radioactive environmental contamination in the former USSR: the Cheliabinsk region in the Urals, Chernobyl NPP in Ukraine and Novaya Zemlya in the Arctic Ocean. The first mentioned is the most important with regard to local (potential) contamination, the last one dominates the global contamination. A number of sites and sources are less well known with regard to environmental contamination. This is thus the case for the plutonium production factories at Tomsk and Dodonovo. More information on nuclear reactors in lost or dumped submarines is also needed. From a global point of view reliable assessment of the radioactive run-off from land and deposits of nuclear waste in the Arctic Ocean are in particular pertinent

  8. Japanese Nuclear Waste Avatars

    International Nuclear Information System (INIS)

    Wynn Kirby, Peter; Stier, Daniel

    2016-01-01

    Japan's cataclysmic 2011 tsunami has become a vast, unwanted experiment in waste management. The seismic event and resulting Fukushima Daiichi radiation crisis created an awkwardly fortuitous rupture in Japanese nuclear practice that exposed the lax and problematic management of nuclear waste in this country to broader scrutiny, as well as distortions in its very conception. This article looks at the full spectrum of nuclear waste in post-tsunami Japan, from spent fuel rods to contorted reactor containment, and the ways that nuclear waste mirrors or diverges from more quotidian waste practices in Japanese culture. Significantly, the Fukushima Daiichi plant itself and its erstwhile banal surroundings have themselves transmuted into an unwieldy form of nuclear waste. The immense challenges of the Fukushima Daiichi site have stimulated a series of on-the-fly innovations that furnish perspective on more everyday nuclear waste practices in the industry. While some HLW can be reprocessed for limited use in today's reactors, it cannot be ignored that much of Japan's nuclear waste is simply converted into other forms of waste. In a society that has long been fixated on segregating filth, maintaining (imagined) purity, and managing proximity to pollution, the specter of nuclear waste looms over contemporary Japan and its ongoing debates over resources, risk, and Japanese nuclear identity itself

  9. Legal and judicial perspectives on the disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Muntzing, L.M.

    1985-01-01

    Nuclear Waste Policy Act of 1982 creates a maze of legal requirements that are complex and subject to differing interpretations. The intervention of the courts should be anticipated as varying interests dispute the correct path through the maze to high-level waste disposal. A significant number of legal issues and unsettled questions exist that will need to be resolved. The challenge will be to minimize the delays that legal conflicts can produce. This can be helped by resolving uncertainties and conflicts early before they are on the critical path or negotiating resolutions, normally a difficult and costly endeavor

  10. Recent Advances in Low-Level Nuclear Measurements at the CEA

    International Nuclear Information System (INIS)

    Mahe, C.; Lamadie, F.; Le Goaller, C.

    2009-01-01

    For several years the CEA has been performing nuclear measurements at different stages of decommissioning projects. The characterization tools initially developed for high-level radioactive waste analysis must be adapted to a new area of application: low-level measurements. Recent technical improvements in gamma imaging, gamma spectrometry detectors, and data analysis make it possible to provide relevant radiological data for waste management, as well as to develop robust and optimized decommissioning scenarios from the initial dose rate mapping to the final declared activity. These techniques have been implemented at various nuclear sites for both trial measurement campaigns and expert investigations to localize residual contamination, to identify the radioelements and to provide an accurate estimate of the declarable activity. Different types of measurements and devices have been used: gamma cameras, coded aperture techniques, alpha imaging prototypes, gamma spectrometry detectors (CdZnTe, HPGe, NaI, and LaBr 3 ), dose rate cartography, and calculation codes (Mercure, MCNP, etc.), all of which provide complementary data for radioactive waste categorization. This paper describes the latest developments and methods deployed on decommissioning projects focusing on low-level in situ applications. Waste drum characterization and in situ glove box measurements are discussed and the technologies and performance of gamma imaging systems, gamma spectrometry detectors, calculation codes and software are described. The paper concludes with a review of future developments and tests necessary for these applications. (authors)

  11. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  12. Glass: a candidate engineered material for management of high level nuclear waste

    International Nuclear Information System (INIS)

    Mishra, R.K.; Kaushik, C.P.

    2011-01-01

    While the commercial importance of glass is generally recognized, a few people are aware of extremely wide range of glass formulations that can be made and of the versatility of this engineered material. Some of the recent developments in the field of glass leading to various technological applications include glass fiber reinforcement of cement to give new building materials, substrates for microelectronics circuitry in form of semiconducting glasses, nuclear waste immobilization and specific medical applications. The present paper covers fundamental understanding of glass structure and its application for immobilization of high level radioactive liquid waste. High level radioactive liquid waste (HLW) arising during reprocessing of spent fuel are immobilized in sodium borosilicate glass matrix developed indigenously. Glass compositions are modified according to the composition of HLW to meet the criteria of desirable properties in terms. These glass matrices have been characterized for different properties like homogeneity, chemical durability, thermal stability and radiation stability. (author)

  13. Questioning nuclear waste substitution: a case study.

    Science.gov (United States)

    Marshall, Alan

    2007-03-01

    This article looks at the ethical quandaries, and their social and political context, which emerge as a result of international nuclear waste substitution. In particular it addresses the dilemmas inherent within the proposed return of nuclear waste owned by Japanese nuclear companies and currently stored in the United Kingdom. The UK company responsible for this waste, British Nuclear Fuels Limited (BNFL), wish to substitute this high volume intermediate-level Japanese-owned radioactive waste for a much lower volume of much more highly radioactive waste. Special focus is given to ethical problems that they, and the UK government, have not wished to address as they move forward with waste substitution. The conclusion is that waste substitution can only be considered an ethical practice if a set of moderating conditions are observed by all parties. These conditions are listed and, as of yet, they are not being observed.

  14. Public concerns and choices regarding nuclear-waste repositories

    International Nuclear Information System (INIS)

    Rankin, W.L.; Nealey, S.M.

    1981-06-01

    Survey research on nuclear power issues conducted in the late 1970's has determined that nuclear waste management is now considered to be one of the most important nuclear power issues both by the US public and by key leadership groups. The purpose of this research was to determine the importance placed on specific issues associated with high-level waste disposal. In addition, policy option choices were asked regarding the siting of both low-level and high-level nuclear waste repositories. A purposive sampling strategy was used to select six groups of respondents. Averaged across the six respondent groups, the leakage of liquid wastes from storage tanks was seen as the most important high-level waste issue. There was also general agreement that the issue regarding water entering the final repository and carrying radioactive wastes away was second in importance. Overall, the third most important issue was the corrosion of the metal containers used in the high-level waste repository. There was general agreement among groups that the fourth most important issue was reducing safety to cut costs. The fifth most important issue was radioactive waste transportation accidents. Overall, the issues ranked sixth and seventh were, respectively, workers' safety and earthquakes damaging the repository and releasing radioactivity. The eighth most important issue, overall, was regarding explosions in the repository from too much radioactivity, which is something that is not possible. There was general agreement across all six respondent groups that the two least important issues involved people accidentally digging into the site and the issue that the repository might cost too much and would therefore raise electricity bills. These data indicate that the concerns of nuclear waste technologists and other public groups do not always overlap

  15. Overview of the US program for developing a waste disposal system for spent nuclear fuel and high-level waste

    International Nuclear Information System (INIS)

    Kay, C.E.

    1988-01-01

    Safe disposal of spent nuclear fuel and radioactive high-level waste (HLW) has been a matter of national concern ever since the first US civilian nuclear reactor began generating electricity in 1957. Based on current projections of commercial generating capacity, by the turn of the century, there will be >40,000 tonne of spent fuel in the Untied States. In addition to commercial spent fuel, defense HLW is generated in the United States and currently stored at three US Department of Energy (DOE) sites: The Nuclear Waste Policy Amendments Act of 1987 provided for financial incentives to host a repository or a monitored retrievable storage (MRS) facility; mandated the areas in which DOE's siting efforts should concentrate (Yucca Mountain, Nevada); required termination of site-specific activities at other sites; required a resisting process for an MRS facility, which DOE had proposed as an integral part of the waste disposal system; terminated all activities for identifying candidates for a second repository; established an 11-member Nuclear Waste Technical Review Board; established a three-member MRS commission to be appointed by heads of the US Senate and House; directed the President to appoint a negotiator to seek a state or Indian tribe willing to host a repository or MRS facility at a suitable site and to negotiate terms and conditions under which the state or tribe would be willing to host such a facility; and amended, adjusted, or established other requirements contained in the 1982 law

  16. The safety and environmental impact of nuclear wastes

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2001-01-01

    Radioactive matters were discovered in 1989. Exploitation and using of nuclear energy and nuclear technologies bring mankind huge benefits, but the disposal of radioactive wastes is becoming one of the safety and environmental problems. The author describes six issues related to nuclear wastes. They are as follows: (1) The origin and characteristics of the nuclear wastes; (2) The principles of management of nuclear wastes established by the International Atomic Energy Agency (IAEA) as well as the Chinese '40 words principles' and the major tasks of Chinese nuclear waste management; (3) The treatment and disposal technologies of nuclear wastes and the emphasis on new technologies, waste minimization and exemption and clean release; (4) The safety management of spent radiation sources including technical and administrative measures; (5) The safety management of spent nuclear fuel and the emphasis on high level radioactive wastes to be safety disposed of; (6) The environmental impact of nuclear waste. The author takes the Qinshan Nuclear Power Plant and the Daya bay Nuclear Power Plant I, China, as two examples to prove that nuclear wastes can be safely controlled and managed to ensure environmental safety. The Chinese north-west disposal land of nuclear wastes under operation recently is also discussed. It is believed that the suggested disposal land can ensure the isolation of radioactive wastes and the surrounding environment according to the present standards. The north-west disposal land and the Beilong disposal land, Guangdong province, China, are built according to the international standard and advanced technologies

  17. Multi-isotopic gamma-ray assay system for alpha-contaminated waste

    International Nuclear Information System (INIS)

    Close, D.A.; Pratt, J.C.; Caldwell, J.T.; Kunz, W.E.; Schultz, F.J.; Haff, K.W.

    1983-01-01

    The capability of an existing segmented gamma-ray system is being expanded for the analysis of alpha-contaminated waste drums. A cursory assay of 114 transuranic waste drums of 208-l capacity has been made. Analysis of these data indicates a detection limit better than 100 nCi/g of waste for 237 Np/ 233 Pa, 239 Pu, 241 Am, 243 Am/ 239 Np, 60 Co, 125 Sb, 134 137 Cs, and 154 Eu. A pending Code of Federal Regulation (10CFR61) stipulates that the nuclear industry quantify not only its transuranic waste, but also certain beta- and gamma-ray-emitting fission products. An assay system based on gamma-ray spectroscopy is the only system that can meet this requirement for the fission products

  18. Characterization and remediation of a mixed waste-contaminated site at Kirtland Air Force Base, New Mexico

    International Nuclear Information System (INIS)

    Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.

    1997-01-01

    In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 and RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility

  19. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency's Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories

  20. Scientific Solutions to Nuclear Waste Environmental Challenges

    International Nuclear Information System (INIS)

    Johnson, Bradley R.

    2014-01-01

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They were then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the amount

  1. The nuclear waste primer: A handbook for citizens

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A sourcebook of facts about the production of nuclear waste and radioactive materials, this volume looks at the debate over safe storage, transportation, and disposal of hazardous radioactive materials. Addressing such concerns as the dangers of nuclear waste, protecting the public, and affecting the decision-making process at all levels of government, this book explores the issues central to the handling and disposal of nuclear waste

  2. Alternative solidified forms for nuclear wastes

    International Nuclear Information System (INIS)

    McElroy, J.L.; Ross, W.A.

    1976-01-01

    Radioactive wastes will occur in various parts of the nuclear fuel cycle. These wastes have been classified in this paper as high-level waste, intermediate and low-level waste, cladding hulls, and residues. Solidification methods for each type of waste are discussed in a multiple barrier context of primary waste form, applicable coatings or films, matrix encapsulation, canister, engineered structures, and geological storage. The four major primary forms which have been most highly developed are glass for HLW, cement for ILW, organics for LLW, and metals for hulls

  3. High-level radioactive waste in Canada. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab

  4. High-level radioactive waste in Canada. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Fawcett, R [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab.

  5. Institute of Energy and Climate Research IEK-6. Nuclear waste management report 2013/2014. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, S.; Klinkenberg, M.; Bosbach, D. (eds.)

    2016-07-01

    This is the third bi-annual report of the Nuclear Waste Management section of the Institute of Energy and Climate Research (IEK-6) at Forschungszentrum Juelich since 2009 - almost a tradition. Our institute has seen two more years with exciting scientific work, but also major changes regarding nuclear energy in Germany and beyond. After the reactor accident in Fukushima (Japan) in 2011, it was decided in Germany to phase out electricity production by nuclear energy by 2022. It seems clear, that the decommissioning of the nuclear power plants will take several decades. The German nuclear waste repository Konrad for radioactive waste with negligible heat generation (all low level and some of the intermediate level radioactive waste) will start operation in the next decade. The new site selection act from 2013 re-defines the selection procedure for the German high level nuclear waste repository. Independently of the decision to stop electricity production by nuclear energy, Germany has to manage and ultimately dispose of its nuclear waste in a safe way. Our basic and applied research for the safe management of nuclear waste is focused on radiochemistry and materials chemistry aspects - it is focused on the behaviour of radionuclides and radioactive waste materials within the back-end of the nuclear fuel cycle. Itis organized in four areas: (1) research supporting the scientific basis of the safety case of a deep geological repository for high level nuclear waste, (2) fundamental structure research of radionuclide containing (waste) materials (3) R and D for waste management concepts for special nuclear wastes and (4) international safeguards. A number of excellent scientific results have been published in more than 80 papers in international peer-reviewed scientific journals in 2013 - 2014. Here, I would like to mention four selected scientific highlights - more can be found in this report: (1) The retention of radionuclides within a nuclear waste repository system by

  6. Institute of Energy and Climate Research IEK-6. Nuclear waste management report 2013/2014. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Neumeier, S.; Klinkenberg, M.; Bosbach, D.

    2016-01-01

    This is the third bi-annual report of the Nuclear Waste Management section of the Institute of Energy and Climate Research (IEK-6) at Forschungszentrum Juelich since 2009 - almost a tradition. Our institute has seen two more years with exciting scientific work, but also major changes regarding nuclear energy in Germany and beyond. After the reactor accident in Fukushima (Japan) in 2011, it was decided in Germany to phase out electricity production by nuclear energy by 2022. It seems clear, that the decommissioning of the nuclear power plants will take several decades. The German nuclear waste repository Konrad for radioactive waste with negligible heat generation (all low level and some of the intermediate level radioactive waste) will start operation in the next decade. The new site selection act from 2013 re-defines the selection procedure for the German high level nuclear waste repository. Independently of the decision to stop electricity production by nuclear energy, Germany has to manage and ultimately dispose of its nuclear waste in a safe way. Our basic and applied research for the safe management of nuclear waste is focused on radiochemistry and materials chemistry aspects - it is focused on the behaviour of radionuclides and radioactive waste materials within the back-end of the nuclear fuel cycle. Itis organized in four areas: (1) research supporting the scientific basis of the safety case of a deep geological repository for high level nuclear waste, (2) fundamental structure research of radionuclide containing (waste) materials (3) R and D for waste management concepts for special nuclear wastes and (4) international safeguards. A number of excellent scientific results have been published in more than 80 papers in international peer-reviewed scientific journals in 2013 - 2014. Here, I would like to mention four selected scientific highlights - more can be found in this report: (1) The retention of radionuclides within a nuclear waste repository system by

  7. An optimized approach towards the treatment of high level liquid waste in the nuclear cycle

    International Nuclear Information System (INIS)

    Maio, V.; Todd, T.; Law, J.; Roach, J.; Sabharwall, P.

    2006-01-01

    Full text: One key long-standing issue that must be overcome to realize the successful growth of nuclear power is an economical, politically acceptable, stakeholder-compatible, and technically feasible resolution pertaining to the safe treatment and disposal of high-level liquid radioactive waste (HLLW). In addition to spent nuclear reactor fuel, HLLW poses a unique challenge in regard to environmental and security concerns, since future scenarios for a next generation of domestic and commercialized nuclear fuel cycle infrastructures must include reprocessing - the primary source of HLLW-to ensure the cost effectiveness of nuclear power as well as mitigate any threats as related to proliferation. Past attempts to immobilize HLLW - generated by both the weapons complex and the commercial power sector-have been plagued by an inability to convince the public and some technical peer reviewers that any proposed geological disposal sites (e.g., Yucca Mountain) can accommodate and contain the HLLW for a period of geological time equivalent to ten fold the radiological half-life of the longest lived of the actinides remaining after reprocessing. The paper explores combined equipment and chemical processing approaches for advancing and economizing the immobilization of high level liquid waste to ensure its long term durability, its decoupling from the unknown behavior of the repository over long geological time periods, and its economical formulation as required for the nuclear fuel cycle of the future. One approach involves the investigation of crystalline based waste forms as opposed to the glass/amorphous based waste forms, and how recent developments in crystalline forms show promise in sequestering the long lived actinides for over tens of millions of years. Another approach -compatible with the first- involves the use of an alternative melter technology-the Cold Crucible Induction Melter (CCIM)- to overcome the engineering material problems of Joule Heated Meters (JHM

  8. PNGMDR - Characterisation of intermediate-level long-lived wastes

    International Nuclear Information System (INIS)

    2014-12-01

    This document presents the status of the characterization of intermediate-level long-lived wastes which are warehoused on exploited EDF sites or which will be produced during the deconstruction of first-generation reactors. It addresses aspects related to characterisation and packaging of wastes produced before 2015. More specifically, it addresses aspects related to contamination and to activation. Contamination is assessed by measurements whereas activation assessment is based on numerical simulations associated with measurements performed during parcel production. After having mentioned the concerned reactors, the document presents the methodology adopted for these assessments, and reports the progress status of the characterization process for these intermediate-level long-lived wastes

  9. Treatment of ORNL liquid low-level waste

    International Nuclear Information System (INIS)

    Berry, J.B.; Brown, C.H. Jr.; Fowler, V.L.; Robinson, S.M.

    1988-01-01

    Discontinuation of the hydrofracture disposal method at Oak Ridge National Laboratory (ORNL) has caused intensive efforts to reduce liquid waste generation. Improving the treatment of slightly radioactive liquid waste, called process waste, has reduced the volume of the resulting contaminated liquid radioactive waste effluent by 66%. Proposed processing improvements could eliminate the contaminated liquid effluent and reduce solid low-level waste by an additional one-third. The improved process meets stringent discharge limits for radionuclides. Discharge limits for radionuclides are expected to be enforced at the outfall of the treatment plant to a creek; currently, limits are enforced at the reservation boundary. Plant discharge is monitored according to the National Pollutant Discharge Elimination System (NPDES) permit for ORNL. 1 ref., 4 figs., 2 tabs

  10. Radioactive waste management policy for nuclear power

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Simionov, V.

    1998-01-01

    Nuclear power is part of energy future as a clean and environmental friendly source of energy. For the case of nuclear power, two specific aspects come more often in front of public attention: how much does it cost and what happens with radioactive waste. The competitiveness of nuclear power vs other sources of energy is already proved in many developed and developing countries. As concerns the radioactive wastes treatment and disposal, industrial technologies are available. Even final solutions for disposal of high level radioactive waste, including spent fuel, are now fully developed and ready for large scale implementation. Policies and waste management strategies are established by all countries having nuclear programs. Once, the first nuclear power reactor was commissioned in Romania, and based on the national legal provisions, our company prepared the first issue of a general strategy for radioactive waste management. The general objective of the strategy is to dispose the waste according to adequate safety standards protecting the man and the environment, without undue burden on future generations. Two target objectives were established for long term: an interim spent fuel dry storage facility and a low and intermediate level waste repository. A solution for spent fuel disposal will be implemented in the next decade, based on international experience. Principles for radioactive waste management, recommended by IAEA are closely followed in the activities of our company. The continuity of responsibilities is considered to be very important. The radioactive waste management cost will be supported by the company. A tax on unit price of electricity will be applied. The implementation of radioactive waste management strategy includes as a major component the public information. A special attention will be paid by the company to an information program addressed to different categories of public in order to have a better acceptance of our nuclear power projects

  11. Methodology of safety evaluation about land disposal of low level radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1986-01-01

    Accompanying the progress of the construction project of low level radioactive waste storage facilities in Aomori Prefecture, the full scale land disposal of low level radioactive wastes shows its symptom also in Japan. In this report, the scientific methodology to explain the safety about the land disposal of low level radioactive wastes is discussed. The land disposal of general wastes by shallow burying has already had sufficient results. In the case of low level radioactive wastes, also the land disposal by shallow burying is considered. Low level radioactive wastes can be regarded as one form of industrial wastes, as there are many common parts in the scientific and theoretical base of the safety. Attention is paid most to the contamination of ground water. Low level radioactive wastes are solid wastes, accordingly the degree of contamination should be less. The space in which ground water existes, the phenomena of ground water movement, the phenomena of ground water dispersion and Fick's law, the adsorption effect of strata, and the evaluation of source term are explained. These are the method to analyze the degree of contamination from safety evaluation viewpoint. (Kako, I.)

  12. The Savannah River Plant low-level waste segregation program

    International Nuclear Information System (INIS)

    Wheeler, V.B.

    1987-01-01

    To extend the life of the Savannah River Plant (SRP) Radioactive Waste Burial Ground, a sitewide program has been implemented to segregate waste that is essentially free of contamination from routine radioactive waste. Much of the low-level waste disposed of as radioactive has no detectable contamination and can be buried in a sanitary landfill. A Landfill Monitoring Facility (LMF) will be constructed at SRP to house the state-of-the-art technology required to provide a final survey on the candidate waste streams that had previously been classified as radioactive. 3 figs

  13. Integrated data base report - 1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions

  14. Radioactive caesium contamination due to Fukushima Daiichi Nuclear Power Plants accident in Osaka city. Evaluation of accumulation and decontamination of radioactive materials via reverse logistics function of a city

    International Nuclear Information System (INIS)

    Nishio, Takayuki; Kitano, Masaaki; Sakai, Mamoru; Takakura, Akito; Katahira, Kenshi; Nishitani, Takashi

    2015-01-01

    We surveyed background level of radioactive contamination in city area of Osaka before combusting the wide area disposal of disastrous debris at a municipal waste incineration plant of Osaka city. The debris was caused by Tohoku district great earthquake disaster and suspected to be contaminated with radionuclides released from the Fukushima Daiichi Nuclear Power Plants. We also investigated radioactivity in incineration ash of municipal waste incineration plants and of sewage treatment plants, as well as in water clarifier sludge of potable water treatment plants, and evaluated the accumulation and cleansing of radioactive materials via the reverse logistic function of the city. Radioactive caesium deposited in Osaka city area was estimated to be approximately 4.3 GBq from the concentrations observed in the monthly fallout, whereas that collected as municipal wastes and sewage was estimated to be approximately 0.9 GBq a year in 2011. Even two years after the accident, "1"3"4Cs, which is the evidence of the Fukushima Daiichi Nuclear Power Plant accident, had been detected in the municipal wastes at a level comparable to the activities found just after the accident, however, the radioactive caesium concentration in fallout measured in the Osaka city area had decreased below a detection limit after May 2012. Introduction of materials contaminated with radioactive caesium from outside the city area was suspected because the observed contamination level was inexplicable by that of observed in the environmental wastes such as pruned branches which are contaminated by with the fallout in city area of Osaka. (author)

  15. Nuclear fuel waste policy in Canada

    International Nuclear Information System (INIS)

    Brown, P.A.; Letourneau, C.

    1999-01-01

    The 1996 Policy Framework for Radioactive Waste established the approach in Canada for dealing with all radioactive waste, and defined the respective roles of Government and waste producers and owners. The Policy Framework sets the stage for the development of institutional and financial arrangements to implement long-term waste management solutions in a safe, environmentally sound, comprehensive, cost-effective and integrated manner. For nuclear fuel waste, a 10-year environmental review of the concept to bury nuclear fuel waste bundles at a depth of 500 m to 1000 m in stable rock of the Canadian Shield was completed in March 1998. The Review Panel found that while the concept was technically safe, it did not have the required level of public acceptability to be adopted at this time as Canada's approach for managing its nuclear fuel waste. The Panel recommended that a Waste Management Organization be established at arm's length from the nuclear industry, entirely funded by the waste producers and owners, and that it be subject to oversight by the Government. In its December 1998 Response to the Review Panel, the Government of Canada provided policy direction for the next steps towards developing Canada's approach for the long-term management of nuclear fuel waste. The Government chose to maintain the responsibility for long-term management of nuclear fuel waste close with the producers and owners of the waste. This is consistent with its 1996 Policy Framework for Radioactive Waste. This approach is also consistent with experience in many countries. In addition, the federal government identified the need for credible federal oversight. Cabinet directed the Minister of NRCan to consult with stakeholders, including the public, and return to ministers within 12 months with recommendations on means to implement federal oversight. (author)

  16. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  17. Attitudes and opposition in siting a high level nuclear waste repository

    International Nuclear Information System (INIS)

    Sjoeberg, L.; Viklund, M.; Truedsson, J.

    1998-09-01

    In Sweden, the Swedish Nuclear Fuel and Waste Management Company (SKB) handles all issues concerning nuclear waste, including the siting process, in which the final outcome is intended to be a repository for high level nuclear waste placed deep down in bedrock. The main objective of the siting process is to find a host community fulfilling two important conditions: the safety demands have been met and agreements with the municipality can be accomplished. Only in such municipalities, so-called feasibility studies will be conducted. After conducting general studies in the whole country, SKB, in October 1992, sent letters with information about the intended feasibility studies to all Swedish municipalities. As a result, feasibility studies are or have been considered - and in some cases also been conducted - in eleven Swedish municipalities up until 1998. These are the municipalities where the attitudes and opposition towards a feasibility study, and possibly a final repository, are studied. The discussion can be divided into three main parts: Management of the siting process; Inherent 'chaotic' processes and/or factors and risk perception. It is argued that two important problems could have been avoided at least partly: The citizens in many municipalities were uncertain of the relationship between a feasibility study and a final repository, and in many municipalities the citizens were afraid that the Government could overrule the municipal veto. Because of these fears, a common argument among the opponents of a feasibility study was: 'to be sure of not receiving a final repository, we say no to a feasibility study'. Some inherent factors, more or less prevalent in the municipalities as well as in society in general, may also partly explain the outcome of the siting process. The municipalities in which the debate has been heated, and where public support has been more difficult to reach, share some common characteristics. Esp. in the municipalities in the north of

  18. Attitudes and opposition in siting a high level nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, L.; Viklund, M.; Truedsson, J

    1998-09-01

    In Sweden, the Swedish Nuclear Fuel and Waste Management Company (SKB) handles all issues concerning nuclear waste, including the siting process, in which the final outcome is intended to be a repository for high level nuclear waste placed deep down in bedrock. The main objective of the siting process is to find a host community fulfilling two important conditions: the safety demands have been met and agreements with the municipality can be accomplished. Only in such municipalities, so-called feasibility studies will be conducted. After conducting general studies in the whole country, SKB, in October 1992, sent letters with information about the intended feasibility studies to all Swedish municipalities. As a result, feasibility studies are or have been considered - and in some cases also been conducted - in eleven Swedish municipalities up until 1998. These are the municipalities where the attitudes and opposition towards a feasibility study, and possibly a final repository, are studied. The discussion can be divided into three main parts: Management of the siting process; Inherent `chaotic` processes and/or factors and risk perception. It is argued that two important problems could have been avoided at least partly: The citizens in many municipalities were uncertain of the relationship between a feasibility study and a final repository, and in many municipalities the citizens were afraid that the Government could overrule the municipal veto. Because of these fears, a common argument among the opponents of a feasibility study was: `to be sure of not receiving a final repository, we say no to a feasibility study`. Some inherent factors, more or less prevalent in the municipalities as well as in society in general, may also partly explain the outcome of the siting process. The municipalities in which the debate has been heated, and where public support has been more difficult to reach, share some common characteristics. Esp. in the municipalities in the north of

  19. Management of Radioactive Waste after a Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Strand, Per; Laurent, Gerard; Rindo, Hiroshi; Georges, Christine; Ito, Eiichiro; Yamada, Norikazu; Iablokov, Iuri; Kilochytska, Tatiana; Jefferies, Nick; Byrne, Jim; Siemann, Michael; Koganeya, Toshiyuki; Aoki, Hiroomi

    2016-01-01

    The NEA Expert Group on Fukushima Waste Management and Decommissioning R and D (EGFWMD) was established in 2014 to offer advice to the authorities in Japan on the management of large quantities of on-site waste with complex properties and to share experiences with the international community and NEA member countries on ongoing work at the Fukushima Daiichi site. The group was formed with specialists from around the world who had gained experience in waste management, radiological contamination or decommissioning and waste management R and D after the Three Mile Island and Chernobyl accidents. This report provides technical opinions and ideas from these experts on post-accident waste management and R and D at the Fukushima Daiichi site, as well as information on decommissioning challenges. Chapter 1 provides general descriptions and a short introduction to nuclear accidents or radiological contaminations; for instance the Chernobyl NPP accident, the Three Mile Island Unit 2 accident and the Windscale fire accident. Chapter 2 provides experiences on regulator-implementer interaction in both normal and abnormal situations, including after a nuclear accident. Chapter 3 provides experiences on stakeholder involvement after accidents. These two chapters focus on human aspects after an accident and provide recommendations on how to improve communication between stakeholders so as to resolve issues arising after unexpected nuclear accidents. Chapters 4, 5 and 6 provide information on technical issues related to waste management after accidents. Chapter 4 focuses on the physical and chemical nature of the waste, Chapter 5 on radiological characterisation, and Chapter 6 on waste classification and categorisation. The persons involved in waste management after an accident should address these issues as soon as possible after the accident. Chapters 7 and 8 also focus on technical issues but with a long-term perspective of the waste direction in the future. Chapter 7 relates

  20. Research and development program for transuranic-contaminated waste within the U.S. Energy Research and Development Administration

    International Nuclear Information System (INIS)

    Wolfe, R.A.

    1976-01-01

    This overview examines the research and development program that has been established within the U.S. Energy Research and Development Administration (ERDA) to develop the technology to treat transuranic-contaminated waste. Also considered is the waste expected within the total nuclear fuel cycle

  1. In Situ Analytical Characterization of Contaminated Sites Using Nuclear Spectrometry Techniques. Review of Methodologies and Measurements

    International Nuclear Information System (INIS)

    2017-01-01

    Past and current human activities can result in the contamination of sites by radionuclides and heavy metals. The sources of contamination are various. The most important sources for radionuclide release include global fallout from nuclear testing, nuclear and radiological accidents, waste production from nuclear facilities, and activities involving naturally occurring radioactive material (NORM). Contamination of the environment by heavy metals mainly originates from industrial applications and mineralogical background concentration. Contamination of sites by radionuclides and heavy metals can present a risk to people and the environment. Therefore, the estimation of the contamination level and the identification of the source constitute important information for the national authorities with the responsibility to protect people and the environment from adverse health effects. In situ analytical techniques based on nuclear spectrometry are important tools for the characterization of contaminated sites. Much progress has been made in the design and implementation of portable systems for efficient and effective monitoring of radioactivity and heavy metals in the environment directly on-site. Accordingly, the IAEA organized a Technical Meeting to review the current status and trends of various applications of in situ nuclear spectrometry techniques for analytical characterization of contaminated sites and to support Member States in their national environmental monitoring programmes applying portable instrumentation. This publication represents a comprehensive review of the in situ gamma ray spectrometry and field portable X ray fluorescence analysis techniques for the characterization of contaminated sites. It includes papers on the use of these techniques, which provide useful background information for conducting similar studies, in the following Member States: Argentina, Australia, Brazil, Czech Republic, Egypt, France, Greece, Hungary, Italy, Lithuania

  2. Institute for Nuclear Waste Disposal. Annual Report 2011

    International Nuclear Information System (INIS)

    Geckeis, H.; Stumpf, T.

    2012-01-01

    The R and D at the Institute for Nuclear Waste Disposal, INE, (Institut fuer Nukleare Entsorgung) of the Karlsruhe Institute of Technology (KIT) focuses on (i) long term safety research for nuclear waste disposal, (ii) immobilization of high level radioactive waste (HLW), (iii) separation of minor actinides from HLW and (iv) radiation protection.

  3. Toward zero waste events: Reducing contamination in waste streams with volunteer assistance.

    Science.gov (United States)

    Zelenika, Ivana; Moreau, Tara; Zhao, Jiaying

    2018-03-22

    Public festivals and events generate a tremendous amount of waste, especially when they involve food and drink. To reduce contamination across waste streams, we evaluated three types of interventions at a public event. In a randomized control trial, we examined the impact of volunteer staff assistance, bin tops, and sample 3D items with bin tops, on the amount of contamination and the weight of the organics, recyclable containers, paper, and garbage bins at a public event. The event was the annual Apple Festival held at the University of British Columbia, which was attended by around 10,000 visitors. We found that contamination was the lowest in the volunteer staff condition among all conditions. Specifically, volunteer staff reduced contamination by 96.1% on average in the organics bin, 96.9% in the recyclable containers bin, 97.0% in the paper bin, and 84.9% in the garbage bin. Our interventions did not influence the weight of the materials in the bins. This finding highlights the impact of volunteers on reducing contamination in waste streams at events, and provides suggestions and implications for waste management for event organizers to minimize contamination in all waste streams to achieve zero waste goals. Copyright © 2018. Published by Elsevier Ltd.

  4. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    International Nuclear Information System (INIS)

    Apps, J.A.

    1995-01-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100 degrees C and could reach 250 degrees C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinement of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields

  5. Multivariate methods in nuclear waste remediation: Needs and applications

    International Nuclear Information System (INIS)

    Pulsipher, B.A.

    1992-05-01

    The United States Department of Energy (DOE) has developed a strategy for nuclear waste remediation and environmental restoration at several major sites across the country. Nuclear and hazardous wastes are found in underground storage tanks, containment drums, soils, and facilities. Due to the many possible contaminants and complexities of sampling and analysis, multivariate methods are directly applicable. However, effective application of multivariate methods will require greater ability to communicate methods and results to a non-statistician community. Moreover, more flexible multivariate methods may be required to accommodate inherent sampling and analysis limitations. This paper outlines multivariate applications in the context of select DOE environmental restoration activities and identifies several perceived needs

  6. Security risks in nuclear waste management: Exceptionalism, opaqueness and vulnerability.

    Science.gov (United States)

    Vander Beken, Tom; Dorn, Nicholas; Van Daele, Stijn

    2010-01-01

    This paper analyses some potential security risks, concerning terrorism or more mundane forms of crime, such as fraud, in management of nuclear waste using a PEST scan (of political, economic, social and technical issues) and some insights of criminologists on crime prevention. Nuclear waste arises as spent fuel from ongoing energy generation or other nuclear operations, operational contamination or emissions, and decommissioning of obsolescent facilities. In international and EU political contexts, nuclear waste management is a sensitive issue, regulated specifically as part of the nuclear industry as well as in terms of hazardous waste policies. The industry involves state, commercial and mixed public-private bodies. The social and cultural dimensions--risk, uncertainty, and future generations--resonate more deeply here than in any other aspect of waste management. The paper argues that certain tendencies in regulation of the industry, claimed to be justified on security grounds, are decreasing transparency and veracity of reporting, opening up invisible spaces for management frauds, and in doing allowing a culture of impunity in which more serious criminal or terrorist risks could arise. What is needed is analysis of this 'exceptional' industry in terms of the normal cannons of risk assessment - a task that this paper begins. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Risk perception as it applies to nuclear power and nuclear waste disposal

    International Nuclear Information System (INIS)

    Sprecher, W.M.

    1988-01-01

    Disparate perceptions of risk have emerged as one of the critical issues confronting the future of commercial nuclear power. This paper explores the origins and possible ramifications of the public's perception of risks associated with commercial nuclear power and related high-level nuclear waste disposal programs. This paper summarizes the results of numerous psychometric studies and public opinion polls that analyze the relationship of risk to nuclear power and waste management

  8. Tergiversating the price of nuclear waste storage

    International Nuclear Information System (INIS)

    Mills, R.L.

    1984-01-01

    Tergiversation, the evasion of straightforward action of clearcut statement of position, was a characteristic of high-level nuclear waste disposal until the US Congress passed the Nuclear Waste Policy Act of 1982. How the price of waste storage is administered will affect the design requirements of monitored retrievable storage (MRS) facilities as well as repositories. Those decisions, in part, are internal to the Department of Energy. From the utility's viewpoint, the options are few but clearer. Reprocessing, as performed in Europe, is not a perfect substitute for MRS. The European reprocess-repository sequence will not yield the same nuclear resource base as the American MRS-repository scheme. For the future price of the energy resource represented by nuclear waste, the author notes that tergiversation continues. 3 references

  9. Oak Ridge Low Level Waste Management Task Force summary

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.

    1985-01-01

    New facilities are required in the next five years to manage low level radioactive wastes (LLW) produced on the Oak Ridge Reservation (ORR). The Central Waste Disposal Facility (CWDF) was planned to provide the needed additional facilities beginning in late 1985. The CWDF was planned as a shallow land burial facility to dispose of non-stabilized LLW. However, comments on the CWDF Draft Environmental Impact Statement (DEIS) received from the State of Tennessee, the Environmental Protection Agency, and the Nuclear Regulatory Commission identified major issues related to the treatment of alternatives as required by the National Environmental Policy Act, and the potential for unacceptable groundwater contamination resulting from shallow land burial of non-stabilized waste. A series of initial and detailed evaluations are being conducted to develop the basic environmental performance and cost information needed to compare several LLW management approaches and arrive at a proposed system for development. The evaluations are targeted for completion by October

  10. The Next Nuclear Gamble. Transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1985-01-01

    The Next Nuclear Gamble examines risks, costs, and alternatives in handling irradiated nuclear fuel. The debate over nuclear power and the disposal of its high-level radioactive waste is now nearly four decades old. Ever larger quantities of commercial radioactive fuel continue to accumulate in reactor storage pools throughout the country and no permanent storage solution has yet been designated. As an interim solution, the government and utilities prefer that radioactive wastes be transported to temporary storage facilities and subsequently to a permanent depository. If this temporary and centralized storage system is implemented, however, the number of nuclear waste shipments on the highway will increase one hundredfold over the next fifteen years. The question directly addressed is whether nuclear transport is safe or represents the American public's domestic nuclear gamble. This Council on Economic Priorities study, directed by Marvin Resnikoff, shows on the basis of hundreds of government and industry reports, interviews and surveys, and original research, that transportation of nuclear materials as currently practiced is unsafe

  11. Decontamination process applied to radioactive solid wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Franco, Milton B.; Kastner, Geraldo F.; Monteiro, Roberto Pellacani G.

    2009-01-01

    The process of decontamination is an important step in the economic operation of nuclear facilities. A large number of protective clothing, metallic parts and equipment get contaminated during the handling of radioactive materials in laboratory, plants and reactors. Safe and economic operation of these nuclear facilities will have a bearing on the extent to which these materials are reclaimed by the process of decontamination. The most common radioactive contaminants are fission products, corrosion products, uranium and thorium. The principles involved in decontamination are the same as those for an industrial cleaning process. However, the main difference is in the degree of cleaning required and at times special techniques have to be employed for removing even trace quantities of radioactive materials. This paper relate decontaminations experiences using acids and acids mixtures (HCl, HF, HNO 3 , KMnO 4 , C 2 H 2 O 4 , HBF 4 ) in several kinds of radioactive solid wastes from nuclear power plants. The result solutions were monitored by nuclear analytical techniques, in order to contribute for radiochemical characterization of these wastes. (author)

  12. Thirty Years of Social Science Research on High-Level Nuclear Waste: Achievements and Future Challenges

    International Nuclear Information System (INIS)

    Solomon, Barry D.; Andren, Mats; Strandberg, Urban

    2010-09-01

    Research on high-level nuclear waste management has focused on technical and scientific issues since the U.S. National Academy of Sciences first studied the problem in the mid 1950s and recommended long-term disposal in deep salt formations. In this review, we trace the development of the problem's definition and its associated research since socioeconomic, political and policy issues were first given consideration and nuclear waste management became recognized as more than a technical issue. Three time periods are identified. First, from the mid 1970s to early 1980s, initial research explored institutional dimensions of nuclear waste, including ethics. The second period began in the early 1980s with a concerted effort to solve the problem and site nuclear waste repositories, and ended in the mid 1990s with minimal progress in the U.S. and general stalemate in Asia and Europe (with the notable exception of Sweden). This phase accelerated research on risk perception and stigma of nuclear waste, and elevated a focus on public trust. Great attention was given to repository siting conflicts, while minimal attention was placed on ethics, equity, political systems, and public participation. The last period, since the mid 1990s, has been characterized by continuing political stalemate and increased attention to public participation, political systems and international solutions. Questions of ethics have been given renewed attention, while research on risk perceptions and siting conflicts continues. We frame these periods in a broader context of the shifting role of applied social scientists. The paper concludes with a general discussion of this research area and prospects for future research

  13. Thirty Years of Social Science Research on High-Level Nuclear Waste: Achievements and Future Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Barry D. (Dept. of Social Sciences, Michigan Technological Univ., Houghton (United States)), e-mail: bdsolomo@mtu.edu; Andren, Mats; Strandberg, Urban (Center for Public Sector Research, Univ. of Goeteborg, Goeteborg (Sweden))

    2010-09-15

    Research on high-level nuclear waste management has focused on technical and scientific issues since the U.S. National Academy of Sciences first studied the problem in the mid 1950s and recommended long-term disposal in deep salt formations. In this review, we trace the development of the problem's definition and its associated research since socioeconomic, political and policy issues were first given consideration and nuclear waste management became recognized as more than a technical issue. Three time periods are identified. First, from the mid 1970s to early 1980s, initial research explored institutional dimensions of nuclear waste, including ethics. The second period began in the early 1980s with a concerted effort to solve the problem and site nuclear waste repositories, and ended in the mid 1990s with minimal progress in the U.S. and general stalemate in Asia and Europe (with the notable exception of Sweden). This phase accelerated research on risk perception and stigma of nuclear waste, and elevated a focus on public trust. Great attention was given to repository siting conflicts, while minimal attention was placed on ethics, equity, political systems, and public participation. The last period, since the mid 1990s, has been characterized by continuing political stalemate and increased attention to public participation, political systems and international solutions. Questions of ethics have been given renewed attention, while research on risk perceptions and siting conflicts continues. We frame these periods in a broader context of the shifting role of applied social scientists. The paper concludes with a general discussion of this research area and prospects for future research

  14. A method for assay of special nuclear material in high level liquid waste streams

    International Nuclear Information System (INIS)

    Venkata Subramani, C.R.; Swaminathan, K.; Asuvathraman, R.; Kutty, K.V.G.

    2003-01-01

    The assay of special nuclear material in the high level liquid waste streams assumes importance as this is the first stage in the extraction cycle and considerable losses of plutonium could occur here. This stream contains all the fission products as also the minor actinides and hence normal nuclear techniques cannot be used without prior separation of the special nuclear material. This paper presents the preliminary results carried out using wavelength dispersive x-ray fluorescence as part of the developmental efforts to assay SNM in these streams by instrumental techniques. (author)

  15. Arisings and management of nuclear wastes

    International Nuclear Information System (INIS)

    Dejonghe, P.; Heremans, R.; Proost, J.; Voorde, N. van de

    1978-01-01

    The paper contains a brief description of volumes and composition of radioactive wastes expected to occur in Belgium, taking into account the present nuclear program. Various conditioning and management techniques are described and discussed. Some discussion is paid to disposal of conditioned radioactive wastes either into the ocean (low level) or in geologic formations (long lived or high level wastes). Some ideas are given as to the structure optimization in radioactive waste management and the associated R and D. (author)

  16. Spent nuclear fuel and high level radioactive waste transportation. White paper

    International Nuclear Information System (INIS)

    1985-06-01

    The High-Level Radioactive Waste Committee of the Western Interstate Energy Board has been involved in a year-long cooperative project with the US Department of Energy (DOE) to develop an information base on the transportation of spent nuclear fuel and high-level radioactive waste (HLW) so that western states can be constructive and informed participants in the repository program under the Nuclear Waste Policy Act (NWPA). The historical safety record of transportation of HLW and spent fuel is excellent; no release of these radioactive materials has ever occurred during transportation. Projected shipments under the NWPA will, however, greatly exceed current shipments in the US. For example, over the past five years, 119 metric tons of civilian spent fuel have been shipped in this country, while shipments to the first and second repository are each expected to peak at 3000 metric tons per year. The Committee believes that the successful development and operation of a national HLW/spent fuel transportation system can best be accomplished through an open process based on the common sense approach of taking all reasonable measures to minimize public risk and performing whatever actions are reasonably required to promote public acceptance. Therefore, the Committee recommends that the Department of Energy further the goals of the NWPA by developing a Comprehensive Transportation Plan which adopts a systematic, comprehensive, and integrated approach to resolving all spent fuel and HLW transportation issues in a timely manner. The suggested scope of such a plan is discussed in this White paper. Many of the suggested elements of such a plan are similar to those being developed by the Department of energy for inclusion in the Department's Transportation Institutional Plan

  17. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  18. Geochemical Processes Controlling Migration of High Level Wastes in Hanford's Vadose Zone

    International Nuclear Information System (INIS)

    Zachara, John M.; Serne, R. Jeffrey; Freshley, Mark D.; Mann, Frederick M.; Anderson, Frank J.; Wood, Marcus I.; Jones, Thomas E.; Myers, David A.

    2007-01-01

    High level nuclear wastes (HLW) from Hanford's plutonium reprocessing are stored in massive, buried, single-shell tanks in eighteen tank farms. The wastes were initially hot because of radioactive decay, and many exhibited extreme chemical character in terms of pH, salinity, and radionuclide concentration. At present, 67 of the 149 single shell tanks are suspected to have released over 1.9 million L of tank waste to the vadose zone, with most leak events occurring between 1950 and 1975. Boreholes have been placed through the largest vadose zone plumes to define the extent of contaminant migration, and to develop conceptual models of processes governing the transformation, retardation, and overall transport of tank waste residuals. Laboratory studies with sediments so collected have shown that ion exchange, precipitation and dissolution, and surface complexation reactions have occurred between the HLW and subsurface sediments moderating their chemical character, and retarding the migration of select contaminants. Processes suspected to facilitate the far-field migration of immobile radionuclides including stable aqueous complex formation and mobile colloids were found to be potentially operative, but unlikely to occur in the field, with the exception of cyanide-facilitated migration of 60Co. Fission product oxyanions are the most mobile of tank waste constituents because their adsorption is suppressed by large concentrations of waste anions; the vadose zone clay fraction is negative in surface charge; and, unlike Cr, their reduced forms are unstable in oxidizing environments. Reaction/process-based transport modeling is beginning to be used for predictions of future contaminant mobility and plume evolution

  19. Radioactive waste and contamination in the former Soviet Union

    International Nuclear Information System (INIS)

    Suokko, K.; Reicher, D.

    1993-01-01

    Decades of disregard for the hazards of radioactive waste have created contamination problems throughout the former Soviet Union rivaled only by the Chernobyl disaster. Although many civilian activities have contributed to radioactive waste problems, the nuclear weapons program has been by far the greatest culprit. For decades, three major weapons production facilities located east of the Ural Mountains operated in complete secrecy and outside of environmental controls. Referred to until recently only by their postal abbreviations, the cities of Chelyabinsk-65, Tomsk-7, and Krasnoyarsk-26 were open only to people who worked in them. The mismanagement of waste at these sites has led to catastrophic accidents and serious releases of radioactive materials. Lack of public disclosure, meanwhile, has often prevented proper medical treatment and caused delays in cleanup and containment. 5 refs

  20. Corrosion of steel drums containing simulated radioactive waste of low and intermediate level

    International Nuclear Information System (INIS)

    Farina, S.B.; Schulz Rodríguez, F.; Duffó, G.S.

    2013-01-01

    Ion-exchange resins are frequently used during the operation of nuclear power plants and constitute radioactive waste of low and intermediate level. For the final disposal inside the repository the resins are immobilized by cementation and placed inside steel drums. The eventful contamination of the resins with aggressive species may cause corrosion problems to the drums. In order to assess the incidence of this phenomenon and to estimate the lifespan of the steel drums, in the present work, the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different aggressive species was studied. The aggressive species studied were chloride ions (main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The corrosion rate of the steel was monitored over a time period of 900 days and a chemical and morphological analysis of the corrosion products formed on the steel in each condition was performed. When applying the results obtained in the present work to estimate the corrosion depth of the drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Low and Intermediate Level Radioactive Waste facility in Argentina), it was found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (author)

  1. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    International Nuclear Information System (INIS)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., 108m Ag, 93 Mo, 36 Cl, 10 Be, 113m Cd, 121m Sn, 126 Sn, 93m Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., 14 C, 129 I, and 99 Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments

  2. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  3. Low- and intermediate-level waste management practices in Canada

    International Nuclear Information System (INIS)

    Charlesworth, D.H.

    1982-05-01

    Low- and intermediate-level wastes arise in Canada from the operation of nuclear power stations, nuclear research establishments, nuclear fuel and radioisotope production facilities, as well as from many medical, research and industrial organizations. Essentially all of the solid radioactive wastas are stored in a retrievable fashion at five waste management areas from which a portion is expected to be transferred to future disposal facilities. Waste processing for volume reduction and stabilization is becoming an increasingly important part of low-level waste management because of the advantages it provides for both interim storage currently, and permanent disposal in the future

  4. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  5. Nuclear waste - a fresh perspective

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.

    1996-01-01

    Rather than looking at the nuclear waste problem in isolation, it should be viewed in the broader context of how society disposes of all of its wastes. A comparison of radioactive and non-radioactive wastes shows, contrary to popular perception, that the properties of these two waste types are actually very similar. However, the methods of regulation and management of the two waste types are very different. It is time that these differences were reconciled - both the nuclear and the non-nuclear waste industries have a lot to gain. There are three main categories of (non-nuclear) waste: municipal wastes, hazardous wastes, and industrial wastes. Rather than treating each of these waste types in separate, isolated compartments, there should be an integration of the principles and regulations involved in their management. The non-nuclear waste industry has much to learn from the nuclear approach

  6. Nuclear wastes: where is the problem?

    International Nuclear Information System (INIS)

    Sorin, Francis

    2015-01-01

    While addressing societal as well as ethical aspects, the author proposes a presentation of the different management modes which are applied to the different categories of nuclear wastes. He describes the strategy adopted in France with the deep storage, and discusses its safety by assessing its impact on health and on the environment in time. In the first chapter, the author presents the different types of nuclear wastes, their origin, and the related problem of exposure to radioactivity for the most dangerous ones. In the second chapter, he presents the French sector of nuclear waste management, outlines the role of the ANDRA, and the acknowledged know-how and expertise. The third chapter describes the different management modes for the five different waste categories. The author recalls and outlines the legal background, the strategic choices and the importance of the underground laboratory for the storage of high-level wastes. He discusses the challenges, safety approaches and cost issues associated with the geologic storage. He discusses the future of such storage, its possible evolutions and radioactive impact. He discusses issues related to dysfunctions, failures, altered scenarios. He finally gives its opinion on the current debate about radioactive nuclear wastes

  7. Low-level waste incineration at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Gillins, R.L.; Davis, J.N.; Maughan, R.Y.; Logan, J.A.

    1985-01-01

    A facility for the incineration of low-level beta/gamma contaminated combustible waste has been constructed at the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL). The incineration facility was established to: (1) reduce the volume of currently generated contaminated combustible waste being disposed at the INEL's radioactive waste disposal site and thereby prolong the site's useful life; and (2) develop waste processing technology by providing a facility where full-size processes and equipment can be demonstrated and proven during production-scale operations. Cold systems testing has been completed, and contaminated operations began in September of 1984. Currently the facility is processing waste packaged in 2 x 2 x 2 ft cardboard boxes and measuring <10mR/h at contact. 3 figs

  8. Agency for Nuclear Projects/Nuclear Waste Project Office final progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) was formally established by Executive Policy in 1983 following passage of the federal Nuclear Waste Policy Act of 1982 (Act). That Act provides for the systematic siting, construction, operation, and closure of high-level radioactive defense and research by-products and other forms of high-level radioactive waste from around the country which will be stored at such repositories. In 1985 the Nevada legislature formally established the NWPO as a distinct and statutorily authorized agency to provide support to the Governor and State Legislature on matters concerning the high-level nuclear waste programs. The NWPO utilized a small, central staff supplemented by contractual services for needed technical and specialized expertise in order to provide high quality oversight and monitoring of federal activities, to conduct necessary independent studies, and to avoid unnecessary duplication of efforts. This report summarizes the results of this ongoing program to ensure that risks to the environment and to human safety are minimized. It includes findings in the areas of hydrogeology, geology, quality assurance activities, repository engineering, legislature participation, socioeconomic affects, risk assessments, monitoring programs, public information dissemination, and transportation activities. The bulk of the reporting deals with the Yucca Mountain facility

  9. Processing and discarding method for contaminated concrete wastes

    International Nuclear Information System (INIS)

    Yamamoto, Kazuo; Konishi, Masao; Matsuda, Atsuo; Iwamoto, Yoshiaki; Yoshikane, Toru; Koie, Toshio; Nakajima, Yoshiro

    1998-01-01

    Contaminated concrete wastes are crashed into granular concrete wastes having a successive grain size distribution. They are filled in a contamination processing vessel and made hardenable in the presence of a water-hardenable material in the granular concrete wastes. When underground water intrudes into the contamination processing vessel filled with the granular concrete wastes upon long-term storage, the underground water reacts with the water-hardenable material to be used for the solidification effect. Accordingly, leaching of contaminated materials due to intrusion of underground water can be suppressed. Since the concrete wastes have a successive grain size distribution, coarse grains can be used as coarse aggregates, medium grains can be used as fine aggregates and fine grains can be used as a solidifying material. Accordingly, the amount of wastes after processing can be remarkably reduced, with no supply of a solidifying material from outside. (T.M.)

  10. Nuclear waste. Last stop Siberia?

    International Nuclear Information System (INIS)

    Popova, L.

    2006-01-01

    Safe and environmentally sound management of nuclear waste and spent fuel is an unresolved problem of nuclear power. But unlike other nuclear nations, Russia has much more problems with nuclear waste. Russia inherited these problems from the military programs and decades of nuclear fuel cycle development. Nuclear waste continue to mount, while the government does not pay serious enough attention to the solution of the waste problem and considers to increase the capacity of nuclear power plants (NPPs). There are more than 1000 nuclear waste storages in Russia.1 More than 70 million tons of the solid waste has been accumulated by the year 2005, including 14 million tons of tails of the decommissioned uranium mine in the North Caucasus. President Putin said that ''infrastructure of the waste processing is extremely insufficient''. (orig.)

  11. Subgroup report on alternative technology strategies for the isolation of nuclear waste

    International Nuclear Information System (INIS)

    1978-10-01

    The purpose of this report is to provide information to support programmatic approaches to the disposal of high-level and transuranic-contaminated (TRU) wastes. For this purpose the report describes, in Appendices A through F, the state of knowledge relevant to selected nuclear waste disposal technologies. Within the main report a number of alternative technological strategies that could lead to a disposal facility are specified for illustrative and analytical purposes. These strategies span a wide range of variations of technological emphasis and programmatic diversity. Selected implications of these strategies are analyzed. In addition, subjects such as technical conservatism, retrievability, and intermediate scale facilities, that apply to any strategy, are examined and implications of each are discussed

  12. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    International Nuclear Information System (INIS)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates

  13. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  14. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  15. Disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1977-01-01

    Although controversy surrounding the possible introduction of nuclear power into New Zealand has raised many points including radiation hazards, reactor safety, capital costs, sources of uranium and earthquake risks on the one hand versus energy conservation and alternative sources of energy on the other, one problem remains paramount and is of global significance - the storage and dumping of the high-level radioactive wastes of the reactor core. The generation of abundant supplies of energy now in return for the storage of these long-lived highly radioactive wastes has been dubbed the so-called Faustian bargain. This article discusses the growth of the nuclear industry and its implications to high-level waste disposal particularly in the deep-sea bed. (auth.)

  16. Nuclear waste disposal: perspective of a geochemist

    International Nuclear Information System (INIS)

    Sengupta, Pranesh; Dey, G.K.

    2011-01-01

    Satisfying the growing requirement in an environment friendly way is one of the most important tasks we need to accomplish these days. Considering the restricted non-renewable energy resources and limited technological progresses achieved in the renewable energy sectors in India, nuclear energy appears to be one of the most lucrative solutions towards the forthcoming energy crisis. Successful implementation of nuclear energy program however requires careful execution of high level nuclear waste management activities. One very important aspect of this process is to identify and develop suitable inert matrix(ces) for conditioning of nuclear waste(s) using natural analogue studies. And this establishes the very vital linkage between geochemical studies and nuclear waste immobilization. One good example of such an interdisciplinary approach can be seen in the methodologies adopted for immobilization of sulfate bearing high level nuclear wastes (SO 4 -HLW). It has been reported on several occasions that sulfur-rich melt get separated from silicate melt within magma chamber. Similar process has also been witnessed within vitrification furnaces whenever an attempt has been made to condition SO 4 -HLW within borosilicate glass matrices. Since such liquid-liquid phase separation leads to multiple difficulties in connection to radionuclide immobilization and plant scale vitrification processes, solutions were sought from natural analogue studies. Such as integrated approach ultimately resulted in establishing two different methodologies e.g. (i) modifying the borosilicate network through introduction of Ba 2+ cation; a process being followed in India and (ii) using phosphatic melt as a host instead of borosilicate melt; a process being followed in Russia. Detail of these two routes and the geochemical linkage in nuclear waste immobilization will be discussed.(author)

  17. Vitrification of low-level and mixed wastes

    International Nuclear Information System (INIS)

    Johnson, T.R.; Bates, J.K.; Feng, Xiangdong.

    1994-01-01

    The US Department of Energy (DOE) and nuclear utilities have large quantities of low-level and mixed wastes that must be treated to meet repository performance requirements, which are likely to become even more stringent. The DOE is developing cost-effective vitrification methods for producing durable waste forms. However, vitrification processes for high-level wastes are not applicable to commercial low-level wastes containing large quantities of metals and small amounts of fluxes. New vitrified waste formulations are needed that are durable when buried in surface repositories

  18. Development of thermal conditioning technology for alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Kim, H. Y.; Kim, J. G.

    2001-04-01

    To develop a thermal conditioning technology for alpha-contaminated wastes, which are presumed to generate from pyrochemical processing of spent fuel, research on the three different fields have been performed; incineration, off-gas treatment, and vitrification/cementation technology. Through the assessment on the amount of alpha-contaminated waste and incineration characterises, an oxygen-enriched incineration process, which can greatly reduce the off-gas volume, was developed by our own technology. Trial burn test with paper waste resulted in a reduction of off-gas volume by 3.5. A study on the behavior and adsorption of nuclides/heavy metals at high-temperature was performed to develop an efficient removal technology. Off-gas treatment technologies for radioiodine at high-temperature and 14 CO 2 , acidic gases, and radioactive gaseous wastes such as Xe/Kr at room temperature were established. As a part of development of high-level waste solidification technology, manufacture of high-frequency induction melter, fabrication and characterization of base-glass media fabricated with spent HEPA filter medium, and development of titanate ceramic material as a precursor of SYNROC by a self-combustion method were performed. To develop alpha-contaminated waste solidification technology, a process to convert periodontal in the cement matrix to calcite with SuperCritical Carbon Dioxide (SCCD) was manufactured. The SCCD treatment enhanced the physicochemical properties of cement matrices, which increase the long-term integrity of cement waste forms during transportation and storage

  19. Sources, amounts, and characteristics of low-level radioactive solid wastes

    International Nuclear Information System (INIS)

    Kibbey, A.H.; Godbee, H.W.

    1979-01-01

    Low-level radioactive solid wastes (LLW) are generated in the nuclear fuel cycle, national defense programs, institutional (especially medical/biological) applications, and other research and development activities. The estimated total accumulation of defense LLW, approx. 50.8 x 10 6 ft 3 (approx. 1.4 x 10 6 m 3 ), is roughly three times that estimated for commercial LLW, mill tailings excepted. All nuclear fuel cycle steps generate some LLW, but power plants are the chief source. From 1975 through 1977, reactor process stream cleanup generated approx. 1 x 10 6 (approx. 2.8 x 10 4 m 3 ) annually. Spent fuel storage (or reprocessing) and facility decontamination and decommissioning will become important LLW generators as the nuclear power industry matures. The LLW contains dry contaminated trash, much of which is combustible and/or compactible; discarded tools and equipment; wet filter sludges and ion-exchange resins; disposable filter cartridges; and solidified or sorbed liquids, including some organics. A distinguishing characteristic of LLW is a long-lived alpha-emitting transuranic content of 5 ft 3 (approx. 2.1 x 10 4 m 3 )/y. The majority of these wastes, > 6 x 10 5 ft 3 (> 1.7 x 10 4 m 3 ), was medical and academic wastes which usually contained isotopes with induced activities of less than or equal to 60-day half-life, neglecting 3 H and 14 C

  20. The health physics programs in low-level radioactive waste management at the Institute of Nuclear Energy Research, Republic of China

    International Nuclear Information System (INIS)

    Chen, W-L.

    1986-01-01

    The primary mission of the health physics programs in low-level radioactive management is to ensure radiation safety for personnel and environment of the Institute of Nuclear Energy Research (INER), and also for the general public surrounding INER. In view of the above, the Health Physics programs in low-level radioactive waste management are divided into three sub-programs: the radiation control program, the environmental survey and bioassay program, and the radiation dosimetry supporting program. The general guidelines, responsibilities, and performance of these programs will be discussed in this paper in the following order. The responsibility of radiation control group is to conduct area monitoring and radiation surveillance for the radioactive waste treatment workers. It includes the control of radiation field level of the working area, servicing personnel dosimeters, instruction on radiation safety, and handling of radiation accidents. The responsibility of the environmental survey and bioassay group is to perform environmental surveys and bioassays. Environmental gamma monitoring stations were installed both on-site and off-site at INER. For bioassays, urine samples are taken from radioactive waste treatment workers, and for internal contamination checks of workers, total body counting systems are being used. The main responsibility of the radiation dosimetry group is to provide radiation dosimetrical support to the radiation control group and the environmental survey and bioassay group. Some typical work of the radiation dosimetry group is the qualitative assay and quantitative determination of radioactive samples, and calibration of dosimeters and survey meters

  1. The Drigg low-level waste site

    International Nuclear Information System (INIS)

    1992-01-01

    Safe disposal of waste is a vital aspect of any industrial operation whether it be production of plastics, steel or chemicals or handling of radioactive materials. Appropriate methods must be used in every case. Radioactive waste falls into three distinct categories - high, intermediate and low-level. It is the solid low-level waste making up over 90% of the total which this booklet discusses. British Nuclear Fuels plc (BNFL) operates a site for the disposal of solid low-level waste at Driggs, some six kilometres south of Sellafield in West Cumbria. The daily operations and control of the site, the responsibility of the BNFL Waste Management Unit is described. (author)

  2. Tritium contaminated waste management at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Jalbert, R.A.; Carlson, R.V.

    1987-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos continues to move toward full operation of an integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent nonloop experiments further the development of advanced tritium technologies and handling methods. Since tritium operations began in June 1984, tritium contaminated wastes have been produced at TSTA that are roughly typical in kind and amount of those to be produced by tritium fueling operations at fusion reactors. Methods of managing these wastes are described, including information on some methods of decontamination so that equipment can be reused. Data are given on the kinds and amounts of wastes and the general level of contamination. Also included are data on environmental emissions and doses to personnel that have resulted from TSTA operations. Particular problems in waste managements are discussed

  3. Transuranic elements and nuclear wastes

    International Nuclear Information System (INIS)

    Bowen, V.T.

    1974-01-01

    The contamination of oceans and marine life by transuranic elements (elements of atomic number greater than 92) is the main concern of this paper. Wastes of three different types, low-level, intermediate-level, and high-level, are considered. Fallout of Pu and other transuranics is discussed as it affects marine biogeochemistry and geochemistry. Different paths of absorption or uptake under various conditions of release are pointed out in some detail. The transfer of radioactivity to mammals from marine sources is considered in some detail. Waste disposal practices at Windscale are reviewed. It is concluded that the problems associated with transuranic wastes in oceans and marine life are very complex. Monitoring of waste release and uptake is concluded to not be enough. Each situation of release of transuranics to the environment should be treated as an experiment and milked for all the information that it can reveal. The tremendous expenditure of money and manpower necessary for such an undertaking is stressed

  4. Treatment of radioactive mixed wastes in commercial low-level wastes

    International Nuclear Information System (INIS)

    Kempf, C.R.; MacKenzie, D.R.

    1985-01-01

    Management options for three generic categories of radioactive mixed waste in commercial low-level wastes have been identified and evaluated. These wastes were characterized as part of a BNL study in which a large number of generators were surveyed for information on potentially hazardous low-level wastes. The general management targets adopted for mixed wastes are immobilization, destruction, and reclamation. It is possible that these targets may not be practical for some wastes, and for these, goals of stabilization or reduction of hazard are addressed. Solidification, absorption, incineration, acid digestion, segregation, and substitution have been considered for organic liquid wastes. Containment, segregation, and decontamination and re-use have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, containment, substitution, chemical reduction, and biological removal have been considered. For each of these wastes, the management option evaluation has necessarily included assessment/estimation of the effect of the treatment on both the radiological and potential chemical hazards present. 10 refs

  5. Public attitudes regarding nuclear wastes

    International Nuclear Information System (INIS)

    Rankin, W.L.

    1978-01-01

    This paper traces the history of public attitudes regarding nuclear waste issues. A majority of the public has recently developed the attitude that nuclear wastes are a serious problem, and a small percentage of the public opposes nuclear power mainly because of nuclear waste issues. However, a majority of the public has confidence in the ability of technologists to solve the problems associated with nuclear waste disposal. Finally, the attitudes of nuclear technologists regarding waste disposal differed greatly from the attitudes of other groups, especially environmentalists

  6. Nuclear wastes and public trust

    International Nuclear Information System (INIS)

    Flynn, J.; Slovic, P.

    1993-01-01

    Citing public fear and mistrust, strong opposition to the proposed Yucca Mountain repository site, and less-than-exemplary performance by the Department of Energy (DOE), two private researchers believe present high-level radioactive waste-disposal plans may have to be scrapped. Government and the nuclear industry may have to start over. Policy makers should seek to develop new relationships with communities and states where suitable disposal sites exist. These relationships may require that citizen groups and local institutions be given unprecedented authority in locating and operating such facilities. Contrary to popular impressions, there is still time to take a new approach. The US Nuclear Regulatory Commission says present on-site storage arrangements offer a safe alternative for 100 years or more. The sense of immediate crisis and cries for immediate solutions should be calmed and a more considered strategy brought to the public debate. For starters, the researchers propose that the problems of defense waste be separated from the problems of commercial waste. They also suggest that DOE be assigned responsibility for defense waste and a new agency be created to handle high-level commercial waste

  7. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F. [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

    2013-07-01

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

  8. Thermosyphon evaporator for nuclear waste management application

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajani; Singh, A K; Rana, D S [Waste Management Projects Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Nuclear plant equipment are associated with radioactive material which needs to be safely contained under all conditions of operation. Because of large radioactivity associated with the operations of nuclear waste management plants, the equipment are not accessible to human intervention. Hence, the design of the equipment needs to incorporate features for high reliability and safety so as to avoid unnecessary outage. As far as possible the equipment must be maintenance free. Wherever maintenance is inevitable, it has to be designed to be carried out without exposure of personnel to radiation, preventing spread of radiation or contamination. This paper outlines the design features of a thermosyphon evaporator for nuclear application. (author). 2 figs., 1 tab.

  9. Using electrochemical separation to reduce the volume of high-level nuclear waste

    International Nuclear Information System (INIS)

    Slater, S.A.; Gay, E.C.

    1998-01-01

    Argonne National Laboratory (ANL) has developed an electrochemical separation technique called electrorefining that will treat a variety of metallic spent nuclear fuel and reduce the volume of high-level nuclear waste that requires disposal. As part of that effort, ANL has developed a high throughput electrorefiner (HTER) that has a transport rate approximately three times faster than electrorefiners previously developed at ANL. This higher rate is due to the higher electrode surface area, a shorter transport path, and more efficient mixing, which leads to smaller boundary layers about the electrodes. This higher throughput makes electrorefining an attractive option in treating Department of Energy spent nuclear fuels. Experiments have been done to characterize the HTER, and a simulant metallic fuel has been successfully treated. The HTER design and experimental results is discussed

  10. Guidance for the management of solid waste contaminated by urine of patients after administration of radiopharmaceuticals; Conseil pour la gestion des dechets solides contamines par des urines de patients apres administration de radiopharmaceutiques

    Energy Technology Data Exchange (ETDEWEB)

    Touzery, C.; Prevot, S.; Perrette, B.; Boichot, C.; Berriolo-Riedinger, A.; Toubeau, M.; Riedinger, J.M.; Brunotte, F. [Centre de Lutte Contre le Cancer Georges-Francois-Leclerc, Service de Medecine Nucleaire, 21 - Dijon (France)

    2003-02-01

    The recent reinforcement of the French regulation on radionuclide contaminated waste brings the Nuclear Medicine Departments in charge of writing guidance intended to the personnel of the health care units. A special attention must be paid to the waste contaminated by urine of the incontinent patients. The present paper provides time duration for the collection and the storage of urine contaminated waste obtained from the simulation with literature models and data for the most frequently used radiopharmaceuticals. The validity of the results is discussed according to the parameter variations of the biokinetic models. (authors)

  11. Why partition nuclear waste

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1976-01-01

    A cursory review of literature dealing with various separatory processes involved in the handling of high-level liquid nuclear waste discloses that, for the most part, discussion centers on separation procedures and methodology for handling the resulting fractions, particularly the actinide wastes. There appears to be relatively little discussion on the incentives or motivations for performing these separations in the first place. Discussion is often limited to the assumption that we must separate out ''long-term'' from our ''short-term'' management problems. This paper deals with that assumption and devotes primary attention to the question of ''why partition waste'' rather than the question of ''how to partition waste'' or ''what to do with the segregated waste.''

  12. Canadian high-level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Allan, C.J.; Gray, B.R.

    1992-01-01

    In Canada responsibility for the management of radioactive wastes rests with the producer of those wastes. This fundamental principle applies to such diverse wastes as uranium mine and mill tailings, low-level wastes from universities and hospitals, wastes produced at nuclear research establishments, and wastes produced at nuclear generating stations. The federal government has accepted responsibility for historical wastes for which the original producer can no longer be held accountable. Management of radioactive wastes is subject to the regulatory control of the Atomic Energy Control Board, the federal agency responsible for regulating the nuclear industry. In this paper the authors summarize the current situation concerning the management of high level (used nuclear fuel) wastes. In 1981 the two governments also announced that selection of a disposal site would not proceed, and responsibility for site selection and operation would not be assigned until the Concept for used fuel disposal had been reviewed and assessed. Thus the concept assessment is generic rather than site specific. The Concept that has been developed has been designed to conform with safety and performance criteria established by the Atomic Energy Control Board. It is based on burial deep in plutonic rock of the Canadian Shield, using a multi-barrier approach with a series of engineered and natural barriers: these include the waste form, container, buffer and backfill, and the host rock

  13. Canada's high-level nuclear waste disposal concept and its evaluation process

    International Nuclear Information System (INIS)

    Sheng, Grant; Shemilt, L.W.

    2004-01-01

    The concept of disposing high-level nuclear waste in granitic rocks in the Canadian Shield, developed by Atomic Energy of Canada Limited (AECL), is anticipated to undergo a national public review within two years. The disposal concept, its documentation, and its process of evaluation, including the role of the public, government and the scientific/engineering community, are summarized. A Technical Advisory Committee (TAC) has provided external peer review of the Program since 1979 and its findings are published in annual reports which are publicly available. (author)

  14. Basic approach to the disposal of low level radioactive waste generated from nuclear reactors containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Moriyama, Yoshinori

    1998-01-01

    Low level radioactive wastes (LLW) generated from nuclear reactors are classified into three categories: LLW containing comparatively high radioactivity; low level radioactive waste; very low level radioactive waste. Spent control rods, part of ion exchange resin and parts of core internals are examples of LLW containing comparatively high radioactivity. The Advisory Committee of Atomic Energy Commission published the report 'Basic Approach to the Disposal of LLW from Nuclear Reactors Containing Comparatively High Radioactivity' in October 1998. The main points of the proposed concept of disposal are as follows: dispose of underground deep enough not be disturb common land use (e.g. 50 to 100 m deep); dispose of underground where radionuclides migrate very slowly; dispose of with artificial engineered barrier which has the same function as the concrete pit; control human activities such as land use of disposal site for a few hundreds years. (author)

  15. Nuclear waste management: A review of issues

    International Nuclear Information System (INIS)

    Angino, E.E.

    1985-01-01

    The subject of radioactive waste management and burial is a subject that raises strong emotional and political issues and generates sharp technical differences of opinion. The overall problem can be subdivided into the three major categories of (1) credibility and emotionalism, (2) technology, and (3) nuclear waste isolation and containment. An area of concern desperately in need of attention is that of proper public education on all aspects of the high-level radioactive-waste (rad-waste) burial problem. A major problem related to the rad-waste issue is the apparent lack of an official, all-encompassing U.S. policy for nuclear waste management, burial, isolation, and regulation. It is clear from all past technical reports that disposal of rad wastes in an appropriate geologic horizon is the best ultimate solution to the waste problem. After 25 y of dealing with the high-level radioactive waste problem, the difficulty is that no proposed plan has to date been tested properly. It is this indecision and reaction that has contributed in no small way to the public perception of inability to solve the problem. One major change that has occurred in the last few years was the enactment of the Nuclear Waste Policy Act of 1982. This act mandates deadlines, guidelines, and state involvement. It is time that strong differences of opinions be reconciled. One must get on with the difficult job of selecting the best means of isolating and burying these wastes before the task becomes impossible

  16. Nuclear waste repository in basalt: preconceptual design guidelines

    International Nuclear Information System (INIS)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation

  17. Nuclear waste repository in basalt: preconceptual design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation.

  18. Overview of high-level waste management accomplishments

    International Nuclear Information System (INIS)

    Lawroski, H.; Berreth, J.R.; Freeby, W.A.

    1980-01-01

    Storage of power reactor spent fuel is necessary at present because of the lack of reprocessing operations particularly in the U.S. By considering the above solidification and storage scenario, there is more than reasonable assurance that acceptable, stable, low heat generation rate, solidified waste can be produced, and safely disposed. The public perception of no waste disposal solutions is being exploited by detractors of nuclear power application. The inability to even point to one overall system demonstration lends credibility to the negative assertions. By delaying the gathering of on-line information to qualify repository sites, and to implement a demonstration, the actions of the nuclear power detractors are self serving in that they can continue to point out there is no demonstration of satisfactory high-level waste disposal. By maintaining the liquid and solidified high-level waste in secure above ground storage until acceptable decay heat generation rates are achieved, by producing a compatible, high integrity, solid waste form, by providing a second or even third barrier as a compound container and by inserting the enclosed waste form in a qualified repository with spacing to assure moderately low temperature disposal conditions, there appears to be no technical reason for not progressing further with the disposal of high-level wastes and needed implementation of the complete nuclear power fuel cycle

  19. High-level radioactive waste disposal type and theoretical analyses

    International Nuclear Information System (INIS)

    Lu Yingfa; Wu Yanchun; Luo Xianqi; Cui Yujun

    2006-01-01

    Study of high-level radioactive waste disposal is necessary for the nuclear electrical development; the determination of nuclear waste depository type is one of importance safety. Based on the high-level radioactive disposal type, the relative research subjects are proposed, then the fundamental research characteristics of nuclear waste disposition, for instance: mechanical and hydraulic properties of rock mass, saturated and unsaturated seepage, chemical behaviors, behavior of special soil, and gas behavior, etc. are introduced, the relative coupling equations are suggested, and a one dimensional result is proposed. (authors)

  20. Development of a low-level radioactive waste shipper model. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-03-01

    During 1982, Inter/Face Associates, Inc., conducted a low-level radioactive waste management survey of Nuclear Regulatory Commission (NRC) licensees in Massachusetts for the US Department of Energy's National Low-Level Waste Management Program. In the process of conducting the survey, a model was developed, based on existing NRC license classification systems, that would identify licensees who ship low-level waste for disposal. This report presents the model and documents the procedures used in developing and testing it. After the model was tested, several modifications were developed with the goal of determining the model's ability to identify waste shippers under different parameters. The report includes a discussion of the modifications

  1. A product designed for final disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Baboescu, E.; Popescu, I. V.

    2001-01-01

    The product 'metallic barrel - concrete - low level radioactive wastes - 1' (ABBD - 1) was certified according to the company's standard SF ICN/1994, updated 1. The product ABBD -1 is produced according to the following certified technologies: - technology for processing and conditioning of low level radioactive solid wastes; - technology for processing and conditioning of waste ion exchangers from the TRIGA reactor; - technology for conditioning the β - γ radioactive compacts. The product is constituted of a protection shield, the concrete block - radioactive waste, securing high mechanical strength and a high degree of radionuclides retaining, thus ensuring the necessary condition for long time disposal and, finally, the metallic container fulfilling the National Standards of Nuclear Safety for Radioactive Materials Transportation. The metallic container is made of pickled slab, with a 220 l capacity, according to STAS 7683/88 standards. The main characteristics of the product 'ABBD - 1' are: - size: height, 915 ± 10 mm, diameter, 600 ± 5 mm; - mass, 300 - 600 kg; - maximum permissible activity, 6 x 10 9 Bq/ barrel (0.164 Ci/barrel); - equivalent dose rate for gamma radiation at barrel's wall, max. 1 mSv/h (200 mrem/h); - unfixed external contamination, 2 ; - compression strength of concrete block alone, > 5 x 10 6 N/m 2 ; - lixiviation rate, -3 cm/day; - the compact concrete block-radioactive waste is leak-proof and crack-free. The final product is transferred from INR Pitesti to National Repository for Radioactive Waste by railway and road transportation according to the provisions of the National Commission for Nuclear Activity Control as stipulated in the National Standards of Nuclear Safety of Radioactive Materials Transportation

  2. Status of technology for nuclear waste management

    International Nuclear Information System (INIS)

    Lieberman, J.A.

    1984-01-01

    In the area of low- and intermediate-level radioactive wastes the successful development and application of specific management technologies have been demonstrated over the years. The major area in which technology remains to be effectively implemented is in the management of high-level wastes from the nuclear fuel cycle. Research and development specifically directed at the management of high-level radioactive wastes in the USA and other countries is briefly reviewed in the article introduced

  3. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    Energy Technology Data Exchange (ETDEWEB)

    Aponte, C.I.

    2000-02-17

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.

  4. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    International Nuclear Information System (INIS)

    Aponte, C.I.

    2000-01-01

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events

  5. Nuclear waste and hazardous waste in the public perception

    International Nuclear Information System (INIS)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael

    2015-01-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  6. Nuclear waste and hazardous waste in the public perception

    Energy Technology Data Exchange (ETDEWEB)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael [ETH Zurich (Switzerland). Inst. for Environmental Decisions

    2015-07-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  7. Radioactivity evaluation method for pre-packed concrete packages of low-level dry active wastes

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Funahashi, Tetsuo; Watabe, Kiyomi; Ozawa, Yukitoshi; Kashiwagi, Makoto

    1998-01-01

    Low-level dry active wastes of nuclear power plants are grouted with cement mortal in a container and planned to disposed into the shallow land disposal site. The characteristics of radionuclides contained in dry active wastes are same as homogeneous solidified wastes. In the previous report, we reported the applicability of the radioactivity evaluation methods established for homogeneous solidified wastes to pre-packed concrete packages. This report outlines the developed radioactivity evaluation methods for pre-packed concrete packages based upon recent data. Since the characteristics of dry active wastes depend upon the plant system in which dry active wastes originate and the types of contamination, sampling of wastes and activity measurement were executed to derive scaling factors. The radioactivity measurement methods were also verified. The applicability of non-destructive methods to measure radioactivity concentration of pre-packed concrete packages was examined by computer simulation. It is concluded that those methods are accurate enough to measure actual waste packages. (author)

  8. Comprehensive data base of high-level nuclear waste glasses: September 1987 status report: Volume 1, Discussion and glass durability data

    International Nuclear Information System (INIS)

    Kindle, C.H.; Kreiter, M.R.

    1987-12-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory is assembling a comprehensive data base (CDB) of experimental data collected for high-level nuclear waste package components. Data collected throughout the world are included in the data base; current emphasis is on waste glasses and their properties. The goal is to provide a data base of properties and compositions and an analysis of dominant property trends as a function of composition. This data base is a resource that nuclear waste producers, disposers, and regulators can use to compare properties of a particular high-level nuclear waste glass product with the properties of other glasses of similar compositions. Researchers may use the data base to guide experimental tests to fill gaps in the available knowledge or to refine empirical models. The data are incorporated into a computerized data base that will allow the data to be extracted based on, for example, glass composition or test duration. 3 figs

  9. Community dynamics in the siting process for a low to intermediate level nuclear waste facility in Kincardine, Ontario

    International Nuclear Information System (INIS)

    Al-Haydari, D.

    2007-01-01

    The use of nuclear technology to generate electricity inevitably produces waste that is detrimental to the environment and human health. Finding communities that will accept nuclear waste disposal facilities is extremely challenging. Furthermore, the siting of a nuclear waste disposal facility is more than a technological analysis, but a matter that includes a variety of social, ethical and political considerations. This study is aimed to assess the role of the place-based community, communities of interest and communities of identity involved in the voluntary siting process for a low to intermediate level nuclear waste disposal facility in Ontario. To accomplish this, a framework was developed and applied though a case study evaluation of the siting process for the Deep Geologic Repository in Kincardine, Ontario. The framework highlights four key procedural principles that were used to analyze the siting process: trust, public participation, equity and risk. The data revealed that the positions of the communities involved in the siting process varied depending on the meaningful fulfillment the four key procedural principles. (author)

  10. Managing nuclear waste: the underground perspective

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A simplified, very-general overview of the history of nuclear waste management is presented. The sources of different wastes of different levels of radioactivity are discussed. The current governmental program, including three DOE programs currently studying the problems of isolating waste in geological repositories, is discussed briefly. The general thrust of ensuing articles in the same magazine dealing with different facets of the waste-management program is outlined. (BLM)

  11. Treatment technologies for non-high-level wastes (USA)

    International Nuclear Information System (INIS)

    Cooley, C.R.; Clark, D.E.

    1976-06-01

    Non-high-level waste arising from operations at nuclear reactors, fuel fabrication facilities, and reprocessing facilities can be treated using one of several technical alternatives prior to storage. Each alternative and the associated experience and status of development are summarized. The technology for treating non-high-level wastes is generally available for industrial use. Improved techniques applicable to the commercial nuclear fuel cycle are being developed and demonstrated to reduce the volume of waste and to immobilize it for storage. 36 figures, 59 references

  12. Status of foreign practices for the management of alpha-contaminated radioactive wastes

    International Nuclear Information System (INIS)

    Lakey, L.T.

    1982-08-01

    Alpha-contaminated radioactive wastes, a product of mixed-oxide fuel fabrication, fuel reprocessing, weapons production and decommissioning programs, are being generated in at least ten countries. There is general agreement worldwide that these wastes should be treated differently than the beta-gamma or low-level waste. There is no consensus, however, on a quantitative definition of alpha-contaminated wastes. Reported definitions vary from > 0.035 nCi/g to > 100 nCi/g. Incineration is the most common treatment, with cement and bitumen the most common fixation agents. The only disposal means in use today are the sea dumping practice by Belgium and the United Kingdom and the surface disposal and deep-well discharge by the USSR. Sea dumping, however, is restricted to low levels of alpha activity, while the USSR appears to be favoring geologic disposal. All countries appear to be moving toward deep geologic repositories as the favored means of disposing of alpha-contaminated radioactive wastes. West Germany has actually disposed of such wastes in the Asse Salt Mine but has discontinued that operation for political reasons. Repository projects are actively under way in Belgium, West Germany, India, Sweden, and the Unted States, with many other countries planning repository programs. One US project, the Waste Isolation Pilot Plant, will, according to present schedules, be the first repository operational since Asse. 6 tables

  13. Comparative evaluation of environmental contamination and DNA damage induced by electronic-waste in Nigeria and China

    Energy Technology Data Exchange (ETDEWEB)

    Alabi, Okunola A. [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Biosciences and Biotechnology Department, Babcock University, Ilisan-remo, Ogun State (Nigeria); Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan (Nigeria); Bakare, Adekunle A. [Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan (Nigeria); Xu, Xijin; Li, Bin; Zhang, Yuling [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Huo, Xia, E-mail: xhuo@stu.edu.cn [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China)

    2012-04-15

    In the last decade, China and Nigeria have been prime destinations for the world's e-waste disposal leading to serious environmental contamination. We carried out a comparative study of the level of contamination using soils and plants from e-waste dumping and processing sites in both countries. Levels of polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) were analyzed using gas chromatography/spectrophotometry and heavy metals using atomic absorption spectrophotometry. DNA damage was assayed in human peripheral blood lymphocytes using an alkaline comet assay. Soils and plants were highly contaminated with toxic PAHs, PCBs, PBDEs, and heavy metals in both countries. Soil samples from China and plant samples from Nigeria were more contaminated. There was a positive correlation between the concentrations of organics and heavy metals in plant samples and the surrounding soils. In human lymphocytes, all tested samples induced significant (p < 0.05) concentration-dependent increases in DNA damage compared with the negative control. These findings suggest that e-waste components/constituents can accumulate, in soil and surrounding vegetation, to toxic and genotoxic levels that could induce adverse health effects in exposed individuals. - Highlights: Black-Right-Pointing-Pointer The study showed that Nigeria environment is highly contaminated by electronic waste. Black-Right-Pointing-Pointer The contamination level by heavy metals and organics in soils and plants in Nigeria as a result of the electronic waste is as high as the environment in China, even though China is the recipient of about 70% of the world's e-waste. Black-Right-Pointing-Pointer The study showed that e-waste leachate is genotoxic and mutagenic.

  14. Evaluation of bitumens for nuclear facilities radioactive waste immobilization

    International Nuclear Information System (INIS)

    Guzella, Marcia F.R.; Silva, Tania V. da; Loiola, Roberto; Monte, Lauro J.B.

    2000-01-01

    The activities developed at the Nuclear Technology Development Centre, Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, include the research and development work of the radioactive wastes immobilization in different kind of bitumen. The present work describes the bituminization of simulated low level wastes of evaporator concentrates.Two types of bitumen are used for incorporation of the simulated wastes generated by nuclear power plants. Studies on rheological properties, leaching data, differential thermoanalysis and water content of the waste-products have been carried out. (author)

  15. Nuclear waste in the Pacific: perceptions of the risks

    International Nuclear Information System (INIS)

    Childs, I.R.W.

    1984-01-01

    This dissertation examines the problem of the disposal of high-level nuclear waste in the Pacific region. There is a consensus of scientific opinion that the technical difficulties in waste disposal can be overcome. The most acceptable solution seems to be the multi-barrier approach for deep land-based geologic disposal. A questionnaire survey on the perception of nuclear and other hazards, conducted with student populations in Japan and Australia, and a survey of reporting of nuclear events in Pacific newspapers over the period 1946 to the 1980s, reveal that the image of nuclear weapons dominates public views on the risks associated with waste disposal in Australia, Japan, and the Pacific Islands. The problem of finding a suitable site for a nuclear waste disposal facility is to a large extent political. The capacity of anti-nuclear groups to influence waste disposal policies in Australia, Japan, and the Pacific Islands is examined. Current public attitudes toward nuclear waste disposal will delay the further development of activities connected with the nuclear fuel cycle, but this may change over time if the connection between commercial nuclear power and nuclear weapons can be severed more effectively. The most urgent problem in the region is the waste from the ambitious nuclear power programs of Japan, South Korea, and Taiwan

  16. West Valley high-level nuclear waste glass development: a statistically designed mixture study

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Bowen, W.M.; Lokken, R.O.; Wald, J.W.; Bunnell, L.R.; Strachan, D.M.

    1984-10-01

    The first full-scale conversion of high-level commercial nuclear wastes to glass in the United States will be conducted at West Valley, New York, by West Valley Nuclear Services Company, Inc. (WVNS), for the US Department of Energy. Pacific Northwest Laboratory (PNL) is supporting WVNS in the design of the glass-making process and the chemical formulation of the glass. This report describes the statistically designed study performed by PNL to develop the glass composition recommended for use at West Valley. The recommended glass contains 28 wt% waste, as limited by process requirements. The waste loading and the silica content (45 wt%) are similar to those in previously developed waste glasses; however, the new formulation contains more calcium and less boron. A series of tests verified that the increased calcium results in improved chemical durability and does not adversely affect the other modeled properties. The optimization study assessed the effects of seven oxide components on glass properties. Over 100 melts combining the seven components into a wide variety of statistically chosen compositions were tested. Viscosity, electrical conductivity, thermal expansion, crystallinity, and chemical durability were measured and empirically modeled as a function of the glass composition. The mathematical models were then used to predict the optimum formulation. This glass was tested and adjusted to arrive at the final composition recommended for use at West Valley. 56 references, 49 figures, 18 tables.

  17. Soil contamination adjacent to waste tank 8

    International Nuclear Information System (INIS)

    Odum, J.V.

    1976-11-01

    In March and April 1961, miscalibrated liquid level instrumentation resulted in an overfilling of tank 8 to about 5 in. above the fill-line entrance. The resultant liquid head caused waste to seep through an asbestos-packed sleeve to the fill-line encasement and from there into the main encasement. Most of this waste returned to primary containment (i.e., the catch tank) through a separately encased drain line. However, approximately 1500 gal of high heat waste leaked from the fill-line encasement into the ground, probably through the joint at the juncture of the fill-line encasement and the concrete encasement of the waste tank. The contamination is contained in a 1000- to 1500-ft 3 zone of soil 12 to 26 ft below grade, 18 ft above the maximum elevation of the water table, and distributed roughly symmetrically around the fill-line encasement. Estimates from a continuing monitoring program indicate that less than 5000 Ci of 137 Cs, less than 0.005 Ci of 238 239 Pu, and less than 0.5 Ci of 89 90 Sr are in the soil. Analysis indicates that the contamination presents no current or future hazard to the environment; consequently, there is no technical reason for excavation of this soil. The high cost of excavation and exposure of personnel make excavation undesirable. The contaminated soil will remain under surveillance and undisturbed at tank 8 until the tank is removed from service, at which time its disposition will be re-evaluated

  18. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Hare, Tony.

    1990-01-01

    The Save Our Earth series has been designed to appeal to the inquiring minds of ''planet-friendly'' young readers. There is now a greater awareness of environmental issues and an increasing concern for a world no longer able to tolerate the onslaught of pollution, the depletion of natural resources and the effects of toxic chemicals. Each book approaches a specific topic in a way that is exciting and thought-provoking, presenting the facts in a style that is concise and appropriate. The series aims to demonstrate how various environmental subjects relate to our lives, and encourages the reader to accept not only responsibility for the planet, but also for its rescue and restoration. This volume, on nuclear waste disposal, explains how nuclear energy is harnessed in a nuclear reactor, what radioactive waste is, what radioactivity is and its effects, and the problems and possible solutions of disposing of nuclear waste. An awareness of the dangers of nuclear waste is sought. (author)

  19. Vitrification chemistry and nuclear waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The vitrification of nuclear waste offers unique challenges to the glass technologist. The waste contains 50 or 60 elements, and often varies widely in composition. Most of these elements are seldom encountered in processing commercial glasses. The melter to vitrify the waste must be able to tolerate these variations in composition, while producing a durable glass. This glass must be produced without releasing hazardous radionuclides to the environment during any step of the vitrification process. Construction of a facility to convert the nearly 30 million gallons of high-level nuclear waste at the Savannah River Plant into borosilicate glass began in late 1983. In developing the vitrification process, the Savannah River Laboratory has had to overcome all of these challenges to the glass technologist. Advances in understanding in three areas have been crucial to our success: oxidation-reduction phenomena during glass melting; the reaction between glass and natural wastes; and the causes of foaming during glass melting

  20. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Science.gov (United States)

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  1. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste: Proceedings

    International Nuclear Information System (INIS)

    Kovach, L.A.; Murphy, W.M.

    1995-09-01

    A Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste was held in San Antonio, Texas on July 22--25, 1991. The proceedings comprise seventeen papers submitted by participants at the workshop. A series of papers addresses the relation of natural analog studies to the regulation, performance assessment, and licensing of a geologic repository. Applications of reasoning by analogy are illustrated in papers on the role of natural analogs in studies of earthquakes, petroleum, and mineral exploration. A summary is provided of a recently completed, internationally coordinated natural analog study at Pocos de Caldas, Brazil. Papers also cover problems and applications of natural analog studies in four technical areas of nuclear waste management-. waste form and waste package, near-field processes and environment, far-field processes and environment, and volcanism and tectonics. Summaries of working group deliberations in these four technical areas provide reviews and proposals for natural analog applications. Individual papers have been cataloged separately

  2. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, L.A. [ed.] [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Murphy, W.M. [ed.] [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1995-09-01

    A Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste was held in San Antonio, Texas on July 22--25, 1991. The proceedings comprise seventeen papers submitted by participants at the workshop. A series of papers addresses the relation of natural analog studies to the regulation, performance assessment, and licensing of a geologic repository. Applications of reasoning by analogy are illustrated in papers on the role of natural analogs in studies of earthquakes, petroleum, and mineral exploration. A summary is provided of a recently completed, internationally coordinated natural analog study at Pocos de Caldas, Brazil. Papers also cover problems and applications of natural analog studies in four technical areas of nuclear waste management-. waste form and waste package, near-field processes and environment, far-field processes and environment, and volcanism and tectonics. Summaries of working group deliberations in these four technical areas provide reviews and proposals for natural analog applications. Individual papers have been cataloged separately.

  3. Evalution of NDA techniques and instruments for assay of nuclear waste at a waste terminal storage facility

    International Nuclear Information System (INIS)

    Blakeman, E.D.; Allen, E.J.; Jenkins, J.D.

    1978-05-01

    The use of Nondestructive Assay (NDA) instrumentation at a nuclear waste terminal storage facility for purposes of Special Nuclear Material (SNM) accountability is evaluated. Background information is given concerning general NDA techniques and the relative advantages and disadvantages of active and passive NDA methods are discussed. The projected characteristics and amounts of nuclear wastes that will be delivered to a waste terminal storage facility are presented. Wastes are divided into four categories: High Level Waste, Cladding Waste, Intermediate Level Waste, and Low Level Waste. Applications of NDA methods to the assay of these waste types is discussed. Several existing active and passive NDA instruments are described and, where applicable, results of assays performed on wastes in large containers (e.g., 55-gal drums) are given. It is concluded that it will be difficult to routinely achieve accuracies better than approximately 10--30% with ''simple'' NDA devices or 5--20% with more sohpisticated NDA instruments for compacted wastes. It is recommended that NDA instruments not be used for safeguards accountability at a waste storage facility. It is concluded that item accountability methods be implemented. These conclusions and recommendations are detailed in a concurrent report entitled ''Recommendations on the Safeguards Requirements Related to the Accountability of Special Nuclear Material at Waste Terminal Storage Facilities'' by J.D. Jenkins, E.J. Allen and E.D. Blakeman

  4. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  5. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  6. Feasibility study for private-sector treatment services for alpha-contaminated low-level mixed wastes

    International Nuclear Information System (INIS)

    Bloom, R.R.; Rodriguez, R.R.

    1995-01-01

    Rust Federal Services, under contract to the United States Department of Energy (DOE), Idaho Operations Office, performed a study to develop and evaluate the feasibility of a suggested private sector solution for the treatment of alpha-contaminated low-level mixed waste (ALLMW) stored or produced at the Idaho National Engineering Laboratory (INEL). The feasibility study is an initial step in the potential procurement of privatized treatment services for these wastes. Rust's derived objective of the feasibility study was to define an optimal treatment system and analyze the feasibility of that system for accomplishing the processing objectives specified by DOE. All aspects of the selected treatment system were addressed in the feasibility study, including technical, regulatory, public involvement, and financial considerations. Two central elements of the study were a technology screening task to select the optimal treatment system and an analysis of the institutional, business, financial, and contractual issues that are likely to accompany the privatization of treatment services for DOE

  7. Nuclear waste management and implication for geological disposals in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho; Chang, Kyung Bae [The Cyber Univ. of Korea, Seoul (Korea, Republic of). Dept. of Mechanical and Control Engineering

    2017-10-15

    The master plan of permanent nuclear waste repository had been published in South Korea. The high-level nuclear waste repository should be available in 2053. In this study, six possible nuclear waste forms are simulated by Helium ions. The geological repository is comparative easy and cheap considering the international nuclear act of the nuclear nonproliferation treaty (NPT). How ever, there could be some new technologies of the nuclear waste treatment like the pyroprocessing. Transmutation is another option, which is very expensive with current technology.

  8. Problems and prospects for nuclear waste disposal policy

    International Nuclear Information System (INIS)

    Herzik, E.B.; Mushkatel, A.H.

    1996-01-01

    This book is a collection of articles examining legal, organizational, and public-interest issues involving the transportation, storage, treatment, and disposal of radioactive wastes. The introductions examines the unresolved issues of nuclear-waste policy-making in the USA and then presents essays covering the disposal of commercial power plant fuel, low level radioactive wastes, the by-products of nuclear weapons production, and the challenges of transporting radiological materials

  9. What is to be done with nuclear waste?

    International Nuclear Information System (INIS)

    Seshadri, B.

    1992-01-01

    Problems of radioactive waste management, particularly the problem of disposal, are illustrated by describing waste management operations of British Nuclear Fuels Ltd. at its nuclear complex at Sellafield. The major problem, so far not satisfactorily solved, is disposal of high-level radioactive wastes some portions of which remain radioactive for many millions of years. Studies so far made have established a positive link between radiation and cancer. (M.G.B.)

  10. Some legal aspects on high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    1997-01-01

    In Japan, it is considered to be an urgent problem to prepare the system for the research and execution of high level radioactive waste disposal. Under what regulation scheme the disposal should be done has not been sufficiently examined. In this research, the examination was carried out on the legal aspects of high level radioactive waste disposal as follows. First, the current legislation on the disposal in Japan was analyzed, and it was made clear that high level radioactive waste disposal has not been stipulated clearly. Next, on the legal choices which are conceivable on the way the legislation for high level radioactive waste disposal should be, from the aspects of applying the law on regulating nuclear reactors and others, applying the law on nuclear power damage reparation, and industrialization by changing the government ordinances, those were arranged in six choices, and the examination was carried out for each choice from the viewpoints of the relation with the base stipulation for waste-burying business, the speciality of high level radioactive waste disposal as compared with other actions of nuclear power business, the coordination with existing nuclear power of nuclear power business, the coordination with existing nuclear power law system and the formation of national consensus. In this research, it was shown that the execution of high level radioactive waste disposal as the business based on the separate legislation is the realistic choice. (K.I.)

  11. The socioeconomic impacts of high-level nuclear waste facility siting

    International Nuclear Information System (INIS)

    Murdock, S.H.; Leistritz, F.L.; Hamm, R.R.

    1987-01-01

    High-level nuclear waste repositories will be located in sparsely settled rural areas in the U.S. These projects will significantly effect the economic, demographic, public service, fiscal, and social (the socioeconomic) dimensions of those rural areas. This paper examines some of the potential socioeconomic impacts and the characteristics of mitigation programs necessary, if these impacts are to be addressed. Both standard impacts, those resulting from the fact that--like many other large-scale developments--repositories will involve a substantial number of new workers and residents (relative to the size of existing communities) and special impacts, those resulting from the fact that repositories store radioactive materials, are examined

  12. Defense Waste Processing Facility (DWPF): The vitrification of high-level nuclear waste. (Latest citations from the Bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning a production-scale facility and the world's largest plant for the vitrification of high-level radioactive nuclear wastes (HLW) located in the United States. Initially based on the selection of borosilicate glass as the reference waste form, the citations present the history of the development including R ampersand D projects and the actual construction of the production facility at the DOE Savannah River Plant (SRP). (Contains a minimum of 177 citations and includes a subject term index and title list.)

  13. Elaboration and modification of the waste zoning plan in basic nuclear installations. ASN Guide Nr 23, Release of the 2016/08/30

    International Nuclear Information System (INIS)

    2016-01-01

    After having recalled the relevant regulatory texts and guides, this guide aims at detailing conditions of elaboration and of modification of the waste zoning plan which is defined in one of these texts, and applies requirements and recommendations of others of them. It first recalls the general doctrine of waste management in basic nuclear installations. It describes how the waste zoning plan and the reference waste zoning map are elaborated and justified, how the relevancy of this plan and this map are confirmed through radiological controls and based on general operation rules and periodic assessments. It also describes how contamination transfers and material activation are prevented, and discusses waste radiological controls to be performed. The next part addressed waste zoning and ways of management for wastes coming from conventional waste areas, and from areas of possible production of nuclear wastes. Issues of waste zoning downgrading or reclassification are then addressed by distinguishing temporary and definitive modifications (in one way or the other). Some peculiar cases are addressed: delimitation of waste zoning at the level of equipments, conventional processing of some wastes, radioactive waste warehousing, outdoor areas of possible production of nuclear wastes

  14. Incineration of European non-nuclear radioactive waste in the USA

    International Nuclear Information System (INIS)

    Moloney, B. P.; Ferguson, D.; Stephenson, B.

    2013-01-01

    Incineration of dry low level radioactive waste from nuclear stations is a well established process achieving high volume reduction factors to minimise disposal costs and to stabilise residues for disposal. Incineration has also been applied successfully in many European Union member countries to wastes arising from use of radionuclides in medicine, nonnuclear research and industry. However, some nations have preferred to accumulate wastes over many years in decay stores to reduce the radioactive burden at point of processing. After decay and sorting the waste, they then require a safe, industrial scale and affordable processing solution for the large volumes accumulated. This paper reports the regulatory, logistical and technical issues encountered in a programme delivered for Eckert and Ziegler Nuclitec to incinerate safely 100 te of waste collected originally from German research, hospital and industrial centres, applying for the first time a 'burn and return' process model for European waste in the US. The EnergySolutions incinerators at Bear Creek, Oak Ridge, Tennessee, USA routinely incinerate waste arising from the non-nuclear user community. To address the requirement from Germany, EnergySolutions had to run a dedicated campaign to reduce cross-contamination with non-German radionuclides to the practical minimum. The waste itself had to be sampled in a carefully controlled programme to ensure the exacting standards of Bear Creek's license and US emissions laws were maintained. Innovation was required in packaging of the waste to minimise transportation costs, including sea freight. The incineration was inspected on behalf of the German regulator (the BfS) to ensure suitability for return to Germany and disposal. This first 'burn and return' programme has safely completed the incineration phase in February and the arising ash will be returned to Germany presently. The paper reports the main findings and lessons learned on this first

  15. Methods of Disposing Of High-Level Radioactive Waste: A Review

    International Nuclear Information System (INIS)

    Abumurade, K.

    2002-01-01

    High level nuclear waste from both commercial reactors and defense industry presents a difficult problem to the scientific community as well as the public. The solutions to this problem is still debatable both technically and ethically. There are few methods proposed for disposing of high level waste. Each method has its own advantages and disadvantages. However, the very deep underground geologic repository is the best choice for disposing of high-level radioactive wastes. The cost benefit equation of nuclear power production and its waste is discussed. However, the public should be educated about this matter to minimize the gap between them and the nuclear power community including scientists industry, and governments. (Author) 15 refs., 4 tabs., 1 fig

  16. Biodegradation of uranium-contaminated waste oil

    International Nuclear Information System (INIS)

    Hary, L.F.

    1983-01-01

    The Portsmouth Gaseous Diffusion Plant routinely generates quantities of uranium-contaminated waste oil. The current generation rate of waste oil is approximately 2000 gallons per year. The waste is presently biodegraded by landfarming on open field soil plots. However, due to the environmental concerns associated with this treatment process, studies were conducted to determine the optimum biodegradation conditions required for the destruction of this waste. Tests using respirometric flasks were conducted to determine the biodegradation rate for various types of Portsmouth waste oil. These tests were performed at three different loading rates, and on unfertilized and fertilized soil. Additional studies were conducted to evaluate the effectiveness of open field landfarming versus treatment at a greenhouse-like enclosure for the purpose of maintaining soil temperatures above ambient conditions. The respirometric tests concluded that the optimum waste oil loading rate is 10% weight of oil-carbon/weight of soil (30,600 gallons of uranium-contaminated waste oil/acre) on soils with adjusted carbon:nitrogen and carbon:phosphorus ratios of 60:1 and 800:1, respectively. Also, calculational results indicated that greenhouse technology does not provide a significant increase in biodegradation efficiency. Based on these study results, a 6300 ft. 2 abandoned anaerobic digester sludge drying bed is being modified into a permanent waste oil biodegradation facility. The advantage of using this area is that uranium contamination will be contained by the bed's existing leachate collection system. This modified facility will be capable of handling approximately 4500 gallons of waste oil per year; accordingly current waste generation quantities will be satisfactorily treated. 15 refs., 14 figs., 4 tabs

  17. A disposal centre for immobilized nuclear waste

    International Nuclear Information System (INIS)

    1980-02-01

    This report describes a conceptual design of a disposal centre for immobilized nuclear waste. The surface facilities consist of plants for the preparation of steel cylinders containing nuclear waste immobilized in glass, shaft headframe buildings and all necessary support facilities. The underground disposal vault is located on one level at a depth of 1000 m. The waste cylinders are emplaced into boreholes in the tunnel floors. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  18. Nuclear wastes: lets talk about

    International Nuclear Information System (INIS)

    1995-01-01

    This colloquium is entirely devoted to the problem of nuclear wastes management and to the anxiety of the French public opinion with respect to radioactive wastes in general. Nuclear wastes, generally are perceived as the unique problem of nuclear industry and as a new and unknown problem for which no solutions have been proposed so far. The aim of this colloquium is to demonstrate that such solutions exist and that, probably, they have been more thoroughly examined than in other industrial sectors. The two first talks give the inventory of possible solutions and the policy followed by nuclear operators for the conditioning and packaging of radioactive wastes. The other talks give the point of view of the producers and of the managers of nuclear wastes and the legal aspects of the management and storage of nuclear wastes, in particular the December 30, 1991 law. A particular attention is given to the importance of communication and public information in the successful management of nuclear wastes. (J.S.)

  19. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  20. Siting the nation's first high-level nuclear waste repository: Social impacts for Utah

    International Nuclear Information System (INIS)

    Olshansky, S.J.

    1986-01-01

    The siting of a high-level nuclear waste repository in the United States has been an issue of great controversy, particulary for the states under consideration. In addition to concerns expressed about the geological stability of the proposed sites, numerous social issues have been raised by the general public--most of which have been addressed by the draft environmental impact statements. Among the social impacts raised by the Department of Engery and the general public, those receiving the greatest attention were the potential influence of the repository on local economics, tourism, and the health status of the local residents. The major issues of interest in the present study include 1) the effects of respondent knowledge of nuclear waste disposal issues on opinions of health effects and tourism, particularly as they are affected by visitation patterns, and 2) the effects of occupation and education (in particular) on knowledge of nuclear waste disposal issues and opinions on technical and non-technical aspects of siting the repository. Preliminary results indicate that only about 40 percent of the respondents have visited the national parks in southeastern Utah, but over 70 percent feel they are informed about the issues associated with siting the repository. Over 60 percent of the respondents were very concerned about the possible negative effect the repository could have on jobs, tourism, health effects, and environmental quality. Cross-tabulations indicate that the respondents self rating on knowledge of nuclear disposal issues has a statistically significant influence on responses to socioeconomic issues, yet the same self rating scale is significantly influenced by the frequency with which respondents have visited the national parks in southeastern Utah

  1. Robotic inspection of nuclear waste storage facilities

    International Nuclear Information System (INIS)

    Fulbright, R.; Stephens, L.M.

    1995-01-01

    The University of South Carolina and the Westinghouse Savannah River Company have developed a prototype mobile robot designed to perform autonomous inspection of nuclear waste storage facilities. The Stored Waste Autonomous Mobile Inspector (SWAMI) navigates and inspects rows of nuclear waste storage drums, in isles as narrow as 34 inches with drums stacked three high on each side. SWAMI reads drum barcodes, captures drum images, and monitors floor-level radiation levels. The topics covered in this article reporting on SWAMI include the following: overall system design; typical mission scenario; barcode reader subsystem; video subsystem; radiation monitoring subsystem; position determination subsystem; onboard control system hardware; software development environment; GENISAS, a C++ library; MOSAS, an automatic code generating tool. 10 figs

  2. Nuclear waste

    International Nuclear Information System (INIS)

    1990-06-01

    DOE estimates that disposing of radioactive waste from civilian nuclear power plants and its defense-related nuclear facilities could eventually end up costing $32 billion. To pay for this, DOE collects fees from utilities on electricity generated by nuclear power plants and makes payments from its defense appropriation. This report states that unless careful attention is given to its financial condition, the nuclear waste program is susceptible to future shortfalls. Without a fee increase, the civilian-waste part of the program may already be underfunded by at least $2.4 billion (in discounted 1988 dollars). Also, DOE has not paid its share of cost-about $480 million-nor has it disclosed this liability in its financial records. Indexing the civilian fee to the inflation rate would address one major cost uncertainty. However, while DOE intends to do this at an appropriate time, it does not use a realistic rate of inflation as its most probable scenario in assessing whether that time has arrived

  3. Synroc - a multiphase ceramic for high level nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Reeve, K.D.; Vance, E.R.; Hart, K.P.; Smith, K.L.; Lumpkin, G.R.; Mercer, D.J.

    1992-01-01

    Many natural minerals - particularly titanates - are very durable geochemically, having survived for millions of years with very little alteration. Moreover, some of these minerals have quantitatively retained radioactive elements and their daughter products over this time. The Synroc concept mimics nature by providing an all-titanate synthetic mineral phase assemblage to immobilise high level waste (HLW) from nuclear fuel reprocessing operations for safe geological disposal. In principle, many chemically hazardous inorganic wastes arising from industry could also be immobilised in highly durable ceramics and disposed of geologically, but in practice the cost structure of most industries is such that lower cost waste management solutions - for example, the development of reusable by-products or the use of cements rather than ceramics - have to be devised. In many thousands of aqueous leach tests at ANSTO, mostly at 70-90 deg C, Synroc has been shown to be exceptionally durable. The emphases of the recent ANSTO program have been on tailoring of the Synroc composition to varying HLW compositions, leach testing of Synroc containing radioactive transuranic actinides, study of leaching mechanisms by SEM and TEM, and the development and costing of a conceptual fully active Synroc fabrication plant design. A summary of recent results on these topics will be presented. 29 refs., 4 figs

  4. Removal of Legacy Low-Level Waste Reactor Moderator De-ionizer Resins Highly Contaminated with Carbon-14 from the 'Waste with no Path to Disposal List' Through Innovative Technical Analysis and Performance Assessment Techniques

    International Nuclear Information System (INIS)

    Goldston, W.T.; Hiergesell, R.A.; Kaplan, D.I.; Pope, H.L.

    2006-01-01

    At the Savannah River Site (SRS), nuclear production reactors used de-ionizers to control the chemistry of the reactor moderator during their operation to produce nuclear materials primarily for the weapons program. These de-ionizers were removed from the reactors and stored as a legacy waste and due to the relatively high carbon-14 (C-14) contamination (i.e., on the order of 740 giga becquerel (GBq) (20 curies) per de-ionizer) were considered a legacy 'waste with no path to disposal'. Considerable progress has been made in consideration of a disposal path for the legacy reactor de-ionizers. Presently, 48 - 50 de-ionizers being stored at SRS have 'no path to disposal' because the disposal limit for C-14 in the SRS's low-level waste disposal facility's Intermediate Level Vault (ILV) is only 160 GBq (4.2 curies) per vault. The current C-14 ILV disposal limit is based on a very conservative analysis of the air pathway. The paper will describe the alternatives that were investigated that resulted in the selection of a route to pursue. This paper will then describe SRS's efforts to reduce the conservatism in the analysis, which resulted in a significantly larger C-14 disposal limit. The work consisted of refining the gas-phase analysis to simulate the migration of C-14 from the waste to the ground surface and evaluated the efficacy of carbonate chemistry in cementitious environment of the ILV for suppressing the volatilization of C-14. During the past year, a Special Analysis was prepared for Department of Energy approval to incorporate the results of these activities that increased the C-14 disposal limits for the ILV, thus allowing for disposal of the Reactor Moderator De-ionizers. Once the Special Analysis is approved by DOE, the actual disposal would be dependent on priority and funding, but the de-ionizers will be removed from the 'waste with no path to disposal list'. (authors)

  5. Melton Valley liquid low-level radioactive waste storage tanks evaluation

    International Nuclear Information System (INIS)

    1995-06-01

    The Melton Valley Liquid Low-Level Radioactive Waste Storage Tanks (MVSTs) store the evaporator concentrates from the Liquid Low-Level Radioactive Waste (LLLW) System at the Oak Ridge National Laboratory (ORNL). The eight stainless steel tanks contain approximately 375,000 gallons of liquid and sludge waste. These are some of the newer, better-designed tanks in the LLLW System. They have been evaluated and found by the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation to comply with all Federal Facility Agreement requirements for double containment. The operations and maintenance aspects of the tanks were also reviewed by the Defense Nuclear Facilities Safety Board (DNFSB) in September 1994. This document also contains an assessment of the risk to the public and ORNL workers from a leak in one of the MVSTs. Two primary scenarios were investigated: (1) exposure of the public to radiation from drinking Clinch River water contaminated by leaked LLLW, and (2) exposure of on-site workers to radiation by inhaling air contaminated by leaked LLLW. The estimated frequency of a leak from one of the MVSTs is about 8 x 10 -4 events per year, or about once in 1200 years (with a 95% confidence level). If a leak were to occur, the dose to a worker from inhalation would be about 2.3 x 10 -1 mrem (with a 95% confidence level). The dose to a member of the public through the drinking water pathway is estimated to be about 7 x 10 -1 mrem (with a 95% confidence level). By comparison with EPA Safe Drinking Water regulations, the allowable lifetime radiation dose is about 300 mrem. Thus, a postulated LLLW leak from the MVSTs would not add appreciably to an individual's lifetime radiation dose

  6. Federalist strategy for nuclear waste management

    International Nuclear Information System (INIS)

    Lee, K.N.

    1980-01-01

    The federal government plans to rely on a policy of consultation and concurrence with state governments in developing nuclear waste repositories. The weaknesses of the concurrence approach are analyzed, and an alternative institutional framework for locating a waste repository is proposed: a siting jury that provides representation for state and local interests, while maintaining a high level of technical review. The proposal could be tested in the siting of away-from-reactor storage facilities for spent nuclear fuel. 1 table

  7. Reinforced concrete in the intermediable-level nuclear waste repository

    International Nuclear Information System (INIS)

    Duffo, Gustavo

    2009-01-01

    The National Atomic Energy Commission (CNEA) is responsible for developing the nuclear waste disposal management programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The proposed model is a near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers and the model foresees a period of 300 years of institutional post-closure control. Since the vault and cover are major components of the engineered barriers, the durability of these concrete structures is an important aspect for the facility integrity. This work presents laboratory investigations performed on the corrosion susceptibility of steel rebars embedded in two different types of high performance reinforced concretes, recently developed by the National Institute of Industrial Technology (Argentine). Concretes were made with cement with Blast Furnace Slag (CAH) and Silica Fume cement (CAH + SF). The aim of this work is to predict the service life of the intermediate level radioactive waste disposal vaults from data obtained from electrochemical techniques. Besides, the diffusion coefficients of aggressive species, such as chloride and carbon dioxide, were also determined. On the other hand, data obtained with corrosion sensors embedded in a vault prototype is also included. These sensors allow on-line measurements of several parameters related to the corrosion process such as rebar corrosion potential and corrosion current density; incoming oxygen flow that reaches the metal surface; concrete electrical resistivity; chloride concentration and internal concrete temperature. All the information obtained from both, laboratory tests and sensors will be used for the final design of the container in order to achieve a service life more or equal than the foreseen durability for this type of

  8. Screening Level Risk Assessment for the New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    M. L. Abbott; K. N. Keck; R. E. Schindler; R. L. VanHorn; N. L. Hampton; M. B. Heiser

    1999-05-01

    This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidify (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.

  9. Status of the Japan's regulatory policy on radioactive waste management. Cleanup and recycling issues

    International Nuclear Information System (INIS)

    Takeuchi, Daiji

    1995-01-01

    Wastes from nuclear facilities are very diversified concerning that have different levels of radioactivity and include different kinds of radioactive materials. Besides some of those waste is not assumed as radioactive waste. The basic policy of the radioactive waste management is taking that diversity into full account for appropriate separate management of different types of radioactive waste and treatment and disposal of each type in a rational manner, including recycling. From the point, the disposal methods are considered or under consideration to that waste, (1) from nuclear reactor facility, (2) from nuclear fuel cycle facility--HLW, waste contaminated TRU nuclides, or contaminated uranium, (3) from RI utilization or research institute, and (4) from decommissioning of nuclear facility. Now in Japan, regulation framework for some kind of LLW from reactor facility, including waste from decommissioning of reactor is established. (J.P.N.)

  10. Radioactive waste management and environmental contamination issues at the Chernobyl site.

    Science.gov (United States)

    Napier, B A; Schmieman, E A; Voitsekovitch, O

    2007-11-01

    The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near-surface waste storage and disposal facilities. Trench and landfill type facilities were created from 1986-1987 in the Chernobyl Exclusion Zone at distances 0.5-15 km from the nuclear power plant site. This large number of facilities was established without proper design documentation, engineered barriers, or hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100 y service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel-containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel-containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste

  11. Qualification of a Vitrified High Level Waste Product to Support Used Nuclear Fuel Recycling in the US

    International Nuclear Information System (INIS)

    Murray, P.; Bailly, F.; Strachan, D.; Senentz, G.; Veyer, C.

    2009-01-01

    As part of the Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP), AREVA formed the International Nuclear Recycling Alliance (INRA) consisting of recognized world-leading companies in the area of used nuclear fuel (UNF) recycling,. The INRA team, consisting of AREVA, Mitsubishi Heavy Industries (MHI), Japan Nuclear Fuel Ltd (JNFL), Batelle Memorial Institute (BMI), URS Washington Division and Babcock and Wilcox (B and W), prepared a pre-conceptual design for an upgradable engineering-scale recycling plant with a nominal through put of 800 tHM/y. The pre-conceptual design of this leading-edge facility was based upon the extensive experience of the INRA team in recycling plant design and real world 'lessons learned' from actually building, commissioning, and operating recycling facilities in both France and Japan. The conceptual flowsheet, based upon the COEX TM separations process, separates the useful products for recycling into new fuel and sentences all the remaining fission products and minor actinides (MA) to the high level waste, (HLW) for vitrification. The proposed vitrified waste product will be similar to that currently produced in recycling plants in France. This wasteform has been qualified in France by conducting extensive studies and demonstrations. In the US, the qualification of vitrified glass products has been conducted by the US National Laboratories for the Defence Waste Processing Facility (DWPF), the West Valley Demonstration Plant (WVDP), and the Waste Treatment Plant (WTP). The vitrified waste product produced by recycling is sufficiently different from these current waste forms to warrant additional trials and studies. In this paper we review the differences in the vitrified waste forms previously qualified in the US with that produced from recycling of UNF in France. The lessons learned from qualifying a vitrified waste form in Europe is compared to the current US process for vitrified waste qualification including waste

  12. Supply-side approach to nuclear waste repositories

    International Nuclear Information System (INIS)

    Harmon, L.H.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) was signed into law on January 7, 1983. Its purpose was to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. Its goal is to have the first waste repository operational by 1998. It is believed by many that this goal cannot possibly be met. The Act is exceedingly complex with something in it for everybody. There are serious impediments to the program - not the least of which is legislation itself. The process will cost tens of billions of dollars and, even if it does succeed, will take many years to accomplish. This paper proposes a method for getting there in 7 years while saving billions of dollars. It is a summary of a more extensive research effort by the author while attending the Industrial College of the Armed Forces

  13. PIME '98, proposal for opening contribution: Nuclear waste

    International Nuclear Information System (INIS)

    Raurnolin, Heikki

    1998-01-01

    Full text: Would a debate about an international nuclear waste repository help us win greater public acceptance for our disposal plans? My opening points will be: - International nuclear waste repositories can be accepted by the public only after the acceptance of national repositories. If there are no accepted national plans or existing national repositories, nobody is accepting any international repository in his or her own country; - The focus of gaining public acceptance should therefore be on the national programmes and on the technology itself, i.e. 'Deep disposal is a safe solution independent on the type of rock formations, crystalline, salt, clay etc.'; - The Finnish situation is quite clear. Our people are rather confident on the stability of our old crystalline granite bedrock. Finnish politicians and ordinary people are very much against accepting high-level waste or spent nuclear fuel of foreign origin to be disposed of in Finland. This was one of the reasons why the Finnish Nuclear Act was amended before Finland joined to EU, so that the import and export of nuclear waste are forbidden; - Our site selection programme in Finland is in a very sensitive phase. The Government has just confirmed the target, site selection at the end of year 2000, and the statutory Environmental Impact Assesment process has just been initiated in four candidate sites. Certain opponents try to frighten people by claiming that accepting the site and the deep disposal of our domestic waste means also definitely accepting the same for foreign waste, in any case for any nuclear waste from other EU countries; - So, all news on discussion about international nuclear waste repositories will create more suspicions against the Finnish nuclear authorities, waste company and utilities. Summary: The answer is no, the debate about international nuclear waste repository does not help us to win greater public acceptance for our disposal plans. (author)

  14. The political challenges of nuclear waste; Kaernavfallets politiska utmaningar

    Energy Technology Data Exchange (ETDEWEB)

    Andren, Mats; Strandberg, Urban (eds.)

    2005-07-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review{sup ,} 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'.

  15. Radiological protection and transuranic wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Morley, F.; Kelly, G.N.

    1976-01-01

    The significant higher actinides in the nuclear fuel cycle are identified and current knowledge of their radiotoxicity is reviewed with particular emphasis on plutonium. Experience of plutonium in the environment is briefly summarised. The origins of fuel cycle wastes contaminated by actinides are described and available data examined to estimate the amounts of radioactivity involved now and in the future. The radiological importance of individual isotopes of the various actinide elements in wastes is compared and attention drawn to changes with time. Some possible alternative waste management policies are reviewed against the requirements of radiological safety. (author)

  16. Decontamination method for radiation-contaminated metal waste

    International Nuclear Information System (INIS)

    Suwa, Takeshi; Kuribayashi, Nobuhide; Yasumune, Taketoshi.

    1991-01-01

    In immersing radiation-contaminated metal wastes into a sulfuric acid solution thereby peeling and removing radioactive deposition cruds and dissolving the surface of the matrix metals to eliminate radioactive contaminants, when the potential of the sulfuric acid solution is shifted to a higher direction by more than a certain level due to the increase of the amount of metal ions leached from the cruds and the matrix material, the leached metal ions are electrolytically reduced to control the potential of the sulfuric acid solution to less than a predetermined potential level. Although the dissolving rate is increased as the concentration of the sulfuric acid solution is higher, it is preferably from 0.5 to 2 mol/l, since higher concentration increases the load on the waste liquid processing. Further, the temperature for solution is set to higher than a room temperature and, preferably from 50 to 90degC. Further, the potential level of the solution, although varies somewhat depending on the concentration of the leached metal ions and the temperature, is preferably controlled to less than 0.1 to 0.2 V. This can attain high decontaminating effect in a short period of time by using a sulfuric acid solution alone. (T.M.)

  17. Proposed classification scheme for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1986-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 defines high-level radioactive waste (HLW) as: (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel....that contains fission products in sufficient concentrations; and (B) other highly radioactive material that the Commission....determines....requires permanent isolation. This paper presents a generally applicable quantitative definition of HLW that addresses the description in paragraph (B). The approach also results in definitions of other waste classes, i.e., transuranic (TRU) and low-level waste (LLW). A basic waste classification scheme results from the quantitative definitions

  18. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  19. IEN Low-level-radioactive waste Management

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S.; Silva, S. da; Silva, J.J.G.

    1986-01-01

    The control, treatment and disposal of the low-level radioactive waste produced in the units of IEN-CNEN, in Brazil are presented, in details. These wastes are generated from a particle accelerator (CV-28 cyclotron), radiochemistry laboratories and a nuclear research reactor (Argonaut type). (Author) [pt

  20. Congressional-executive interaction and the nuclear waste repository site selection process

    International Nuclear Information System (INIS)

    Thurber, J.A.; Evanson, T.C.

    1993-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) (P.L. 97-425) and the Nuclear Waste Policy Amendments Act of 1987 (NWPAA) (Title V of P.L. 100-203) provide the framework for the DOE Office of Civilian Radioactive Waste Management (OCRWM) to find a permanent means for disposing of high-level nuclear waste in the US. The focus of this study is the congressional decision-making process associated with passage of the Nuclear Waste Policy Amendments Act of 1987. The passage of NWPAA was a direct result of the failure of the policy adopted in the Nuclear Waste Policy Act of 1982. This study analyzes the nature of congressional nuclear waste policy-making through the lens of subsystems theory. The data analysis is primarily based on confidential interviews with over fifty key actors in the nuclear waste policy subsystem as well as an analysis of primary source documents

  1. Nuclear wastes, a questionnaire

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Questionnaire giving basic information for the public on nuclear wastes and radioactive waste management. Risk and regulations to reduce the risk to permissible limits are more particularly developed. A survey of radioactive wastes is made along the fuel cycle: production, processing, transport, disposal to end on effect of waste management on the cost of nuclear kWh [fr

  2. Application of international recommendations and guidance on low level radioactive waste management and remediation of contaminated land at the national level: Experience of regulatory support in Northwest Russia

    International Nuclear Information System (INIS)

    Sneve, M.; Smith, G.M.; Kerrigan, E

    2005-01-01

    This paper notes the developments in international recommendations on radioactive waste management and remediation of contaminated land and considers their implementation in the context of the Norwegian Plan of Action to improve nuclear safety in North West Russia. Summary information is provided on projects to implement waste management activities (so-called Industrial Projects) and on projects to support regulatory supervision of waste management activities (so-called Regulatory Support Projects). The links between international recommendations and national practice are discussed and it is concluded that, in practice, the details of national standards differ both among themselves and, in some respects, from the recommendations of the ICRP and IAEA. Examples of further potential collaboration projects are listed. While separate responsibilities among organisations have to clear and maintained, combined involvement of operators and regulators is recognised as a prioritised area in future cooperation between NRPA and Russia. (author)

  3. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  4. Management of waste contaminated with alpha emitters

    International Nuclear Information System (INIS)

    Cartier, R.; Durec, J.P.

    1993-01-01

    Although advances are being made in the deep geological storage concept, it will probably never be possible to dispose of all types and quantities of radioactive waste in geological formations. Permanent storage should therefore only be considered as an option for final waste disposal. We are currently obliged to search for technological solutions which will reduce the quantities of waste to be managed by future generations, and to ensure that such management can be carried out safely without releasing elements detrimental to the environment into the biosphere. This clearly stated determination, combined with an attitude of complete openness, will secure public acceptance of nuclear energy. As a result of the Research and Development work described here, in March 1992 the Valduc Nuclear Research Center decided to build an industrial waste incineration facility. The facility was to have an annual incinerating capacity of 26 tonnes of waste with a mean radioactivity level of 7.5*10 8 Bq/kg (0.02 Ci/kg). Detailed design studies are in progress, procurements have been launched and construction of the building has started. Commercial operation is scheduled for late 1995. 4 refs. 2 figs

  5. Site investigations for final disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Aeikaes, T.; Laine, T.

    1982-12-01

    Research concerning disposal of high-level nuclear waste of the Industrial Power Company Ltd has focused on deep underground disposal in Finnish precambrian bedrock. The present target is to have a repository for high-level waste in operation by 2020. Selection of the repository site is based on site investigations. In addition to geosciences, selection of appropriate site includes many branches of studies; engineering, safety analysis, ecology, transport, demography etc. The investigations required for site selection for high-level waste have been arranged in a sequence of four phases. The aim of the phases is that investigations become more and more detailed as the selection process continues. Phase I of the investigations is the characterization of potential areas. This comprises establishment of criteria for site selection and identification of areas that meet selection criteria. Objective of these studies is to determine areas for phase II field investigations. The studies are largely made by reviewing existing data and remote-sensing techniques. Phase II field investigations will be undertaken between 1986-1992. The number of potential candidates for repository site is reduced to few preferred areas by preceeding generic study. The site selection process culminates in phase III in site confirmation studies carried out at 2...3 most suitable sites during 1992-2010. This is then followed by phase IV, which comprises very detailed investigations at the selected site. An alternative for these investigations is to undertake them by using pilot shaft and drifts. Active development is taking place in all phases concerning investigation methods, criteria, parameters, data processing and modelling. The applicability of the various investigation methods and techniques is tested in a deep borehole in phase I. The co-operation with countries with similar geological conditions makes it possible to compare results obtained by different techniques

  6. Public opposition to the siting of the high-level nuclear waste repository: The importance of trust

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    This paper examines several dimensions of public opposition to the proposed siting of the high-level nuclear waste repository at Yucca Mountain. In order to provide a context for the public's views of the repository in metropolitan Clark County, both governmental studies of the repository siting process are analyzed, as well as elements of the Nuclear Waste Policy Act. This analysis suggests that one potentially key component of the public's opposition to the siting, as well as their perceptions of risk of the facility, may be the result of a lack of trust in the Department of Energy. Empirical analysis of survey data collected in Nevada in 1988 confirms the strong relationship between political trust and repository risk perceptions

  7. Contamination monitoring of Na 131 I levels in therapy unit of Research Institute for Nuclear Medicine, Tehran University of Medical Sciences by indirect method (Wipe test)

    International Nuclear Information System (INIS)

    Beiki, D.; Shahhosseini, S.; Eftekhari, M.; Takavar, A.; Fard-Esfahani, A.

    2003-01-01

    Contamination with radiopharmaceuticals in nuclear medicine centres in addition to being a health concern requires time consuming decontamination efforts. According to Nuclear Regulatory Commission Contamination should be monitored in nuclear medicine centers where radiopharmaceuticals are prepared and administrated at the end of each working session; otherwise, contamination spread to other areas not only equipment but also personnel and other people will be expected. The wipe test for the presence of radioactivity is accomplished by wiping the surface over an area approximately 100 cm 2 with an absorbent paper, then counting it in an appropriate radiation detector. In this study, contamination monitoring of patient's rooms (4 rooms), entrance corridor, patient's corridor, waiting room, control room (nursing station), radiopharmaceutical storage room in therapy unit of Research Institute for Nuclear Medicine, Shariati hospital was performed by indirect method. Based on the results, some areas including storage room were contaminated. There was also a direct relationship between dose administrated and levels of contamination in patient's rooms. Regarding high uptake of iodine by thyroid gland and damaging effects of Na 131 I, weekly wipe tests are required to determine the level of contamination. Patient's rooms after discharging the patients and before re hospitalization specially should be checked. If these tests reveal contamination over standard levels, appropriate decontamination procedures should be carried out immediately

  8. Radiation transport in high-level waste form

    International Nuclear Information System (INIS)

    Arakali, V.S.; Barnes, S.M.

    1992-01-01

    The waste form selected for vitrifying high-level nuclear waste stored in underground tanks at West Valley, NY is borosilicate glass. The maximum radiation level at the surface of a canister filled with the high-level waste form is prescribed by repository design criteria for handling and disposition of the vitrified waste. This paper presents an evaluation of the radiation transport characteristics for the vitreous waste form expected to be produced at West Valley and the resulting neutron and gamma dose rates. The maximum gamma and neutron dose rates are estimated to be less than 7500 R/h and 10 mRem/h respectively at the surface of a West Valley canister filled with borosilicate waste glass

  9. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2003-01-01

    The Australian Government is committed to establishing two purpose-built facilities for the management of Australia's radioactive waste; the national repository for disposal of low level and short-lived intermediate level ('low level') waste, and the national store for storage of long-lived intermediate level ('intermediate level') waste. It is strongly in the interests of public security and safety to secure radioactive waste by disposal or storage in facilities specially designed for this purpose. The current arrangements where waste is stored under ad hoc arrangements at hundreds of sites around Australia does not represent international best practice in radioactive waste management. Environmental approval has been obtained for the national repository to be located at Site 40a, 20 km east of Woomera in South Australia, and licences are currently being sought from the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) to site, construct and operate the facility. The national repository may be operating in 2004 subject to obtaining the required licences. The national store will be located on Australian Government land and house intermediate level waste produced by Australian Government departments and agencies. The national store will not be located in South Australia. Short-listing of potentially suitable sites is expected to be completed soon

  10. Discharged of the nuclear wastes by health service centres

    International Nuclear Information System (INIS)

    Mazur, G.; Jednorog, S.

    1993-01-01

    In this paper Polish national regulation in radiation protection on nuclear medical domain was discussed. The method of utilized nuclear wastes in medical and science centres was deliberate. From many years activity of wastes from Nuclear Medicine Department of Central Clinical Hospital Armed Forces Medical Academy and Radiation Protection Department of Armed Forces Institute of Hygiene and Epidemiology was measured. In debate centres radiation monitoring was performed. In this purpose the beta global activity and gamma spectrometry measurement of discharged wastes occurred. From last year in discussed centres wastes activity do not increased permissible levels. (author). 3 refs, 5 tabs

  11. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  12. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  13. Selection of candidate canister materials for high-level nuclear waste containment in a tuff repository

    International Nuclear Information System (INIS)

    McCright, R.D.; Weiss, H.; Juhas, M.C.; Logan, R.W.

    1983-11-01

    A repository located at Yucca Mountain at the Nevada Test Site is a potential site for permanent geological disposal of high-level nuclear waste. The repository can be located in a horizon in welded tuff, a volcanic rock, which is above the static water level at this site. The environmental conditions in this unsaturated zone are expected to be air and water vapor dominated for much of the containment period. Type 304L stainless steel is the reference material for fabricating canisters to contain the solid high-level wastes. Alternative stainless alloys are considered because of possible susceptibility of 304L to localized and stress forms of corrosion. For the reprocessed glass wastes, the canisters serve as the recipient for pouring the glass with the result that a sensitized microstructure may develop because of the times at elevated temperatures. Corrosion testing of the reference and alternative materials has begun in tuff-conditioned water and steam environments. 21 references, 8 figures, 8 tables

  14. Assessment of the important radionuclides in nuclear waste

    International Nuclear Information System (INIS)

    Kerrisk, J.F.

    1985-10-01

    The relative importance of the various radionuclides contained in nuclear waste has been assessed by consideration of (1) the quantity of each radionuclide present, (2) the Environmental Protection Agency's release limits for radionuclides, (3) how retardation processes such as solubility and sorption affect radionuclie transport, and (4) the physical and chemical forms of radionuclides in the waste. Three types of waste were reviewed: spent fuel, high-level waste, and defense high-level waste. Conditions specific to the Nevada Nuclear Waste Storage Investigations project potential site at Yucca Mountain were used to describe radionuclide transport. The actinides Am, Pu, Np, and U were identified as the waste elements for which solubility and sorption data were most urgently needed. Other important waste elements were identified as Sr, Cs, C, Ni, Zr, Tc, Th, Ra, and Sn. Under some conditions, radionuclides of three elements (C, Tc, and I) may have high solubility and negligible sorption. The potential for transport of some waste elements (C and I) in the gas phase must also be evaluated for the Yucca Mountain Site. 12 refs., 17 tabs

  15. Thermochemical modeling of nuclear waste glass

    International Nuclear Information System (INIS)

    Spear, K.E.; Besmann, T.M.; Beahm, E.C.

    1998-06-01

    The development of assessed and consistent phase equilibria and thermodynamic data for major glass constituents used to incorporate high-level nuclear waste is discussed in this paper. The initial research has included the binary Na 2 O-SiO 2 , Na 2 O-Al 2 O 3 , and SiO 2 -Al 2 O 3 systems. The nuclear waste glass is assumed to be a supercooled liquid containing the constituents in the glass at temperatures of interest for nuclear waste storage. Thermodynamic data for the liquid solutions were derived from mathematical comparisons of phase diagram information and the thermodynamic data available for crystalline solid phases. An associate model is used to describe the liquid solution phases. Utilizing phase diagram information provides very stringent limits on the relative thermodynamic stabilities of all phases which exist in a given system

  16. International low level waste disposal practices and facilities

    International Nuclear Information System (INIS)

    Nutt, W.M.

    2011-01-01

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  17. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  18. High-Level Waste Vitrification Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Lopez

    1999-08-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035.

  19. High-Level Waste Vitrification Facility Feasibility Study

    International Nuclear Information System (INIS)

    D. A. Lopez

    1999-01-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035

  20. Defence nuclear waste disposal in Russia. International perspective

    International Nuclear Information System (INIS)

    Stenhouse, M.J.; Kirko, V.I.

    1998-01-01

    Significant amounts of liquid and solid radioactive waste have been generated in Russia during the production of nuclear weapons, and there is an urgent need to find suitable ways to manage these wastes in a way that protects both the current population and future generations. This book contains contributions from pure and applied scientists and other representatives from Europe, North America, and Russia, who are, or have been, actively involved in the field of radioactive waste management and disposal. First-hand experience of specific problems associated with defence-related wastes in the USA and the Russian Federation is presented, and current plans are described for the disposal of solid wastes arising from civilian nuclear power production programmes in other countries, including Belgium, Bulgaria, Canada, Germany and the UK. The book provides a good insight into ongoing research at local and national level within Russia, devoted to the safe disposal of defence-related radioactive waste. It also demonstrates how existing expertise and technology from civilian nuclear waste management programmes can be applied to solving the problems created by nuclear defence programmes. Contributions address methods of immobilisation, site selection methodology, site characterisation techniques and data interpretation, the key elements of safety/performance assessments of planned deep (geological) repositories for radioactive waste, and radionuclide transport modelling. Concerns associated with certain specific nuclear waste disposal concepts and repository sites are also presented. refs

  1. Concepts and strategies for management of nuclear wastes

    International Nuclear Information System (INIS)

    1979-11-01

    Three modes of reactor strategies are chosen and discussed; (1) Once-through type light water reactor, (2) U-Pu cycle light water reactor, and (3) U-Pu cycle fast breeder reactor. The arising of wastes in each mode of nuclear fuel cycle is first estimated for unit nuclear power generation of 1 GWe.year and the amount of wastes to be managed in each year is then calculated. Assuming the 2nd and the 3rd reprocessing plants are not operative, the decrease of waste arising is also estimated, which, nevertheless, claims the need for spent fuel storage pools. In addition, the arisings of decommissioning wastes are evaluated to identify their effect on waste management. Based on above fact, a generic logic of waste management is brought about, placing major emphasis on volume reduction, barrier- and decay-effects. According to the characteristics, the wastes arisen at each stage of nuclear fuel cycle can be categorized into (1) extremely low-level waste, (2) low- and intermediate-level waste, (3) alpha-waste and (4) high-level waste, and the suitable isolation periods for the specified categories can be set by the aid of hazard index, suggesting that the disposal options may possibly be selected. The waste disposal gives environmental impacts through dispersion and migration of contained nuclides into biosphere; the dispersion and migration paths are investigated and a mathematical expression to evaluate the impacts as dose commitment is presented. A multi-barrier concept is proposed since combined artificial and natural barriers have possibility of lengthening the migration path to enable safe disposal. Finally, items of research/development in waste management are represented from the viewpoints of (1) establishment of management system, (2) safety assessment covering verification of technology and system, and (3) regulation, giving recommendations for national policy making as well as for international co-operation. (JPN)

  2. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  3. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  4. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Lindblom, U.; Gnirk, P.

    1982-01-01

    The subject is discussed under the following headings: the form and final disposal of nuclear wastes; the natural rock and groundwater; the disturbed rock and the groundwater; long-term behavior of the rock and the groundwater; nuclear waste leakage into the groundwater; what does it all mean. (U.K.)

  5. Equity and nuclear waste disposal

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.

    1994-01-01

    Following the recommendations of the US National Academy of Sciences and the mandates of the 1987 Nuclear Waste Policy Amendments Act, the US Department of Energy has proposed Yucca Mountain, Nevada as the site of the world's first permanent repository for high-level nuclear waste. The main justification for permanent disposal (as opposed to above-ground storage) is that it guarantees safety by means of waste isolation. This essay argues, however, that considerations of equity (safer for whom?) undercut the safety rationale. The article surveys some prima facie arguments for equity in the distribution of radwaste risks and then evaluates four objections that are based, respectively, on practicality, compensation for risks, scepticism about duties to future generations, and the uranium criterion. The conclusion is that, at least under existing regulations and policies, permanent waste disposal is highly questionable, in part, because it fails to distribute risk equitably or to compensate, in full, for this inequity

  6. French people and nuclear wastes

    International Nuclear Information System (INIS)

    D'Iribarne, Ph.

    2005-01-01

    On March 21, 2005, the French minister of industry gave to the author of this document, the mission to shade a sociological light on the radioactive wastes perception by French people. The objective of this study was to supply an additional information before the laying down in 2006 of the decisions about the management of high-level and long-lived radioactive wastes. This inquiry, carried out between April 2004 and March 2005, stresses on the knowledge and doubts of the questioned people, on the vision they have of radioactive wastes and of their hazards, and on their opinion about the actors in concern (experts, nuclear companies, government, anti-nuclear groups, public). The last two parts of the report consider the different ways of waste management under study today, and the differences between the opinion of people living close to the Bure site and the opinion of people living in other regions. (J.S.)

  7. Who wants nuclear waste

    International Nuclear Information System (INIS)

    Fernie, John; Openshaw, Stanley

    1986-01-01

    The criteria involved in selecting sites for disposal of low and short-lived intermediate-level radioactive wastes are explained. The wastes and the sources are identified and the current procedure for their disposal, at Drigg, next to the Sellafield reprocessing plant, is given. If alternative sites could be found for non-Sellafield-produced wastes the lifetime of the Drigg site could be extended. The sites chosen by NIREX (Nuclear Industry Radioactive Waste Executive) have to be cost effective. Indeed, those identified are conveniently situated and would not incur excessive transport costs. However, more remote sites may have to be chosen, even at greater transport cost, because of public protests. Even this may not be satisfactory because the transportation itself incurs risks. (UK)

  8. Program summary. Nuclear waste management and fuel cycle programs

    International Nuclear Information System (INIS)

    1982-07-01

    This Program Summary Document describes the US Department of Energy (DOE) Nuclear Waste Management and Fuel Cycle Programs. Particular emphasis is given to near-term, specifically Fiscal Year (FY) 1982, activities. The overall objective of these programs will be achieved by the demonstration of: (1) safe radioactive waste management practices for storage and disposal of high-level waste and (2) advanced technologies necessary to close the nuclear fuel cycle on a schedule which would assure a healthy future for the development of nuclear power in this country

  9. Evaluation of the Level of air Microbial Contamination in some ...

    African Journals Online (AJOL)

    The level of air microbial contamination in some teaching hospitals waste dump site in South Eastern Nigeria was evaluated using the standard microbiological techniques. Passive air sampling was performed using settle plates. The microbial load of the air around the hospitals waste dumpsite, showed high microbial load ...

  10. Treatment of plutonium contamined solid wastes by electrogenerated Ag(II)

    International Nuclear Information System (INIS)

    Saulze, J.L.

    1990-01-01

    A process for the treatment of plutonium contaminated solid wastes is designed. Two types of wastes have been studied; incineration ashes (COGEMA UP1) and sludges produced in the cryotreatment facility in Cadarache Center (France). The principle of the process is based on the rapid dissolution of PuO 2 (contained in the wastes) under the action of aggressive Ag(II) species, regenerated electrochemically. In the case of the treatment of incinerator ashes an electrochemical pretreatment is necessary if the chloride ion content of the ashes is high. The feasibility of the decontamination process has been proved for the two types of plutonium contaminated solid wastes at a pilot level; for example 1 Kg of ashes (or 0.75 Kg of sludges) has been treated in one experiment, and 97% (or 95%) of the total plutonium was dissolved at the end of the experiment. Industrial applications of this new process are underway [fr

  11. Crystallization behavior of nuclear waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.; Lokken, R.O.; May, R.P.; Wald, J.W.

    1981-09-01

    Several waste form options have been or are being developed for the immobilization of high-level wastes. The final selection of a waste form must take into consideration both waste form product as well as process factors. Crystallization behavior has an important role in nuclear waste form technology. For glass or vitreous waste forms, crystallization is generally controlled to a minimum by appropriate glass formulation and heat treatment schedules. With glass ceramic waste forms, crystallization is essential to convert glass products to highly crystalline waste forms with a minimum residual glass content. In the case of ceramic waste forms, additives and controlled sintering schedules are used to contain the radionuclides in specific tailored crystalline phases

  12. Radiolytic gas production during long-term storage of nuclear wastes

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1976-01-01

    Gases produced by in situ radiolysis of sealed solidified nuclear wastes during long-term storage could conceivably breach containment. Therefore, candidate waste forms (matrices containing simulated nuclear wastes) were irradiated with 60 Co-γ and 244 Cm-α radiation. These forms were: cement containing simulated fission product sludges, vermiculite containing organic liquids, and cellulosics contaminated with α-emitting transuranic isotopes. For cement waste forms exposed to γ-radiolysis, an equilibrium hydrogen pressure was reached that was dose rate dependent. For α-radiolysis, equilibrium was not reached. With organic wastes (n-octane on vermiculite), H 2 and traces of CO 2 and CH 4 were produced, and O 2 was consumed with both radiations. Only energy absorbed by the organic material was effective in producing H 2 . At low dose rates with both α- and γ-irradiations, G(H 2 ) was 4.5 and G(-O 2 ) was 5.0. Also, equilibrium was not obtained. For cellulosic material, H 2 , CO 2 , and CO were produced in the ratio of 1.0:0.7:0.3, and O 2 was consumed. With α-radiolysis, G(gas) was dose dependent; measured values ranged from 2.2 to 0.6 as the dose increased. Implications of all these results on long-term storage of radioactive waste are discussed. Some data from an actual nuclear wasteform are also presented

  13. Status and advice of the low and intermediate level radioactive waste disposal sites in China

    International Nuclear Information System (INIS)

    Teng Keyan; Lu Caixia

    2012-01-01

    With the rapid development of nuclear power industry in China, as well as the decommissioning of the nuclear facilities, and the process of radioactive waste management, a mount of the low and intermediate level radioactive solid wastes will increase rapidly. How to dispose the low and intermediate level radioactive solid wastes, that not only related to Chinese nuclear energy and nuclear technology with sustainable development, but also related to the public health, environment safety. According to Chinese « long-term development plan of nuclear power (2005- 2020) », when construct the nuclear power, should simultaneous consider the sites that dispose the low and intermediate level radioactive waste, In order to adapt to the needs that dispose the increasing low and intermediate level radioactive waste with development of nuclear power. In the future, all countries are facing the enormous challenge of nuclear waste disposal. (authors)

  14. Transuranic contaminated waste form characterization and data base

    International Nuclear Information System (INIS)

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains 5 appendices. Title listing are: technologies for recovery of transuranics; nondestructive assay of TRU contaminated wastes; miscellaneous waste characteristics; acceptance criteria for TRU waste; and TRU waste treatment technologies

  15. Retrievability of high-level nuclear waste from geologic repositories - Regulatory and rock mechanics/design considerations

    International Nuclear Information System (INIS)

    Tanious, N.S.; Nataraja, M.S.; Daemen, J.J.K.

    1987-01-01

    Retrievability of nuclear waste from high-level geologic repositories is one of the performance objectives identified in 10CFR60 (Code of Federal Regulations, 1985). 10CFR60.111 states that the geologic repository operations area shall be designed to preserve the option of waste retrieval. In designing the repository operations area, rock mechanics considerations play a major role especially in evaluating the feasibility of retrieval operations. This paper discusses generic considerations affecting retrievability as they relate to repository design, construction, and operation, with emphasis on regulatory and rock mechanics aspects

  16. Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore

    Science.gov (United States)

    Vetter, M.; Wang, J.

    2017-12-01

    The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.

  17. Nuclear wastes: overview

    International Nuclear Information System (INIS)

    Billard, Isabelle

    2006-01-01

    Nuclear wastes are a major concern for all countries dealing with civil nuclear energy, whatever these countries have decided yet about reprocessing/storage options. In this chapter, a (exact) definition of a (radioactive) waste is given, together with definitions of waste classes and their characteristics (volumes, types etc.). The various options that are currently experienced in the world will be presented but focus will be put on the French case. Envision evolutions will be briefly presented. (author)

  18. Development of geopolymers as candidate materials for low/intermediate level highly alkaline nuclear waste

    International Nuclear Information System (INIS)

    Perera, D.S.; Vance, E.R.; Kiyama, S.; Aly, Z.; Yee, P.

    2006-01-01

    Full text: Geopolymers have been studied for many years as a possible improvement on cement in respect of compressive strength, resistance to fire, heat and acidity, and as a medium for the encapsulation of hazardous or low/ intermediate level radioactive waste. They are made by adding aluminosilicates to concentrated alkali solutions and the application of heat at 0 Cfor subsequent polymerisation. In this work we studied them as suitable candidate materials to incorporate NaOH/NaA10 2 containing waste with low levels of Cs, Sr and Nd. Geopolymers were produced by incorporating the highly alkaline solution as part of the composition with added metakaolinite, fumed silica and extra NaOH, such that the overall geopolymer composition was of molar ratios Si/Al = 2 and Na/Al = 1. The simulated waste contained Na2SO 4 , therefore Ba(OH) 2 was also added to precipitate the SO 4 x 2 as BaSO 4 . Three geoplymers of the same composition containing simulated wastes were leach tested in triplicate after heating at 400 0 Cfor 1 h (to remove -98% of free and interstitial water) under the PCT-B test protocol at 90 0 Cfor 7 days and their results are listed in Table 1. The Cs, Sr and Nd normalised leach rates were low. The Na leach rate was ∼ 4 g/L thus passing the PCT-B test protocol value of 13.5 g/L for EA glass. The X-ray diffraction and scanning electron microscopy showed that BaS04 did precipitate, however all the S did not appear to have precipitated. The ANSI/ANS-16.1-2003 test was carried out on the above geopolymer composition for 5 days. The ANSI Leachability Index D (diffusivity of 10''cm sec'') for the elements released are listed in Table 2. A Portland cement was also tested for comparison and the Leachability index values are 11, 8 and 10 for Al, Na and Ca respectively. Both passed the test protocol insofar as they were > 6. Geopolymers thus passing the tests for high level nuclear waste glass (PCT-B) and for low level nuclear waste (ANSI) show promising potential

  19. Long-term management of wastes resulting from dismantling operations. Storing the very low-level activity wastes at Morvilliers

    International Nuclear Information System (INIS)

    Duret, F.; Dutzer, M.; Beranger, V.; Lecoq, P.

    2003-01-01

    part of a nuclear installation, where they can be contaminated or activated, should be treated by a specific procedure, irrespective of their activity level. Large part of these (140,000 t of wastes from dismantling of 9 power reactor) do not implies a particular type of disposal since their activity is very low; sometime their radioactivity appears to be only potential. Their storage at Center of Aube will be not appropriate and consequently a specific waste storage of very low activity should be provided for them. Implementation of the storage center of very low activity at Morvilliers, at 2 km from the storage center at Aube was followed by 2 public inquiries conducted in 2001 and 2002. The positive results of these inquiries have allowed starting the construction phase, the last stage of the project being their industrial operation by the summer of 2003, with first delivering of waste drums at 1. of October 2003. The storage center at Morvilliers constitutes now a tool of waste management significant for the most part of the volume of waste to be produced by the dismantling operation of nuclear facilities. After a phase of operation spanning 30 years, ANDRA will maintain a monitoring phase of the site and the environment, extended over tens of years for guaranteeing innocuousness for the man and its environment. After this period and after the verification of the site situation the residual constraints will be relaxed

  20. Phytoremediation of 137Cs from low level nuclear waste using Catharanthus roseus

    International Nuclear Information System (INIS)

    Fulekar, M.H.; Singh, Anamika; Thorat, Vidya; Kaushik, C.P.; Eapen, Susan

    2010-01-01

    Remediation of radionuclides has been carried out using the phytoremediation technology. The green plants have been screened for the uptake potential of radionuclide and found that Catharanthus roseus has the high potential for radionuclides in particular 137 Cs. Low level nuclear waste (LLNW) collected from effluent treatment plant, BARC has been characterized for physico-chemical and the presence of traces of radionuclides. LLNW was spiked with 3.7 x 10 4 kBqL -1 activity level of 137 Cs. The plants of C. roseus were grown in (i) LLNW, (ii) 137 Cs spiked LLNW and (iii) with the control. The radio activities were measured in the solution at the intervals of 0, 1, 2, 3, 6, 8 and 15 days in triplicate set of the experiment. The plants were harvested after the growth. The depletion of 137 Cs in LLNW was found to be 19, 21, 24, 38, 60 and 76% at intervals of 1, 2, 3, 6, 8 and 15 days, respectively. The bio-accumulation of 137 Cs has been measured in the roots and shoots of the harvested plants. The activity of 137 Cs was found higher in shoots (998 kBq g -1 dw) as compared to the roots (735 kBq g -1 dw). The uptake of radionuclide- 137 Cs, bio-accumulation in the shoot via the active transport from the root, shows the high efficiency and potentiality of C. roseus for the remediation of radionuclide. The bio-accumulation of 137 Cs in the shoot will remediate the radionuclide contamination from LLNW. C. roseus can also be made applicable for effective remediation of radionuclides present in the LLNW. (author)