WorldWideScience

Sample records for level biology courses

  1. Designing and Implementing a New Advanced Level Biology Course

    Science.gov (United States)

    Hall, Angela; Reiss, Michael J.; Rowell, Cathy; Scott, Anne

    2003-01-01

    Salters-Nuffield Advanced Biology is a new advanced level biology course, piloted from September 2002 in England with around 1200 students. This paper discusses the reasons for developing a new advanced biology course at this time, the philosophy of the project and how the materials are being written and the specification devised. The aim of the…

  2. Designing and implementing a new advanced level biology course.

    OpenAIRE

    Hall, Angela; Reiss, Michael; Rowell, Cathy; Scott, C.; Scott, Anne

    2003-01-01

    Salters-Nuffield Advanced Biology is a new advanced level biology course currently being piloted from September 2002 in England with around 1200 students. This paper discusses the reasons for developing a new advanced biology course at this time, the philosophy of the project and how the materials are being written and the specification devised. The aim of the project is to provide an up-to-date course that interests students, is considered appropriate by teachers and other professionals in b...

  3. SNAB: A New Advanced Level Biology Course

    Science.gov (United States)

    Reiss, Michael J.

    2005-01-01

    Of all the sciences, biology has probably made the most rapid progress in recent years and the need for this to be reflected in a new Advanced Level biology course has long been recognised in the UK. After wide-ranging consultation and successful piloting in over 50 schools and colleges in England and Wales, the new Salters-Nuffield Advanced…

  4. High school and college biology: A multi-level model of the effects of high school biology courses on student academic performance in introductory college biology courses

    Science.gov (United States)

    Loehr, John Francis

    The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.

  5. Just the facts? Introductory undergraduate biology courses focus on low-level cognitive skills.

    Science.gov (United States)

    Momsen, Jennifer L; Long, Tammy M; Wyse, Sara A; Ebert-May, Diane

    2010-01-01

    Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses. We used Bloom's Taxonomy of Educational Objectives to assign cognitive learning levels to course goals as articulated on syllabi and individual items on high-stakes assessments (i.e., exams and quizzes). Our investigation revealed the following: 1) assessment items overwhelmingly targeted lower cognitive levels, 2) the cognitive level of articulated course goals was not predictive of the cognitive level of assessment items, and 3) there was no influence of course size or institution type on the cognitive levels of assessments. These results support the claim that introductory biology courses emphasize facts more than higher-order thinking.

  6. Just the Facts? Introductory Undergraduate Biology Courses Focus on Low-Level Cognitive Skills

    Science.gov (United States)

    Momsen, Jennifer L.; Long, Tammy M.; Wyse, Sara A.; Ebert-May, Diane

    2010-01-01

    Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses.…

  7. Examining portfolio-based assessment in an upper-level biology course

    Science.gov (United States)

    Ziegler, Brittany Ann

    Historically, students have been viewed as empty vessels and passive participants in the learning process but students actually are active forming their own conceptions. One way student learning is impacted is through assessment. Alternative assessment, which contrasts traditional assessment methods, takes into account how students learn by promoting engagement and construction of knowledge This dissertation explores portfolio-based assessment, a method of alternative assessment, which requires students to compose a purposeful collection of work demonstrating their knowledge in an upper-level biology course. The research objectives include characterizing and contributing to the understanding of portfolio-based assessment in higher education, examining reflection and inquiry portfolio components, determining student knowledge of biological concepts, and investigating student integrative thinking through the transformation of reflections into concept webs One main finding includes the majority of reflections categorized as naive or novice in quality. There was no difference in quality of reflections among biological topic. There was a relatively equal amount of high and low cognitive level questions. Students' knowledge of biological concepts significantly increased from the beginning to end of the course. Student written reflections were transformed into concept webs to allow for examination of student integrative thinking. Concepts, relationships, and interconnections in concept webs showed variation but declined by the end of the semester This study is one of the first examining portfolio-based assessment in an upper-level biology course We do not contend that this method of assessment is the only way to promote student learning but portfolio-based assessment may be a tool that can transform science education but currently the role of portfolio-based assessment in science education remains unclear. Additional research needs to be conducted before we will fully

  8. Using clickers in nonmajors- and majors-level biology courses: student opinion, learning, and long-term retention of course material.

    Science.gov (United States)

    Crossgrove, Kirsten; Curran, Kristen L

    2008-01-01

    Student response systems (clickers) are viewed positively by students and instructors in numerous studies. Evidence that clickers enhance student learning is more variable. After becoming comfortable with the technology during fall 2005-spring 2006, we compared student opinion and student achievement in two different courses taught with clickers in fall 2006. One course was an introductory biology class for nonmajors, and the other course was a 200 level genetics class for biology majors. Students in both courses had positive opinions of the clickers, although we observed some interesting differences between the two groups of students. Student performance was significantly higher on exam questions covering material taught with clickers, although the differences were more dramatic for the nonmajors biology course than the genetics course. We also compared retention of information 4 mo after the course ended, and we saw increased retention of material taught with clickers for the nonmajors course, but not for the genetics course. We discuss the implications of our results in light of differences in how the two courses were taught and differences between science majors and nonmajors.

  9. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course

    Science.gov (United States)

    Ziegler, Brittany; Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students' perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest…

  10. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course

    OpenAIRE

    Ziegler, Brittany; Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students’ perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest approach. Significant differences in students’ perception of their knowledge and their determined knowledge exist at the beginning (pretest) and end (postte...

  11. Selected factors associated with achievement of biology preparatory students and their follow-up to higher level biology courses

    Science.gov (United States)

    Biermann, Carol A.; Sarinsky, Gary B.

    This study was undertaken to determine whether a biology preparatory course given at an urban community college was helping students to develop the proper skills and background necessary for them to successfully complete follow-up courses in biology. A group of students who enrolled in a biology preparatory course, and subsequently, a follow-up anatomy and physiology or general biology course (experimental group) was compared to a group of students who should have registered for the preparatory course, but who enrolled directly into the anatomy and physiology or general biology course (control group). It was shown that there was no significant difference in their anatomy and physiology or general biology grades. Furthermore, only 16% of the initial group of preparatory students enrolled in and passed a follow-up biology course. Examination of the preparatory group using discriminant analysis ascertained that mathematics score was the principle discriminator between pass/fail groups. A stepwise multiple regression analysis of the variables explaining the preparatory grade showed that mathematics score, reading score, and type of high school degree explained 33% of the variance. Of the students who did pass the preparatory course and enrolled in a follow-up biology class, their preparatory grade was a good predictor of their achievement (measured by follow-up course grade), as determined by multiple regression.

  12. Predictors of student success in entry-level science courses

    Science.gov (United States)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  13. Student Perceived and Determined Knowledge of Biology Concepts in an Upper-Level Biology Course

    Science.gov (United States)

    Montplaisir, Lisa

    2014-01-01

    Students who lack metacognitive skills can struggle with the learning process. To be effective learners, students should recognize what they know and what they do not know. This study examines the relationship between students’ perception of their knowledge and determined knowledge in an upper-level biology course utilizing a pre/posttest approach. Significant differences in students’ perception of their knowledge and their determined knowledge exist at the beginning (pretest) and end (posttest) of the course. Alignment between student perception and determined knowledge was significantly more accurate on the posttest compared with the pretest. Students whose determined knowledge was in the upper quartile had significantly better alignment between their perception and determined knowledge on the pre- and posttest than students in the lower quartile. No difference exists between how students perceived their knowledge between upper- and lower-quartile students. There was a significant difference in alignment of perception and determined knowledge between males and females on the posttest, with females being more accurate in their perception of knowledge. This study provides evidence of discrepancies that exist between what students perceive they know and what they actually know. PMID:26086662

  14. Varied Student Perception of E-Text Use among Student Populations in Biology Courses

    Science.gov (United States)

    McDaniel, Kerrie; Daday, Jerry

    2018-01-01

    The faculty in a biology department at a four-year public comprehensive university adopted e-texts for all 100 and 200 level biology courses with the primary motivation of reducing textbook costs to students. This study examines the students' perceptions of the e-texts adopted for these 100 and 200 level biology courses. An online questionnaire…

  15. Web-Based Learning Enhancements: Video Lectures through Voice-Over PowerPoint in a Majors-Level Biology Course

    Science.gov (United States)

    Lents, Nathan H.; Cifuentes, Oscar E.

    2009-01-01

    This study is an experimental introduction of web-based lecture delivery into a majors-level introductory biology course. Web-based delivery, achieved through the use of prerecorded Voice-Over PowerPoint video lectures, was introduced on a limited basis to an experimental section while a control group, with the same instructor, received standard…

  16. Biological inquiry: a new course and assessment plan in response to the call to transform undergraduate biology.

    Science.gov (United States)

    Goldey, Ellen S; Abercrombie, Clarence L; Ivy, Tracie M; Kusher, Dave I; Moeller, John F; Rayner, Doug A; Smith, Charles F; Spivey, Natalie W

    2012-01-01

    We transformed our first-year curriculum in biology with a new course, Biological Inquiry, in which >50% of all incoming, first-year students enroll. The course replaced a traditional, content-driven course that relied on outdated approaches to teaching and learning. We diversified pedagogical practices by adopting guided inquiry in class and in labs, which are devoted to building authentic research skills through open-ended experiments. Students develop core biological knowledge, from the ecosystem to molecular level, and core skills through regular practice in hypothesis testing, reading primary literature, analyzing data, interpreting results, writing in disciplinary style, and working in teams. Assignments and exams require higher-order cognitive processes, and students build new knowledge and skills through investigation of real-world problems (e.g., malaria), which engages students' interest. Evidence from direct and indirect assessment has guided continuous course revision and has revealed that compared with the course it replaced, Biological Inquiry produces significant learning gains in all targeted areas. It also retains 94% of students (both BA and BS track) compared with 79% in the majors-only course it replaced. The project has had broad impact across the entire college and reflects the input of numerous constituencies and close collaboration among biology professors and students.

  17. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  18. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  19. Development of a Semester-Long, Inquiry-Based Laboratory Course in Upper-Level Biochemistry and Molecular Biology

    Science.gov (United States)

    Murthy, Pushpalatha P. N.; Thompson, Martin; Hungwe, Kedmon

    2014-01-01

    A semester-long laboratory course was designed and implemented to familiarize students with modern biochemistry and molecular biology techniques. The designed format involved active student participation, evaluation of data, and critical thinking, and guided students to become independent researchers. The first part of the course focused on…

  20. Traditional Versus Online Biology Courses: Connecting Course Design and Student Learning in an Online Setting

    OpenAIRE

    Biel, Rachel; Brame, Cynthia J.

    2016-01-01

    Online courses are a large and growing part of the undergraduate education landscape, but many biology instructors are skeptical about the effectiveness of online instruction. We reviewed studies comparing the effectiveness of online and face-to-face (F2F) undergraduate biology courses. Five studies compared student performance in multiple course sections at community colleges, while eight were smaller scale and compared student performance in particular biology courses at a variety of types ...

  1. A formative evaluation of a high school blended learning biology course

    Science.gov (United States)

    Nellman, Stephen William

    As growing student populations continue to tax the resources of public high schools, administrators are constantly looking for ways to address the needs of all students. One option for increasing the number of students in a classroom without sacrificing quality of instruction is to use "blended learning". Blended learning is defined by Marsh et al. (2003, p.2) as a situation where "face-to-face and distance education delivery methods and resources are merged". In such a course, students receive the benefits of classroom-based instruction, while also benefiting from several aspects of distance learning. This is especially true for science courses that rely heavily on both hands-on labs and various multimedia. The purpose of this study was a formative evaluation of a high school blended learning biology course, focusing on a genetics unit. The research question addressed by the study was "Will participants increase their domain knowledge and problem-solving skills after instruction in a high school level blended distance learning biology course? Also investigated was if higher levels of self-regulation skills were correlated to higher levels of content-understanding and problem-solving. The study was composed of a pilot study and a main study. Participants were students in an urban Southern California public high school biology course. Classroom instruction was from a single instructor, and online content was managed using the "Moodle" course management system. Participants were assessed for their gains in genetics content-understanding, genetics problem-solving skills (Punnett squares), and self-regulation. Additionally, participant reactions to the blended instruction model were surveyed. Results indicated that significant increases (pself-regulation skills were not shown to be significantly correlated to increased content-understanding, or problem-solving skills. Participants reacted positively to the blended model, suggesting that it be used more often in their

  2. Traditional Versus Online Biology Courses: Connecting Course Design and Student Learning in an Online Setting.

    Science.gov (United States)

    Biel, Rachel; Brame, Cynthia J

    2016-12-01

    Online courses are a large and growing part of the undergraduate education landscape, but many biology instructors are skeptical about the effectiveness of online instruction. We reviewed studies comparing the effectiveness of online and face-to-face (F2F) undergraduate biology courses. Five studies compared student performance in multiple course sections at community colleges, while eight were smaller scale and compared student performance in particular biology courses at a variety of types of institutions. Of the larger-scale studies, two found that students in F2F sections outperformed students in online sections, and three found no significant difference; it should be noted, however, that these studies reported little information about course design. Of the eight smaller scale studies, six found no significant difference in student performance between the F2F and online sections, while two found that the online sections outperformed the F2F sections. In alignment with general findings about online teaching and learning, these results suggest that well-designed online biology courses can be effective at promoting student learning. Three recommendations for effective online instruction in biology are given: the inclusion of an online orientation to acclimate students to the online classroom; student-instructor and student-student interactions facilitated through synchronous and asynchronous communication; and elements that prompt student reflection and self-assessment. We conclude that well-designed online biology courses can be as effective as their traditional counterparts, but that more research is needed to elucidate specific course elements and structures that can maximize online students' learning of key biology skills and concepts.

  3. Traditional Versus Online Biology Courses: Connecting Course Design and Student Learning in an Online Setting

    Directory of Open Access Journals (Sweden)

    Rachel Biel

    2016-12-01

    Full Text Available Online courses are a large and growing part of the undergraduate education landscape, but many biology instructors are skeptical about the effectiveness of online instruction. We reviewed studies comparing the effectiveness of online and face-to-face (F2F undergraduate biology courses. Five studies compared student performance in multiple course sections at community colleges, while eight were smaller scale and compared student performance in particular biology courses at a variety of types of institutions. Of the larger-scale studies, two found that students in F2F sections outperformed students in online sections, and three found no significant difference; it should be noted, however, that these studies reported little information about course design. Of the eight smaller scale studies, six found no significant difference in student performance between the F2F and online sections, while two found that the online sections outperformed the F2F sections. In alignment with general findings about online teaching and learning, these results suggest that well-designed online biology courses can be effective at promoting student learning. Three recommendations for effective online instruction in biology are given: the inclusion of an online orientation to acclimate students to the online classroom; student-instructor and student-student interactions facilitated through synchronous and asynchronous communication; and elements that prompt student reflection and self-assessment. We conclude that well-designed online biology courses can be as effective as their traditional counterparts, but that more research is needed to elucidate specific course elements and structures that can maximize online students’ learning of key biology skills and concepts.

  4. Teaching information literacy skills to sophomore-level biology majors.

    Science.gov (United States)

    Thompson, Leigh; Blankinship, Lisa Ann

    2015-05-01

    Many undergraduate students lack a sound understanding of information literacy. The skills that comprise information literacy are particularly important when combined with scientific writing for biology majors as they are the foundation skills necessary to complete upper-division biology course assignments, better train students for research projects, and prepare students for graduate and professional education. To help undergraduate biology students develop and practice information literacy and scientific writing skills, a series of three one-hour hands-on library sessions, discussions, and homework assignments were developed for Biological Literature, a one-credit, one-hour-per-week, required sophomore-level course. The embedded course librarian developed a learning exercise that reviewed how to conduct database and web searches, the difference between primary and secondary sources, source credibility, and how to access articles through the university's databases. Students used the skills gained in the library training sessions for later writing assignments including a formal lab report and annotated bibliography. By focusing on improving information literacy skills as well as providing practice in scientific writing, Biological Literature students are better able to meet the rigors of upper-division biology courses and communicate research findings in a more professional manner.

  5. Building confidence: an exploration of nurses undertaking a postgraduate biological science course.

    Science.gov (United States)

    Van Wissen, Kim; McBride-Henry, Karen

    2010-01-01

    This study aimed to explore the impact of studying biological science at a postgraduate level and how this impacted on nursing practice. The term biological sciences in this research encompasses elements of physiology, genetics, biochemistry and pathophysiology. A qualitative research study was designed, that involved the dissemination of a pre- and post-course semi-structured questionnaire for a biological science course, as part of a Master of Nursing programme at a New Zealand University, thus exploring the impact of undertaking a postgraduate biological sciences course. The responses were analysed into themes, based on interpretive concepts. The primary themes revealed improvement in confidence as: confidence in communication, confidence in linking nursing theoretical knowledge to practice and confidence in clinical nursing knowledge. This study highlights the need to privilege clinically-derived nursing knowledge, and that confidence in this nursing knowledge and clinical practice can be instilled through employing the model of theory-guided practice.

  6. Teaching Formal Reasoning in a College Biology Course for Preservice Teachers.

    Science.gov (United States)

    Lawson, Anton E.; Snitgen, Donald A.

    1982-01-01

    Assessed the effect of a one-semester college biology course on the development of students (N=72) ability to reason formally and interactions among intelligence, cognitive style, and cognitive level. Includes implications for science instruction. (SK)

  7. Reactivity II: A Second Foundation-Level Course in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; McIntee, Edward J.; Jones, T. Nicholas; Johnson, Brian J.

    2016-01-01

    A foundation-level course is described that integrates material related to reactivity in organic, inorganic, and biochemistry. Designed for second-year students, the course serves majors in chemistry, biochemistry, and biology, as well as prehealth-professions students. Building on an earlier course that developed concepts of nucleophiles and…

  8. The use of writing assignments to help students synthesize content in upper-level undergraduate biology courses.

    Science.gov (United States)

    Sparks-Thissen, Rebecca L

    2017-02-01

    Biology education is undergoing a transformation toward a more student-centered, inquiry-driven classroom. Many educators have designed engaging assignments that are designed to help undergraduate students gain exposure to the scientific process and data analysis. One of these types of assignments is use of a grant proposal assignment. Many instructors have used these assignments in lecture-based courses to help students process information in the literature and apply that information to a novel problem such as design of an antiviral drug or a vaccine. These assignments have been helpful in engaging students in the scientific process in the absence of an inquiry-driven laboratory. This commentary discusses the application of these grant proposal writing assignments to undergraduate biology courses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Professor Created On-line Biology Laboratory Course

    Science.gov (United States)

    Bowman, Arthur W.

    2010-01-01

    This paper will share the creation, implementation, and modification of an online college level general biology laboratory course offered for non-science majors as a part of a General Education Curriculum. The ability of professors to develop quality online laboratories will address a growing need in Higher Education as more institutions combine course sections and look for suitable alternative course delivery formats due to declining departmental budgets requiring reductions in staffing, equipment, and supplies. Also, there is an equal or greater need for more professors to develop the ability to create online laboratory experiences because many of the currently available online laboratory course packages from publishers do not always adequately parallel on-campus laboratory courses, or are not as aligned with the companion lecture sections. From a variety of scientific simulation and animation web sites, professors can easily identify material that closely fit the specific needs of their courses, instructional environment, and students that they serve. All too often, on-campus laboratory courses in the sciences provide what are termed confirmation experiences that do NOT allow students to experience science as would be carried out by scientists. Creatively developed online laboratory experiences can often provide the type of authentic investigative experiences that are not possible on-campus due to the time constraints of a typical two-hour, once-per-week-meeting laboratory course. In addition, online laboratory courses can address issues related to the need for students to more easily complete missing laboratory assignments, and to have opportunities to extend introductory exercises into more advanced undertakings where a greater sense of scientific discovery can be experienced. Professors are strongly encourages to begin creating online laboratory exercises for their courses, and to consider issues regarding assessment, copyrights, and Intellectual Property

  10. Entry to medical schools with 'A' level in mathematics rather than biology.

    Science.gov (United States)

    Spurgin, C B

    1975-09-01

    The majority of British medical schools now accept for their shortest courses students who have mathematics at A level in place of the former requirement of biology A level. Only a small fraction of the entry, less than one-fifth, enters this way, in spite of statements by most medical schools that they make no distinction between those with mathematics and those with biology when making conditional offers of places. There is no evidence that those without biology are at a disadvantage in the courses. If the prospects of entry without A level biology were better publicized medical schools would have a wider field of possibly abler entrants, and pupils entering sixth forms could defer for a year a choice between a medical (or dental) career and one involving physical science, engineering, or other mathematics-based university education.

  11. Course of radiation protection: technical level

    International Nuclear Information System (INIS)

    2002-01-01

    The course handbook on radiation protection and nuclear safety, technical level prepared by scientists of the Nuclear Regulatory Authority (ARN) of the Argentina Republic, describes the subjects in 19 chapters and 2 annexes. These topics detailed in the text have the following aspects: radioactivity elements, interaction of the radiation and the matter, radio dosimetry, internal contamination dosimetry, principles of radiation detection, biological radiation effects, fundamentals of radiation protection, dose limits, optimization, occupational exposure, radiation shielding, radioactive waste management, criticality accidents, safe transport of radioactive materials, regulatory aspects

  12. Predictors of Student Success in Entry-Level Science Courses

    Science.gov (United States)

    Singh, Mamta K.

    2009-01-01

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and…

  13. The Implementation of Research-based Learning on Biology Seminar Course in Biology Education Study Program of FKIP UMRAH

    Science.gov (United States)

    Amelia, T.

    2018-04-01

    Biology Seminar is a course in Biology Education Study Program of Faculty of Teacher Training and Education University of Maritim Raja Ali Haji (FKIP UMRAH) that requires students to have the ability to apply scientific attitudes, perform scientific writing and undertake scientific publications on a small scale. One of the learning strategies that can drive the achievement of learning outcomes in this course is Research-Based Learning. Research-Based Learning principles are considered in accordance with learning outcomes in Biology Seminar courses and generally in accordance with the purpose of higher education. On this basis, this article which is derived from a qualitative research aims at describing Research-based Learning on Biology Seminar course. Based on a case study research, it was known that Research-Based Learning on Biology Seminar courses is applied through: designing learning activities around contemporary research issues; teaching research methods, techniques and skills explicitly within program; drawing on personal research in designing and teaching courses; building small-scale research activities into undergraduate assignment; and infusing teaching with the values of researchers.

  14. Evaluation of the Redesign of an Undergraduate Cell Biology Course

    Science.gov (United States)

    McEwen, Laura April; Harris, dik; Schmid, Richard F.; Vogel, Jackie; Western, Tamara; Harrison, Paul

    2009-01-01

    This article offers a case study of the evaluation of a redesigned and redeveloped laboratory-based cell biology course. The course was a compulsory element of the biology program, but the laboratory had become outdated and was inadequately equipped. With the support of a faculty-based teaching improvement project, the teaching team redesigned the…

  15. Teaching biology through statistics: application of statistical methods in genetics and zoology courses.

    Science.gov (United States)

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math-biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology.

  16. Student-oriented learning: an inquiry-based developmental biology lecture course.

    Science.gov (United States)

    Malacinski, George M

    2003-01-01

    In this junior-level undergraduate course, developmental life cycles exhibited by various organisms are reviewed, with special attention--where relevant--to the human embryo. Morphological features and processes are described and recent insights into the molecular biology of gene expression are discussed. Ways are studied in which model systems, including marine invertebrates, amphibia, fruit flies and other laboratory species are employed to elucidate general principles which apply to fertilization, cleavage, gastrulation and organogenesis. Special attention is given to insights into those topics which will soon be researched with data from the Human Genome Project. The learning experience is divided into three parts: Part I is a in which the Socratic (inquiry) method is employed by the instructor (GMM) to organize a review of classical developmental phenomena; Part II represents an in which students study the details related to the surveys included in Part I as they have been reported in research journals; Part III focuses on a class project--the preparation of a spiral bound on a topic of relevance to human developmental biology (e.g.,Textbook of Embryonal Stem Cells). Student response to the use of the Socratic method increases as the course progresses and represents the most successful aspect of the course.

  17. Information fluency for undergraduate biology majors: applications of inquiry-based learning in a developmental biology course.

    Science.gov (United States)

    Gehring, Kathleen M; Eastman, Deborah A

    2008-01-01

    Many initiatives for the improvement of undergraduate science education call for inquiry-based learning that emphasizes investigative projects and reading of the primary literature. These approaches give students an understanding of science as a process and help them integrate content presented in courses. At the same time, general initiatives to promote information fluency are being promoted on many college and university campuses. Information fluency refers to discipline-specific processing of information, and it involves integration of gathered information with specific ideas to form logical conclusions. We have implemented the use of inquiry-based learning to enhance and study discipline-specific information fluency skills in an upper-level undergraduate Developmental Biology course. In this study, an information literacy tutorial and a set of linked assignments using primary literature analysis were integrated with two inquiry-based laboratory research projects. Quantitative analysis of student responses suggests that the abilities of students to identify and apply valid sources of information were enhanced. Qualitative assessment revealed a set of patterns by which students gather and apply information. Self-assessment responses indicated that students recognized the impact of the assignments on their abilities to gather and apply information and that they were more confident about these abilities for future biology courses and beyond.

  18. High School and College Biology: A Multi-Level Model of the Effects of High School Courses on Introductory Course Performance

    Science.gov (United States)

    Loehr, John F.; Almarode, John T.; Tai, Robert H.; Sadler, Philip M.

    2012-01-01

    In a climate where increasing numbers of students are encouraged to pursue post-secondary education, the level of preparedness students have for college-level coursework is not far from the minds of all educators, especially high school teachers. Specifically within the biological sciences, introductory biology classes often serve as the…

  19. Undergraduate Biology Lab Courses: Comparing the Impact of Traditionally Based "Cookbook" and Authentic Research-Based Courses on Student Lab Experiences

    Science.gov (United States)

    Brownell, Sara E.; Kloser, Matthew J.; Fukami, Tadishi; Shavelson, Rich

    2012-01-01

    Over the past decade, several reports have recommended a shift in undergraduate biology laboratory courses from traditionally structured, often described as "cookbook," to authentic research-based experiences. This study compares a cookbook-type laboratory course to a research-based undergraduate biology laboratory course at a Research 1…

  20. Options for Online Undergraduate Courses in Biology at American Colleges and Universities

    Science.gov (United States)

    Varty, Alison K.

    2016-01-01

    I aimed to document the online undergraduate course supply in biology to evaluate how well biology educators are serving the diverse and growing population of online students. I documented online biology course offerings in the 2015-2016 academic year at 96 American colleges and universities. I quantified differences in variety, extent, and…

  1. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  2. Redox Biology Course Evaluation Form | Center for Cancer Research

    Science.gov (United States)

    To improve the Redox Biology (RB) course in future years, we would appreciate your feedback by completing this course evaluation. Please score the course elements as poor, fair, average, good or excellent. Please type any comments that you have in response to the questions at the bottom of the form. Remember to include your name as you wish it to appear on the certificate.

  3. Science Academies' Refresher Course in Developmental Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Science Academies' Refresher Course in Developmental Biology. Information and Announcements Volume 20 Issue 8 August 2015 pp 756-756. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Redox Biology Course Evaluation Form | Center for Cancer Research

    Science.gov (United States)

    To improve the Redox Biology (RB) course in future years, we would appreciate your feedback by completing this course evaluation. Please score the course elements as poor, fair, average, good or excellent. Please type any comments that you have in response to the questions at the bottom of the form. Remember to include your name as you wish it to appear on the certificate. Thank you for your feedback.

  5. Development and Assessment of Modules to Integrate Quantitative Skills in Introductory Biology Courses.

    Science.gov (United States)

    Hoffman, Kathleen; Leupen, Sarah; Dowell, Kathy; Kephart, Kerrie; Leips, Jeff

    2016-01-01

    Redesigning undergraduate biology courses to integrate quantitative reasoning and skill development is critical to prepare students for careers in modern medicine and scientific research. In this paper, we report on the development, implementation, and assessment of stand-alone modules that integrate quantitative reasoning into introductory biology courses. Modules are designed to improve skills in quantitative numeracy, interpreting data sets using visual tools, and making inferences about biological phenomena using mathematical/statistical models. We also examine demographic/background data that predict student improvement in these skills through exposure to these modules. We carried out pre/postassessment tests across four semesters and used student interviews in one semester to examine how students at different levels approached quantitative problems. We found that students improved in all skills in most semesters, although there was variation in the degree of improvement among skills from semester to semester. One demographic variable, transfer status, stood out as a major predictor of the degree to which students improved (transfer students achieved much lower gains every semester, despite the fact that pretest scores in each focus area were similar between transfer and nontransfer students). We propose that increased exposure to quantitative skill development in biology courses is effective at building competency in quantitative reasoning. © 2016 K. Hoffman, S. Leupen, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.

    Science.gov (United States)

    Eickelberg, Garrett J; Fisher, Alison J

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the FLOWERING LOCUS C gene, a key regulator of floral timing in Arabidopsis thaliana plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate students in biochemistry or molecular biology courses. The project provides students with hands-on experience with RT-qPCR, the current "gold standard" for gene expression analysis, including detailed data analysis using the common 2-ΔΔCT method. Moreover, it provides a convenient starting point for many inquiry-driven projects addressing diverse questions concerning ecological biochemistry, naturally occurring genetic variation, developmental biology, and the regulation of gene expression in nature. Copyright © 2013 Wiley Periodicals, Inc.

  7. Reactivity I: A Foundation-Level Course for Both Majors and Nonmajors in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.

    2015-01-01

    A foundation level course is presented that integrates aspects of organic, inorganic and biochemistry in the context of reactivity. The course was designed to serve majors in chemistry and other sciences (biochemistry, biology, nutrition), as well as nursing and pre-health professions students. Themes of the course were designed to highlight a…

  8. Ecology Content in Introductory Biology Courses: A Comparative Analysis

    Science.gov (United States)

    Pool, Richard F.; Turner, Gregory D.; Böttger, S. Anne

    2013-01-01

    In recent years the need for ecological literacy and problem solving has increased, but there is no evidence that this need is reflected by increased ecology coverage at institutions of higher education (IHE) across the United States. Because introductory biology courses may serve to direct student interest toward particular biological categories…

  9. The Biology and Chemistry of Brewing: An Interdisciplinary Course

    Science.gov (United States)

    Hooker, Paul D.; Deutschman, William A.; Avery, Brian J.

    2014-01-01

    For the past nine years, we have been offering an interdisciplinary course for science majors: The Biology and Chemistry of Brewing. This course is primarily laboratory- and inquiry-based; from a total of 24 h of student/instructor contact time, approximately 6 h are devoted to lecture, and the other 18 h are divided between laboratory exercises,…

  10. Promoting Student Inquiry Using "Zea Mays" (Corn) Cultivars for Hypothesis-Driven Experimentation in a Majors Introductory Biology Course

    Science.gov (United States)

    Blair, Amy C.; Peters, Brenda J.; Bendixen, Conrad W.

    2014-01-01

    The AAAS Vision and Change report (2011) recommends incorporating student research experiences into the biology curriculum at the undergraduate level. This article describes, in detail, how "Zea mays" (corn) cultivars were used as a model for a hypothesis-driven short-term research project in an introductory biology course at a small…

  11. Course of sea-level change

    Science.gov (United States)

    Carlowicz, Michael

    This summer, the Environment and Climate Program of the European Union will offer an advanced study course on “sea-level changes on micro to macro timescales: measurements, modeling, interpretation, and application.” The short course will be taught from July 1-12 at the Aesclepon Conference Center on the island of Kos, Greece.The interdisciplinary course is designed to bring together at least 40 students from different disciplines in an attempt to share and disseminate fundamental ideas about sea level change, focusing particularly on changes influenced by anthropogenic factors. Participants will be selected by a scientific panel; the European Union will conduct the course free of charge and will provide free lodging. Students must pay for their own travel expenses and food.

  12. Using Course-Level Factors as Predictors of Online Course Outcomes: A Multi-Level Analysis at a US Urban Community College

    Science.gov (United States)

    Wladis, Claire; Conway, Katherine; Hachey, Alyse C.

    2017-01-01

    Research has documented lower retention rates in online versus face-to-face courses. However, little research has focused on the impact of course-level characteristics (e.g. elective versus distributional versus major requirements; difficulty level; STEM status) on online course outcomes. Yet, focusing interventions at the course level versus the…

  13. Changes in Biology Self-Efficacy during a First-Year University Course

    Science.gov (United States)

    Ainscough, Louise; Foulis, Eden; Colthorpe, Kay; Zimbardi, Kirsten; Robertson-Dean, Melanie; Chunduri, Prasad; Lluka, Lesley

    2016-01-01

    Academic self-efficacy encompasses judgments regarding one’s ability to perform academic tasks and is correlated with achievement and persistence. This study describes changes in biology self-efficacy during a first-year course. Students (n = 614) were given the Biology Self-Efficacy Scale at the beginning and end of the semester. The instrument consisted of 21 questions ranking confidence in performing biology-related tasks on a scale from 1 (not at all confident) to 5 (totally confident). The results demonstrated that students increased in self-efficacy during the semester. High school biology and chemistry contributed to self-efficacy at the beginning of the semester; however, this relationship was lost by the end of the semester, when experience within the course became a significant contributing factor. A proportion of high- and low- achieving (24 and 40%, respectively) students had inaccurate self-efficacy judgments of their ability to perform well in the course. In addition, female students were significantly less confident than males overall, and high-achieving female students were more likely than males to underestimate their academic ability. These results suggest that the Biology Self-Efficacy Scale may be a valuable resource for tracking changes in self-efficacy in first-year students and for identifying students with poorly calibrated self-efficacy perceptions. PMID:27193290

  14. The impact of an introductory college-level biology class on biology self-efficacy and attitude towards science

    Science.gov (United States)

    Thomas, Megan Elizabeth

    Self-efficacy theory was first introduced in a seminal article by Albert Bandura in 1977 entitled "Self-efficacy: Toward a unifying theory of behavioral change". Since its original introduction, self-efficacy has been a major focus of academic performance, anxiety, career development, and teacher retention research. Self-efficacy can be defined as the belief an individual possesses about their ability to perform a given task. Bandura proposed that self-efficacy should be measured at the highest level of specificity due to the fact that different people are efficacious in different areas. Interested in students' efficacy toward biology, Ebert-May, Baldwin, & Allred (1997) created and validated a survey to measure students' biology self-efficacy. Their survey was modeled after the guidelines for science literacy, and loaded to three sub-factors; methods of biology, generalization to other science courses, and application of the concepts. As self-efficacy theory has been related to effort expenditure and persistence (Bandura, 1977; 1997), one might think it would have some effect on students' attitudes toward the topic at hand. The current research investigated what changes in biology self-efficacy occurred after an introductory biology course with an inquiry based laboratory learning environment. In addition, changes in students' attitudes towards science were explored and how self-efficacy might affect them.

  15. Survey of Biology Capstone Courses in American and Canadian Higher Education: Requirement, Content, and Skills

    Science.gov (United States)

    Haave, Neil C.

    2015-01-01

    Capstone experiences have high educational impact with various approaches available for biology. However, no information exists regarding the pervasiveness of capstone courses in Canadian and American biology programs. This study surveyed the prevalence and character of biology capstone courses in the USA and Canada. The survey included a majority…

  16. Student selection: are the school-leaving A-level grades in biology and chemistry important?

    Science.gov (United States)

    Green, A; Peters, T J; Webster, D J

    1993-01-01

    This study determined the relationships of grades in A-level biology and chemistry with examination success or failure during the medical course. By inspection of medical student records, A-level grades at entry to medical school and examination performance were obtained for 128 (91%) of the students who sat their final MBBCh examination at the University of Wales College of Medicine in June 1988. The majority, 92 (72%), completed their medical school careers with no professional examination failures; 15 failed examinations just in the period up to 2nd MB; 11 failed examinations in the clinical period only and 10 failed examinations in both periods. Whereas grade achieved in A-level chemistry was not associated with undergraduate examination performance, students with a grade A or B in A-level biology were less likely to have problems than the others (21% compared with 47%; the difference of 26% has a 95% confidence interval of 7% to 44%). Specifically, there appears to be a strong relationship between a low grade in biology and difficulties in the preclinical examinations. Moreover, for those who have difficulties at this stage, this association continues later in the course.

  17. Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology

    KAUST Repository

    Gomez-Cabrero, David

    2017-08-23

    Summary Systems medicine and systems biology have inherent educational challenges. These have largely been addressed either by providing new masters programs or by redesigning undergraduate programs. In contrast, short courses can respond to a different need: they can provide condensed updates for professionals across academia, the clinic, and industry. These courses have received less attention. Here, we share our experiences in developing and providing such courses to current and future leaders in systems biology and systems medicine. We present guidelines for how to reproduce our courses, and we offer suggestions for how to select students who will nurture an interdisciplinary learning environment and thrive there.

  18. Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology

    KAUST Repository

    Gomez-Cabrero, David; Marabita, Francesco; Tarazona, Sonia; Cano, Isaac; Roca, Josep; Conesa, Ana; Sabatier, Philippe; Tegner, Jesper

    2017-01-01

    Summary Systems medicine and systems biology have inherent educational challenges. These have largely been addressed either by providing new masters programs or by redesigning undergraduate programs. In contrast, short courses can respond to a different need: they can provide condensed updates for professionals across academia, the clinic, and industry. These courses have received less attention. Here, we share our experiences in developing and providing such courses to current and future leaders in systems biology and systems medicine. We present guidelines for how to reproduce our courses, and we offer suggestions for how to select students who will nurture an interdisciplinary learning environment and thrive there.

  19. Science Academies' Refresher Course in Developmental Biology 16 ...

    Indian Academy of Sciences (India)

    IAS Admin

    The objectives of this Refresher Course are to update the participants about the advances in the field of Developmental Biology; various small animal models used and give hands-on training on some modern biotechnological practices. A variety of teaching methods like lectures, discussion and laboratory work shall ...

  20. Changes in Biology Self-Efficacy during a First-Year University Course.

    Science.gov (United States)

    Ainscough, Louise; Foulis, Eden; Colthorpe, Kay; Zimbardi, Kirsten; Robertson-Dean, Melanie; Chunduri, Prasad; Lluka, Lesley

    2016-01-01

    Academic self-efficacy encompasses judgments regarding one's ability to perform academic tasks and is correlated with achievement and persistence. This study describes changes in biology self-efficacy during a first-year course. Students (n = 614) were given the Biology Self-Efficacy Scale at the beginning and end of the semester. The instrument consisted of 21 questions ranking confidence in performing biology-related tasks on a scale from 1 (not at all confident) to 5 (totally confident). The results demonstrated that students increased in self-efficacy during the semester. High school biology and chemistry contributed to self-efficacy at the beginning of the semester; however, this relationship was lost by the end of the semester, when experience within the course became a significant contributing factor. A proportion of high- and low- achieving (24 and 40%, respectively) students had inaccurate self-efficacy judgments of their ability to perform well in the course. In addition, female students were significantly less confident than males overall, and high-achieving female students were more likely than males to underestimate their academic ability. These results suggest that the Biology Self-Efficacy Scale may be a valuable resource for tracking changes in self-efficacy in first-year students and for identifying students with poorly calibrated self-efficacy perceptions. © 2016 L. Ainscough et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Policy implications of select student characteristics and their influence on the Florida biology end-of-course assessment

    Science.gov (United States)

    Bertolotti, Janine Cecelia

    In an attempt to improve student achievement in science in Florida, the Florida Department of Education implemented end-of-course (EOC) assessments in biology during the 2011-2012 academic school year. Although this first administration would only account for 30% of the student's overall final course grade in biology, subsequent administrations would be accompanied by increasing stakes for students, teachers, and schools. Therefore, this study sought to address gaps in empirical evidence as well as discuss how educational policy will potentially impact on teacher evaluation and professional development, student retention and graduation rates, and school accountability indicators. This study explored four variables- reading proficiency, ethnicity, socioeconomic status, and gender- to determine their influence and relationship on biology achievement on the Biology I EOC assessment at a Title 1 school. To do so, the results of the Biology I EOC assessment administered during the Spring 2012 school year was obtained from a small, rural Title 1 high school in North Florida. Additional data regarding each student's qualification for free and reduced-price lunch, FCAT Reading developmental scale scores, FCAT Reading level, grade level, gender, and ethnicity were also collected for the causal-comparative exploratory study. Of the 178 students represented, 48% qualified for free and reduced-price lunch, 54% were female, and 55% scored at FCAT Reading level 3 or higher. Additionally, 59% were White and 37% Black. A combination of descriptive statistics and other statistical procedures such as independent samples one-tailed t-test, one-way ANOVAs, ANCOVAs, multipleregression, and a Pearson r correlation was utilized in the analysis, with a significance level set at 0.05. Results indicate that of all four variables, FCAT Reading proficiency was the sole variable, after adjusting for other variables; that had a significant impact on biology achievement. Students with higher

  2. The Impact of Agricultural Science Education on Performance in a Biology Course

    Science.gov (United States)

    Ernest, Byron L.

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.

  3. Mapping of courses on vector biology and vector-borne diseases systems: time for a worldwide effort

    Science.gov (United States)

    Casas, Jérôme; Lazzari, Claudio; Insausti, Teresita; Launois, Pascal; Fouque, Florence

    2016-01-01

    Major emergency efforts are being mounted for each vector-borne disease epidemiological crisis anew, while knowledge about the biology of arthropods vectors is dwindling slowly but continuously, as is the number of field entomologists. The discrepancy between the rates of production of knowledge and its use and need for solving crises is widening, in particular due to the highly differing time spans of the two concurrent processes. A worldwide web based search using multiple key words and search engines of onsite and online courses in English, Spanish, Portuguese, French, Italian and German concerned with the biology of vectors identified over 140 courses. They are geographically and thematically scattered, the vast majority of them are on-site, with very few courses using the latest massive open online course (MOOC) powerfulness. Over two third of them is given in English and Western Africa is particularity poorly represented. The taxonomic groups covered are highly unbalanced towards mosquitoes. A worldwide unique portal to guide students of all grades and levels of expertise, in particular those in remote locations, is badly needed. This is the objective a new activity supported by the Special Programme for Research and Training in Tropical Diseases (TDR). PMID:27759770

  4. Using student motivation to design groups in a non-majors biology course for team-based collaborative learning: Impacts on knowledge, views, attitudes, and perceptions

    Science.gov (United States)

    Walters, Kristi L.

    The importance of student motivation and its connection to other learning variables (i.e., attitudes, knowledge, persistence, attendance) is well established. Collaborative work at the undergraduate level has been recognized as a valuable tool in large courses. However, motivation and collaborative group work have rarely been combined. This project utilized student motivation to learn biology to place non-major biology undergraduates in collaborative learning groups at East Carolina University, a mid-sized southeastern American university, to determine the effects of this construct on student learning. A pre-test measuring motivation to learn biology, attitudes toward biology, perceptions of biology and biologists, views of science, and content knowledge was administered. A similar post-test followed as part of the final exam. Two sections of the same introductory biology course (n = 312) were used and students were divided into homogeneous and heterogeneous groups (based on their motivation score). The heterogeneous groups (n = 32) consisted of a mixture of different motivation levels, while the homogeneous groups (n = 32) were organized into teams with similar motivation scores using tiers of high-, middle-, and low-level participants. Data analysis determined mixed perceptions of biology and biologists. These include the perceptions biology was less intriguing, less relevant, less practical, less ethical, and less understandable. Biologists were perceived as being neat and slightly intelligent, but not very altruistic, humane, ethical, logical, honest, or moral. Content knowledge scores more than doubled from pre- to post-test. Half of the items measuring views of science were not statistically significantly different from pre- to post-test. Many of the factors for attitudes toward biology became more agreeable from pre- to post-test. Correlations between motivation scores, participation levels, attendance rates, and final course grades were examined at both the

  5. An On-Campus Botanical Tour to Promote Student Satisfaction and Learning in a University Level Biodiversity or General Biology Course

    Science.gov (United States)

    Ratnayaka, Harish H.

    2017-01-01

    Outdoor, hands-on and experiential learning, as opposed to instruction-based learning in classroom, increases student satisfaction and motivation leading to a deeper understanding of the subject. However, the use of outdoor exercises in undergraduate biology courses is declining due to a variety of constraints. Thus, the goal of this paper is to…

  6. Modern Biology

    OpenAIRE

    ALEKSIC, Branko

    2014-01-01

    The purpose of this course is to learn the philosophy, principles, and techniques of modern biology. The course is particularly designed for those who have not learned biology previously or whose major is other than biology, and who may think that they do not need to know any biology at all. The topics are covered in a rather general, overview manner, but certain level of diligence in grasping concepts and memorizing the terminology is expected.

  7. Changes in Biology Self-Efficacy during a First-Year University Course

    Science.gov (United States)

    Ainscough, Louise; Foulis, Eden; Colthorpe, Kay; Zimbardi, Kirsten; Robertson-Dean, Melanie; Chunduri, Prasad; Lluka, Lesley

    2016-01-01

    Academic self-efficacy encompasses judgments regarding one's ability to perform academic tasks and is correlated with achievement and persistence. This study describes changes in biology self-efficacy during a first-year course. Students (n = 614) were given the Biology Self-Efficacy Scale at the beginning and end of the semester. The instrument…

  8. The Use of Textbooks for Advanced-Level GCE Courses in Physics, Chemistry and Biology by Sixth-Form Students.

    Science.gov (United States)

    Newton, D. P.

    1984-01-01

    A survey of sixth-form students to determine the level of A-level textbook use in physics, chemistry, and biology in English schools found that texts are used primarily after the lesson, at the student's discretion, and with great variations between students. Biology texts were used most, and physics texts used least. (MBR)

  9. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher…

  10. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    Science.gov (United States)

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  11. Cognitive Difficulty and Format of Exams Predicts Gender and Socioeconomic Gaps in Exam Performance of Students in Introductory Biology Courses

    Science.gov (United States)

    Wright, Christian D.; Eddy, Sarah L.; Wenderoth, Mary Pat; Abshire, Elizabeth; Blankenbiller, Margaret; Brownell, Sara E.

    2016-01-01

    Recent reform efforts in undergraduate biology have recommended transforming course exams to test at more cognitively challenging levels, which may mean including more cognitively challenging and more constructed-response questions on assessments. However, changing the characteristics of exams could result in bias against historically underserved groups. In this study, we examined whether and to what extent the characteristics of instructor-generated tests impact the exam performance of male and female and middle/high- and low-socioeconomic status (SES) students enrolled in introductory biology courses. We collected exam scores for 4810 students from 87 unique exams taken across 3 yr of the introductory biology series at a large research university. We determined the median Bloom’s level and the percentage of constructed-response questions for each exam. Despite controlling for prior academic ability in our models, we found that males and middle/high-SES students were disproportionately favored as the Bloom’s level of exams increased. Additionally, middle/high-SES students were favored as the proportion of constructed-response questions on exams increased. Given that we controlled for prior academic ability, our findings do not likely reflect differences in academic ability level. We discuss possible explanations for our findings and how they might impact how we assess our students. PMID:27252299

  12. American College Biology and Zoology Course Requirements: A de facto Standardized Curriculum.

    Science.gov (United States)

    Heppner, Frank; And Others

    Without a formal mechanism to produce consensus, American colleges generally have come to agree on what constitutes an appropriate set of course requirements for Biology and Zoology majors. This report describes a survey of American four-year colleges and universities offering biology and/or zoology degrees. Questionnaires were sent to 741 biology…

  13. Cognitive Difficulty and Format of Exams Predicts Gender and Socioeconomic Gaps in Exam Performance of Students in Introductory Biology Courses.

    Science.gov (United States)

    Wright, Christian D; Eddy, Sarah L; Wenderoth, Mary Pat; Abshire, Elizabeth; Blankenbiller, Margaret; Brownell, Sara E

    2016-01-01

    Recent reform efforts in undergraduate biology have recommended transforming course exams to test at more cognitively challenging levels, which may mean including more cognitively challenging and more constructed-response questions on assessments. However, changing the characteristics of exams could result in bias against historically underserved groups. In this study, we examined whether and to what extent the characteristics of instructor-generated tests impact the exam performance of male and female and middle/high- and low-socioeconomic status (SES) students enrolled in introductory biology courses. We collected exam scores for 4810 students from 87 unique exams taken across 3 yr of the introductory biology series at a large research university. We determined the median Bloom's level and the percentage of constructed-response questions for each exam. Despite controlling for prior academic ability in our models, we found that males and middle/high-SES students were disproportionately favored as the Bloom's level of exams increased. Additionally, middle/high-SES students were favored as the proportion of constructed-response questions on exams increased. Given that we controlled for prior academic ability, our findings do not likely reflect differences in academic ability level. We discuss possible explanations for our findings and how they might impact how we assess our students. © 2016 C. D. Wright, S. L. Eddy, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Enabling students to learn: Design, implementation and assessment of a supplemental study strategies course for an introductory undergraduate biology course

    Science.gov (United States)

    Sriram, Jayanthi Sanjeevi

    Attrition in the STEM disciplines is a national problem and one of the important reasons for this is student experiences in introductory courses. A myriad of factors influence students' experiences in those courses; inadequate student preparation is one of the most cited reasons. Incoming freshmen often lack the learning strategies required to meaningfully learn and succeed in college courses. Unfortunately, the instructors have limited time and/or have little experience in teaching learning strategies. In this paper, the design, implementation, and evaluation of a Supplemental Course (SC) model that emphasizes learning strategies is presented. SC was offered concurrently with the introductory biology courses for four consecutive semesters (fall 2011 to spring 2013); for 10 weeks in fall 2012 and 7 weeks in the other semesters at Miami University. 10 weeks SC began earlier in the semester than the shorter SC. This study evaluated the effects of the SC on students' (1) performance in the introductory biology course, (2) perceived changes in self-regulation and social support, and (3) experiences in the introductory biology course before, during, and after participation in the SC. A mixed methods approach was used to address these goals. A pre-post survey was administered to obtain students' use of self-regulation strategies and social-support data. Quantitative methods were utilized to analyze content exam grades and changes in self-regulation strategies and social-support. To explore the experiences of the students, semi-structured interviews were conducted, followed by analysis using grounded theory. The findings reveal that participants of the longer duration SC (with an earlier start date) significantly improved in content exam performance, perceived use of self-regulation strategies, and social support compared to the non-participants. Participants of the shorter duration SC (with a later start date) did not significantly improve in content exam performance

  15. Research and Teaching: From Gatekeeper to Gateway: Improving Student Success in an Introductory Biology Course

    Science.gov (United States)

    Scott, Amy N.; McNair, Delores E.; Lucas, Jonathan C.; Land, Kirkwood M.

    2017-01-01

    Introductory science, math, and engineering courses often have problems related to student engagement, achievement, and course completion. To begin examining these issues in greater depth, this pilot study compared student engagement, achievement, and course completion in a small and large section of an introductory biology class. Results based on…

  16. Synthesizing Novel Anthraquinone Natural Product-Like Compounds to Investigate Protein-Ligand Interactions in Both an in Vitro and in Vivo Assay: An Integrated Research-Based Third-Year Chemical Biology Laboratory Course

    Science.gov (United States)

    McKenzie, Nancy; McNulty, James; McLeod, David; McFadden, Meghan; Balachandran, Naresh

    2012-01-01

    A new undergraduate program in chemical biology was launched in 2008 to provide a unique learning experience for those students interested in this interdisciplinary science. An innovative undergraduate chemical biology laboratory course at the third-year level was developed as a key component of the curriculum. The laboratory course introduces…

  17. The Design and Transformation of Biofundamentals: A Nonsurvey Introductory Evolutionary and Molecular Biology Course.

    Science.gov (United States)

    Klymkowsky, Michael W; Rentsch, Jeremy D; Begovic, Emina; Cooper, Melanie M

    2016-01-01

    Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the expense of the development of a meaningful framework within which to consider biological phenomena. About a decade ago, we began a reconsideration of what an introductory course should present to students and the skills they need to master. The original Web-based course's design presaged many of the recommendations of the Vision and Change report; in particular, a focus on social evolutionary mechanisms, stochastic (evolutionary and molecular) processes, and core ideas (cellular continuity, evolutionary homology, molecular interactions, coupled chemical reactions, and molecular machines). Inspired by insights from the Chemistry, Life, the Universe & Everything general chemistry project, we transformed the original Web version into a (freely available) book with a more unified narrative flow and a set of formative assessments delivered through the beSocratic system. We outline how student responses to course materials are guiding future course modifications, in particular a more concerted effort at helping students to construct logical, empirically based arguments, explanations, and models. © 2016 M. W. Klymkowsky et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Beyond the Biology: A Systematic Investigation of Noncontent Instructor Talk in an Introductory Biology Course.

    Science.gov (United States)

    Seidel, Shannon B; Reggi, Amanda L; Schinske, Jeffrey N; Burrus, Laura W; Tanner, Kimberly D

    2015-01-01

    Instructors create classroom environments that have the potential to impact learning by affecting student motivation, resistance, and self-efficacy. However, despite the critical importance of the learning environment in increasing conceptual understanding, little research has investigated what instructors say and do to create learning environments in college biology classrooms. We systematically investigated the language used by instructors that does not directly relate to course content and defined the construct of Instructor Talk. Transcripts were generated from a semester-long, cotaught introductory biology course (n = 270 students). Transcripts were analyzed using a grounded theory approach to identify emergent categories of Instructor Talk. The five emergent categories from analysis of more than 600 quotes were, in order of prevalence, 1) Building the Instructor/Student Relationship, 2) Establishing Classroom Culture, 3) Explaining Pedagogical Choices, 4) Sharing Personal Experiences, and 5) Unmasking Science. Instances of Instructor Talk were present in every class session analyzed and ranged from six to 68 quotes per session. The Instructor Talk framework is a novel research variable that could yield insights into instructor effectiveness, origins of student resistance, and methods for overcoming stereotype threat. Additionally, it holds promise in professional development settings to assist instructors in reflecting on the learning environments they create. © 2015 S. B. Seidel et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  20. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    Science.gov (United States)

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-06-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  1. Scientific reasoning skills development in the introductory biology courses for undergraduates

    Science.gov (United States)

    Schen, Melissa S.

    Scientific reasoning is a skill of critical importance to those students who seek to become professional scientists. Yet, there is little research on the development of such reasoning in science majors. In addition, scientific reasoning is often investigated as two separate entities: hypothetico-deductive reasoning and argumentation, even though these skills may be linked. With regard to argumentation, most investigations look at its use in discussing socioscientific issues, not in analyzing scientific data. As scientists often use the same argumentation skills to develop and support conclusions, this avenue needs to be investigated. This study seeks to address these issues and establish a baseline of both hypothetico-deductive reasoning and argumentation of scientific data of biology majors through their engagement in introductory biology coursework. This descriptive study investigated the development of undergraduates' scientific reasoning skills by assessing them multiple times throughout a two-quarter introductory biology course sequence for majors. Participants were assessed at the beginning of the first quarter, end of the first quarter, and end of the second quarter. A split-half version of the revised Lawson Classroom Test of Scientific Reasoning (LCTSR) and a paper and pencil argumentation instrument developed for this study were utilized to assess student hypothetico-deductive reasoning and argumentation skills, respectively. To identify factors that may influence scientific reasoning development, demographic information regarding age, gender, science coursework completed, and future plans was collected. Evidence for course emphasis on scientific reasoning was found in lecture notes, assignments, and laboratory exercises. This study did not find any trends of improvement in the students' hypothetico-deductive reasoning or argumentation skills either during the first quarter or over both quarters. Specific difficulties in the control of variables and

  2. Integrative assessment of Evolutionary theory acceptance and knowledge levels of Biology undergraduate students from a Brazilian university

    Science.gov (United States)

    Tavares, Gustavo Medina; Bobrowski, Vera Lucia

    2018-03-01

    The integrative role that Evolutionary theory plays within Biology is recognised by most scientific authors, as well as in governmental education policies, including Brazilian policies. However, teaching and learning evolution seems problematic in many countries, and Brazil is among those. Many factors may affect teachers' and students' perceptions towards evolution, and studies can help to reveal those factors. We used a conceptual questionnaire, the Measure of Acceptance of the Theory of Evolution (MATE) instrument, and a Knowledge test to assess (1) the level of acceptance and understanding of 23 undergraduate Biology students nearing the end of their course, (2) other factors that could affect these levels, including course structure, and (3) the most difficult topics regarding evolutionary biology. The results of this study showed that the students, on average, had a 'Very High Acceptance' (89.91) and a 'Very Low Knowledge' (59.42%) of Evolutionary theory, and also indicated a moderate positive correlation between the two (r = 0.66, p = .001). The most difficult topics were related to the definition of evolution and dating techniques. We believe that the present study provides evidence for policymakers to reformulate current school and university curricula in order to improve the teachers' acceptance and understanding of evolution and other biological concepts, consequently, helping students reduce their misconceptions related to evolutionary biology.

  3. Predicting success for college students enrolled in an online, lab-based, biology course for non-majors

    Science.gov (United States)

    Foster, Regina

    Online education has exploded in popularity. While there is ample research on predictors of traditional college student success, little research has been done on effective methods of predicting student success in online education. In this study, a number of demographic variables including GPA, ACT, gender, age and others were examined to determine what, if any, role they play in successfully predicting student success in an online, lab-based biology for non-majors course. Within course variables such as participation in specific categories of assignment and frequency of online visits were also examined. Groups of students including Native American/Non-Native American and Digital Immigrants and Digital Natives and others were also examined to determine if overall course success differed significantly. Good predictors of online success were found to be GPA, ACT, previous course experience and frequency of online visits with the course materials. Additionally, students who completed more of the online assignments within the course were more successful. Native American and Non-Native American students were found to differ in overall course success significantly as well. Findings indicate student academic background, previous college experience and time spent with course materials are the most important factors in course success. Recommendations include encouraging enrollment advisors to advise students about the importance of maintaining high academic levels, previous course experience and spending time with course materials may impact students' choices for online courses. A need for additional research in several areas is indicated, including Native American and Non-Native American differences. A more detailed examination of students' previous coursework would also be valuable. A study involving more courses, a larger number of students and surveys from faculty who teach online courses would help improve the generalizability of the conclusions.

  4. How to Build a Course in Mathematical-Biological Modeling: Content and Processes for Knowledge and Skill

    Science.gov (United States)

    Hoskinson, Anne-Marie

    2010-01-01

    Biological problems in the twenty-first century are complex and require mathematical insight, often resulting in mathematical models of biological systems. Building mathematical-biological models requires cooperation among biologists and mathematicians, and mastery of building models. A new course in mathematical modeling presented the opportunity…

  5. Development of depression in survivors of childhood and adolescent cancer: a multi-level life course conceptual framework.

    Science.gov (United States)

    Kaye, Erica C; Brinkman, Tara M; Baker, Justin N

    2017-06-01

    As therapeutic and supportive care interventions become increasingly effective, growing numbers of childhood and adolescent cancer survivors face a myriad of physical and psychological sequelae secondary to their disease and treatment. Mental health issues, in particular, present a significant problem in this unique patient population, with depression affecting a sizable number of childhood and adolescent cancer survivors. Multiple key determinants impact a survivor's risk of developing depression, with variables traversing across biologic, individual, family, community, and global levels, as well as spanning throughout the life course of human development from the preconception and prenatal periods to adulthood. A multi-level life course conceptual model offers a valuable framework to identify and organize the diverse variables that modulate the risk of developing depression in survivors of childhood and adolescent cancer. This review describes the first multi-level life course perspective applied to development of depression in childhood and adolescent cancer survivors. This conceptual framework may be used to guide the investigation of mental health interventions for SCACs to ensure that key determinants of depression occurrence are adequately addressed across various levels and throughout the life trajectory.

  6. The Development and Application of Affective Assessment in an Upper-Level Cell Biology Course

    Science.gov (United States)

    Kitchen, Elizabeth; Reeve, Suzanne; Bell, John D.; Sudweeks, Richard R.; Bradshaw, William S.

    2007-01-01

    This study exemplifies how faculty members can develop instruments to assess affective responses of students to the specific features of the courses they teach. Means for assessing three types of affective responses are demonstrated: (a) student attitudes towards courses with differing instructional objectives and methodologies, (b) student…

  7. Beyond the Biology: A Systematic Investigation of Noncontent Instructor Talk in an Introductory Biology Course

    Science.gov (United States)

    Seidel, Shannon B.; Reggi, Amanda L.; Schinske, Jeffrey N.; Burrus, Laura W.; Tanner, Kimberly D.

    2015-01-01

    Instructors create classroom environments that have the potential to impact learning by affecting student motivation, resistance, and self-efficacy. However, despite the critical importance of the learning environment in increasing conceptual understanding, little research has investigated what instructors say and do to create learning environments in college biology classrooms. We systematically investigated the language used by instructors that does not directly relate to course content and defined the construct of Instructor Talk. Transcripts were generated from a semester-long, cotaught introductory biology course (n = 270 students). Transcripts were analyzed using a grounded theory approach to identify emergent categories of Instructor Talk. The five emergent categories from analysis of more than 600 quotes were, in order of prevalence, 1) Building the Instructor/Student Relationship, 2) Establishing Classroom Culture, 3) Explaining Pedagogical Choices, 4) Sharing Personal Experiences, and 5) Unmasking Science. Instances of Instructor Talk were present in every class session analyzed and ranged from six to 68 quotes per session. The Instructor Talk framework is a novel research variable that could yield insights into instructor effectiveness, origins of student resistance, and methods for overcoming stereotype threat. Additionally, it holds promise in professional development settings to assist instructors in reflecting on the learning environments they create. PMID:26582237

  8. Increasing URM Undergraduate Student Success through Assessment-Driven Interventions: A Multiyear Study Using Freshman-Level General Biology as a Model System

    Science.gov (United States)

    Carmichael, Mary C.; St. Clair, Candace; Edwards, Andrea M.; Barrett, Peter; McFerrin, Harris; Davenport, Ian; Awad, Mohamed; Kundu, Anup; Ireland, Shubha Kale

    2016-01-01

    Xavier University of Louisiana leads the nation in awarding BS degrees in the biological sciences to African-American students. In this multiyear study with ~5500 participants, data-driven interventions were adopted to improve student academic performance in a freshman-level general biology course. The three hour-long exams were common and…

  9. Infusion of Quantitative and Statistical Concepts into Biology Courses Does Not Improve Quantitative Literacy

    Science.gov (United States)

    Beck, Christopher W.

    2018-01-01

    Multiple national reports have pushed for the integration of quantitative concepts into the context of disciplinary science courses. The aim of this study was to evaluate the quantitative and statistical literacy of biology students and explore learning gains when those skills were taught implicitly in the context of biology. I examined gains in…

  10. Factors Influencing Academic Performance of Students Enrolled in a Lower Division Cell Biology Core Course

    Science.gov (United States)

    Soto, Julio G.; Anand, Sulekha

    2009-01-01

    Students' performance in two semesters of our Cell Biology course was examined for this study. Teaching strategies, behaviors, and pre-course variables were analyzed with respect to students' performance. Pre-semester and post-semester surveys were administered to ascertain students' perceptions about class difficulty, amount of study and effort…

  11. Engaging Students in Authentic Microbiology Research in an Introductory Biology Laboratory Course is Correlated with Gains in Student Understanding of the Nature of Authentic Research and Critical Thinking

    Directory of Open Access Journals (Sweden)

    Brittany J. Gasper

    2013-02-01

    Full Text Available Recent recommendations for biology education highlight the role of authentic research experiences early in undergraduate education as a means of increasing the number and quality of biology majors. These experiences will inform students on the nature of science, increase their confidence in doing science, as well as foster critical thinking skills, an area that has been lacking despite it being one of the desired outcomes at undergraduate institutions and with future employers. With these things in mind, we have developed an introductory biology laboratory course where students design and execute an authentic microbiology research project. Students in this course are assimilated into the community of researchers by engaging in scholarly activities such as participating in inquiry, reading scientific literature, and communicating findings in written and oral formats. After three iterations of a semester-long laboratory course, we found that students who took the course showed a significant increase in their understanding of the nature of authentic research and their level of critical thinking skills.

  12. Network analysis reveals stage-specific changes in zebrafish embryo development using time course whole transcriptome profiling and prior biological knowledge.

    Science.gov (United States)

    Zhang, Yuji

    2015-01-01

    Molecular networks act as the backbone of molecular activities within cells, offering a unique opportunity to better understand the mechanism of diseases. While network data usually constitute only static network maps, integrating them with time course gene expression information can provide clues to the dynamic features of these networks and unravel the mechanistic driver genes characterizing cellular responses. Time course gene expression data allow us to broadly "watch" the dynamics of the system. However, one challenge in the analysis of such data is to establish and characterize the interplay among genes that are altered at different time points in the context of a biological process or functional category. Integrative analysis of these data sources will lead us a more complete understanding of how biological entities (e.g., genes and proteins) coordinately perform their biological functions in biological systems. In this paper, we introduced a novel network-based approach to extract functional knowledge from time-dependent biological processes at a system level using time course mRNA sequencing data in zebrafish embryo development. The proposed method was applied to investigate 1α, 25(OH)2D3-altered mechanisms in zebrafish embryo development. We applied the proposed method to a public zebrafish time course mRNA-Seq dataset, containing two different treatments along four time points. We constructed networks between gene ontology biological process categories, which were enriched in differential expressed genes between consecutive time points and different conditions. The temporal propagation of 1α, 25-Dihydroxyvitamin D3-altered transcriptional changes started from a few genes that were altered initially at earlier stage, to large groups of biological coherent genes at later stages. The most notable biological processes included neuronal and retinal development and generalized stress response. In addition, we also investigated the relationship among

  13. Using a Module-Based Laboratory to Incorporate Inquiry into a Large Cell Biology Course

    Science.gov (United States)

    Howard, David R.; Miskowski, Jennifer A.

    2005-01-01

    Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin-La Crosse was…

  14. Practice makes pretty good: assessment of primary literature reading abilities across multiple large-enrollment biology laboratory courses.

    Science.gov (United States)

    Sato, Brian K; Kadandale, Pavan; He, Wenliang; Murata, Paige M N; Latif, Yama; Warschauer, Mark

    2014-01-01

    Primary literature is essential for scientific communication and is commonly utilized in undergraduate biology education. Despite this, there is often little time spent training our students how to critically analyze a paper. To address this, we introduced a primary literature module in multiple upper-division laboratory courses. In this module, instructors conduct classroom discussions that dissect a paper as researchers do. While previous work has identified classroom interventions that improve primary literature comprehension within a single course, our goal was to determine whether including a scientific paper module in our classes could produce long-term benefits. On the basis of performance in an assessment exam, we found that our module resulted in longitudinal gains, including increased comprehension and critical-thinking abilities in subsequent lab courses. These learning gains were specific to courses utilizing our module, as no longitudinal gains were seen in students who had taken other upper-division labs that lacked extensive primary literature discussion. In addition, we assessed whether performance on our assessment correlated with a variety of factors, including grade point average, course performance, research background, and self-reported confidence in understanding of the article. Furthermore, all of the study conclusions are independent of biology disciplines, as we observe similar trends within each course. © 2014 B. K. Sato et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Integration of a zebrafish research project into a molecular biology course to support critical thinking and course content goals.

    Science.gov (United States)

    Felzien, Lisa K

    2016-11-12

    Engaging undergraduates in research is essential for teaching them to think like scientists, and it has become a desired component of classroom and laboratory instruction. Research projects that span an entire semester expose students to a variety of concepts and techniques and allow students to use experiments to learn scientific principles, understand why specific techniques are applicable, critically analyze varied data, and examine how experimentation leads to acquiring knowledge. To provide an experience with these features, a semester long research project was integrated into a combined lecture and laboratory course, Molecular Biology. The project utilized the zebrafish model to examine gene expression during embryonic development and required students to develop and test hypotheses about the timing of expression of previously uncharacterized genes. The main goals for the project were to provide opportunities for students to develop critical thinking skills required for conducting research and to support the content goals of the course. To determine whether these goals were met, student performance on the steps of the project and related pre-test and post-test questions was examined. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):565-573, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  16. Student perceptions: Importance of and satisfaction with aspects of an online biology course

    Science.gov (United States)

    Hendry, Sheila R.

    Research of student satisfaction with various facets of an online biology course, as well as the perceived importance of these aspects, was conducted during the summer and fall 2004 semesters within a course, History of Biology, at a university in the southeastern United States. This research is based on the theory of transactional distance, which involves dialogue between the teacher and student, the physical environments of both the student and teacher, and the emotional environments of each. Student ratings of importance and satisfaction regarding aspects of convenience, grade earned/knowledge learned, emotional health, communication, and student support were collected toward the end of each semester, via the online course, using the researcher-designed Student Perceptions Survey. Statistics with repeated measures ANOVA, using an alpha of 0.05, determined differences between importance and satisfaction ratings for each of these aspects. Students perceived grade earned/knowledge learned to be the most important aspect of learning online, although it is not an aspect unique to online courses. All of the aspects included in the study were found to be at least somewhat important. Convenience was the aspect with which students were most satisfied, with students at least somewhat satisfied with the other aspects. Although convenience is an inherent strength of the online course format, instructors should be aware of how important it is to design requirements of the online class to help students acquire knowledge while allowing them to do so at their own pace. Well-structured content, prompt feedback, encouragement of quality student-instructor communication, and student support are all parts of a positive online course experience. The Student Perceptions Survey, created specifically for this research, can have substantial value both in the creation of new online courses and in the evaluation of pre-existing courses. It can provide important information that can be

  17. Science Café Course: An Innovative Means of Improving Communication Skills of Undergraduate Biology Majors

    Directory of Open Access Journals (Sweden)

    Anna Goldina

    2013-12-01

    Full Text Available To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course, called Science Café. In this course undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Cafe course emphasizes development of science communication skills early, at the undergraduate level and empowers students to use their science knowledge in every day interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.

  18. Impact of Interdisciplinary Undergraduate Research in mathematics and biology on the development of a new course integrating five STEM disciplines.

    Science.gov (United States)

    Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu

    2010-01-01

    Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research projects involving students and faculty in biology, physics, mathematics, and computer science and how each contributed in significant ways to the conception and implementation of our new Integrated Quantitative Science course, a course for first-year students that integrates the material in the first course of the major in each of biology, chemistry, mathematics, computer science, and physics.

  19. Two Project-Based Strategies in an Interdisciplinary Mathematical Modeling in Biology Course

    Science.gov (United States)

    Ludwig, Patrice; Tongen, Anthony; Walton, Brian

    2018-01-01

    James Madison University faculty team-teach an interdisciplinary mathematical modeling course for mathematics and biology students. We have used two different project-based approaches to emphasize the mathematical concepts taught in class, while also exposing students to new areas of mathematics not formally covered in class. The first method…

  20. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  1. Causal-Comparative Study Analyzing Student Success in Hybrid Anatomy and Physiology Courses

    Science.gov (United States)

    Levy, Jacqueline Anita

    2013-01-01

    In the biological sciences, higher student success levels are achieved in traditionally formatted, face-to-face coursework than in hybrid courses. The methodologies used to combine hybrid and in-person elements to the course need to be applied to the biological sciences to emulate the success seen in the traditional courses since the number of…

  2. Assessment of the effects of student response systems on student learning and attitudes over a broad range of biology courses.

    Science.gov (United States)

    Preszler, Ralph W; Dawe, Angus; Shuster, Charles B; Shuster, Michèle

    2007-01-01

    With the advent of wireless technology, new tools are available that are intended to enhance students' learning and attitudes. To assess the effectiveness of wireless student response systems in the biology curriculum at New Mexico State University, a combined study of student attitudes and performance was undertaken. A survey of students in six biology courses showed that strong majorities of students had favorable overall impressions of the use of student response systems and also thought that the technology improved their interest in the course, attendance, and understanding of course content. Students in lower-division courses had more strongly positive overall impressions than did students in upper-division courses. To assess the effects of the response systems on student learning, the number of in-class questions was varied within each course throughout the semester. Students' performance was compared on exam questions derived from lectures with low, medium, or high numbers of in-class questions. Increased use of the response systems in lecture had a positive influence on students' performance on exam questions across all six biology courses. Students not only have favorable opinions about the use of student response systems, increased use of these systems increases student learning.

  3. An Off-the-Shelf, Authentic, and Versatile Undergraduate Molecular Biology Practical Course

    Science.gov (United States)

    Whitworth, David E.

    2015-01-01

    We provide a prepackaged molecular biology course, which has a broad context and is scalable to large numbers of students. It is provided complete with technical setup guidance, a reliable assessment regime, and can be readily implemented without any development necessary. Framed as a forensic examination of blue/white cloning plasmids, the course…

  4. Academic Beliefs and Behaviors in On-Campus and Online General Education Biology Classes

    Science.gov (United States)

    Noll, Christopher B.

    2015-01-01

    This study examined the effect of course delivery mode on academic help-seeking beliefs and behaviors, academic self-efficacy, and the levels of individual interest in biology of students in an entry-level General Education biology course. This intersection of online education, science courses, and academic success factors merits attention because…

  5. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course

    Science.gov (United States)

    Zagallo, Patricia; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-year research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent…

  6. Theme-Based Courses Foster Student Learning and Promote Comfort with Learning New Material

    Science.gov (United States)

    Tessier, Lisa; Tessier, Jack

    2015-01-01

    In this article, we review the literature about theme-based teaching, then report quantitative and qualitative results from surveys from three different courses: one section of a 100-level in-person art course; five sections of 300-level on-line art courses; and one section of a 100-level in-person biology course at SUNY Delhi with applied themes…

  7. The great ideas of biology: Exploration through experimentation in an undergraduate lab course

    OpenAIRE

    Finch, L.; Horii, C. V.; Phillips, R.; Bois, J. S.

    2016-01-01

    We developed an introductory laboratory course to provide a visceral experience that aims at getting students truly excited about scientific study of the living world. Our vehicle to do that was to focus on what Paul Nurse dubbed “the great ideas of biology” rather than an approach to biology that celebrates specific factual knowledge. To that end, we developed eight diverse experimental modules, each of which highlights a key biological concept and gives an opportunity to use theory to g...

  8. Improving student performance in an introductory biology majors course: A social action project in the scholarship of teaching

    Science.gov (United States)

    Chambers, Sara Lang Ketchum

    This social action study followed an introductory biology course for a three-year period to determine whether changes in teaching personnel, instructional techniques and reorientation to student-centered learning would impact student performance. The course was redirected from a traditional lecture-laboratory format to one emphasizing active learning inquiry methods. Student retention, achievement, and failure were observed for three years in addition to one year prior, and one year following, the study. The study examined the two semester introductory biology course required of all biology majors and those intending a career in science, medicine or dentistry. During the first semester of the study, the dropout rate decreased from 46% to 21%. Prior to the study, 39% of the students completing the course received a grade of D or F while only 4% received a grade of B or above. During the first semester of the study 14% of the students received a grade of D or F while 46% received a B, B+ or A grade. Similar results were seen in other semesters of the study. A statistical comparison of student retention and performance was carried out using grade data for classes taught by the original faculty, the action study faculty and the post-study faculty. The differences between the original faculty and the action study faculty were statistically significant. Effect size calculations indicated large differences between the action study faculty and the two other faculty groups in terms of student retention, achievement and failure. The results are attributed to both the personnel change and, more significantly, the change in teaching methods and emphasis on student-active learning. Comparison between the pre- and post-study teams showed less dramatic effect sizes than when the action study data were compared with the data from either other team. Nevertheless, the post-study results showed that although the retention rate dropped during the year after the study, the improvement

  9. Evidence for anecdotes: Examining use of stories in introductory biology courses with a mixed-methods approach

    Science.gov (United States)

    Kreps, Jennifer Susan

    2005-11-01

    Instructional stories can be an effective way to teach science concepts. However, research has not examined the extent to which stories are being used, and how they are received. More research on the use of story in biology classes may lead to more conscious use of story by instructors, which may lead to a better understanding of biological concepts by students. The purpose of this study was to examine how instructors and students use stories in university introductory biology courses, and the degree to which these stories are perceived to be effective. To examine this phenomenon, a nationwide instructor survey, a university-wide student survey, and multiple case studies were used. Two case studies included observation of lectures, interviews with (36) students, and interviews with instructors (4) over two semesters of an organismal biology course. Instructor survey participants (N = 78) were gathered by posting email invitations, and student survey participants (N = 260) were volunteers from introductory biology courses at a middle-sized university. Several types of stories were observed, including personal experience stories, historical anecdotes, and "you" stories. Students reported increased affective learning when stories were told, and remembered mostly humorous stories. In the instructor survey, no significant differences emerged between genders, type of biology taught, or communicator style and instructional story frequency. However, reports of personal experience story frequency did increase significantly (p ethnicity, although non-science majors reported that their instructors used stories significantly more frequently (p perceived learning loss for non-science majors, but not for science majors. The researcher suggests that stories can be an effective tool to teach biology, particularly if the instructor is aware of her audience and uses stories primarily to help students understand how concepts are related to "real life."

  10. Supporting Upper-Level Undergraduate Students in Building a Systems Perspective in a Botany Course

    Science.gov (United States)

    Zangori, Laura; Koontz, Jason A.

    2017-01-01

    Undergraduate biology majors require biological literacy about the critical and dynamic relationships between plants and ecosystems and the effect human-made processes have on these systems. To support students in understanding systems relationships, we redesigned an undergraduate botany course using an ecological framework and embedded systems…

  11. Student learning style preferences in college-level biology courses: Implications for teaching and academic performance

    Science.gov (United States)

    Sitton, Jennifer Susan

    Education research has focused on defining and identifying student learning style preferences and how to incorporate this knowledge into teaching practices that are effective in engaging student interest and transmitting information. One objective was determining the learning style preferences of undergraduate students in Biology courses at New Mexico State University by using the online VARK Questionnaire and an investigator developed survey (Self Assessed Learning Style Survey, LSS). Categories include visual, aural, read-write, kinesthetic, and multimodal. The courses differed in VARK single modal learning preferences (p = 0.035) but not in the proportions of the number of modes students preferred (p = 0.18). As elsewhere, the majority of students were multimodal. There were similarities and differences between LSS and VARK results and between students planning on attending medical school and those not. Preferences and modalities tended not to match as expected for ratings of helpfulness of images and text. To detect relationships between VARK preferred learning style and academic performance, ANOVAs were performed using modality preferences and normalized learning gains from pre and post tests over material taught in the different modalities, as well as on end of semester laboratory and lecture grades. Overall, preference did not affect the performance for a given modality based activity, quiz, or final lecture or laboratory grades (p > 0.05). This suggests that a student's preference does not predict an improved performance when supplied with material in that modality. It is recommended that methods be developed to aid learning in a variety of modalities, rather than catering to individual learning styles. Another topic that is heavily debated in the field of education is the use of simulations or videos to replace or supplement dissections. These activities were compared using normalized learning gains from pre and post tests, as well as attitude surveys

  12. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  13. Creating Successful Campus Partnerships for Teaching Communication in Biology Courses and Labs.

    Science.gov (United States)

    Hall, Susanne E; Birch, Christina

    2018-01-01

    Creating and teaching successful writing and communication assignments for biology undergraduate students can be challenging for faculty trying to balance the teaching of technical content. The growing body of published research and scholarship on effective teaching of writing and communication in biology can help inform such work, but there are also local resources available to support writing within biology courses that may be unfamiliar to science faculty and instructors. In this article, we discuss common on-campus resources biology faculty can make use of when incorporating writing and communication into their teaching. We present the missions, histories, and potential collaboration outcomes of three major on-campus writing resources: writing across the curriculum and writing in the disciplines initiatives (WAC/WID), writing programs, and writing centers. We explain some of the common misconceptions about these resources in order to help biology faculty understand their uses and limits, and we offer guiding questions faculty might ask the directors of these resources to start productive conversations. Collaboration with these resources will likely save faculty time and effort on curriculum development and, more importantly, will help biology students develop and improve their critical reading, writing, and communication skills.

  14. Bringing the Real World into the Biology Curriculum

    Science.gov (United States)

    Lewis, Jenny

    2006-01-01

    This study followed a small but diverse group of biology teachers through the first two years of the pilot for a new Advanced Level Biology course--Salters-Nuffield Advanced Biology. SNAB aims to modernise A-level Biology using real world contexts and examples as the starting point, promoting conceptual understanding rather than factual recall,…

  15. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students.

    Science.gov (United States)

    Beach, Dale L; Alvarez, Consuelo J

    2015-12-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic "parts," students construct a "reporter plasmid" expressing a reporter gene (GFP) controlled by a hybrid promoter regulated by the lac-repressor protein (lacI). In combination with a "sensor plasmid," the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD) to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey) and end (post-survey) of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses.

  16. A Comparison of Two Low-Stakes Methods for Administering a Program-Level Biology Concept Assessment.

    Science.gov (United States)

    Couch, Brian A; Knight, Jennifer K

    2015-12-01

    Concept assessments are used commonly in undergraduate science courses to assess student learning and diagnose areas of student difficulty. While most concept assessments align with the content of individual courses or course topics, some concept assessments have been developed for use at the programmatic level to gauge student progress and achievement over a series of courses or an entire major. The broad scope of a program-level assessment, which exceeds the content of any single course, creates several test administration issues, including finding a suitable time for students to take the assessment and adequately incentivizing student participation. These logistical considerations must also be weighed against test security and the ability of students to use unauthorized resources that could compromise test validity. To understand how potential administration methods affect student outcomes, we administered the Molecular Biology Capstone Assessment (MBCA) to three pairs of matched upper-division courses in two ways: an online assessment taken by students outside of class and a paper-based assessment taken during class. We found that overall test scores were not significantly different and that individual item difficulties were highly correlated between these two administration methods. However, in-class administration resulted in reduced completion rates of items at the end of the assessment. Taken together, these results suggest that an online, outside-of-class administration produces scores that are comparable to a paper-based, in-class format and has the added advantages that instructors do not have to dedicate class time and students are more likely to complete the entire assessment.

  17. A Western Blot-based Investigation of the Yeast Secretory Pathway Designed for an Intermediate-Level Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Hood-DeGrenier, Jennifer K.

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…

  18. Combining content and elements of communication into an upper-level biochemistry course.

    Science.gov (United States)

    Whittington, Carli P; Pellock, Samuel J; Cunningham, Rebecca L; Cox, James R

    2014-01-01

    This report describes how a science communication module was incorporated into an advanced biochemistry course. Elements of communication were taught synergistically with biochemistry content in this course in an effort to expose students to a variety of effective oral communication strategies. Students were trained to use these established techniques and incorporated them into various presentations throughout the course. Three students describe their use of specific resources and how the skills learned relate to their future career. The importance and relevance of science communication are receiving unprecedented national attention. The academic scientific community must respond by incorporating more communication-centered instruction and opportunities in the classroom and laboratory. © 2013 by The International Union of Biochemistry and Molecular Biology.

  19. New Laboratory Course for Senior-Level Chemical Engineering Students

    Science.gov (United States)

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  20. Using the Principles of SoTL to Redesign an Advanced Evolutionary Biology Course

    Directory of Open Access Journals (Sweden)

    Michael deBraga

    2015-03-01

    Full Text Available A primary goal of university instruction is the students’ demonstration of improved, highly developed critical thinking (CT skills. However, how do faculty encourage CT and its potential concomitant increase in student workload without negatively impacting student perceptions of the course? In this investigation, an advanced biology course is evaluated after structural changes (implemented in 2010 met with a poor student evaluation of the course and the instructor. This analysis first examines the steps used to transform a course to encourage CT and then explains how it can be assessed. To accomplish these goals, the instructor collaborated with an educational developer to redesign the course using a philosophy informed by SoTL. This approach, as we see it, represents a set of principles that demand transparency in the development and application of strategies whose aim is to encourage student learning. However, the SoTL approach would be insufficient to simply promote a set of strategies without some mechanism for evaluating its efficacy. Therefore, we designed a “Graded Response” (GR multiple-choice test to measure CT development and hence to properly evaluate whether the strategies embedded in our SoTL-informed course redesign have adequately met our goals.

  1. Can You Change a Student's Mind in a Course about the Brain? Belief Change Following an Introductory Course in Biological Psychology.

    Science.gov (United States)

    Harrington, Ian A

    2013-01-01

    Undergraduate courses in the neurosciences, including biological psychology, often appeal to students because they offer perspectives on human behavior and experience that are so different from those students arrive with or are exposed to elsewhere on campus. Consider, for example, this passage from Crick's, Astonishing Hypothesis: "You, your joys and your sorrows, your memories and your ambitions, your sense of personal identity and free will, are in fact no more than the behaviour of a vast assembly of nerve cells and their associated molecules." Unfortunately, because this perspective is at such odds with those many students arrive with, the very thing that makes these classes so interesting is also likely to engender resistance. With Crick's hypothesis serving as the theme of my introductory course in biological psychology, we explore the ways in which complex experiences and behaviors can be explained by lower-level, biological phenomena. Historically, and for a host of valid reasons, class assessment tends to focus on whether students understand the course material (e.g., Can you explain the role of Ca(2+) in synaptic transmission?), rather than whether students believe what they have been introduced to (e.g., Do you believe that the mind exists as something separate from the body?). For a number of years, however, I have also been collecting pre- and post-test data from students enrolled in three formats of the class in an effort to measure changes in beliefs. One format was a conventional standalone class, whereas the other two were more intensive and involved parallel coursework in the Philosophy of Mind with a second instructor. The full assessment, identical at both test intervals, was comprised of 56 items and included 16 items from a Theoretical Orientation Scale (TOS; Coan, 1979), several of which addressed whether human behavior was predictable; 14 items that addressed dualism, the veracity of our perceptions, personal responsibility, and other

  2. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  3. Audio-Tutorial Versus Conventional Lecture-Laboratory Instruction in a University Animal Biology Course.

    Science.gov (United States)

    Rowsey, Robert E.

    The purpose of this study was to analyze two methods of instruction used in an animal biology course. One group of students, the experimental group, was taught using an audio-tutorial program, and another group, the control group, was taught using the conventional lecture-laboratory method. Pretest and posttest data were collected from achievement…

  4. Teaching Synthetic Biology, Bioinformatics and Engineering to Undergraduates: The Interdisciplinary Build-a-Genome Course

    Science.gov (United States)

    Dymond, Jessica S.; Scheifele, Lisa Z.; Richardson, Sarah; Lee, Pablo; Chandrasegaran, Srinivasan; Bader, Joel S.; Boeke, Jef D.

    2009-01-01

    A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into ∼750-bp fragments. Once trained in assembly of such DNA “building blocks” by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular “lab meeting” sessions help prepare them for future roles in laboratory science. PMID:19015540

  5. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students’ outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from “knowledge transmitters” to “role model scientists.” PMID:23222836

  6. Peer learning and support of technology in an undergraduate biology course to enhance deep learning.

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students' outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from "knowledge transmitters" to "role model scientists."

  7. Exploring Cystic Fibrosis Using Bioinformatics Tools: A Module Designed for the Freshman Biology Course

    Science.gov (United States)

    Zhang, Xiaorong

    2011-01-01

    We incorporated a bioinformatics component into the freshman biology course that allows students to explore cystic fibrosis (CF), a common genetic disorder, using bioinformatics tools and skills. Students learn about CF through searching genetic databases, analyzing genetic sequences, and observing the three-dimensional structures of proteins…

  8. A Writing-Intensive Course Improves Biology Undergraduates' Perception and Confidence of Their Abilities to Read Scientific Literature and Communicate Science

    Science.gov (United States)

    Brownell, Sara E.; Price, Jordan V.; Steinman, Lawrence

    2013-01-01

    Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of…

  9. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  10. Elucidation of time-dependent systems biology cell response patterns with time course network enrichment

    DEFF Research Database (Denmark)

    Wiwie, Christian; Rauch, Alexander; Haakonsson, Anders

    2018-01-01

    , no methods exist to integrate time series data with networks, thus preventing the identification of time-dependent systems biology responses. We close this gap with Time Course Network Enrichment (TiCoNE). It combines a new kind of human-augmented clustering with a novel approach to network enrichment...

  11. Analyzing the Biology on the System Level

    OpenAIRE

    Tong, Wei

    2016-01-01

    Although various genome projects have provided us enormous static sequence information, understanding of the sophisticated biology continues to require integrating the computational modeling, system analysis, technology development for experiments, and quantitative experiments all together to analyze the biology architecture on various levels, which is just the origin of systems biology subject. This review discusses the object, its characteristics, and research attentions in systems biology,...

  12. Water as Life, Death, and Power: Building an Integrated Interdisciplinary Course Combining Perspectives from Anthropology, Biology, and Chemistry

    Science.gov (United States)

    Willermet, Cathy; Mueller, Anja; Juris, Stephen J.; Drake, Eron; Upadhaya, Samik; Chhetri, Pratik

    2013-01-01

    In response to a request from a campus student organization, faculty from three fields came together to develop and teach an integrated interdisciplinary course on water issues and social activism. This course, "Water as Life, Death, and Power", brought together topics from the fields of anthropology, biology and chemistry to explore…

  13. Tracking Developmental Students into Their First College Level Mathematics Course

    Science.gov (United States)

    Waycaster, Pansy

    2011-01-01

    A recent SACS review at the author's institution prompted an assessment of the school's developmental mathematics program. The author needed to examine the effectiveness of the developmental mathematics courses in preparing students for their first college level mathematics course. Rather than just examine success rates in developmental…

  14. The CLEM model: Path analysis of the mediating effects of attitudes and motivational beliefs on the relationship between perceived learning environment and course performance in an undergraduate nonmajor biology course

    Science.gov (United States)

    Partin, Matthew L.

    The problem addressed in this study stems from three crises currently faced by post-secondary science educators in the United States: relatively low scientific literacy among students entering college, the need for more students to pursue science related careers, and poor attitudes among students toward studying science. In this dissertation the following questions are addressed: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? This study also examines the effects of gender and ethnicity on motivation, attitudes, and course performance. The purpose of this study is to test a path model describing the mediating effects of motivation and attitudes on constructivist learning environments and course performance. The following study considers contemporary understanding of teaching and learning as well as motivation and attitudes to suggest a direction for future reform efforts and to guide post-secondary science education instructors and leaders in the design of constructivist learning environments for undergraduate nonmajor biology courses. This study concludes that, although the classroom learning environment has a small direct effect on course performance, there is a moderate total effect on self-efficacy and intrinsic goal orientation. The classroom learning environment also had a moderate indirect effect on attitudes toward biology. Furthermore, attitudes have a moderate direct effect on course performance and self-efficacy has a strong direct effect on both course performance and attitudes toward biology. Self-efficacy seems to be particularly important; however, each of these constructs is important in its own right and instructors in higher education should strive to enhance each of them among their students. If students are to learn using constructivist methods they need the proper motivation and positive attitudes to

  15. Assessment of Student Learning Associated with Tree Thinking in an Undergraduate Introductory Organismal Biology Course

    Science.gov (United States)

    Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted…

  16. Can You Change a Student’s Mind in a Course about the Brain? Belief Change Following an Introductory Course in Biological Psychology

    Science.gov (United States)

    Harrington, Ian A.

    2013-01-01

    Undergraduate courses in the neurosciences, including biological psychology, often appeal to students because they offer perspectives on human behavior and experience that are so different from those students arrive with or are exposed to elsewhere on campus. Consider, for example, this passage from Crick’s, Astonishing Hypothesis: “You, your joys and your sorrows, your memories and your ambitions, your sense of personal identity and free will, are in fact no more than the behaviour of a vast assembly of nerve cells and their associated molecules.” Unfortunately, because this perspective is at such odds with those many students arrive with, the very thing that makes these classes so interesting is also likely to engender resistance. With Crick’s hypothesis serving as the theme of my introductory course in biological psychology, we explore the ways in which complex experiences and behaviors can be explained by lower-level, biological phenomena. Historically, and for a host of valid reasons, class assessment tends to focus on whether students understand the course material (e.g., Can you explain the role of Ca2+ in synaptic transmission?), rather than whether students believe what they have been introduced to (e.g., Do you believe that the mind exists as something separate from the body?). For a number of years, however, I have also been collecting pre- and post-test data from students enrolled in three formats of the class in an effort to measure changes in beliefs. One format was a conventional standalone class, whereas the other two were more intensive and involved parallel coursework in the Philosophy of Mind with a second instructor. The full assessment, identical at both test intervals, was comprised of 56 items and included 16 items from a Theoretical Orientation Scale (TOS; Coan, 1979), several of which addressed whether human behavior was predictable; 14 items that addressed dualism, the veracity of our perceptions, personal responsibility, and other

  17. A Course in Evolutionary Biology: Engaging Students in the "Practice" of Evolution. Research Report.

    Science.gov (United States)

    Passmore, Cynthia; Stewart, James

    Recent education reform documents emphasize the need for students to develop a rich understanding of evolution's power to integrate knowledge of the natural world. This paper describes a nine-week high school course designed to help students understand evolutionary biology by engaging them in developing, elaborating, and using Charles Darwin's…

  18. Course of Study for Secondary Level Bookkeeping/Accounting. Final Report.

    Science.gov (United States)

    Brower, Edward B.

    The present project was designed to continue the preparation of a course of study useful for developing secondary level bookkeeping/accounting instruction. The course of study is intended to (1) derive vocational instruction for students with varying career goals, (2) develop accounting-oriented career exploration units for Introduction to…

  19. Representations of homosexuality and prejudice against homosexuals of college students in a course in biology education in Mozambique

    OpenAIRE

    Nota, Juvencio Manuel

    2014-01-01

    This article analyzes the representations (explanations) of future biology teachers about the nature of homosexuality and the type of prejudice expressed against homosexuals. For this we applied questionnaires to 127 students of both sexes from first to fourth year biology course in Pedagogical University in Maputo. The results showed a bipolar representation of homosexuality reasoned explanations psychosocial and biological, but also a widespread prejudice. The analysis of the type of anchor...

  20. Development of a future teachers’ group in a Teaching Practice course of Physics and Biology

    Directory of Open Access Journals (Sweden)

    Alberto Villani

    2008-08-01

    Full Text Available This paper analyzes the development of a future teachers’ group in a Teaching Practice course of Physics and Biology. During the course the students should propose a collective and interdisciplinary planning for a set of classes to be taught in basic teaching of a public school. We will try to show the evolution of the group and the teachers’ contributions, interpreting them from the point of view of Bion (1970, Kaës (1997 and Winnicott’s (1975. We will conclude with some considerations on teachers' initial formation.

  1. Measuring Student Improvement in Lower- and Upper-Level University Climate Science Courses

    Science.gov (United States)

    Harris, S. E.; Taylor, S. V.; Schoonmaker, J. E.; Lane, E.; Francois, R. H.; Austin, P.

    2011-12-01

    What do university students know about climate? What do they learn in a climate course? On the second-to-last day of a course about global climate change, only 48% of our upper-level science students correctly answered a multiple-choice question about the greenhouse effect. The good news: improvement. Only 16% had answered correctly on the first day of class. The bad news: the learning opportunities we've provided appear to have missed more than half the class on a fundamental climate concept. To evaluate the effectiveness of instruction on student learning about climate, we have developed a prototype assessment tool, designed to be deployed as a low-stakes pre-post test. The items included were validated through student interviews to ensure that students interpret the wording and answer choices in the way we intend. This type of validated assessment, administered both at the beginning and end of term, with matched individuals, provides insight regarding the baseline knowledge with which our students enter a course, and the impact of that course on their learning. We administered test items to students in (1) an upper-level climate course for science majors and (2) a lower-level climate course open to all students. Some items were given to both groups, others to only one of the groups. Both courses use evidence-based pedagogy with active student engagement (clickers, small group activities, regular pre-class preparation). Our results with upper-level students show strong gains in student thinking (>70% of students who missed a question on the pre-test answered correctly on the post-test) about stock-and-flow (box model) problems, annual cycles in the Keeling curve, ice-albedo feedbacks, and isotopic fractionation. On different questions, lower-level students showed strong gains regarding albedo and blackbody emission spectra. Both groups show similar baseline knowledge and lower-than-expected gains on greenhouse effect fundamentals, and zero gain regarding the

  2. Observations Of General Learning Patterns In An Upper-Level Thermal Physics Course

    Science.gov (United States)

    Meltzer, David E.

    2009-11-01

    I discuss some observations from using interactive-engagement instructional methods in an upper-level thermal physics course over a two-year period. From the standpoint of the subject matter knowledge of the upper-level students, there was a striking persistence of common learning difficulties previously observed in students enrolled in the introductory course, accompanied, however, by some notable contrasts between the groups. More broadly, I comment on comparisons and contrasts regarding general pedagogical issues among different student sub-populations, for example: differences in the receptivity of lower- and upper-level students to diagrammatic representations; varying receptivity to tutorial-style instructional approach within the upper-level population; and contrasting approaches to learning among physics and engineering sub-populations in the upper-level course with regard to use of symbolic notation, mathematical equations, and readiness to employ verbal explanations.

  3. Using the mixed media according to internet-based on the instructional multimedia for developing students' learning achievements in biology course on foundational cell issue of secondary students at the 10th grade level in Rangsit University demonstration school

    Science.gov (United States)

    Kangloan, Pichet; Chayaburakul, Kanokporn; Santiboon, Toansakul

    2018-01-01

    The aims of this research study were 1) to develop students' learning achievements in biology course on foundational cell issue, 2) to examine students' satisfactions of their learning activities through the mixed media according to internet-based multi-instruction in biology on foundational cell issue at the 10th grade level were used in the first semester in the academic year 2014, which a sample size of 17 students in Rangsit University Demonstration School with cluster random sampling was selected. Students' learning administrations were instructed with the 3-instructional lesson plans according to the 5-Step Ladder Learning Management Plan (LLMP) namely; the maintaining lesson plan on the equilibrium of cell issue, a lesson plan for learning how to communicate between cell and cell division. Students' learning achievements were assessed with the 30-item Assessment of Learning Biology Test (ALBT), students' perceptions of their satisfactions were satisfied with the 20-item Questionnaire on Students Satisfaction (QSS), and students' learning activities were assessed with the Mixed Media Internet-Based Instruction (MMIBI) on foundational cell issue was designed. The results of this research study have found that: statistically significant of students' post-learning achievements were higher than their pre-learning outcomes and indicated that the differences were significant at the .05 level. Students' performances of their satisfaction to their perceptions toward biology class with the mixed media according to internet-based multi instruction in biology on foundational cell issue were the highest level and evidence of average mean score as 4.59.

  4. Enhancing Interdisciplinary Mathematics and Biology Education: A Microarray Data Analysis Course Bridging These Disciplines

    Science.gov (United States)

    Tra, Yolande V.; Evans, Irene M.

    2010-01-01

    "BIO2010" put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on…

  5. Development of a Bi-Disciplinary Course in Forensic Science

    Directory of Open Access Journals (Sweden)

    Stacey L. Raimondi

    2013-08-01

    Full Text Available Forensic science programs and courses have traditionally been housed within chemistry departments at the college/university level, largely because the pioneers of the field were chemists who applied technology that was more chemical than biological in nature. However, with the development of such areas of study as DNA analysis, anatomical studies, and forensic entomology, it is becoming more and more important for forensic science students to have a strong biological background as well as a chemical background. Furthermore, while biology students are typically required to have extensive chemistry training as part of their major, the converse is not true for chemistry students. Therefore, it is possible that a student interested in forensic science could complete a major in chemistry and never have taken a biology class, leaving them woefully under-prepared for any type of masters program or career in forensic science immediately following graduation. Indeed, an examination of available positions in forensic science shows a large number of positions for DNA analysts for which the typical chemistry student would not be prepared without extensive biology training (http://www.aafs.org. Furthermore, positions for medical examiners or pathologists require extensive training in biology in addition to the continued medical training and residency programs. Therefore, it seems imperative that introductory forensic science courses adapt to these needs and be taught with a more bi-disciplinary approach in order to educate students on the whole field rather than one aspect. To that end, a new bi-disciplinary Forensic Science course was developed at Elmhurst College. This course was team-taught by a biology and a chemistry professor so that students would obtain a thorough understanding of the field and techniques used by both biologists and chemists. A description of this new version of a forensic science course follows, focusing on the addition of biology

  6. Science Seeker: A New Model for Teaching Information Literacy to Entry-Level Biology Undergraduates

    Science.gov (United States)

    Petzold, Jacquelyn; Winterman, Brian; Montooth, Kristi

    2010-01-01

    In order to integrate library instruction seamlessly into an introductory biology course, two librarians collaborated with a biology faculty member to create a three-part series of instruction sessions known as the Science Seeker. The Science Seeker taught students about the structure of scientific information by tracing the path that discoveries…

  7. Predicting Student Success in a Major's Introductory Biology Course via Logistic Regression Analysis of Scientific Reasoning Ability and Mathematics Scores

    Science.gov (United States)

    Thompson, E. David; Bowling, Bethany V.; Markle, Ross E.

    2018-02-01

    Studies over the last 30 years have considered various factors related to student success in introductory biology courses. While much of the available literature suggests that the best predictors of success in a college course are prior college grade point average (GPA) and class attendance, faculty often require a valuable predictor of success in those courses wherein the majority of students are in the first semester and have no previous record of college GPA or attendance. In this study, we evaluated the efficacy of the ACT Mathematics subject exam and Lawson's Classroom Test of Scientific Reasoning in predicting success in a major's introductory biology course. A logistic regression was utilized to determine the effectiveness of a combination of scientific reasoning (SR) scores and ACT math (ACT-M) scores to predict student success. In summary, we found that the model—with both SR and ACT-M as significant predictors—could be an effective predictor of student success and thus could potentially be useful in practical decision making for the course, such as directing students to support services at an early point in the semester.

  8. Including a Service Learning Educational Research Project in a Biology Course-I: Assessing Community Awareness of Childhood Lead Poisoning

    Science.gov (United States)

    Abu-Shakra, Amal; Saliim, Eric

    2012-01-01

    A university course project was developed and implemented in a biology course, focusing on environmental problems, to assess community awareness of childhood lead poisoning. A set of 385 questionnaires was generated and distributed in an urban community in North Carolina, USA. The completed questionnaires were sorted first into yes and no sets…

  9. Anticipation of Personal Genomics Data Enhances Interest and Learning Environment in Genomics and Molecular Biology Undergraduate Courses.

    Science.gov (United States)

    Weber, K Scott; Jensen, Jamie L; Johnson, Steven M

    2015-01-01

    An important discussion at colleges is centered on determining more effective models for teaching undergraduates. As personalized genomics has become more common, we hypothesized it could be a valuable tool to make science education more hands on, personal, and engaging for college undergraduates. We hypothesized that providing students with personal genome testing kits would enhance the learning experience of students in two undergraduate courses at Brigham Young University: Advanced Molecular Biology and Genomics. These courses have an emphasis on personal genomics the last two weeks of the semester. Students taking these courses were given the option to receive personal genomics kits in 2014, whereas in 2015 they were not. Students sent their personal genomics samples in on their own and received the data after the course ended. We surveyed students in these courses before and after the two-week emphasis on personal genomics to collect data on whether anticipation of obtaining their own personal genomic data impacted undergraduate student learning. We also tested to see if specific personal genomic assignments improved the learning experience by analyzing the data from the undergraduate students who completed both the pre- and post-course surveys. Anticipation of personal genomic data significantly enhanced student interest and the learning environment based on the time students spent researching personal genomic material and their self-reported attitudes compared to those who did not anticipate getting their own data. Personal genomics homework assignments significantly enhanced the undergraduate student interest and learning based on the same criteria and a personal genomics quiz. We found that for the undergraduate students in both molecular biology and genomics courses, incorporation of personal genomic testing can be an effective educational tool in undergraduate science education.

  10. The Impact of an Elementary Algebra Course on Success in a College-Level Liberal Arts Math Course and Persistence in College

    Science.gov (United States)

    Austin, Lori Ann

    2017-01-01

    Many students enter community college underprepared for college-level math and are placed into developmental elementary algebra without consideration if the algebra will provide a foundation for their needed college-level math course. Large percentages of those students are unable to succeed in the developmental course and, therefore, are unable…

  11. Transformation of a Traditional, Freshman Biology, Three-Semester Sequence, to a Two-Semester, Integrated Thematically Organized, and Team-Taught Course

    Science.gov (United States)

    Soto, Julio G.; Everhart, Jerry

    2016-01-01

    Biology faculty at San José State University developed, piloted, implemented, and assessed a freshmen course sequence based on the macro-to micro-teaching approach that was team-taught, and organized around unifying themes. Content learning assessment drove the conceptual framework of our course sequence. Content student learning increased…

  12. Deliberation as Communication Instruction: A Study of a Climate Change Deliberation in an Introductory Biology Course

    Science.gov (United States)

    Drury, Sara A. Mehltretter

    2015-01-01

    The author argues that deliberation is an innovative method for teaching communication skills, particularly group communication, in the undergraduate science, technology, engineering, and math (STEM) curriculum. A case study using a deliberation activity on global climate change in an introductory biology course demonstrates how deliberative…

  13. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students†

    OpenAIRE

    Beach, Dale L.; Alvarez, Consuelo J.

    2015-01-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniq...

  14. The CLEM Model: Path Analysis of the Mediating Effects of Attitudes and Motivational Beliefs on the Relationship between Perceived Learning Environment and Course Performance in an Undergraduate Non-Major Biology Course

    Science.gov (United States)

    Partin, Matthew L.; Haney, Jodi J.

    2012-01-01

    In this study, the following questions were addressed in an undergraduate non-major biology course using a large lecture format: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? The purpose of this study was to…

  15. Characterization of Pathogenic Human MSH2 Missense Mutations Using Yeast as a Model System: A Laboratory Course in Molecular Biology

    Science.gov (United States)

    Gammie, Alison E.; Erdeniz, Naz

    2004-01-01

    This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring…

  16. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2011-01-01

    Full Text Available With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS and microfluidic-based lab-on-a-chip (LOC technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU. The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements.

  17. Cell migration analysis: A low-cost laboratory experiment for cell and developmental biology courses using keratocytes from fish scales.

    Science.gov (United States)

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R

    2017-11-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level do not often take into account the time dimension. In this article, we provide a laboratory exercise focused in cell migration, aiming to stimulate thinking in time and space dimensions through a simplification of more complex processes occurring in cell or developmental biology. The use of open-source tools for the analysis, as well as the whole package of raw results (available at http://github.com/danielprieto/keratocyte) make it suitable for its implementation in courses with very diverse budgets. Aiming to facilitate the student's transition from science-students to science-practitioners we propose an exercise of scientific thinking, and an evaluation method. This in turn is communicated here to facilitate the finding of common caveats and weaknesses in the process of producing simple scientific communications describing the results achieved. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):475-482, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  18. An analysis of learning in an online biology course for teachers and teacher candidates: A mixed methods approach

    Science.gov (United States)

    Lebec, Michael Thomas

    Due to discipline specific shortages, web-based learning has been proposed as a convenient way to upgrade the content knowledge of instructors interested in learning to teach science. Despite quantitative evidence that web-based instruction is equivalent to traditional methods, questions remain regarding its use. The efficiency and practicality of this approach with teachers in particular has not been extensively studied. This investigation examines learning in an online biology course designed to help teachers prepare for science certification exams. Research questions concern flow teachers learn biology in the online environment and how this setting influences the learning process. Quantitative and qualitative methodologies are employed in an attempt to provide a more complete perspective than typical studies of online learning. Concept maps, tests, and online discussion transcripts are compared as measures of assimilated knowledge, while interviews reflect participants' views on the course. Findings indicate that participants experienced gains in declarative knowledge, but little improvement with respect to conditional knowledge. Qualitative examination of concept maps demonstrates gaps in participants' understandings of key course ideas. Engagement in the use of online resources varied according to participants' attitudes towards online learning. Subjects also reported a lack of motivation to fully engage in the course due to busy teaching schedules and the absence of accountability.

  19. Structural Biology for A-Level Students

    Science.gov (United States)

    Philip, Judith

    2013-01-01

    The relationship between the structure and function of proteins is an important area in biochemistry. Pupils studying A-level Biology are introduced to the four levels of protein structure (primary, secondary, tertiary and quaternary) and how these can be used to describe the progressive folding of a chain of amino acid residues to a final,…

  20. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  1. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  2. Investigating students' academic numeracy in 1st level university courses

    Science.gov (United States)

    Galligan, Linda; Hobohm, Carola

    2015-06-01

    This paper investigates how an online test (`Self-Test' developed at the University of Southern Queensland) can enrich students' understanding of their academic numeracy, through a purpose-built, self-assessment tool aligned with online modules. Since its creation and evaluation, the tool has been developed and tailored to suit other first year courses based around an academic numeracy framework of competence, confidence and critical awareness (Galligan 2013a). This paper will highlight how the new Self-Test is underpinned by this framework and how students' levels of numeracy can be better understood by the lecturer through Self-Test in a first year nursing for numeracy course and a maths for teachers course. It particularly addresses over- and under-confidence, error analysis and students' reflective comments, and how this understanding can better inform course development and teaching.

  3. Context matters: volunteer bias, small sample size, and the value of comparison groups in the assessment of research-based undergraduate introductory biology lab courses.

    Science.gov (United States)

    Brownell, Sara E; Kloser, Matthew J; Fukami, Tadashi; Shavelson, Richard J

    2013-01-01

    The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course.

  4. Learning Partnerships Between Undergraduate Biology Students and Younger Learners

    Directory of Open Access Journals (Sweden)

    Lee Abrahamsen

    2009-12-01

    Full Text Available In two upper-level elective biology courses and one beginning-level general biology course, college students participated in Learning Partnerships with middle or high school classes to study some aspect of biology. The goals were to enhance learning by providing resources to middle and high school students and teachers and by encouraging college students to consider teaching as a learning tool and a possible career goal. The college students designed lessons, activities, and laboratories that were done at the schools and at Bates College. Feedback and data suggest that the partnerships have helped teachers enrich their curricula, enhanced student learning, encouraged additional high school students to consider applying to college, and encouraged college students to consider teaching science.

  5. The influence of herd size, conspecific risk, and predation risk on the vigilance of elk (Cervus elaphus) in Yellowstone National Park, and, Interest, learning, and a thematic biology course

    Science.gov (United States)

    Lung, Mark A.

    This dissertation is a composite of biological and educational research. The biological research concerns Rocky Mountain elk (Cervus elaphus ) behavior. The educational research presents ideas and findings on the influence of a thematic general biology course on student interest and perception of learning. The dissertation begins with a Preface that attempts to bring the ideas presented in later chapters together. Chapter One is a review of the literature concerning sociality, social behaviors, and elk biology. It summarizes current research literature as a means of introduction to Chapter Two. Chapter Two presents findings concerning the effects of herd size, predation risk, and the risk of being near conspecifics on two behaviors commonly associated with social animals---vigilance and aggression. Vigilance and aggression were measured in elk in Yellowstone National Park in two regions that varied in their presence of elk predators (wolves---Canis lupus, and grizzly bears---Ursus arctos) and in two seasons (spring and fall) that varied in the risks of being near conspecifics. Overall, male and female elk responded very differently. Male elk adjust their vigilance and aggression in response to changes in conspecific risk, but not to changes in predation risk. Female elk adjust their vigilance in response to changes in predation risk, but not to changes in conspecific risk. Males show no response in vigilance to changes in herd size. Non-reproductive females, however, adjust their levels of vigilance with changes in herd size in high risk regions. Interestingly, in the spring, vigilance decreases with increasing herd size, but in the fall, vigilance increases with increasing herd size. Chapter Three presents findings concerning the influence of a thematic course design on student perceptions of interest and teaming in a non-major's biology course (Bins 100: Concepts of Biology). I compared responses on student evaluations from two sections of Bios 100 taught in a

  6. Context Matters: Volunteer Bias, Small Sample Size, and the Value of Comparison Groups in the Assessment of Research-Based Undergraduate Introductory Biology Lab Courses

    Directory of Open Access Journals (Sweden)

    Sara E. Brownell

    2013-08-01

    Full Text Available The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course.

  7. The Capstone Sales Course: An Integral Part of a University Level Professional Selling Program

    Science.gov (United States)

    Titus, David; Harris, Garth; Gulati, Rajesh; Bristow, Dennis

    2017-01-01

    The Capstone Sales course is the final in a sequence of five required courses in a 15 credit Professional Selling program housed in the Marketing Department at St. Cloud State University. The course is heavily focused on experiential learning activities for senior-level sales students. In this paper details of the course design, instructor and…

  8. A theory of biological relativity: no privileged level of causation.

    Science.gov (United States)

    Noble, Denis

    2012-02-06

    Must higher level biological processes always be derivable from lower level data and mechanisms, as assumed by the idea that an organism is completely defined by its genome? Or are higher level properties necessarily also causes of lower level behaviour, involving actions and interactions both ways? This article uses modelling of the heart, and its experimental basis, to show that downward causation is necessary and that this form of causation can be represented as the influences of initial and boundary conditions on the solutions of the differential equations used to represent the lower level processes. These insights are then generalized. A priori, there is no privileged level of causation. The relations between this form of 'biological relativity' and forms of relativity in physics are discussed. Biological relativity can be seen as an extension of the relativity principle by avoiding the assumption that there is a privileged scale at which biological functions are determined.

  9. Quantum Biology at the Cellular Level - elements of the research program

    OpenAIRE

    Bordonaro, Michael; Ogryzko, Vasily

    2013-01-01

    Quantum Biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (Quantum Biology at Cellular Level), a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. Key words. decoherence, macroscopic superpositions, basis-dependence, formal superposition, non-classical correlations,...

  10. Multicultural Course Pedagogy: Experiences of Master's-Level Students of Color

    Science.gov (United States)

    Seward, Derek Xavier

    2014-01-01

    The author conducted a grounded theory study to examine multicultural training as experienced by 20 master's-level students of color enrolled in multicultural counseling courses. Findings revealed an emergent theory of student of color learning experiences and multicultural course pedagogy. Implications for counselor educators are discussed.

  11. A Personal Appraisal of the MIBiol Courses in Entomology and Plant Pathology at Wolverhampton Polytechnic, 1967-71

    Science.gov (United States)

    Ayerst, G.; Gower, A. M.

    1972-01-01

    Article provides brief description of two microbiology courses at the college level which have multiple characteristics. Course I provides instruction based on papers in biology and in a special subject. Course II is devoted entirely to the special subject. (PS)

  12. Gender, Math Confidence, and Grit: Relationships with Quantitative Skills and Performance in an Undergraduate Biology Course.

    Science.gov (United States)

    Flanagan, K M; Einarson, J

    2017-01-01

    In a world filled with big data, mathematical models, and statistics, the development of strong quantitative skills is becoming increasingly critical for modern biologists. Teachers in this field must understand how students acquire quantitative skills and explore barriers experienced by students when developing these skills. In this study, we examine the interrelationships among gender, grit, and math confidence for student performance on a pre-post quantitative skills assessment and overall performance in an undergraduate biology course. Here, we show that females significantly underperformed relative to males on a quantitative skills assessment at the start of term. However, females showed significantly higher gains over the semester, such that the gender gap in performance was nearly eliminated by the end of the semester. Math confidence plays an important role in the performance on both the pre and post quantitative skills assessments and overall performance in the course. The effect of grit on student performance, however, is mediated by a student's math confidence; as math confidence increases, the positive effect of grit decreases. Consequently, the positive impact of a student's grittiness is observed most strongly for those students with low math confidence. We also found grit to be positively associated with the midterm score and the final grade in the course. Given the relationships established in this study among gender, grit, and math confidence, we provide "instructor actions" from the literature that can be applied in the classroom to promote the development of quantitative skills in light of our findings. © 2017 K. M. Flanagan and J. Einarson. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  13. Multi-level and hybrid modelling approaches for systems biology.

    Science.gov (United States)

    Bardini, R; Politano, G; Benso, A; Di Carlo, S

    2017-01-01

    During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.

  14. Promoting Self-Directed Learning in Developing or Poorly Defined Subject Areas: A Problem-Based Course in Molecular Biology, Genetics, and Cancer.

    Science.gov (United States)

    Edmondson, Katherine M.

    A new problem-based course in molecular biology, genetics, and cancer for first-year veterinary students was developed at the College of Veterinary Medicine at Cornell University (New York). The course was developed out of a desire to foster student-centered and lifelong learning and to integrate basic and clinical science knowledge despite a lack…

  15. Cloning, Stem Cells, and the Current National Debate: Incorporating Ethics into a Large Introductory Biology Course

    Science.gov (United States)

    Fink, Rachel D.

    2002-01-01

    Discussing the ethical issues involved in topics such as cloning and stem cell research in a large introductory biology course is often difficult. Teachers may be wary of presenting material biased by personal beliefs, and students often feel inhibited speaking about moral issues in a large group. Yet, to ignore what is happening "out there"…

  16. The Effect of a Surgical Skills Course on Confidence Levels of Rural General Practitioners: An Observational Study.

    Science.gov (United States)

    Byrd, Pippa; Ward, Olga; Hamdorf, Jeffrey

    2016-10-01

    Objective  To investigate the effect of a short surgical skills course on general practitioners' confidence levels to perform procedural skills. Design  Prospective observational study. Setting  The Clinical Evaluation and Training Centre, a practical skills-based educational facility, at The University of Western Australia. Participants  Medical practitioners who participated in these courses. Nurses, physiotherapists, and medical students were excluded. The response rate was 61% with 61 participants providing 788 responses for pre- and postcourse confidence levels regarding various surgical skills. Intervention  One- to two-day surgical skills courses consisting of presentations, demonstrations, and practical stations, facilitated by specialists. Main Outcome Measures  A two-page precourse and postcourse questionnaire was administered to medical practitioners on the day. Participants rated their confidence levels to perform skills addressed during the course on a 4-point Likert scale. Results  Of the 788 responses regarding confidence levels, 621 were rated as improved postcourse, 163 were rated as no change, and 4 were rated as lower postcourse. Seven of the courses showed a 25% median increase in confidence levels, and one course demonstrated a 50% median increase. All courses showed statistically significant results ( p  skills course resulted in a statistically significant improvement in the confidence levels of rural general practitioners to perform these skills.

  17. Cultivating Advanced Technical Writing Skills through a Graduate-Level Course on Writing Research Proposals

    Science.gov (United States)

    McCarthy, Brian D.; Dempsey, Jillian L.

    2017-01-01

    A graduate-level course focused on original research proposals is introduced to address the uneven preparation in technical writing of new chemistry graduate students. This course focuses on writing original research proposals. The general course structure features extensive group discussions, small-group activities, and regular in-class…

  18. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra

    2004-02-15

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  19. Plant Systems Biology at the Single-Cell Level.

    Science.gov (United States)

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Increasing URM Undergraduate Student Success through Assessment-Driven Interventions: A Multiyear Study Using Freshman-Level General Biology as a Model System

    Science.gov (United States)

    Carmichael, Mary C.; St. Clair, Candace; Edwards, Andrea M.; Barrett, Peter; McFerrin, Harris; Davenport, Ian; Awad, Mohamed; Kundu, Anup; Ireland, Shubha Kale

    2016-01-01

    Xavier University of Louisiana leads the nation in awarding BS degrees in the biological sciences to African-American students. In this multiyear study with ∼5500 participants, data-driven interventions were adopted to improve student academic performance in a freshman-level general biology course. The three hour-long exams were common and administered concurrently to all students. New exam questions were developed using Bloom’s taxonomy, and exam results were analyzed statistically with validated assessment tools. All but the comprehensive final exam were returned to students for self-evaluation and remediation. Among other approaches, course rigor was monitored by using an identical set of 60 questions on the final exam across 10 semesters. Analysis of the identical sets of 60 final exam questions revealed that overall averages increased from 72.9% (2010) to 83.5% (2015). Regression analysis demonstrated a statistically significant correlation between high-risk students and their averages on the 60 questions. Additional analysis demonstrated statistically significant improvements for at least one letter grade from midterm to final and a 20% increase in the course pass rates over time, also for the high-risk population. These results support the hypothesis that our data-driven interventions and assessment techniques are successful in improving student retention, particularly for our academically at-risk students. PMID:27543637

  1. Effectiveness of a College-Level Self-Management Course on Successful Behavior Change

    Science.gov (United States)

    Choi, Jean H.; Chung, Kyong-Mee

    2012-01-01

    Studies have shown that college-level self-management (SM) courses, which typically require students to complete an individual project as part of the course, can be an effective method for promoting successful self-change (i.e., targeted behavioral change). However, only a handful of studies have focused on and investigated the intensity of the SM…

  2. A life course approach to explore the biological embedding of socioeconomic position and social mobility through circulating inflammatory markers.

    Science.gov (United States)

    Castagné, Raphaële; Delpierre, Cyrille; Kelly-Irving, Michelle; Campanella, Gianluca; Guida, Florence; Krogh, Vittorio; Palli, Domenico; Panico, Salvatore; Sacerdote, Carlotta; Tumino, Rosario; Kyrtopoulos, Soterios; Hosnijeh, Fatemeh Saberi; Lang, Thierry; Vermeulen, Roel; Vineis, Paolo; Stringhini, Silvia; Chadeau-Hyam, Marc

    2016-04-27

    Lower socioeconomic position (SEP) has consistently been associated with poorer health. To explore potential biological embedding and the consequences of SEP experiences from early life to adulthood, we investigate how SEP indicators at different points across the life course may be related to a combination of 28 inflammation markers. Using blood-derived inflammation profiles measured by a multiplex array in 268 participants from the Italian component of the European Prospective Investigation into Cancer and Nutrition cohort, we evaluate the association between early life, young adulthood and later adulthood SEP with each inflammatory markers separately, or by combining them into an inflammatory score. We identified an increased inflammatory burden in participants whose father had a manual occupation, through increased plasma levels of CSF3 (G-CSF; β = 0.29; P = 0.002), and an increased inflammatory score (β = 1.96; P = 0.029). Social mobility was subsequently modelled by the interaction between father's occupation and the highest household occupation, revealing a significant difference between "stable Non-manual" profiles over the life course versus "Manual to Non-manual" profiles (β = 2.38, P = 0.023). Low SEP in childhood is associated with modest increase in adult inflammatory burden; however, the analysis of social mobility suggests a stronger effect of an upward social mobility over the life course.

  3. Tweets from the forest: using Twitter to increase student engagement in an undergraduate field biology course

    Science.gov (United States)

    Soluk, Lauren; Buddle, Christopher M.

    2015-01-01

    Twitter is a cold medium that allows users to deliver content-rich but small packets of information to other users, and provides an opportunity for active and collaborative communication. In an education setting, this social media tool has potential to increase active learning opportunities, and increase student engagement with course content. The effects of Twitter on learning dynamics was tested in a field biology course offered by a large Canadian University: 29 students agreed to take part in the Twitter project and quantitative and qualitative data were collected, including survey data from 18 students. Students published 200% more public Tweets than what was required, and interacted frequently with the instructor and teaching assistant, their peers, and users external to the course. Almost 80% of students stated that Twitter increased opportunities for among-group communication, and 94% of students felt this kind of collaborative communication was beneficial to their learning. Although students did not think they would use Twitter after the course was over, 77% of the students still felt it was a good learning tool, and 67% of students felt Twitter had a positive impact on how they engaged with course content. These results suggest social media tools such as Twitter can help achieve active and collaborative learning in higher education. PMID:26594328

  4. Tweets from the forest: using Twitter to increase student engagement in an undergraduate field biology course.

    Science.gov (United States)

    Soluk, Lauren; Buddle, Christopher M

    2015-01-01

    Twitter is a cold medium that allows users to deliver content-rich but small packets of information to other users, and provides an opportunity for active and collaborative communication. In an education setting, this social media tool has potential to increase active learning opportunities, and increase student engagement with course content. The effects of Twitter on learning dynamics was tested in a field biology course offered by a large Canadian University: 29 students agreed to take part in the Twitter project and quantitative and qualitative data were collected, including survey data from 18 students. Students published 200% more public Tweets than what was required, and interacted frequently with the instructor and teaching assistant, their peers, and users external to the course. Almost 80% of students stated that Twitter increased opportunities for among-group communication, and 94% of students felt this kind of collaborative communication was beneficial to their learning. Although students did not think they would use Twitter after the course was over, 77% of the students still felt it was a good learning tool, and 67% of students felt Twitter had a positive impact on how they engaged with course content. These results suggest social media tools such as Twitter can help achieve active and collaborative learning in higher education.

  5. Implementing recommendations for introductory biology by writing a new textbook.

    Science.gov (United States)

    Barsoum, Mark J; Sellers, Patrick J; Campbell, A Malcolm; Heyer, Laurie J; Paradise, Christopher J

    2013-01-01

    We redesigned the undergraduate introductory biology course by writing a new textbook (Integrating Concepts in Biology [ICB]) that follows first principles of learning. Our approach emphasizes primary data interpretation and the utility of mathematics in biology, while de-emphasizing memorization. This redesign divides biology into five big ideas (information, evolution, cells, emergent properties, homeostasis), addressing each at five levels of organization (molecules, cells, organisms, populations, ecological systems). We compared our course outcomes with two sections that used a traditional textbook and were taught by different instructors. On data interpretation assessments administered periodically during the semester, our students performed better than students in the traditional sections (p = 0.046) and exhibited greater improvement over the course of the semester (p = 0.015). On factual content assessments, our students performed similarly to students in the other sections (p = 0.737). Pre- and postsemester assessment of disciplinary perceptions and self-appraisal indicate that our students acquired a more accurate perception of biology as a discipline and may have developed a more realistic evaluation of their scientific abilities than did the control students (p biology.

  6. Desegregating undergraduate mathematics and biology--interdisciplinary instruction with emphasis on ongoing biomedical research.

    Science.gov (United States)

    Robeva, Raina

    2009-01-01

    The remarkable advances in the field of biology in the last decade, specifically in the areas of biochemistry, genetics, genomics, proteomics, and systems biology, have demonstrated how critically important mathematical models and methods are in addressing questions of vital importance for these disciplines. There is little doubt that the need for utilizing and developing mathematical methods for biology research will only grow in the future. The rapidly increasing demand for scientists with appropriate interdisciplinary skills and knowledge, however, is not being reflected in the way undergraduate mathematics and biology courses are structured and taught in most colleges and universities nationwide. While a number of institutions have stepped forward and addressed this need by creating and offering interdisciplinary courses at the juncture of mathematics and biology, there are still many others at which there is little, if any, interdisciplinary interaction between the curricula. This chapter describes an interdisciplinary course and a textbook in mathematical biology developed collaboratively by faculty from Sweet Briar College and the University of Virginia School of Medicine. The course and textbook are designed to provide a bridge between the mathematical and biological sciences at the lower undergraduate level. The course is developed for and is being taught in a liberal arts setting at Sweet Briar College, Virginia, but some of the advanced modules are used in a course at the University of Virginia for advanced undergraduate and beginning graduate students. The individual modules are relatively independent and can be used as stand-alone projects in conventional mathematics and biology courses. Except for the introductory material, the course and textbook topics are based on current biomedical research.

  7. Predicting Student Success in a Major's Introductory Biology Course via Logistic Regression Analysis of Scientific Reasoning Ability and Mathematics Scores

    Science.gov (United States)

    Thompson, E. David; Bowling, Bethany V.; Markle, Ross E.

    2018-01-01

    Studies over the last 30 years have considered various factors related to student success in introductory biology courses. While much of the available literature suggests that the best predictors of success in a college course are prior college grade point average (GPA) and class attendance, faculty often require a valuable predictor of success in…

  8. Learning can be all Fun and Games: Constructing and Utilizing a Biology Taboo Wiktionary to Enhance Student Learning in an Introductory Biology Course

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Olimpo

    2010-10-01

    Full Text Available Most introductory courses in the biological sciences are inherently content-dense and rich with jargon—jargon that is often confusing and nonsensical to novice students. These characteristics present an additional paradox to instructors, who strive to achieve a balance between simply promoting passive, rote memorization of facts and engaging students in developing true, concrete understanding of the terminology. To address these concerns, we developed and implemented a Biology Taboo Wiktionary that provided students with an interactive opportunity to review and describe concepts they had encountered during their first semester of introductory biology. However, much like the traditional Taboo game, the rules were such that students could not use obvious terms to detail the main term. It was our belief that if the student could synthesize a thoughtful, scientific explanation of the term under these conditions, he or she demonstrated a true understanding of the conceptual context and meaning of the term.

  9. Optimizing Cognitive Development over the Life Course and Preventing Cognitive Decline: Introducing the Cognitive Health Environment Life Course Model (CHELM)

    Science.gov (United States)

    Anstey, Kaarin J.

    2014-01-01

    Optimal cognitive development is defined in this article as the highest level of cognitive function reached in each cognitive domain given a person's biological and genetic disposition, and the highest possible maintenance of cognitive function over the adult life course. Theoretical perspectives underpinning the development of a framework…

  10. Student Perceptions of an Upper-Level, Undergraduate Human Anatomy Laboratory Course without Cadavers

    Science.gov (United States)

    Wright, Shirley J.

    2012-01-01

    Several programs in health professional education require or are considering requiring upper-level human anatomy as prerequisite for their applicants. Undergraduate students are confronted with few institutions offering such a course, in part because of the expense and logistical issues associated with a cadaver-based human anatomy course. This…

  11. Visual Literacy Skills of Students in College-Level Biology: Learning Outcomes Following Digital or Hand-Drawing Activities

    Science.gov (United States)

    Bell, Justine C.

    2014-01-01

    To test the claim that digital learning tools enhance the acquisition of visual literacy in this generation of biology students, a learning intervention was carried out with 33 students enrolled in an introductory college biology course. This study compared learning outcomes following two types of learning tools: a traditional drawing activity, or…

  12. Using Zebrafish to Implement a Course-Based Undergraduate Research Experience to Study Teratogenesis in Two Biology Laboratory Courses

    Science.gov (United States)

    Chism, Grady W.; Vaughan, Martin A.; Muralidharan, Pooja; Marrs, Jim A.

    2016-01-01

    Abstract A course-based undergraduate research experience (CURE) spanning three semesters was introduced into freshman and sophomore biology classes, with the hypothesis that participation in a CURE affects skills in research, communication, and collaboration, which may help students persist in science. Student research projects were centered on the hypothesis that nicotine and caffeine exposure during early development affects gastrulation and heart development in zebrafish. First, freshmen generated original data showing distinct effects of embryonic nicotine and caffeine exposure on zebrafish heart development and function. Next, Cell Biology laboratory students continued the CURE studies and identified novel teratogenic effects of nicotine and caffeine during gastrulation. Finally, new freshmen continued the CURE research, examining additional toxicant effects on development. Students designed new protocols, made measurements, presented results, and generated high-quality preliminary data that were studied in successive semesters. By implementing this project, the CURE extended faculty research and provided a scalable model to address national goals to involve more undergraduates in authentic scientific research. In addition, student survey results support the hypothesis that CUREs provide significant gains in student ability to (1) design experiments, (2) analyze data, and (3) make scientific presentations, translating into high student satisfaction and enhanced learning. PMID:26829498

  13. Grades and Withdrawal Rates in Cell Biology and Genetics Based upon Institution Type for General Biology and Implications for Transfer Articulation Agreements

    Science.gov (United States)

    Regier, Kimberly Fayette

    2016-01-01

    General biology courses (for majors) are often transferred from one institution to another. These courses must prepare students for upper division courses in biology. In Colorado, a Biology Transfer Articulation Agreement that includes general biology has been created across the state. An evaluation was conducted of course grades in two upper…

  14. Personal microbiome analysis improves student engagement and interest in Immunology, Molecular Biology, and Genomics undergraduate courses

    Science.gov (United States)

    Bridgewater, Laura C.; Jensen, Jamie L.; Breakwell, Donald P.; Nielsen, Brent L.; Johnson, Steven M.

    2018-01-01

    A critical area of emphasis for science educators is the identification of effective means of teaching and engaging undergraduate students. Personal microbiome analysis is a means of identifying the microbial communities found on or in our body. We hypothesized the use of personal microbiome analysis in the classroom could improve science education by making courses more applied and engaging for undergraduate students. We determined to test this prediction in three Brigham Young University undergraduate courses: Immunology, Advanced Molecular Biology Laboratory, and Genomics. These three courses have a two-week microbiome unit and students during the 2016 semester students could submit their own personal microbiome kit or use the demo data, whereas during the 2017 semester students were given access to microbiome data from an anonymous individual. The students were surveyed before, during, and after the human microbiome unit to determine whether analyzing their own personal microbiome data, compared to analyzing demo microbiome data, impacted student engagement and interest. We found that personal microbiome analysis significantly enhanced the engagement and interest of students while completing microbiome assignments, the self-reported time students spent researching the microbiome during the two week microbiome unit, and the attitudes of students regarding the course overall. Thus, we found that integrating personal microbiome analysis in the classroom was a powerful means of improving student engagement and interest in undergraduate science courses. PMID:29641525

  15. Assessment of Positive Psychology Course According to Comments and Life Satisfaction Levels of Counselor Candidates

    Science.gov (United States)

    Bas, Asli Uz

    2016-01-01

    The purpose of this study was to assess the "Positive Psychology" course according to comments and life satisfaction levels of counselor candidates. The course was offered in Guidance and Psychological Counseling undergraduate program as an elective course. The participants of the study were 56 senior undergraduate students attended…

  16. Using concept maps to describe undergraduate students’ mental model in microbiology course

    Science.gov (United States)

    Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.

    2018-05-01

    The purpose of this research was to describe students’ mental model in a mental model based-microbiology course using concept map as assessment tool. Respondents were 5th semester of undergraduate students of Biology Education of Universitas Pendidikan Indonesia. The mental modelling instrument used was concept maps. Data were taken on Bacteria sub subject. A concept map rubric was subsequently developed with a maximum score of 4. Quantitative data was converted into a qualitative one to determine mental model level, namely: emergent = score 1, transitional = score 2, close to extended = score 3, and extended = score 4. The results showed that mental model level on bacteria sub subject before the implementation of mental model based-microbiology course was at the transitional level. After implementation of mental model based-microbiology course, mental model was at transitional level, close to extended, and extended. This indicated an increase in the level of students’ mental model after the implementation of mental model based-microbiology course using concept map as assessment tool.

  17. Charting an Alternate Pathway to Reaction Orders and Rate Laws in Introductory Chemistry Courses

    Science.gov (United States)

    Rushton, Gregory T.; Criswell, Brett A.; McAllister, Nicole D.; Polizzi, Samuel J.; Moore, Lamesha A.; Pierre, Michelle S.

    2014-01-01

    Reaction kinetics is an axiomatic topic in chemistry that is often addressed as early as the high school course and serves as the foundation for more sophisticated conversations in college-level organic, physical, and biological chemistry courses. Despite the fundamental nature of reaction kinetics, students can struggle with transforming their…

  18. A life course approach to explore the biological embedding of socioeconomic position and social mobility through circulating inflammatory markers

    NARCIS (Netherlands)

    Castagné, Raphaële; Delpierre, Cyrille; Kelly-Irving, Michelle; Campanella, Gianluca; Guida, Florence; Krogh, Vittorio; Palli, Domenico; Panico, Salvatore; Sacerdote, Carlotta; Tumino, Rosario; Kyrtopoulos, Soterios; Hosnijeh, Fatemeh Saberi; Lang, Thierry; Vermeulen, Roel; Vineis, Paolo; Stringhini, Silvia; Chadeau-Hyam, Marc

    2016-01-01

    Lower socioeconomic position (SEP) has consistently been associated with poorer health. To explore potential biological embedding and the consequences of SEP experiences from early life to adulthood, we investigate how SEP indicators at different points across the life course may be related to a

  19. Are Biology and Chemistry Out of Order?

    Science.gov (United States)

    Gaudin, Felix A.

    1984-01-01

    Discusses advantages and disadvantages of standard high school biology and chemistry course sequences. Relates these sequences to Piagetian developmental levels as well as to David Ausubel's cognitive theory. Suggests that the sequences be reexamined in light of issues considered. (JM)

  20. The potential of standards-based agriculture biology as an alternative to traditional biology in California

    Science.gov (United States)

    Sellu, George Sahr

    schools. Thoron & Meyer (2011) suggested that research into the contribution of integrated science courses toward higher test scores yielded mixed results. This finding may have been due in part to the fact that integrated science courses only incorporate select topics into agriculture education courses. In California, however, agriculture educators have developed standards-based courses such as Agriculture Biology (AgBio) that cover the same content standards as core traditional courses such as traditional biology. Students in both AgBio and traditional biology take the same standardized biology test. This is the first time there has been an opportunity for a fair comparison and a uniform metric for an agriscience course such as AgBio to be directly compared to traditional biology. This study will examine whether there are differences between AgBio and traditional biology with regard to standardized test scores in biology. Furthermore, the study examines differences in perception between teachers and students regarding teaching and learning activities associated with higher achievement in science. The findings of the study could provide a basis for presenting AgBio as a potential alternative to traditional biology. The findings of this study suggest that there are no differences between AgBio and traditional biology students with regard to standardized biology test scores. Additionally, the findings indicate that co-curricular activities in AgBio could contribute higher student achievement in biology. However, further research is required to identify specific activities in AgBio that contribute to higher achievement in science.

  1. Biological intrusion of low-level-waste trench covers

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Gladney, E.S.

    1981-01-01

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. Past research on low-level waste shallow land burial methods has emphasized physical (i.e., water infiltration, soil erosion) and chemical (radionuclide leaching) processes that can cause waste site failure and subsequent radionuclide transport. The purpose of this paper is to demonstrate the need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatments. Plants and animals not only can transport radionuclides to the ground surface via root systems and soil excavated from the cover profile by animal burrowing activities, but they modify physical and chemical processes within the cover profile by changing the water infiltration rates, soil erosion rates and chemical composition of the soil. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and soil overburden depth. The rate of biological intrusion through the various barrier materials is being evaluated through the use of activatable stable tracers

  2. Biological intrusion of low-level-waste trench covers

    Science.gov (United States)

    Hakonson, T. E.; Gladney, E. S.

    The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.

  3. Graduate Attribute Attainment in a Multi-Level Undergraduate Geography Course

    Science.gov (United States)

    Mager, Sarah; Spronken-Smith, Rachel

    2014-01-01

    We investigated students' perceptions of graduate attributes in a multi-level (second and third year) geography course. A case study with mixed methodology was employed, with data collected through focus groups and a survey. We found that undergraduate geography students can identify the skills, knowledge and attributes that are developed through…

  4. Guidelines for Preparing Psychological Specialists: An Entry-Level Course on Intellectual Assessment

    Science.gov (United States)

    Oakland, Thomas; Wechsler, Solange Muglia

    2016-01-01

    This article provides guidelines for an entry-level course that prepares psychology students and practitioners to acquire entry-level skills, abilities, knowledge, and attitudes important to the individual assessment of intellectual abilities of children and youth. The article reviews prominent international, regional, and national policies,…

  5. Toward University Modeling Instruction—Biology: Adapting Curricular Frameworks from Physics to Biology

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-01-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence. PMID:23737628

  6. Toward university modeling instruction--biology: adapting curricular frameworks from physics to biology.

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-06-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence.

  7. Course Redesign: An Evidence-Based Approach

    Science.gov (United States)

    Nomme, Kathy; Birol, Gülnur

    2014-01-01

    A first year non-majors biology course, with an enrollment of around 440 students, has been redesigned from a course of traditional content and teaching style to one that emphasizes biological concepts in current global issues and incorporates active learning strategies. We were informed by the education literature incorporating many aspects of…

  8. Hands-on-Entropy, Energy Balance with Biological Relevance

    Science.gov (United States)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  9. Development and Evaluation of the Tigriopus Course-Based Undergraduate Research Experience: Impacts on Students' Content Knowledge, Attitudes, and Motivation in a Majors Introductory Biology Course.

    Science.gov (United States)

    Olimpo, Jeffrey T; Fisher, Ginger R; DeChenne-Peters, Sue Ellen

    2016-01-01

    Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices' development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in such experiences not only increases their appreciation for and interest in scientific research but also enhances their ability to "think like a scientist." Despite these critical outcomes, few studies have objectively explored CURE versus non-CURE students' development of content knowledge, attitudes, and motivation in the discipline, particularly among nonvolunteer samples. To address these concerns, we adopted a mixed-methods approach to evaluate the aforementioned outcomes following implementation of a novel CURE in an introductory cell/molecular biology course. Results indicate that CURE participants exhibited more expert-like outcomes on these constructs relative to their non-CURE counterparts, including in those areas related to self-efficacy, self-determination, and problem-solving strategies. Furthermore, analysis of end-of-term survey data suggests that select features of the CURE, such as increased student autonomy and collaboration, mediate student learning and enjoyment. Collectively, this research provides novel insights into the benefits achieved as a result of CURE participation and can be used to guide future development and evaluation of authentic research opportunities. © 2016 J. T. Olimpo et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Low level radiation: biological effects

    International Nuclear Information System (INIS)

    Loken, M.K.

    1983-01-01

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  11. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  12. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  13. Examining the Delivery Modes of Metacognitive Awareness and Active Reading Lessons in a College Nonmajors Introductory Biology Course

    Directory of Open Access Journals (Sweden)

    Kendra M. Hill

    2014-02-01

    Full Text Available Current research supports the role of metacognitive strategies to enhance reading comprehension. This study measured the effectiveness of online versus face-to-face metacognitive and active reading skills lessons introduced by Biology faculty to college students in a non-majors introductory biology course. These lessons were delivered in two lectures either online (Group 1: N = 154 or face-to-face (Group 2: N = 152. Previously validated pre- and post-surveys were used to collect and compare data by paired and independent t-test analysis (α = 0.05. Pre- and post-survey data showed a statistically significant improvement in both groups in metacognitive awareness (p = 0.001, p = 0.003, respectively and reading comprehension (p < 0.001 for both groups. When comparing the delivery mode of these lessons, no difference was detected between the online and face-to-face instruction for metacognitive awareness (pre- p = 0.619, post- p = 0.885. For reading comprehension, no difference in gains was demonstrated between online and face-to-face (p = 0.381, however, differences in pre- and post- test scores was measured (pre- p = 0.005, post- p = 0.038. This study suggests that biology instructors can easily introduce effective metacognitive awareness and active reading lessons into their course, either through online or face-to-face instruction.

  14. Online nutrition and T2DM continuing medical education course launched on state-level medical association.

    Science.gov (United States)

    Hicks, Kristen K; Murano, Peter S

    2017-01-01

    The purpose of this research study was to determine whether a 1-hour online continuing medical education (CME) course focused on nutrition for type 2 diabetes would result in a gain in nutrition knowledge by practicing physicians. A practicing physician and dietitian collaborated to develop an online CME course (both webinar and self-study versions) on type 2 diabetes. This 1-hour accredited course was launched through the state-level medical association's education library, available to all physicians. Physicians (n=43) registered for the course, and of those, 31 completed the course in its entirety. A gain in knowledge was found when comparing pre- versus post-test scores related to the online nutrition CME ( P Online CME courses launched via state-level medical associations offer convenient continuing education to assist practicing physicians in addressing patient nutrition and lifestyle concerns related to chronic disease. The present diabetes CME one-credit course allowed physicians to develop basic nutrition care concepts on this topic to assist patients in a better way.

  15. Novelty or knowledge? A study of using a student response system in non-major biology courses at a community college

    Science.gov (United States)

    Thames, Tasha Herrington

    The advancement in technology integration is laying the groundwork of a paradigm shift in the higher education system (Noonoo, 2011). The National Dropout Prevention Center (n.d.) claims that technology offers some of the best opportunities for presenting instruction to engage students in meaningful education, addressing multiple intelligences, and adjusting to students' various learning styles. The purpose of this study was to investigate if implementing clicker technology would have a statistically significant difference on student retention and student achievement, while controlling for learning styles, for students in non-major biology courses who were and were not subjected to the technology. This study also sought to identify if students perceived the use of clickers as beneficial to their learning. A quantitative quasi-experimental research design was utilized to determine the significance of differences in pre/posttest achievement scores between students who participated during the fall semester in 2014. Overall, 118 students (n = 118) voluntarily enrolled in the researcher's fall non-major Biology course at a southern community college. A total of 71 students were assigned to the experimental group who participated in instruction incorporating the ConcepTest Process with clicker technology along with traditional lecture. The remaining 51 students were assigned to the control group who participated in a traditional lecture format with peer instruction embedded. Statistical analysis revealed the experimental clicker courses did have higher posttest scores than the non-clicker control courses, but this was not significant (p >.05). Results also implied that clickers did not statistically help retain students to complete the course. Lastly, the results indicated that there were no significant statistical difference in student's clicker perception scores between the different learning style preferences.

  16. Energy Connections and Misconnections across Chemistry and Biology.

    Science.gov (United States)

    Kohn, Kathryn P; Underwood, Sonia M; Cooper, Melanie M

    2018-01-01

    Despite the number of university students who take courses in multiple science disciplines, little is known about how they connect concepts between disciplines. Energy is a concept that underlies all scientific phenomena and, as such, provides an appropriate context in which to investigate student connections and misconnections across disciplines. In this study, university students concurrently enrolled in introductory chemistry and biology were interviewed to explore their perceptions of the integration of energy both within and across the disciplines, and how they attempted to accommodate and reconcile different disciplinary approaches to energy, to inform future, interdisciplinary course reform. Findings suggest that, while students believed energy to be important to the scientific world and to the disciplines of biology and chemistry, the extent to which it was seen as central to success in their courses varied. Differences were also apparent in students' descriptions of the molecular-level mechanisms by which energy transfer occurs. These findings reveal a disconnect between how energy is understood and used in introductory science course work and uncovers opportunities to make stronger connections across the disciplines. We recommend that instructors engage in interdisciplinary conversations and consider the perspectives and goals of other disciplines when teaching introductory science courses. © 2018 K. P. Kohn et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Using a Corpus in a 300-Level Spanish Grammar Course

    Science.gov (United States)

    Benavides, Carlos

    2015-01-01

    The present study examined the use and effectiveness of a large corpus--the Corpus del Español (Davies, 2002)--in a 300-level Spanish grammar university course. Students conducted hands-on corpus searches with the goal of finding concordances containing particular types of collocations (combinations of words that tend to co-occur) and tokens (any…

  18. Teachers' and students' reactions to the Revised Nuffield A-Level Physics Course (RNAP)

    Science.gov (United States)

    Sela, David

    1990-07-01

    A battery of questionnaires and interviews with teachers and students experienced in RNAP, produced statistical data on many aspects of the course that leads to some guidelines and suggestions for better use of the course design and materials. The patterns described in this article relate to the responses of almost 200 teachers and about 100 students who were teaching and studying RNAP course during school year 1987/8. Though many of them criticised some aspects of the course, generally they were very enthusiastic about it and most of the information they gave us was accurate and reliable. The A-level physics teachers can choose either a `traditional' course or RNAP. We found that most of them don't like to change from one course to another. In the few cases it was done, the reasons generally were like `changing of school', `decreasing number of A-level physics students' or similar reasons. Most of RNAP teachers were keen about the course, its objectives and the way it prepares the students toward higher education as physicists or in other areas. Though pointing out its weaknesses, when comparing it with a `traditional' course, they stress much upon its advantages. We found a tendency to favour the course for the able student than for the weak or the average one. There was more than a feeling among teachers that the less motivated student can better succeed in a `traditional' course. This feeling became even stronger along the interviews where some teachers pointed out the high proportion of the selective schools doing RNAP, which made it more difficult (according to their feeling) for the average student to get an A or B grade. In some of the teachers' opinions RNAP is less suitable for girls who prefer a more `straightforward' course. It is interesting to point out that more than 50% of the students found the course more difficult than they expected it to be. Only 5% found it to be easier than they had suggested. Another point to think about is that almost one

  19. Quantitative Modeling of Membrane Transport and Anisogamy by Small Groups Within a Large-Enrollment Organismal Biology Course

    Directory of Open Access Journals (Sweden)

    Eric S. Haag

    2016-12-01

    Full Text Available Quantitative modeling is not a standard part of undergraduate biology education, yet is routine in the physical sciences. Because of the obvious biophysical aspects, classes in anatomy and physiology offer an opportunity to introduce modeling approaches to the introductory curriculum. Here, we describe two in-class exercises for small groups working within a large-enrollment introductory course in organismal biology. Both build and derive biological insights from quantitative models, implemented using spreadsheets. One exercise models the evolution of anisogamy (i.e., small sperm and large eggs from an initial state of isogamy. Groups of four students work on Excel spreadsheets (from one to four laptops per group. The other exercise uses an online simulator to generate data related to membrane transport of a solute, and a cloud-based spreadsheet to analyze them. We provide tips for implementing these exercises gleaned from two years of experience.

  20. Implementing Recommendations for Introductory Biology by Writing a New Textbook

    Science.gov (United States)

    Barsoum, Mark J.; Sellers, Patrick J.; Campbell, A. Malcolm; Heyer, Laurie J.; Paradise, Christopher J.

    2013-01-01

    We redesigned the undergraduate introductory biology course by writing a new textbook (Integrating Concepts in Biology [ICB]) that follows first principles of learning. Our approach emphasizes primary data interpretation and the utility of mathematics in biology, while de-emphasizing memorization. This redesign divides biology into five big ideas (information, evolution, cells, emergent properties, homeostasis), addressing each at five levels of organization (molecules, cells, organisms, populations, ecological systems). We compared our course outcomes with two sections that used a traditional textbook and were taught by different instructors. On data interpretation assessments administered periodically during the semester, our students performed better than students in the traditional sections (p = 0.046) and exhibited greater improvement over the course of the semester (p = 0.015). On factual content assessments, our students performed similarly to students in the other sections (p = 0.737). Pre- and postsemester assessment of disciplinary perceptions and self-appraisal indicate that our students acquired a more accurate perception of biology as a discipline and may have developed a more realistic evaluation of their scientific abilities than did the control students (p < 0.05). We conclude that ICB improves critical thinking, metacognition, and disciplinary perceptions without compromising content knowledge in introductory biology. PMID:23463233

  1. Influence of riders' skill on plasma cortisol levels of horses walking on forest and field trekking courses.

    Science.gov (United States)

    Ono, Ayaka; Matsuura, Akihiro; Yamazaki, Yumi; Sakai, Wakako; Watanabe, Kentaro; Nakanowatari, Toshihiko; Kobayashi, Hiroshi; Irimajiri, Mami; Hodate, Koichi

    2017-10-01

    The aim of this study was to evaluate the influence of rider's skill on the plasma cortisol levels of trekking horses on two courses, walking on field and forest courses (about 4.5 to 5.1 km each). Three riders of different skills did horse trekking (HT) in a tandem line under a fixed order: advanced-leading, beginner-second and intermediate-last. A total of six horses were used and they experienced all positions in both courses; a total of 12 experiments were done. Blood samples were obtained before HT, immediately after and 2 h after HT. As a control, additional blood samples were obtained from the same horses on non-riding days. Irrespective of the course and the rider's skill, the cortisol level before HT was higher than that of control (P stress of trekking horse was not sufficient to disturb the circadian rhythm of the cortisol level, irrespective of the course and the rider's skill. © 2017 Japanese Society of Animal Science.

  2. Evidence of The Importance of Philosophy of Science Course On Undergraduate Level

    Science.gov (United States)

    Suyono

    2018-01-01

    This study aimed to describe academic impact of Philosophy of Science course in change of students’ conceptions on the Nature of science (NOS) before and after attending the course. This study followed one group pretest-posttest design. Treatment in this study was Philosophy of Science course for one semester. Misconception diagnostic tests of the NOS had been developed by Suyono et al. (2015) equipped with Certainty of Response Index (CRI). It consists of 15 concept questions about the NOS. The number of students who were tested on Chemistry Education Program (CEP) and Chemistry Program (CP) respectively 42 and 45 students. This study shows that after the learning of Philosophy of Science course happened: (1) the decrease of the number of misconception students on the NOS from 47.47 to 19.20% in CEP and from 47.47 to 18.18% in CP and (2) the decrease in the number of concepts that understood as misconception by the large number of students from 11 to 2 concepts on the CEP and from 10 to 2 concepts on CP. Therefore, the existence of Philosophy of Science course has a positive academic impact on students from both programs on undergraduate level.

  3. The Laboratory Course Assessment Survey: A Tool to Measure Three Dimensions of Research-Course Design

    Science.gov (United States)

    Corwin, Lisa A.; Runyon, Christopher; Robinson, Aspen; Dolan, Erin L.

    2015-01-01

    Course-based undergraduate research experiences (CUREs) are increasingly being offered as scalable ways to involve undergraduates in research. Yet few if any design features that make CUREs effective have been identified. We developed a 17-item survey instrument, the Laboratory Course Assessment Survey (LCAS), that measures students’ perceptions of three design features of biology lab courses: 1) collaboration, 2) discovery and relevance, and 3) iteration. We assessed the psychometric properties of the LCAS using established methods for instrument design and validation. We also assessed the ability of the LCAS to differentiate between CUREs and traditional laboratory courses, and found that the discovery and relevance and iteration scales differentiated between these groups. Our results indicate that the LCAS is suited for characterizing and comparing undergraduate biology lab courses and should be useful for determining the relative importance of the three design features for achieving student outcomes. PMID:26466990

  4. From biology to mathematical models and back: teaching modeling to biology students, and biology to math and engineering students.

    Science.gov (United States)

    Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.

  5. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    Science.gov (United States)

    McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a “live” textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology. PMID:20810957

  6. Impact of Multimedia and Network Services on an Introductory Level Course

    Science.gov (United States)

    Russ, John C.

    1996-01-01

    We will demonstrate and describe the impact of our use of multimedia and network connectivity on a sophomore-level introductory course in materials science. This class services all engineering students, resulting in large (more than 150) class sections with no hands-on laboratory. In 1990 we began to develop computer graphics that might substitute for some laboratory or real-world experiences, and demonstrate relationships hard to show with static textbook images or chalkboard drawings. We created a comprehensive series of modules that cover the entire course content. Called VIMS (Visualizations in Materials Science), these are available in the form of a CD-ROM and also via the internet.

  7. Fostering Students' Preparation and Achievement in Upper Level Mathematics Courses

    Science.gov (United States)

    Celik, Mehmet; Shaqlaih, Ali

    2017-01-01

    This study describes an intervention to address both motivation, student engagement and preparation in upper-level mathematics courses. The effect of the intervention regarding students' achievements is investigated via students' opinions and data analysis from students' assessments. The results of this study show the featured intervention…

  8. Engagement and Skill Development in Biology Students through Analysis of Art

    Science.gov (United States)

    Milkova, Liliana; Crossman, Colette; Wiles, Stephanie; Allen, Taylor

    2013-01-01

    An activity involving analysis of art in biology courses was designed with the goals of piquing undergraduates’ curiosity, broadening the ways in which college students meaningfully engage with course content and concepts, and developing aspects of students’ higher-level thinking skills, such as analysis, synthesis, and evaluation. To meet these learning outcomes, the activity had three key components: preparatory readings, firsthand visual analysis of art during a visit to an art museum, and communication of the analysis. Following a presentation on the methodology of visual analysis, students worked in small groups to examine through the disciplinary lens of biology a selection of approximately 12 original artworks related in some manner to love. The groups then developed and presented for class members a mini-exhibition of several pieces addressing one of two questions: 1) whether portrayals of love in art align with the growing understanding of the biology of love or 2) whether the bodily experience of love is universal or, alternatively, is culturally influenced, as is the experience of depression. Evaluation of quantitative and qualitative assessment data revealed that the assignment engaged students, supported development of higher-level thinking skills, and prompted meaningful engagement with course material. PMID:24297295

  9. Engagement and skill development in biology students through analysis of art.

    Science.gov (United States)

    Milkova, Liliana; Crossman, Colette; Wiles, Stephanie; Allen, Taylor

    2013-01-01

    An activity involving analysis of art in biology courses was designed with the goals of piquing undergraduates' curiosity, broadening the ways in which college students meaningfully engage with course content and concepts, and developing aspects of students' higher-level thinking skills, such as analysis, synthesis, and evaluation. To meet these learning outcomes, the activity had three key components: preparatory readings, first-hand visual analysis of art during a visit to an art museum, and communication of the analysis. Following a presentation on the methodology of visual analysis, students worked in small groups to examine through the disciplinary lens of biology a selection of approximately 12 original artworks related in some manner to love. The groups then developed and presented for class members a mini-exhibition of several pieces addressing one of two questions: 1) whether portrayals of love in art align with the growing understanding of the biology of love or 2) whether the bodily experience of love is universal or, alternatively, is culturally influenced, as is the experience of depression. Evaluation of quantitative and qualitative assessment data revealed that the assignment engaged students, supported development of higher-level thinking skills, and prompted meaningful engagement with course material.

  10. Bilingual (German-English) Molecular Biology Courses in an Out-of-School Lab on a University Campus: Cognitive and Affective Evaluation

    Science.gov (United States)

    Rodenhauser, Annika; Preisfeld, Angelika

    2015-01-01

    Taking into account (German) students' deficiencies in scientific literacy as well as reading competence and the "mother tongue + 2" objective of the European commission, a bilingual course on molecular biology was developed. It combines CLIL fundamentals and practical experimentation in an out-of-school lab. Cognitive and affective…

  11. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, Fred; Bruggeman, Frank; Jonker, Catholijn; Looren de Jong, Huib; Tamminga, Allard; Treur, Jan; Westerhoff, Hans; Wijngaards, Wouter

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an *empirical* turn in the philosophy of mind. Rather than concentrate on *a priori* discussions of inter-level relations between “completed” sciences, a case is made for the actual study of the way

  12. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, F.; Bruggeman, F.; Jonker, C.M.; Looren de Jong, H.; Tamminga, A.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between 'completed' sciences, a case is made for the actual study of the way

  13. Inter-level relations in computer science, biology and psychology

    NARCIS (Netherlands)

    Boogerd, F.C.; Bruggeman, F.J.; Jonker, C.M.; Looren De Jong, H.; Tamminga, A.M.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between "completed" sciences, a case is made for the actual study of the way

  14. Development and evaluation of an intermediate-level elective course on medical Spanish for pharmacy students.

    Science.gov (United States)

    Mueller, Robert

    The Spanish-speaking population in the United States is increasing rapidly, and there is a need for additional educational efforts, beyond teaching basic medical Spanish terminology, to increase the number of Spanish-speaking pharmacists able to provide culturally appropriate care to this patient population. This article describes the development and evaluation of an intermediate-level elective course where students integrated pharmacy practice skills with Spanish-language skills and cultural competency. Educational Activity and Setting: Medical Spanish for Pharmacists was developed as a two-credit elective course for pharmacy students in their third-professional-year who possessed a certain level of Spanish language competence. The course was designed so that students would combine patient care skills such as obtaining a medication list and providing patient education, and pharmacotherapy knowledge previously learned in the curriculum, along with Spanish-language skills, and apply them to simulated Spanish-speaking patients. Elements to promote cultural competency were integrated throughout the course through a variety of methods, including a service learning activity. Successful attainment of course goals and objectives were demonstrated through quizzes, assignments, examinations, and an objective structured clinical examination (OSCE). Based on these course assessments, students performed well during both offerings of the course. While the class cohort size was small in the two offerings of the course, the Medical Spanish for Pharmacists elective may still serve as an example for other pharmacy programs as an innovative approach in combining Spanish language, specific pharmacy skills, cultural competency, and service learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Correlation between MCAT biology content specifications and topic scope and sequence of general education college biology textbooks.

    Science.gov (United States)

    Rissing, Steven W

    2013-01-01

    Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing general education (GE) graduation requirements. Biology textbooks for these three audiences present a topic scope and sequence that correlates with the topic scope and importance ratings of the biology content specifications for the MCAT regardless of the intended audience. Texts for "nonmajors," GE courses appear derived directly from their publisher's majors text. Topic scope and sequence of GE texts reflect those of "their" majors text and, indirectly, the MCAT. MCAT term density of GE texts equals or exceeds that of their corresponding majors text. Most American universities require a GE curriculum to promote a core level of academic understanding among their graduates. This includes civic scientific literacy, recognized as an essential competence for the development of public policies in an increasingly scientific and technological world. Deriving GE biology and related science texts from majors texts designed to meet very different learning objectives may defeat the scientific literacy goals of most schools' GE curricula.

  16. Correlation between MCAT Biology Content Specifications and Topic Scope and Sequence of General Education College Biology Textbooks

    Science.gov (United States)

    Rissing, Steven W.

    2013-01-01

    Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing general education (GE) graduation requirements. Biology textbooks for these three audiences present a topic scope and sequence that correlates with the topic scope and importance ratings of the biology content specifications for the MCAT regardless of the intended audience. Texts for “nonmajors,” GE courses appear derived directly from their publisher's majors text. Topic scope and sequence of GE texts reflect those of “their” majors text and, indirectly, the MCAT. MCAT term density of GE texts equals or exceeds that of their corresponding majors text. Most American universities require a GE curriculum to promote a core level of academic understanding among their graduates. This includes civic scientific literacy, recognized as an essential competence for the development of public policies in an increasingly scientific and technological world. Deriving GE biology and related science texts from majors texts designed to meet very different learning objectives may defeat the scientific literacy goals of most schools’ GE curricula. PMID:24006392

  17. English courses

    CERN Multimedia

    HR Department

    2010-01-01

    New courses University of Cambridge ESOL examination course We will be starting two new courses in October leading to the Cambridge First Certificate in English (level B2 of the European Framework) and the Cambridge Advanced English (level C1) examinations. These courses will consist of two semesters of 15 weeks with two two-hourly classes per week. There will be an average of eight students per class. Normally the examination will be taken in June 2011 but strong participants could take it earlier. People wishing to take these courses should enrol: http://cta.cern.ch/cta2/f?p=110:9:1927376177842004::NO::X_COURSE_ID,X_STATUS:4133%2CD and they will then be required to take a placement test to check that their level of English is of an appropriate level. Please note that we need a minimum of seven students enrolled to open a session. For further information please contact Tessa Osborne 72957. General and Professional English Courses The next session will take place: From 4th October 2010 to 5th Feb...

  18. Systems Biology Graphical Notation: Entity Relationship language Level 1 Version 2

    Directory of Open Access Journals (Sweden)

    Sorokin Anatoly

    2015-06-01

    Full Text Available The Systems Biological Graphical Notation (SBGN is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD, Entity Relationship (ER and Activity Flow (AF, allow for the representation of different aspects of biological and biochemical systems at different levels of detail.

  19. "McLean v. Arkansas" (1982) and Beyond: Implications for Biology Professors

    Science.gov (United States)

    Bland, Mark W.; Moore, Randy

    2011-01-01

    To assess current trends of evolution instruction in high schools of the mid-South, we invited Arkansas high school biology teachers from across the state to respond to a survey designed to address this issue. We also asked students enrolled in a freshman-level, nonmajors biology course at a midsize public Arkansas university to recall their…

  20. Next-generation mammalian genetics toward organism-level systems biology.

    Science.gov (United States)

    Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R

    2017-01-01

    Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.

  1. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  2. Quantum biology at the cellular level--elements of the research program.

    Science.gov (United States)

    Bordonaro, Michael; Ogryzko, Vasily

    2013-04-01

    Quantum biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (quantum biology at cellular level) - a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. We propose a new general way to address the issue of environmentally induced decoherence and macroscopic superpositions in biological systems, emphasizing the 'basis-dependent' nature of these concepts. We introduce the notion of 'formal superposition' and distinguish it from that of Schroedinger's cat (i.e., a superposition of macroscopically distinct states). Whereas the latter notion presents a genuine foundational problem, the former one contradicts neither common sense nor observation, and may be used to describe cellular 'decision-making' and adaptation. We stress that the interpretation of the notion of 'formal superposition' should involve non-classical correlations between molecular events in a cell. Further, we describe how better understanding of the physics of Life can shed new light on the mechanism driving evolutionary adaptation (viz., 'Basis-Dependent Selection', BDS). Experimental tests of BDS and the potential role of synthetic biology in closing the 'evolvability mechanism' loophole are also discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. A comparison of retention of anatomical knowledge in an introductory college biology course: Traditional dissection vs. virtual dissection

    Science.gov (United States)

    Taeger, Kelli Rae

    Dissection has always played a crucial role in biology and anatomy courses at all levels of education. However, in recent years, ethical concerns, as well as improved technology, have brought to the forefront the issue of whether virtual dissection is as effective or whether it is more effective than traditional dissection. Most prior research indicated the two methods produced equal results. However, none of those studies examined retention of information past the initial test of knowledge. Two groups of college students currently enrolled in an introductory level college biology course were given one hour to complete a frog dissection. One group performed a traditional frog dissection, making cuts in an actual preserved frog specimen with scalpels and scissors. The other group performed a virtual frog dissection, using "The Digital Frog 2" software. Immediately after the dissections were completed, each group was given an examination consisting of questions on actual specimens, pictures generated from the computer software, and illustrations that neither group had seen. Two weeks later, unannounced, the groups took the same exam in order to test retention. The traditional dissection group scored significantly higher on two of the three sections, as well as the total score on the initial exam. However, with the exception of specimen questions (on which the traditional group retained significantly more information), there was no significant difference in the retention from exam 1 to exam 2 between the two groups. These results, along with the majority of prior studies, show that the two methods produce, for the most part, the same end results. Therefore, the decision of which method to employ should be based on the goals and preferences of the instructor(s) and the department. If that department's goals include: Being at the forefront of new technology, increasing time management, increasing student: teacher ratio for economic reasons, and/or ethical issues, then

  4. Computational neuroscience a first course

    CERN Document Server

    Mallot, Hanspeter A

    2013-01-01

    Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and  equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.

  5. Metabolomics: Definitions and Significance in Systems Biology.

    Science.gov (United States)

    Klassen, Aline; Faccio, Andréa Tedesco; Canuto, Gisele André Baptista; da Cruz, Pedro Luis Rocha; Ribeiro, Henrique Caracho; Tavares, Marina Franco Maggi; Sussulini, Alessandra

    2017-01-01

    Nowadays, there is a growing interest in deeply understanding biological mechanisms not only at the molecular level (biological components) but also the effects of an ongoing biological process in the organism as a whole (biological functionality), as established by the concept of systems biology. Within this context, metabolomics is one of the most powerful bioanalytical strategies that allow obtaining a picture of the metabolites of an organism in the course of a biological process, being considered as a phenotyping tool. Briefly, metabolomics approach consists in identifying and determining the set of metabolites (or specific metabolites) in biological samples (tissues, cells, fluids, or organisms) under normal conditions in comparison with altered states promoted by disease, drug treatment, dietary intervention, or environmental modulation. The aim of this chapter is to review the fundamentals and definitions used in the metabolomics field, as well as to emphasize its importance in systems biology and clinical studies.

  6. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Directory of Open Access Journals (Sweden)

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  7. Interdisciplinary Introductory Course in Bioinformatics

    Science.gov (United States)

    Kortsarts, Yana; Morris, Robert W.; Utell, Janine M.

    2010-01-01

    Bioinformatics is a relatively new interdisciplinary field that integrates computer science, mathematics, biology, and information technology to manage, analyze, and understand biological, biochemical and biophysical information. We present our experience in teaching an interdisciplinary course, Introduction to Bioinformatics, which was developed…

  8. GOLF COURSES AS A SOURCE OF COASTAL CONTAMINATION AND TOXICITY: A FLORIDA EXPERIENCE

    Science.gov (United States)

    The chemical and biological impacts of two coastal golf courses that receive wastewater spray irrigation were determined during a two-year period. A variety of techniques were used to assess the spatial and temporal variability of contaminant levels and their bioavailability in t...

  9. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  10. Chemistry and Biology

    Science.gov (United States)

    Wigston, David L.

    1970-01-01

    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  11. Locus of control, self-efficacy, and the mediating effect of outcome control: predicting course-level and global outcomes in an academic context.

    Science.gov (United States)

    Au, Evelyn W M

    2015-01-01

    The current study utilizes Skinner's framework to examine the unique contributions of internal locus of control, self-efficacy, and perceived outcome control over course performance on students' academic experiences. Undergraduate students (N = 225) took part in a longitudinal study and completed two surveys (Time 1: just before their mid-term exams; Time 2: just before their final exam in the same semester). Both locus of control and self-efficacy at Time 1 predicted course-level perceived control over course performance at Time 2. Student-level perceived control over course performance at Time 2 mediated the relationship between self-efficacy at Time 1 and course-level perseverance, course-specific stress, and course enjoyment at Time 2. For global perceived stress and life satisfaction measured at Time 2, both locus of control and self-efficacy at Time 1 had only a direct effect on global perceived stress at Time 2, but only self-efficacy at Time 1 predicted life satisfaction at Time 2. Both locus of control and self-efficacy uniquely contribute to students' academic experiences. Student-level perceived control plays an important mediating role between locus of control and self-efficacy at Time 1, and course-level perseverance, course-specific stress, and course enjoyment at Time 2.

  12. Levels of biological organization and the origin of novelty.

    Science.gov (United States)

    Hall, Brian K; Kerney, Ryan

    2012-09-01

    The concept of novelty in evolutionary biology pertains to multiple tiers of biological organization from behavioral and morphological changes to changes at the molecular level. Identifying novel features requires assessments of similarity (homology and homoplasy) of relationships (phylogenetic history) and of shared developmental and genetic pathways or networks. After a brief discussion of how novelty is used in recent literature, we discuss whether the evolutionary approach to homology and homoplasy initially formulated by Lankester in the 19th century informs our understanding of novelty today. We then discuss six examples of morphological features described in the recent literature as novelties, and assess the basis upon which they are regarded as novel. The six are: origin of the turtle shell, transition from fish fins to tetrapod limbs, origination of the neural crest and neural crest cells, cement glands in frogs and casquettes in fish, whale bone-eating tubeworms, and the digestion of plant proteins by nematodes. The article concludes with a discussion of means of acquiring novel genetic information that can account for novelty recognized at higher levels. These are co-options of existing genetic circuitry, gene duplication followed by neofunctionalization, gene rearrangements through mobile genetic elements, and lateral gene transfer. We conclude that on the molecular level only the latter category provides novel genetic information, in that there is no homologous precursor. However, novel phenotypes can be generated through both neofunctionalization and gene rearrangements. Therefore, assigning phenotypic or genotypic "novelty" is contingent on the level of biological organization addressed. Copyright © 2011 Wiley Periodicals, Inc.

  13. Comparing the Attitudes of Pre-Health Professional and Engineering Students in Introductory Physics Courses

    Science.gov (United States)

    McKinney, Meghan

    2015-04-01

    This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.

  14. ‘PROTEIN SYNTHESIS GAME’: UTILIZING GAME-BASED APPROACH FOR IMPROVING COMMUNICATIVE SKILLS IN A-LEVELS BIOLOGY CLASS

    Directory of Open Access Journals (Sweden)

    Mohd Adlan Ramly

    2017-12-01

    Full Text Available This experimental paper seeks to elucidate the usage of the card game ‘Protein Synthesis Game’ as a student’s learning tool in studying the Biology topic of protein synthesis during an A-Level course. A total of 24 experimental students in 3 induced groups and 24 controlled students in controlled groups were involved in the experiment which began with a pretest on the topic of Protein Synthesis, followed by the experimentation, and ended with a post-test administered after the incubation period. Results indicate that students have better facilitative communicative engagement in learning protein synthesis when playing the game as compared to studying the topic from a book. The data suggests that such communicative engagement may lead to a successful meaningful learning on the students’ part.

  15. General Biology Syllabus.

    Science.gov (United States)

    Hunter, Scott; Watthews, Thomas

    This syllabus has been developed as an alternative to Regents biology and is intended for the average student who could benefit from an introductory biology course. It is divided into seven major units dealing with, respectively: (1) similarities among living things; (2) human biology (focusing on nutrition, transport, respiration, excretion, and…

  16. Using Whole Mount in situ Hybridization to Link Molecular and Organismal Biology

    OpenAIRE

    Jacobs, Nicole L.; Albertson, R. Craig; Wiles, Jason R.

    2011-01-01

    Whole mount in situ hybridization (WISH) is a common technique in molecular biology laboratories used to study gene expression through the localization of specific mRNA transcripts within whole mount specimen. This technique (adapted from Albertson and Yelick, 2005) was used in an upper level undergraduate Comparative Vertebrate Biology laboratory classroom at Syracuse University. The first two thirds of the Comparative Vertebrate Biology lab course gave students the opportunity to study the ...

  17. Low-level radiation: biological interactions, risks, and benefits. A bibliography

    International Nuclear Information System (INIS)

    1978-09-01

    The bibliography contains 3294 references that were selected from the Department of Energy's data base (EDB). The subjects covered are lower-level radiation effects on man, environmental radiation, and other biological interactions of radiation that appear to be applicable to the low-level radiation problem

  18. An Intervention to Improve Academic Literacies in a First Year University Biology Course

    Directory of Open Access Journals (Sweden)

    Roisin Kelly-Laubscher

    2015-02-01

    Full Text Available In South Africa there are many students, especially those from previously underrepresented groups at university, who successfully gain access to university but do not succeed in completing their degree either within the prescribed time or at all.  One of the barriers to student success at university is the difficulty these students have in accessing the literacy practices of the disciplines.  Therefore, within a first year biology course at a South African University, an intervention that focused on the academic literacy practices in biology was introduced. The intervention was designed around the assignment of writing a lab report. This paper describes this intervention and how it impacted on one student’s journey from learning science at school to learning science at university.  A literacy history interview and ‘talk around text’ interviews were used to assess the student’s experience of the intervention. Comparison of the student’s first and final drafts of the report revealed changes in the style and format of his writing. These changes in his report writing as well as in his attitude and motivation for writing the report were facilitated by a better understanding of the expectations of writing in university biology. This understanding was mediated largely through the modelling and deconstruction of the expected genre. This highlights not only the importance of providing first year students with examples of the genres they are  expected to be writing but also the facilitation of their engagement with these new genres. Without these kinds of intervention many students are unlikely to gain access to disciplinary ways of learning and writing, which ultimately may lead to their exclusion from university.

  19. An examination of the impact of a first year experience course on STEM persistence

    Science.gov (United States)

    Welchert, Tammy S.

    A review of STEM literature indicates that increased attention is being paid to STEM initiatives particularly with K-12 teachers and programs designed to foster interest in STEM fields at the secondary education level, both of which feed the STEM pipeline. The President of the United States, Barack Obama, Presidents of Higher Education Institutions, and an increased global awareness of the shortfall of workers in the STEM pipeline are driving the increased attention. Recognition that an inability to meet STEM workforce demands may jeopardize the position of the United States as a world leader is significant. The purpose of this study was to examine the impact of a first year experience course, Biology 115: First Year Seminar, specifically with regards to academic performance and retention, and to evaluate how the impact changes when course instruction was delivered in a 16-week versus an 8-week model. Three sample groups (N = 596) consisting of first time college freshmen declared as biology majors from 2005-2012 at the University of Missouri-Kansas City were selected for participation. Data was collected from student's high school and college transcripts and college applications by the Office of Institutional Research. A three phase analysis including descriptive statistics and t-tests, principle component analysis, and binary logistic regression were performed using a hierarchical model informed by Alexander Astins' Input-Environment-Output model. The majority of students were female, residents of the State of Missouri, and White. Analysis results indicated that students enrolled in the Biology 115 course earned higher grade point averages, were in better academic standing, and were retained at a higher level than the control group. Additionally, students enrolled in the course in the 8-Week model earned higher grade point averages and had higher retention from Year 1 to Year 2 and retention as biology majors over the 16-week model.

  20. Low-level radiation: biological interactions, risks, and benefits. A bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The bibliography contains 3294 references that were selected from the Department of Energy's data base (EDB). The subjects covered are lower-level radiation effects on man, environmental radiation, and other biological interactions of radiation that appear to be applicable to the low-level radiation problem.

  1. Biological monitors for low levels of ionising radiation

    International Nuclear Information System (INIS)

    Mohankumar, M.N.; Jeevanram, R.K.

    1995-01-01

    The biological effects of high doses of ionising radiation are well understood and the methods of measurement of these doses well established. However the effects due to extremely low doses remain by and large uncertain. This is because of the fact that at such low doses no gross symptoms are seen. In fact, at these levels the occurrence of double strand breaks leading to the formation of chromosomal aberrations like dicentrics is rare and chances of mutation due to base damage are negligible. Hence neither chromosomal aberration studies nor mutational assays are useful for detecting doses of the order of a few milligray. Results of exhaustive work done by various laboratories indicate that below 20 mGy the chromosomal aberration technique based on scoring of dicentrics cannot distinguish between a linear or a threshold model. However indirect methods like unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs) appear to be promising for the detection of radiation exposures due to low levels of radiation. This report reviews the available literature on the biological effects of low levels of ionising radiation and highlights the merits and demerits of the various methods employed in the measurement of UDS and SCE. The phenomenon of radio-adaptive response (RAR) and its relation to DNA repair is also discussed. (author)

  2. Learning-style preferences of Latino/Hispanic community college students enrolled in an introductory biology course

    Science.gov (United States)

    Sarantopoulos, Helen D.

    Purpose. The purpose of this study was to identify, according to the Productivity Environment Preference Survey (PEPS) instrument, which learning-style domains (environmental, emotional, sociological, and physiological) were favored among Latino/Hispanic community college students enrolled in introductory biology classes in a large, urban community college. An additional purpose of this study was to determine whether statistically significant differences existed between the learning-style preferences and the demographic variables of age, gender, number of prior science courses, second language learner status, and earlier exposure to scientific information. Methodology. The study design was descriptive and ex post facto. The sample consisted of a total of 332 Latino/Hispanic students enrolled in General Biology 3. Major findings. The study revealed that Latino/Hispanic students enrolled in introductory biology at a large urban community college scored higher for the learning preference element of structure. Students twenty-five years and older scored higher for the learning preference elements of light, design, persistence, responsibility, and morning time (p learning-style preferences were found between second English language learners and those who learned English as their primary language (p tactile (p learning-style model and instruments and on recent learning-style research articles on ethnically diverse groups of adult learners; and (2) Instructors should plan their instruction to incorporate the learning-style preferences of their students.

  3. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2

    Directory of Open Access Journals (Sweden)

    Mi Huaiyu

    2015-06-01

    Full Text Available The Systems Biological Graphical Notation (SBGN is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD, Entity Relationship (ER and Activity Flow (AF, allow for the representation of different aspects of biological and biochemical systems at different levels of detail.

  4. Influence of Incentives on Performance in a Pre-College Biology MOOC

    Directory of Open Access Journals (Sweden)

    Suhang Jiang

    2014-11-01

    Full Text Available There is concern that online education may widen the achievement gap between students from different socioeconomic classes. The recent discussion of integrating massive open online courses (MOOCs into formal higher education has added fuel to this debate. In this study, factors influencing enrollment and completion in a pre-college preparatory MOOC were explored. University of California at Irvine (UCI students of all preparation levels, defined by math Scholastic Aptitude Test (SAT score, were invited to take a Bio Prep MOOC to help them prepare for introductory biology. Students with math SAT below 550 were offered the explicit incentive of an early change to the biology major upon successful completion of the MOOC and two additional onsite courses. Our results demonstrate that, among course registrants, a higher percentage of UCI students (>60% completed the course than non-UCI registrants from the general population (<9%. Female UCI students had a greater likelihood of enrolling in the MOOC, but were not different from male students in terms of performance. University students entering with low preparation outperformed students entering who already had the credentials to become biology majors. These findings suggest that MOOCs can reach students, even those entering college with less preparation, before they enter university and have the potential to prepare them for challenging science, technology, engineering, and mathematics (STEM courses.

  5. Systems Biology Graphical Notation: Entity Relationship language Level 1 Version 2.

    Science.gov (United States)

    Sorokin, Anatoly; Le Novère, Nicolas; Luna, Augustin; Czauderna, Tobias; Demir, Emek; Haw, Robin; Mi, Huaiyu; Moodie, Stuart; Schreiber, Falk; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Entity Relationship language (ER) represents biological entities and their interactions and relationships within a network. SBGN ER focuses on all potential relationships between entities without considering temporal aspects. The nodes (elements) describe biological entities, such as proteins and complexes. The edges (connections) provide descriptions of interactions and relationships (or influences), e.g., complex formation, stimulation and inhibition. Among all three languages of SBGN, ER is the closest to protein interaction networks in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  6. Aliens in the Classroom: Fantastical Creatures as Tools in Teaching Biology

    Science.gov (United States)

    Cruz, Ronald Allan L.

    2013-01-01

    Creatures from science fiction and fantasy can be used to illustrate key concepts and principles in biology. This article describes a project for a university-level general zoology course wherein the students classify, down to at least the phylum level, "animals" from the Alien Species Wiki (2013). This is an online database of creatures from…

  7. Radiological protection 1993 post-graduate course: 22 Feb -19 March and 10 May - 4 June

    International Nuclear Information System (INIS)

    1993-01-01

    This pamphlet describes a post-graduate course organized by the NRPB and intended to meet the initial and early training requirements of full-time staff of graduate level or equivalent involved in radiological protection including health physics. The course contains sixty-five lectures covering topics such as nuclear physics, sources and uses of radiation, instrumentation, radiation biology, system of protection, occupational protection, dosimetry, population protection, legal, medical and administrative aspects and general hazards. The 1994 courses are being held from 28th February - 25th March and 18th April -13th May, 1993. (UK)

  8. Effects of mixology courses and blood lead levels on dental caries among students.

    Science.gov (United States)

    Chang, Wei-Hsiang; Yang, Ya-Hui; Liou, Saou-Hsing; Liu, Ching-Wen; Chen, Chiu-Ying; Fuh, Lih-Jyh; Huang, Shih-Li; Yang, Chun-Yuh; Wu, Trong-Neng

    2010-06-01

    Dental caries can be affected by alcohol consumption. Alcohol consumption also increases blood lead levels (BLLs) in humans and BLLs have been correlated with caries. Culinary students participate in mixology courses on either an elective or a mandatory basis. Therefore, we conducted this study to elucidate the effects of mixology courses and elevated BLLs on dental caries among students. This study had a cross-sectional design. We recruited first-year at one hospitality college and one university in southern Taiwan in September 2004. We applied a questionnaire, collected a blood specimen and performed a dental caries examination for each student. The subjects comprised 133 students who had ever participated in a mixology course (≥2 credits) during high school (exposure group) and 160 who had not participated in such a course (control group). Compared with the control group, the exposure group had a higher prevalence of a DMFT index ≥ 0 (92.5% versus 81.2%, P = 0.005), a higher DMFT index [5.59 ± 3.53 (mean ± SD) versus 4.21 ± 3.64 teeth, P ≤ 0.001], and a higher BLL (3.12 ± 1.02 versus 2.67 ± 0.83 μg/dl, P = ≤ 0.001). After adjustment for potential confounders, dental caries was significantly associated with participation in a mixology course.   Alcohol exposure associated with participation in a mixology course may have an effect on caries in students. These findings suggest that occupational safety and health education should be applied to students participating in mixology courses. © 2010 John Wiley & Sons A/S.

  9. Dose inhomogeneities at various levels of biological organization

    International Nuclear Information System (INIS)

    Bond, V.P.

    1988-01-01

    Dose inhomogeneities in both tumor and normal tissue, inherent to the application of boron neutron capture therapy (BNCT), can be the result not only of ununiform distribution of 10 B at various levels of biological organization, but also of the distribution of the thermal neutrons and of the energy depositions from more energetic neutrons and other radiations comprising the externally-applied beams. The severity of the problems resulting from such inhomogeneities, and approaches to evaluating them, are illustrated by three examples, at the macro, micro and intermediate levels

  10. Reflections on delivering a cross-discipline, cross-cultural, international, masters-level collaborative course using e-Learning technologies

    NARCIS (Netherlands)

    Leung, W.S.; Coulter, D.A.; Moes, C.C.M.; Horvath, I.

    2012-01-01

    This paper presents a case study on the experience of delivering an Internet-based international collaborative semester course at intermediate postgraduate level and attempts to distill a model for exploring the success factors involved when presenting such courses. The pedagogic and practical

  11. Teaching Biology for a Sustainable Future

    Science.gov (United States)

    Musante, Susan

    2011-01-01

    Students at Calvin College in Grand Rapids, Michigan, can now take an innovative biology course in which an integrated, interdisciplinary, problem-based approach is used--one that the scientific community itself is promoting. The first course in a four-semester sequence, Biology 123--The Living World: Concepts and Connections--explores real-world…

  12. Cognitive ability across the life course and cortisol levels in older age.

    Science.gov (United States)

    Harris, Mathew A; Cox, Simon R; Brett, Caroline E; Deary, Ian J; MacLullich, Alasdair M J

    2017-11-01

    Elevated cortisol levels have been hypothesized to contribute to cognitive aging, but study findings are inconsistent. In the present study, we examined the association between salivary cortisol in older age and cognitive ability across the life course. We used data from 370 members of the 36-Day Sample of the Scottish Mental Survey 1947, who underwent cognitive testing at age 11 years and were then followed up at around age 78 years, completing further cognitive tests and providing diurnal salivary cortisol samples. We hypothesized that higher cortisol levels would be associated with lower cognitive ability in older age and greater cognitive decline from childhood to older age but also lower childhood cognitive ability. Few of the tested associations were significant, and of those that were, most suggested a positive relationship between cortisol and cognitive ability. Only 1 cognitive measure showed any sign of cortisol-related impairment. However, after correcting for multiple comparisons, no results remained significant. These findings suggest that cortisol may not play an important role in cognitive aging across the life course. Copyright © 2017. Published by Elsevier Inc.

  13. Biological basis of detoxication

    National Research Council Canada - National Science Library

    Caldwell, John; Jakoby, William B

    1983-01-01

    This volume considers that premise that most of the major patterns of biological conversion of foreign compounds are known and may have predictive value in assessing the biological course for novel compounds...

  14. A permutation-based multiple testing method for time-course microarray experiments

    Directory of Open Access Journals (Sweden)

    George Stephen L

    2009-10-01

    Full Text Available Abstract Background Time-course microarray experiments are widely used to study the temporal profiles of gene expression. Storey et al. (2005 developed a method for analyzing time-course microarray studies that can be applied to discovering genes whose expression trajectories change over time within a single biological group, or those that follow different time trajectories among multiple groups. They estimated the expression trajectories of each gene using natural cubic splines under the null (no time-course and alternative (time-course hypotheses, and used a goodness of fit test statistic to quantify the discrepancy. The null distribution of the statistic was approximated through a bootstrap method. Gene expression levels in microarray data are often complicatedly correlated. An accurate type I error control adjusting for multiple testing requires the joint null distribution of test statistics for a large number of genes. For this purpose, permutation methods have been widely used because of computational ease and their intuitive interpretation. Results In this paper, we propose a permutation-based multiple testing procedure based on the test statistic used by Storey et al. (2005. We also propose an efficient computation algorithm. Extensive simulations are conducted to investigate the performance of the permutation-based multiple testing procedure. The application of the proposed method is illustrated using the Caenorhabditis elegans dauer developmental data. Conclusion Our method is computationally efficient and applicable for identifying genes whose expression levels are time-dependent in a single biological group and for identifying the genes for which the time-profile depends on the group in a multi-group setting.

  15. Biological consequences of radiation: risk factors

    International Nuclear Information System (INIS)

    1985-01-01

    This publication is a syllabus of a course on Radiation Protection. The publication offers an overview of the biological radiation effects at cellular level. For that purpose, different forms of cancers and their incidence are first discussed; structure and functioning of normal cells are considered and an introduction in genetics is given. Finally, an overview is presented of the character of tissue damage after high-dose irradiation. (G.J.P.)

  16. Effects of a blended learning approach on student outcomes in a graduate-level public health course.

    Science.gov (United States)

    Kiviniemi, Marc T

    2014-03-11

    Blended learning approaches, in which in-person and online course components are combined in a single course, are rapidly increasing in health sciences education. Evidence for the relative effectiveness of blended learning versus more traditional course approaches is mixed. The impact of a blended learning approach on student learning in a graduate-level public health course was examined using a quasi-experimental, non-equivalent control group design. Exam scores and course point total data from a baseline, "traditional" approach semester (n = 28) was compared to that from a semester utilizing a blended learning approach (n = 38). In addition, student evaluations of the blended learning approach were evaluated. There was a statistically significant increase in student performance under the blended learning approach (final course point total d = 0.57; a medium effect size), even after accounting for previous academic performance. Moreover, student evaluations of the blended approach were very positive and the majority of students (83%) preferred the blended learning approach. Blended learning approaches may be an effective means of optimizing student learning and improving student performance in health sciences courses.

  17. Biological monitors for low levels of ionising radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mohankumar, M N; Jeevanram, R K [Safety Research and Health Physics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1996-12-31

    The biological effects of high doses of ionising radiation are well understood and the methods of measurement of these doses well established. However the effects due to extremely low doses remain by and large uncertain. This is because of the fact that at such low doses no gross symptoms are seen. In fact, at these levels the occurrence of double strand breaks leading to the formation of chromosomal aberrations like dicentrics is rare and chances of mutation due to base damage are negligible. Hence neither chromosomal aberration studies nor mutational assays are useful for detecting doses of the order of a few milligray. Results of exhaustive work done by various laboratories indicate that below 20 mGy the chromosomal aberration technique based on scoring of dicentrics cannot distinguish between a linear or a threshold model. However indirect methods like unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs) appear to be promising for the detection of radiation exposures due to low levels of radiation. This report reviews the available literature on the biological effects of low levels of ionising radiation and highlights the merits and demerits of the various methods employed in the measurement of UDS and SCE. The phenomenon of radio-adaptive response (RAR) and its relation to DNA repair is also discussed. (author). 98 refs., 11 figs., 4 tabs.

  18. Using Yeast to Determine the Functional Consequences of Mutations in the Human p53 Tumor Suppressor Gene: An Introductory Course-Based Undergraduate Research Experience in Molecular and Cell Biology

    Science.gov (United States)

    Hekmat-Scafe, Daria S.; Brownell, Sara E.; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F. Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S.; Stearns, Tim

    2017-01-01

    The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course-based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students' high…

  19. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1997-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. McKenna and Dritschilo. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  20. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1996-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part 'series' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  1. A Combined MIS/DS Course Uses Lecture Capture Technology to "Level the Playing Field" in Student Numeracy

    Science.gov (United States)

    Popovich, Karen

    2012-01-01

    This paper describes the process taken to develop a quantitative-based and Excel™-driven course that combines "BOTH" Management Information Systems (MIS) and Decision Science (DS) modeling outcomes and lays the foundation for upper level quantitative courses such as operations management, finance and strategic management. In addition,…

  2. Impact of Interdisciplinary Undergraduate Research in Mathematics and Biology on the Development of a New Course Integrating Five STEM Disciplines

    OpenAIRE

    Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu

    2010-01-01

    Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research proj...

  3. Ecological Literacy, Urban Green Space, and Mobile Technology: Exploring the Impacts of an Arboretum Curriculum Designed for Undergraduate Biology Courses

    Science.gov (United States)

    Phoebus, Patrick E.

    Increasing individual ecological literacy levels may help citizens make informed choices about the environmental challenges facing society. The purpose of this study was to explore the impacts of an arboretum curriculum incorporating mobile technology and an urban greenspace on the ecological knowledge, environmental attitudes and beliefs, and environmental behaviors of undergraduate biology students and pre-service K-8 teachers during a summer course. Using a convergent parallel mixed-methods design, both quantitative and qualitative data were collected, analyzed, and later merged to create an enhanced understanding of the impact of the curriculum on the environmental attitudes and beliefs of the participants. Quantitative results revealed a significant difference between pre- and post-survey scores for ecological knowledge, with no significant differences between pre- and post-scores for the other variables measured. However, no significant difference in scores was found between experimental and comparison groups for any of the three variables. When the two data sets were compared, results from the quantitative and qualitative components were found to converge and diverge. Quantitative data indicated the environmental attitudes and beliefs of participants were unaffected by the arboretum curriculum. Similarly, qualitative data indicated participants' perceived environmental attitudes and beliefs about the importance of nature remained unchanged throughout the course of the study. However, qualitative data supporting the theme connecting with the curriculum suggested experiences with the arboretum curriculum helped participants develop an appreciation for trees and nature and led them to believe they increased their knowledge about trees.

  4. Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.

    Science.gov (United States)

    Lightfoot, J Timothy; DE Geus, Eco J C; Booth, Frank W; Bray, Molly S; DEN Hoed, Marcel; Kaprio, Jaakko; Kelly, Scott A; Pomp, Daniel; Saul, Michael C; Thomis, Martine A; Garland, Theodore; Bouchard, Claude

    2018-04-01

    Physical activity unquestionably maintains and improves health; however, physical activity levels globally are low and not rising despite all the resources devoted to this goal. Attention in both the research literature and the public policy domain has focused on social-behavioral factors; however, a growing body of literature suggests that biological determinants play a significant role in regulating physical activity levels. For instance, physical activity level, measured in various manners, has a genetic component in both humans and nonhuman animal models. This consensus article, developed as a result of an American College of Sports Medicine-sponsored round table, provides a brief review of the theoretical concepts and existing literature that supports a significant role of genetic and other biological factors in the regulation of physical activity. Future research on physical activity regulation should incorporate genetics and other biological determinants of physical activity instead of a sole reliance on social and other environmental determinants.

  5. Curricular Activities that Promote Metacognitive Skills Impact Lower-Performing Students in an Introductory Biology Course.

    Science.gov (United States)

    Dang, Nathan V; Chiang, Jacob C; Brown, Heather M; McDonald, Kelly K

    2018-01-01

    This study explores the impacts of repeated curricular activities designed to promote metacognitive skills development and academic achievement on students in an introductory biology course. Prior to this study, the course curriculum was enhanced with pre-assignments containing comprehension monitoring and self-evaluation questions, exam review assignments with reflective questions related to study habits, and an optional opportunity for students to explore metacognition and deep versus surface learning. We used a mixed-methods study design and collected data over two semesters. Self-evaluation, a component of metacognition, was measured via exam score postdictions, in which students estimated their exam scores after completing their exam. Metacognitive awareness was assessed using the Metacognitive Awareness Inventory (MAI) and a reflective essay designed to gauge students' perceptions of their metacognitive skills and study habits. In both semesters, more students over-predicted their Exam 1 scores than under-predicted, and statistical tests revealed significantly lower mean exam scores for the over-predictors. By Exam 3, under-predictors still scored significantly higher on the exam, but they outnumbered the over-predictors. Lower-performing students also displayed a significant increase in exam postdiction accuracy by Exam 3. While there was no significant difference in students' MAI scores from the beginning to the end of the semester, qualitative analysis of reflective essays indicated that students benefitted from the assignments and could articulate clear action plans to improve their learning and performance. Our findings suggest that assignments designed to promote metacognition can have an impact on students over the course of one semester and may provide the greatest benefits to lower-performing students.

  6. Effects of a blended learning approach on student outcomes in a graduate-level public health course

    Science.gov (United States)

    2014-01-01

    Background Blended learning approaches, in which in-person and online course components are combined in a single course, are rapidly increasing in health sciences education. Evidence for the relative effectiveness of blended learning versus more traditional course approaches is mixed. Method The impact of a blended learning approach on student learning in a graduate-level public health course was examined using a quasi-experimental, non-equivalent control group design. Exam scores and course point total data from a baseline, “traditional” approach semester (n = 28) was compared to that from a semester utilizing a blended learning approach (n = 38). In addition, student evaluations of the blended learning approach were evaluated. Results There was a statistically significant increase in student performance under the blended learning approach (final course point total d = 0.57; a medium effect size), even after accounting for previous academic performance. Moreover, student evaluations of the blended approach were very positive and the majority of students (83%) preferred the blended learning approach. Conclusions Blended learning approaches may be an effective means of optimizing student learning and improving student performance in health sciences courses. PMID:24612923

  7. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    Science.gov (United States)

    Dees, Jonathan; Momsen, Jennifer L.; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa…

  8. Networks as a Privileged Way to Develop Mesoscopic Level Approaches in Systems Biology

    OpenAIRE

    Alessandro Giuliani

    2014-01-01

    The methodologies advocated in computational biology are in many cases proper system-level approaches. These methodologies are variously connected to the notion of “mesosystem” and thus on the focus on relational structures that are at the basis of biological regulation. Here, I describe how the formalization of biological systems by means of graph theory constitutes an extremely fruitful approach to biology. I suggest the epistemological relevance of the notion of graph resides in its multil...

  9. Conceptual Change in Introductory-Level Astronomy Courses.

    Science.gov (United States)

    Zeilik, Michael; Bisard, Walter

    2000-01-01

    Reports on students' preexisting knowledge and examines misconceptions among nonscience major undergraduate students. Focuses on evaluating results of misconceptions in selected astronomy courses. (YDS)

  10. Factors associated with the success of first-time African American freshmen taking introductory science lecture courses at a private HBCU

    Science.gov (United States)

    Smith, Kendra Leigh

    This study had four purposes: (1) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and their accompanying laboratory courses, (2) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's gender, (3) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's major, and (4) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's ACT scores. The sample consisted of 195 first--time freshmen who enrolled in and completed an introductory biology or an introductory chemistry lecture and laboratory courses during the fall semesters of 2007-2012. Of the 195 students, 61 were enrolled in introductory chemistry and 134 were enrolled in introductory biology courses. Logistic regression, via the Statistical Package for the Social Sciences (SPSS), was utilized to analyze several variables as they related to success in the lecture courses. Data were extracted from the university's student information system (BANNER), and analyses were conducted on biology and chemistry separately. The dependent variable for this study was a dichotomous variable for success and nonsuccess in introductory biology or introductory chemistry lecture course. The independent variables analyzed were student's gender, major, final grade in an accompanying biology or chemistry laboratory course, and ACT test scores (composite, mathematics, and science). Results indicate that concurrent enrollment in a biology laboratory course increased the likelihood of success by 15.64 times in the lecture course. Gender was found to not be a significant predictor of success for either introductory biology or introductory chemistry lecture courses. STEM majors were 9.6 times more likely to be successful than non-STEM majors in

  11. Dissipative structures and biological rhythms

    Science.gov (United States)

    Goldbeter, Albert

    2017-10-01

    Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.

  12. A Neural Systems-Based Neurobiology and Neuropsychiatry Course: Integrating Biology, Psychodynamics, and Psychology in the Psychiatric Curriculum

    Science.gov (United States)

    Lacy, Timothy; Hughes, John D.

    2006-01-01

    Objective: Psychotherapy and biological psychiatry remain divided in psychiatry residency curricula. Behavioral neurobiology and neuropsychiatry provide a systems-level framework that allows teachers to integrate biology, psychodynamics, and psychology. Method: The authors detail the underlying assumptions and outline of a neural systems-based…

  13. The pros and cons of ecological risk assessment based on data from different levels of biological organization

    Science.gov (United States)

    Rohr, Jason R.; Salice, Christopher J.; Nisbet, Roger M.

    2016-01-01

    Ecological risk assessment (ERA) is the process used to evaluate the safety of manufactured chemicals to the environment. Here we review the pros and cons of ERA across levels of biological organization, including suborganismal (e.g. biomarkers), individual, population, community, ecosystem, and landscapes levels. Our review revealed that level of biological organization is often related negatively with ease at assessing cause-effect relationships, ease of high-throughput screening of large numbers of chemicals (it is especially easier for suborganismal endpoints), and uncertainty of the ERA because low levels of biological organization tend to have a large distance between their measurement (what is quantified) and assessment endpoints (what is to be protected). In contrast, level of biological organization is often related positively with sensitivity to important negative and positive feedbacks and context dependencies within biological systems, and ease at capturing recovery from adverse contaminant effects. Some endpoints did not show obvious trends across levels of biological organization, such as the use of vertebrate animals in chemical testing and ease at screening large numbers of species, and other factors lacked sufficient data across levels of biological organization, such as repeatability, variability, cost per study, and cost per species of effects assessment, the latter of which might be a more defensible way to compare costs of ERAs than cost per study. To compensate for weaknesses of ERA at any particular level of biological organization, we also review mathematical modeling approaches commonly used to extrapolate effects across levels of organization. Finally, we provide recommendations for next generation ERA, submitting that if there is an ideal level of biological organization to conduct ERA, it will only emerge if ERA is approached simultaneously from the bottom of biological organization up as well as from the top down, all while employing

  14. The pros and cons of ecological risk assessment based on data from different levels of biological organization.

    Science.gov (United States)

    Rohr, Jason R; Salice, Christopher J; Nisbet, Roger M

    2016-10-01

    Ecological risk assessment (ERA) is the process used to evaluate the safety of manufactured chemicals to the environment. Here we review the pros and cons of ERA across levels of biological organization, including suborganismal (e.g., biomarkers), individual, population, community, ecosystem and landscapes levels. Our review revealed that level of biological organization is often related negatively with ease at assessing cause-effect relationships, ease of high-throughput screening of large numbers of chemicals (it is especially easier for suborganismal endpoints), and uncertainty of the ERA because low levels of biological organization tend to have a large distance between their measurement (what is quantified) and assessment endpoints (what is to be protected). In contrast, level of biological organization is often related positively with sensitivity to important negative and positive feedbacks and context dependencies within biological systems, and ease at capturing recovery from adverse contaminant effects. Some endpoints did not show obvious trends across levels of biological organization, such as the use of vertebrate animals in chemical testing and ease at screening large numbers of species, and other factors lacked sufficient data across levels of biological organization, such as repeatability, variability, cost per study and cost per species of effects assessment, the latter of which might be a more defensible way to compare costs of ERAs than cost per study. To compensate for weaknesses of ERA at any particular level of biological organization, we also review mathematical modeling approaches commonly used to extrapolate effects across levels of organization. Finally, we provide recommendations for next generation ERA, submitting that if there is an ideal level of biological organization to conduct ERA, it will only emerge if ERA is approached simultaneously from the bottom of biological organization up as well as from the top down, all while employing

  15. Interest in STEM is contagious for students in biology, chemistry, and physics classes.

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D; Godwin, Allison; Scott, Tyler D; Klotz, Leidy

    2017-08-01

    We report on a study of the effect of peers' interest in high school biology, chemistry, and physics classes on students' STEM (science, technology, engineering, and mathematics)-related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students' experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students' STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students' intentions toward STEM careers while enhancing or maintaining course performance.

  16. Interest in STEM is contagious for students in biology, chemistry, and physics classes

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy

    2017-01-01

    We report on a study of the effect of peers’ interest in high school biology, chemistry, and physics classes on students’ STEM (science, technology, engineering, and mathematics)–related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students‘ experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students‘ STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students’ intentions toward STEM careers while enhancing or maintaining course performance. PMID:28808678

  17. Measuring Confidence Levels of Male and Female Students in Open Access Enabling Courses

    Science.gov (United States)

    Atherton, Mirella

    2015-01-01

    The study of confidence was undertaken at the University of Newcastle with students selecting science courses at two campuses. The students were enrolled in open access programs and aimed to gain access to undergraduate studies in various disciplines at University. The "third person effect" was used to measure the confidence levels of…

  18. Process-oriented guided inquiry learning strategy enhances students' higher level thinking skills in a pharmaceutical sciences course.

    Science.gov (United States)

    Soltis, Robert; Verlinden, Nathan; Kruger, Nicholas; Carroll, Ailey; Trumbo, Tiffany

    2015-02-17

    To determine if the process-oriented guided inquiry learning (POGIL) teaching strategy improves student performance and engages higher-level thinking skills of first-year pharmacy students in an Introduction to Pharmaceutical Sciences course. Overall examination scores and scores on questions categorized as requiring either higher-level or lower-level thinking skills were compared in the same course taught over 3 years using traditional lecture methods vs the POGIL strategy. Student perceptions of the latter teaching strategy were also evaluated. Overall mean examination scores increased significantly when POGIL was implemented. Performance on questions requiring higher-level thinking skills was significantly higher, whereas performance on questions requiring lower-level thinking skills was unchanged when the POGIL strategy was used. Student feedback on use of this teaching strategy was positive. The use of the POGIL strategy increased student overall performance on examinations, improved higher-level thinking skills, and provided an interactive class setting.

  19. Hologenomics: Systems-Level Host Biology.

    Science.gov (United States)

    Theis, Kevin R

    2018-01-01

    The hologenome concept of evolution is a hypothesis explaining host evolution in the context of the host microbiomes. As a hypothesis, it needs to be evaluated, especially with respect to the extent of fidelity of transgenerational coassociation of host and microbial lineages and the relative fitness consequences of repeated associations within natural holobiont populations. Behavioral ecologists are in a prime position to test these predictions because they typically focus on animal phenotypes that are quantifiable, conduct studies over multiple generations within natural animal populations, and collect metadata on genetic relatedness and relative reproductive success within these populations. Regardless of the conclusion on the hologenome concept as an evolutionary hypothesis, a hologenomic perspective has applied value as a systems-level framework for host biology, including in medicine. Specifically, it emphasizes investigating the multivarious and dynamic interactions between patient genomes and the genomes of their diverse microbiota when attempting to elucidate etiologies of complex, noninfectious diseases.

  20. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Rima Kriauzienė

    2013-08-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa. Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics. Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics. It was found that there is no correlation between student opinions about school mathematics courses and result of their first test. Determine relationship between attendance of exercises and public examinations. Between the stored type of exam and test results are dependent. Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficient Based on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation. Research limitations/implications—this method is just one of the possible ways of application. Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences. Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  1. Student School-Level Math Knowledge Influence on Applied Mathematics Study Courses

    Directory of Open Access Journals (Sweden)

    Tadas Laukevičius

    2011-12-01

    Full Text Available Purpose—to find out the influence of student school-level math knowledge on courses of applied mathematics studies: what is the importance of having a math maturity exam for students, an estimate of social science students’ motivation to learn math, and attendance of seminars. Students who did take the state exam attended more seminars than the students who did not take math exam, and vice versa.Design/methodology/approach—this work describes research which involved persistent MRU Public Administration degree program second-year students. Doing statistical analysis of the data will be a link between school-level mathematics knowledge and attendance activity in seminars and motivation to learn mathematics.Findings—the research is expected to establish a connection between school-level mathematics knowledge and student motivation to learn mathematics.It was found that there is no correlation between student opinions about school mathematics courses and result of their first test.Determine relationship between attendance of exercises and public examinations.Between the stored type of exam and test results are dependent.Determine relationship between exercise attendance and test results, as shown by the calculated correlation coefficientBased on the results, it’s recommended to increase the number of exercises. A more refined analysis of the data is subject to further investigation.Research limitations/implications—this method is just one of the possible ways of application.Practical implications—that kind of research and its methodology can be applied not only to the subject of applied mathematics studies, but also to other natural or social sciences.Originality/Value—empirical experiment data can be used in other studies of Educology nature analysis.

  2. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Insights into Monascus biology at the genetic level.

    Science.gov (United States)

    Shao, Yanchun; Lei, Ming; Mao, Zejing; Zhou, Youxiang; Chen, Fusheng

    2014-05-01

    The genus of Monascus was nominated by van Tieghem in 1884, but its fermented product-red mold rice (RMR), namely red yeast rice, has been used as folk medicines, food colorants, and fermentation starters for more than thousands of years in oriental countries. Nowadays, RMR is widely developed as food supplements around the world due to its functional compounds such as monacolin K (MK, also called lovastatin) and γ-aminobutyric acid. But the usage of RMR also incurs controversy resulting from contamination of citrinin (a kind of mycotoxin) produced by some Monascus strains. In the past decade, it has made great progress to Monascus spp. at the genetic level with the application of molecular biology techniques to restrain the citrinin production and increase the yields of MK and pigment in RMR, as well as aid Monascus classification and phylogenesis. Up to now, hundreds of papers about Monascus molecular biology (MMB) have been published in the international primary journals. However, to our knowledge, there is no MMB review issued until now. In this review, current understanding of Monascus spp. from the view of molecular biology will be covered and insights into research areas that need to be further investigated will also be discussed.

  4. Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.

    Science.gov (United States)

    Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  5. Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks.

    Science.gov (United States)

    Beal, Jacob; Lu, Ting; Weiss, Ron

    2011-01-01

    The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes (~ 50%) and latency of the optimized engineered gene networks. Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.

  6. Process-Oriented Guided Inquiry Learning Strategy Enhances Students’ Higher Level Thinking Skills in a Pharmaceutical Sciences Course

    Science.gov (United States)

    Verlinden, Nathan; Kruger, Nicholas; Carroll, Ailey; Trumbo, Tiffany

    2015-01-01

    Objective. To determine if the process-oriented guided inquiry learning (POGIL) teaching strategy improves student performance and engages higher-level thinking skills of first-year pharmacy students in an Introduction to Pharmaceutical Sciences course. Design. Overall examination scores and scores on questions categorized as requiring either higher-level or lower-level thinking skills were compared in the same course taught over 3 years using traditional lecture methods vs the POGIL strategy. Student perceptions of the latter teaching strategy were also evaluated. Assessment. Overall mean examination scores increased significantly when POGIL was implemented. Performance on questions requiring higher-level thinking skills was significantly higher, whereas performance on questions requiring lower-level thinking skills was unchanged when the POGIL strategy was used. Student feedback on use of this teaching strategy was positive. Conclusion. The use of the POGIL strategy increased student overall performance on examinations, improved higher-level thinking skills, and provided an interactive class setting. PMID:25741027

  7. From gene to structure: Lactobacillus bulgaricus D-lactate dehydrogenase from yogurt as an integrated curriculum model for undergraduate molecular biology and biochemistry laboratory courses.

    Science.gov (United States)

    Lawton, Jeffrey A; Prescott, Noelle A; Lawton, Ping X

    2018-05-01

    We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the ldhA gene from the yogurt-fermenting bacterium Lactobacillus bulgaricus, which encodes the enzyme d-lactate dehydrogenase. The molecular biology module, which consists of nine experiments carried out over eleven sessions, begins with the isolation of genomic DNA from L. bulgaricus in yogurt and guides students through the process of cloning the ldhA gene into a prokaryotic expression vector, followed by mRNA isolation and characterization of recombinant gene expression levels using RT-PCR. The biochemistry module, which consists of nine experiments carried out over eight sessions, begins with overexpression of the cloned ldhA gene and guides students through the process of affinity purification, biochemical characterization of the purified LdhA protein, and analysis of enzyme kinetics using various substrates and an inhibitor, concluding with a guided inquiry investigation of structure-function relationships in the three-dimensional structure of LdhA using molecular visualization software. Students conclude by writing a paper describing their work on the project, formatted as a manuscript to be submitted for publication in a scientific journal. Overall, this curriculum, with its emphasis on experiential learning, provides hands-on training with a variety of common laboratory techniques in molecular biology and biochemistry and builds experience with the process of scientific reasoning, along with reinforcement of essential transferrable skills such as critical thinking, information literacy, and written communication, all within the framework of an extended project having the look and feel of a research experience. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):270-278, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  8. The molecular biology capstone assessment: a concept assessment for upper-division molecular biology students.

    Science.gov (United States)

    Couch, Brian A; Wood, William B; Knight, Jennifer K

    2015-03-02

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α=0.80) and test-retest stability (r=0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. © 2015 B. A. Couch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Structured population models in biology and epidemiology

    CERN Document Server

    Ruan, Shigui

    2008-01-01

    This book consists of six chapters written by leading researchers in mathematical biology. These chapters present recent and important developments in the study of structured population models in biology and epidemiology. Topics include population models structured by age, size, and spatial position; size-structured models for metapopulations, macroparasitc diseases, and prion proliferation; models for transmission of microparasites between host populations living on non-coincident spatial domains; spatiotemporal patterns of disease spread; method of aggregation of variables in population dynamics; and biofilm models. It is suitable as a textbook for a mathematical biology course or a summer school at the advanced undergraduate and graduate level. It can also serve as a reference book for researchers looking for either interesting and specific problems to work on or useful techniques and discussions of some particular problems.

  10. An Honors Interdisciplinary Community-Based Research Course

    Science.gov (United States)

    Dunbar, David; Terlecki, Melissa; Watterson, Nancy; Ratmansky, Lisa

    2013-01-01

    This article describes how two faculty members at Cabrini College--one from biology and the other from psychology--incorporated interdisciplinary community-based research in an honors course on environmental watershed issues. The course, Environmental Psychology, was team-taught in partnership with a local watershed organization, the Valley Creek…

  11. Tracking the Resolution of Student Misconceptions about the Central Dogma of Molecular Biology.

    Science.gov (United States)

    Briggs, Amy G; Morgan, Stephanie K; Sanderson, Seth K; Schulting, Molly C; Wieseman, Laramie J

    2016-12-01

    The goal of our study was to track changes in student understanding of the central dogma of molecular biology before and after taking a genetics course. Concept maps require the ability to synthesize new information into existing knowledge frameworks, and so the hypothesis guiding this study was that student performance on concept maps reveals specific central dogma misconceptions gained, lost, and retained by students. Students in a genetics course completed pre- and posttest concept mapping tasks using terms related to the central dogma. Student maps increased in complexity and validity, indicating learning gains in both content and complexity of understanding. Changes in each of the 351 possible connections in the mapping task were tracked for each student. Our students did not retain much about the central dogma from their introductory biology courses, but they did move to more advanced levels of understanding by the end of the genetics course. The information they retained from their introductory courses focused on structural components (e.g., protein is made of amino acids) and not on overall mechanistic components (e.g., DNA comes before RNA, the ribosome makes protein). Students made the greatest gains in connections related to transcription, and they resolved the most prior misconceptions about translation. These concept-mapping tasks revealed that students are able to correct prior misconceptions about the central dogma during an intermediate-level genetics course. From these results, educators can design new classroom interventions to target those aspects of this foundational principle with which students have the most trouble.

  12. Tracking the Resolution of Student Misconceptions about the Central Dogma of Molecular Biology

    Directory of Open Access Journals (Sweden)

    Amy G. Briggs

    2016-12-01

    Full Text Available The goal of our study was to track changes in student understanding of the central dogma of molecular biology before and after taking a genetics course. Concept maps require the ability to synthesize new information into existing knowledge frameworks, and so the hypothesis guiding this study was that student performance on concept maps reveals specific central dogma misconceptions gained, lost, and retained by students. Students in a genetics course completed pre- and posttest concept mapping tasks using terms related to the central dogma. Student maps increased in complexity and validity, indicating learning gains in both content and complexity of understanding. Changes in each of the 351 possible connections in the mapping task were tracked for each student. Our students did not retain much about the central dogma from their introductory biology courses, but they did move to more advanced levels of understanding by the end of the genetics course. The information they retained from their introductory courses focused on structural components (e.g., protein is made of amino acids and not on overall mechanistic components (e.g., DNA comes before RNA, the ribosome makes protein. Students made the greatest gains in connections related to transcription, and they resolved the most prior misconceptions about translation. These concept-mapping tasks revealed that students are able to correct prior misconceptions about the central dogma during an intermediate-level genetics course. From these results, educators can design new classroom interventions to target those aspects of this foundational principle with which students have the most trouble.

  13. Learning Gains from a Recurring "Teach and Question" Homework Assignment in a General Biology Course: Using Reciprocal Peer Tutoring Outside Class.

    Science.gov (United States)

    Bailey, E G; Baek, D; Meiling, J; Morris, C; Nelson, N; Rice, N S; Rose, S; Stockdale, P

    2018-06-01

    Providing students with one-on-one interaction with instructors is a big challenge in large courses. One solution is to have students interact with their peers during class. Reciprocal peer tutoring (RPT) is a more involved interaction that requires peers to alternate the roles of "teacher" and "student." Theoretically, advantages for peer tutoring include the verbalization and questioning of information and the scaffolded exploration of material through social and cognitive interaction. Studies on RPT vary in their execution, but most require elaborate planning and take up valuable class time. We tested the effectiveness of a "teach and question" (TQ) assignment that required student pairs to engage in RPT regularly outside class. A quasi-experimental design was implemented: one section of a general biology course completed TQ assignments, while another section completed a substitute assignment requiring individuals to review course material. The TQ section outperformed the other section by ∼6% on exams. Session recordings were coded to investigate correlation between TQ quality and student performance. Asking more questions was the characteristic that best predicted exam performance, and this was more predictive than most aspects of the course. We propose the TQ as an easy assignment to implement with large performance gains.

  14. a Cognitive Approach to Teaching a Graduate-Level Geobia Course

    Science.gov (United States)

    Bianchetti, Raechel A.

    2016-06-01

    Remote sensing image analysis training occurs both in the classroom and the research lab. Education in the classroom for traditional pixel-based image analysis has been standardized across college curriculums. However, with the increasing interest in Geographic Object-Based Image Analysis (GEOBIA), there is a need to develop classroom instruction for this method of image analysis. While traditional remote sensing courses emphasize the expansion of skills and knowledge related to the use of computer-based analysis, GEOBIA courses should examine the cognitive factors underlying visual interpretation. This current paper provides an initial analysis of the development, implementation, and outcomes of a GEOBIA course that considers not only the computational methods of GEOBIA, but also the cognitive factors of expertise, that such software attempts to replicate. Finally, a reflection on the first instantiation of this course is presented, in addition to plans for development of an open-source repository for course materials.

  15. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    Science.gov (United States)

    Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge…

  16. On the Edge of Mathematics and Biology Integration: Improving Quantitative Skills in Undergraduate Biology Education

    Science.gov (United States)

    Feser, Jason; Vasaly, Helen; Herrera, Jose

    2013-01-01

    In this paper, the authors describe how two institutions are helping their undergraduate biology students build quantitative competencies. Incorporation of quantitative skills and reasoning in biology are framed through a discussion of two cases that both concern introductory biology courses, but differ in the complexity of the mathematics and the…

  17. Inferring Broad Regulatory Biology from Time Course Data: Have We Reached an Upper Bound under Constraints Typical of In Vivo Studies?

    Directory of Open Access Journals (Sweden)

    Saurabh Vashishtha

    Full Text Available There is a growing appreciation for the network biology that regulates the coordinated expression of molecular and cellular markers however questions persist regarding the identifiability of these networks. Here we explore some of the issues relevant to recovering directed regulatory networks from time course data collected under experimental constraints typical of in vivo studies. NetSim simulations of sparsely connected biological networks were used to evaluate two simple feature selection techniques used in the construction of linear Ordinary Differential Equation (ODE models, namely truncation of terms versus latent vector projection. Performance was compared with ODE-based Time Series Network Identification (TSNI integral, and the information-theoretic Time-Delay ARACNE (TD-ARACNE. Projection-based techniques and TSNI integral outperformed truncation-based selection and TD-ARACNE on aggregate networks with edge densities of 10-30%, i.e. transcription factor, protein-protein cliques and immune signaling networks. All were more robust to noise than truncation-based feature selection. Performance was comparable on the in silico 10-node DREAM 3 network, a 5-node Yeast synthetic network designed for In vivo Reverse-engineering and Modeling Assessment (IRMA and a 9-node human HeLa cell cycle network of similar size and edge density. Performance was more sensitive to the number of time courses than to sample frequency and extrapolated better to larger networks by grouping experiments. In all cases performance declined rapidly in larger networks with lower edge density. Limited recovery and high false positive rates obtained overall bring into question our ability to generate informative time course data rather than the design of any particular reverse engineering algorithm.

  18. Six Classroom Exercises to Teach Natural Selection to Undergraduate Biology Students

    Science.gov (United States)

    Kalinowski, Steven T.; Leonard, Mary J.; Andrews, Tessa M.; Litt, Andrea R.

    2013-01-01

    Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural…

  19. Improving Chemistry Education by Offering Salient Technology Training to Preservice Teachers: A Graduate-Level Course on Using Software to Teach Chemistry

    Science.gov (United States)

    Tofan, Daniel C.

    2009-01-01

    This paper describes an upper-level undergraduate and graduate-level course on computers in chemical education that was developed and offered for the first time in Fall 2007. The course provides future chemistry teachers with exposure to current software tools that can improve productivity in teaching, curriculum development, and education…

  20. Biological ramifications of the subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Gomez, L.S.; Hessler, R.R.; Jackson, D.W.; Marietta, M.G.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.

    1980-01-01

    The primary goal of the US Subseabed Disposal Program (SDP) is to assess the technical and environmental feasibility of disposing of high-level nuclear waste in deep-sea sediments. The subseabed biology program is charged with assessing possible ecosystem effects of radionuclides as well as possible health effects to man from radionuclides which may be released in the deep sea and transported to the ocean surface. Current biological investigations are attempting to determine benthic community structure; benthic community metabolism; the biology of deep-sea mobile scavengers; the faunal composition of midwater nekton; rates of microbial processes, and the radiation sensitivity of deep-sea organisms. Existing models of the dispersal of radionuclides in the deep sea have not considered many of the possible biological mechanisms which may influence the movement of radionuclides. Therefore, a multi-compartment foodweb model is being developed which considers both biological and physical influences on radionuclide transport. This model will allow parametric studies to be made of the impact on the ocean environment and on man of potential releases of radionuclides

  1. Biological ramifications of the subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Gomez, L.S.; Hessler, R.R.; Jackson, D.W.; Marietta, M.G.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.

    1980-05-01

    The primary goal of the US Subseabed Disposal Program (SDP) is to assess the technical and environmental feasibility of disposing of high-level nuclear waste in deep-sea sediments. The subseabed biology program is charged with assessing possible ecosystem effects of radionuclides as well as possible health effects to man from radionuclides which may be released in the deep sea and transported to the ocean surface. Current biological investigations are attempting to determine benthic community structure; benthic community metabolism; the biology of deep-sea mobile scavengers; the faunal composition of midwater nekton; rates of microbial processes; and the radiation sensitivity of deep-sea organisms. Existing models of the dispersal of radionuclides in the deep sea have not considered many of the possible biological mechanisms which may influence the movement of radionuclides. Therefore, a multi-compartment foodweb model is being developed which considers both biological and physical influences on radionuclide transport. This model will allow parametric studies to be made of the impact on the ocean environment and on man of potential releases of radionuclides

  2. Students' Perceptions of a Twitter-Based Assignment in a Graduate-Level Instructional Technology Course

    Science.gov (United States)

    Nygard, Shanda; Day, Micah; Fricke, Gretchen; Knowlton, Dave S.

    2014-01-01

    This article examines Twitter as an innovation to enhance student learning within an online graduate-level course. Specifically, this article includes 3 narratives from students who were charged with using Twitter as a medium for sharing photographs and accompanying analysis. Within each narrative, students' experiences and opinions are…

  3. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  4. A COGNITIVE APPROACH TO TEACHING A GRADUATE-LEVEL GEOBIA COURSE

    Directory of Open Access Journals (Sweden)

    R. A. Bianchetti

    2016-06-01

    Full Text Available Remote sensing image analysis training occurs both in the classroom and the research lab. Education in the classroom for traditional pixel-based image analysis has been standardized across college curriculums. However, with the increasing interest in Geographic Object-Based Image Analysis (GEOBIA, there is a need to develop classroom instruction for this method of image analysis. While traditional remote sensing courses emphasize the expansion of skills and knowledge related to the use of computer-based analysis, GEOBIA courses should examine the cognitive factors underlying visual interpretation. This current paper provides an initial analysis of the development, implementation, and outcomes of a GEOBIA course that considers not only the computational methods of GEOBIA, but also the cognitive factors of expertise, that such software attempts to replicate. Finally, a reflection on the first instantiation of this course is presented, in addition to plans for development of an open-source repository for course materials.

  5. Participation in a Year-Long CURE Embedded into Major Core Genetics and Cellular and Molecular Biology Laboratory Courses Results in Gains in Foundational Biological Concepts and Experimental Design Skills by Novice Undergraduate Researchers†

    Science.gov (United States)

    Peteroy-Kelly, Marcy A.; Marcello, Matthew R.; Crispo, Erika; Buraei, Zafir; Strahs, Daniel; Isaacson, Marisa; Jaworski, Leslie; Lopatto, David; Zuzga, David

    2017-01-01

    This two-year study describes the assessment of student learning gains arising from participation in a year-long curriculum consisting of a classroom undergraduate research experience (CURE) embedded into second-year, major core Genetics and Cellular and Molecular Biology (CMB) laboratory courses. For the first course in our CURE, students used micro-array or RNAseq analyses to identify genes important for environmental stress responses by Saccharomyces cerevisiae. The students were tasked with creating overexpressing mutants of their genes and designing their own original experiments to investigate the functions of those genes using the overexpression and null mutants in the second CURE course. In order to evaluate student learning gains, we employed three validated concept inventories in a pretest/posttest format and compared gains on the posttest versus the pretest with student laboratory final grades. Our results demonstrated that there was a significant correlation between students earning lower grades in the Genetics laboratory for both years of this study and gains on the Genetics Concept Assessment (GCA). We also demonstrated a correlation between students earning lower grades in the Genetics laboratory and gains on the Introductory Molecular and Cell Biology Assessment (IMCA) for year 1 of the study. Students furthermore demonstrated significant gains in identifying the variable properties of experimental subjects when assessed using the Rubric for Experimental (RED) design tool. Results from the administration of the CURE survey support these findings. Our results suggest that a year-long CURE enables lower performing students to experience greater gains in their foundational skills for success in the STEM disciplines. PMID:28904646

  6. Does Remediation Work for All Students? How the Effects of Postsecondary Remedial and Developmental Courses Vary by Level of Academic Preparation

    Science.gov (United States)

    Boatman, Angela; Long, Bridget Terry

    2018-01-01

    We examine the impact of remedial and developmental courses on college students with varying levels of academic preparedness, thus focusing on a wider range of students than previous studies. Using a regression discontinuity design, we provide causal estimates of the effects of placement in different levels of remedial courses on short-,…

  7. Innovations in Undergraduate Chemical Biology Education.

    Science.gov (United States)

    Van Dyke, Aaron R; Gatazka, Daniel H; Hanania, Mariah M

    2018-01-19

    Chemical biology derives intellectual vitality from its scientific interface: applying chemical strategies and perspectives to biological questions. There is a growing need for chemical biologists to synergistically integrate their research programs with their educational activities to become holistic teacher-scholars. This review examines how course-based undergraduate research experiences (CUREs) are an innovative method to achieve this integration. Because CUREs are course-based, the review first offers strategies for creating a student-centered learning environment, which can improve students' outcomes. Exemplars of CUREs in chemical biology are then presented and organized to illustrate the five defining characteristics of CUREs: significance, scientific practices, discovery, collaboration, and iteration. Finally, strategies to overcome common barriers in CUREs are considered as well as future innovations in chemical biology education.

  8. Aspects on Teaching/Learning with Object Oriented Programming for Entry Level Courses of Engineering.

    Science.gov (United States)

    de Oliveira, Clara Amelia; Conte, Marcos Fernando; Riso, Bernardo Goncalves

    This work presents a proposal for Teaching/Learning, on Object Oriented Programming for Entry Level Courses of Engineering and Computer Science, on University. The philosophy of Object Oriented Programming comes as a new pattern of solution for problems, where flexibility and reusability appears over the simple data structure and sequential…

  9. Using the Scientific Method to Motivate Biology Students to Study Precalculus

    Science.gov (United States)

    Fulton, James P.; Sabatino, Linda

    2008-01-01

    During the last two years we have developed a precalculus course customized around biology by using the scientific method as a framework to engage and motivate biology students. Historically, the precalculus and calculus courses required for the Suffolk County Community College biology curriculum were designed using examples from the physical…

  10. Courses on the Beauty of Mathematics: Our Version of General Education Mathematics Courses

    Science.gov (United States)

    Rash, Agnes M.; Fillebrown, Sandra

    2016-01-01

    This article describes various courses designed to incorporate mathematical proofs into courses for non-math and non-science majors. These courses, nicknamed "math beauty" courses, are designed to discuss one topic in-depth rather than to introduce many topics at a superficial level. A variety of courses, each requiring students to…

  11. Developmental Education and Its Relationship to Academic Success in College Level Courses at a Suburban Community College in Kansas

    Science.gov (United States)

    Cole, Lisa M.

    2014-01-01

    This study evaluated the effectiveness of developmental math, English, and reading courses by evaluating the success of students in the corresponding college-level math, English, and reading course. This study analyzed select student characteristics (sex, ethnicity, age, socioeconomic status) or student developmental education status as predictors…

  12. Biological Dialogues: How to Teach Your Students to Learn Fluency in Biology

    Science.gov (United States)

    May, S. Randolph; Cook, David L.; May, Marilyn K.

    2013-01-01

    Biology courses have thousands of words to learn in order to intelligently discuss the subject and take tests over the material. Biological fluency is an important goal for students, and practical methods based on constructivist pedagogies can be employed to promote it. We present a method in which pairs of students write dialogues from…

  13. A dedicated database system for handling multi-level data in systems biology

    OpenAIRE

    Pornputtapong, Natapol; Wanichthanarak, Kwanjeera; Nilsson, Avlant; Nookaew, Intawat; Nielsen, Jens

    2014-01-01

    Background Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging...

  14. A Community College Instructor's Reflective Journey Toward Developing Pedagogical Content Knowledge for Nature of Science in a Non-majors Undergraduate Biology Course

    Science.gov (United States)

    Krajewski, Sarah J.; Schwartz, Renee

    2014-08-01

    Research supports an explicit-reflective approach to teaching about nature of science (NOS), but little is reported on teachers' journeys as they attempt to integrate NOS into everyday lessons. This participatory action research paper reports the challenges and successes encountered by an in-service teacher, Sarah, implementing NOS for the first time throughout four units of a community college biology course (genetics, molecular biology, evolution, and ecology). Through the action research cycles of planning, implementing, and reflecting, Sarah identified areas of challenge and success. This paper reports emergent themes that assisted her in successfully embedding NOS within the science content. Data include weekly lesson plans and pre/post reflective journaling before and after each lesson of this lecture/lab combination class that met twice a week. This course was taught back to back semesters, and this study is based on the results of a year-long process. Developing pedagogical content knowledge (PCK) for NOS involves coming to understand the overlaps and connections between NOS, other science subject matter, pedagogical strategies, and student learning. Sarah found that through action research she was able to grow and assimilate her understanding of NOS within the biology content she was teaching. A shift in orientation toward teaching products of science to teaching science processes was a necessary shift for NOS pedagogical success. This process enabled Sarah's development of PCK for NOS. As a practical example of putting research-based instructional recommendations into practice, this study may be very useful for other teachers who are learning to teach NOS.

  15. Development and Evaluation of the Tigriopus Course-Based Undergraduate Research Experience: Impacts on Students’ Content Knowledge, Attitudes, and Motivation in a Majors Introductory Biology Course

    Science.gov (United States)

    Olimpo, Jeffrey T.; Fisher, Ginger R.; DeChenne-Peters, Sue Ellen

    2016-01-01

    Within the past decade, course-based undergraduate research experiences (CUREs) have emerged as a viable mechanism to enhance novices’ development of scientific reasoning and process skills in the science, technology, engineering, and mathematics disciplines. Recent evidence within the bioeducation literature suggests that student engagement in such experiences not only increases their appreciation for and interest in scientific research but also enhances their ability to “think like a scientist.” Despite these critical outcomes, few studies have objectively explored CURE versus non-CURE students’ development of content knowledge, attitudes, and motivation in the discipline, particularly among nonvolunteer samples. To address these concerns, we adopted a mixed-methods approach to evaluate the aforementioned outcomes following implementation of a novel CURE in an introductory cell/molecular biology course. Results indicate that CURE participants exhibited more expert-like outcomes on these constructs relative to their non-CURE counterparts, including in those areas related to self-efficacy, self-determination, and problem-solving strategies. Furthermore, analysis of end-of-term survey data suggests that select features of the CURE, such as increased student autonomy and collaboration, mediate student learning and enjoyment. Collectively, this research provides novel insights into the benefits achieved as a result of CURE participation and can be used to guide future development and evaluation of authentic research opportunities. PMID:27909022

  16. Differences in academic performance and self-regulated learning based on level of student participation in supplemental instruction

    Science.gov (United States)

    Mack, Ana C.

    This study examined differences in academic performance and self-regulated learning based on levels of student participation in Supplemental Instruction (SI) sessions in two introductory undergraduate biology and chemistry courses offered at University of Central Florida in the Spring 2006 semester. The sample consisted of 282 students enrolled in the biology class and 451 students enrolled in chemistry. Academic performance was measured using students' final course grades and rates of withdrawal from the courses. The self-regulated learning constructs of motivation, cognition, metacognition, and resource management were measured using the Motivated Strategies for Learning Questionnaire (MSLQ). Relationships between students' gender and ethnic background and levels of SI participation were also analyzed in this research. Findings in both biology and chemistry courses revealed a statistically significant decrease in student motivation from beginning to end of semester. In chemistry, frequent SI participants also showed statistically significantly higher levels of motivation at the end of the semester than occasional and non-SI participants. There were no statistically significant gains in cognitive, metacognitive, and resource management strategies from beginning to end of semester. However, statistically significant differences in resource management were observed at the end of the semester among SI attendance groups in both courses. Students in the high SI attendance group were more likely to use learning resources than those who did not participate regularly or did not participate at all. Statistically significant differences in academic performance based on students' SI participation were found in both biology and chemistry courses. Frequent SI participants had significantly higher final percentage grades and were more likely to receive grades of A, B, or C, than those who either did not attend SI regularly of did not participate at all. They were also less

  17. Developing Guided Inquiry-Based Student Lab Worksheet for Laboratory Knowledge Course

    Science.gov (United States)

    Rahmi, Y. L.; Novriyanti, E.; Ardi, A.; Rifandi, R.

    2018-04-01

    The course of laboratory knowledge is an introductory course for biology students to follow various lectures practicing in the biology laboratory. Learning activities of laboratory knowledge course at this time in the Biology Department, Universitas Negeri Padang has not been completed by supporting learning media such as student lab worksheet. Guided inquiry learning model is one of the learning models that can be integrated into laboratory activity. The study aimed to produce student lab worksheet based on guided inquiry for laboratory knowledge course and to determine the validity of lab worksheet. The research was conducted using research and developmet (R&D) model. The instruments used in data collection in this research were questionnaire for student needed analysis and questionnaire to measure the student lab worksheet validity. The data obtained was quantitative from several validators. The validators consist of three lecturers. The percentage of a student lab worksheet validity was 94.18 which can be categorized was very good.

  18. Interactomes to Biological Phase Space: a call to begin thinking at a new level in computational biology.

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, George S.; Brown, William Michael

    2007-09-01

    Techniques for high throughput determinations of interactomes, together with high resolution protein collocalizations maps within organelles and through membranes will soon create a vast resource. With these data, biological descriptions, akin to the high dimensional phase spaces familiar to physicists, will become possible. These descriptions will capture sufficient information to make possible realistic, system-level models of cells. The descriptions and the computational models they enable will require powerful computing techniques. This report is offered as a call to the computational biology community to begin thinking at this scale and as a challenge to develop the required algorithms and codes to make use of the new data.3

  19. The Effects of Guided Discussion on Math Anxiety Levels, Course Performance, and Retention in a College Algebra Internet Class

    Science.gov (United States)

    Emig, Christa

    2009-01-01

    The study sought to test the hypotheses that effective, guided discussions that facilitate meaningful dialogue about math anxiety would reduce levels of math anxiety in college algebra students, and would enhance course performance and course retention at a large community college in South Texas. The study was quantitative with a qualitative…

  20. Biochemistry for dietetic students: course content and format.

    Science.gov (United States)

    Sirota, L H

    1984-12-01

    This article presents the results of a survey of the 251 undergraduate dietetic programs for course content and level of the biochemistry course most frequently used to satisfy competencies in biochemistry under Plan IV of the ADA in 1979-80. It showed that a common core of information was stressed by all biochemistry instructors, but there was great variability in content and level of material covered and the textbook chosen, depending on whether the biochemistry course was offered to dietetic majors only, in classes with other nonchemistry majors, or in classes with chemistry majors. Variability was also seen in the time allotted for biochemistry--39 to 280 hours (total lecture and required laboratory hours); laboratory requirements--only 71%; and departmental affiliation of the instructor--17 different departments, primarily of chemistry (80%), biology (8%), and home economics (4%). Topics given greatest emphasis were descriptive ones, such as definitions, simple structures, and reactions of intermediary metabolism in general terms. Topics given least emphasis were those involving mechanistic and quantitative biochemistry, such as respiratory quotient (RQ), enzyme kinetics, calculations of energy from fat and carbohydrates, and specific structures of vitamins, ketones, and metabolic intermediates. The lack of communication between biochemistry and nutrition instructors and the great differences in the preparation of dietetic majors in biochemistry are sources of concern.

  1. Verbal Final Exam in Introductory Biology Yields Gains in Student Content Knowledge and Longitudinal Performance

    Science.gov (United States)

    Luckie, Douglas B.; Rivkin, Aaron M.; Aubry, Jacob R.; Marengo, Benjamin J.; Creech, Leah R.; Sweeder, Ryan D.

    2013-01-01

    We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) questions (66.4% [n = 160] and 62% [n = 285], respectively; p students performed better on MCAT questions in all topic categories tested; the greatest gain occurred on the topic of cellular respiration. Because the VF focused on a conceptually parallel topic, photosynthesis, there may have been authentic knowledge transfer. In longitudinal tracking studies, passing the VF also correlated with higher performance in a range of upper-level science courses, with greatest significance in physiology, biochemistry, and organic chemistry. Participation had a wide range but not equal representation in academic standing, gender, and ethnicity. Yet students nearly unanimously (92%) valued the option. Our findings suggest oral exams at the introductory level may allow instructors to assess and aid students striving to achieve higher-level learning. PMID:24006399

  2. The Course Development Plan: Macro-Level Decisions and Micro-Level Processes

    Science.gov (United States)

    Franker, Karen; James, Dennis

    2016-01-01

    A key step in distance learning project management is the creation of a course development plan. The plan should account for decisions related to materials, curriculum, delivery methods, staffing, technology applications, resources, reporting lines, and project management--issues that may require administrator involvement and support, particularly…

  3. Academic Procrastination and the Performance of Graduate-Level Cooperative Groups in Research Methods Courses

    Science.gov (United States)

    Jiao, Qun G.; DaRos-Voseles, Denise A.; Collins, Kathleen M. T.; Onwuegbuzie, Anthony J.

    2011-01-01

    This study examined the extent to which academic procrastination predicted the performance of cooperative groups in graduate-level research methods courses. A total of 28 groups was examined (n = 83 students), ranging in size from 2 to 5 (M = 2.96, SD = 1.10). Multiple regression analyses revealed that neither within-group mean nor within-group…

  4. An undergraduate course to bridge the gap between textbooks and scientific research.

    Science.gov (United States)

    Wiegant, Fred; Scager, Karin; Boonstra, Johannes

    2011-01-01

    This article reports on a one-semester Advanced Cell Biology course that endeavors to bridge the gap between gaining basic textbook knowledge about cell biology and learning to think and work as a researcher. The key elements of this course are 1) learning to work with primary articles in order to get acquainted with the field of choice, to learn scientific reasoning, and to identify gaps in our current knowledge that represent opportunities for further research; 2) formulating a research project with fellow students; 3) gaining thorough knowledge of relevant methodology and technologies used within the field of cell biology; 4) developing cooperation and leadership skills; and 5) presenting and defending research projects before a jury of experts. The course activities were student centered and focused on designing a genuine research program. Our 5-yr experience with this course demonstrates that 1) undergraduate students are capable of delivering high-quality research designs that meet professional standards, and 2) the authenticity of the learning environment in this course strongly engages students to become self-directed and critical thinkers. We hope to provide colleagues with an example of a course that encourages and stimulates students to develop essential research thinking skills.

  5. Biological, environmental, and social influences on childhood obesity.

    Science.gov (United States)

    Campbell, M Karen

    2016-01-01

    The prevalence of childhood obesity has increased globally over the past three decades, with evidence of recent leveling off in developed countries. Reduction in the, currently high, prevalence of obesity will require a full understanding of the biological and social pathways to obesity in order to develop appropriately targeted prevention strategies in early life. Determinants of childhood obesity include individual level factors, including biological, social, and behavioral risks, acting within the influence of the child's family environment, which is, in turn, imbedded in the context of the community environment. These influences act across childhood, with suggestions of early critical periods of biological and behavioral plasticity. There is evidence of sex and gender differences in the responses of boys and girls to their environments. The evidence that determinants of childhood obesity act at many levels and at different stages of childhood is of policy relevance to those planning early health promotion and primary prevention programs as it suggests the need to address the individual, the family, the physical environment, the social environment, and social policy. The purpose of this narrative review is to summarize current, and emerging, literature in a multilevel, life course framework.

  6. Calculus, Biology and Medicine: A Case Study in Quantitative Literacy for Science Students

    Directory of Open Access Journals (Sweden)

    Kim Rheinlander

    2011-01-01

    Full Text Available This paper describes a course designed to enhance the numeracy of biology and pre-medical students. The course introduces students with the background of one semester of calculus to systems of nonlinear ordinary differential equations as they appear in the mathematical biology literature. Evaluation of the course showed increased enjoyment and confidence in doing mathematics, and an increased appreciation of the utility of mathematics to science. Students who complete this course are better able to read the research literature in mathematical biology and carry out research problems of their own.

  7. Laboratory Experiences in an Introduction to Natural Science Course.

    Science.gov (United States)

    Barnard, Sister Marquita

    1984-01-01

    Describes a two-semester course designed to meet the needs of future elementary teachers, home economists, and occupational therapists. Laboratory work includes homemade calorimeters, inclined planes, and computing. Content areas of the course include measurement, physics, chemistry, astronomy, biology, geology, and meteorology. (JN)

  8. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    Science.gov (United States)

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  9. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  10. Profile of science process skills of Preservice Biology Teacher in General Biology Course

    Science.gov (United States)

    Susanti, R.; Anwar, Y.; Ermayanti

    2018-04-01

    This study aims to obtain portrayal images of science process skills among preservice biology teacher. This research took place in Sriwijaya University and involved 41 participants. To collect the data, this study used multiple choice test comprising 40 items to measure the mastery of science process skills. The data were then analyzed in descriptive manner. The results showed that communication aspect outperfomed the other skills with that 81%; while the lowest one was identifying variables and predicting (59%). In addition, basic science process skills was 72%; whereas for integrated skills was a bit lower, 67%. In general, the capability of doing science process skills varies among preservice biology teachers.

  11. Analysis of undergraduate cell biology contents in Brazilian public universities.

    Science.gov (United States)

    Mermelstein, Claudia; Costa, Manoel Luis

    2017-04-01

    The enormous amount of information available in cell biology has created a challenge in selecting the core concepts we should be teaching our undergraduates. One way to define a set of essential core ideas in cell biology is to analyze what a specific cell biology community is teaching their students. Our main objective was to analyze the cell biology content currently being taught in Brazilian universities. We collected the syllabi of cell biology courses from public universities in Brazil and analyzed the frequency of cell biology topics in each course. We also compared the Brazilian data with the contents of a major cell biology textbook. Our analysis showed that while some cell biology topics such as plasma membrane and cytoskeleton was present in ∼100% of the Brazilian curricula analyzed others such as cell signaling and cell differentiation were present in only ∼35%. The average cell biology content taught in the Brazilian universities is quite different from what is presented in the textbook. We discuss several possible explanations for these observations. We also suggest a list with essential cell biology topics for any biological or biomedical undergraduate course. The comparative discussion of cell biology topics presented here could be valuable in other educational contexts. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  12. Evaluating an Inquiry-Based Bioinformatics Course Using Q Methodology

    Science.gov (United States)

    Ramlo, Susan E.; McConnell, David; Duan, Zhong-Hui; Moore, Francisco B.

    2008-01-01

    Faculty at a Midwestern metropolitan public university recently developed a course on bioinformatics that emphasized collaboration and inquiry. Bioinformatics, essentially the application of computational tools to biological data, is inherently interdisciplinary. Thus part of the challenge of creating this course was serving the needs and…

  13. Chemical and biological attributes of a lowland soil affected by land leveling

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2013-11-01

    Full Text Available The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC. Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.

  14. Interdisciplinary education - a predator-prey model for developing a skill set in mathematics, biology and technology

    Science.gov (United States)

    van der Hoff, Quay

    2017-08-01

    The science of biology has been transforming dramatically and so the need for a stronger mathematical background for biology students has increased. Biological students reaching the senior or post-graduate level often come to realize that their mathematical background is insufficient. Similarly, students in a mathematics programme, interested in biological phenomena, find it difficult to master the complex systems encountered in biology. In short, the biologists do not have enough mathematics and the mathematicians are not being taught enough biology. The need for interdisciplinary curricula that includes disciplines such as biology, physical science, and mathematics is widely recognized, but has not been widely implemented. In this paper, it is suggested that students develop a skill set of ecology, mathematics and technology to encourage working across disciplinary boundaries. To illustrate such a skill set, a predator-prey model that contains self-limiting factors for both predator and prey is suggested. The general idea of dynamics, is introduced and students are encouraged to discover the applicability of this approach to more complex biological systems. The level of mathematics and technology required is not advanced; therefore, it is ideal for inclusion in a senior-level or introductory graduate-level course for students interested in mathematical biology.

  15. Biological maturity at birth, the course of the subsequent ontogenetic stages and age at menarche.

    Science.gov (United States)

    Szwed, A; Kosińska, M

    2012-08-01

    The main aim of the study was to assess the influence of biological maturity at birth on growth processes in the subsequent years and during puberty in girls. The material of this study comes from the outpatient clinic cards and cross-sectional research on girls from the province of Wielkopolska in Poland. It includes data of 527 girls. The influence of perinatal maturity on body weight in the later stages of ontogeny was determined with the use of the Kruskal-Wallis test and the Mann-Whitney U test. In order to determine the relationship between perinatal maturity and age at menarche, the survival analysis module was used. The results show a diverse influence of perinatal maturity on the values of body weight achieved in later years of life. The indicated predictive factors included both birth weight and gestational age. In the examined girls menarche occurred between the 10th year and the 17th year of life (X¯=12.87, s=1.26; Me=13 years). The comparison showed a significant variation in age at menarche depending on the length of pregnancy (log-rank χ(2)(2)=27.068, p0.05). Remote prognoses as to the postnatal development of preterm-born children and/or children with low birth weight indicate adverse influence of these variables on age at menarche. Perinatal biological maturity of a newborn conditions the course of postnatal development. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Continuing training program in radiation protection in biological research centers

    International Nuclear Information System (INIS)

    Escudero, R.; Hidalgo, R.M.; Usera, F.; Macias, M.T.; Mirpuri, E.; Perez, J.; Sanchez, A.

    2008-01-01

    specific training program in radiation protection to meet the different needs of all workers in a biological research center. This program aims to ensure compliance with the relevant national legislation and to minimize the possibility of radiological incidents and accidents in this kind of center. This study has involved contributions from six nationally and internationally recognized Spanish biological research centers that have active training programs in radiation protection, and the design of the program presented here has been informed by the teaching experience of the training staff involved. The training method is based on introductory and refresher courses for personnel in direct contact with the radioactive facility and also for indirectly associated personnel. The courses will include guideline manuals (print or electronic), training through seminars or online materials, and also personnel evaluation, visits to the radioactive facility or practical training as required. The introductory courses are intended for newly incorporated personnel. The refresher courses are fundamentally designed to accommodate possible changes to national legal regulations, working conditions or the in-house radiological protection controls. Maintenance and instrumentation workers, cleaners, administrative personnel, etc. who are associated with the radioactive facility indirectly. These workers are affected by the work in the radioactive facility to varying degrees, and they therefore also require information and training in radiological protection tailored to their level of interaction with the installation. The aim of this study was to design a specific training program in radiation protection to meet the different needs of all workers in a biological research center. This program aims to ensure compliance with the relevant national legislation and to minimize the possibility of radiological incidents and accidents in this kind of center. This study has involved contributions from

  17. Exploring Biology: A "Vision and Change" Disciplinary First-Year Seminar Improves Academic Performance in Introductory Biology

    Science.gov (United States)

    Wienhold, Caroline J.; Branchaw, Janet

    2018-01-01

    The transition to college is challenging for most students, especially those who aspire to major in the science, technology, engineering, or mathematics disciplines, in which introductory courses can be large and instruction less than optimal. This paper describes a novel, disciplinary first-year seminar (FYS) course, Exploring Biology, designed…

  18. Group processing in an undergraduate biology course for preservice teachers: Experiences and attitudes

    Science.gov (United States)

    Schellenberger, Lauren Brownback

    Group processing is a key principle of cooperative learning in which small groups discuss their strengths and weaknesses and set group goals or norms. However, group processing has not been well-studied at the post-secondary level or from a qualitative or mixed methods perspective. This mixed methods study uses a phenomenological framework to examine the experience of group processing for students in an undergraduate biology course for preservice teachers. The effect of group processing on students' attitudes toward future group work and group processing is also examined. Additionally, this research investigated preservice teachers' plans for incorporating group processing into future lessons. Students primarily experienced group processing as a time to reflect on past performance. Also, students experienced group processing as a time to increase communication among group members and become motivated for future group assignments. Three factors directly influenced students' experiences with group processing: (1) previous experience with group work, (2) instructor interaction, and (3) gender. Survey data indicated that group processing had a slight positive effect on students' attitudes toward future group work and group processing. Participants who were interviewed felt that group processing was an important part of group work and that it had increased their group's effectiveness as well as their ability to work effectively with other people. Participants held positive views on group work prior to engaging in group processing, and group processing did not alter their atittude toward group work. Preservice teachers who were interviewed planned to use group work and a modified group processing protocol in their future classrooms. They also felt that group processing had prepared them for their future professions by modeling effective collaboration and group skills. Based on this research, a new model for group processing has been created which includes extensive

  19. Australian Biology Test Item Bank, Years 11 and 12. Volume II: Year 12.

    Science.gov (United States)

    Brown, David W., Ed.; Sewell, Jeffrey J., Ed.

    This document consists of test items which are applicable to biology courses throughout Australia (irrespective of course materials used); assess key concepts within course statement (for both core and optional studies); assess a wide range of cognitive processes; and are relevant to current biological concepts. These items are arranged under…

  20. Australian Biology Test Item Bank, Years 11 and 12. Volume I: Year 11.

    Science.gov (United States)

    Brown, David W., Ed.; Sewell, Jeffrey J., Ed.

    This document consists of test items which are applicable to biology courses throughout Australia (irrespective of course materials used); assess key concepts within course statement (for both core and optional studies); assess a wide range of cognitive processes; and are relevant to current biological concepts. These items are arranged under…

  1. Exploring Queer Pedagogies in the College-Level YA Literature Course

    Science.gov (United States)

    Bach, Jacqueline

    2016-01-01

    One place to start understanding how pre-service teachers learn about contemporary young adult (YA) literature, especially those works that feature lesbian, gay, bisexual, transgender, questioning (LGBTQ) and gender identity themes and characters, is through an examination of the YA literature course--a course many pre-service teachers take as…

  2. An undergraduate course, and new textbook, on ``Physical Models of Living Systems''

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in several science and engineering departments. Students acquire several research skills that are often not addressed in traditional courses, including: basic modeling skills, probabilistic modeling skills, data analysis methods, computer programming using a general-purpose platform like MATLAB or Python, dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: virus dynamics; bacterial genetics and evolution of drug resistance; statistical inference; superresolution microscopy; synthetic biology; naturally evolved cellular circuits. Publication of a new textbook by WH Freeman and Co. is scheduled for December 2014. Supported in part by EF-0928048 and DMR-0832802.

  3. Utilizing Service Learning in a College-Level Human Sexuality Course

    Science.gov (United States)

    Jenkins, Dusty D.

    2017-01-01

    Implementing service learning into college courses has been shown to have positive benefits for both students and community members; however, service learning has not been largely evaluated in the literature on human sexuality courses. Thus, the purpose of the current study was to design, implement, and evaluate a service learning project in a…

  4. Biomolecular Modeling in a Process Dynamics and Control Course

    Science.gov (United States)

    Gray, Jeffrey J.

    2006-01-01

    I present modifications to the traditional course entitled, "Process dynamics and control," which I renamed "Modeling, dynamics, and control of chemical and biological processes." Additions include the central dogma of biology, pharmacokinetic systems, population balances, control of gene transcription, and large­-scale…

  5. AMS Weather Studies and AMS Ocean Studies: Dynamic, College-Level Geoscience Courses Emphasizing Current Earth System Data

    Science.gov (United States)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Blair, B. A.; Hopkins, E. J.; Kiley, T. P.; Ruwe, E. E.

    2008-12-01

    AMS Weather Studies and AMS Ocean Studies are introductory college-level courses developed by the American Meteorological Society, with NSF and NOAA support, for local offering at undergraduate institutions nationwide. The courses place students in a dynamic and highly motivational educational environment where they investigate the atmosphere and world ocean using real-world and real-time environmental data. Over 360 colleges throughout the United States have offered these courses in course environments ranging from traditional lecture/laboratory to completely online. AMS Diversity Projects aim to increase undergraduate student access to the geosciences through implementation of the courses at minority-serving institutions and training programs for MSI faculty. The AMS Weather Studies and AMS Ocean Studies course packages consist of a hard-cover, 15-chapter textbook, Investigations Manual with 30 lab-style activities, and course website containing weekly current weather and ocean investigations. Course instructors receive access to a faculty website and CD containing answer keys and course management system-compatible files, which allow full integration to a college's e-learning environment. The unique aspect of the courses is the focus on current Earth system data through weekly Current Weather Studies and Current Ocean Studies investigations written in real time and posted to the course website, as well as weekly news files and a daily weather summary for AMS Weather Studies. Students therefore study meteorology or oceanography as it happens, which creates a dynamic learning environment where student relate their experiences and observations to the course, and actively discuss the science with their instructor and classmates. With NSF support, AMS has held expenses-paid course implementation workshops for minority-serving institution faculty planning to offer AMS Weather Studies or AMS Ocean Studies. From May 2002-2007, AMS conducted week-long weather workshops

  6. Socioeconomic Status, Higher-Level Mathematics Courses, Absenteeism, and Student Mobility as Indicators of Work Readiness

    Science.gov (United States)

    Folds, Lea D.; Tanner, C. Kenneth

    2014-01-01

    The purpose of this study was to analyze the relations among socioeconomic status, highest-level mathematics course, absenteeism, student mobility and measures of work readiness of high school seniors in Georgia. Study participants were 476 high school seniors in one Georgia county. The full regression model explained 27.5% of the variance in…

  7. Positioning genomics in biology education: content mapping of undergraduate biology textbooks.

    Science.gov (United States)

    Wernick, Naomi L B; Ndung'u, Eric; Haughton, Dominique; Ledley, Fred D

    2014-12-01

    Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.

  8. Should applicants to Nottingham University Medical School study a non-science A-level? A cohort study.

    Science.gov (United States)

    Yates, Janet; Smith, Jennifer; James, David; Ferguson, Eamonn

    2009-01-21

    It has been suggested that studying non-science subjects at A-level should be compulsory for medical students. Our admissions criteria specify only Biology, Chemistry and one or more additional subjects. This study aimed to determine whether studying a non-science subject for A-level is an independent predictor of achievement on the undergraduate medical course. The subjects of this retrospective cohort study were 164 students from one entry-year group (October 2000), who progressed normally on the 5-year undergraduate medical course at Nottingham. Pre-admission academic and socio-demographic data and undergraduate course marks were obtained. T-test and hierarchical multiple linear regression analyses were undertaken to identify independent predictors of five course outcomes at different stages throughout the course. There was no evidence that the choice of science or non-science as the third or fourth A-level subject had any influence on course performance. Demographic variables (age group, sex, and fee status) had some predictive value but ethnicity did not. Pre-clinical course performance was the strongest predictor in the clinical phases (pre-clinical Themes A&B (knowledge) predicted Clinical Knowledge, p A-level requirements should specify the choice of third or fourth subject.

  9. Challenges in a Physics Course

    DEFF Research Database (Denmark)

    Hernández, Carola Hernández; Ravn, Ole; Forero Shelton, Antonio Manu

    2014-01-01

    This article identifies and analyses some of the challenges that arose in a development process of changing from a content-based teaching environment to a student-centred environment in an undergraduate physics course for medicine and biology students at Universidad de los Andes. Through the use...

  10. Genome annotation in a community college cell biology lab.

    Science.gov (United States)

    Beagley, C Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  11. From Cookbook to Collaborative: Transforming a University Biology Laboratory Course

    Science.gov (United States)

    Herron, Sherry S.

    2009-01-01

    As described in "How People Learn," "Developing Biological Literacy," and by the Commission on Undergraduate Education in the Biological Sciences during the 1960s and early 1970s, laboratories should promote guided-inquiries or investigations, and not simply consist of cookbook or verification activities. However, the only word that could describe…

  12. Multiweek Cell Culture Project for Use in Upper-Level Biology Laboratories

    Science.gov (United States)

    Marion, Rebecca E.; Gardner, Grant E.; Parks, Lisa D.

    2012-01-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF,…

  13. Prognostic significance of CA 125 and TPS levels after 3 chemotherapy courses in ovarian cancer patients

    NARCIS (Netherlands)

    van Dalen, A; Favier, J; Burges, A; Hasholzner, U; de Bruijn, HWA; Dobler-Girdziunaite, D; Dombi, VH; Fink, D; Giai, M; McGing, P; Harlozinska, A; Kainz, C; Markowska, J; Molina, R; Sturgeon, C; Bowman, A; Einarsson, R

    2000-01-01

    Objective. To evaluate the prognostic significance of and predictive value for survival of CA 125 and TPS levels after three chemotherapy courses in ovarian cancer patients. Methods. We analyzed in a prospective multicenter study the 1- and 2-year overall survival (OS) in ovarian carcinoma patients.

  14. Personality Type and Student Performance in Upper-Level Economics Courses: The Importance of Race and Gender.

    Science.gov (United States)

    Borg, Mary O.; Stranahan, Harriet A.

    2002-01-01

    Demonstrates that personality type is an important explanatory variable in student performance in upper level economics courses. Finds that certain personality types, combined with race and gender effects, produce students who outperform other students. Introverts and those with the Keirsey-Bates temperament combination of sensing/judging…

  15. The effects of synchronous class sessions on students' academic achievement and levels of satisfaction in an online introduction to computers course

    Science.gov (United States)

    LeShea, Andrea Valene

    The purpose of this quasi-experimental static-group comparison study was to test the theory of transactional distance that relates the inclusion of synchronous class sessions into an online introductory computer course to students' levels of satisfaction and academic achievement at a post-secondary technical college. This study specifically looked at the effects of adding live, synchronous class sessions into an online learning environment using collaboration software such as Blackboard Collaborate and the impact that this form of live interaction had on students' overall levels of satisfaction and academic achievement with the course. A quasi-experiment using the post-test only, static-group comparison design was utilized and conducted in an introductory computer class at a local technical college. It was determined that incorporating live, synchronous class sessions into an online course did not increase students' levels of achievement, nor did it result in improved test scores. Additionally, the study revealed that there was no significant difference in students' levels of satisfaction between those taking online courses using live, synchronous methods and those experiencing traditional online methods. In light of this evidence, further research needs to be conducted to determine if students prefer a completely asynchronous online learning experience or if, when, and how they would prefer a blended approach that offers synchronous sessions as well.

  16. Molecular biology - Part I: Techniques, terminology, and concepts

    International Nuclear Information System (INIS)

    Brown, J. Martin

    1996-01-01

    Purpose/Objective: One of the barriers to understanding modern molecular biology is the lack of a clear understanding of the relevant terminology, techniques, and concepts. This refresher course is intended to address these deficiencies starting from a basic level. The lecture will cover many of the common uses of recombinant DNA, including gene cloning and manipulation. The goal is to enable the nonspecialist to increase his or her understanding of molecular biology in order to more fully enjoy reading current publications and/or listening seminars. Radiation biologists trying to understand a little more molecular biology should also benefit. The following concepts will be among those explained and illustrated: restriction endonucleases, gel electrophoresis, gene cloning, use of vectors such as plasmids, bacteriophage, cosmids and viruses, cDNA and genomic libraries, Southern, Northern, and Western blotting, fluorescent in situ hybridization, polymerase chain reaction (PCR), gel retardation, and reporter gene assays

  17. The Main Biological Hazards in Animal Biosafety Level 2 Facilities and Strategies for Control.

    Science.gov (United States)

    Li, Xiao Yan; Xue, Kang Ning; Jiang, Jin Sheng; Lu, Xuan Cheng

    2016-04-01

    Concern about the biological hazards involved in microbiological research, especially research involving laboratory animals, has increased in recent years. Working in an animal biosafety level 2 facility (ABSL-2), commonly used for research on infectious diseases, poses various biological hazards. Here, the regulations and standards related to laboratory biosafety in China are introduced, the potential biological hazards present in ABSL-2 facilities are analyzed, and a series of strategies to control the hazards are presented. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  18. Academic and non-academic predictors of success on the Nottingham undergraduate medical course 1970-1995.

    Science.gov (United States)

    James, D; Chilvers, C

    2001-11-01

    To identify academic and non-academic predictors of success of entrants to the Nottingham medical course over the first 25 completed years of the course's existence. SETTING, DESIGN AND MAIN OUTCOME MEASURES: Retrospective study of academic and non-academic characteristics of 2270 entrants between 1970 and 1990, and their subsequent success. Analyses were undertaken of two cohorts (entrants between 1970 and 1985 and entrants between 1986 and 1990). Overall, 148 of 2270 (6.5%) entrants left the course, with the highest proportion being from the first 6 years (10.7%). Of the 148 leavers, 58 (39.2%) did so after obtaining their BMedSci degree. Concerning non-academic factors, in the 1970-85 cohort, applicants from the later years and those not taking a year out were more successful. However, these two factors had no influence on outcome in 1986-90. In contrast, ethnicity and gender were highly significant predictors of success in obtaining honours at BMBS in 1986-90 but at no other exam nor in the earlier years. Older, mature or graduate entrants were more successful at obtaining a first-class degree at BMedSci for the whole 21 years. However, they were less likely to be successful at passing the BMBS. With regard to academic factors, overall, A grades at Ordinary level/General Certificate of Secondary Education (O-Level/GCSE) were inconsistent independent predictors of success. However, for 1986-90, high grades at O-Level/GCSE chemistry and biology were strong independent predictors of success at BMedSci and BMBS. Very few Advanced level (A-Level) criteria were independent predictors of success for 1970-85. In contrast, for 1986-90 entrants, achieving a high grade at A-Level chemistry predicted success at obtaining a first-class degree at BMedSci, and a high grade at A-Level biology predicted success at BMBS. Over the 21 years, the majority of entrants achieved significantly lower grades at A-Level than predicted. General Studies A-Level was a poor predictor of

  19. Improving Student Engagement in a Lower-Division Botany Course

    Science.gov (United States)

    Goldberg, Nisse A.; Ingram, Kathleen W.

    2011-01-01

    Active-learning techniques have been advocated as a means to promote student engagement in lower-division biology courses. In this case study, mini-lectures in combination with active-learning activities were evaluated as strategies to promote a culture of learning and participation in a required botany course. These activities were designed to…

  20. Connecting qualitative observation and quantitative measurement for enhancing quantitative literacy in plant anatomy course

    Science.gov (United States)

    Nuraeni, E.; Rahmat, A.

    2018-05-01

    Forming of cognitive schemes of plant anatomy concepts is performed by processing of qualitative and quantitative data obtained from microscopic observations. To enhancing student’s quantitative literacy, strategy of plant anatomy course was modified by adding the task to analyze quantitative data produced by quantitative measurement of plant anatomy guided by material course. Participant in this study was 24 biology students and 35 biology education students. Quantitative Literacy test, complex thinking in plant anatomy test and questioner used to evaluate the course. Quantitative literacy capability data was collected by quantitative literacy test with the rubric from the Association of American Colleges and Universities, Complex thinking in plant anatomy by test according to Marzano and questioner. Quantitative literacy data are categorized according to modified Rhodes and Finley categories. The results showed that quantitative literacy of biology education students is better than biology students.

  1. Student Perceptions of Their Biology Teacher's Interpersonal Teaching Behaviors and Student Achievement

    Science.gov (United States)

    Madike, Victor N.

    Inadequate student-teacher interactions in undergraduate courses have been linked to poor student performance. Researchers have noted that students' perceptions of student-teacher relationships may be an important factor related to student performance. The administration of a Mid-Atlantic community college prioritized increasing undergraduate biology student performance. The purpose of this quantitative study was to examine the relationship between students' biology achievement and their perceptions of interpersonal teaching behaviors and student-teacher interactions in introductory biology courses. Leary's theory on interpersonal communication and the systems communication theory of Watzlawick, Beavin, and Jackson served as the theoretical foundation. The Wubbel's Likert-scale questionnaire on student-teacher interactions was administered to 318 undergraduate biology students. Non-parametric Spearman's rank correlations revealed a significant direct correlation between students' grades and their perceptions of teachers' interpersonal teaching behaviors. The relationship between student achievement and students' perceptions of student-teacher interactions prompted the recommendation for additional study on the importance of student-teacher interactions in undergraduate programs. A recommendation for local practice included faculty development on strategies for improving student-teacher interactions. The study's implications for positive social change include increased understanding for administrators and instructors on the importance of teacher-student interactions at the community college level.

  2. Digital Storytelling: A Tool for Identifying and Developing Cultural Competence with Preservice Teachers in an Introduction to Middle Level Education Course

    Science.gov (United States)

    Ruppert, Nancy; Adcock, Lee T.; Crave, Jared

    2017-01-01

    Using five themes associated with a diversity intensive undergraduate course, preservice teachers in an upper level introduction to middle grade course described their knowledge of cultural competence using digital storytelling as the tool. Findings suggest digital storytelling provides a tool to explore and describe how cultural competence is…

  3. Using Hydrologic Data from Africa in a Senior-Level Course in Groundwater Hydrology (Invited)

    Science.gov (United States)

    Silliman, S. E.

    2010-12-01

    Ongoing research efforts in Benin, West Africa, and Uganda, East Africa, have provided substantial data sets involving groundwater quality, applied geophysics, water use, and response of local populations / government agencies to challenges related to water development, protection and management. Ranging from characterization of coastal salt-water encroachment to a major well field to nitrate and microbial contamination of rural water supplies, these data sets were developed by interdisciplinary / international teams that included both undergraduate and graduate students. The present discussion focuses on the integration of the resulting data sets into a senior-level (and lower-level graduate student) course in Groundwater Hydrology. The data sets are employed in multiple ways, including: (i) support of concepts introduced during lectures, (ii) problem sets involving analysis of the data, and (iii) foundation material for open-ended discussions on comparative water resource strategies in developed and developing countries. Most significant in terms of the use of these data sets to advance educational opportunities, the African case studies have been integrated into semester-long projects completed by teams of students as a significant component of their final grade as well as one of their engineering design experiences used to fulfill ABET requirements. During the 2009-2010 academic year, these data sets (as well as published data bases by other agencies) were used by individual groups to design water development strategies for rural villages. During the present semester, two teams of students are pursuing long-term sustainability analyses, the first focused on an aquifer system in northern Indiana (USA) and the second focused on a coastal aquifer system serving Cotonou, Benin. The goal of pursuing these parallel projects is to illustrate to the students the similarities and differences involved in water resource management / protection in different parts of the

  4. An exploration of the gateway math and science course relationships in the Los Angeles Community College District

    Science.gov (United States)

    Buchanan, Donald G.

    This study evaluated selected demographic, pre-enrollment, and economic status variables in comparison to college-level performance factors of GPA and course completion ratios for gateway math and science courses. The Transfer and Retention of Urban Community College Students (TRUCCS) project team collected survey and enrollment data for this study in the Los Angeles Community College District (LACCD). The TRUCCS team surveyed over 5,000 students within the nine campus district beginning in the fall of 2000 and spring of 2001 with follow-up data for next several years. This study focused on the math and science courses; established background demographics; evaluated pre-enrollment high school self-reported grades; reviewed high school and college level math courses taken; investigated specific gateway courses of biology, chemistry and physics; and compared them to the overall GPAs and course completion ratios for 4,698 students. This involved the SPSS development of numerous statistical products including the data from frequency distributions, means, cross-tabulations, group statistics t-tests, independent samples t-tests, and one-way ANOVA. Findings revealed demographic and economic relationships of significance for students' performance factors of GPA and course completion ratios. Furthermore, findings revealed significant differences between the gender, age, ethnicity and economic employment relationships. Conclusions and implications for institutions of higher education were documented. Recommendations for dissemination, intervention programs, and future research were also discussed.

  5. Learning physical biology via modeling and simulation: A new course and textbook for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    To a large extent, undergraduate physical-science curricula remain firmly rooted in pencil-and-paper calculation, despite the fact that most research is done with computers. To a large extent, undergraduate life-science curricula remain firmly rooted in descriptive approaches, despite the fact that much current research involves quantitative modeling. Not only does our pedagogy not reflect current reality; it also creates a spurious barrier between the fields, reinforcing the narrow silos that prevent students from connecting them. I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional undergraduate courses: •Basic modeling skills; •Probabilistic modeling skills; •Data analysis methods; •Computer programming using a general-purpose platform like MATLAB or Python; •Pulling datasets from the Web for analysis; •Data visualization; •Dynamical systems, particularly feedback control. Partially supported by the NSF under Grants EF-0928048 and DMR-0832802.

  6. New course in bioengineering and bioinspired design.

    Science.gov (United States)

    Erickson, Jonathan C

    2012-01-01

    The past two years, a new interdisciplinary course has been offered at Washington and Lee University (Lexington, VA, USA), which seeks to surmount barriers that have traditionally existed between the physical and life sciences. The course explores the physiology leading to the physical mechanisms and engineering principles that endow the astonishing navigation abilities and sensory mechanisms of animal systems. The course also emphasizes how biological systems are inspiring novel engineering designs. Two (among many) examples are how the adhesion of the gecko foot inspired a new class of adhesives based on Van der Waals forces; and how the iridophore protein plates found in mimic octopus and squid act as tunable ¼ wave stacks, thus inspiring the engineering of optically tunable block copolymer gels for sensing temperature, pressure, or chemical gradients. A major component of this course is the integration of a 6-8 week long research project. To date, projects have included engineering: a soft-body robot whose motion mimics the inchworm; an electrical circuit to sense minute electric fields in aqueous environments based on the shark electrosensory system; and cyborg grasshoppers whose jump motion is controlled via an electronic-neural interface. Initial feedback has indicated that this course has served to increase student interaction and “cross-pollination” of ideas between the physical and life sciences. Student feedback also indicated a marked increase in desire and confidence to continue to pursue problems at the boundary of biology and engineering—bioengineering.

  7. Biological Applications in the Mathematics Curriculum

    Science.gov (United States)

    Marland, Eric; Palmer, Katrina M.; Salinas, Rene A.

    2008-01-01

    In this article we provide two detailed examples of how we incorporate biological examples into two mathematics courses: Linear Algebra and Ordinary Differential Equations. We use Leslie matrix models to demonstrate the biological properties of eigenvalues and eigenvectors. For Ordinary Differential Equations, we show how using a logistic growth…

  8. Creating Cross-disciplinary Courses.

    Science.gov (United States)

    Reynolds, Elaine R

    2012-01-01

    Because of its focus on the biological underpinnings of action and behavior, neuroscience intersects with many fields of human endeavor. Some of these cross-disciplinary intersections have been long standing, while others, such as neurotheology or neuroeconomics, are more recently formed fields. Many undergraduate institutions have sought to include cross-disciplinary courses in their curriculum because this style of pedagogy is often seen as applicable to real world problems. However, it can be difficult for faculty with specialized training within their discipline to expand beyond their own fields to offer cross-disciplinary courses. I have been creating a series of multi- or cross-disciplinary courses and have found some strategies that have helped me successfully teach these classes. I will discuss general strategies and tools in developing these types of courses including: 1) creating mixed experience classrooms of students and contributing faculty 2) finding the right tools that will allow you to teach to a mixed population without prerequisites 3) examining the topic using multiple disciplinary perspectives 4) feeding off student experience and interest 5) assessing the impact of these courses on student outcomes and your neuroscience program. This last tool in particular is important in establishing the validity of this type of teaching for neuroscience students and the general student population.

  9. Childhood maltreatment, maladaptive personality types and level and course of psychological distress : A six-year longitudinal study

    NARCIS (Netherlands)

    Spinhoven, Philip; Elzinga, Bernet M.; Van Hemert, Albert M.; de Rooij, Mark; Penninx, Brenda W.

    Background: Childhood maltreatment and maladaptive personality are both cross-sectionally associated with psychological distress. It is unknown whether childhood maltreatment affects the level and longitudinal course of psychological distress in adults and to what extent this effect is mediated by

  10. A Hierarchical Biology Concept Framework: A Tool for Course Design

    OpenAIRE

    Khodor, Julia; Halme, Dina Gould; Walker, Graham C.

    2004-01-01

    A typical undergraduate biology curriculum covers a very large number of concepts and details. We describe the development of a Biology Concept Framework (BCF) as a possible way to organize this material to enhance teaching and learning. Our BCF is hierarchical, places details in context, nests related concepts, and articulates concepts that are inherently obvious to experts but often difficult ...

  11. Disclosure Level of CPC 29 Biological Assets: Analysis of Determining Factors in Brazilian companies

    Directory of Open Access Journals (Sweden)

    Daniel Ramos Nogueira

    2017-04-01

    Full Text Available The research question guiding this research is "What are the Determining Factors of CPC 29 Disclosure in Brazilian Companies?". In this aspect, the research objective was to evaluate the main factors that affect the disclosure of information related to biological assets. For this, 5 variables highlighted in the literature were selected as evidence influencers. The sample was composed of Brazilian companies with biological assets in the Balance Sheet. From this list, financial statements, explanatory notes, corporate management level and independent auditing company for the 6 years (2010 to 2015 were collected. With the collected information, the dependent variable (Disclosure level of CPC 29 and the independent variables of each year were verified. At the end (after exclusions, 100 observations were analyzed. The results indicated that the variables Size, Representativeness of Biological Assets and Effectiveness of OCPC 07 positively impacted the level of Disclosure. The first two confirmed the predicted hypothesis and OCPC 07 presented a relation that was different from what was expected, showing an increase and not a reduction in the number of disclosures in the years 2014 and 2015.

  12. A Case Study On Media Literacy Levels Of Secondary Students Who Attend Media Literacy Course

    Directory of Open Access Journals (Sweden)

    Erhan GÖRMEZ

    2017-05-01

    Full Text Available The aim of this study is to determine the media literacy levels of secondary school students who attend media literacy courses. In this qualitative study, interview method was used to gather required data. In this qualitative study, interview method was used to gather required data. The interviews were conducted with 10 secondary school students of grade 8 attending media literacy courses by using semi-structured interview forms developed by the researcher. The questions used in semi-structured interview forms were prepared considering the outcomes of Media Literacy program related to units in Media Literacy Lesson Teacher Guide Book such as What is Communication?, Mass Communication, Media, Television, Newspaper and the Internet. The data gathered through the student's interviews were analyzed by applying content analysis method. Having evaluated the research results, it was concluded that the students who attend Media Literacy courses have a bit data and skills as knowing what communication is, using media and knowing its functions, telling the difference between TV program sorts in terms of their functions, knowing smart signs and explanations and obeying them, knowing basic concepts about newspaper and knowing and applying basic concepts concerning internet usage.

  13. Quality indicators for the analysis of communication in an online course

    Directory of Open Access Journals (Sweden)

    Antonella Pezzotti

    2012-08-01

    Full Text Available This study describes the development and validation of quality indicators for analyzing forums interactions in an online course in biology teaching. The aim is to evaluate the quality of communication so as to strengthen the tutor’s role and help students learn fundamental biology concepts while enhancing their collaboration competencies. The indicators are used to analyze cognitive, metacognitive and relational aspects, drawing on a content analysis methodology. The model appears to have a wide range of possible applications in other online courses.

  14. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    International Nuclear Information System (INIS)

    Unak, T.; Avcibasi, U.; Yildirim, Y.; Cetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1-3 mg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131 I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131 I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  15. An Examination of the Impact of a College Level Meditation Course on College Student Well Being

    Science.gov (United States)

    Crowley, Claire; Munk, Dana

    2017-01-01

    Statement of the Problem: The competing pressures of college life can increase stress and anxiety in college students and have negative outcomes on academic performance and overall well-being. The purpose of this study was to use qualitative measures to examine how participation in a college level experiential meditation course impacted students'…

  16. CORBEL Pilot courses and staff exchange provided

    OpenAIRE

    Matser, Vera; Battaglia, Serena; Amaral, Ana Margarida

    2017-01-01

    The main target audience of the CORBEL training programme is technical operators of Research Infrastructures (RIs) in biological and medical RI hubs and nodes. The CORBEL course syllabi for a modular curriculum for piloting in RIs involves the following types of training activities: webinar programme, training courses and workshops, a knowledge/staff exchange programme and a fellowship scheme. The content of the curriculum has been based on the development of the CORBEL competency profile (D9...

  17. A guide to the biological indicators of the watercourses of the Province of Viterbo

    International Nuclear Information System (INIS)

    Mancini, L.; Andreani, P.

    2008-01-01

    European legislation recognised to biological indicators a main role among the instruments for the evaluation of the ecological status of fresh running waters (Water Framework Directive 2000/60/EC). The analysis of the communities of different biological components, such as Diatoms, Macrophytes, Macro invertebrates and Fishes, can provide an approach at ecosystem level, essential for a correct interpretation of river conditions. Therefore, it is fundamental to provide useful instruments for the taxonomic identification of the aquatic organisms. The Viterbo Province has a long time activity in this context, through the organisation of several events focused on training courses and dissemination. This work, even if preliminary, provides a scheme of Atlas of Biological Indicators of running waters, available for all stake holders, and that could represent a stepping stone for the future realization of guides at national level [it

  18. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    2002-01-01

    Full text: The year 2001 started for us with new demanding tasks connected with participation in a new research project performed in collaboration with a excellent teams from six countries under the 5 th EU the Quality of Life Programme. The aim of the project EXPAH is to propose methods of molecular epidemiology for the risk assessment of exposure to polycyclic aromatic hydrocarbons in the air. The exploration of cause-effect relationships for carcinogenic agents will be based on the study of exogenous and endogenous influence on DNA damage in exposed population, and will determine the relationship between biomarkers of exposure, effects and susceptibility in the exposed populations. Analysis of this damage is carried out using highly specialising multidisciplinary techniques brought together by seven laboratories specialised in chemical, biochemical and biological techniques for analysing DNA damage and repair, together with access to populations exposed to environmental pollution and experience in collecting samples. In the year 2001 all the members of the department put much effort in co-organizing 12. Meeting of the Maria Sklodowska-Curie Polish Radiation Research Society. The Meeting was held in the September in Cracow and rewarded hard work of everybody with many applauding comments for the high scientific and organization level. Our parallel activities were concentrated on arrangement and preparation of the forthcoming Course on Human Monitoring for Genetic Effects proposed to us by the Alexander Hollaender Committee of the International Environmental Mutagenesis Society. The Alexander Hollaender ''HUMOGEF'' Course will concentrate on the commonly measured biomarkers (chromosome aberrations; micronuclei; DNA damage), but others (p53 protein levels; metabolic genotypes) will also be addressed. Scientists of international standing from the fields of toxicology, molecular biology, cytogenetics, mutation, and epidemiology, will present and discuss the state

  19. Crossing Boundaries in Undergraduate Biology Education

    Science.gov (United States)

    Vanderklein, Dirk; Munakata, Mika; McManus, Jason

    2016-01-01

    In an effort to make mathematics relevant to biology students, the authors developed two modules that sought to integrate mathematics and ecology instruction to differing degrees. The modules were developed by a team of biology and mathematics educators and were implemented in an ecology course using three different instructional methods for three…

  20. Information Literacy in Biology Education: An Example from an Advanced Cell Biology Course

    Science.gov (United States)

    Porter, John R.

    2005-01-01

    Information literacy skills are critically important for the undergraduate biology student. The ability to find, understand, evaluate, and use information, whether from the scientific literature or from Web resources, is essential for a good understanding of a topic and for the conduct of research. A project in which students receive information…

  1. The impact of a Classroom Performance System on learning gains in a biology course for science majors

    Science.gov (United States)

    Marin, Nilo Eric

    This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after

  2. An Analysis of Writing Activities in the Student Workbooks of a Secondary-Level Turkish Language Course

    Science.gov (United States)

    Çerçi, Arif

    2016-01-01

    The purpose of this study is to analyze writing activities in the student workbooks of a secondary-level Turkish language course (grades 5 to 8) according to the principles of progressive writing. The study is descriptive and employs content analysis as a qualitative research paradigm. The writing activities of the books in this study all…

  3. The effect of cooperative learning on the attitudes toward science and the achievement of students in a non-science majors' general biology laboratory course at an urban community college

    Science.gov (United States)

    Chung-Schickler, Genevieve C.

    The purpose of this study was to evaluate the effect of cooperative learning strategies on students' attitudes toward science and achievement in BSC 1005L, a non-science majors' general biology laboratory course at an urban community college. Data were gathered on the participants' attitudes toward science and cognitive biology level pre and post treatment in BSC 1005L. Elements of the Learning Together model developed by Johnson and Johnson and the Student Team-Achievement Divisions model created by Slavin were incorporated into the experimental sections of BSC 1005L. Four sections of BSC 1005L participated in this study. Participants were enrolled in the 1998 spring (January) term. Students met weekly in a two hour laboratory session. The treatment was administered to the experimental group over a ten week period. A quasi-experimental pretest-posttest control group design was used. Students in the cooperative learning group (nsb1 = 27) were administered the Test of Science-Related Attitudes (TOSRA) and the cognitive biology test at the same time as the control group (nsb2 = 19) (at the beginning and end of the term). Statistical analyses confirmed that both groups were equivalent regarding ethnicity, gender, college grade point average and number of absences. Independent sample t-tests performed on pretest mean scores indicated no significant differences in the TOSRA scale two or biology knowledge between the cooperative learning group and the control group. The scores of TOSRA scales: one, three, four, five, six, and seven were significantly lower in the cooperative learning group. Independent sample t-tests of the mean score differences did not show any significant differences in posttest attitudes toward science or biology knowledge between the two groups. Paired t-tests did not indicate any significant differences on the TOSRA or biology knowledge within the cooperative learning group. Paired t-tests did show significant differences within the control group

  4. Development of a Microbiology Course for Diverse Majors; Longitudinal Survey of the Use of Various Active, Problem-Based Learning Assignments

    Directory of Open Access Journals (Sweden)

    Diana R. Cundell

    2009-12-01

    Full Text Available Educators are increasingly being encouraged to use more active- and problem-based-learning techniques and assignments in the classroom to improve critical and analytical thinking skills. Active learning-based courses have been purported to be more time consuming than traditional lecture methods and for many instructors have therefore proven difficult to include in many one-semester science courses. To address this problem, a series of assignments was developed for use in a basic microbiology course involving sophomore-, junior-, and senior-level students from five different biology majors (environmental science, biology, biochemistry, premedicine, and physician assistant. Writing assignments included global, historical, and social themes for which a standardized grading format was established. Students also participated in a class debate in which the merits of the living microbial kingdoms were discussed, with only one kingdom being saved from an imaginary global catastrophe. Traditional lectures were facilitated by the use of a dedicated note packet developed by the instructor and specific for course content. Laboratories involved group analysis of mini-case history studies involving pathogenic microbes. Students’ perceptions of the subject were assessed using an exit questionnaire sent to 100 of the 174 students who had taken the course during the 5-year time period. The majority of the 64 students who responded were sophomores (78%, in keeping with the target audience, and their perception of the course’s challenge level was significantly higher (p < 0.03, 8.7 than their junior and senior counterparts (7.9. Students rated the most useful learning tools as case history studies (9.4 and the class debate (9.1, with the introduction of a dedicated microbiology links web page to the University website representing the sole component resulting in a statistically significant increase in students’ perceptions of the importance of the course (p

  5. Beneficial liaisons: radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1995-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology and molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  6. A College-Level Foundational Mathematics Course: Evaluation, Challenges, and Future Directions

    Science.gov (United States)

    Maciejewski, Wes

    2012-01-01

    Recently in Ontario, Canada, the College Math Project brought to light startling data on the achievement of students in Ontario's College of Applied Arts and Technology System related to their performance in first-year mathematics courses: one-third of the students had failed their first-year mathematics course or were at risk of not completing…

  7. Growing trend of CE at the omics level: the frontier of systems biology.

    Science.gov (United States)

    Oh, Eulsik; Hasan, Md Nabiul; Jamshed, Muhammad; Park, Soo Hyun; Hong, Hye-Min; Song, Eun Joo; Yoo, Young Sook

    2010-01-01

    In a novel attempt to comprehend the complexity of life, systems biology has recently emerged as a state-of-the-art approach for biological research in contrast to the reductionist approaches that have been used in molecular cell biology since the 1950s. Because a massive amount of information is required in many systems biology studies of life processes, we have increasingly come to depend on techniques that provide high-throughput omics data. CE and CE coupled to MS have served as powerful analytical tools for providing qualitative and quantitative omics data. Recent systems biology studies have focused strongly on the diagnosis and treatment of diseases. The increasing number of clinical research papers on drug discovery and disease therapies reflects this growing interest among scientists. Since such clinical research reflects one of the ultimate purposes of bioscience, these trends will be sustained for a long time. Thus, this review mainly focuses on the application of CE and CE-MS in diagnosis as well as on the latest CE methods developed. Furthermore, we outline the new challenges that arose in 2008 and later in elucidating the system-level functions of the bioconstituents of living organisms.

  8. A dedicated database system for handling multi-level data in systems biology.

    Science.gov (United States)

    Pornputtapong, Natapol; Wanichthanarak, Kwanjeera; Nilsson, Avlant; Nookaew, Intawat; Nielsen, Jens

    2014-01-01

    Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging. To overcome this, we designed and developed a dedicated database system that can serve and solve the vital issues in data management and hereby facilitate data integration, modeling and analysis in systems biology within a sole database. In addition, a yeast data repository was implemented as an integrated database environment which is operated by the database system. Two applications were implemented to demonstrate extensibility and utilization of the system. Both illustrate how the user can access the database via the web query function and implemented scripts. These scripts are specific for two sample cases: 1) Detecting the pheromone pathway in protein interaction networks; and 2) Finding metabolic reactions regulated by Snf1 kinase. In this study we present the design of database system which offers an extensible environment to efficiently capture the majority of biological entities and relations encountered in systems biology. Critical functions and control processes were designed and implemented to ensure consistent, efficient, secure and reliable transactions. The two sample cases on the yeast integrated data clearly demonstrate the value of a sole database environment for systems biology research.

  9. An Exploratory Study of Effective Online Learning: Assessing Satisfaction Levels of Graduate Students of Mathematics Education Associated with Human and Design Factors of an Online Course

    Directory of Open Access Journals (Sweden)

    Joohi Lee

    2014-02-01

    Full Text Available This exploratory research project investigated graduate students’ satisfaction levels with online learning associated with human (professor/instructor and instructional associate and design factors (course structure and technical aspects using a survey study. A total of 81 graduate students (master’s students who majored in math and science education enrolled in an online math methods course (Conceptual Geometry participated in this study. According to the results of this study, student satisfaction level is closely associated with clear guidelines on assignment, rubrics, and constructive feedback. In addition, student satisfaction level is related to professor’s (or course instructor’s knowledge of materials.

  10. Teaching Ethics in Communication Courses: An Investigation of Instructional Methods, Course Foci, and Student Outcomes

    Science.gov (United States)

    Canary, Heather E.

    2007-01-01

    This study investigates the impact of ethics instruction in communication courses on students' moral reasoning competence. Using a quasi-experiment, participants in interpersonal conflict courses and communication ethics courses were exposed to different levels of ethics instruction through a variety of instructional methods. Results indicate that…

  11. Common Courses for Common Purposes:

    DEFF Research Database (Denmark)

    Schaub Jr, Gary John

    2014-01-01

    (PME)? I suggest three alternative paths that increased cooperation in PME at the level of the command and staff course could take: a Nordic Defence College, standardized national command and staff courses, and a core curriculum of common courses for common purposes. I conclude with a discussion of how...

  12. General and Professional French Courses

    CERN Multimedia

    HR Department

    2010-01-01

    The next session will take place from 11 October to 17 December 2010. These courses are open to all persons working on the CERN site, and to their spouses. For registration and further information on the courses, please consult our Web pages: http://cern.ch/Training or contact Mrs. Nathalie Dumeaux, tel. 78144. NEW COURSES Specific French courses -Exam preparation/ We are now offering specific courses in English and French leading to a recognised external examination (e.g. DELF 1 and 2). If you are interested in following one of these courses and have at least an intermediate level of French, please enrol through the following link: French courses or contact: Lucette Fournier, tel.  73483 (French courses).

  13. Making developmental biology relevant to undergraduates in an era of economic rationalism in Australia.

    Science.gov (United States)

    Key, Brian; Nurcombe, Victor

    2003-01-01

    This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research.

  14. An Examination of the Effects of Flow on Learning in a Graduate-Level Introductory Operations Management Course

    Science.gov (United States)

    Klein, Barbara D.; Rossin, Don; Guo, Yi Maggie; Ro, Young K.

    2010-01-01

    The authors investigated the effects of flow on learning outcomes in a graduate-level operations management course. Flow was assessed through an overall flow score, four dimensions of flow, and three characteristics of flow activities. Learning outcomes were measured objectively through multiple-choice quiz scores and subjectively using measures…

  15. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  16. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  17. Scaling Up: Adapting a Phage-Hunting Course to Increase Participation of First-Year Students in Research.

    Science.gov (United States)

    Staub, Nancy L; Poxleitner, Marianne; Braley, Amanda; Smith-Flores, Helen; Pribbenow, Christine M; Jaworski, Leslie; Lopatto, David; Anders, Kirk R

    2016-01-01

    Authentic research experiences are valuable components of effective undergraduate education. Research experiences during the first years of college are especially critical to increase persistence in science, technology, engineering, and mathematics fields. The Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) model provides a high-impact research experience to first-year students but is usually available to a limited number of students, and its implementation is costly in faculty time and laboratory space. To offer a research experience to all students taking introductory biology at Gonzaga University (n = 350/yr), we modified the traditional two-semester SEA-PHAGES course by streamlining the first-semester Phage Discovery lab and integrating the second SEA-PHAGES semester into other courses in the biology curriculum. Because most students in the introductory course are not biology majors, the Phage Discovery semester may be their only encounter with research. To discover whether students benefit from the first semester alone, we assessed the effects of the one-semester Phage Discovery course on students' understanding of course content. Specifically, students showed improvement in knowledge of bacteriophages, lab math skills, and understanding experimental design and interpretation. They also reported learning gains and benefits comparable with other course-based research experiences. Responses to open-ended questions suggest that students experienced this course as a true undergraduate research experience. © 2016 N. L. Staub et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  19. EMBO Course “Formal Analysis of Genetic Regulation”

    CERN Document Server

    1979-01-01

    The E M B 0 course on "Formal Analysis of Genetic Regulation" A course entitled "Formal analysis of Genetic Regulation" was held at the University of Brussels from 6 to 16 September 1977 under the auspices of EMBO (European Molecular Biology Organization). As indicated by the title of the book (but not explicitly enough by the title of the course), the main emphasis was put on a dynamic analysis of systems using logical methods, that is, methods in which functions and variables take only a limited number of values - typically two. In this respect, this course was complementary to an EMBO course using continuous methods which was held some months later in Israel by Prof. Segel. People from four very different laboratories took an active part in teaching our course in Brussels : Drs Anne LEUSSLER and Philippe VAN HAM, from the Laboratory of Prof. Jean FLORINE (Laboratoire des Systemes logiques et numeriques, Faculte des Sciences appliquees, Universite Libre de Bruxelles). Dr Stuart KAUFFMAN (Dept. of Biochemist...

  20. Student Perceptions of Learning Data-Creation and Data-Analysis Skills in an Introductory College-Level Chemistry Course

    Science.gov (United States)

    Glazer, Nirit

    2015-01-01

    This study examines how students perceive their learning of creating and analyzing data in an introductory inquiry chemistry course at a college level that features oral presentations in student-centered discussions. A student Participant Perception Indicator (PPI) survey was administered in order to obtain data on student perceptions with respect…

  1. Pre and Post Test Evaluations of Students in the Needs-Analysis Based EAP Course at Undergraduate Level

    Science.gov (United States)

    Nafissi, Zohreh; Rezaeipanah, Fariba; Monsefi, Roya

    2017-01-01

    Iran's education system is exam-based and to gain admission to universities at undergraduate, graduate, and postgraduate levels, candidates have to sit a competitive examination. For this reason, developing an EAP course which prepares the candidates for these examinations is of crucial importance. The present study attempted to develop an EAP…

  2. Active Learning Techniques Applied to an Interdisciplinary Mineral Resources Course.

    Science.gov (United States)

    Aird, H. M.

    2015-12-01

    An interdisciplinary active learning course was introduced at the University of Puget Sound entitled 'Mineral Resources and the Environment'. Various formative assessment and active learning techniques that have been effective in other courses were adapted and implemented to improve student learning, increase retention and broaden knowledge and understanding of course material. This was an elective course targeted towards upper-level undergraduate geology and environmental majors. The course provided an introduction to the mineral resources industry, discussing geological, environmental, societal and economic aspects, legislation and the processes involved in exploration, extraction, processing, reclamation/remediation and recycling of products. Lectures and associated weekly labs were linked in subject matter; relevant readings from the recent scientific literature were assigned and discussed in the second lecture of the week. Peer-based learning was facilitated through weekly reading assignments with peer-led discussions and through group research projects, in addition to in-class exercises such as debates. Writing and research skills were developed through student groups designing, carrying out and reporting on their own semester-long research projects around the lasting effects of the historical Ruston Smelter on the biology and water systems of Tacoma. The writing of their mini grant proposals and final project reports was carried out in stages to allow for feedback before the deadline. Speakers from industry were invited to share their specialist knowledge as guest lecturers, and students were encouraged to interact with them, with a view to employment opportunities. Formative assessment techniques included jigsaw exercises, gallery walks, placemat surveys, think pair share and take-home point summaries. Summative assessment included discussion leadership, exams, homeworks, group projects, in-class exercises, field trips, and pre-discussion reading exercises

  3. Genome Annotation in a Community College Cell Biology Lab

    Science.gov (United States)

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  4. Antibiotic resistance shaping multi-level population biology of bacteria.

    Science.gov (United States)

    Baquero, Fernando; Tedim, Ana P; Coque, Teresa M

    2013-01-01

    Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level

  5. A comparative study of traditional lecture methods and interactive lecture methods in introductory geology courses for non-science majors at the college level

    Science.gov (United States)

    Hundley, Stacey A.

    In recent years there has been a national call for reform in undergraduate science education. The goal of this reform movement in science education is to develop ways to improve undergraduate student learning with an emphasis on developing more effective teaching practices. Introductory science courses at the college level are generally taught using a traditional lecture format. Recent studies have shown incorporating active learning strategies within the traditional lecture classroom has positive effects on student outcomes. This study focuses on incorporating interactive teaching methods into the traditional lecture classroom to enhance student learning for non-science majors enrolled in introductory geology courses at a private university. Students' experience and instructional preferences regarding introductory geology courses were identified from survey data analysis. The information gained from responses to the questionnaire was utilized to develop an interactive lecture introductory geology course for non-science majors. Student outcomes were examined in introductory geology courses based on two teaching methods: interactive lecture and traditional lecture. There were no significant statistical differences between the groups based on the student outcomes and teaching methods. Incorporating interactive lecture methods did not statistically improve student outcomes when compared to traditional lecture teaching methods. However, the responses to the survey revealed students have a preference for introductory geology courses taught with lecture and instructor-led discussions and students prefer to work independently or in small groups. The results of this study are useful to individuals who teach introductory geology courses and individuals who teach introductory science courses for non-science majors at the college level.

  6. The Impact of Different Instructional Strategies on Students' Understanding about the Cell Cycle in a General Education Biology Course

    Science.gov (United States)

    Krishnamurthy, Sanjana

    This study investigated the impact of different instructional strategies on students' understanding about the cell cycle in a general education biology course. Although several studies have documented gains in students' cell cycle understanding after instruction, these studies generally use only one instructional method, often without a comparison group. The goal of this study was to learn more about students' misconceptions about the cell cycle and how those ideas change after three different evidence-based learning experiences in undergraduate general education. Undergraduate students in six laboratory sections (n = 24; N = 144) in a large public institution in the western United States were surveyed pre- and post-instruction using a 14-item valid and reliable survey of cell cycle knowledge. Cronbach's alpha for the standard scoring convention was 0.264 and for the alternate scoring convention was 0.360, documenting serious problems with inconsistent validity and reliability of the survey. Operating as though the findings are at least a proxy for actual cell cycle knowledge, score comparisons by groups of interest were explored, including pre- and post-instruction differences among demographic groups of interest and three instructional settings: a bead modeling activity, a role-playing game, and 5E instructional strategy. No significant differences were found across groups of interest or by strategy, but some significant item-level differences were found. Implications and discussion of these shifts is noted in lieu of the literature.

  7. Assessing Interdisciplinary Learning and Student Activism in a Water Issues Course

    Science.gov (United States)

    Mueller, Anja; Juris, Stephen J.; Willermet, Cathy; Drake, Eron; Upadhaya, Samik; Chhetri, Pratik

    2014-01-01

    In response to a request from a campus student organization, faculty from three fields came together to develop and teach an integrated interdisciplinary course on water issues and social activism. This course, "Water as Life, Death, and Power," brought together issues from the fields of anthropology, biology and chemistry to explore…

  8. Lead levels in some biological samples of auto-mechanics in Abeokuta, Nigeria.

    Science.gov (United States)

    Babalola, O O; Ojo, L O; Aderemi, M O

    2005-12-01

    Lead levels were determined in the blood, scalp hair and fingernails of 38, all male auto-mechanics (aged 18-45 years) from Abeokuta, South-western Nigeria. The subjects were classified into four sub-groups based on the period of exposure namely: 1-5, 6-10, 11-15, and >16 years. Thirty-two occupationally unexposed subjects (mainly office workers) served as the control. The weight, height and body mass indexes of all subjects were noted, in addition to other information obtained through structured questionnaire. The mean values of blood lead (BPb), hair lead (HPb) and fingernail lead (NPb) of the occupationally exposed subjects (n=38) were 48.50 +/- 9.08 microg/dL, 17.75 +/- 5.16 microg/g, and 5.92 +/- 3.30 microg/g respectively, while the corresponding mean values for these parameters in the control subjects (n = 32) were 33.(,5 +/- 10.09 microg/dL, 14.30 +/- 5.90 microg/g and 5.31 +/- 2.77 microg/g respectively. The differences in BPb and HPb levels of the two groups were statistically significant (P <0.05 and P <0.01 respectively), while that of NPb was not significant. The levels of lead in the biological samples appeared to have no relationship with the number of years on the job. From these results, it was obvious that the higher levels of lead in the biological samples of test subjects, compared with those of the controls were from environmental sources.

  9. Relationship between participants' level of education and engagement in their completion of the Understanding Dementia Massive Open Online Course.

    Science.gov (United States)

    Goldberg, Lynette R; Bell, Erica; King, Carolyn; O'Mara, Ciaran; McInerney, Fran; Robinson, Andrew; Vickers, James

    2015-03-26

    The completion rates for Massive Open Online Courses (MOOCs) generally are low (5-10%) and have been reported to favour participants with higher (typically tertiary-level) education. Despite these factors, the flexible learning offered by a MOOC has the potential to provide an accessible educational environment for a broad spectrum of participants. In this regard, the Wicking Dementia Research and Education Centre has developed a MOOC on dementia that is evidence-based and intended to address this emerging major global public health issue by providing educational resources to a broad range of caregivers, people with dementia, and health care professionals. The Understanding Dementia MOOC was designed specifically to appeal to, and support, adult learners with a limited educational background. The nine-week course was presented in three units. Participants passed a quiz at the end of each unit to continue through the course. A series of discussion boards facilitated peer-to-peer interactions. A separate "Ask an Expert" discussion board also was established for each unit where participants posted questions and faculty with expertise in the area responded. Almost 10,000 people from 65 countries registered; 4,409 registrants engaged in the discussion boards, and 3,624 (38%) completed the course. Participants' level of education ranged from postgraduate study to a primary (elementary) school education. Participants without a university education (vocational certificate and below) were as likely as those with a university education to complete the course (χ(2) = 2.35, df = 6, p = 0.88) and to engage in the online discussions (F[6, 3799] = 0.85, p = 0.54). Further, participants who completed the MOOC engaged in significantly more discussion board posts than participants who did not complete the course (t = 39.60, df = 4407, p education suggest that MOOCs can be successfully developed and delivered to students from diverse educational

  10. Student Buy-In to Active Learning in a College Science Course.

    Science.gov (United States)

    Cavanagh, Andrew J; Aragón, Oriana R; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I; Graham, Mark J

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure-persuasion-identification-commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students' course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. © 2016 A. J. Cavanagh et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Tweets from the forest: using Twitter to increase student engagement in an undergraduate field biology course [v1; ref status: indexed, http://f1000r.es/56w

    Directory of Open Access Journals (Sweden)

    Lauren Soluk

    2015-03-01

    Full Text Available Twitter is a cold medium that allows users to deliver content-rich but small packets of information to other users, and provides an opportunity for active and collaborative communication. In an education setting, this social media tool has potential to increase active learning opportunities, and increase student engagement with course content. The effects of Twitter on learning dynamics was tested in a field biology course offered by a large Canadian University: 29 students agreed to take part in the Twitter project and quantitative and qualitative data were collected, including survey data from 18 students. Students published 200% more public Tweets than what was required, and interacted frequently with the instructor and teaching assistant, their peers, and users external to the course. Almost 80% of students stated that Twitter increased opportunities for among-group communication, and 94% of students felt this kind of collaborative communication was beneficial to their learning. Although students did not think they would use Twitter after the course was over, 77% of the students still felt it was a good learning tool, and 67% of students felt Twitter had a positive impact on how they engaged with course content. These results suggest social media tools such as Twitter can help achieve active and collaborative learning in higher education.

  12. Safety Training: Basic Safety and Access Courses

    CERN Multimedia

    Antonella Vignes

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various existing on-site hazards, and how to recognize and avoid them. Safety course changes The current organization for basic safety courses is changing. There will be two main modifications: the organization of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organizational changes This concerns the existing basic safety training, currently called level1, level2 and level3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, attendees will systematically follow the...

  13. Safety Training: basic safety and access courses

    CERN Multimedia

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various hazards existing on site, and how to recognise and avoid them. Safety course changes The current organisation of basic safety courses is changing. There will be two main modifications: the organisation of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organisational changes This concerns the existing basic safety training, currently called level 1, level 2 and level 3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, participants will systematically follow...

  14. The Case for "Story-Driven" Biology Education

    Science.gov (United States)

    Schattner, Peter

    2015-01-01

    Can learning molecular biology and genetics be enjoyable? Of course it can. Biologists know their field is exciting and fascinating and that learning how cells and molecules shape the living world is extraordinarily interesting. But can students who are not already inclined towards science also be convinced that learning molecular biology is…

  15. Using whole mount in situ hybridization to link molecular and organismal biology.

    Science.gov (United States)

    Jacobs, Nicole L; Albertson, R Craig; Wiles, Jason R

    2011-03-31

    Whole mount in situ hybridization (WISH) is a common technique in molecular biology laboratories used to study gene expression through the localization of specific mRNA transcripts within whole mount specimen. This technique (adapted from Albertson and Yelick, 2005) was used in an upper level undergraduate Comparative Vertebrate Biology laboratory classroom at Syracuse University. The first two thirds of the Comparative Vertebrate Biology lab course gave students the opportunity to study the embryology and gross anatomy of several organisms representing various chordate taxa primarily via traditional dissections and the use of models. The final portion of the course involved an innovative approach to teaching anatomy through observation of vertebrate development employing molecular techniques in which WISH was performed on zebrafish embryos. A heterozygous fibroblast growth factor 8 a (fgf8a) mutant line, ace, was used. Due to Mendelian inheritance, ace intercrosses produced wild type, heterozygous, and homozygous ace/fgf8a mutants in a 1:2:1 ratio. RNA probes with known expression patterns in the midline and in developing anatomical structures such as the heart, somites, tailbud, myotome, and brain were used. WISH was performed using zebrafish at the 13 somite and prim-6 stages, with students performing the staining reaction in class. The study of zebrafish embryos at different stages of development gave students the ability to observe how these anatomical structures changed over ontogeny. In addition, some ace/fgf8a mutants displayed improper heart looping, and defects in somite and brain development. The students in this lab observed the normal development of various organ systems using both external anatomy as well as gene expression patterns. They also identified and described embryos displaying improper anatomical development and gene expression (i.e., putative mutants). For instructors at institutions that do not already own the necessary equipment or where

  16. [THE INCONSISTENCIES OF REGULATION OF METABOLISM IN PHYLOGENESIS AT THREE LEVELS OF "RELATIVE BIOLOGICAL PERFECTION": ETIOLOGY OF METABOLIC PANDEMICS].

    Science.gov (United States)

    Titov, V N

    2015-11-01

    The regulation of metabolism in vivo can be comprehended by considering stages of becoming inphylogenesis of humoral, hormonal, vegetative regulators separately: at the level of cells; in paracrin-regulated cenosises of cells; organs and systems under open blood circulation and closed system of blood flow. The levels of regulations formed at different stages of phylogenesis. Their completion occurred at achievement of "relative biological perfection". Only this way need of cells in functional, structural interaction and forming of multicellular developed. The development of organs and systems of organs also completed at the level of "relative biological perfection". From the same level the third stage of becoming of regulation of metabolism at the level of organism started. When three conditions of "relative biological perfection" achieved consequently at level in vivo are considered in species Homo sapiens using system approach it is detected that "relative biological perfection" in vivo is accompanied by different inconsistencies of regulation of metabolism. They are etiologic factors of "metabolic pandemics ". The inconsistencies (etiological factors) are consider as exemplified by local (at the level of paracrin-regulated cenosises of cells) and system (at the level of organism) regulation of biological reaction metabolism-microcirculation that results in dysfunction of target organs and development of pathogenesis of essential metabolic arterial hypertension. The article describes phylogenetic difference between visceral fatty cells and adpocytes, regulation of metabolism by phylogenetically late insulin, reaction of albumin at increasing of content of unesterified fatty acids in blood plasma, difference of function of resident macrophage and monocytes-macrophages in pathogenesis of atherosclerosis, metabolic syndrome, insulin resistance, obesity, under diabetes mellitus and essential metabolic arterial hypertension.

  17. Pengembangan Media Video Interaktif Berbasis Penelitian sebagai Penunjang Matakuliah Teknik Analisis Biologi Molekuler di Universitas Negeri Malang

    OpenAIRE

    Nurmawati, Ira

    2014-01-01

    Nowadays, in the newest era of biology science,biology has progressed and developed. One of the developments marked by the need for Biological Sciences in the field of bioengineering.Thus, it is importance for under graduates have a competence in technical analysis of molecular biology. One course that teaches techniques related to Molecular Biologyis Technical Analysis of Molecular Biology.Based on the results of the needs analysis survey conducted teaching in Technical Analysis Course Molec...

  18. Atypical biological motion kinematics are represented by complementary lower-level and top-down processes during imitation learning.

    Science.gov (United States)

    Hayes, Spencer J; Dutoy, Chris A; Elliott, Digby; Gowen, Emma; Bennett, Simon J

    2016-01-01

    Learning a novel movement requires a new set of kinematics to be represented by the sensorimotor system. This is often accomplished through imitation learning where lower-level sensorimotor processes are suggested to represent the biological motion kinematics associated with an observed movement. Top-down factors have the potential to influence this process based on the social context, attention and salience, and the goal of the movement. In order to further examine the potential interaction between lower-level and top-down processes in imitation learning, the aim of this study was to systematically control the mediating effects during an imitation of biological motion protocol. In this protocol, we used non-human agent models that displayed different novel atypical biological motion kinematics, as well as a control model that displayed constant velocity. Importantly the three models had the same movement amplitude and movement time. Also, the motion kinematics were displayed in the presence, or absence, of end-state-targets. Kinematic analyses showed atypical biological motion kinematics were imitated, and that this performance was different from the constant velocity control condition. Although the imitation of atypical biological motion kinematics was not modulated by the end-state-targets, movement time was more accurate in the absence, compared to the presence, of an end-state-target. The fact that end-state targets modulated movement time accuracy, but not biological motion kinematics, indicates imitation learning involves top-down attentional, and lower-level sensorimotor systems, which operate as complementary processes mediated by the environmental context. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Time course of cognitive recovery after propofol anaesthesia: a level of processing approach.

    Science.gov (United States)

    N'Kaoua, Bernard; Véron, Anne-Lise H; Lespinet, Véronique C; Claverie, Bernard; Sztark, François

    2002-09-01

    The aim of this study was to investigate the time course of recovery of verbal memory after general anaesthesia, as a function of the level (shallow or deep) of processing induced at the time of encoding. Thirty-one patients anaesthetized with propofol and alfentanil were compared with 28 control patients receiving only alfentanil. Memory functions were assessed the day before and 1, 6 and 24 hr after operation. Results show that for the anaesthetized group, shallow processing was impaired for 6 hr after surgery whereas the deeper processing was not recovered even at 24 hr. In addition, no specific effect of age was found.

  20. Using assessments to investigate and compare the nature of learning in undergraduate science courses.

    Science.gov (United States)

    Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Montplaisir, Lisa; Anderson, Elizabeth; Grosz, Nate

    2013-06-01

    Assessments and student expectations can drive learning: students selectively study and learn the content and skills they believe critical to passing an exam in a given subject. Evaluating the nature of assessments in undergraduate science education can, therefore, provide substantial insight into student learning. We characterized and compared the cognitive skills routinely assessed by introductory biology and calculus-based physics sequences, using the cognitive domain of Bloom's taxonomy of educational objectives. Our results indicate that both introductory sequences overwhelmingly assess lower-order cognitive skills (e.g., knowledge recall, algorithmic problem solving), but the distribution of items across cognitive skill levels differs between introductory biology and physics, which reflects and may even reinforce student perceptions typical of those courses: biology is memorization, and physics is solving problems. We also probed the relationship between level of difficulty of exam questions, as measured by student performance and cognitive skill level as measured by Bloom's taxonomy. Our analyses of both disciplines do not indicate the presence of a strong relationship. Thus, regardless of discipline, more cognitively demanding tasks do not necessarily equate to increased difficulty. We recognize the limitations associated with this approach; however, we believe this research underscores the utility of evaluating the nature of our assessments.

  1. A Qualitative Study Examining the Exclusive Use of Primary Literature in a Special Topics Biology Course: Improving Conceptions about the Nature of Science and Boosting Confidence in Approaching Original Scientific Research

    Science.gov (United States)

    Carter, B. Elijah; Wiles, Jason R.

    2017-01-01

    This qualitative study explores the experiences of six students enrolled in a special topics biology class that exclusively used primary literature as course material. Nature of science (NOS) conceptions have been linked to students' attitudes toward scientific subjects, but there has been little research specifically exploring the effects of…

  2. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to…

  3. Summer Oral Expression English Course

    CERN Multimedia

    HR Department

    2011-01-01

    An English Oral Expression course will take place between 15 August and 30 September 2011. Schedule: to be determined (2 sessions of 2 hours per week). Please note that this course is for learners who have a good knowledge of English (CERN level 7 upwards). If you are interested in following this course, please enrol through the following link https://cta.cern.ch/cta2/f?p=110:9:1576796470009589::::X_STATUS,XS_COURSE_NAME,XS_PROGRAMME,XS_SUBCATEGORY,X_COURSE_ID,XS_LANGUAGE,XS_SESSION:D,,1,,4368,B, Or contact: Kerstin FUHRMEISTER (70896) Tessa OSBORNE (72957)  

  4. Final Comparison Study of Teaching Blended In-Class Courses vs. Teaching Distance Education Courses

    Directory of Open Access Journals (Sweden)

    Susan J. Martin

    2012-12-01

    Full Text Available This paper will share with the members of the conference the findings from the final study. This study contains five semesters of analyzed data which compares the retention of students, final grades for students, grades for five specific tasks that were given in blended in-class courses and in the totally online courses, and a comparison of data by GPA, gender, and by class level. All courses were American Politics PLSC 111. Each semester one or two American Politics courses were conducted in the classroom and one American Politics distance education course was conducted totally online. Each time the courses were given, it was during the same semester and by the same professor who is the researcher.

  5. Combining Content and Elements of Communication into an Upper-Level Biochemistry Course

    Science.gov (United States)

    Whittington, Carli P.; Pellock, Samuel J.; Cunningham, Rebecca L.; Cox, James R.

    2014-01-01

    This report describes how a science communication module was incorporated into an advanced biochemistry course. Elements of communication were taught synergistically with biochemistry content in this course in an effort to expose students to a variety of effective oral communication strategies. Students were trained to use these established…

  6. Predicting in vivo effect levels for repeat-dose systemic toxicity using chemical, biological, kinetic and study covariates.

    Science.gov (United States)

    Truong, Lisa; Ouedraogo, Gladys; Pham, LyLy; Clouzeau, Jacques; Loisel-Joubert, Sophie; Blanchet, Delphine; Noçairi, Hicham; Setzer, Woodrow; Judson, Richard; Grulke, Chris; Mansouri, Kamel; Martin, Matthew

    2018-02-01

    In an effort to address a major challenge in chemical safety assessment, alternative approaches for characterizing systemic effect levels, a predictive model was developed. Systemic effect levels were curated from ToxRefDB, HESS-DB and COSMOS-DB from numerous study types totaling 4379 in vivo studies for 1247 chemicals. Observed systemic effects in mammalian models are a complex function of chemical dynamics, kinetics, and inter- and intra-individual variability. To address this complex problem, systemic effect levels were modeled at the study-level by leveraging study covariates (e.g., study type, strain, administration route) in addition to multiple descriptor sets, including chemical (ToxPrint, PaDEL, and Physchem), biological (ToxCast), and kinetic descriptors. Using random forest modeling with cross-validation and external validation procedures, study-level covariates alone accounted for approximately 15% of the variance reducing the root mean squared error (RMSE) from 0.96 log 10 to 0.85 log 10  mg/kg/day, providing a baseline performance metric (lower expectation of model performance). A consensus model developed using a combination of study-level covariates, chemical, biological, and kinetic descriptors explained a total of 43% of the variance with an RMSE of 0.69 log 10  mg/kg/day. A benchmark model (upper expectation of model performance) was also developed with an RMSE of 0.5 log 10  mg/kg/day by incorporating study-level covariates and the mean effect level per chemical. To achieve a representative chemical-level prediction, the minimum study-level predicted and observed effect level per chemical were compared reducing the RMSE from 1.0 to 0.73 log 10  mg/kg/day, equivalent to 87% of predictions falling within an order-of-magnitude of the observed value. Although biological descriptors did not improve model performance, the final model was enriched for biological descriptors that indicated xenobiotic metabolism gene expression, oxidative stress, and

  7. Context dependence of students' views about the role of equations in understanding biology.

    Science.gov (United States)

    Watkins, Jessica; Elby, Andrew

    2013-06-01

    Students' epistemological views about biology--their ideas about what "counts" as learning and understanding biology--play a role in how they approach their courses and respond to reforms. As introductory biology courses incorporate more physics and quantitative reasoning, student attitudes about the role of equations in biology become especially relevant. However, as documented in research in physics education, students' epistemologies are not always stable and fixed entities; they can be dynamic and context-dependent. In this paper, we examine an interview with an introductory student in which she discusses the use of equations in her reformed biology course. In one part of the interview, she expresses what sounds like an entrenched negative stance toward the role equations can play in understanding biology. However, later in the interview, when discussing a different biology topic, she takes a more positive stance toward the value of equations. These results highlight how a given student can have diverse ways of thinking about the value of bringing physics and math into biology. By highlighting how attitudes can shift in response to different tasks, instructional environments, and contextual cues, we emphasize the need to attend to these factors, rather than treating students' beliefs as fixed and stable.

  8. Effects of low-level radiation on biologic systems: a literature review

    International Nuclear Information System (INIS)

    Best, T.L.; Hoditschek, B.

    1980-12-01

    This review presents an organized survey of scientific literature dealing with the biologic effects of low-level radiation. It includes brief discussions of topics of particular interest, a listing of useful review articles, an extensive bibliography, and listings of sources that can be used to update this document in the future. The topics discussed include experimental studies, the linear hypothesis, medical effects, occupational effects, effects of exposure to naturally occurring radiation, consumer products, and laws and regulations

  9. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    Science.gov (United States)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science

  10. The Teaching of Biochemistry: An Innovative Course Sequence Based on the Logic of Chemistry

    Science.gov (United States)

    Jakubowski, Henry V.; Owen, Whyte G.

    1998-06-01

    An innovative course sequence for the teaching of biochemistry is offered, which more truly reflects the common philosophy found in biochemistry texts: that the foundation of biological phenomena can best be understood through the logic of chemistry. Topic order is chosen to develop an emerging understanding that is based on chemical principles. Preeminent biological questions serve as a framework for the course. Lipid and lipid-aggregate structures are introduced first, since it is more logical to discuss the intermolecular association of simple amphiphiles to form micelle and bilayer formations than to discuss the complexities of protein structure/folding. Protein, nucleic acid, and carbohydrate structures are studied next. Binding, a noncovalent process and the simplest expression of macromolecular function, follows. The physical (noncovalent) transport of solute molecules across a biological membrane is studied next, followed by the chemical transformation of substrates by enzymes. These are logical extensions of the expression of molecular function, first involving a simpler (physical transport) and second, a more complex (covalent transformation) process. The final sequence involves energy and signal transduction. This unique course sequence emerges naturally when chemical logic is used as an organizing paradigm for structuring a biochemistry course. Traditional order, which seems to reflect historic trends in research, or even an order derived from the central dogma of biology can not provide this logical framework.

  11. Science self-efficacy of African Americans enrolled in freshman level physical science courses in two historically black institutions

    Science.gov (United States)

    Prihoda, Belinda Ann

    2011-12-01

    Science education must be a priority for citizens to function and be productive in a global, technological society. African Americans receive fewer science degrees in proportion to the Caucasian population. The primary purposes of this study were to determine the difference between the pretest and posttest science self-efficacy scores of African-American nonscience majors, the difference between the pretest and posttest science self-efficacy scores of African-American science majors, the relationship between science self-efficacy and course grade, the relationship between gender and science self-efficacy score, and the relationship between science self-efficacy score and course withdrawal. This study utilized a Likert survey instrument. All participants were enrolled in freshman level courses in the physical sciences at a historically black institution: a college or university. Participants completed the pretest survey within two weeks after the 12th class day of the semester. Initially, 458 participants completed the pretest survey. The posttest was administered within two weeks before the final exam. Only 245 participants completed the posttest survey. Results indicate that there is a difference in science self-efficacy of science majors and nonscience majors. There was no significant difference between the pretest and posttest science self-efficacy scores of African-American science majors and nonscience majors. There was no significant relationship between science self-efficacy and course grade, gender and science self-efficacy score, and course withdrawal and science self-efficacy score.

  12. Summer Oral Expression English Course

    CERN Document Server

    HR Department

    2011-01-01

    An English Oral Expression course will take place between 15 August and 30 September 2011. Schedule: to be determined (2 sessions of 2 hours per week). Please note that this course is for learners who have a good knowledge of English (CERN level 7 upwards). If you are interested in following this course, please enrol here. Or contact: Kerstin FUHRMEISTER (70896) Tessa OSBORNE (72957)  

  13. A Western blot-based investigation of the yeast secretory pathway designed for an intermediate-level undergraduate cell biology laboratory.

    Science.gov (United States)

    Hood-Degrenier, Jennifer K

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in two distinct steps of protein secretion were differentiated using a genetic reporter designed specifically to identify defects in the first step of the pathway, the insertion of proteins into the endoplasmic reticulum (Vallen, 2002). We have developed two versions of a Western blotting assay that serves as a second way of distinguishing the two secretory mutants, which we pair with the genetic assay in a 3-wk laboratory module. A quiz administered before and after students participated in the lab activities revealed significant postlab gains in their understanding of the secretory pathway and experimental techniques used to study it. A second survey administered at the end of the lab module assessed student perceptions of the efficacy of the lab activities; the results of this survey indicated that the experiments were successful in meeting a set of educational goals defined by the instructor.

  14. Science Academies' Refresher Course on Modern Genetics ...

    Indian Academy of Sciences (India)

    IAS Admin

    The objective of this Refresher Course is to give the participants a hands-on training on genetics and molecular biology techniques; and the theory behind them. A variety of teaching methods such as lectures, interaction with renowned resource persons, discussion and laboratory work shall facilitate the learning process.

  15. Quantifying the Level of Inquiry in a Reformed Introductory Geology Lab Course

    Science.gov (United States)

    Moss, Elizabeth; Cervato, Cinzia

    2016-01-01

    As part of a campus-wide effort to transform introductory science courses to be more engaging and more accurately convey the excitement of discovery in science, the curriculum of an introductory physical geology lab course was redesigned. What had been a series of ''cookbook'' lab activities was transformed into a sequence of activities based on…

  16. Preservice Agriculture Teachers' Perceived Level of Readiness in an Agricultural Mechanics Course

    Science.gov (United States)

    Blackburn, J. Joey; Robinson, J. Shane; Field, Harry

    2015-01-01

    This longitudinal trend study sought to compare the perceptions of preservice agricultural education teachers, enrolled in a Metals and Welding course at a land grant university, on their welding related skills at the beginning of the semester to their final course grade at the end of the semester. Preservice agriculture teachers (N = 240) who…

  17. Biology-inspired AMO physics

    Science.gov (United States)

    Mathur, Deepak

    2015-01-01

    This Topical Review presents an overview of increasingly robust interconnects that are being established between atomic, molecular and optical (AMO) physics and the life sciences. AMO physics, outgrowing its historical role as a facilitator—a provider of optical methodologies, for instance—now seeks to partner biology in its quest to link systems-level descriptions of biological entities to insights based on molecular processes. Of course, perspectives differ when AMO physicists and biologists consider various processes. For instance, while AMO physicists link molecular properties and dynamics to potential energy surfaces, these have to give way to energy landscapes in considerations of protein dynamics. But there are similarities also: tunnelling and non-adiabatic transitions occur both in protein dynamics and in molecular dynamics. We bring to the fore some such differences and similarities; we consider imaging techniques based on AMO concepts, like 4D fluorescence microscopy which allows access to the dynamics of cellular processes, multiphoton microscopy which offers a built-in confocality, and microscopy with femtosecond laser beams to saturate the suppression of fluorescence in spatially controlled fashion so as to circumvent the diffraction limit. Beyond imaging, AMO physics contributes with optical traps that probe the mechanical and dynamical properties of single ‘live’ cells, highlighting differences between healthy and diseased cells. Trap methodologies have also begun to probe the dynamics governing of neural stem cells adhering to each other to form neurospheres and, with squeezed light to probe sub-diffusive motion of yeast cells. Strong field science contributes not only by providing a source of energetic electrons and γ-rays via laser-plasma accelerations schemes, but also via filamentation and supercontinuum generation, enabling mainstream collision physics into play in diverse processes like DNA damage induced by low-energy collisions to

  18. Teaching Biology through Statistics: Application of Statistical Methods in Genetics and Zoology Courses

    Science.gov (United States)

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A.

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the…

  19. Improving Exam Performance in Introductory Biology through the Use of Preclass Reading Guides

    Science.gov (United States)

    Lieu, Rebekah; Wong, Ashley; Asefirad, Anahita; Shaffer, Justin F.

    2017-01-01

    High-structure courses or flipped courses require students to obtain course content before class so that class time can be used for active-learning exercises. While textbooks are used ubiquitously in college biology courses for content dissemination, studies have shown that students frequently do not read their textbooks. To address this issue, we…

  20. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits.

    Science.gov (United States)

    van Boxtel, Jeroen J A; Lu, Hongjing

    2013-01-01

    People with Autism Spectrum Disorder (ASD) are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  1. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits

    Directory of Open Access Journals (Sweden)

    Jeroen J A Van Boxtel

    2013-04-01

    Full Text Available People with Autism Spectrum Disorder (ASD are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  2. Student Misconceptions in Introductory Biology.

    Science.gov (United States)

    Fisher, Kathleen M.; Lipson, Joseph I.

    Defining a "misconception" as an error of translation (transformation, correspondence, interpolation, interpretation) between two different kinds of information which causes students to have incorrect expectations, a Taxonomy of Errors has been developed to examine student misconceptions in an introductory biology course for science…

  3. Infusing Outdoor Field Experiences into the Secondary Biology Curriculum.

    Science.gov (United States)

    Owens, Ginny

    1984-01-01

    To offer students biological field experiences, teachers should use their own basic skills, be enthusiastic motivators, participate in community programs/courses/workshops to acquire additional skills/knowledge for outdoor biological education, plan outdoor excursions with safety considerations in mind, and use available resources for classroom…

  4. Summer Oral Expression English course

    CERN Multimedia

    2012-01-01

    An English Oral Expression course will take place this summer from 20 August to 29 September.   Schedule: to be determined (2 sessions of 2 hours per week). Please note that this course is for learners who have a good knowledge of English (CERN level 7 upwards). If you are interested in following this course, please enroll through this link. Please be sure to indicate your planned absences in the comments field so we can schedule the course. If you need more information please send a message to English.training@cern.ch

  5. Summer Oral Expression English course

    CERN Document Server

    2013-01-01

    An English Oral Expression course will take place this summer at some time between August 19 and October 4.   Schedule: to be determined (2 sessions of 2 hours per week). Please note that this course is for learners who have a good knowledge of English (CERN level 7 upwards). If you are interested in following this course, please enroll through this link. Please be sure to indicate your planned absences in the comments field so we can schedule the course. If you need more information please send a message to English.training@cern.ch.

  6. A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction

    Science.gov (United States)

    Gardner, Joel; Belland, Brian R.

    2012-01-01

    Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…

  7. Plant biology in the future.

    Science.gov (United States)

    Bazzaz, F A

    2001-05-08

    In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of "Complexity Theory" think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal

  8. Travel Agent Course Outline.

    Science.gov (United States)

    British Columbia Dept. of Education, Victoria.

    Written for college entry-level travel agent training courses, this course outline can also be used for inservice training programs offered by travel agencies. The outline provides information on the work of a travel agent and gives clear statements on what learners must be able to do by the end of their training. Material is divided into eight…

  9. The Effectiveness of Distance Education across Virginia's Community Colleges: Evidence from Introductory College-Level Math and English Courses

    Science.gov (United States)

    Xu, Di; Jaggars, Shanna Smith

    2011-01-01

    Although online learning is rapidly expanding in the community college setting, there is little evidence regarding its effectiveness among community college students. In the current study, the authors used a statewide administrative data set to estimate the effects of taking one's first college-level math or English course online rather than face…

  10. Examining Portfolio-Based Assessment in an Upper-Level Biology Course

    Science.gov (United States)

    Ziegler, Brittany Ann

    2012-01-01

    Historically, students have been viewed as empty vessels and passive participants in the learning process but students actually are active forming their own conceptions. One way student learning is impacted is through assessment. Alternative assessment, which contrasts traditional assessment methods, takes into account how students learn by…

  11. Pre-Service Teachers' Opinions about the Course on Scientific Research Methods and the Levels of Knowledge and Skills They Gained in This Course

    Science.gov (United States)

    Tosun, Cemal

    2014-01-01

    The purpose of this study was to ascertain whether the pre-service teachers taking the Scientific Research Methods course attained basic research knowledge and skills. In addition, the impact of the process, which is followed while implementing the course, on the students' anxiety and attitude during the course is examined. Moreover, the study…

  12. Use of Shadowing-Based Learning in an Allied Health Microbiology Course

    Directory of Open Access Journals (Sweden)

    Alex A. Lowrey

    2016-05-01

    Full Text Available Students in an undergraduate microbiology course for health professions majors perform a shadowing-based learning exercise for their course project. Students accomplish this by shadowing a health care professional of their choice, specifically incorporating basic microbiological concept themes into their observations. These concept themes include the biological nature, health effects, detection, and control of microorganisms. Upon completion of the shadowing experience, students present a concise report, which is graded on how well the students connect course scientific concepts with actual clinical practice.

  13. President's categorical course on lymphoma

    International Nuclear Information System (INIS)

    Hoppe, Richard T.

    1997-01-01

    Improvements in the classification, staging, and treatment of the lymphomas, complemented by an improved understanding of the biology of these diseases, has led to an improved outcome of therapy for both Hodgkin's disease and many of the non-Hodgkin's lymphomas. The rapid changes that have occurred in this field in the last decade make it timely to review this subject for radiation oncologists in a comprehensive fashion. This course is designed to meet broad educational needs required for understanding these diseases and providing effective care for patients with lymphoma. The faculty includes many leaders from both laboratory and clinical disciplines dealing with lymphomas, who will address a variety of scientific and clinical topics. The morning session will be devoted to Hodgkin's disease, including new concepts in its biology, a review of clinical trials for early stage disease, a discussion of the role of high dose therapy, and description of long term complications of treatment. The afternoon sessions will be devoted to the non-Hodgkin's lymphomas, including new concepts in pathology and biology, a description of specific entities including the low grade lymphomas, MALT lymphomas, extranodal lymphomas, intermediate grade lymphomas, mantle cell lymphomas, and summary discussions of the role of radioimmuno-therapy and high dose therapy. Although the role of radiation therapy in the management of patients with lymphoma has changed dramatically in the past two decades, radiation remains the most effective single agent for the treatment of these diseases and it is especially important for radiation onologists to keep abreast of these new concepts. This course has been designed to achieve that goal

  14. Student views regarding online freshmen physics courses

    Science.gov (United States)

    Ramlo, Susan

    2017-10-01

    Background: Nationally, many public universities have started to move into the online course and program market that was previously associated with for-profit institutions of higher education. Public university administrators state that students seek the flexibility of online courses. But do students want to take courses online, especially freshmen-level science courses perceived to be difficult?

  15. [Effect of large-scale repair work on indoor formaldehyde levels upon and subjective symptoms in, medical students during gross anatomy dissection course].

    Science.gov (United States)

    Mori, Mihoko; Hoshiko, Michiko; Hara, Kunio; Ishitake, Tatsuya; Saga, Tsuyoshi; Yamaki, Koichi

    2012-01-01

    To examine the effect of large-scale repair work on indoor formaldehyde (FA) levels and subjective symptoms in medical students during a gross anatomy dissection course. We measured the indoor FA levels, room air temperature, and room humidity during a gross anatomy dissection course. In addition, the prevalence of subjective symptoms, keeping allergy state, and wearing personal protective equipment were surveyed in two groups of students using a self-administered questionnaire. The mean indoor FA levels before and after repair work were 1.22 ppm and 0.14 ppm, respectively. The mean indoor FA level significantly decreased after repair work. The prevalences of most subjective symptoms before the anatomy practice were similar before and after the repair work. However, the prevalences of most subjective symptoms during the anatomy practice were lower after the repair work. The mean indoor FA levels and prevalences of subjective symptoms decreased after the repair work. We have to continuously monitor indoor FA levels, carry out private countermeasures to minimize exposure to FA, and maintain equipment for ventilation to be able to conduct practice in a comfortable environment.

  16. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    2014-01-01

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit…

  17. Testing of Biologically Inhibiting Surface

    DEFF Research Database (Denmark)

    Bill Madsen, Thomas; Larsen, Erup

    2003-01-01

    The main purpose of this course is to examine a newly developed biologically inhibiting material with regards to galvanic corrosion and electrochemical properties. More in detail, the concern was how the material would react when exposed to cleaning agents, here under CIP cleaning (Cleaning...

  18. Science Academies' Refresher Course in Quantum Mechanics Post ...

    Indian Academy of Sciences (India)

    Physics Dept

    2016-02-20

    Feb 20, 2016 ... Quantum Mechanics is essential for understanding Physics, Chemistry and even modern Biology. A brief outline of the course is as follows: Schrödinger equation, Hydrogen atom, mathematics of linear vector space, principles and postulates of quantum mechanics, angular momentum, perturbation theory.

  19. FUTURE BIOLOGY TEACHERS’ METHODOLOGICAL TRAINING FOR THE STUDENTS’ ENVIRONMENTAL EDUCATION IN UKRAINE AND ABROAD

    Directory of Open Access Journals (Sweden)

    Nataliia Hrytsai

    2017-04-01

    Full Text Available The environmental education is an important element of general education related to the mastery of the scientific principles of interaction between nature and society. The Biology teacher should be prepared to implement the environmental education in Biology lessons at school, to organize the methodologically studying activities for students. The author has been studied different aspects of environmental education in secondary schools of Ukraine and abroad by foreign scientists (N. Andreeva, L. Rybalko, M. Skiba, O. Tsurul, T. Chistiakova. However, until now the content of the biologist-students’ methodological training in schoolchildren’s environmental education has not been studied yet. The purpose of the article is to reveal the contents and features of methodological training of future Biology teachers for the schoolchildren’s environmental education at Ukrainian and foreign Universities. The research methods are the theoretical analysis of scientific literature on the issue, the study of future Biology teachers’ methodological training in Ukraine and abroad, comparisons, generalizations and making conclusions. The article reveals the nature of environmental education, defines its mission and place in future Biology teachers’ training. The author has analysed the curricula of future Biology teachers’ training at the Universities of Ukraine and abroad, the content of teaching courses that include issues of environmental education. The importance of implementing ecological approach into future Biology teachers’ methodological training is emphasized. The author suggests subjects of methodological direction that raise the future Biology teachers’ level for implementing environmental education into secondary schools. It is established that Biology teachers’ proper training to the students’ environmental education as a basic one in high school curricula is necessary for specialty 014 Secondary education (Biology at pedagogical

  20. Gender Gaps in Achievement and Participation in Multiple Introductory Biology Classrooms

    Science.gov (United States)

    Brownell, Sara E.; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large introductory biology classes for majors, we examine two measures of gender disparity in biology: academic achievement and participation in whole-class discussions. We found that females consistently underperform on exams compared with males with similar overall college grade point averages. In addition, although females on average represent 60% of the students in these courses, their voices make up less than 40% of those heard responding to instructor-posed questions to the class, one of the most common ways of engaging students in large lectures. Based on these data, we propose that, despite numerical dominance of females, gender disparities remain an issue in introductory biology classrooms. For student retention and achievement in biology to be truly merit based, we need to develop strategies to equalize the opportunities for students of different genders to practice the skills they need to excel. PMID:25185231

  1. Road Safety Education in a Science Course: Evaluation of "Science and the Road."

    Science.gov (United States)

    Gardner, Paul L.

    1989-01-01

    A traffic safety instructional package--"Science and the Road"--was assessed. It was designed by the Road Traffic Authority of Victoria (Australia) for use in tenth-grade science courses. Evaluation findings resulted in revision of the unit and implementation of more inservice courses for teachers lacking relevant biology and physics…

  2. The perspectives of nonscience-major students on success in community college biology

    Science.gov (United States)

    Kim-Rajab, Oriana Sharon

    With more than 36% of nonscience-major community college students unable to successfully complete their general life science courses, graduation and transfer rates to four-year universities are negatively affected. Many students also miss important opportunities to gain some level of science proficiency. In an effort to address the problem of poor science achievement, this research project determined which factors were most significantly related to student success in a community college biology course. It also aimed to understand the student perspectives on which modifications to the course would best help them in the pursuit of success. Drawing heavily on the educational psychology schools of thought on motivation and self-efficacy of science learning, this study surveyed and interviewed students on their perceptions of which factors were related to success in biology and the changes they believed were needed in the course structure to improve success. The data revealed that the primary factors related to student success are the students' study skills and their perceived levels of self-efficacy. The findings also uncovered the critical nature of the professor's role in influencing the success of the students. After assessing the needs of the community college population, meaningful and appropriate curriculum and pedagogical reforms could be created to improve student learning outcomes. This study offered recommendations for reforms that can be used by science practitioners to provide a more nurturing and inspiring environment for all students. These suggestions revolved around the role of the instructor in influencing the self-efficacy and study skills of students. Providing more opportunities for students to interact in class, testing more frequently, establishing peer assistance programs, managing better the course material, and making themselves more available to students were at the forefront of the list. Examples of the potential benefits of increasing

  3. French courses for beginners

    CERN Multimedia

    Françoise Benz

    2006-01-01

    If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an 'application for training'form available from your Departmental Secretariat or from your DTO (Departmental Training Officer). Applications will be accepted in the order in which they are received. French courses for beginners (level 0) From 17 July to 31 August 2006. Mondays, Tuesdays, Wednesdays and Thursdays(8 hours a week / between 11.00 and 15.30) Duration: 56 hours Price: 728 CHF For registration and further information on the courses, please consult our Web pages: http://cern.ch/Training or contact Mrs. Benz: Tel. 73127.

  4. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  5. Freshman Biology Majors' Misconceptions about Diffusion and Osmosis.

    Science.gov (United States)

    Odom, A. Louis; Barrow, Lloyd H.

    The data for this study were obtained from a sample of 117 biology majors enrolled in an introductory biology course. The Diffusion and Osmosis Diagnostic Test, composed of 12 two-tier items, was administered to the students. Among the major findings are: (1) there was no significant difference in scores of male and female students; (2) math…

  6. Top-down models in biology: explanation and control of complex living systems above the molecular level.

    Science.gov (United States)

    Pezzulo, Giovanni; Levin, Michael

    2016-11-01

    It is widely assumed in developmental biology and bioengineering that optimal understanding and control of complex living systems follows from models of molecular events. The success of reductionism has overshadowed attempts at top-down models and control policies in biological systems. However, other fields, including physics, engineering and neuroscience, have successfully used the explanations and models at higher levels of organization, including least-action principles in physics and control-theoretic models in computational neuroscience. Exploiting the dynamic regulation of pattern formation in embryogenesis and regeneration requires new approaches to understand how cells cooperate towards large-scale anatomical goal states. Here, we argue that top-down models of pattern homeostasis serve as proof of principle for extending the current paradigm beyond emergence and molecule-level rules. We define top-down control in a biological context, discuss the examples of how cognitive neuroscience and physics exploit these strategies, and illustrate areas in which they may offer significant advantages as complements to the mainstream paradigm. By targeting system controls at multiple levels of organization and demystifying goal-directed (cybernetic) processes, top-down strategies represent a roadmap for using the deep insights of other fields for transformative advances in regenerative medicine and systems bioengineering. © 2016 The Author(s).

  7. Detecting subnetwork-level dynamic correlations.

    Science.gov (United States)

    Yan, Yan; Qiu, Shangzhao; Jin, Zhuxuan; Gong, Sihong; Bai, Yun; Lu, Jianwei; Yu, Tianwei

    2017-01-15

    The biological regulatory system is highly dynamic. The correlations between many functionally related genes change over different biological conditions. Finding dynamic relations on the existing biological network may reveal important regulatory mechanisms. Currently no method is available to detect subnetwork-level dynamic correlations systematically on the genome-scale network. Two major issues hampered the development. The first is gene expression profiling data usually do not contain time course measurements to facilitate the analysis of dynamic relations, which can be partially addressed by using certain genes as indicators of biological conditions. Secondly, it is unclear how to effectively delineate subnetworks, and define dynamic relations between them. Here we propose a new method named LANDD (Liquid Association for Network Dynamics Detection) to find subnetworks that show substantial dynamic correlations, as defined by subnetwork A is concentrated with Liquid Association scouting genes for subnetwork B. The method produces easily interpretable results because of its focus on subnetworks that tend to comprise functionally related genes. Also, the collective behaviour of genes in a subnetwork is a much more reliable indicator of underlying biological conditions compared to using single genes as indicators. We conducted extensive simulations to validate the method's ability to detect subnetwork-level dynamic correlations. Using a real gene expression dataset and the human protein-protein interaction network, we demonstrate the method links subnetworks of distinct biological processes, with both confirmed relations and plausible new functional implications. We also found signal transduction pathways tend to show extensive dynamic relations with other functional groups. The R package is available at https://cran.r-project.org/web/packages/LANDD CONTACTS: yunba@pcom.edu, jwlu33@hotmail.com or tianwei.yu@emory.eduSupplementary information: Supplementary data

  8. Redox Biology Course Registration Form | Center for Cancer Research

    Science.gov (United States)

    The Redox Biology class is open to all NIH/NCI fellows and staff and will be held Septhember 27 - November 8, 2016. The last day to register is: September 21, 2016. The first 100 registrants will be accepted for the class. Those who plan to participate by Video TeleConference should also register so that you can receive the speaker handouts in advance.

  9. Development and Assessment of Service Learning Projects in General Biology

    Science.gov (United States)

    Felzien, Lisa; Salem, Laura

    2008-01-01

    Service learning involves providing service to the community while requiring students to meet learning goals in a specific course. A service learning project was implemented in a general biology course at Rockhurst University to involve students in promoting scientific education in conjunction with community partner educators. Students were…

  10. Teaching practices and professional development of biology professors at small, private, liberal arts colleges in the Southeast

    Science.gov (United States)

    Mallory, Sarah Elizabeth Bradford

    Science teaching in pre-college institutions has been undergoing reform in recent years, particularly since 1996, when the National Science Education Standards were published. This reform includes inquiry-based teaching, student-centered classrooms, authentic assessment, and collaborative learning. Professional development is also recommended in the Standards document as the means for preparing teachers for reform-based teaching in pre-college classrooms. In post-secondary institutions, there is no curriculum-governing body to institute reform, and college faculty have devised their own standards and methods for teaching science, most often in the form of lecture and traditional procedure-driven laboratory exercises. This study was conducted to find examples of reform-based biology teaching in small, private, liberal arts colleges in the Southeast, where teaching innovations may be more likely to occur due to the size and independence of the schools. Professional development opportunities were also examined, since these would be important in the development of new curricula and methods of teaching. Data were collected from 151 participants, representing 78.3% of these colleges in eight southeastern states, by survey and from three volunteers by on-site interviews. Teaching was the main responsibility reported by all respondents, with both lower and upper level biology courses taught by all participants. Significant differences were found in the use of reform-based teaching in lower level biology courses versus upper level biology courses. Overall average use of inquiry-based teaching was 70.5%, while student-centered learning was reported on average by 57% of respondents, authentic assessment was reported on average by 56.6% of respondents, and collaborative learning was reported on average by 56% of respondents. Professional development opportunities most frequently used were reported to be journal, books, and videotapes. Multivariate regression analyses revealed

  11. The new Cambridge English course student 1

    CERN Document Server

    Swan, Michael

    1991-01-01

    The New Cambridge English Course is a course teachers and students can rely on to cover the complete range and depth of language and skills needed from beginner to upper-intermediate level. Each level is designed to provide at least 72 hours of class work using the Student's Book, with additional self-study material provided in the Practice Book. The course has a proven multi-syllabus approach which integrates work on all the vital aspects of language study: grammar, vocabulary, pronunciation, skills, notions and functions.

  12. Teaching Gender and Sexuality Diversity in Foundations of Education Courses in the US

    Science.gov (United States)

    O'Malley, Michael; Hoyt, Mei; Slattery, Patrick

    2009-01-01

    This article is a summary of comprehensive units on gender and sexuality diversity that the authors have used in teacher education courses in undergraduate and graduate social foundations of education classes over several years. The course lesson plan includes a five-part analysis of the following categories: biological sex; gender identity/sexual…

  13. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum

    Directory of Open Access Journals (Sweden)

    Ryan A. Shanks

    2017-05-01

    Full Text Available Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.

  14. PENGEMBANGAN KURIKULUM JURUSAN TADRIS IPA BIOLOGI IAIN SYEKH NURJATI CIREBON DALAM MENGANTISIPASI PENERAPAN KURIKULUM 2013

    Directory of Open Access Journals (Sweden)

    Kartimi -

    2014-04-01

    menekankan pendekatan scientific approach (mengamati, menanyakan, menalar, mencoba, mengkomunikasikan / membuat jejaring. Plan for the implementation of Curriculum 2013 is the right moment for science courses - biology Tadris IAIN Sheikh Nurjati Cirebon to conduct a review and evaluation of curriculum continuity majors in force , and at the same time to develop , repair and modification of the curriculum , in order to adapt to the practices of change Biology education in secondary school . The purpose of this study were: 1 determine the characteristics of curriculum - science majors Biology Tadris current , 2 determine the characteristics of the curriculum in 2013 relating to the teaching of biology in high school , 3 formulate and develop a curriculum design - science courses Tadris Biology as a result adaptations to the curriculum in 2013 . study design using the Design and Development research Tools research & Product category ( Richey & Klein , 2007 . Subjects were Tadris science courses - biology IAIN Sheikh Nurjati Cirebon . The instruments used were : 1 Protocol Analysis Program Curriculum Document , 2 Protocol Analysis Curriculum Document 2013 for high school Biology , 3 Material of validation for the theoretical framework of the course curriculum design , 4 Material of validation for the instrument design course curriculum . Data analysis techniques performed descriptively and analyzed using descriptive statistics . The results showed that the course curriculum Tadris IPA - Sheikh Biology IAIN Nurjati Cirebon has been arranged as a competence -based curriculum that integrates academic with a charge to Islamization . Completeness of course curriculum documents still need improvement . 2013 Curriculum for teaching high school Biology / MA packaged as specialization subjects of Mathematics and Natural Science that includes the core competencies of spiritual attitudes , social attitudes , knowledge and skills . Each core competency has been translated into a variety of

  15. "On the job" learning: A bioinformatics course incorporating undergraduates in actual research projects and manuscript submissions.

    Science.gov (United States)

    Smith, Jason T; Harris, Justine C; Lopez, Oscar J; Valverde, Laura; Borchert, Glen M

    2015-01-01

    The sequencing of whole genomes and the analysis of genetic information continues to fundamentally change biological and medical research. Unfortunately, the people best suited to interpret this data (biologically trained researchers) are commonly discouraged by their own perceived computational limitations. To address this, we developed a course to help alleviate this constraint. Remarkably, in addition to equipping our undergraduates with an informatic toolset, we found our course design helped prepare our students for collaborative research careers in unexpected ways. Instead of simply offering a traditional lecture- or laboratory-based course, we chose a guided inquiry method, where an instructor-selected research question is examined by students in a collaborative analysis with students contributing to experimental design, data collection, and manuscript reporting. While students learn the skills needed to conduct bioinformatic research throughout all sections of the course, importantly, students also gain experience in working as a team and develop important communication skills through working with their partner and the class as a whole, and by contributing to an original research article. Remarkably, in its first three semesters, this novel computational genetics course has generated 45 undergraduate authorships across three peer-reviewed articles. More importantly, the students that took this course acquired a positive research experience, newfound informatics technical proficiency, unprecedented familiarity with manuscript preparation, and an earned sense of achievement. Although this course deals with analyses of genetic systems, we suggest the basic concept of integrating actual research projects into a 16-week undergraduate course could be applied to numerous other research-active academic fields. © 2015 The International Union of Biochemistry and Molecular Biology.

  16. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  17. A National Comparison of Biochemistry and Molecular Biology Capstone Experiences

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the "American Society for Biochemistry and Molecular Biology" (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end,…

  18. Exploring How Second Grade Elementary Teachers Translate Their Nature of Science Views into Classroom Practice After a Graduate Level Nature of Science Course

    Science.gov (United States)

    Deniz, Hasan; Adibelli, Elif

    2015-12-01

    The main purpose of this study was to explore the factors mediating the translation of second grade teachers' nature of science (NOS) views into classroom practice after completing a graduate level NOS course. Four second grade in-service elementary teachers comprised the sample of this study. Data were collected from several sources during the course of this study. The primary data sources were (a) assessment of the elementary teachers' NOS views before and after the graduate level NOS course using the Views of Nature of Science Questionnaire Version B (VNOS-B) (Lederman et al., 2002) coupled with interviews, and (b) a classroom observation and videotaped recording of the elementary teachers' best NOS lessons coupled with interview. We identified three distinct but related factors that mediated the translation of NOS views into classroom practice: the teachers' perspectives about the developmental appropriateness of the NOS aspect, the teachers' selection of target NOS aspects, and the relative importance placed by teachers on each NOS aspect.

  19. Use of Multimedia in an Introductory College Biology Course to Improve Comprehension of Complex Material

    Science.gov (United States)

    Rhodes, Ashley; Rozell, Tim; Shroyer, Gail

    2014-01-01

    Many students who have the ability to succeed in science, technology, engineering and math (STEM) disciplines are often alienated by the traditional instructional methods encountered within introductory courses; as a result, attrition from STEM fields is highest after completion of these courses. This is especially true for females. The present…

  20. Assessment of primary school students’ level of understanding the concepts of 2nd grade life sciences course based on different variables

    Directory of Open Access Journals (Sweden)

    Altıntaş Gülşen

    2016-01-01

    Full Text Available The course of Life Sciences is one of the pivot courses taught in the first three years of primary school. Ensuring children get to know their environment and gain correct information related to their problems by making them investigate their natural and socio-cultural environment as well as providing them with necessary information, skills and behaviors for environmental adaptation are among the main purposes of Life Sciences course. The concepts to be instilled in students in line with these purposes are important. Since concepts are mostly intellectual and non-physical, they can only exist tangibly through examples. This study aims to assess Primary School Students’ Level of Understanding the Concepts of 2nd Grade Life Sciences Course Based on Different Variables. 17 concepts included in the 2nd Grade Life Sciences course within the subject of School Excitement were addressed within the study, and students were requested to define and exemplify these concepts. A total of 102 students from five different primary schools of upper-middle and lower socioeconomic classes located in Manisa and Istanbul were included in the study in line with the intentional maximum diversity sample selection. The answers given by students for each concept were categorized and analyzed in terms of liking or disliking home, school, technology and the course of Life Sciences.