WorldWideScience

Sample records for level air temperature

  1. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to physically-based models being unable to simulate observed sea level trends, semi-empirical models have been applied as an alternative for projecting...... of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship between sea...... level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s is exceptional in the sense that sea level and warming deviates from the expected...

  2. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A; Sugimori, Y.; Kubota, M.

    -T a and precipitable water. The rms errors of the SSMI-T a , in this case are found to be reduced to 1.0°C. 1. Introduction Satellite derived surface-level meteorological parameters are considered to be a better alternative to sparse ship... Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science...

  3. The Influence od Air Temperature and Barometric Pressure on Radon and Carbon Dioxide Levels in Air of a Karst Cave

    International Nuclear Information System (INIS)

    Obu, K.; Cencur Curk, B.; Gregoric, A.; Smerajec, M.; Vaupotic, J.; Fujiyoshi, R.; Sakuta, Y.

    2011-01-01

    Radioactive noble gas radon (222Rn) is created in minerals by radioactive transformation of 226Ra within the 238U natural decay chain. It migrates through the ground, accumulates in underground rooms (e. g., karst caves) and eventually enters the atmosphere. It is always present in our living and working environment. Because of its harmful health effect, it presents a serious social concern but is, on the other hand, a useful tool in several scientific disciplines. It is thus used as a tracer in exploring movement of air masses and an indicator of tectonic faults. Another minor constituent of air is carbon dioxide. Similar as radon, it is dangerous at high levels, but its presence in air of karst caves is indispensable for their life, because it governs speleogenetic processes. In the cave air, its concentration is determined by the inflow of outside air, biogenic activity of soil, degradation of organic matter and carbonate, degassing from water, and human activity. Therefore, ventilation of the cave is crucial for its conservation. Based on temporal variations of radon and carbon dioxide levels, ventilation regime in the cave can be estimated. Radon has been surveyed in all the twenty show caves and in thirty other caves in Slovenia, with emphasis on the Postojna Cave. In the present study, in addition to radon, monitoring of carbon dioxide was introduced for the first time. The Kostanjevica Cave, situated in southern Slovenia in an isolated island of karst, was selected because it is crossed by a tectonic fault at which measurements of three-dimensional micro displacements are underway. Because of the fault, high levels of radon and carbon dioxide were expected. In this paper, measurements are described and both the spatial and time variations of radon and carbon dioxide levels are presented and commented on. Continuous radon monitoring was carried out with the RadonScout devices (Sarad, Germany) from April to December 2009, with several interruptions because of

  4. Demand control on room level of the supply air temperature in an air heating and ventilation system

    DEFF Research Database (Denmark)

    Polak, Joanna; Afshari, Alireza; Bergsøe, Niels Christian

    2017-01-01

    air heating and ventilation system in a high performance single family house using BSim simulation software. The provision of the desired thermal conditions in different rooms was examined. Results show that the new control strategy can facilitate maintaining of desired temperatures in various rooms......The aim of this study was to investigate a new strategy for control of supply air temperature in an integrated air heating and ventilation system. The new strategy enables demand control of supply air temperature in individual rooms. The study is based on detailed dynamic simulations of a combined....... Moreover, this control strategy enables controlled temperature differentiation between rooms within the house and therefore provides flexibility and better balance in heat delivery. Consequently, the thermal conditions in the building can be improved....

  5. Spatiotemporal estimation of air temperature patterns at the street level using high resolution satellite imagery.

    Science.gov (United States)

    Pelta, Ran; Chudnovsky, Alexandra A

    2017-02-01

    Although meteorological monitoring stations provide accurate measurements of Air Temperature (AT), their spatial coverage within a given region is limited and thus is often insufficient for exposure and epidemiological studies. In many applications, satellite imagery measures energy flux, which is spatially continuous, and calculates Brightness Temperature (BT) that used as an input parameter. Although both quantities (AT-BT) are physically related, the correlation between them is not straightforward, and varies daily due to parameters such as meteorological conditions, surface moisture, land use, satellite-surface geometry and others. In this paper we first investigate the relationship between AT and BT as measured by 39 meteorological stations in Israel during 1984-2015. Thereafter, we apply mixed regression models with daily random slopes to calibrate Landsat BT data with monitored AT measurements for the period 1984-2015. Results show that AT can be predicted with high accuracy by using BT with high spatial resolution. The model shows relatively high accuracy estimation of AT (R 2 =0.92, RMSE=1.58°C, slope=0.90). Incorporating meteorological parameters into the model generates better accuracy (R 2 =0.935) than the AT-BT model (R 2 =0.92). Furthermore, based on the relatively high model accuracy, we investigated the spatial patterns of AT within the study domain. In the latter we focused on July-August, as these two months are characterized by relativity stable synoptic conditions in the study area. In addition, a temporal change in AT during the last 30years was estimated and verified using available meteorological stations and two additional remote sensing platforms. Finally, the impact of different land coverage on AT were estimated, as an example of future application of the presented approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Fast Air Temperature Sensors

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1998-01-01

    The note documents briefly work done on a newly developed sensor for making fast temperature measurements on the air flow in the intake ports of an SI engine and in the EGR input line. The work reviewed has been carried out in close cooperation with Civ. Ing. Michael Føns, the author (IAU...

  7. AIRS/Aqua Level 1B HSB geolocated and calibrated brightness temperatures V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  8. Influence of wind velocity fluctuation on air temperature difference between the fan and ground levels and the effect of frost protective fan operation

    International Nuclear Information System (INIS)

    Araki, T.; Matsuo, K.; Miyama, D.; Sumikawa, O.; Araki, S.

    2008-01-01

    We invested the influence of wind velocity fluctuation on air temperature difference between the fan (4.8 m) and ground levels (0.5 m) and the effect of frost protective fan operation in order to develop a new method to reduce electricity consumption due to frost protective fan operation. The results of the investigations are summarized as follows: (1) Air temperature difference between the fan (4.8 m) and ground levels (0.5 m) was decreased following an increase in wind velocity, and the difference was less than 1°C for a wind velocity more than 3.0 m/s at a height of 6.5 m. (2) When the wind velocity was more than 2-3 m/s, there was hardly any increase in the temperature of the leaves. In contrast, when the wind velocity was less than 2-3 m/s, an increase in the temperature of the leaves was observed. Based on these results, it is possible that when the wind velocity is greater than 2-3 m, it prevents thermal inversion. Therefore, there would be no warmer air for the frost protective fan to return to the tea plants and the air turbulence produced by the frost protective fan would not reach the plants under the windy condition

  9. CDC WONDER: Daily Air Temperatures and Heat Index

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Air Temperature and Heat Index data available on CDC WONDER are county-level daily average air temperatures and heat index measures spanning the years...

  10. County-Level Climate Uncertainty for Risk Assessments: Volume 4 Appendix C - Historical Maximum Near-Surface Air Temperature.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  11. County-Level Climate Uncertainty for Risk Assessments: Volume 6 Appendix E - Historical Minimum Near-Surface Air Temperature.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  12. County-Level Climate Uncertainty for Risk Assessments: Volume 2 Appendix A - Historical Near-Surface Air Temperature.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  13. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  14. AIRS/Aqua Level 1B AMSU (A1/A2) geolocated and calibrated brightness temperatures V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  15. Processing AIRS Scientific Data Through Level 3

    Science.gov (United States)

    Granger, Stephanie; Oliphant, Robert; Manning, Evan

    2010-01-01

    The Atmospheric Infra-Red Sounder (AIRS) Science Processing System (SPS) is a collection of computer programs, known as product generation executives (PGEs). The AIRS SPS PGEs are used for processing measurements received from the AIRS suite of infrared and microwave instruments orbiting the Earth onboard NASA's Aqua spacecraft. Early stages of the AIRS SPS development were described in a prior NASA Tech Briefs article: Initial Processing of Infrared Spectral Data (NPO-35243), Vol. 28, No. 11 (November 2004), page 39. In summary: Starting from Level 0 (representing raw AIRS data), the AIRS SPS PGEs and the data products they produce are identified by alphanumeric labels (1A, 1B, 2, and 3) representing successive stages or levels of processing. The previous NASA Tech Briefs article described processing through Level 2, the output of which comprises geo-located atmospheric data products such as temperature and humidity profiles among others. The AIRS Level 3 PGE samples selected information from the Level 2 standard products to produce a single global gridded product. One Level 3 product is generated for each day s collection of Level 2 data. In addition, daily Level 3 products are aggregated into two multiday products: an eight-day (half the orbital repeat cycle) product and monthly (calendar month) product.

  16. Thermal infrared imaging of the variability of canopy-air temperature difference distribution for heavy metal stress levels discrimination in rice

    Science.gov (United States)

    Zhang, Biyao; Liu, Xiangnan; Liu, Meiling; Wang, Dongmin

    2017-04-01

    This paper addresses the assessment and interpretation of the canopy-air temperature difference (Tc-Ta) distribution as an indicator for discriminating between heavy metal stress levels. Tc-Ta distribution is simulated by coupling the energy balance equation with modified leaf angle distribution. Statistical indices including average value (AVG), standard deviation (SD), median, and span of Tc-Ta in the field of view of a digital thermal imager are calculated to describe Tc-Ta distribution quantitatively and, consequently, became the stress indicators. In the application, two grains of rice growing sites under "mild" and "severe" stress level were selected as study areas. A total of 96 thermal images obtained from the field measurements in the three growth stages were used for a separate application of a theoretical variation of Tc-Ta distribution. The results demonstrated that the statistical indices calculated from both simulated and measured data exhibited an upward trend as the stress level becomes serious because heavy metal stress would only raise a portion of the leaves in the canopy. Meteorological factors could barely affect the sensitivity of the statistical indices with the exception of the wind speed. Among the statistical indices, AVG and SD were demonstrated to be better indicators for stress levels discrimination.

  17. Crowdsourcing urban air temperatures from smartphone battery temperatures

    Science.gov (United States)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  18. Estimation of bare soil surface temperature from air temperature and ...

    African Journals Online (AJOL)

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  19. Projections of precipitation, air temperature and potential ...

    African Journals Online (AJOL)

    mabouelhaggag

    Precipitation and air temperature records from 6 sites in Rwanda in the period from 1964 to 2010 are used for past/present climate assessment. Future climate projections (2010-2099) based on 3 general circulation models and 2 emission scenarios (A2 and B1) are used for climate projections. Precipitation, air temperature ...

  20. Processing AIRS Scientific Data Through Level 2

    Science.gov (United States)

    Oliphant, Robert; Lee, Sung-Yung; Chahine, Moustafa; Susskind, Joel; arnet, Christopher; McMillin, Larry; Goldberg, Mitchell; Blaisdell, John; Rosenkranz, Philip; Strow, Larrabee

    2007-01-01

    The Atmospheric Infrared Spectrometer (AIRS) Science Processing System (SPS) is a collection of computer programs, denoted product generation executives (PGEs), for processing the readings of the AIRS suite of infrared and microwave instruments orbiting the Earth aboard NASA s Aqua spacecraft. AIRS SPS at an earlier stage of development was described in "Initial Processing of Infrared Spectral Data' (NPO-35243), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 39. To recapitulate: Starting from level 0 (representing raw AIRS data), the PGEs and their data products are denoted by alphanumeric labels (1A, 1B, and 2) that signify the successive stages of processing. The cited prior article described processing through level 1B (the level-2 PGEs were not yet operational). The level-2 PGEs, which are now operational, receive packages of level-1B geolocated radiance data products and produce such geolocated geophysical atmospheric data products such as temperature and humidity profiles. The process of computing these geophysical data products is denoted "retrieval" and is quite complex. The main steps of the process are denoted microwave-only retrieval, cloud detection and cloud clearing, regression, full retrieval, and rapid transmittance algorithm.

  1. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NARCIS (Netherlands)

    Overeem, A.; Robinson, J.C.R.; Leijnse, H.; Steeneveld, G.J.; Horn, B.K.P.; Uijlenhoet, R.

    2013-01-01

    [1] Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in

  2. Effects of open-air temperature on air temperature inside biological safety cabinet.

    Science.gov (United States)

    Umemura, Masayuki; Shigeno, Katsuro; Yamamura, Keiko; Osada, Takashi; Soda, Midori; Yamada, Kiyofumi; Ando, Yuichi; Wakiya, Yoshifumi

    2011-02-14

    In Japan, biological safety cabinets (BSCs) are normally used by medical staff while handling antineoplastic agents. We have also set up a class II B2 BSC at the Division of Chemotherapy for Outpatients. The air temperature inside this BSC, however, decreases in winter. We assumed that this decrease is caused by the intake of open-air. Therefore, we investigated the effects of low open-air temperature on the BSC temperature and the time of admixtures of antineoplastic agents. The studies were conducted from January 1 to March 31, 2008. The outdoor air temperature was measured in the shade near the intake nozzle of the BSC and was compared with the BSC temperature. The correlation between the outdoor air temperature and the BSC temperature, the dissolution time of cyclophosphamide (CPA) and gemcitabine (GEM), and accurate weight measurement of epirubicin (EPI) solution were investigated for low and normal BSC temperatures. The BSC temperature was correlated with the open-air temperature for open-air temperatures of 5-20°C (p air is drawn from outdoors. We showed that the BSC temperature affects the dissolution rate of antineoplastic agents. Further, we suggested that the BSC temperature drop might delay the affair of the admixtures of antineoplastic agents and increase the waiting time of outpatients for chemotherapy.

  3. Perceived air quality, thermal comfort, and SBS symptoms at low air temperature and increased radiant temperature

    DEFF Research Database (Denmark)

    Toftum, Jørn; Reimann, Gregers Peter; Foldbjerg, P.

    2002-01-01

    source present at the low temperature. To maintain overall thermal neutrality, the low air temperature was partly compensated for by individually controlled radiant heating, and partly by allowing subjects to modify clothing insulation. A reduction of the air temperature from 23 deg.C to 18 deg.......C suggested an improvement of the perceived air quality, while no systematic effect on symptom intensity was observed. The overall indoor environment was evaluated equally acceptable at both temperatures due to local thermal discomfort at the low air temperature....

  4. Crowdsourcing urban air temperature measurements using smartphones

    Science.gov (United States)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  5. Ventilation influence upon indoor air radon level

    International Nuclear Information System (INIS)

    Tian Deyuan

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level. Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition, although using household conditioner requires a sealed room which should lead to a higher radon level. Turning on air conditioner helps lower indoor radon level. Therefore, the total indoor air Rn levels are normal > ventilation > exhaust or in-draft > exhaust plus in-draft

  6. Nowcasting daily minimum air and grass temperature

    Science.gov (United States)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  7. Undulator Hall Air Temperature Fault Scenarios

    International Nuclear Information System (INIS)

    Sevilla, J.

    2010-01-01

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about ±2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  8. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  9. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    Science.gov (United States)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  10. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    International Nuclear Information System (INIS)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric; Li, Hongwei; Li, Xiaopeng; Svendsen, Svend

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the actual heat demand. This results in 15–30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance, and stabilize indoor temperatures. The feasibility and the energy consumption reduction of this approach were verified by means of simulation and a field test. By moving the system from centrally planned heat delivery to demand-driven heat delivery, excess heat loss can be significantly reduced. Results show that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO_2, 0.1 kg SO_2, and 0.03 kg NO_x per heating square meter for a typical case in Harbin. - Highlights: • Two real cases reflect the temperature and flow control situation of heating systems in China. • Pre-set radiator valves with automatic balancing valves create dynamic hydraulic balance. • IDA-ICE simulation shows 17% heat saving and 48% pump electricity saving. • This approach can improve the comfort level of multi-storey/high-rise residential buildings. • This approach can reduce excess heat supply and bring out positive environmental impacts.

  11. AIRS/Aqua Near Real Time (NRT) Level 1B AMSU (A1/A2) geolocated and calibrated brightness temperatures V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  12. 40 CFR 91.309 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... measurement. 91.309 Section 91.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 100 cm of the air-intake of the engine. The measurement location must be either in...

  13. 40 CFR 89.325 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air...

  14. Outdoor Air Quality Level Inference via Surveillance Cameras

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2016-01-01

    Full Text Available Air pollution is a universal problem confronted by many developing countries. Because there are very few air quality monitoring stations in cities, it is difficult for people to know the exact air quality level anytime and anywhere. Fortunately, large amount of surveillance cameras have been deployed in the cities and can capture image densely and conveniently in the cities. In this case, this provides the possibility to utilize surveillance cameras as sensors to obtain data and predict the air quality level. To this end, we present a novel air quality level inference approach based on outdoor images. Firstly, we explore several features extracted from images as the robust representation for air quality prediction. Then, to effectively fuse these heterogeneous and complementary features, we adopt multikernel learning to learn an adaptive classifier for air quality level inference. In addition, to facilitate the research, we construct an Outdoor Air Quality Image Set (OAQIS dataset, which contains high quality registered and calibrated images with rich labels, that is, concentration of particles mass (PM, weather, temperature, humidity, and wind. Extensive experiments on the OAQIS dataset demonstrate the effectiveness of the proposed approach.

  15. The effect of air velocity on heat stress at increased air temperature

    DEFF Research Database (Denmark)

    Bjerg, B.; Wang, Xiaoshuai; Zhang, Guoqiang

    Increased air velocity is a frequently used method to reduce heat stress of farm animals housed in warm conditions. The main reason why the method works is that higher air velocity increases the convective heat release from the animals. Convective heat release from the animals is strongly related...... to the temperature difference between the surfaces of animals and the surrounding air, and this temperature difference declines when the air temperature approaches the animal body temperature. Consequently it can it by expected that the effect of air velocity decreases at increased air temperature. The literature...... on farm animals in warm conditions includes several thermal indices which incorporate the effect of air velocities. But, surprisingly none of them predicts a decreased influence of air velocity when the air temperature approaches the animal body temperature. This study reviewed published investigations...

  16. 40 CFR 90.309 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 90.309 Section 90.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...

  17. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the a......A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance...... with the actual heat demand. This results in 15-30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance...... that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO2, 0.1 kg SO2, and 0...

  18. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  19. Relative air temperature analysis external building on Gowa Campus

    Science.gov (United States)

    Mustamin, Tayeb; Rahim, Ramli; Baharuddin; Jamala, Nurul; Kusno, Asniawaty

    2018-03-01

    This study aims to data analyze the relative temperature and humidity of the air outside the building. Data retrieval taken from weather monitoring device (monitoring) Vaisala, RTU (Remote Terminal Unit), Which is part of the AWS (Automatic Weather Stations) Then Processing data processed and analyzed by using Microsoft Excel program in the form of graph / picture fluctuation Which shows the average value, standard deviation, maximum value, and minimum value. Results of data processing then grouped in the form: Daily, and monthly, based on time intervals every 30 minutes. The results showed Outside air temperatures in March, April, May and September 2016 Which entered in the thermal comfort zone according to SNI standard (Indonesian National Standard) only at 06.00-10.00. In late March to early April Thermal comfort zone also occurs at 15.30-18.00. The highest maximum air temperature occurred in September 2016 at 11.01-11.30 And the lowest minimum value in September 2016, time 6:00 to 6:30. The result of the next analysis shows the level of data conformity with thermal comfort zone based on SNI (Indonesian National Standard) every month.

  20. Gas temperature of capacitance spark discharge in air

    International Nuclear Information System (INIS)

    Ono, Ryo; Nifuku, Masaharu; Fujiwara, Shuzo; Horiguchi, Sadashige; Oda, Tetsuji

    2005-01-01

    Capacitance spark discharge has been widely used for studying the ignition of flammable gas caused by electrostatic discharge. In the present study, the gas temperature of capacitance spark discharge is measured. The gas temperature is an important factor in understanding the electrostatic ignition process because it influences the reaction rate of ignition. Spark discharge is generated in air with a pulse duration shorter than 100 ns. The discharge energy is set to 0.03-1 mJ. The rotational and vibrational temperatures of the N 2 molecule are measured using the emission spectrum of the N 2 second positive system. The rotational and vibrational temperatures are estimated to be 500 and 5000 K, respectively, which are independent of the discharge energy. This result indicates that most of the electron energy is consumed in the excitation of vibrational levels of molecules rather than the heating of the gas. The gas temperature after discharge is also measured by laser-induced fluorescence of OH radicals. It is shown that the gas temperature increases after discharge and reaches approximately 1000 K at 3 μs after discharge. Then the temperature decreases at a rate in the range of 8-35 K/μs depending on the discharge energy

  1. The Influence of Air Temperature on the Dew Point Temperature in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    done to determine the influence and effect of temperature on other climatic environmental ... Key words: Air Temperature, Dew point temperature, Weather, Climate, Influence. Weather ... humidity, clouds and atmospheric pressure. Its.

  2. Air pollution removal and temperature reduction by Gainesville's urban forest

    Science.gov (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Poor air quality is a common problem in many urban areas. It can lead to human health problems and reduced visibility, and it can impair the health of plants and wildlife. The urban forest can help improve air quality by removing pollutants and by reducing air temperature through shading and transpiration. Trees also emit volatile...

  3. The impact of temperature and humidity on perception and emission of indoor air pollutants

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1996-01-01

    Sensory response to air polluted by five building materials under different combinations of temperature and humidity in the ranges 18°C-28°C and 30%-70% was studied in the laboratory. The experiments were designed to study separately the impact of temperature and humidity on the perception of air...... polluted by materials, and on the emission of pollutants from the materials. At all tested pollution levels of the five materials, the air was perceived significantly less acceptable with increasing temperature and humidity, and the impact of temperature and humidity on perception decreased with increasing...... pollution level. A significant linear correlation between acceptability and enthalpy of the air was found to describe the influence of temperature and humidity on perception. The impact of temperature and humidity on sensory emission was less significant than the impact on perception; however, the sensory...

  4. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  5. Annular air space effects on nuclear waste canister temperatures in a deep geologic waste repository

    International Nuclear Information System (INIS)

    Lowry, W.E.; Cheung, H.; Davis, B.W.

    1980-01-01

    Air spaces in a deep geologic repository for nuclear high level waste will have an important effect on the long-term performance of the waste package. The important temperature effects of an annular air gap surrounding a high level waste canister are determined through 3-D numerical modeling. Air gap properties and parameters specifically analyzed and presented are the air gap size, surfaces emissivity, presence of a sleeve, and initial thermal power generation rate; particular emphasis was placed on determining the effect of these variables have on the canister surface temperature. Finally a discussion based on modeling results is presented which specifically relates the results to NRC regulatory considerations

  6. The association of air temperature with cardiac arrhythmias

    Science.gov (United States)

    Čulić, Viktor

    2017-11-01

    The body response to meteorological influences may activate pathophysiological mechanisms facilitating the occurrence of cardiac arrhythmias in susceptible patients. Putative underlying mechanisms include changes in systemic vascular resistance and blood pressure, as well as a network of proinflammatory and procoagulant processes. Such a chain reaction probably occurs within the time window of several hours, so use of daily average values of meteorological elements do not seem appropriate for investigation in this area. In addition, overall synoptic situation, and season-specific combinations of meteorological elements and air pollutant levels probably cause the overall effect rather than a single atmospheric element. Particularly strong interrelations have been described among wind speed, air pressure and temperature, relative air humidity, and suspended particulate matter. This may be the main reason why studies examining the association between temperature and ventricular arrhythmias have found linear positive, negative, J-shaped or no association. Further understanding of the pathophysiological adaptation to atmospheric environment may help in providing recommendations for protective measures during "bad" weather conditions in patients with cardiac arrhythmias.

  7. Relationship between body temperature and air temperature in ...

    African Journals Online (AJOL)

    Body temperatures of singing male Gryllus bimaculatus were measured for the first time. Body temperatures were strongly correlated with ambient temperature. This indicates that, unlike some other orthopterans, larger crickets are not dependent on an elevated body temperature for efficient calling. Our results confirm that it ...

  8. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  9. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Science.gov (United States)

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  10. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    Science.gov (United States)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  11. Effects of Ambient Temperature and Forced-air Warming on Intraoperative Core Temperature: A Factorial Randomized Trial.

    Science.gov (United States)

    Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I

    2018-05-01

    The effect of ambient temperature, with and without active warming, on intraoperative core temperature remains poorly characterized. The authors determined the effect of ambient temperature on core temperature changes with and without forced-air warming. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air warming. The primary outcome was core temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, warming method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of core temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air warming (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, core temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on core temperature when patients are warmed with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively warmed.

  12. Solar activity influence on air temperature regimes in caves

    Science.gov (United States)

    Stoeva, Penka; Mikhalev, Alexander; Stoev, Alexey

    Cave atmospheres are generally included in the processes that happen in the external atmosphere as circulation of the cave air is connected with the most general circulation of the air in the earth’s atmosphere. Such isolated volumes as the air of caves are also influenced by the variations of solar activity. We discuss cave air temperature response to climate and solar and geomagnetic activity for four show caves in Bulgaria studied for a period of 46 years (1968 - 2013). Everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave have been used. Temperatures of the air in the zone of constant temperatures (ZCT) are compared with surface temperatures recorded at meteorological stations situated near about the caves - in the towns of Vratsa, Lovech, Peshtera and Smolyan, respectively. For comparison, The Hansen cave, Middle cave and Timpanogos cave from the Timpanogos Cave National Monument, Utah, USA situated nearly at the same latitude have also been examined. Our study shows that the correlation between cave air temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices; that t°ZCT is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes. Air temperatures of all examined show caves, except the Ledenika cave, which is ice cave show decreasing trends. On the contrary, measurements at the meteorological stations show increasing trends in the surface air temperatures. The trend is decreasing for the Timpanogos cave system, USA. The conclusion is that surface temperature trends depend on the climatic zone, in which the cave is situated, and there is no apparent relation between temperatures inside and outside the caves. We consider possible mechanism of solar cosmic rays influence on the air temperatures in caves

  13. Temperature trends with reduced impact of ocean air temperature

    DEFF Research Database (Denmark)

    Lansner, Frank; Pedersen, Jens Olaf Pepke

    Temperature data 1900-2010 from meteorological stations across the world have been analysed and it has been found that all areas generally have two different valid temperature trends. Coastal stations and hill stations facing dominant ocean winds are normally more warm-trended than the valley sta...

  14. Temperature trends with reduced impact of ocean air temperature

    DEFF Research Database (Denmark)

    Lansner, Frank; Pedersen, Jens Olaf Pepke

    2018-01-01

    Temperature data 1900–2010 from meteorological stations across the world have been analyzed and it has been found that all land areas generally have two different valid temperature trends. Coastal stations and hill stations facing ocean winds are normally more warm-trended than the valley station...

  15. NOAA NOS SOS, EXPERIMENTAL, 1853-present, Air Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have air temperature data. *These services are for testing and evaluation...

  16. NOS CO-OPS Meteorological Data, Air Temperature, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has Air Temperature data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These preliminary data have not...

  17. Interactions between particulate air pollution and temperature in air pollution mortality time series studies

    International Nuclear Information System (INIS)

    Roberts, Steven

    2004-01-01

    In many community time series studies on the effect of particulate air pollution on mortality, particulate air pollution is modeled additively. In this study, we investigated the interaction between daily particulate air pollution and daily mean temperature in Cook County, Illinois and Allegheny County, Pennsylvania, using data for the period 1987-1994. This was done through the use of joint particulate air pollution-temperature response surfaces and by stratifying the effect of particulate air pollution on mortality by temperature. Evidence that the effect of particulate air pollution on mortality may depend on temperature is found. However, the results were sensitive to the number of degrees of freedom used in the confounder adjustments, the particulate air pollution exposure measure, and how the effects of temperature on mortality are modeled. The results were less sensitive to the estimation method used--generalized linear models and natural cubic splines or generalized additive models and smoothing splines. The results of this study suggest that in community particulate air pollution mortality time series studies the possibility of an interaction between daily particulate air pollution and daily mean temperature should be considered

  18. Analysis of air temperature and relative humidity: study of microclimates

    OpenAIRE

    Elis Dener Lima Alves; Marcelo Sacardi Biudes

    2012-01-01

    Understanding the variability of climate elements in time and space is fundamental to the knowledge of the dynamics of microclimate. Thus, the objective was to analyze the variability of air temperature and relative humidity on the Cuiabá campus of the Federal University of Mato Grosso, and, through the clustering technique, to analyze the formation of groups to propose a zoning microclimate in the area study. To this end, collection data of air temperature and relative humidity at 15 points ...

  19. ANALISIS PEMANFAATAN DUA ELEMEN PELTIER PADA PENGONTROLAN TEMPERATUR AIR

    OpenAIRE

    Yusfi, Meqorry; Gandi, Frima; Palka, Heru Sagito

    2017-01-01

    Abstrak Elemen peltier bisa digunakan sebagai pemanas dan pendingin. Pada penelitian ini elemen peltier digunakan sebagai pendingin air. Tujuan dari penelitian ini adalah untuk membandingkan hasil pemakaian antara satu dan dua elemen peltier pada sistem kontrol temperatur air. Alat dirancang dengan menggunakan LM35 sebagai sensor temperatur dan mikrokontroler Atmega 8535 untuk mengontrol sebelum ditampilkan ke LCD. Sistem kontrol On-off digunakan pada sistem ini. Hasil penelitian menunjukk...

  20. Can air-breathing fish be adapted to higher than present temperatures?

    DEFF Research Database (Denmark)

    Bayley, Mark

    Air-breathing in fish is thought to have evolved in environments at lower than present oxygen levels and higher than present temperatures raising the question of whether extant species are adapted to recent temperature regimes or living at sub-optimal temperatures. The air-breathing Pangasionodon...... hypophthalmus inhabits the Mekong river system covering two climate zones during its life cycle and migrating more than 2000 km from hatching in northern Laos to its adult life in the southern delta region. It is a facultative air-breather with well-developed gills and air-breathing organ and an unusual...... circulatory bauplan. Here we examine the question of its optimal temperature through aspects of its cardio respiratory physiology including temperature effects on blood oxygen binding, ventilation and blood gasses, stereological measures of cardiorespiratory system, metabolic rate and growth. Comparing...

  1. Relationship between Czech windstorms and air temperature

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Marek; Müller, Miloslav; Crhová, L.; Holtanová, E.; Polášek, J. F.; Pop, Lukáš; Valeriánová, A.

    2016-01-01

    Roč. 37, č. 1 (2016), s. 11-24 ISSN 0899-8418 R&D Projects: GA ČR(CZ) GAP209/11/1990 Institutional support: RVO:68378289 Keywords : windstorm * strong wind * weather extreme * temperature anomaly * temperature gradient * seasonality * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.4682/abstract

  2. Can air temperature be used to project influences of climate change on stream temperature?

    Science.gov (United States)

    Ivan Arismendi; Mohammad Safeeq; Jason B Dunham; Sherri L Johnson

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To...

  3. Temperature distribution in graphite during annealing in air cooled reactors

    International Nuclear Information System (INIS)

    Oliveira Avila, C.R. de.

    1989-01-01

    A model for the evaluation temperature distributions in graphite during annealing operation in graphite. Moderated an-cooled reactors, is presented. One single channel and one dimension for air and graphite were considered. A numerical method based on finite control volumes was used for partioning the mathematical equations. The problem solution involves the use of unsteady equations of mass, momentum and energy conservation for air, and energy conservation for graphite. The source term was considered as stored energy release during annealing for describing energy conservation in the graphite. The coupling of energy conservation equations in air and graphite is performed by the heat transfer term betwen air and graphite. The results agree with experimental data. A sensitivity analysis shown that the termal conductivity of graphite and the maximum inlet channel temperature have great effect on the maximum temperature reached in graphite during the annealing. (author)

  4. Degradation of phosphorene in air: understanding at atomic level

    International Nuclear Information System (INIS)

    Wang, Gaoxue; Slough, William J; Pandey, Ravindra; Karna, Shashi P

    2016-01-01

    Phosphorene is a promising two-dimensional (2D) material with a direct band gap, high carrier mobility, and anisotropic electronic properties. Phosphorene-based electronic devices, however, are found to degrade upon exposure to air. In this paper, we provide an atomic level understanding of the stability of phosphorene in terms of its interaction with O 2 and H 2 O. The results based on density functional theory together with first principles molecular dynamics calculations show that O 2 could the spontaneously dissociate on phosphorene at room temperature. H 2 O will not strongly interact with pristine phosphorene, however, an exothermic reaction could occur if phosphorene is first oxidized. The pathway of oxidation first, followed by exothermic reaction with water is the most likely route for the chemical degradation of phosphorene-based devices in air. (paper)

  5. Three Mile Island ambient-air-temperature sensor measurements

    International Nuclear Information System (INIS)

    Fryer, M.O.

    1983-01-01

    Data from the ambient-air-temperature sensors in Three Mile Island-Unit 2 (TMI-2) reactor containment building are analyzed. The data were for the period of the hydrogen burn that was part of the TMI-2 accident. From the temperature data, limits are placed on the duration of the hydrogen burn

  6. AIRS/Aqua Level 3 Pentad quantization in physical units (AIRS-only) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — AIRS/Aqua Level 3 pentad quantization product in physical units (AIRS Only). The quantization products (QP) are distributional summaries derived from the Level-2...

  7. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  8. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E; Roth, F von; Hottinger, P; Truong, T B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  9. Ultrasonic level, temperature, and density sensor

    International Nuclear Information System (INIS)

    Rogers, S.C.; Miller, G.N.

    1982-01-01

    A sensor has been developed to measure simultaneously the level, temperature, and density of the fluid in which it is immersed. The sensor is a thin, rectangular stainless steel ribbon which acts as a waveguide and is housed in a perforated tube. The waveguide is coupled to a section of magnetostrictive magnetic-coil transducers. These tranducers are excited in an alternating sequence to interrogate the sensor with both torsional ultrasonic waves, utilizing the Wiedemann effect, and extensional ultrasonic waves, using the Joule effect. The measured torsional wave transit time is a function of the density, level, and temperature of the fluid surrounding the waveguide. The measured extensional wave transit time is a function of the temperature of the waveguide only. The sensor is divided into zones by the introduction of reflecting surfaces at measured intervals along its length. Consequently, the transit times from each reflecting surface can be analyzed to yield a temperature profile and a density profile along the length of the sensor. Improvements in acoustic wave dampener and pressure seal designs enhance the compatibility of the probe with high-temperature, high-radiation, water-steam environments and increase the likelihood of survival in such environments. Utilization of a microcomputer to automate data sampling and processing has resulted in improved resolution of the sensor

  10. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon

    International Nuclear Information System (INIS)

    Burkart, Katrin; Canário, Paulo; Breitner, Susanne; Schneider, Alexandra; Scherber, Katharina; Andrade, Henrique; Alcoforado, Maria João; Endlicher, Wilfried

    2013-01-01

    There is substantial evidence that both temperature and air pollution are predictors of mortality. Thus far, few studies have focused on the potential interactive effects between the thermal environment and different measures of air pollution. Such interactions, however, are biologically plausible, as (extreme) temperature or increased air pollution might make individuals more susceptible to the effects of each respective predictor. This study investigated the interactive effects between equivalent temperature and air pollution (ozone and particulate matter) in Berlin (Germany) and Lisbon (Portugal) using different types of Poisson regression models. The findings suggest that interactive effects exist between air pollutants and equivalent temperature. Bivariate response surface models and generalised additive models (GAMs) including interaction terms showed an increased risk of mortality during periods of elevated equivalent temperatures and air pollution. Cold effects were mostly unaffected by air pollution. The study underscores the importance of air pollution control in mitigating heat effects. -- Highlights: • Interactive effects between air pollution and equivalent temperature result in augmented excess mortality. • High levels of ozone and particulate matter increase adverse heat effects on human mortality. • Cold effects are mostly unaffected by air pollution. • Findings underscore the importance of air pollution control in mitigating heat-related mortality. -- Interactive effects between air pollution and elevated (equivalent) temperatures underscore the importance of air pollution control in mitigating the adverse effects of heat

  11. Temperature and concentration transients in the aluminum-air battery

    Science.gov (United States)

    Homsy, R. V.

    1981-08-01

    Coupled conservation equations of heat and mass transfer are solved that predict temperature and concentration of the electrolyte of an aluminum-air battery system upon start-up and shutdown. Results of laboratory studies investigating the crystallization kinetics and solubility of the caustic-aluminate electrolyte system are used in the predictions. Temperature and concentration start-up transients are short, while during standby conditions, temperature increases to maximum and decreases slowly.

  12. An analysis of spatial representativeness of air temperature monitoring stations

    Science.gov (United States)

    Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen

    2018-05-01

    Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.

  13. Interactive Effect of Air-Water Ratio and Temperature on the Air ...

    African Journals Online (AJOL)

    Windows User

    KEYWORDS: Interactive effect, air-water ratio, temperature, volatile organic compounds, removal efficiency. [Received ... The rate of mass transfer of a VOC from wastewater to the ... where ΔHo is heat of evaporation of 1 mole of component.

  14. Control of the outlet air temperature in an air handling unit

    DEFF Research Database (Denmark)

    Brath, P.; Rasmussen, Henrik; Hägglund, T.

    1998-01-01

    This paper discuss modeling and control of the inlet temperature in an Air Handling Unit, AHU. The model is based on step response experiments made at a full scale test plant. We use gain scheduling to lower the correlation of the air flow with the process dynamic which simplify the control task...

  15. Passive radiative cooling below ambient air temperature under direct sunlight.

    Science.gov (United States)

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  16. Impact of temperature and humidity on acceptability of indoor air quality during immediate and longer whole-body exposures

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1997-01-01

    Acceptability of clean air and air polluted by building materials was studied in climate chambers with different levels of air temperature and humidity in the ranges 18-28°C and 30-70%. The immediate acceptability after entering a chamber and the acceptability during a 20-minute whole-body exposu...

  17. Radionuclides in ground-level air

    International Nuclear Information System (INIS)

    Sinkko, K.

    1987-01-01

    In the air surveillance programme the concentrations of artificial radionuclides are monitored in the air close to the ground to obtain the necessary basic data for estimating the exposure of the Finnish population to fall-out radionuclides and also to detect atmospheric traces of radioactive materials caused by their use or production. Airborne dust is collected on filters with high-volume air samplers and the concentrations of gamma-emitting radionuclides in the air are evaluated. In the first quarter of 1986 only long-lived cesium, caused by earlier atmospheric nuclear explosions was detected. The concentrations of cesium were very low. In January and March a small amount of short-lived, fresh fission and activation products were also observed

  18. Evaluation of the Level of air Microbial Contamination in some ...

    African Journals Online (AJOL)

    The level of air microbial contamination in some teaching hospitals waste dump site in South Eastern Nigeria was evaluated using the standard microbiological techniques. Passive air sampling was performed using settle plates. The microbial load of the air around the hospitals waste dumpsite, showed high microbial load ...

  19. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    Science.gov (United States)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  20. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  1. The Effects of Air Pollution and Temperature on COPD.

    Science.gov (United States)

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance.

  2. Numerical calculation of air velocity and temperature in ice rinks

    Energy Technology Data Exchange (ETDEWEB)

    Bellache, O.; Galanis, N. [Sherbrooke Univ., PQ (Canada); Ouzzane, M.; Sunye, R. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Diversification Laboratory

    2002-07-01

    A computational fluid dynamic (CFD) model was developed to predict the energy consumption at an ice rink. Ice rinks in Canada consume approximately 3500 GWh of electricity annually and generate about 300,000 tons of gases contributing to the greenhouse effect. This newly developed model also considers ice quality and comfort conditions in the arena. The typical 2D configuration includes refrigeration loads as well as heat transfer coefficients between the air and the ice. The effects of heat losses through the ice rink envelope are also determined. A comparison of prediction results from 4 different formulations confirms that there are important differences in air velocities near the walls and in the temperature gradient near the ice. The turbulent mixed convection model gives the best estimate of the refrigeration load. It was determined that a good ventilation should circulate air throughout the building to avoid stagnant areas. Air velocities must be low near the stands where the temperature should be around 20 degrees C. Air temperature near the ice should be low to preserve ice quality and to reduce the refrigeration load. The complexity of this geometry has been taken into account in a numerical simulation of the hydrodynamic and thermal fields in the ice rink. 9 refs., 2 tabs., 5 figs.

  3. The effect of grass transpiration on the air temperature

    Czech Academy of Sciences Publication Activity Database

    Šír, M.; Tesař, Miroslav; Lichner, Ľ.; Czachor, H.

    2014-01-01

    Roč. 69, č. 11 (2014), s. 1570-1576 ISSN 0006-3088 Institutional support: RVO:67985874 Keywords : air temperature oscillations * embolism * plant transpiration * soil water * tensiometric pressure * xylem tension Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.827, year: 2014

  4. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  5. Air temperature variability in a high-elevation Himalayan catchment

    NARCIS (Netherlands)

    Heynen, Martin; Miles, Evan; Ragettli, Silvan; Buri, Pascal; Immerzeel, Walter W.; Pellicciotti, Francesca

    2016-01-01

    Air temperature is a key control of processes affecting snow and glaciers in high-elevation catchments, including melt, snowfall and sublimation. It is therefore a key input variable to models of land-surface-atmosphere interaction. Despite this importance, its spatial variability is poorly

  6. Light Ray Displacements due to Air Temperature Gradient

    CERN Document Server

    Teymurazyan, A; CERN. Geneva

    2000-01-01

    Abstract In the optical monitoring systems suggested to control the geometry of tracking spectrometers, light beams serve as reference frames for the measurement of the tracking chamber displacements and deformations. It is shown that air temperature gradients can induce systematic errors which considerably exceed the intrinsic resolution of the monitoring system.

  7. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  8. Can air temperature be used to project influences of climate change on stream temperature?

    Science.gov (United States)

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  9. The impact of draught related to air velocity, air temperature and workload.

    Science.gov (United States)

    Griefahn, B; Künemund, C; Gehring, U

    2001-08-01

    This experimental study was designed to test the hypotheses that the effects of draught increase with higher air velocity, with lower air temperature, and with lower workload. Thirty healthy young males were exposed to horizontal draught during 55 min while they operated an arm ergometer in a standing posture. Air velocity, air temperature, and workload were varied in 3 steps each, between 11 and 23 degrees C, 0.1 and 0.3 m/s, and 104 to 156 W/m2, respectively. The 27 combinations were distributed over subjects in a fractional factorial 3(3)-design. The participants were clothed for thermal neutrality. Workload was measured at the end of the sessions by respirometry. Draught-induced annoyance was determined every 5 min, separately for 10 body sites. Corresponding skin temperature was also recorded. The hypotheses were verified for the influence of air velocity and air temperature. Regarding workload, local heat production is probably decisive, meaning that draft-induced local annoyance is inversely related to workload in active but independent from workload in non-active body areas. To improve the situation for the workers concerned it is suggested to apply protective gloves that cover an as great area of the forearms as possible and to limit airflows to mean velocities of less than 0.2 m/s (with turbulence intensities of 50%).

  10. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  11. Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas.

    Science.gov (United States)

    Chen, Kai; Wolf, Kathrin; Breitner, Susanne; Gasparrini, Antonio; Stafoggia, Massimo; Samoli, Evangelia; Andersen, Zorana Jovanovic; Bero-Bedada, Getahun; Bellander, Tom; Hennig, Frauke; Jacquemin, Bénédicte; Pekkanen, Juha; Hampel, Regina; Cyrys, Josef; Peters, Annette; Schneider, Alexandra

    2018-07-01

    Although epidemiological studies have reported associations between mortality and both ambient air pollution and air temperature, it remains uncertain whether the mortality effects of air pollution are modified by temperature and vice versa. Moreover, little is known on the interactions between ultrafine particles (diameter ≤ 100 nm, UFP) and temperature. We investigated whether the short-term associations of particle number concentration (PNC in the ultrafine range (≤100 nm) or total PNC ≤ 3000 nm, as a proxy for UFP), particulate matter ≤ 2.5 μm (PM 2.5 ) and ≤ 10 μm (PM 10 ), and ozone with daily total natural and cardiovascular mortality were modified by air temperature and whether air pollution levels affected the temperature-mortality associations in eight European urban areas during 1999-2013. We first analyzed air temperature-stratified associations between air pollution and total natural (nonaccidental) and cardiovascular mortality as well as air pollution-stratified temperature-mortality associations using city-specific over-dispersed Poisson additive models with a distributed lag nonlinear temperature term in each city. All models were adjusted for long-term and seasonal trend, day of the week, influenza epidemics, and population dynamics due to summer vacation and holidays. City-specific effect estimates were then pooled using random-effects meta-analysis. Pooled associations between air pollutants and total and cardiovascular mortality were overall positive and generally stronger at high relatively compared to low air temperatures. For example, on days with high air temperatures (>75th percentile), an increase of 10,000 particles/cm 3 in PNC corresponded to a 2.51% (95% CI: 0.39%, 4.67%) increase in cardiovascular mortality, which was significantly higher than that on days with low air temperatures (air pollution (>50th percentile), both heat- and cold-related mortality risks increased. Our findings showed that

  12. Univaried models in the series of temperature of the air

    International Nuclear Information System (INIS)

    Leon Aristizabal Gloria esperanza

    2000-01-01

    The theoretical framework for the study of the air's temperature time series is the theory of stochastic processes, particularly those known as ARIMA, that make it possible to carry out a univaried analysis. ARIMA models are built in order to explain the structure of the monthly temperatures corresponding to the mean, the absolute maximum, absolute minimum, maximum mean and minimum mean temperatures, for four stations in Colombia. By means of those models, the possible evolution of the latter variables is estimated with predictive aims in mind. The application and utility of the models is discussed

  13. Symmetric scaling properties in global surface air temperature anomalies

    Science.gov (United States)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  14. Influence of air temperature on electric consumption in Moscow

    Science.gov (United States)

    Lokoshchenko, Mikhail A.; Nikolayeva, Nataliya A.

    2017-04-01

    For the first time for mid latitudes and with the use of long-term data of Moscow State University Meteorological observatory a dependence of electric power consumption E on the air temperature T has been studied for each separate day for the period from 1990 to 2015 (totally - 9496 values). As a result, it is shown that the relation is in general decreasing in conditions of cold Moscow region: energy consumption as a rule reduces with a rise of the temperature. However, in time of severe frosts the energy consumption increasing goes to nothing due to special measures for energy savings whereas during heat wave episodes of extremely hot weather (especially in summer of 2010) an opposite tendency appears to the energy consumption increase with the increase of the air temperature due to additional consumption for the air conditioning. This relation between E and T is statistically significant with extremely high confidence probability (more than 0.999). The optimum temperature for the energy saving is 18 ˚C. The air temperature limit values in Moscow during last decades have been discussed. Daily-averaged T varied from -28.0 ˚C in January of 2006 to +31.4 ˚C in August of 2010 so a range of this parameter is almost 60 ˚C. Catastrophic heat wave in 2010 appeared as a secondary summer maximum of the electric consumption annual course. The relation between E and T for separate years demonstrates strong weekly periodicity at the dynamics of E daily values. As a result statistical distribution of E daily values for separate years is bimodal. One its mode is connected with working-days and another one - with non-work days (Saturday, Sunday and holidays) when consumption is much less. In recent time weekly cycle at the electric consumption became weaker due to total fall of industry in Moscow. In recent years the dependence of energy consumption on the air temperature generally became stronger - probably due to changes of its structure (growth of non-industrial users

  15. Phytoclimatic assessment of air temperatures transition across important Bbundary values

    International Nuclear Information System (INIS)

    Kazandjiev, Valentin; Slavov, Nicola

    2004-01-01

    Thermal regime investigation in global and regional scale is the problem permanently in field of vision of climatologists in the world. Many of investigations abroad and in our country are devoted to discover long time variation, cycles and their periodicity and especially on the registration of air temperatures changes and averages per year, per six months, seasons and months. Great interest is assessment of change of terms for strong air temperatures transition across 0, 5, 10 and 15 o C during spring and autumn seasons, because they have important scientific and practical application i.e. they are the limit between cold and warm part of the year and trace out duration of the vegetative and non vegetative for different bio ecosystems such as phyto ecosystems and zoo ecosystems. For this reason, the interest on the investigation of agro climatic and forest climatic peculiarity of these indicators increase for last few years. This increase is connected with big importance part of nature season's dynamics connected with human economic activity. Increase of air temperature up to 0 o C an transition by this limit certify for change of cold with warm period and beginning of spring; Contrariwise, decrease the temperatures down the 0 o C shows the end of autumn and beginning of winter. In the moderate continental climatic regions, where is classified most big part of Bulgaria territory is observed for seasons - winter, spring, summer and autumn. Climatologists usually accept these seasons with equal duration - three months. This duration of the seasons, do not permit to provide clear assessment of meteorological conditions in connection with development of plant ecosystems and production in different country regions. By this reason, seasons differentiation by agro climatic and forest-climatic point of view is other use the annual course of the air temperatures. As a strong and most suitable way for beginning and end of seasons are air temperatures transitions up and down

  16. Microbial contamination level of air in animal waste utilization plants.

    Science.gov (United States)

    Chmielowiec-Korzeniowska, Anna; Tymczyna, Leszek; Drabik, Agata; Krzosek, Łukasz

    2016-01-01

    The aim of this research was evaluation of microbial contamination of air within and in the vicinity of animal waste disposal plants. Air samples were analyzed to determine total bacterial and fungal counts as well as microbial species composition. Measurements of climate conditions (temperature, humidity, air motion) and total dust concentration were also performed. Total numbers of bacteria and fungi surpassed the threshold limit values for production halls. The most abundant bacteria detected were those consisting of physiological microflora of animal dermis and mucosa. Fungal species composition proved to be most differentiated in the air beyond the plant area. Aspergillus versicolor, a pathogenic and allergenic filamentous fungus, was isolated only inside the rendering plant processing hall. The measurement results showed a low sanitary-hygienic state of air in the plant processing halls and substantial air pollution in its immediate vicinity.

  17. Neuro-models for discharge air temperature system

    International Nuclear Information System (INIS)

    Zaheer-uddin, M.; Tudoroiu, N.

    2004-01-01

    Nonlinear neuro-models for a discharge air temperature (DAT) system are developed. Experimental data gathered in a heating ventilating and air conditioning (HVAC) test facility is used to develop multi-input multi-output (MIMO) and single-input single-output (SISO) neuro-models. Several different network architectures were explored to build the models. Results show that a three layer second order neural network structure is necessary to achieve good accuracy of the predictions. Results from the developed models are compared, and some observations on sensitivity and standard deviation errors are presented

  18. Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.

    Science.gov (United States)

    Taha, Haider; Konopacki, Steven; Akbari, Hashem

    1998-09-01

    Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NO x emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.

  19. Monitoring the levels of toxic air pollutants in the ambient air of ...

    African Journals Online (AJOL)

    user

    The ambient air quality in Freetown, Sierra Leone was investigated for the first time for toxic air pollutants. ..... 215 Switzerland), in a water bath at temperature of 55°C and pressure of ..... scraps. Furthermore, the prolonged use of generators.

  20. Estimation of thermal sensation during varied air temperature conditions.

    Science.gov (United States)

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  1. A review of reaction rates in high temperature air

    Science.gov (United States)

    Park, Chul

    1989-01-01

    The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.

  2. Aqua AIRS Level 3 Quantization in Physical Units (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — AIRS/Aqua Level 3 monthly quantization product in physical units (Without HSB). The quantization products (QP) are distributional summaries derived from the Level-2...

  3. AIRS/Aqua Level 3 Pentad quantization in physical units (AIRS+AMSU+HSB) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — AIRS/Aqua Level 3 pentad quantization product in physical units (With HSB). The quantization products (QP) are distributional summaries derived from the Level-2...

  4. Daily Air Temperature and Electricity Load in Spain.

    Science.gov (United States)

    Valor, Enric; Meneu, Vicente; Caselles, Vicente

    2001-08-01

    Weather has a significant impact on different sectors of the economy. One of the most sensitive is the electricity market, because power demand is linked to several weather variables, mainly the air temperature. This work analyzes the relationship between electricity load and daily air temperature in Spain, using a population-weighted temperature index. The electricity demand shows a significant trend due to socioeconomic factors, in addition to daily and monthly seasonal effects that have been taken into account to isolate the weather influence on electricity load. The results indicate that the relationship is nonlinear, showing a `comfort interval' of ±3°C around 18°C and two saturation points beyond which the electricity load no longer increases. The analysis has also revealed that the sensitivity of electricity load to daily air temperature has increased along time, in a higher degree for summer than for winter, although the sensitivity in the cold season is always more significant than in the warm season. Two different temperature-derived variables that allow a better characterization of the observed relationship have been used: the heating and cooling degree-days. The regression of electricity data on them defines the heating and cooling demand functions, which show correlation coefficients of 0.79 and 0.87, and predicts electricity load with standard errors of estimate of ±4% and ±2%, respectively. The maximum elasticity of electricity demand is observed at 7 cooling degree-days and 9 heating degree-days, and the saturation points are reached at 11 cooling degree-days and 13 heating degree-days, respectively. These results are helpful in modeling electricity load behavior for predictive purposes.

  5. Characterization of radon levels in indoor air

    International Nuclear Information System (INIS)

    George, A.C.

    1982-01-01

    The purpose is to describe the different types of monitoring and sampling techniques that can determine the radiation burden of the general public from radon and its decay products. This is accomplished by measuring the range and distribution of radon and radon decay products through broad surveys using simple and convenient integrating monitoring instruments. For in-depth studies of the behavior of radon decay products and calculation of the radiation dose to the lung, fewer and more intensive and complex measurements of the particle size distribution and respiratory deposition of the radon decay products are required. For diagnostic purposes, the paper describes measurement techniques of the sources and exhalation rate of radon and the air exchange inside buildings. Measurement results form several studies conducted in ordinary buildings in different geographical areas of the United States, using the described monitoring techniques, indicate that the occupants of these buildings are exposed to radon and radon decay product concentrations, varying by as much as a factor of 20

  6. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  7. Crowdsourcing urban air temperatures through smartphone battery temperatures in São Paulo, Brazil

    NARCIS (Netherlands)

    Droste, A.M.; Pape, J.J.; Overeem, A.; Leijnse, H.; Steeneveld, G.J.; Delden, van A.J.; Uijlenhoet, R.

    2017-01-01

    Crowdsourcing as a method to obtain and apply vast datasets is rapidly becoming prominent in meteorology, especially for urban areas where routine weather observations are scarce. Previous studies showed that smartphone battery temperature readings can be used to estimate the daily and citywide air

  8. Comparison of Simulated Stem Temperatures and Observed Air Temperatures with Observed Stem Growth in Forest Openings

    Science.gov (United States)

    Brian E. Potter; Terry Strong

    2002-01-01

    Phenology, the study of how plant or animal developmental stages relate to the organism's surrounding climate, is a well established discipline with roots dating back more than 2000 years (Hopp and Blair, 1973). For example, correlations are often noted between budbreak or first blossom and integrated air temperature (commonly referred to as heat sums.) The...

  9. Estimations of distribution and zoning for air temperature using satellite data over Liaoning province, China

    International Nuclear Information System (INIS)

    Wang, X.; Horiguchi, I.; Takeda, T.; Yazawa, M.; Liu, X.; Yang, Y.; Wang, Q.

    1999-01-01

    The distribution and zoning of air temperature over Liaoning Province, China were examined using the calculated values of air temperature derived from satellite data (GMS data) as well as from altitude data. The results are summarized as follows. At 02:00 LST the correlation coefficients for the air temperatures calculated from altitude compared with the observed air temperatures were the same as those of the air temperatures derived from GMS data. At 14:00 LST, however, the correlation coefficients for air temperatures calculated from altitude were less than those of the air temperatures derived from GMS data. This fact verifies that the distribution of air temperature in the day-time is affected by other factors than altitude. The distribution of air temperature in a cell of approximately 5'(latitude) x 7.5'(longitude) over Liaoning Province, china was estimated by using the regression equations between surface temperature derived from GMS and the observed air temperature. The distribution of air temperature was classified into 5 types, and the types are obtained at 14:00 LST are seasonal ones but the types at 02:00 LST are not related to season. Also, the regional classification for the air temperature was examined using this distribution of air temperature. This regional classification for the air temperature was similar to the published zoning of the agricultural climate. It became clear that the characteristic distribution of air temperature in a cell unit can be obtained by satellite data. And it is possible to define the zoning of air temperature for a cell unit by the accumulated analyses of satellite data over an extended period

  10. The Relationship Between Surface Temperature Anomaly Time Series and those of OLR, Water Vapor, and Cloud Cover as Observed Using Nine Years of AIRS Version-5 Level-3 Products

    Science.gov (United States)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2011-01-01

    Outline: (1) Comparison of AIRS and CERES anomaly time series of outgoing longwave radiation (OLR) and OLR(sub CLR), i.e. Clear Sky OLR (2) Explanation of recent decreases in global and tropical mean values of OLR (3) AIRS "Short-term" Longwave Cloud Radiative Feedback -- A new product

  11. Generation of low-temperature air plasma for food processing

    Science.gov (United States)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  12. Water level sensor and temperature profile detector

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows

  13. Water level sensor and temperature profile detector

    Science.gov (United States)

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  14. Influence of air temperature variations on incidence of epistaxis.

    Science.gov (United States)

    Comelli, Ivan; Vincenti, Vincenzo; Benatti, Mario; Macri, Gian Franco; Comelli, Denis; Lippi, Giuseppe; Cervellin, Gianfranco

    2015-01-01

    Epistaxis is the most common ear, nose, and throat emergency observed in the emergency department (ED). An increased frequency of this condition has been observed during cooler months, but the results of available studies are controversial. The aim of this study was to investigate the seasonality and association of epistaxis presentations to a large urban ED with variations of air temperature and humidity. This study was a retrospective case series. Information on all the patients who presented for epistaxis in the ED of the Academic Hospital of Parma during the years 2003-2012 and ages ≥ 14 years were retrieved from the hospital data base, excluding those attributable to trauma. The chronologic data of all visits were associated with climate data (air temperature and humidity) by univariate linear regression analysis. Among the 819,596 ED patients seen throughout the observational period, 5404 were admitted for epistaxis. Of these, 5220 were discharged from the ED, whereas 184 (3.4%) needed hospital admission. A strong seasonality of epistaxis was observed, with a peak during winter. A strong negative correlation was also found between the daily number of epistaxes and the mean daily temperature in the whole population as well as in patient subgroups (those undergoing anticoagulant or antiplatelet therapy, or those with hypertension, inherited bleeding disorders, liver cirrhosis, or advanced malignancy). A weaker correlation was also found between air humidity and epistaxis but only in certain subgroups. The results of this study provided a contribution to improve our understanding of the epidemiology of epistaxis and for specific health policies that should also be planned by considering the seasonality of nosebleed.

  15. Apparatus and method for maintaining an article at a temperature that is less than the temperature of the ambient air

    Science.gov (United States)

    Klett, James; Klett, Lynn

    2018-04-03

    An apparatus for maintaining the temperature of an article at a temperature that is below the ambient air temperature includes an enclosure having an outer wall that defines an interior chamber for holding a volume of sealed air. An insert is disposed inside of the chamber and has a body that is made of a porous graphite foam material. A vacuum pump penetrates the outer wall and fluidly connects the sealed air in the interior chamber with the ambient air outside of the enclosure. The temperatures of the insert and article is maintained at temperatures that are below the ambient air temperature when a volume of a liquid is wicked into the pores of the porous insert and the vacuum pump is activated to reduce the pressure of a volume of sealed air within the interior chamber to a pressure that is below the vapor pressure of the liquid.

  16. The airborne radioactivity and electrical properties of ground level air

    International Nuclear Information System (INIS)

    Myslek-Laurikainen, B.; Matul, M.; Mikolajewski, S.; Trzaskowska, H.; Kubicki, M.

    2001-01-01

    The data presented in this work are the result of systematic measurements of radionuclide concentrations in air and density of vertical current. The airborne 7 Be concentration changes similar to the electrical conductivity of air, collected with an ASS-500 high volume air sampler of the ground atr monitoring network supervised by the Central Laboratory for Radiological Protection. Sampling has been done since March 1991. Simultaneously, the routine complex meteorological observations were performed. In particular, the electrical properties of ground level atmospheric air were studied with measurements of electrical field intensity, positive and negative conductivity of the air,while other isotopes, anthropogenic or originating from the ground are correlated with dust and other meteorological factors like watering and wind. (author)

  17. Indoor Levels of Formaldehyde and Other Pollutants and Relationship to Air Exchange Rates and Human Activities

    Science.gov (United States)

    Huangfu, Y.; O'Keeffe, P.; Kirk, M.; Walden, V. P.; Lamb, B. K.; Jobson, B. T.

    2017-12-01

    This paper reports results on an indoor air quality study conducted on six homes in summer and winter, contrasting indoor and outdoor concentrations of O3, CO, CO2, NOx, PM2.5, and selected volatile organic hydrocarbons measured by PTR-MS. Data were collected as 1 minute averages. Air exchange rates of the homes were determined by CO2 tracer release. Smart home sensors, recording human activity level in various places in the home, and window and doors openings, were utilized to better understand the link between human activity and indoor air pollution. From our study, averaged air exchange rates of the homes ranged from 0.2 to 1.2 hour-1 and were greatly affected by the ventilation system type and window and door openings. In general, a negative correlation between air exchange rate and indoor VOCs levels was observed, with large variation of pollutant levels between the homes. For most of the VOCs measured in the house, including formaldehyde and acetaldehyde, summer levels were much higher than winter levels. In some homes formaldehyde levels displayed a time of day variation that was linked to changes in indoor temperature. During a wildfire period in the summer of 2015, outdoor levels of PM2.5, formaldehyde, and benzene dramatically increased, significantly impacting indoor levels due to infiltration. Human activities, such as cooking, can significantly change the levels of most of the compounds measured in the house and the levels can be significantly elevated for short periods of time, with peak levels can be several orders higher compared with typical levels. The data suggest that an outcome of state energy codes that require new homes to be energy efficient, and as a consequence built with lower air exchange rates, will be unacceptable levels of air toxics, notably formaldehyde.

  18. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality......, a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  19. AIRS/Aqua Level 3 Pentad quantization in physical units (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — AIRS/Aqua Level 3 pentad quantization product in physical units (Without HSB). The geophysical parameters have been averaged and binned into 1 x 1 deg grid cells,...

  20. AIRS/Aqua Level 3 Daily standard physical retrieval (AIRS-only) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Only Level 3 Daily Gridded Product contains standard retrieval means, standard deviations and input counts. Each file covers a temporal period of 24 hours...

  1. AIRS/Aqua Level 3 Monthly standard physical retrieval (AIRS-only) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Only Level 3 Monthly Gridded Retrieval Product contains standard retrieval means, standard deviations and input counts. Each file covers a calendar month....

  2. AIRS/Aqua Level 3 Daily standard physical retrieval (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Level 3 Daily Gridded Product contains standard retrieval means, standard deviations and input counts. Each file covers a temporal period of 24 hours for...

  3. Aqua AIRS Level 3 Daily Standard Physical Retrieval (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Level 3 Daily Gridded Product contains standard retrieval means, standard deviations and input counts. Each file covers a temporal period of 24 hours for...

  4. AIRS/Aqua Level 3 Monthly standard physical retrieval (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Level 3 Monthly Gridded Retrieval Product contains standard retrieval means, standard deviations and input counts. Each file covers a calendar month. The...

  5. Aqua AIRS Level 3 8-day Standard Physical Retrieval (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Level 3 8-Day Gridded Retrieval Product contains standard retrieval means, standard deviations and input counts. Each file covers an 8-day period, or...

  6. Aqua AIRS Level 3 Monthly Standard Physical Retrieval (AIRS-only) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Only Level 3 Monthly Gridded Retrieval Product contains standard retrieval means, standard deviations and input counts. Each file covers a calendar month....

  7. AIRS/Aqua Level 3 8-day standard physical retrieval (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Level 3 8-Day Gridded Retrieval Product contains standard retrieval means, standard deviations and input counts. Each file covers an 8-day period, or...

  8. AIRS/Aqua Level 3 8-day standard physical retrieval (AIRS-only) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Only Level 3 8-Day Gridded Retrieval Product contains standard retrieval means, standard deviations and input counts. Each file covers an 8-day period, or...

  9. Aqua AIRS Level 3 Monthly Standard Physical Retrieval (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Level 3 Monthly Gridded Retrieval Product contains standard retrieval means, standard deviations and input counts. Each file covers a calendar month. The...

  10. Aqua AIRS Level 3 Daily Standard Physical Retrieval (AIRS-only) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Only Level 3 Daily Gridded Product contains standard retrieval means, standard deviations and input counts. Each file covers a temporal period of 24 hours...

  11. Aqua AIRS Level 3 8-day Standard Physical Retrieval (AIRS-only) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Only Level 3 8-Day Gridded Retrieval Product contains standard retrieval means, standard deviations and input counts. Each file covers an 8-day period, or...

  12. Comparison of different statistical modelling approaches for deriving spatial air temperature patterns in an urban environment

    Science.gov (United States)

    Straub, Annette; Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Geruschkat, Uta; Jacobeit, Jucundus; Kühlbach, Benjamin; Kusch, Thomas; Richter, Katja; Schneider, Alexandra; Umminger, Robin; Wolf, Kathrin

    2017-04-01

    Frequently spatial variations of air temperature of considerable magnitude occur within urban areas. They correspond to varying land use/land cover characteristics and vary with season, time of day and synoptic conditions. These temperature differences have an impact on human health and comfort directly by inducing thermal stress as well as indirectly by means of affecting air quality. Therefore, knowledge of the spatial patterns of air temperature in cities and the factors causing them is of great importance, e.g. for urban planners. A multitude of studies have shown statistical modelling to be a suitable tool for generating spatial air temperature patterns. This contribution presents a comparison of different statistical modelling approaches for deriving spatial air temperature patterns in the urban environment of Augsburg, Southern Germany. In Augsburg there exists a measurement network for air temperature and humidity currently comprising 48 stations in the city and its rural surroundings (corporately operated by the Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health and the Institute of Geography, University of Augsburg). Using different datasets for land surface characteristics (Open Street Map, Urban Atlas) area percentages of different types of land cover were calculated for quadratic buffer zones of different size (25, 50, 100, 250, 500 m) around the stations as well for source regions of advective air flow and used as predictors together with additional variables such as sky view factor, ground level and distance from the city centre. Multiple Linear Regression and Random Forest models for different situations taking into account season, time of day and weather condition were applied utilizing selected subsets of these predictors in order to model spatial distributions of mean hourly and daily air temperature deviations from a rural reference station. Furthermore, the different model setups were

  13. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    Science.gov (United States)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  14. Constraints of using thermostatic expansion valves to operate air-cooled chillers at lower condensing temperatures

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.; Chu, H.Y.

    2006-01-01

    Thermostatic expansion valves (TXVs) have long been used in air-cooled chillers to implement head pressure control under which the condensing temperature is kept high at around 50 o C by staging condenser fans as few as possible. This paper considers how TXVs prevent the chillers from operating with an increased COP at lower condensing temperatures when the chiller load or outdoor temperature drops. An analysis on an existing air-cooled reciprocating chiller showed that the range of differential pressures across TXVs restricts the maximum heat rejection airflow required to increase the chiller COP, though the set point of condensing temperature is reduced to 22 o C from a high level of 45 o C. It is possible to use electronic expansion valves to meet the differential pressure requirements for maximum chiller COP. There is a maximum of 28.7% increase in the chiller COP when the heat rejection airflow is able to be maximized in various operating conditions. The results of this paper emphasize criteria for lowering the condensing temperature to enhance the performance of air-cooled chillers

  15. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Guangul, F M; Sulaiman, S A; Ramli, A

    2013-01-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  16. Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System

    Science.gov (United States)

    Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu

    2017-05-01

    This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.

  17. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea

    Science.gov (United States)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.

    2017-12-01

    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  18. Change in air temperature over Sudan and South Sudan with time ...

    African Journals Online (AJOL)

    Annual mean air temperature for Sudan and South Sudan for the three periods 1900-1940, 1961- 1990 and 1981-2010 for 12 stations was analyzed with objectives of studying changes in air temperature over the area during the last century and also to study the linkages between mean, maximum and minimum air ...

  19. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity and... NOX intake-air humidity and temperature corrections. See the standard-setting part to determine if you may correct NOX emissions for the effects of intake-air humidity or temperature. Use the NOX intake...

  20. Kinetics of catalyzed tritium oxidation in air at ambient temperature

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1980-01-01

    Tritium/air oxidation kinetic data are derived from measurements carried out with three catalysts. All experiments were carried out at room temperature - a regime that provides a severe test for catalyst effectiveness. Each catalyst consists of a high-surface-area substrate in pelletized form, onto which precious metal has been dispersed. The metal/substrate combinations investigated are: platinum/alumina, palladium/kaolin, and paladium/zeolite. Each of the dispersed-metal catalysts is extremely effective in promoting tritium oxidation in comparison with self-catalyzed atmospheric conversion; equivalent first-order rate constants are higher by roughly nine orders of magnitude. Electron-microprobe scans reveal that the dispersed metal is deposited near the outer surface of the catalyst, with metal concentration decreasing exponentially from the pellet surface. The platinum-based catalyst is more effective than the palladium catalysts on a surface-area basis by about a factor of three. Rate coefficients are determined from concentration decay following a spike injection of tritium into an air-filled enclosure processed by recirculation through an oxidation/adsorption system. The catalytic reaction is first-order in tritium concentration in the range 10 to 10 5 μCi/m 3 (4 ppt-40 ppB). Addition of hydrogen carrier gas is unnecessary. Catalytic activity for all three catalysts declines with time of exposure to air after activation, following a power-law decay with an exponent of -1/2. Reactivation with hot hydrogen gas effectively restores initial catalytic activity

  1. The influence of atmospheric circulation on the air pollution concentration and temperature inversion in Sosnowiec. Case study

    Directory of Open Access Journals (Sweden)

    Widawski Artur

    2015-06-01

    Full Text Available Sosnowiec is located in the Katowice Region, which is the most urbanized and industrialized region in Poland. Urban areas of such character favor enhancement of pollution concentration in the atmosphere and the consequent emergence of smog. Local meteorological and circulation conditions significantly influence not only on the air pollution level but also change air temperature considerably in their centers and immediate vicinities. The synoptic situation also plays the major role in dispersal and concentration of air pollutants and changes in temperature profile. One of the most important are the near-ground (100 m inversions of temperature revealed their highest values on clear winter days and sometimes stay still for the whole day and night. Air temperature inversions in Sosnowiec occur mainly during anticyclone stagnation (Ca-anticyclone centre and Ka-anticyclonic ridge and in anticyclones with air advection from the south and southwest (Sa and SWa which cause significantly increase of air pollution values. The detailed evaluation of the influence of circulation types on the appearance of a particular concentration of pollutants carried out in this work has confirmed the predominant influence of individual circulation types on the development of air pollution levels at the Katowice region. This paper presents research case study results of the thermal structure of the near-ground atmospheric layer (100 m and air pollution parameters (PM10, SO2, NO, NO2 changes in selected days of 2005 year according to regional synoptic circulation types. The changes in urban environment must be taken into account in analyses of multiyear trends of air temperature and air conditions on the regional and global scales.

  2. THE INFLUENCE OF EUROPEAN CLIMATE VARIABILITY MECHANISM ON AIR TEMPERATURE IN ROMANIA

    Directory of Open Access Journals (Sweden)

    M. MATEI

    2013-03-01

    Full Text Available The main objective of the present paper is to analyze the temporal and spatial variability of air-temperature in Romania, by using mean air-temperature values provided by the ECA&D project (http://eca.knmi.nl/. These data sets will be filtered by means of the EOF (Empirical Orthogonal Function analysis, which describes various modes of space variability and time coefficient series (PC series. The EOF analysis will also be used to identify the main way of action of the European climate variability mechanism, by using multiple variables in grid points, provided by the National Centre of Atmospheric Research (NCAR, USA. The variables considered here are: sea level pressure (SLP, geopotential height at 500 mb (H500 and air temperature at 850 mb (T850, for the summer and winter seasons. The linear trends and shift points of considered variables are then assessed by means of the Mann-Kendall and Pettitt non-parametric tests. By interpreting the results, we can infer that there is causal relationship between the large-scale analyzed parameters and temperature variability in Romania. These results are consistent with those presented by Busuioc et al., 2010, where the main variation trends of the principal European variables are shown.

  3. Monitoring of air pollution levels related to Charilaos Trikoupis Bridge.

    Science.gov (United States)

    Sarigiannis, D A; Handakas, E J; Kermenidou, M; Zarkadas, I; Gotti, A; Charisiadis, P; Makris, K; Manousakas, M; Eleftheriadis, K; Karakitsios, S P

    2017-12-31

    Charilaos Trikoupis bridge is the longest cable bridge in Europe that connects Western Greece with the rest of the country. In this study, six air pollution monitoring campaigns (including major regulated air pollutants) were carried out from 2013 to 2015 at both sides of the bridge, located in the urban areas of Rio and Antirrio respectively. Pollution data were statistically analyzed and air quality was characterized using US and European air quality indices. From the overall campaign, it was found that air pollution levels were below the respective regulatory thresholds, but once at the site of Antirrio (26.4 and 52.2μg/m 3 for PM 2.5 and ΡΜ 10 , respectively) during the 2nd winter period. Daily average PM 10 and PM 2.5 levels from two monitoring sites were well correlated to gaseous pollutant (CO, NO, NO 2 , NO x and SO 2 ) levels, meteorological parameters and factor scores from Positive Matrix Factorization during the 3-year period. Moreover, the elemental composition of PM 10 and PM 2.5 was used for source apportionment. That analysis revealed that major emission sources were sulfates, mineral dust, biomass burning, sea salt, traffic and shipping emissions for PM 10 and PM 2.5 , for both Rio and Antirrio. Seasonal variation indicates that sulfates, mineral dust and traffic emissions increased during the warm season of the year, while biomass burning become the dominant during the cold season. Overall, the contribution of the Charilaos Trikoupis bridge to the vicinity air pollution is very low. This is the result of the relatively low daily traffic volume (~10,000 vehicles per day), the respective traffic fleet composition (~81% of the traffic fleet are private vehicles) and the speed limit (80km/h) which does not favor traffic emissions. In addition, the strong and frequent winds further contribute to the rapid dispersion of the emitted pollutants. Copyright © 2017. Published by Elsevier B.V.

  4. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  5. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  6. Enhanced Statistical Estimation of Air Temperature Incorporating Nighttime Light Data

    Directory of Open Access Journals (Sweden)

    Yunhao Chen

    2016-08-01

    Full Text Available Near surface air temperature (Ta is one of the most critical variables in climatology, hydrology, epidemiology, and environmental health. In situ measurements are not efficient for characterizing spatially heterogeneous Ta, while remote sensing is a powerful tool to break this limitation. This study proposes a mapping framework for daily mean Ta using an enhanced empirical regression method based on remote sensing data. It differs from previous studies in three aspects. First, nighttime light data is introduced as a predictor (besides land surface temperature, normalized difference vegetation index, impervious surface area, black sky albedo, normalized difference water index, elevation, and duration of daylight considering the urbanization-induced Ta increase over a large area. Second, independent components are extracted using principal component analysis considering the correlations among the above predictors. Third, a composite sinusoidal coefficient regression is developed considering the dynamic Ta-predictor relationship. This method was performed at 333 weather stations in China during 2001–2012. Evaluation shows overall mean error of −0.01 K, root mean square error (RMSE of 2.53 K, correlation coefficient (R2 of 0.96, and average uncertainty of 0.21 K. Model inter-comparison shows that this method outperforms six additional empirical regressions that have not incorporated nighttime light data or considered predictor independence or coefficient dynamics (by 0.18–2.60 K in RMSE and 0.00–0.15 in R2.

  7. Higher fuel prices are associated with lower air pollution levels.

    Science.gov (United States)

    Barnett, Adrian G; Knibbs, Luke D

    2014-05-01

    Air pollution is a persistent problem in urban areas, and traffic emissions are a major cause of poor air quality. Policies to curb pollution levels often involve raising the price of using private vehicles, for example, congestion charges. We were interested in whether higher fuel prices were associated with decreased air pollution levels. We examined an association between diesel and petrol prices and four traffic-related pollutants in Brisbane from 2010 to 2013. We used a regression model and examined pollution levels up to 16 days after the price change. Higher diesel prices were associated with statistically significant short-term reductions in carbon monoxide and nitrogen oxides. Changes in petrol prices had no impact on air pollution. Raising diesel taxes in Australia could be justified as a public health measure. As raising taxes is politically unpopular, an alternative political approach would be to remove schemes that put a downward pressure on fuel prices, such as industry subsidies and shopping vouchers that give fuel discounts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. URBAN MORPHOLOGY AND AIR QUALITY IN DENSE RESIDENTIAL ENVIRONMENTS: CORRELATIONS BETWEEN MORPHOLOGICAL PARAMETERS AND AIR POLLUTION AT STREET-LEVEL

    Directory of Open Access Journals (Sweden)

    PRIYANTHA EDUSSURIYA

    2014-02-01

    Full Text Available This study is the second part of the series that identifies whether site-specific urban morphological parameters are correlated with air quality. This study aims to identify the most important urban morphological parameters that affects air quality at street level that affect air quality in metropolis like Hong Kong through field measurements and statistical analyses. The study considers 20 urban residential areas in five major districts of Hong Kong and real-time street level air pollutant and microclimatic data are collected from these areas. 21 morphological variables are identified and calculated based on the geometry of the urban fabric. Using principal component analyses, it is shown that out of the many urban morphological factors, only five morphological variables (plan area density, occlusivity, aerodynamic roughness height, mean built volume, compactness factor and four land development factors (aspect ratio, distance between building, mean building height and standard deviation of building height correlate with particulate matter. Besides mineralisation factor, contiguity and canyon ratio marginally correlate with particulate matter. On the other hand, nine variables (plan area density, compactness factor, occlusivity, aerodynamic roughness height, average size of building volume, aspect ratio, distance between buildings, mean building height and standard deviations of building heights correlate with NOx. All others play insignificant roles in street-level pollution effect. Moreover statistical analyses show little correlation between CO and ozone with urban morphological parameters. It is also established that the key microclimatic variables that connects PM and NOx with the urban morphological factors are northerly wind, relative humidity and temperature, which in turn translates to affecting the street-level air pollution.

  9. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA.

    Science.gov (United States)

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2012-08-15

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R(2)=0.946 and R(2)=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Interaction between Soil Moisture and Air Temperature in the Mississippi River Basin

    Science.gov (United States)

    Increasing air temperatures are expected to continue in the future. The relation between soil moisture and near surface air temperature is significant for climate change and climate extremes. Evaluation of the relations between soil moisture and temperature was performed by devel...

  11. Mapping air temperature using time series analysis of LST : The SINTESI approach

    NARCIS (Netherlands)

    Alfieri, S.M.; De Lorenzi, F.; Menenti, M.

    2013-01-01

    This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded

  12. Theoretical and Experimental Investigations of Highly Uprated Diesel Engine with Temperature Regulator of Supercharging Air

    Directory of Open Access Journals (Sweden)

    G. A. Vershina

    2005-01-01

    Full Text Available Mathematical model of a highly uprated diesel engine with turbo-supercharging and intercooler of supercharging air is given in die paper. Theoretical study based on the model has made it possible to design and test an intercooler with a temperature regulator of supercharging air. Test results prove efficiency of temperature regulation of supercharging air in operation of an engine at low loads with excess air factor more than 3.2.

  13. AIRS/Aqua Level 1C Infrared (IR) resampled and corrected radiances V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The AIRS Infrared (IR) level 1C data set contains AIRS infrared calibrated and geolocated radiances in W/m2/micron/ster. This data set is generated from AIRS level...

  14. Locating room air-conditioners at floor level for energy saving in residential buildings

    International Nuclear Information System (INIS)

    Gao, C.F.; Lee, W.L.; Chen Hua

    2009-01-01

    Residential air-conditioning becomes a common feature in our daily life. They are typically installed at high level known as ceiling-based system (CAC). With the increasing use of floor-based air-conditioning system in commercial buildings for energy saving, it is proposed in this study to locate a top discharge/front return air-conditioner at floor level to resemble a floor-based air-conditioning system (FAC) to curb energy use in residential buildings. Given the concerns about draught discomfort and thermal stratification associated with floor-based air-conditioning systems, the objective of this study is to evaluate the air distribution performance and to quantify the possible energy benefits. Bedroom was chosen as a sensitive case for detailed air distribution performance evaluation. Experimental study, CFD simulations and energy simulations were conducted in achieving the specific objectives. CAC and FAC were installed in a bedroom-like environmental chamber for experimental study at different indoor and outdoor conditions. The air velocities and temperatures at various positions and levels inside the chamber were measured to determine the air distribution performance indices (ADPI) and airflow draft risk (DR). The cooling output, power consumption and coefficient of performance (COP) of the two units were measured and calculated for comparison. The experimental results show that ADPI of CAC and FAC are 92.3% and 84.6%, respectively. COP of FAC is 8.11% higher than CAC, and the corresponding DR are comparable. The experimental results were used to validate the CFD simulations as well as providing actual performance data for predicting the energy use of applying CAC and FAC in a case-study building. CFD simulations and draught assessment confirmed that there is no potential draught discomfort and thermal stratification associated with the use of FAC. Energy simulations predicted that the associated energy saving is 6.9%. Wider use of FAC in residential

  15. Locating room air-conditioners at floor level for energy saving in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gao, C.F.; Lee, Hua; Chen, W.L. [Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom (China)

    2009-08-15

    Residential air-conditioning becomes a common feature in our daily life. They are typically installed at high level known as ceiling-based system (CAC). With the increasing use of floor-based air-conditioning system in commercial buildings for energy saving, it is proposed in this study to locate a top discharge/front return air-conditioner at floor level to resemble a floor-based air-conditioning system (FAC) to curb energy use in residential buildings. Given the concerns about draught discomfort and thermal stratification associated with floor-based air-conditioning systems, the objective of this study is to evaluate the air distribution performance and to quantify the possible energy benefits. Bedroom was chosen as a sensitive case for detailed air distribution performance evaluation. Experimental study, CFD simulations and energy simulations were conducted in achieving the specific objectives. CAC and FAC were installed in a bedroom-like environmental chamber for experimental study at different indoor and outdoor conditions. The air velocities and temperatures at various positions and levels inside the chamber were measured to determine the air distribution performance indices (ADPI) and airflow draft risk (DR). The cooling output, power consumption and coefficient of performance (COP) of the two units were measured and calculated for comparison. The experimental results show that ADPI of CAC and FAC are 92.3% and 84.6%, respectively. COP of FAC is 8.11% higher than CAC, and the corresponding DR are comparable. The experimental results were used to validate the CFD simulations as well as providing actual performance data for predicting the energy use of applying CAC and FAC in a case-study building. CFD simulations and draught assessment confirmed that there is no potential draught discomfort and thermal stratification associated with the use of FAC. Energy simulations predicted that the associated energy saving is 6.9%. Wider use of FAC in residential

  16. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Directory of Open Access Journals (Sweden)

    Lahimer A.A.

    2017-01-01

    Full Text Available Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I: car with/ without SRC (at different measurement time; Case (II: using two identical cars concurrently (SRC versus baseline; Case (III: using two identical cars concurrently (solar reflective film (SRF versus baseline and Case (IV: using two identical cars concurrently (SRF versus SRC. Experimental results dedicated to case (I revealed that the maximum cabin air temperature with SRC (39.6°C is significantly lower than that of baseline case (57.3°C. This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  17. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Science.gov (United States)

    Lahimer, A. A.; Alghoul, M. A.; Sopian, K.; Khrit, N. G.

    2017-11-01

    Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC) on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E) under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I): car with/ without SRC (at different measurement time); Case (II): using two identical cars concurrently (SRC versus baseline); Case (III): using two identical cars concurrently (solar reflective film (SRF) versus baseline) and Case (IV): using two identical cars concurrently (SRF versus SRC). Experimental results dedicated to case (I) revealed that the maximum cabin air temperature with SRC (39.6°C) is significantly lower than that of baseline case (57.3°C). This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C) after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  18. Ultrasonic level and temperature sensor for power reactor applications

    International Nuclear Information System (INIS)

    Dress, W.B.; Miller, G.N.

    1983-01-01

    An ultrasonic waveguide employing torsional and extensional acoustic waves has been developed for use as a level and temperature sensor in pressurized and boiling water nuclear power reactors. Features of the device include continuous measurement of level, density, and temperature producing a real-time profile of these parameters along a chosen path through the reactor vessel

  19. Air-ground temperature coupling and subsurface propagation of annual temperature signals

    Czech Academy of Sciences Publication Activity Database

    Smerdon, J. E.; Pollack, H. N.; Čermák, Vladimír; Enz, J. W.; Krešl, Milan; Šafanda, Jan; Wehmiller, J. F.

    2004-01-01

    Roč. 109, D21 (2004), D21107/1-10 ISSN 0148-0227 R&D Projects: GA AV ČR KSK3046108; GA MŠk(CZ) 1P05ME778 Grant - others:NSF(US) ATM-0081864; NSF(US) EAR9315052; NASA (US) GWEC 0000 0132 Institutional research plan: CEZ:AV0Z3012916 Keywords : heat transport * air-ground temperature coupling * paleoclimate Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.839, year: 2004

  20. Ground level air convection produces frost damage patterns in turfgrass.

    Science.gov (United States)

    Ackerson, Bruce J; Beier, Richard A; Martin, Dennis L

    2015-11-01

    Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass (Cynodon species Rich.), zoysiagrass (Zoysia species Willd.), and buffalograss [Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.

  1. Ground level air convection produces frost damage patterns in turfgrass

    Science.gov (United States)

    Ackerson, Bruce J.; Beier, Richard A.; Martin, Dennis L.

    2015-11-01

    Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass ( Cynodon species Rich.), zoysiagrass ( Zoysia species Willd.), and buffalograss [ Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.

  2. Decadal-scale teleconnection between South Atlantic SST and southeast Australia surface air temperature in austral summer

    Science.gov (United States)

    Xue, Jiaqing; Li, Jianping; Sun, Cheng; Zhao, Sen; Mao, Jiangyu; Dong, Di; Li, Yanjie; Feng, Juan

    2018-04-01

    Austral summer (December-February) surface air temperature over southeast Australia (SEA) is found to be remotely influenced by sea surface temperature (SST) in the South Atlantic at decadal time scales. In austral summer, warm SST anomalies in the southwest South Atlantic induce concurrent above-normal surface air temperature over SEA. This decadal-scale teleconnection occurs through the eastward propagating South Atlantic-Australia (SAA) wave train triggered by SST anomalies in the southwest South Atlantic. The excitation of the SAA wave train is verified by forcing experiments based on both linear barotropic and baroclinic models, propagation pathway and spatial scale of the observed SAA wave train are further explained by the Rossby wave ray tracing analysis in non-uniform basic flow. The SAA wave train forced by southwest South Atlantic warming is characterized by an anomalous anticyclone off the eastern coast of the Australia. Temperature diagnostic analyses based on the thermodynamic equation suggest anomalous northerly flows on western flank of this anticyclone can induce low-level warm advection anomaly over SEA, which thus lead to the warming of surface air temperature there. Finally, SST-forced atmospheric general circulation model ensemble experiments also demonstrate that SST forcing in the South Atlantic is associated with the SAA teleconnection wave train in austral summer, this wave train then modulate surface air temperature over SEA on decadal timescales. Hence, observations combined with numerical simulations consistently demonstrate the decadal-scale teleconnection between South Atlantic SST and summertime surface air temperature over SEA.

  3. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  4. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    Science.gov (United States)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  5. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  6. Statistical analysis of global surface temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmidt, Torben; Johansen, Søren; Thejll, Peter

    2012-01-01

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to the lack of representation of ice-sheet dynamics in present-day physically-based climate models being unable to simulate observed sea level trends......, semi-empirical models have been applied as an alternative for projecting of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and land-ocean surface air...... temperature, capable of handling such peculiarities. We find a relationship between sea level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s...

  7. Degradation of Phosphorene in Air: Understanding at Atomic Level

    OpenAIRE

    Wang, Gaoxue; Slough, William J.; Pandey, Ravindra; Karna, Shashi P.

    2015-01-01

    Phosphorene is a promising two dimensional (2D) material with a direct band gap, high carrier mobility, and anisotropic electronic properties. Phosphorene-based electronic devices, however, are found to degrade upon exposure to air. In this paper, we provide an atomic level understanding of stability of phosphorene in terms of its interaction with O2 and H2O. The results based on density functional theory together with first principles molecular dynamics calculations show that O2 could sponta...

  8. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    Science.gov (United States)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude

  9. Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season

    DEFF Research Database (Denmark)

    Gao, Jie; Wargocki, Pawel; Wang, Yi

    2014-01-01

    The present study investigated how different ventilation system types influence classroom temperature and air quality. Five classrooms were selected in the same school. They were ventilated by manually operable windows, manually operable windows with exhaust fan, automatically operable windows...... with and without exhaust fan and by mechanical ventilation system. Temperature, relative humidity, carbon dioxide (CO2) concentration and opening of windows were continuously monitored for one month during heating season in 2012. Classroom with manually operable windows had the highest carbon dioxide concentration...... levels so that the estimated ventilation rate was the lowest compared with the classrooms ventilated with other systems. Temperatures were slightly lower in classroom ventilated by manually operable windows with exhaust fan. Windows were opened seldom even in the classroom ventilated by manually operable...

  10. Use of Quality Controlled AIRS Temperature Soundings to Improve Forecast Skill

    Science.gov (United States)

    Susskind, Joel; Reale, Oreste; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. Also included are the clear column radiances used to derive these products which are representative of the radiances AIRS would have seen if there were no clouds in the field of view. All products also have error estimates. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20 percent, in cases with up to 90 percent effective cloud cover. The products are designed for data assimilation purposes for the improvement of numerical weather prediction, as well as for the study of climate and meteorological processes. With regard to data assimilation, one can use either the products themselves or the clear column radiances from which the products were derived. The AIRS Version 5 retrieval algorithm is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates for retrieved quantities and clear column radiances, and the use of these error estimates for Quality Control. The temperature profile error estimates are used to determine a case-by-case characteristic pressure pbest, down to which the profile is considered acceptable for data assimilation purposes. The characteristic pressure p(sub best) is determined by comparing the case dependent error estimate (delta)T(p) to the threshold values (Delta)T(p). The AIRS Version 5 data set provides error estimates of T(p) at all levels, and also profile dependent values of pbest based

  11. AIRS/Aqua Level 3 Monthly CO2 in the free troposphere (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the AIRS mid-tropospheric Carbon Dioxide (CO2) Level 3 Monthly Gridded Retrieval, from the AIRS and AMSU instruments on board of Aqua satellite. It is a...

  12. AIRS/Aqua Level 3 Monthly CO2 in the free troposphere (AIRS-only) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the AIRS mid-tropospheric Carbon Dioxide (CO2) Level 3 Monthly Gridded Retrieval, from the AIRS instrument on board of Aqua satellite. It is a monthly...

  13. The impact of environmental temperature on lithium serum levels

    NARCIS (Netherlands)

    Wilting, Ingeborg; Fase, Sandra; Martens, Edwin P.; Heerdink, Eibert R.; Nolen, Willem A.; Egberts, Antoine C. G.

    Objectives: Three studies have reported a seasonal variation in lithium serum levels, with higher levels during summer. Our objective was to investigate the impact of actual environmental temperature on lithium serum levels. Methods: A retrospective study was conducted using available records of

  14. The intraseasonal variability of winter semester surface air temperature in Antarctica

    Directory of Open Access Journals (Sweden)

    Lejiang Yu

    2011-02-01

    Full Text Available This study investigates systematically the intraseasonal variability of surface air temperature over Antarctica by applying empirical orthogonal function (EOF analysis to the National Centers for Environmental Prediction, US Department of Energy, Reanalysis 2 data set for the period of 1979 through 2007. The results reveal the existence of two major intraseasonal oscillations of surface temperature with periods of 26–30 days and 14 days during the Antarctic winter season in the region south of 60°S. The first EOF mode shows a nearly uniform spatial pattern in Antarctica and the Southern Ocean associated with the Antarctic Oscillation. The mode-1 intraseasonal variability of the surface temperature leads that of upper atmosphere by one day with the largest correlation at 300-hPa level geopotential heights. The intraseasonal variability of the mode-1 EOF is closely related to the variations of surface net longwave radiation the total cloud cover over Antarctica. The other major EOF modes reveal the existence of eastward propagating phases over the Southern Ocean and marginal region in Antarctica. The leading two propagating modes respond to Pacific–South American modes. Meridional winds induced by the wave train from the tropics have a direct influence on the surface air temperature over the Southern Ocean and the marginal region of the Antarctic continent.

  15. Assessment of NOAA NUCAPS upper air temperature profiles using COSMIC GPS radio occultation and ARM radiosondes

    Science.gov (United States)

    Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.

    2017-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.

  16. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  17. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    Science.gov (United States)

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  18. Computation and measurement of air temperature distribution of an industrial melt blowing die

    Directory of Open Access Journals (Sweden)

    Wu Li-Li

    2014-01-01

    Full Text Available The air flow field of the dual slot die on an HDF-6D melt blowing non-woven equipment is computed numerically. A temperature measurement system is built to measure air temperatures. The computation results tally with the measured results proving the correctness of the computation. The results have great valuable significance in the actual melt blowing production.

  19. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Science.gov (United States)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  20. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2014-01-01

    and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  1. Temperature ranges of the application of air-to-air heat recovery ventilator in supermarkets in winter, China

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yanming; Wang, Youjun; Zhong, Ke [School of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Liu, Jiaping [School of Architecture, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2010-12-15

    Energy consumption is an important issue in China. In heating, ventilation and air conditioning (HVAC) systems, more and more commercial buildings use air-to-air heat recovery ventilators as energy saving units for recovering heat from the exhaust air in ventilation systems in current years. In the present paper, critical temperatures of air-to-air heat recovery systems for supermarkets in winter are recommended and discussed for the four cities in different climate zones of China. The analysis shows that the temperature of fresh air in winter can be categorized into three regions, i.e., recovery region, transition region and impermissible recovery region. The results also indicate that the latent heat recovery is not suitable for ventilation energy savings in supermarkets in winter. Meanwhile, the applicability of sensible heat recovery in supermarkets depends on outdoor climate and fresh air flow rate. If a variable rotational speed fan is used to introduce fresh air into the building, heat recovery does always function as planned in winter for all the selected cities except Guangzhou, and most values of the COP are much higher than 2.5. Otherwise, there is the risk of negative impact on building energy savings in all cities except Harbin. (author)

  2. Air conditioning design temperature - a new proposal; Temperatura de projeto para condicionamento de ar - uma nova proposta

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Jose R.; Cardoso, Sebastiao [Universidade de Taubate, SP (Brazil). Dept. de Engenharia Mecanica]. E-mails: rui@engenh.mec.unitau.br; cardoso@prppg.unitau.br; Travelho, Jeronimo S. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)]. E-mail: jeff@lac.inpe.br

    2000-07-01

    ABNT - Associacao Brasileira de Normas Tecnicas (Brazilian Association for Technical Standards) - establishes, in NBR-6401, Table 1 (Interior Design Conditions), the dry-bulb summer temperature and the relative humidity to be used in air conditioning design. In thermal comfort plant for residences, hotels, offices and schools these values are, respectively, 23 deg C to 25 deg C and 40% to 60% rh. These data are in accordance with what is recommended by ASHRAE, which was established as a model for North America. This paper presents a new proposal to air conditioning design temperature that takes into consideration Brazilian climatological conditions. The method, named 'effective temperature distribution', compares the maximum recommended effective temperature for each region with dry-bulb temperatures and effective temperatures plotted in a single diagram. This diagram may be used in energetic planning to minimize the use of electric energy for air conditioning. It concludes that the method allows an accuracy analysis about both the temperature levels and the periods of utilization of the air conditioning systems. (author)

  3. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  4. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Science.gov (United States)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  5. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  6. Human Response to Ductless Personalised Ventilation: Impact of Air Movement, Temperature and Cleanness on Eye Symptoms

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Fillon, Maelys; Bivolarova, Maria

    2013-01-01

    environment facially applied individually controlled air movement of room air, with or without local filtering, did not have significant impact on eye blink frequency and tear film quality. The local air movement and air cleaning resulted in increased eye blinking frequency and improvement of tear film......The performance of ductless personalized ventilation (DPV) in conjunction with displacement ventilation (DV) was studied in relation to peoples’ health, comfort and performance. This paper presents results on the impact of room air temperature, using of DPV and local air filtration on eye blink...

  7. The significance level and repeatability for isotope-temperature coefficient of precipitation in China

    International Nuclear Information System (INIS)

    Wang Dongsheng; Wang Jinglan

    2003-01-01

    The good linear relationship with significance level α = 0.01 exists between isotope in precipitation and surface air temperature with multi-year average in 32 stations of China, and the yearly δD-temperature coefficient = 3.1‰/1℃ and the yearly δ 18 O-temperature coefficient = 0.36‰/1℃, and its determination coefficient R 2 = 0.67 and 0.64 respectively. So the isotope-temperature coefficient with yearly average can serve as the temperature yearly measure. But the monthly average isotope-temperature coefficient in each station is variable according to both of space and time, and its repeatability is determined by the meteorological regimes. According to the monthly isotope-temperature coefficient (B) and the coefficient of determination (R 2 ) and its α, all of China can be zoned the following three belts: (1) In the North Belt, B>O, R 2 ≈ 0.3-0.65, α = 0.01, the relation between monthly isotope in precipitation and surface air temperature (RMIT) belongs to a direct correlation and is closer in 99% probability; (2) In the South Belt, Btemperature coefficient with both of yearly average and monthly average and its statistical attribution is site-specific, it may be used to reconstruct past surface air temperatures or to diagnose regional climate models. (authors)

  8. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  9. Indoor air quality levels in a University Hospital in the Eastern Province of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mahmoud F El-Sharkawy

    2014-01-01

    Full Text Available Aim of the Study: The complex hospital environment requires special attention to ensure a healthy indoor air quality (IAQ to protect patients and healthcare workers against hospital-acquired infections and occupational diseases. Poor hospital IAQ may cause outbreaks of building-related illness such as headaches, fatigue, eye, and skin irritations, and other symptoms. The general objective for this study was to assess IAQ inside a large University hospital at Al-Khobar City in the Eastern Province of Saudi Arabia. Materials and Methods: Different locations representing areas where most activities and tasks are performed were selected as sampling points for air pollutants in the selected hospital. In addition, several factors were studied to determine those that were most likely to affect the IAQ levels. The temperature and relative percent humidity of different air pollutants were measured simultaneously at each location. Results: The outdoor levels of all air pollutant levels, except volatile organic compounds (VOCs, were higher than the indoor levels which meant that the IAQ inside healthcare facilities (HCFs were greatly affected by outdoor sources, particularly traffic. The highest levels of total suspended particulates (TSPs and those less than 10 microns (PM 10 inside the selected hospital were found at locations that are characterized with m4ore human activity. Conclusions:Levels of particulate matter (both PM 10 and TSP were higher than the Air Quality Guidelines (AQGs. The highest concentrations of the fungal species recorded were Cladosporium and Penicillium. Education of occupants of HCF on IAQ is critical. They must be informed about the sources and effects of contaminants and the proper operation of the ventilation system.

  10. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature

    International Nuclear Information System (INIS)

    Shen Suhung; Leptoukh, Gregory G

    2011-01-01

    Surface air temperature (T a ) is a critical variable in the energy and water cycle of the Earth–atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T a from satellite remotely sensed land surface temperature (T s ) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T a and MODIS T s . The relationships between the maximum T a and daytime T s depend significantly on land cover types, but the minimum T a and nighttime T s have little dependence on the land cover types. The largest difference between maximum T a and daytime T s appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T a were estimated from 1 km resolution MODIS T s under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T a were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T a varies from 2.4 °C over closed shrublands to 3.2 °C over grasslands, and the MAE of the estimated minimum T a is about 3.0 °C.

  11. Room air temperature affects occupants' physiology, perceptions and mental alertness

    Energy Technology Data Exchange (ETDEWEB)

    Tham, Kwok Wai; Willem, Henry Cahyadi [Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566 (Singapore)

    2010-01-15

    Thermal environment that causes thermal discomfort may affect office work performance. However, the mechanisms through which occupants are affected are not well understood. This study explores the plausible mechanism linking room air temperature and mental alertness through perceptual and physiological responses in the tropics. Ninety-six young adults participated as voluntary subjects in a series of experiment conducted in the simulated office settings. Three room air temperatures, i.e. 20.0, 23.0 and 26.0 C were selected as the experimental conditions. Both thermal comfort and thermal sensation changed significantly with time under all exposures (P < 0.0001). Longer exposure at 20.0 C led to cooling sensations due to lower skin temperatures (P < 0.0001) and was perceived as the least comfortable. Nevertheless, this moderate cold exposure induced nervous system activation as demonstrated by the increase of {alpha}-Amylase level (P < 0.0001) and the Tsai-partington test (P < 0.0001). A mechanism linking thermal environment, occupants' responses and performance is proposed. (author)

  12. Interactions between temperature and nutrients across levels of ecological organization.

    Science.gov (United States)

    Cross, Wyatt F; Hood, James M; Benstead, Jonathan P; Huryn, Alexander D; Nelson, Daniel

    2015-03-01

    Temperature and nutrient availability play key roles in controlling the pathways and rates at which energy and materials move through ecosystems. These factors have also changed dramatically on Earth over the past century as human activities have intensified. Although significant effort has been devoted to understanding the role of temperature and nutrients in isolation, less is known about how these two factors interact to influence ecological processes. Recent advances in ecological stoichiometry and metabolic ecology provide a useful framework for making progress in this area, but conceptual synthesis and review are needed to help catalyze additional research. Here, we examine known and potential interactions between temperature and nutrients from a variety of physiological, community, and ecosystem perspectives. We first review patterns at the level of the individual, focusing on four traits--growth, respiration, body size, and elemental content--that should theoretically govern how temperature and nutrients interact to influence higher levels of biological organization. We next explore the interactive effects of temperature and nutrients on populations, communities, and food webs by synthesizing information related to community size spectra, biomass distributions, and elemental composition. We use metabolic theory to make predictions about how population-level secondary production should respond to interactions between temperature and resource supply, setting up qualitative predictions about the flows of energy and materials through metazoan food webs. Last, we examine how temperature-nutrient interactions influence processes at the whole-ecosystem level, focusing on apparent vs. intrinsic activation energies of ecosystem processes, how to represent temperature-nutrient interactions in ecosystem models, and patterns with respect to nutrient uptake and organic matter decomposition. We conclude that a better understanding of interactions between temperature and

  13. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    Science.gov (United States)

    Szymanowski, Mariusz; Kryza, Maciej

    2017-02-01

    Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly

  14. The Effect of Temperature and Air Velocity on Drying Kinetics of Pistachio Nuts during Roasting by using Hot Air Flow

    Directory of Open Access Journals (Sweden)

    A Dini

    2017-10-01

    Full Text Available Introduction Pistachio nut is one of the most delicious and nutritious nuts in the world and it is being used as a saltedand roasted product or as an ingredient in snacks, ice cream, desserts, etc. The purpose of roasting is to promote flavour and texture changes in nuts that ultimately increase the overall palatability of the product.Roasting involves a number of physico-chemical changes, including heat exchange, chemical reactions and drying. Knowledge of desorption kinetics is essential to predict the behavior of the material during roasting process and to design roaster equipment.The main aim of this research was to evaluate suitable models for predicting moisture ratio, the effect of air temperature and velocity on the drying kinetics of pistachio nuts and obtain the effective diffusivity coefficient and activation energy in the drying process during the roasting of pistachio nuts. Materials and Methods Dried Ahmadaghaei pistachio nuts were supplied from Kashefan Kavir company (Doraj co. in Rafsanjan. Pistachio nuts were soaked in 17% salt solution for 8 minute and roasting was investigated at air temperatures of 120,130, 145, 160 and 170 °C and air velocities of 0.6, 0.88, 1.3, 1.72 and 2 ms-1. Five semi-theoretical and two empirical kinetic models were fitted to drying experimental data using nonlinear regression analysis techniques in the Curve Expert 2.2 computer program. Results and Discussion Tow-way ANOVA indicated that temperature and hot air velocity significantly affected the drying process during roasting of shelled pistachio nuts. The higher roasting temperatures and air velocities resulted in the higher drying rates. During first 10 min of roasting at constant air velocity of 1.3 ms-1, 64.5%, 70.3%, 77.1%, 83.5%, 89.7% of the moisture were removed at roasting air temperatures of 120 °C, 130 °C, 145 °C, 160 °C, 170 °C, respectively. The high regression coefficients (R2>0.996 and low reduced chi-square (χ2, mean relative

  15. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    Science.gov (United States)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  16. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Ghent, D.; Rayner, N. A.

    2017-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-2018, https://www.eustaceproject.eu) we have developed an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. This includes developing new "Big Data" analysis methods as the data volumes involved are considerable. We will present recent progress along this road in the EUSTACE project, i.e.: • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  17. Effect of pairing in nuclear level density at low temperatures

    International Nuclear Information System (INIS)

    Rhine Kumar, A.K.; Modi, Swati; Arumugam, P.

    2013-01-01

    The nuclear level density (NLD) has been an interesting topic for researchers, due its importance in many aspects of nuclear physics, nuclear astrophysics, nuclear medicine, and other applied areas. The calculation of NLD helps us to understand the energy distribution of the excited levels of nuclei, entropy, specific heat, reaction cross sections etc. In this work the effect of temperature and pairing on level-density of the nucleus 116 Sn has been studied

  18. Air-soil exchange of PCBs: levels and temporal variations at two sites in Turkey.

    Science.gov (United States)

    Yolsal, Didem; Salihoglu, Güray; Tasdemir, Yücel

    2014-03-01

    Seasonal distribution of polychlorinated biphenyls (PCBs) at the air-soil intersection was determined for two regions: one with urban characteristics where traffic is dense (BUTAL) and the other representing the coastal zone (Mudanya). Fifty-one air and soil samples were simultaneously collected. Total PCB (Σ82 PCB) levels in the soil samples collected during a 1-year period ranged between 105 and 7,060 pg/g dry matter (dm) (BUTAL) and 110 and 2,320 pg/g dm (Mudanya). Total PCB levels in the gaseous phase were measured to be between 100 and 910 pg/m(3) (BUTAL) and 75 and 1,025 pg/m(3) (Mudanya). Variations in the concentrations were observed depending on the season. Though the PCB concentrations measured in the atmospheres of both regions in the summer months were high, they were found to be lower in winter. However, while soil PCB levels were measured to be high at BUTAL during summer months, they were found to be high during winter months in Mudanya. The direction and amount of the PCB movement were determined by calculating the gaseous phase change fluxes at air-soil intersection. While a general PCB movement from soil to air was found for BUTAL, the PCB movement from air to soil was calculated for the Mudanya region in most of the sampling events. During the warmer seasons PCB movement towards the atmosphere was observed due to evaporation from the soil. With decreases in the temperature, both decreases in the number of PCB congeners occurring in the air and a change in the direction of some congeners were observed, possibly caused by deposition from the atmosphere to the soil. 3-CB and 4-CB congeners were found to be dominant in the atmosphere, and 4-, 5-, and 6-CBs were found to dominate in the surface soils.

  19. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  20. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    Science.gov (United States)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  1. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  2. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  3. Return levels of temperature extremes in southern Pakistan

    Science.gov (United States)

    Zahid, Maida; Blender, Richard; Lucarini, Valerio; Caterina Bramati, Maria

    2017-12-01

    Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to temperature extremes. In order to improve rural and urban planning, it is useful to gather information about the recurrence of temperature extremes. In this work, return levels of the daily maximum temperature Tmax are estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. We adopt the peaks over threshold (POT) method, which has not yet been used for similar studies in this region. Two main datasets are analyzed: temperatures observed at nine meteorological stations in southern Pakistan from 1980 to 2013, and the ERA-Interim (ECMWF reanalysis) data for the nearest corresponding locations. The analysis provides the 2-, 5-, 10-, 25-, 50-, and 100-year return levels (RLs) of temperature extremes. The 90 % quantile is found to be a suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50 °C at northern stations and above 45 °C at the southern stations. The RLs of the observed TWmax exceed 35 °C in the region, which is considered as a limit of survivability. The RLs estimated from the ERA-Interim data are lower by 3 to 5 °C than the RLs assessed for the nine meteorological stations. A simple bias correction applied to ERA-Interim data improves the RLs remarkably, yet discrepancies are still present. The results have potential implications for the risk assessment of extreme temperatures in Sindh.

  4. Level-density parameter of nuclei at finite temperature

    International Nuclear Information System (INIS)

    Gregoire, C.; Kuo, T.T.S.; Stout, D.B.

    1991-01-01

    The contribution of particle-particle (hole-hole) and of particle-hole ring diagrams to the nuclear level-density parameter at finite temperature is calculated. We first derive the correlated grand potential with the above ring diagrams included to all orders by way of a finite temperature RPA equation. An expression for the correlated level-density parameter is then obtained by differentiating the grand potential. Results obtained for the 40 Ca nucleus with realistic matrix elements derived from the Paris potential are presented. The contribution of the RPA correlations is found to be important, being significantly larger than typical Hartree-Fock results. The temperature dependence of the level-density parameter derived in the present work is generally similar to that obtained in a schematic model. Comparison with available experimental data is discussed. (orig.)

  5. Analysis of surface air temperature variations and local urbanization effects on central Yunnan Plateau, SW China

    Science.gov (United States)

    He, Yunling; Wu, Zhijie; Liu, Xuelian; Deng, Fuying

    2018-01-01

    With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961-2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen's Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3-62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.

  6. Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures

    Science.gov (United States)

    Zachary A. Holden; Anna E. Klene; Robert F. Keefe; Gretchen G. Moisen

    2013-01-01

    Inexpensive temperature sensors are widely used in agricultural and forestry research. This paper describes a low-cost (~3 USD) radiation shield (radshield) designed for monitoring surface air temperatures in harsh outdoor environments. We compared the performance of the radshield paired with low-cost temperature sensors at three sites in western Montana to several...

  7. Air-ground temperature coupling: analysis by means of Thermal Orbits

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Bodri, L.

    2016-01-01

    Roč. 6, č. 1 (2016), s. 112-122 ISSN 2160-0414 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk(CZ) LG13040 Institutional support: RVO:67985530 Keywords : Thermal Orbits * temperature monitoring * air temperature vs ground temperature Subject RIV: DG - Athmosphere Sciences, Meteorology

  8. Effect of supply air temperature on air distribution in a room with radiant heating and mechanical ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Fang, Lei

    2017-01-01

    and the horizontal distribution of containment concentration in the breathing zone were measured as the supply air temperature ranged from 15.0°C (59°F)to 19.0°C (66.2°F). The results showed that the vertical air temperature differences were less than 0.3°C (32.5°F) with FH+MV or CH+MV and between 1.9°C (35.4°F...

  9. Decadal Seasonal Shifts of Precipitation and Temperature in TRMM and AIRS Data

    Science.gov (United States)

    Savtchenko, Andrey; Huffman, George; Meyer, David; Vollmer, Bruce

    2018-01-01

    We present results from an analysis of seasonal phase shifts in the global precipitation and surface temperatures. We use data from the TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Algorithm (TMPA), and the Atmospheric Infrared Sounder (AIRS) on Aqua satellite, all hosted at NASA Goddard Earth Science Data and Information Services Center (GES DISC). We explore the information content and data usability by first aggregating daily grids from the entire records of both missions to pentad (5-day) series which are then processed using Singular Value Decomposition approach. A strength of this approach is the normalized principal components that can then be easily converted from real to complex time series. Thus, we can separate the most informative, the seasonal, components and analyze unambiguously for potential seasonal phase drifts. TMPA and AIRS records represent correspondingly 20 and 15 years of data, which allows us to run simple “phase learning†from the first 5 years of records and use it as reference. The most recent 5 years are then phase-compared with the reference. We demonstrate that the seasonal phase of global precipitation and surface temperatures has been stable in the past two decades. However, a small global trend of delayed precipitation, and earlier arrival of surface temperatures seasons, are detectable at 95% confidence level. Larger phase shifts are detectable at regional level, in regions recognizable from the Eigen vectors to having strong seasonal patterns. For instance, in Central North America, including the North American Monsoon region, confident phase shifts of 1-2 days per decade are detected at 95% confidence level. While seemingly symbolic, these shifts are indicative of larger changes in the Earth Climate System. We thus also demonstrate a potential usability scenario of Earth Science Data Records curated at the NASA GES DISC in partnership with Earth Science Missions.

  10. Allowable spent LWR fuel storage temperatures in inert gases, nitrogen, and air

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Cunningham, M.E.; Simonen, E.P.; Thomas, L.E.; Campbell, T.K.; Barnhart, D.M.

    1990-01-01

    Spent fuel in inert dry storage is now a reality in the US; recommended maximum temperature-time conditions are specified in an IBM PC-compatible code. However, spent fuel cannot yet be stored in air because the data and theory needed for predicting allowable temperatures are still being developed. Tests to determine the behavior of spent UO 2 fragments and breached rod specimens in air are providing data that will be used to determine the temperatures that can be allowed for fuel stored in air. 13 refs., 5 figs

  11. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    Science.gov (United States)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  12. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available Adequate perception of nasal airflow (i.e., nasal patency is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  13. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    Science.gov (United States)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  14. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    Directory of Open Access Journals (Sweden)

    Loizeau Sébastien

    2017-09-01

    Full Text Available Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration cycles in an experimental basin of 11869 m2 in a pumping field at Crepieux-Charmy (Lyon, France. A first experiment, conducted in summer 2011, showed a strong increase in infiltration rate; which was linked to a potential increase in ground water temperature or a potential dissolution of air entrapped at the beginning of the infiltration. A second experiment was conducted in summer, to inject cold water instead of warm water, and also revealed an increase in infiltration rate. This increase was linked to air dissolution in the soil. A final experiment was conducted in spring with no temperature contrast and no entrapped air (soil initially water-saturated, revealing a constant infiltration rate. Modeling and analysis of experiments revealed that air entrapment and cold water temperature in the soil could substantially reduce infiltration rate over the first infiltration cycles, with respective effects of similar magnitude. Clearly, both water temperature change and air entrapment must be considered for an accurate assessment of the infiltration rate in basins.

  15. High-precision diode-laser-based temperature measurement for air refractive index compensation.

    Science.gov (United States)

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppä, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement. © 2011 Optical Society of America

  16. High-precision diode-laser-based temperature measurement for air refractive index compensation

    International Nuclear Information System (INIS)

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

    2011-01-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

  17. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China

    International Nuclear Information System (INIS)

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-01-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m 3 increase in the present-day PM 10 , PM 2.5 , SO 2 , NO 2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0–21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0–3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. - Highlights: • Few studies have evaluated the effects of air pollution and temperature on OHCDs in China. • The present-day concentrations of air pollution were associated with OHCDs. • The effect of high temperatures on OHCDs was more immediate than low temperatures. • No significant effects were found for in-hospital coronary deaths. - Ambient air pollution and temperature may trigger out-of-hospital coronary deaths but not in-hospital coronary deaths

  18. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    Science.gov (United States)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  19. Comfort air temperature influence on heating and cooling loads of a residential building

    Science.gov (United States)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  20. The advantages and disadvantages of centralized control of air power at operational level

    Science.gov (United States)

    Arisoy, Uǧur

    2014-05-01

    People do not want to see and hear a war. In today's world, if war is inevitable, the use of air power is seen as the preferable means of conducting operations instead of financially burdensome land battles which are more likely to cause heavy loss of life. The use of Air Power has gained importance in NATO operations in the Post-Cold War era. For example, air power has undertaken a decisive role from the beginning to the end of the operation in Libya. From this point of view, the most important issue to consider is how to direct air power more effectively at operational level. NATO's Core JFAC (Joint Force Air Command) was established in 2012 to control joint air power at operational level from a single center. US had experienced JFAC aproach in the Operation Desert Storm in 1991. UK, France, Germany, Italy and Spain are also directing their air power from their JFAC structures. Joint air power can be directed from a single center at operational level by means of JFAC. JFAC aproach provides complex planning progress of Air Power to be controled faster in a single center. An Air Power with a large number of aircrafts, long range missiles of cutting-edge technology may have difficulties in achieving results unless directed effectively. In this article, directing air power more effectively at operational level has been studied in the framework of directing air power from a single center carried out by SWOT analysis technique. "Directing Air Power at operational level from a single center similar to JFAC-like structure" is compared with "Directing Air Power at operational level from two centers similar to AC (Air Command) + CAOC (Combined Air Operations Center) structure" As a result of this study, it is assessed that directing air power at operational level from a single center would bring effectiveness to the air campaign. The study examines directing air power at operational level. Developments at political, strategic and tactical levels have been ignored.

  1. Study of nuclear level density parameter and its temperature dependence

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Behkami, A. N.

    2000-01-01

    The nuclear level density ρ is the basic ingredient required for theoretical studies of nuclear reaction and structure. It describes the statistical nuclear properties and is expressed as a function of various constants of motion such as number of particles, excitation energy and angular momentum. In this work the energy and spin dependence of nuclear level density will be presented and discussed. In addition the level density parameter α will be extracted from this level density information, and its temperature and mass dependence will be obtained

  2. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of ±14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  3. Computational fluid dynamic on the temperature simulation of air preheat effect combustion in propane turbulent flame

    Science.gov (United States)

    Elwina; Yunardi; Bindar, Yazid

    2018-04-01

    this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.

  4. Statistical modeling of urban air temperature distributions under different synoptic conditions

    Science.gov (United States)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  5. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products

    Science.gov (United States)

    Ji, Lei; Senay, Gabriel B.; Verdin, James P.

    2015-01-01

    There is a high demand for agrohydrologic models to use gridded near-surface air temperature data as the model input for estimating regional and global water budgets and cycles. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global scale. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, the daily 0.25° resolution GLDAS air temperature data are compared with two reference datasets: 1) 1-km-resolution gridded Daymet data (2002 and 2010) for the conterminous United States and 2) global meteorological observations (2000–11) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets, including 13 511 weather stations, indicates a fairly high accuracy of the GLDAS data for daily temperature. The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accuracy. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. The evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but caution should be taken when the data are used in mountainous areas or places with sparse weather stations.

  6. Estimating minimum and maximum air temperature using MODIS ...

    Indian Academy of Sciences (India)

    in a wide range of applications in areas of ecology, hydrology ... stations, thus attracting researchers to make use ... simpler because of the lack of solar radiation effect .... water from the snow packed Himalayan region to ... tribution System (LAADS) webdata archive cen- ..... ing due to greenhouse gases is different for the air.

  7. Effects of Roof-Edge Roughness on Air Temperature and Pollutant Concentration in Urban Canyons

    Science.gov (United States)

    Aliabadi, Amir A.; Krayenhoff, E. Scott; Nazarian, Negin; Chew, Lup Wai; Armstrong, Peter R.; Afshari, Afshin; Norford, Leslie K.

    2017-08-01

    The influence of roof-edge roughness elements on airflow, heat transfer, and street-level pollutant transport inside and above a two-dimensional urban canyon is analyzed using an urban energy balance model coupled to a large-eddy simulation model. Simulations are performed for cold (early morning) and hot (mid afternoon) periods during the hottest month of the year (August) for the climate of Abu Dhabi, United Arab Emirates. The analysis suggests that early in the morning, and when the tallest roughness elements are implemented, the temperature above the street level increases on average by 0.5 K, while the pollutant concentration decreases by 2% of the street-level concentration. For the same conditions in mid afternoon, the temperature decreases conservatively by 1 K, while the pollutant concentration increases by 7% of the street-level concentration. As a passive or active architectural solution, the roof roughness element shows promise for improving thermal comfort and air quality in the canyon for specific times, but this should be further verified experimentally. The results also warrant a closer look at the effects of mid-range roughness elements in the urban morphology on atmospheric dynamics so as to improve parametrizations in mesoscale modelling.

  8. Increasing influence of air temperature on upper Colorado River streamflow

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  9. Photoionization capable, extreme and vacuum ultraviolet emission in developing low temperature plasmas in air

    NARCIS (Netherlands)

    Stephens, J.; Fierro, A.; Beeson, S.; Laity, G.; Trienekens, D.; Joshi, R.P.; Dickens, J.; Neuber, A.

    2016-01-01

    Experimental observation of photoionization capable extreme ultraviolet and vacuum ultraviolet emission from nanosecond timescale, developing low temperature plasmas (i.e. streamer discharges) in atmospheric air is presented. Applying short high voltage pulses enabled the observation of the onset of

  10. Climate Prediction Center (CPC) U.S. Daily Minimum Air Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational reports of daily air temperature (1200 UTC to 1200 UTC) are made by members of the NWS Automated Surface Observing Systems (ASOS) network; NWS...

  11. Climate Prediction Center (CPC) U.S. Daily Maximum Air Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational reports of daily air temperature (1200 UTC to 1200 UTC) are made by members of the NWS Automated Surface Observing Systems (ASOS) network; NWS...

  12. 24-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  13. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  14. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  15. 72-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  16. 48-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  17. Measurements of temperature fluctuations in the mixing of hot and cold air jets

    International Nuclear Information System (INIS)

    Sumner, V.W.

    1977-03-01

    In order to assess the effect of the mixing of 'hot' and 'cold' jets of sodium on structures in the above-core region of the fast reactor, temperature fluctuations have been measured in an experiment consisting of a heated jet of air surrounded by six unheated jets. Temperature spectra obtained from the experiment showed no strong peaks or bands. In considering the effect of thermal cycling of the above-core structures, it is the higher strain values at low frequencies which will be more limiting than the smaller values at high frequencies, due to the nature of strain-lifetime curves. Thus the spectra have been summarised using a low-frequency level and a cut-off frequency at which this level has fallen by an order of magnitude. Attenuation of temperature fluctuations due to the high thermal conductivity of sodium or by boundary layer effects has been considered; however, in the low-frequency, high-energy region of the spectra, little attenuation can be expected. (author)

  18. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector

    International Nuclear Information System (INIS)

    Liu, Zhen-Hua; Hu, Ren-Lin; Lu, Lin; Zhao, Feng; Xiao, Hong-shen

    2013-01-01

    Highlights: • A novel solar air collector with simplified CPC and open thermosyphon is designed and tested. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • Nanofluid effectively improves thermal performance of the above solar air collector. • Solar air collector with open thermosyphon is better than that with concentric tube. - Abstract: A novel evacuated tubular solar air collector integrated with simplified CPC (compound parabolic concentrator) and special open thermosyphon using water based CuO nanofluid as the working fluid is designed to provide air with high and moderate temperature. The experimental system has two linked panels and each panel includes an evacuated tube, a simplified CPC and an open thermosyphon. Outdoor experimental study has been carried out to investigate the actual solar collecting performance of the designed system. Experimental results show that air outlet temperature and system collecting efficiency of the solar air collector using nanofluid as the open thermosyphon’s working fluid are both higher than that using water. Its maximum air outlet temperature exceeds 170 °C at the air volume rate of 7.6 m 3 /h in winter, even though the experimental system consists of only two collecting panels. The solar collecting performance of the solar collector integrated with open thermosyphon is also compared with that integrated with common concentric tube. Experimental results show that the solar collector integrated with open thermosyphon has a much better collecting performance

  19. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    OpenAIRE

    Loizeau Sébastien; Rossier Yvan; Gaudet Jean-Paul; Refloch Aurore; Besnard Katia; Angulo-Jaramillo Rafael; Lassabatere Laurent

    2017-01-01

    Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration c...

  20. Combined effects of air temperature, wind, and radiation on the resting metabolism of avian raptors

    International Nuclear Information System (INIS)

    Hayes, S.R.

    1978-01-01

    American kestrels, Falco sparverius; red-tailed hawks, Buteo jamaicensis; and golden eagles, Aquila chrysaetos, were perched in a wind tunnel and subjected to various combinations of air temperature, wind, and radiation. Oxygen consumption was measured under the various combinations of environmental variables, and multiple regression equations were developed to predict resting metabolism as a function of body mass, air temperature, wind speed, and radiation load

  1. Body temperature change and outcomes in patients undergoing long-distance air medical transport.

    Science.gov (United States)

    Nakajima, Mikio; Aso, Shotaro; Yasunaga, Hideo; Shirokawa, Masamitsu; Nakano, Tomotsugu; Miyakuni, Yasuhiko; Goto, Hideaki; Yamaguchi, Yoshihiro

    2018-04-30

    Short-distance air medical transport for adult emergency patients does not significantly affect patients' body temperature and outcomes. This study aimed to examine the influence of long-distance air medical transport on patients' body temperatures and the relationship between body temperature change and mortality. We retrospectively enrolled consecutive patients transferred via helicopter or plane from isolated islands to an emergency medical center in Tokyo, Japan between April 2010 and December 2016. Patients' average body temperature was compared before and after air transport using a paired t-test, and corrections between body temperature change and flight duration were calculated using Pearson's correlation coefficient. Multivariable logistic regression models were then used to examine the association between body temperature change and in-hospital mortality. Of 1253 patients, the median age was 72 years (interquartile range, 60-82 years) and median flight duration was 71 min (interquartile range, 54-93 min). In-hospital mortality was 8.5%, and average body temperature was significantly different before and after air transport (36.7 °C versus 36.3 °C; difference: -0.36 °C; 95% confidence interval, -0.30 to -0.42; p 38.0 °C) or normothermia (36.0-37.9 °C) before air transport and hypothermia after air transport (odds ratio, 2.08; 95% confidence interval, 1.20-3.63; p = 0.009), and (ii) winter season (odds ratio, 2.15; 95% confidence interval, 1.08-4.27; p = 0.030). Physicians should consider body temperature change during long-distance air transport in patients with not only hypothermia but also normothermia or hyperthermia before air transport, especially in winter. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  3. Collecting performance of an evacuated tubular solar high-temperature air heater with concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Li, Shuang-Fei; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel evacuated tube solar high temperature air heater is designed. • The solar air heater system consists of 30 linked collecting units. • Every unit consisted of a evacuated tube, a simplified CPC and concentric tube. • The flow air is heated over temperature of 200 °C. - Abstract: A set of evacuated tube solar high temperature air heaters with simplified CPC (compound parabolic concentrator) and concentric tube heat exchanger is designed to provide flow air with a temperature of 150–230 °C for industrial production. The solar air heater system consists of 30 linked collecting units. Each unit includes a simplified CPC and an all-glass evacuated tube absorber with a concentric copper tube heat exchanger installed inside. A stainless steel mesh layer with high thermal conductivity is filled between the evacuated tube and the concentric copper tube. Air passes through each collecting unit, and its temperature increases progressively. An experimental investigation of the thermal performance of the air heater is performed, and the experimental results demonstrate the presented high-temperature solar air heater has excellent collecting performance and large output power, even in the winter. The measured thermal efficiency corresponding to the air temperature of 70 °C reaches 0.52. With the increase of air temperature, thermal efficiency reaches 0.35 at an air temperature of 150 °C, and 0.21 at an air temperature of 220 °C.

  4. Reassessment of urbanization effect on surface air temperature trends at an urban station of North China

    Science.gov (United States)

    Bian, Tao; Ren, Guoyu

    2017-11-01

    Based on a homogenized data set of monthly mean temperature, minimum temperature, and maximum temperature at Shijiazhuang City Meteorological Station (Shijiazhuang station) and four rural meteorological stations selected applying a more sophisticated methodology, we reanalyzed the urbanization effects on annual, seasonal, and monthly mean surface air temperature (SAT) trends for updated time period 1960-2012 at the typical urban station in North China. The results showed that (1) urbanization effects on the long-term trends of annual mean SAT, minimum SAT, and diurnal temperature range (DTR) in the last 53 years reached 0.25, 0.47, and - 0.50 °C/decade, respectively, all statistically significant at the 0.001 confidence level, with the contributions from urbanization effects to the overall long-term trends reaching 67.8, 78.6, and 100%, respectively; (2) the urbanization effects on the trends of seasonal mean SAT, minimum SAT, and DTR were also large and statistically highly significant. Except for November and December, the urbanization effects on monthly mean SAT, minimum SAT, and DTR were also all statistically significant at the 0.05 confidence level; and (3) the annual, seasonal, and monthly mean maximum SAT series at the urban station registered a generally weaker and non-significant urbanization effect. The updated analysis evidenced that our previous work for this same urban station had underestimated the urbanization effect and its contribution to the overall changes in the SAT series. Many similar urban stations were being included in the current national and regional SAT data sets, and the results of this paper further indicated the importance and urgency for paying more attention to the urbanization bias in the monitoring and detection of global and regional SAT change based on the data sets.

  5. Cycles of Air Temperature According to Lunar Parallax

    Directory of Open Access Journals (Sweden)

    Isaia Ion

    2016-06-01

    Full Text Available This paper proposes to demonstrate that, on Terra’s surface, there are cycles of air’s temperature (almost perfect, which can be explained just by the lunar parallax’s cycles.

  6. Impact of ambient air temperature and heat load variation on the performance of air-cooled heat exchangers in propane cycles in LNG plants – Analytical approach

    International Nuclear Information System (INIS)

    Fahmy, M.F.M.; Nabih, H.I.

    2016-01-01

    Highlights: • An analytical method regulated the air flow rate in an air-cooled heat exchanger. • Performance of an ACHE in a propane cycle in an LNG plant was evaluated. • Summer inlet air temperature had higher impact on ACHE air flow rate requirement. - Abstract: An analytical method is presented to evaluate the air flow rate required in an air-cooled heat exchanger used in a propane pre-cooling cycle operating in an LNG (liquefied natural gas) plant. With variable ambient air inlet temperature, the air flow rate is to be increased or decreased so as to assure and maintain good performance of the operating air-cooled heat exchanger at the designed parameters and specifications. This analytical approach accounts for the variations in both heat load and ambient air inlet temperature. The ambient air inlet temperature is modeled analytically by simplified periodic relations. Thus, a complete analytical method is described so as to manage the problem of determining and accordingly regulate, either manually or automatically, the flow rate of air across the finned tubes of the air-cooled heat exchanger and thus, controls the process fluid outlet temperature required for the air-cooled heat exchangers for both cases of constant and varying heat loads and ambient air inlet temperatures. Numerical results are obtained showing the performance of the air-cooled heat exchanger of a propane cycle which cools both NG (natural gas) and MR (mixed refrigerant) streams in the LNG plant located at Damietta, Egypt. The inlet air temperature variation in the summer time has a considerable effect on the required air mass flow rate, while its influence becomes relatively less pronounced in winter.

  7. Relationship between prostate-specific antigen levels and ambient temperature

    Science.gov (United States)

    Ohwaki, Kazuhiro; Endo, Fumiyasu; Hattori, Kazunori; Muraishi, Osamu

    2014-07-01

    We examined the association between prostate-specific antigen (PSA) and daily mean ambient temperature on the day of the test in healthy men who had three annual checkups. We investigated 9,694 men who visited a hospital for routine health checkups in 2007, 2008, and 2009. Although the means and medians of ambient temperature for the three years were similar, the mode in 2008 (15.8 °C) was very different from those in 2007 and 2009 (22.4 °C and 23.2 °C). After controlling for age, body mass index, and hematocrit, a multiple regression analysis revealed a U-shaped relationship between ambient temperature and PSA in 2007 and 2009 ( P 2.5 ng/mL) by ambient temperature, with the lowest likelihood of having a high PSA at 17.8 °C in 2007 ( P = 0.038) and 15.5 °C in 2009 ( P = 0.033). When tested at 30 °C, there was a 57 % excess risk of having a high PSA in 2007 and a 61 % higher risk in 2009 compared with those at each nadir temperature. We found a U-shaped relationship between PSA and ambient temperature with the lowest level of PSA at 15-20 °C.

  8. SPATIAL PREDICTION OF AIR TEMPERATURE IN EAST CENTRAL ANATOLIA OF TURKEY

    Directory of Open Access Journals (Sweden)

    B. C. Bilgili

    2017-11-01

    Full Text Available Air temperature is an essential component of the factors used in landscape planning. At similar topographic conditions, vegetation may show considerable differences depending on air temperature and precipitation. In large areas, measuring temperature is a cost and time-consuming work. Therefore, prediction of climate variables at unmeasured sites at an acceptable accuracy is very important in regional resource planning. In addition, use a more proper prediction method is crucial since many different prediction techniques yield different performance in different landscape and geographical conditions. We compared inverse distance weighted (IDW, ordinary kriging (OK, and ordinary cokriging (OCK to predict air temperature at unmeasured sites in Malatya region (East Central Anatolia of Turkey. Malatya region is the most important apricot production area of Turkey and air temperature is the most important factor determining the apricot growing zones in this region. We used mean monthly temperatures from 1975 to 2010 measured at 28 sites in the study area and predicted temperature with IDW, OC, and OCK techniques, mapped temperature in the region, and tested the reliability of these maps. The OCK with elevation as an auxiliary variable occurred the best procedure to predict temperature against the criteria of model efficiency and relative root mean squared error.

  9. On the sensitivity of annual streamflow to air temperature

    Science.gov (United States)

    Milly, Paul C.D.; Kam, Jonghun; Dunne, Krista A.

    2018-01-01

    Although interannual streamflow variability is primarily a result of precipitation variability, temperature also plays a role. The relative weakness of the temperature effect at the annual time scale hinders understanding, but may belie substantial importance on climatic time scales. Here we develop and evaluate a simple theory relating variations of streamflow and evapotranspiration (E) to those of precipitation (P) and temperature. The theory is based on extensions of the Budyko water‐balance hypothesis, the Priestley‐Taylor theory for potential evapotranspiration ( ), and a linear model of interannual basin storage. The theory implies that the temperature affects streamflow by modifying evapotranspiration through a Clausius‐Clapeyron‐like relation and through the sensitivity of net radiation to temperature. We apply and test (1) a previously introduced “strong” extension of the Budyko hypothesis, which requires that the function linking temporal variations of the evapotranspiration ratio (E/P) and the index of dryness ( /P) at an annual time scale is identical to that linking interbasin variations of the corresponding long‐term means, and (2) a “weak” extension, which requires only that the annual evapotranspiration ratio depends uniquely on the annual index of dryness, and that the form of that dependence need not be known a priori nor be identical across basins. In application of the weak extension, the readily observed sensitivity of streamflow to precipitation contains crucial information about the sensitivity to potential evapotranspiration and, thence, to temperature. Implementation of the strong extension is problematic, whereas the weak extension appears to capture essential controls of the temperature effect efficiently.

  10. Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology

    Science.gov (United States)

    de Podesta, Michael; Bell, Stephanie; Underwood, Robin

    2018-04-01

    In both meteorological and metrological applications, it is well known that air temperature sensors are susceptible to radiative errors. However, it is not widely known that the radiative error measured by an air temperature sensor in flowing air depends upon the sensor diameter, with smaller sensors reporting values closer to true air temperature. This is not a transient effect related to sensor heat capacity, but a fluid-dynamical effect arising from heat and mass flow in cylindrical geometries. This result has been known historically and is in meteorology text books. However, its significance does not appear to be widely appreciated and, as a consequence, air temperature can be—and probably is being—widely mis-estimated. In this paper, we first review prior descriptions of the ‘sensor size’ effect from the metrological and meteorological literature. We develop a heat transfer model to describe the process for cylindrical sensors, and evaluate the predicted temperature error for a range of sensor sizes and air speeds. We compare these predictions with published predictions and measurements. We report measurements demonstrating this effect in two laboratories at NPL in which the air flow and temperature are exceptionally closely controlled. The results are consistent with the heat-transfer model, and show that the air temperature error is proportional to the square root of the sensor diameter and that, even under good laboratory conditions, it can exceed 0.1 °C for a 6 mm diameter sensor. We then consider the implications of this result. In metrological applications, errors of the order of 0.1 °C are significant, representing limiting uncertainties in dimensional and mass measurements. In meteorological applications, radiative errors can easily be much larger. But in both cases, an understanding of the diameter dependence allows assessment and correction of the radiative error using a multi-sensor technique.

  11. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    Science.gov (United States)

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized

  13. Nitrogen Chemistry in Sea Level Air Following Large Radiation Doses.

    Science.gov (United States)

    1984-06-15

    majur reactions NO + 0 + M +N0 2 + M (9) ’.o, NO+0 3 +N 2 +0 2 (1) NO + HO2 + NO2 + OH (11) 0 + NO2 NO + U 2 (12) H + NO2 + No + OOH (13) NO + OH...8217 ’, ,-7- 0 DEPARTMENT OF THE NAVY DEPARTMENT OF THE AIR FORCE (Continued) 0 Joint Cruise Missiles Project...Ofc Air Force Space Technology Ctr ATTN: JCMG-707 ATTN: YH Naval Air Systems Command Air Force !-!ight Aeronautical Lab/AAAD ATTN: PMA 271 ATjN: W

  14. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    Science.gov (United States)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  15. Measurement of the temperature Gradient in air using Talbot effect and Moire technique

    International Nuclear Information System (INIS)

    Tavassoly, M.T.; Rasouli, S.

    2000-01-01

    In this paper we have exploited the self-imaging or Talbot effect and Moire technique to measure the temperature distribution in the air enclosed between two paral led plates of different temperatures. This study shows that for the plates width of 60 cm a change of 1 d egC in 1 cm can be easily detected

  16. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time...

  17. Effect modification of the association between temperature variability and daily cardiovascular mortality by air pollutants in three Chinese cities.

    Science.gov (United States)

    Luo, Kai; Li, Runkui; Wang, Zongshuang; Zhang, Ruiming; Xu, Qun

    2017-11-01

    There is limited evidence showing the mortality effects of temperature variability (TV) on cardiovascular diseases. The joint effects between TV and air pollutants are also less well-established. This study aims to assess the effect modification of TV-cardiovascular mortality by air pollutants in three Chinese cities (Beijing, Nanjing and Chengdu). Data of daily mortality, air pollutants and meteorological factors from 2008 to 2011 was collected from each city. TV was calculated as the standard deviation of daily maximum and minimum temperatures over exposure days. The city-specific effect estimates of TV on cardiovascular mortality were calculated using a quasi-Poisson regression model, adjusting for potential confounders (e.g., seasonality and temperature). An interaction term of TV and a three-level air pollutants stratum indicator was included in the models. Effect modifications by air pollutants were assessed by comparing the estimates of TV's effect between pollutant stratums and calculating the corresponding 95% confidential interval of the differences. Multivariate meta-analysis was conducted to obtain the pooled estimates. The data showed that TV was associated with increased risk of cardiovascular mortality, especially for longer TV exposure days (0-8 days, TV08). This association was still observed after adjusting for air pollutants on current day or the previous two days. Stronger estimates were observed in females, but no significant difference between males and females was detected, indicating the absence of evidence of effect modification by gender. Estimates of TV-cardiovascular mortality varied across two season periods (warm and cool season) and age groups, but the evidence of effect modification by age and seasons was absent. Regarding the effect modification of TV-cardiovascular mortality association by air pollutants, a significant effect modification was identified for PM 10, but not for NO 2 and SO 2 in the whole population for all TV

  18. Characterizing Air Temperature Changes in the Tarim Basin over 1960–2012

    Science.gov (United States)

    Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang

    2014-01-01

    There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID

  19. Prediction of air temperature for thermal comfort of people using sleeping bags: a review.

    Science.gov (United States)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  20. Modeling skin temperature to assess the effect of air velocity to mitigate heat stress among growing pigs

    DEFF Research Database (Denmark)

    Bjerg, Bjarne; Pedersen, Poul; Morsing, Svend

    2017-01-01

    It is generally accepted that increased air velocity can help to mitigate heat stress in livestock housing, however, it is not fully clear how much it helps and significant uncertainties exists when the air temperature approaches the animal body temperature. This study aims to develop a skin...... temperature model to generated data for determining the potential effect of air velocity to mitigate heat stress among growing pigs housed in warm environment. The model calculates the skin temperature as function of body temperature, air temperature and the resistances for heat transfer from the body...

  1. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn; Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  2. Temperature Control of Heating Zone for Drying Process: Effect of Air Velocity Change

    Directory of Open Access Journals (Sweden)

    Wutthithanyawat Chananchai

    2016-01-01

    Full Text Available This paper proposes a temperature control technique to adjust air temperature in a heating zone for drying process. The controller design is achieved by using an internal model control (IMC approach. When the IMC controller parameters were designed by calculating from an actual process transfer function estimated through an open-loop step response with input step change from 50% to 60% at a reference condition at air velocity of 1.20 m/s, the performance of temperature controller was experimentally tested by varying an air velocity between 1.32 m/s and 1.57 m/s, respectively. The experimental results showed that IMC controller had a high competency for controlling the drying temperature.

  3. The effect of air temperature on yield of Holstein dairy cattle

    Directory of Open Access Journals (Sweden)

    Anna Šimková

    2015-05-01

    Full Text Available The study was carried out in the agricultural company Petrovice during the summer and winter seasons. The experiment included Holstein dairy cattle. Air temperature was measured using a data logger with sensors (Datalogger COMET 3120 in the stable. Data on average yield were taken from farm records and then processed using Microsoft Excel. The aim of the study was to determine how the values of ambient temperature affect the welfare of the animals with regard to the average performance. The air temperature is very variable and its changes animals react immediately. Measured values of air temperature in the stable are important for optimal welfare. It affects the productivity of dairy cows, milk quality, reproduction and animal health.

  4. Pipeline drying using dehumidified air with low dew point temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Syed Younus; Gandhidasan, P.; Al-Farayedhi, A.A. [King Fahd Univ. of Petroleum and Minerals, Mechanical Engineering Dept., Dhahran (Saudi Arabia)

    1998-05-01

    The presence of humidity may be detrimental to the operation of pipelines transporting natural gas or other petroleum products. In particular conditions water solidifies or reacts chemically with hydrocarbons, forming hydrates. Such crystalline substances may cause obstruction of the lines and damage the equipment of the relevant facilities. A procedure for predicting the performance of drying a pipeline using dehumidified air with a low dew point is described in this paper. The mathematical model estimates the time required for the complete removal of moisture in the pipeline for the given operating conditions with simplified assumptions. The governing equations are solved analytically as well as numerically and the results are briefly discussed in the paper. (Author)

  5. Stress-temperature-lifetime response of nicalon fiber-reinforced SiC composites in air

    International Nuclear Information System (INIS)

    Lin, Hua-Tay; Becher, P.F.

    1996-01-01

    Time-to-failure tests were conducted in four-point flexure and in air as a function of stress levels and temperatures to study the lifetime response of various Nicalon fiber-reinforced SiC (designated as Nic/SiC) composites with a graphitic interfacial coating. The results indicated that all of the Nic/SiC composites exhibit a similar stress-dependent failure at applied stress greater than a threshold value. In this case, the lifetimes of the composites increased with decrease in both stress level and test temperature. The lifetime of the composites appeared to be relatively insensitive to the thickness of graphitic interface layer and was enhanced somewhat by the addition of oxidation inhibitors. Electron microscopy and oxidation studies indicated that the life of the Nic/SiC composites was governed by the oxidation of the graphitic interfaces and the on of glass(es) in composites due to the oxidation of the fiber and matrix, inhibitor phases

  6. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    Science.gov (United States)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  7. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Bodri, L.

    2018-01-01

    Roč. 107, č. 1 (2018), s. 145-152 ISSN 1437-3254 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk(CZ) LG13040 Institutional support: RVO:67985530 Keywords : geothermics * climate change * ground-air temperature offset * soil temperature * temperature monitoring Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.283, year: 2016

  8. Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya.; Fedirchuk, I.I.; Demchina, V.P.; Bortyshevsky, V.A.; Korzh, R.V.

    2016-01-01

    This paper presents the study of the influence that air activation rate and reforming temperature have on the gaseous products composition and conversion efficiency during the plasma-catalytic reforming of ethanol. The analysis of product composition showed that the conversion efficiency of ethanol has a maximum in the studied range of reforming temperatures. Researched system provided high reforming efficiency and high hydrogen energy yield at the lower temperatures than traditional conversion technologies

  9. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    Science.gov (United States)

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and

  10. Analysis of air temperature changes on blood pressure and heart rate and performance of undergraduate students.

    Science.gov (United States)

    Siqueira, Joseana C F; da Silva, Luiz Bueno; Coutinho, Antônio S; Rodrigues, Rafaela M

    2017-01-01

    The increase in air temperature has been associated with human deaths, some of which are related to cardiovascular dysfunctions, and with the reduction of physical and cognitive performance in humans. To analyze the relationship between blood pressure (BP) and heart rate (HR) and the cognitive performance of students who were submitted to temperature changes in classrooms. The university students answered a survey that was adapted from the Battery of Reasoning Tests over 3 consecutive days at different air temperatures while their thermal state and HR were measured. During those 3 days, BP and HR were evaluated before and after the cognitive test. The average and final HR increased at high temperatures; the tests execution time was reduced at high temperatures; and the cognitive tests was related to Mean BP at the beginning of the test, the maximum HR during the test and the air temperature. The cognitive performance of undergraduate students in the field of engineering and technology will increase while performing activities in a learning environment with an air temperature of approximately 23.3°C (according to their thermal perception), if students have an initial MBP of 93.33 mmHg and a 60 bpm HRmax.

  11. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon.

    Science.gov (United States)

    Burkart, Katrin; Canário, Paulo; Breitner, Susanne; Schneider, Alexandra; Scherber, Katharina; Andrade, Henrique; Alcoforado, Maria João; Endlicher, Wilfried

    2013-12-01

    There is substantial evidence that both temperature and air pollution are predictors of mortality. Thus far, few studies have focused on the potential interactive effects between the thermal environment and different measures of air pollution. Such interactions, however, are biologically plausible, as (extreme) temperature or increased air pollution might make individuals more susceptible to the effects of each respective predictor. This study investigated the interactive effects between equivalent temperature and air pollution (ozone and particulate matter) in Berlin (Germany) and Lisbon (Portugal) using different types of Poisson regression models. The findings suggest that interactive effects exist between air pollutants and equivalent temperature. Bivariate response surface models and generalised additive models (GAMs) including interaction terms showed an increased risk of mortality during periods of elevated equivalent temperatures and air pollution. Cold effects were mostly unaffected by air pollution. The study underscores the importance of air pollution control in mitigating heat effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Climatic fluctuation of temperature and air circulation in the Mediterranean

    International Nuclear Information System (INIS)

    Bartzokas, A.; Metaxas, D.A.

    1991-01-01

    The study of the long term fluctuation of sea surface temperature and 1000/500 mb thickness data in the Mediterranean sea during the last 45 years has shown that the global warming does not appear everywhere. Warming is not apparent in the East Mediterranean but only during the last years, the time series of surface pressure and relative geostrophic vorticity were examined for possible explanation: a strengthening of the northerly wind force have occurred. Thus it can be assumed that local atmospheric circulation changes may support or oppose the global warming in some places

  13. Composting on Mars or the Moon: II. Temperature feedback control with top-wise introduction of waste material and air

    Science.gov (United States)

    Finstein, M. S.; Hogan, J. A.; Sager, J. C.; Cowan, R. M.; Strom, P. F.; Janes, H. W. (Principal Investigator)

    1999-01-01

    Whereas Earth-based composting reactors that effectively control the process are batch operations with bottom-to-top airflow, in extraterrestrial application both the fresh waste and the air need to be introduced from above. Stabilized compost and used air would exit below. This materials flow pattern permits the addition of waste whenever generated, obviating the need for multiple reactors, and the incorporation of a commode in the lid. Top loading in turn dictates top-down aeration, so that the most actively decomposing material (greatest need for heat removal and O2 replenishment) is first encountered. This novel material and aeration pattern was tested in conjunction with temperature feedback process control. Reactor characteristics were: working, volume, 0.15 m3; charge, 2 kg dry biomass per day (comparable to a 3-4 person self-sufficient bioregenerative habitat); retention time, 7 days. Judging from temperature profile, O2 level, air usage, pressure head loss, moisture, and odor, the system was effectively controlled over a 35-day period. Dry matter disappearance averaged 25% (10-42%). The compost product was substantially, though not completely, stabilized. This demonstrates the compatibility of top-wise introduction of waste and air with temperature feedback process control.

  14. Air temperature and relative humidity in Dome Fuji Station buildings, East Antarctic ice sheet, in 2003

    Directory of Open Access Journals (Sweden)

    Takao Kameda

    2008-06-01

    Full Text Available In order to clarify the living condition in Dome Fuji Station in 2003, air temperature and relative humidity in the station were measured. Thermocouples with data logger and a ventilated psychrometer were used for the measurements. Average air temperature from February 11, 2003 to January 14, 2004 (missing period: July 19 to August 17 in the Dome Fuji Station buildings were as follows: Generator room 24.7℃, Dining room 23.5℃, Observation room 21.1℃, Dormitory room 18.2℃, Corridor 18.2℃, Food storage 8.2℃ and Old ice coring site -51.3℃. Average outside air temperature (1.5m height from the snow surface during the period was -54.4℃. A remarkable increase of outside air temperature (+30℃ at maximum due to a blocking high event was observed from October 31, 2003 to November 10, 2003 at Dome Fuji, during which increase of air temperature from 5 to 8°C in the station buildings was recorded. Snow on the station buildings was partly melted and some of the melted water penetrated into the station. This was the only time snow melted during the wintering over party's stay at the station. Average relative humidity in the station buildings obtained using a small humidifier was about 25%; the relative humidity without using the humidifier ranged from 9.0 to 22.9%.

  15. Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring

    International Nuclear Information System (INIS)

    Pelta, Ran; Chudnovsky, A. Alexandra; Schwartz, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989–2014. Our preliminary results show a good model performance with R"2 = 0.81. Furthermore, based on the model's results, we analyzed the spatial profile of Tair within the study domain for representative days. - Highlights: • The location of warmest and coldest zones are constant over the last 30 years. • Distinct diurnal and temporal Brightness Temperature behavior divide the city into four segments. • We assess air temperature from satellite surface temperature (R"2 = 0.81). - The location of warmest and coldest zones are constant over the last 30 years. Distinct diurnal and temporal Surface Temperature behavior divide the city into four different segments.

  16. AIRS/Aqua Level 2G Precipitation Estimate V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  17. Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints

    Science.gov (United States)

    Shafer, Jaclyn A.; Wheeler, Mark M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in

  18. The relationship between incoming solar radiation and daily air temperature

    International Nuclear Information System (INIS)

    Kpeglo, Daniel Kwasi

    2013-07-01

    Solar radiation is the ultimate source of energy for the planet. To predict the values of temperature and instant solar radiation when equipment are not readily available from obtained equations, a good knowledge and understanding of the disposition and distribution of solar radiation is a requirement for modelling earth’s weather and climate change variables. A pyranometer (CM3) in series with a PHYWE amplifier and a voltmeter were experimentally set-up and used to study the amount of solar radiation received at the Physics Department of the University of Ghana during the day. The temperature of the study area as well as the Relative Humidity was also recorded. Data was collected over a period of one month (from 2nd to 24th April, 2012). Days for which rain was recorded were ignored because rain could damage the pyranometer. The data obtained by the set-up were therefore used to compare with data obtained by a wireless weather station (Davis Vintage Pro). The data from these separate set-ups indicated that a perfect correlation existed between the solar radiation and temperature of the place. The data obtained by the experimental set-up was split into two separate sessions as morning and evening sessions. It was observed that the experimental set-up had a good correlation with that of the weather station on a particular day 11th April, 2012. The various Regression Coefficient (R"2) values for morning session were respectively R"2 = 0.96 and R"2 = 0.95 with their respective equations as I_W =136.22T_W - 40623 and I_p = 2.3198T_p - 678.14. The evening session also had good Regression Coefficient values of R"2 = 0.81 and R"2 = 0.97 with equations of 2.1098T_p - 625 and I_W = 161.31T_w - 4876.9. Similar analysis of the data from the separate set-ups gave a better correlation for that of the experimental set-up than that of the wireless station. The range of values of Regression Coefficient (R"2) for the experimental set-up was between 0.82 − 0.99 for the morning

  19. Oxidation characteristics of MgF2 in air at high temperature

    Science.gov (United States)

    Chen, H. K.; Jie, Y. Y.; Chang, L.

    2017-02-01

    High temperature oxidation properties of MgF2 in air were studied. The changes of phase composition, macro surface morphology, weight and elemental composition of MgF2 samples with temperature were investigated by using XRD, EDS and gravimetric analyses. The results show that the oxidation reaction of MgF2 converted to MgO occurred at high temperature, and the reaction was accelerated by the increase of temperature and the presence of impurities. This result clarifies the understanding of the high temperature oxidation behavior of MgF2 in air, and provides a theoretical basis for the reasonable application of MgF2 in optical coating materials, electronic ceramic materials and magnesium melt protection.

  20. Mean atmospheric temperature model estimation for GNSS meteorology using AIRS and AMSU data

    Directory of Open Access Journals (Sweden)

    Rata Suwantong

    2017-03-01

    Full Text Available In this paper, the problem of modeling the relationship between the mean atmospheric and air surface temperatures is addressed. Particularly, the major goal is to estimate the model parameters at a regional scale in Thailand. To formulate the relationship between the mean atmospheric and air surface temperatures, a triply modulated cosine function was adopted to model the surface temperature as a periodic function. The surface temperature was then converted to mean atmospheric temperature using a linear function. The parameters of the model were estimated using an extended Kalman filter. Traditionally, radiosonde data is used. In this paper, satellite data from an atmospheric infrared sounder, and advanced microwave sounding unit sensors was used because it is open source data and has global coverage with high temporal resolution. The performance of the proposed model was tested against that of a global model via an accuracy assessment of the computed GNSS-derived PWV.

  1. The oxidative stress and antioxidant responses of Litopenaeus vannamei to low temperature and air exposure.

    Science.gov (United States)

    Xu, Zihan; Regenstein, Joe M; Xie, Dandan; Lu, Wenjing; Ren, Xingchen; Yuan, Jiajia; Mao, Linchun

    2018-01-01

    Low temperature and air exposure were the key attributes for waterless transportation of fish and shrimp. In order to investigate the oxidative stress and antioxidant responses of the live shrimp Litopenaeus vannamei in the mimic waterless transportation, live shrimp were cooled at 13 °C for 3 min, stored in oxygen at 15 °C for 12 h, and then revived in water at 25 °C. The survival rate of shrimp under this waterless transportation system was over 86.67%. The ultrastructure of hepatopancreas cells were observed while activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione peroxidase (GSH-Px), antisuperoxide anion free radicals (ASAFR), total antioxidant capacity (TAOC), reactive oxygen species (ROS) production, content of malondialdehyde (MDA) and relative mRNA expressions of CAT and GSH-Px in the hemolymph and hepatopancreas were determined. Slight distortions of some organelles in hepatopancreas cells was reversible upon the shrimp revived from the cold shock. The activities of SOD, POD, CAT, GSH-Px, TAOC, ROS production and relative mRNA expressions of CAT and GSH-Px increased following the cold shock and reached peak levels after 3 or 6 h of storage, and then decreased gradually. There was no significant difference between the fresh and the revived shrimp in SOD, POD, GSH-Px, TAOC, ROS, MDA and relative mRNA expressions of CAT and GSH-Px. The oxidative stress and antioxidant responses were tissue-specific because hepatopancreas seemed to have a greater ability to defend against organelle damage and was more sensitive to stress than hemolymph based on the results of SOD activity, MDA content and GSH-Px mRNA expression. These results revealed that low temperature and air exposure caused significant oxidative and antioxidant responses, but did not lead to irreversible damages in this waterless system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 2239 EFFECT OF INLET-AIR TEMPERATURE ON PHYSICO ...

    African Journals Online (AJOL)

    Mimi

    Nigerian diets due to claims linking the consumption of soy protein to a lower risk of heart disease, reduction of blood cholesterol level and prevention or treatment of chronic diseases, most notably cancer, osteoporosis and kidney disease [2, 3]. In South East Asia, the average consumption of soybeans in various forms per ...

  3. Air and ground temperatures along elevation and continentality gradients in Southern Norway

    Science.gov (United States)

    Farbrot, Herman; Hipp, Tobias; Etzelmüller, Bernd; Humlum, Ole; Isaksen, Ketil; Strand Ødegârd, Rune

    2010-05-01

    The modern southern boundary for Scandinavian permafrost is located in the mountains of Southern Norway. Permafrost and seasonal frost are considered key components of the cryosphere, and the climate-permafrost relation has acquired added importance with the increasing awareness and concern of rising air temperatures. The three-year research project CRYOLINK ("Permafrost and seasonal frost in southern Norway") aims at improving knowledge on past and present ground temperatures, seasonal frost, and distribution of mountain permafrost in Southern Norway by addressing the fundamental problem of heat transfer between the atmosphere and the ground surface. Hence, several shallow boreholes have been drilled, and a monitoring program to measure air and ground temperatures was started August 2008. The borehole areas (Juvvass, Jetta and Tron) are situated along a west-east transect and, hence, a continentality gradient, and each area provides boreholes at different elevations. Here we present the first year of air and ground temperatures from these sites and discuss the influence of air temperature and ground surface charcteristics (snow conditions, sediments/bedrock, vegetation) on ground temperatures.

  4. Air conditioner operation behaviour based on students' skin temperature in a classroom.

    Science.gov (United States)

    Song, Gook-Sup; Lim, Jae-Han; Ahn, Tae-Kyung

    2012-01-01

    A total of 25 college students participated in a study to determine when they would use an air conditioner during a lecture in a university classroom. The ambient temperature and relative humidity were measured 75 cm above the floor every minute. Skin temperatures were measured every minute at seven points, according to the recommendation of Hardy and Dubois. The average clothing insulation value (CLO) of subjects was 0.53 ± 0.07 CLO. The mean air velocity in the classroom was 0.13 ± 0.028 m/s. When the subjects turned the air conditioner both on and off, the average ambient temperatures, relative humidity and mean skin temperatures were 27.4 and 23.7 °C (p = 0.000), 40.9 and 40.0% (p = 0.528) and 32.7 and 32.2 °C (p = 0.024), respectively. When the status of the air conditioner was changed, the differences of skin temperatures in core body parts (head, abdomen and thigh) were not statistically significant. However, in the extremities (mid-lower arm, hand, shin and instep), the differences were statistically significant. Subjects preferred a fluctuating environment to a constant temperature condition. We found that a changing environment does not affect classroom study. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  6. Research on the impacts of air temperature on the evolution of nanosecond pulse discharge products

    International Nuclear Information System (INIS)

    Yu, Jin-lu; He, Li-ming; Ding, Wei; Zhao, Zi-chen; Zhang, Hua-lei

    2016-01-01

    Highlights: • Most of the O_2 particles become O_2(V1) in high temperature. • The O_3 molecules are produced mainly by decayed O atoms. • NO molecules are obtained by decayed N_2(A3), N(2D) and N(2P) at the first stage, NO molecules are obtained by decayed N atoms at last. - Abstract: Based on nonequilibrium plasma dynamics of air discharge, the kinetic model simulating plasma discharge products induced by nanosecond pulse discharge in air is presented in this work. Then the paper compares the calculation of model with experimental results of references, and verifies the accuracy of the model. The evolution characteristics of nanosecond pulse discharge plasma under different air temperatures are obtained. Because the O, O_3 and NO have close relationship with the combustion, their formation mechanisms are discussed especially. With increasing temperature, there is no significant addition in O atoms and O_3 molecules. It is found that most of the O_2 molecules become O_2(V1) in higher temperature. The decreasing time of the O atoms is in accordance with the increasing time of O_3 molecules. Thus, the O_3 molecules are produced mainly by decayed O atoms. Increased air temperature will not produce more active particles which could assist the combustion. With the increasing temperature, the particle number density of NO increases fast. At last, they have reached an equilibrium value of the same.

  7. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  8. Assement on level of indoor air quality at kindergartens in Ampang ...

    African Journals Online (AJOL)

    This study identify the air pollutant that occurs in the kindergartens, to measure the level of indoor air quality and also to analyze the association between indoor air quality patterns with respiratory health symptoms. Three kindergartens were selected based on types of building (single house, terraced 2 floors and refurbished ...

  9. Human preference and acceptance of increased air velocity to offset warm sensation at increased room temperatures

    OpenAIRE

    Cattarin, Giulio; Simone, Angela; Olesen, Bjarne W.

    2012-01-01

    Previous studies have demonstrated that in summertime increased air velocities can compensate for higher room temperatures to achieve comfortable conditions. In order to increase air movement, windows opening, ceiling or desk fans can be used at the expense of relatively low energy consumption. The present climatic chamber study examined energy performance and achievable thermal comfort of traditional and bladeless desk fans. Different effects of mechanical and simulated-natural airflow patte...

  10. Influence of deposits quantity and air temperature on 137Cs accumulation by the higher mushrooms

    Directory of Open Access Journals (Sweden)

    N. E. Zarubina

    2012-12-01

    Full Text Available Researches of the influence of weather conditions (amount of precipitation, air temperature on 137Cs content’s magnitude in fruit bodies of mushrooms: Boletus edulis Bull.: Fr., Suillus luteus (L.: Fr. S.F.Gray, Xerocomus badius (Fr. Kuhn. ex Gilb., Tricholoma flavovirens (Pers.: Fr. Lund., Cantharellus cibarius Fr. at the territory of Chernobyl alienation zone and «southern trace» are performed. Correlation factors, determination factors between specific activity 137Cs at mushrooms and quantity of deposits (mm and the maximum temperature of air (0С are calculated. At calculations the decrease of the content of 137Cs in mushrooms at the expense of disintegration of this isotope has been considered. As a result of researches the authentic dependence of specific activity 137Cs in fruit bodies of the studied kinds of mushrooms from quantity of deposits and from air temperature has not been established.

  11. Influence of deposits quantity and air temperature on 137Cs accumulation by the higher mushrooms

    International Nuclear Information System (INIS)

    Zarubina, N.E.

    2012-01-01

    Researches of the influence of weather conditions (amount of precipitation, air temperature) on 137 Cs content magnitude in fruit bodies of mushrooms: Boletus edulis Bull.: Fr., Suillus luteus (L.: Fr.) S.F.Gray, Xerocomus badius (Fr.) Kuhn. ex Gilb., Tricholoma flavovirens (Pers.: Fr.) Lund., Cantharellus cibarius Fr. at the territory of Chernobyl alienation zone and 'southern trace are performed. Correlation factors, determination factors between specific activity 137 Cs at mushrooms and quantity of deposits (mm) and the maximum temperature of air ( o C) are calculated. At calculations the decrease of the content of 137 Cs in mushrooms at the expense of disintegration of this isotope has been considered. As a result of researches the authentic dependence of specific activity 137 Cs in fruit bodies of the studied kinds of mushrooms from quantity of deposits and from air temperature has not been established.

  12. ARIMA representation for daily solar irradiance and surface air temperature time series

    Science.gov (United States)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  13. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per

    2007-01-01

    A distinctive element of buildings with a double glazed façade is naturally or mechanically driven flow in a ventilated cavity. Accurate air temperature measurements in the cavity are crucial to evaluate the dynamic performance of the façade, to predict and control its behavior as a significant...... part of the complete ventilation system. Assessment of necessary cooling/heating loads and of the whole building energy performance will then depend on the accuracy of measured air temperature. The presence of direct solar radiation is an essential element for the façade operation, but it can heavily...... affect measurements of air temperature and may lead to errors of high magnitude using bare thermocouples and even adopting shielding devices. Two different research groups, from Aalborg University and Politecnico di Torino, tested separately various techniques to shield thermocouples from direct...

  14. Lowland rice yield estimates based on air temperature and solar radiation

    International Nuclear Information System (INIS)

    Pedro Júnior, M.J.; Sentelhas, P.C.; Moraes, A.V.C.; Villela, O.V.

    1995-01-01

    Two regression equations were developed to estimate lowland rice yield as a function of air temperature and incoming solar radiation, during the crop yield production period in Pindamonhangaba, SP, Brazil. The following rice cultivars were used: IAC-242, IAC-100, IAC-101 and IAC-102. The value of optimum air temperature obtained was 25.0°C and of optimum global solar radiation was 475 cal.cm -2 , day -1 . The best agrometeorological model was the one that related least deviation of air temperature and solar radiation in relation to the optimum value obtained through a multiple linear regression. The yield values estimated by the model showed good fit to actual yields of lowland rice (less than 10%). (author) [pt

  15. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    International Nuclear Information System (INIS)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-01-01

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented

  16. Temperature Anomalies from the AIRS Product in Giovanni for the Climate Community

    Science.gov (United States)

    Ding, Feng; Hearty, Thomas J.; Wei, Jennifer; Theobald, Michael; Vollmer, Bruce; Seiler, Edward; Meyer, David

    2018-01-01

    The Atmospheric Infrared Sounder (AIRS) mission began with the launch of Aqua in 2002. Over 15 years of AIRS products have been used by the climate research and application communities. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding Suomi National Polar-Orbiting Partnership (SNPP) Cross-track Infrared Sounder (CrIS) mission. We generated a Multi-year Monthly Mean and Anomaly product using 14 years of AIRS standard monthly product. The product includes Air Temperature at the Surface and Surface Skin Temperature, both in Ascending/Daytime and Descending/Nighttime mode. The temperature variables and their anomalies are deployed to Giovanni, a Web-based application developed by the GES DISC. Giovanni provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. It is also a powerful tool that stakeholders can use for decision support in planning and preparing for increased climate variability. In this presentation, we demonstrate the functions in Giovanni with use cases employing AIRS Multi-year Monthly Mean and Anomaly variables.

  17. Numerical Simulation of Air Temperature and Velocity in a Naturally Ventilated Office

    Directory of Open Access Journals (Sweden)

    S. Shodiya

    2017-04-01

    Full Text Available This paper presents a numerical simulation of air velocity and air temperature distribution in an office room of Computer Engineering Department of University of Maiduguri which is naturally ventilated. The office room under investigation with the dimension 5 m × 5 m × 4 m has a door in the East direction, and two windows, one in the East direction and the other in the South direction. For cost effectiveness, numerical solutions of steady-state airflow and heat transfer were done using a complete two-dimensional model. The results showed that the windows and the door could not undertake indoor heat load that can make the occupants to be thermally comfortable. In activity area where people sit and stand, the air velocity is moderate, this is about 0.98 m/s on the average. In addition, the temperature in this area is relatively high of about 302 K (29 °C on the average. Based on the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE standard for comfort environment in summer (air temperature: 293 – 299 K (20 – 26 °C; air velocity: 0.5 – 0.8 m/s, the natural ventilation for the office room cannot give a thermal comfort for the inhabitant of the room. However, a window, if installed opposite the door could improve the ventilation of the office.

  18. Critical assessment of day time traffic noise level at curbside open-air microenvironment of Kolkata City, India.

    Science.gov (United States)

    Kundu Chowdhury, Anirban; Debsarkar, Anupam; Chakrabarty, Shibnath

    2015-01-01

    The objective of the research work is to assess day time traffic noise level at curbside open-air microenvironment of Kolkata city, India under heterogeneous environmental conditions. Prevailing traffic noise level in terms of A-weighted equivalent noise level (Leq) at the microenvironment was in excess of 12.6 ± 2.1 dB(A) from the day time standard of 65 dB(A) for commercial area recommended by the Central Pollution Control Board (CPCB) of India. Noise Climate and Traffic Noise Index of the microenvironment were accounted for 13 ± 1.8 dB(A) and 88.8 ± 6.1 dB(A) respectively. A correlation analysis explored that prevailing traffic noise level of the microenvironment had weak negative (-0.21; p air temperature and relative humidity. A Varimax rotated principal component analysis explored that motorized traffic volume had moderate positive loading with background noise component (L90, L95, L99) and prevailing traffic noise level had very strong positive loading with peak noise component (L1, L5, L10). Background and peak noise component cumulatively explained 80.98 % of variance in the data set. Traffic noise level at curbside open-air microenvironment of Kolkata City was higher than the standard recommended by CPCB of India. It was highly annoying also. Air temperature and relative humidity had little influence and the peak noise component had the most significant influence on the prevailing traffic noise level at curbside open-air microenvironment. Therefore, traffic noise level at the microenvironment of the city can be reduced with careful honking and driving.

  19. Design and Development of an air-cooled Temperature-Swing Adsorption Compressor for Carbon Dioxide

    Science.gov (United States)

    Mulloth, Lila M.

    2003-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no wearing parts. This paper discusses the design features of a TSAC hardware that uses air as the cooling medium and has Space Station application.

  20. Changes in duration of dry and wet spells associated with air temperatures in Russia

    Science.gov (United States)

    Ye, Hengchun

    2018-03-01

    This study uses daily precipitation records from 517 Russian stations (1966-2010) to examine the relationships between continuous dry and wet day duration and surface air temperature for all four seasons. The study found that both mean and extreme durations of dry periods increase with air temperature at about 7.0% (0.24 day/°C) and 7.7% (0.86 day/°C) respectively, while those of wet periods decrease at about 1.3% (-0.02 day/°C) and 2.2% (-0.10 day/°C) respectively averaged over the entire study region during summer. An increase in the duration of dry periods with higher air temperature is also found in other seasons at locations with a mean seasonal air temperature of about -5 °C or higher. Opposite relationships of shorter durations of dry periods and longer wet periods associated with higher air temperature are observed over the northern part of the study region in winter. The changes in durations of both dry and wet periods have significant correlations with the changes in total dry and wet days but are about 2.5 times higher for dry periods and 0.5 times lower for wet periods. The study also found that locations with longer durations of dry periods experience faster rates of increase in air temperature, suggesting the likelihood of exacerbating drought severity in drier and/or warmer locations for all seasons.

  1. Six years of ground–air temperature tracking at Malence (Slovenia): thermal diffusivity from subsurface temperature data

    Czech Academy of Sciences Publication Activity Database

    Dědeček, Petr; Rajver, D.; Čermák, Vladimír; Šafanda, Jan; Krešl, Milan

    2013-01-01

    Roč. 10, č. 2 (2013), 025012/1-025012/9 ISSN 1742-2132 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : ground-air temperature coupling * thermal diffusivity * conductive-convective heat transfer Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.895, year: 2013

  2. Borehole temperatures, climate change and the pre-observational surface air temperature mean: allowance for hydraulic conditions

    Czech Academy of Sciences Publication Activity Database

    Bodri, L.; Čermák, Vladimír

    2005-01-01

    Roč. 45, č. 4 (2005), s. 265-276 ISSN 0921-8181 R&D Projects: GA AV ČR IAA3012005; GA ČR GA205/03/0998; GA AV ČR KSK3046108 Institutional research plan: CEZ:AV0Z3012916 Keywords : climate change * global warming * surface air temperature Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.223, year: 2005

  3. ENSO shifts and their link to Southern Africa surface air temperature in summer

    Science.gov (United States)

    Manatsa, D.; Mukwada, G.; Makaba, L.

    2018-05-01

    ENSO has been known to influence the trends of summer warming over Southern Africa. In this work, we used observational and reanalysis data to analyze the relationship between ENSO and maximum surface air temperature (SATmax) trends during the three epochs created by the ENSO phase shifts around 1977 and 1997 for the period 1960 to 2014. We observed that while ENSO and cloud cover remains the dominant factor controlling SATmax variability, the first two epochs had the predominant La Niña (El Niño)-like events connected to robust positive (negative) trends in cloud fraction. However, this established relationship reversed in the post-1997 La Niña-like dominated epoch which coincided with a falling cloud cover trend. It is established that this deviation from the previously established link within the previous epochs could be due to the post-1998 era in which SATmin was suppressed while SATmax was enhanced. The resulting increase in diurnal temperature range (DTR) could have discouraged the formation of low-level clouds which have relatively more extensive areal coverage and hence allowing more solar energy to reach the surface to boost daytime SATmax. It is noted that these relationships are more pronounced from December to March.

  4. Climate Change in Alpine Regions - Regional Characteristics of a Global Phenomenon by the Example of Air Temperature

    Science.gov (United States)

    Lang, Erich; Stary, Ulrike

    2017-04-01

    For nearly 50 years the Austrian Research Centre for Forests (BFW) has been engaged in research in the Alpine region recording measuring data at extreme sites. Data series of this duration provide already a good insight into the evolution of climate parameters. Extrapolations derived from it are suitable for comparison with results from climate change models or supplement them with regard to their informative value. This is useful because climate change models describe a simplified picture of reality based on the size of the data grid they use. Analysis of time series of two air temperature measuring stations in different torrent catchment areas indicate that 1) predictions of temperature rise for the Alpine region in Austria will have to be revised upwards, and 2) only looking at the data of seasons (or shorter time periods), reveals the real dramatic effect of climate change. Considering e.g. the annual average data of air temperature of the years 1969-2016 at the climate station "Fleissner" (altitude 1210m a.s.l; Upper Mölltal, Carinthia) a significant upward trend is visible. Using a linear smoothing function an increase of the average annual air temperature of about 2.2°C within 50 years emerges. The calculated temperature rise thus confirms the general fear of an increase of more than 2.0°C till the middle of the 21st century. Looking at the seasonal change of air temperature, significant positive trends are shown in all four seasons. But the level of the respective temperature increase varies considerably and indicates the highest increase in spring (+3.3°C), and the lowest one in autumn (+1.3°C, extrapolated for a time period of 50 years). The maximum increase of air temperature at the measuring station "Pumpenhaus" (altitude 980m a.s.l), which is situated in the "Karnische Alpen" in the south of Austria, is even stronger. From a time series of 28 years (with data recording starting in 1989) the maximum rise of temperature was 5.4°C detected for the

  5. Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US

    Directory of Open Access Journals (Sweden)

    Linglin Zeng

    2015-01-01

    Full Text Available Air temperature (Ta is a key input in a wide range of agroclimatic applications. Moderate Resolution Imaging Spectroradiometer (MODIS Ts (Land Surface Temperature (LST products are widely used to estimate daily Ta. However, only daytime LST (Ts-day or nighttime LST (Ts-night data have been used to estimate Tmax/Tmin (daily maximum or minimum air temperature, respectively. The relationship between Tmax and Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin were tested and studied in the Corn Belt during the growing season (May–September from 2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and developed areas, respectively, when compared with using only Ts-day or Ts-night data. The main factors influencing the Ta estimation errors spatially and temporally were analyzed and discussed, such as satellite overpassing time, air masses, irrigation, etc.

  6. MONITORING CANOPY AND AIR TEMPERATURE OF DOMINANT VEGETATION IN TROPICAL SEMI-ARID USING BIOCLIMATIC MODEL

    Directory of Open Access Journals (Sweden)

    Josiclêda Domiciano Galvíncio

    2016-10-01

    Full Text Available Typical vegetation of arid environments consist of few dominant species highly threatened by climate change. Jurema preta (Mimosa tenuiflora (Willd. Poiret is one of these successful species that now is dominant in extensive semiarid areas in the world. The development of a simple bioclimatic model using climate change scenarios based on optimistic and pessimistic predictions of the Intergovernmental Panel on Climate Change (IPCC shown as a simple tool to predict possible responses of dominant species under dry land conditions and low functional biodiversity. The simple bioclimatic model proved satisfactory in creating climate change scenarios and impacts on the canopy temperature of Jurema preta in semiarid Brazil. The bioclimatic model was efficient to obtain spatially relevant estimations of air temperature from determinations of the surface temperature using satellite images. The model determined that the average difference of 5oC between the air temperature and the leaf temperature for Jurema preta, and an increase of 3oC in air temperature, promote an increase of 2oC in leaf temperature. It lead to disturbances in vital physiological mechanisms in the leaf, mainly the photosynthesis and efficient use of water.

  7. Investigation of Breakpoint and Trend of Daily Air Temperature Range for Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    shideh shams

    2017-01-01

    Full Text Available Introduction: Air temperature as an important climatic factor can influence variability and distribution of other climatic parameters. Therefore, tracking the changes in air temperature is a popular procedure in climate change studies.. According to the national academy in the last decade, global temperature has raised 0.4 to 0.8⁰C. Instrumental records show that, with the exception of 1998, the 10 warmest year (during the last 150 years, occurred since 2000, and 2014 was the warmest year. Investigation of maximum and minimum air temperature temporal trend indicates that these two parameters behave differently over time. It has been shown that the minimum air temperature raises noticeably more than the maximum air temperature, which causes a reduction in the difference of maximum and minimum daily air temperature (daily temperature range, DTR. There are several factors that have an influence on reducing DTR such as: Urban development, farms’ irrigation and desertification. It has been shown that DTR reduction occurs mostly during winter and is less frequent during summer, which shows the season’s effect on the temperature trend. Considering the significant effects of the climatological factors on economic and agricultural management issues, the aim of this study is to investigate daily air temperature range for yearly, seasonal and monthly time scales, using available statistical methods. Materials and Methods: Daily maximum and minimum air temperature records (from 1950 to 2010 were obtained from Mashhad Meteorological Organization. In order to control the quality of daily Tmax and Tmin data, four different types of quality controls were applied. First of all, gross errors were checked. In this step maximum and minimum air temperature data exceeding unlikely air temperature values, were eliminated from data series. Second, data tolerance was checked by searching for periods longer than a certain number of consecutive days with exactly the

  8. Annual to Inter-Decadal Variability in Surface Air Temperature Along ...

    African Journals Online (AJOL)

    instrumental sea surface temperature (SST) and. East African rainfall ... accelerated rise in minimum temperatures. The objectives of the ... Altitude above sea level (m) Urban/Exposed. Tanga. 05.05°S ...... Environmental Report, South Florida.

  9. Study of air flow and temperature distribution in ship's crew cabins

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Mechanical and Marine Engineering; Ali, A.A.; Nasr, A.N. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Marine Engineering Technology

    2007-07-01

    Because of low internal heights in ship's crew cabins, the supplied air is directed to the persons at low mixing ratios. However, this does not allow the mixing process between the supplied air and the indoor air to be completed before the air enters human lungs. This paper presented an experimental and numerical simulation study that used computational fluid dynamics (CFD) to investigate the effect of the air supply location on thermal air diffusion in the ship's crew cabins space. The paper presented the results in terms of air diffusion performance index. The paper presented the CFD model, including selected space configurations; CFD simulation; boundary conditions; and CFD results. The CFD airflow simulation programs CFD were utilized to calculate the spatial distribution of temperature and velocity. The study focused on the typical Middle East region working vessel under thermal and boundary conditions including the high cooling load used in this region. Experimental data were also introduced to verify the CFD results package. It was concluded that the supply should be located near the high sidewall of the cabin. This gives better air distribution inside the space rather than the center of the room. 5 refs., 1 tab., 6 figs.

  10. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel

    1993-01-01

    Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...... irritation and possibly watering eyes in an additive way. Interactions were found for odor intensity (p = 0.1), perceived facial skin temperature and dryness, general well-being, tear film stability, and nasal cavity dimension. The presence of interactions implies that in the future guidelines for acceptable...

  11. Paleoclimatic reconstructions in western Canada from borehole temperature logs: surface air temperature forcing and groundwater flow

    Czech Academy of Sciences Publication Activity Database

    Majorowicz, J.; Grasby, S. E.; Ferguson, G.; Šafanda, Jan; Skinner, W.

    2006-01-01

    Roč. 2, č. 1 (2006), s. 1-10 ISSN 1814-9324 Institutional research plan: CEZ:AV0Z30120515 Keywords : palaeoclimatic reconstructions * Canada * borehole temperatures Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  12. Creep of Sylramic-iBN Fiber Tows at Elevated Temperature in Air and in Silicic Acid-Saturated Steam

    Science.gov (United States)

    2015-06-01

    CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM ...protection in the United States. AFIT-ENY-15-J-46 CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM ...DISTRIBUTION UNLIMITED. AFIT-ENY-15-J-46 CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM

  13. development and testing of multi-level temperature probe

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... resistant, adjustable multi-sensor temperature probe for underwater temperature measurement. It consists of three ... This results in a longitudinal change in water temperature as the .... Source: The Engineering Toolbox ...

  14. The effect of air temperature on yield of Holstein dairy cattle

    OpenAIRE

    Anna Šimková; Miloslav Šoch; Kateřina Švejdová; Kristýna Šimák-Líbalová; Luboš Smutný; Šárka Smutná; Bohuslav Čermák; Iveta Novotná

    2015-01-01

    The study was carried out in the agricultural company Petrovice during the summer and winter seasons. The experiment included Holstein dairy cattle. Air temperature was measured using a data logger with sensors (Datalogger COMET 3120) in the stable. Data on average yield were taken from farm records and then processed using Microsoft Excel. The aim of the study was to determine how the values of ambient temperature affect the welfare of the animals with regard to the average performance. The ...

  15. Adimensional temperature field of air around a horizontal heating cylinder empirical equations, for free convection

    Energy Technology Data Exchange (ETDEWEB)

    Diez, R.; Dolz, M. Belda, R.; Herraez, J.V.

    1988-01-01

    The analytical process follow to obtain the adimensional temperature field of air around a horizontal isothermal cylinder of 1 cm diameter and 10.5 length is presented. The equations defining the adimensional temperature variation with the adimensional distance are given for each semiplane that the total field was divide. Comparison of experimental results with obtained of that equations are also carried out and the validity in each case discussed.

  16. Heat Exchange with Air and Temperature Profile of a Moving Oversize Tire

    Science.gov (United States)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat exchange of a moving tire with air has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.

  17. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Di Peng

    2016-09-01

    Full Text Available Yttria-stabilized zirconia (YSZ-based thermal barrier coating (TBC has been integrated with thermographic phosphors through air plasma spray (APS for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm; a photo-multiplier tube (PMT and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor’s performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature.

  18. Aqua AIRS Level 2G Precipitation Estimate (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  19. Aqua AIRS Level 2 Support Retrieval (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  20. Aqua AIRS Level 2 Support Retrieval (AIRS-only) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — This product is similar to AIRX2SUP. It is newest product produced using AIRS IR only because the radiometric noise in AMSU channel 4 started to increase...

  1. AIRS/Aqua Level 2 Cloud-cleared infrared radiances (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  2. AIRS/Aqua Level 2 Support retrieval (AIRS-only) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — This product is similar to AIRX2SUP. It is newest product produced using AIRS IR only because the radiometric noise in AMSU channel 4 started to increase...

  3. AIRS/Aqua Level 2 Cloud-cleared infrared radiances (AIRS-only) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — This product is similar to AIRI2CCF. It is newest products produced using AIRS IR only because the radiometric noise in AMSU channel 4 started to increase...

  4. Aqua AIRS Near Real Time (NRT) Level 2 Standard Physical Retrieval (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  5. Aqua AIRS Level 2 Cloud-Cleared Infrared Radiances (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  6. AIRS/Aqua Level 2 Support retrieval (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  7. Aqua AIRS Level 2 Cloud-Cleared Infrared Radiances (AIRS-only) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — This product is similar to AIRI2CCF. It is newest products produced using AIRS IR only because the radiometric noise in AMSU channel 4 started to increase...

  8. AIRS/Aqua Level 2 Standard physical retrieval (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  9. Aqua AIRS Level 2 Standard Physical Retrieval (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  10. Aqua AIRS Near Real Time (NRT) Level 2 Support Retrieval (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In combination...

  11. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  12. Time lag between the tropopause height and the levels of 7Be concentration in near surface air

    Directory of Open Access Journals (Sweden)

    Melas D.

    2012-04-01

    Full Text Available The concentration of 7Be at near surface air has been determined over 2009, a year of a deep solar minimum, in the region of Thessaloniki, Greece at 40°62′ N, 22°95'E. In geomagnetic latitudes over 40° N, the elevation of the tropopause during the warm summer months and the vertical exchange of air masses within the troposphere cause greater mixture of the air masses resulting in higher concentration levels for 7Be in surface air. The positive correlation between the monthly activity concentration of 7Be and the tropopause height (0.94, p < 0.0001, and also between 7Be concentration and the temperature T (°C (R = 0.97, p < 0.001, confirm that the increased rate of vertical transport within the troposphere, especially during warmer summer months, has as a result the descent to surface of air masses enriched in 7Be. However, the 7Be concentration levels in near surface air are not expected to respond immediately to the change of elevation of the tropopause. It was found that there's a time lag of ~ 3 days between the change in the daily surface concentrations of 7Be the change in the elevation of the tropopause.

  13. Air injection low temperature oxidation process for enhanced oil recovery from light oil reservoirs

    International Nuclear Information System (INIS)

    Tunio, A.H.; Harijan, K.

    2010-01-01

    This paper represents EOR (Enhanced Oil Recovery) methods to recover unswept oil from depleted light oil reservoirs. The essential theme here is the removal of oxygen at LTO (Low Temperature Oxidation) from the injected air for a light oil reservoir by means of some chemical reactions occurring between oil and oxygen. In-situ combustion process, HTO (High Temperature Oxidation) is not suitable for deep light oil reservoirs. In case of light oil reservoirs LTO is more suitable to prevail as comparative to HTO. Few laboratory experimental results were obtained from air injection process, to study the LTO reactions. LTO process is suitable for air injection rate in which reservoir has sufficiently high temperature and spontaneous reaction takes place. Out comes of this study are the effect of LTO reactions in oxygen consumption and the recovery of oil. This air injection method is economic compared to other EOR methods i.e. miscible hydrocarbon gas, nitrogen, and carbon dioxide flooding etc. This LTO air injection process is suitable for secondary recovery methods where water flooding is not feasible due to technical problems. (author)

  14. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    Science.gov (United States)

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use.

  15. Near-surface air temperature lapse rates in Xinjiang, northwestern China

    Science.gov (United States)

    Du, Mingxia; Zhang, Mingjun; Wang, Shengjie; Zhu, Xiaofan; Che, Yanjun

    2018-02-01

    Lapse rates of near-surface (2 m) air temperature are important parameters in hydrologic and climate simulations, especially for the mountainous areas without enough in-situ observations. In Xinjiang, northwestern China, the elevations range from higher than 7000 m to lower than sea level, but the existing long-term meteorological measurements are limited and distributed unevenly. To calculate lapse rates in Xinjiang, the daily data of near-surface air temperature ( T min, T ave, and T max) were measured by automatic weather stations from 2012 to 2014. All the in situ observation stations were gridded into a network of 1.5° (latitude) by 1.5° (longitude), and the spatial distribution and the daily, monthly, seasonal variations of lapse rates for T min, T ave, and T max in Xinjiang are analyzed. The Urumqi River Basin has been considered as a case to study the influence of elevation, aspect, and the wet and dry air conditions to the T min, T ave, and T max lapse rates. Results show that (1) the lapse rates for T min, T ave, and T max vary spatially during the observation period. The spatial diversity of T min lapse rates is larger than that of T ave, and that of T max is the smallest. For each season, T max lapse rates have more negative values than T ave lapse rates which are steeper than T min lapse rates. The weakest spatial diversity usually appears in July throughout a year. (2) The comparison for the three subregions (North, Middle, and South region) exhibits that lapse rates have similar day-to-day and month-to-month characteristics which present shallower values in winter months and steeper values in summer months. The T ave lapse rates in North region are shallower than those in Middle and South region, and the steepest T ave lapse rates of the three regions all appear in April. T min lapse rates are shallower than T max lapse rates. The maximum medians of T min and T max lapse rates for each grid in the three regions all appear in January, whereas the

  16. [Temperature modifies the acute effect of particulate air pollution on mortality in Jiang'an district of Wuhan].

    Science.gov (United States)

    Zhu, Y H; Wu, R; Zhong, P R; Zhu, C H; Ma, L

    2016-06-01

    To analyze the temperature modification effect on acute mortality due to particulate air pollution. Daily non-accidental mortality, cardiovascular mortality, and respiratory mortality data were obtained from Jiang'an District Center for Disease Control and Prevention. Daily meteorological data on mean temperature and relative humidity were collected from China Meteorological Data Sharing Service System. The daily concentration of particulate matter was collected from Wuhan Environmental Monitoring center. By using the stratified time-series models, we analyzed effects of particulate air pollution on mortality under different temperature zone from 2002 to 2010, meanwhile comparing the difference of age, gender and educational level, in Wuhan city of China. High temperature (daily average temperature > 33.4 ℃) obviously enhanced the effect of PM10 on mortality. With 10 μg/m(3) increase in PM10 concentrations, non-accidental, cardiovascular, and respiratory mortality increased 2.95% (95%CI: 1.68%-4.24%), 3.58% (95%CI: 1.72%-5.49%), and 5.07% (95%CI: 2.03%-9.51%) respectively. However, low temperature (daily average temperature respiratory mortality with 3.31% (95% CI: 0.07%-6.64%) increase. At high temperature, PM10 had significantly stronger effect on non-accidental mortality of female aged over 65 and people with high educational level groups. With an increase of 10 μg/m(3), daily non-accidental mortality increased 4.27% (95% CI:2.45%-6.12%), 3.38% (95% CI:1.93%-4.86%) and 3.47% (95% CI:1.79%-5.18%), respectively. Whereas people with low educational level were more susceptible to low temperature. A 10 μg/m(3) increase in PM10 was associated with 2.11% (95% CI: 0.20%-4.04%) for non-accidental mortality. Temperature factor can modify the association between the PM10 level and cause-specific mortality. Moreover, the differences were apparent after considering the age, gender and education groups.

  17. Urinary 8-oxodeoxyguanosine levels in children exposed to air pollutants

    Czech Academy of Sciences Publication Activity Database

    Švecová, Vlasta; Rössner ml., Pavel; Dostál, Miroslav; Topinka, Jan; Solanský, I.; Šrám, Radim

    2009-01-01

    Roč. 662, 1-2 (2009), s. 37-43 ISSN 0027-5107 R&D Projects: GA MŽP SL/5/160/05; GA MŽP(CZ) SP/1B3/50/07 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * child health * oxidative stress Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.556, year: 2009

  18. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  19. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  20. Human preference and acceptance of increased air velocity to offset warm sensation at increased room temperatures

    DEFF Research Database (Denmark)

    Cattarin, Giulio; Simone, Angela; Olesen, Bjarne W.

    . The present climatic chamber study examined energy performance and achievable thermal comfort of traditional and bladeless desk fans. Different effects of mechanical and simulated-natural airflow patterns were also investigated. 32 Scandinavians, performing office activities and wearing light clothes , were......Previous studies have demonstrated that in summertime increased air velocities can compensate for higher room temperatures to achieve comfortable conditions. In order to increase air movement, windows opening, ceiling or desk fans can be used at the expense of relatively low energy consumption...... exposed to a increased air movement generated by a personal desk fan. The subjects could continuously regulate the fans under three fixed environmental conditions (operative temperatures equal to 26 °C, 28 °C, or 30 °C, and same absolute humidity 12.2 g/m3). The experimental study showed that increased...

  1. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air

    DEFF Research Database (Denmark)

    Lyng, Nadja; Clausen, Per Axel; Lundsgaard, Claus

    2016-01-01

    tested on field data from a PCB remediation case in an apartment in another contaminated building complex where PCB concentrations and temperature were measured simultaneously and regularly throughout one year. The model fitted relatively well with the regression of measured PCB air concentrations, ln...

  2. Lower air temperature is associated with ambulance transports and death in Takamatsu area, Japan.

    Science.gov (United States)

    Mochimasu, Kazumi Dokai; Miyatake, Nobuyuki; Tanaka, Naoko; Kinoshita, Hiroshi

    2014-07-01

    The aim of this study was to investigate the linkage among ambulance transports, the number of death and air temperature in Takamatsu area, Japan. Monthly data of ambulance transports (total and acute disease) and the number of death from 2004 to 2012 were obtained from Fire Department Service in Takamatsu and Takamatsu city official website, Japan. Climate parameters for required period were also obtained from Japan Meteorological Agency. Population data in Takamatsu area were also used to adjust ambulance transports and the number of death. The linkage among ambulance transports, the number of death and climate parameters was evaluated by ecological analysis. Total ambulance transports (/a hundred thousand people/day) and ambulance transports due to acute disease (/a hundred thousand people/day) were 12.3 ± 0.9 and 6.8 ± 0.7, respectively. The number of death (/a hundred thousand people/day) was 2.5 ± 0.4. By quadratic curve, ambulance transports due to acute disease and the number of death were significantly correlated with the parameters of air temperature. However, the number of death was the highest in January and the lowest in August. Although higher air temperature was only associated with higher ambulance transports, lower air temperature was associated with both higher ambulance transports and the number death in Takamatsu area, Japan.

  3. Retrieval of sea surface air temperature from satellite data over Indian Ocean: An empirical approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    the sea surface air temperature from satellite derived sea surface humidity in the Indian Ocean. Using the insitu data on surface met parameters collected on board O.R.V. Sagar Kanya in the Indian Ocean over a period of 15 years, the relationship between...

  4. Core temperature in super-Gaussian pumped air-clad photonic ...

    Indian Academy of Sciences (India)

    In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.

  5. Effect of Inlet-Air Temperature on Physico-Chemical and Sensory ...

    African Journals Online (AJOL)

    Preliminary investigation carried out on this study showed that samples produced at air inlet temperatures below 200oC exhibited wet and agglomerated particles. The recovered powdered samples were analyzed for proximate composition, pH, available lysine, total solids, pack bulk density, viscosity, solubility and ...

  6. Laminar burning velocities of acetone in air at room and elevated temperatures

    NARCIS (Netherlands)

    Nilsson, E.J.K.; Goey, de L.P.H.; Konnov, A.

    2013-01-01

    Laminar burning velocities of acetone + air mixtures at initial gas mixture temperatures of 298, 318, 338 and 358 K are reported. Non-stretched flames were stabilized on a perforated plate burner at 1 atm, and laminar burning velocities were determined using the heat flux method, at conditions where

  7. Outdoor air temperature and mortality in The Netherlands: a time-series analysis

    NARCIS (Netherlands)

    Kunst, A. E.; Looman, C. W.; Mackenbach, J. P.

    1993-01-01

    Death rates become progressively higher when outdoor air temperature rises above or falls below 20-25 degrees C. This study addresses the question of whether this relation is largely attributable to the direct effects of exposure to heat and cold on the human body in general, and on the circulatory

  8. Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture

    Science.gov (United States)

    Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram

    2017-03-01

    In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.

  9. Forced-Air Warming Provides Better Control of Body Temperature in Porcine Surgical Patients

    Directory of Open Access Journals (Sweden)

    Brian T. Dent

    2016-09-01

    Full Text Available Background: Maintaining normothermia during porcine surgery is critical in ensuring subject welfare and recovery, reducing the risk of immune system compromise and surgical-site infection that can result from hypothermia. In humans, various methods of patient heating have been demonstrated to be useful, but less evaluation has been performed in techniques to prevent hypothermia perioperatively in pigs. Methods: We compared body temperature regulation during surgery before and after modification of the ambient temperature of the operating laboratories. Three different methods of heating were then compared; a standard circulating water mattress, a resistive fabric blanket, and a forced hot air system. The primary measure was percentage of temperature readings outside a specification range of 36.7–40.0 °C. Results: Tighter control of the ambient temperature while using a circulating water mattress reduced the occurrence of out-of-specification body temperature readings from 20.8% to 5.0%, with most of these the result of hypothermia. Use of a resistive fabric blanket further reduced out-of-specification readings to 1.5%, with a slight increase in the occurrence of hyperthermia. Use of a forced air system reduced out-of-specification readings to less 0.1%. Conclusions: Maintenance of normothermia perioperatively in pig can be improved by tightly controlling ambient temperatures. Use of a resistive blanket or a forced air system can lead to better control than a circulating water mattress, with the forced air system providing a faster response to temperature variations and less chance of hyperthermia.

  10. Performance evaluation of an air-breathing high-temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Wu, Qixing; Li, Haiyang; Yuan, Wenxiang; Luo, Zhongkuan; Wang, Fang; Sun, Hongyuan; Zhao, Xuxin; Fu, Huide

    2015-01-01

    Highlights: • An air-breathing HT-PEMFC was designed and evaluated experimentally. • The peak power density of the air-breathing HT-PEMFC was 220.5 mW cm"−"2 at 200 °C. • Break-in behavior and effects of temperature and anodic stoichiometry were studied. • The effect of cell orientations on the performance was investigated. • The degradation rate of the air-breathing HT-PEMFC was around 58.32 μV h"−"1. - Abstract: The air-breathing proton exchange membrane fuel cell (PEMFC) is of great interest in mobile power sources because of its simple system design and low parasitic power consumption. Different from previous low-temperature air-breathing PEMFCs, a high-temperature PEMFC with a phosphoric acid doped polybenzimidazole (PBI) membrane as the polymer electrolyte is designed and investigated under air-breathing conditions. The preliminary results show that a peak power density of 220.5 mW cm"−"2 at 200 °C can be achieved without employing any water managements, which is comparable to those with conventional Nafion® membranes operated at low temperatures. In addition, it is found that with the present cell design, the limiting current density arising from the oxygen transfer limitation is around 700 mA cm"−"2 even at 200 °C. The short-term durability test at 200 mA cm"−"2 and 180 °C reveals that all the cells exhibit a gradual decrease in the voltage along with a rise in the internal resistance. The degradation rate of continuous operation is around 58.32 μV h"−"1, which is much smaller than those of start/stop cycling operations.

  11. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    Science.gov (United States)

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Temperature and level measurements realized for Nuclear Safety Level Improvement of Slovak NPPs

    International Nuclear Information System (INIS)

    Badiar, S.; Slanina, M.; Stanc, S.; Golan, P.; Krupa, J.

    2001-01-01

    Process of continual safety improvement in the individual Slovak nuclear power plants has been in progress since the beginning of nineties with the objective to upgrade the safety level of units in operation up to the European standards. In the framework of these activities, safety instrumentation systems with 1E qualification for the control of WWER reactor coolant systems were built and added. Methods for implementation of safety instrumentation systems for monitoring temperature and level in reactor coolant systems in the particular plants in Slovakia are presented showing the objectives and methods of their implementation. (Authors)

  13. Impact of aspect ratio and solar heating on street canyon air temperature

    International Nuclear Information System (INIS)

    Memon, R.A.; Lal, K.

    2011-01-01

    The results obtained from RNG (Re-Normalization Group) version of k-and turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width) and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy an sport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios) one to eight and surface temperature difference (delta and theta/sub s-a/)) of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature 'high and low AR street canyons (AR) was positive and high with higher delta and theta/sub s-a/) conversely, the AR become negative and low gradually with lower values of delta and theta(/sub s-a/). These results could be very beneficial for the city and regional planners, civil engineers Id HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements. (author)

  14. Impact of Aspect Ratio and Solar Heating on Street Conyn Air Temperature

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-01-01

    Full Text Available The results obtained from RNG (Re-Normalization Group version of k-? turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy transport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios one to eight and surface temperature difference (??s-a of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature of high and low AR street canyons ( AR was positive and high with higher ??s-a. Conversely, the AR become negative and low gradually with lower values of ??s-a. These results could be very beneficial for the city and regional planners, civil engineers and HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements.

  15. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    Science.gov (United States)

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  16. Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory

    Science.gov (United States)

    Roadhouse, Emily A.

    The links between climate and permafrost are well known, but the precise nature of the relationship between air and ground temperatures remains poorly understood, particularly in complex mountain environments. Although previous studies indicate that elevation and potential incoming solar radiation (PISR) are the two leading factors contributing to the existence of permafrost at a given location, additional factors may also contribute significantly to the existence of mountain permafrost, including vegetation cover, snow accumulation and the degree to which individual mountain landscapes are prone to air temperature inversions. Current mountain permafrost models consider only elevation and aspect, and have not been able to deal with inversion effects in a systematic fashion. This thesis explores the relationship between air and ground surface temperatures and the presence of surface-based inversions at 27 sites within the Wolf Creek basin and surrounding area between 2001 and 2006, as a first step in developing an improved permafrost distribution TTOP model. The TTOP model describes the relationship between the mean annual air temperature and the temperature at the top of permafrost in terms of the surface and thermal offsets (Smith and Riseborough, 2002). Key components of this model are n-factors which relate air and ground climate by establishing the ratio between air and surface freezing (winter) and thawing (summer) degree-days, thus summarizing the surface energy balance on a seasonal basis. Here we examine (1) surface offsets and (2) freezing and thawing n-factor variability at a number of sites through altitudinal treeline in the southern Yukon. Thawing n-factors (nt) measured at individual sites remained relatively constant from one year to the next and may be related to land cover. During the winter, the insulating effect of a thick snow cover results in higher surface temperatures, while thin snow cover results in low surface temperatures more closely

  17. Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles

    Science.gov (United States)

    Susskind, Joel; Rosenberg, Bob

    2016-01-01

    We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.

  18. A shorter snowfall season associated with higher air temperatures over northern Eurasia

    International Nuclear Information System (INIS)

    Ye Hengchun; Cohen, Judah

    2013-01-01

    The temperature sensitivity of the snowfall season (start, end, duration) over northern Eurasia (the former USSR) is analyzed from synoptic records of 547 stations from 1966 to 2000. The results find significant correlations between temperature and snowfall season at approximately 56% of stations (61% for the starting date and 56% for the ending date) with a mean snowfall season duration temperature sensitivity of −6.2 days °C −1 split over the start (2.8 days) and end periods (−3.4 days). Temperature sensitivity was observed to increase with stations’ mean seasonal air temperature, with the strongest relationships at locations of around 6 °C temperature. This implies that increasing air temperature in fall and spring will delay the onset and hasten the end of snowfall events, and reduces the snowfall season length by 6.2 days for each degree of increase. This study also clarifies that the increasing trend in snowfall season length during 1936/37–1994 over northern European Russia and central Siberia revealed in an earlier study is unlikely to be associated with warming in spring and fall seasons. (letter)

  19. Smart Control of Air Climatization System in Function on the Values of Mean Local Radiant Temperature

    Directory of Open Access Journals (Sweden)

    Giuseppe Cannistraro

    2015-08-01

    Full Text Available The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa and derived parameters such as operating temperature and mean radiant one (Top eTmr. However, in some specific cases - large open-spaces or in case of radiating surfaces - the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i

  20. Mitigate Strategy of Very High Temperature Reactor Air-ingress Accident

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Tae Kyu [KHNP CRI, Daejeon (Korea, Republic of); Arcilesi, David J.; Sun, Xiaodong; Christensen, Richard N. [The Ohio State University, Columbus (United States); Oh, Chang H.; Kim, Eung S. [Idaho National Laboratory, Idaho (United States)

    2016-10-15

    A critical safety event of the Very High Temperature Reactor (VHTR) is a loss-of-coolant accident (LOCA). Since a VHTR uses graphite as a core structure, if there is a break on the pressure vessel, the air in the reactor cavity could ingress into the reactor core. The worst case scenario of the accident is initiated by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. The operating pressures in the vessel and containment are about 7 and 0.1 MPa, respectively. In the VHTR, the reactor pressure vessel is located within a reactor cavity which is filled with air during normal operation. Therefore, the air-helium mixture in the cavity may ingress into the reactor pressure vessel after the depressurization process. In this paper, a commercial computational fluid dynamics (CFD) tool, FLUENT, was used to figure out air-ingress mitigation strategies in the gas-turbine modular helium reactor (GT-MHR) designed by General Atomics, Inc. After depressurization, there is almost no air in the reactor cavity; however, the air could flow back to the reactor cavity since the reactor cavity is placed in the lowest place in the reactor building. The heavier air could flow to the reactor cavity through free surface areas in the reactor building. Therefore, Argon gas injection in the reactor cavity is introduced. The injected argon would prevent the flow by pressurizing the reactor cavity initially, and eventually it prevents the flow by making the gas a heavier density than air in the reactor cavity. The gate opens when the reactor cavity is pressurized during the depressurization and it closes by gravity when the depressurization is terminated so that it can slow down the air flow to the reactor cavity.

  1. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    Science.gov (United States)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  2. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Directory of Open Access Journals (Sweden)

    Benjamin H. Letcher

    2016-02-01

    Full Text Available Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C, identified a clear warming trend (0.63 °C decade−1 and a widening of the synchronized period (29 d decade−1. We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data. Missing all data for a year decreased performance (∼0.6 °C jump in RMSE, but this decrease was moderated when data were available from other streams in the network.

  3. Performance, acute health symptoms and physiological responses during exposure to high air temperature and carbon dioxide concentration

    DEFF Research Database (Denmark)

    liu, weiwei; Zhong, Weidi; Wargocki, Pawel

    2017-01-01

    saturation decreased significantly, while the percentage of adjacent inter-beat cardiac intervals differing by > 50 m (pNN50) decreased significantly, indicating elevated stress. The performance of addition and subtraction tasks decreased significantly during this exposure, as well. Increasing CO2 to 3000......Human subjects were exposed for 3 h in a climate chamber to the air temperature of 35 °C that is an action level, at which the working time needs to be diminished in China. The purpose was to put this action level to test by measuring physiological responses, subjective ratings and cognitive...... performance, and compare them with responses at temperature of 26 °C (reference exposure). Moreover, CO2 was increased to 3000 ppm (CO2 exposure) at 35 °C to further examine, whether this change will have any effect on the measured responses. Compared with the reference exposure, exposure to 35 °C caused...

  4. Air temperature change in the northern and southern tropical Andes linked to North-Atlantic stadials and Greenland interstadials

    Science.gov (United States)

    Urrego, Dunia H.; Hooghiemstra, Henry

    2016-04-01

    We use eight pollen records reflecting climatic and environmental change from northern and southern sites in the tropical Andes. Our analysis focuses on the signature of millennial-scale climate variability during the last 30,000 years, in particular the Younger Dryas (YD), Heinrich stadials (HS) and Greenland interstadials (GI). We identify rapid responses of the vegetation to millennial-scale climate variability in the tropical Andes. The signature of HS and the YD are generally recorded as downslope migrations of the upper forest line (UFL), and are likely linked to air temperature cooling. The GI1 signal is overall comparable between northern and southern records and indicates upslope UFL migrations and warming in the tropical Andes. Our marker for lake level changes indicates a north to south difference that could be related to moisture availability. The direction of air temperature change recorded by the Andean vegetation is consistent with millennial-scale cryosphere and sea surface temperature records from the American tropics, but suggests a potential difference between the magnitude of temperature change in the ocean and the atmosphere.

  5. Temperature Dependence of the Rayleigh Brillouin Spectrum Linewidth in Air and Nitrogen

    Directory of Open Access Journals (Sweden)

    Kun Liang

    2017-06-01

    Full Text Available The relation between spontaneous Rayleigh Brillouin (SRB spectrum linewidth, gas temperature, and pressure are analyzed at the temperature range from 220 to 340 K and the pressure range from 0.1 to 1 bar, covering the stratosphere and troposphere relevant for the Earth’s atmosphere and for atmospheric Lidar missions. Based on the analysis, a model retrieving gas temperature from directly measured linewidth is established and the accuracy limitations are estimated. Furthermore, some experimental data of air and nitrogen are used to verify the accuracy of the model. As the results show, the retrieved temperature shows good agreement with the reference temperature, and the absolute difference is less than 3 K, which indicates that this method provides a fruitful tool in satellite retrieval to extract the gaseous properties of atmospheres on-line by directly measuring the SRB spectrum linewidth.

  6. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature.

    Science.gov (United States)

    Wallin, Göran; Hall, Marianne; Slaney, Michelle; Räntfors, Mats; Medhurst, Jane; Linder, Sune

    2013-11-01

    Accumulated carbon uptake, apparent quantum yield (AQY) and light-saturated net CO2 assimilation (Asat) were used to assess the responses of photosynthesis to environmental conditions during spring for three consecutive years. Whole-tree chambers were used to expose 40-year-old field-grown Norway spruce trees in northern Sweden to an elevated atmospheric CO2 concentration, [CO2], of 700 μmol CO2 mol(-1) (CE) and an air temperature (T) between 2.8 and 5.6 °C above ambient T (TE), during summer and winter. Net shoot CO2 exchange (Anet) was measured continuously on 1-year-old shoots and was used to calculate the accumulated carbon uptake and daily Asat and AQY. The accumulated carbon uptake, from 1 March to 30 June, was stimulated by 33, 44 and 61% when trees were exposed to CE, TE, and CE and TE combined, respectively. Air temperature strongly influenced the timing and extent of photosynthetic recovery expressed as AQY and Asat during the spring. Under elevated T (TE), the recovery of AQY and Asat commenced ∼10 days earlier and the activity of these parameters was significantly higher throughout the recovery period. In the absence of frost events, the photosynthetic recovery period was less than a week. However, frost events during spring slowed recovery so that full recovery could take up to 60 days to complete. Elevated [CO2] stimulated AQY and Asat on average by ∼10 and ∼50%, respectively, throughout the recovery period, but had minimal or no effect on the onset and length of the photosynthetic recovery period during the spring. However, AQY, Asat and Anet all recovered at significantly higher T (average +2.2 °C) in TE than in TA, possibly caused by acclimation or by shorter days and lower light levels during the early part of the recovery in TE compared with TA. The results suggest that predicted future climate changes will cause prominent stimulation of photosynthetic CO2 uptake in boreal Norway spruce forest during spring, mainly caused by elevated T

  7. Impact of air pollution and temperature on adverse birth outcomes: Madrid, 2001-2009.

    Science.gov (United States)

    Arroyo, Virginia; Díaz, Julio; Carmona, Rocío; Ortiz, Cristina; Linares, Cristina

    2016-11-01

    Low birth weight (<2500 g) (LBW), premature birth (<37 weeks of gestation) (PB), and late foetal death (<24 h of life) (LFD) are causes of perinatal morbi-mortality, with short- and long-term social and economic health impacts. This study sought to identify gestational windows of susceptibility during pregnancy and to analyse and quantify the impact of different air pollutants, noise and temperature on the adverse birth outcomes. Time-series study to assess the impact of mean daily PM 2.5 , NO 2 and O 3 (μg/m 3 ), mean daily diurnal (Leqd) and nocturnal (Leqn) noise levels (dB(A)), maximum and minimum daily temperatures (°C) on the number of births with LBW, PB or LFD in Madrid across the period 2001-2009. We controlled for linear trend, seasonality and autoregression. Poisson regression models were fitted for quantification of the results. The final models were expressed as relative risk (RR) and population attributable risk (PAR). Leqd was observed to have the following impacts in LBW: at onset of gestation, in the second trimester and in the week of birth itself. NO 2 had an impact in the second trimester. In the case of PB, the following: Leqd in the second trimester, Leqn in the week before birth and PM 2.5 in the second trimester. In the case of LFD, impacts were observed for both PM 2.5 in the third trimester, and minimum temperature. O 3 proved significant in the first trimester for LBW and PB, and in the second trimester for LFD. Pollutants concentrations, noise and temperature influenced the weekly average of new-borns with LBW, PB and LFD in Madrid. Special note should be taken of the effect of diurnal noise on LBW across the entire pregnancy. The exposure of pregnant population to the environmental factors analysed should therefore be controlled with a view to reducing perinatal morbi-mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Do US Ambient Air Lead Levels Have a Significant Impact on Childhood Blood Lead Levels: Results of a National Study

    Directory of Open Access Journals (Sweden)

    LuAnn L. Brink

    2013-01-01

    Full Text Available Introduction. Although lead paint and leaded gasoline have not been used in the US for thirty years, thousands of US children continue to have blood lead levels (BLLs of concern. Methods. We investigated the potential association of modeled air lead levels and BLLs ≥ 10 μg/dL using a large CDC database with BLLs on children aged 0–3 years. Percent of children with BLLs ≥ 10 μg/dL (2000–2007 by county and proportion of pre-50 housing and SES variables were merged with the US EPA's National Air Toxics Assessment (NATA modeled air lead data. Results. The proportion with BLL ≥ 10 μg/dL was 1.24% in the highest air lead counties, and the proportion with BLL ≥ 10 μg/dL was 0.36% in the lowest air lead counties, resulting in a crude prevalence ratio of 3.4. Further analysis using multivariate negative binomial regression revealed that NATA lead was a significant predictor of % BLL ≥ 10 μg/dL after controlling for percent pre-l950 housing, percent rural, and percent black. A geospatial regression revealed that air lead, percent older housing, and poverty were all significant predictors of % BLL ≥ 10 μg/dL. Conclusions. More emphasis should be given to potential sources of ambient air lead near residential areas.

  9. Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring.

    Science.gov (United States)

    Pelta, Ran; Chudnovsky, A Alexandra; Schwartz, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989-2014. Our preliminary results show a good model performance with R(2) = 0.81. Furthermore, based on the model's results, we analyzed the spatial profile of Tair within the study domain for representative days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The spatial and temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring

    Science.gov (United States)

    Pelta, Ran; Chudnovsky, A. Alexandra; Schwarts, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989–2014. Our preliminary results show a good model performance with R2 = 0.81. Furthermore, based on the model’s results, we analyzed the spatial profile of Tair within the study domain for representative days. PMID:26499933

  11. Investigation of soot formation and temperature field in laminar diffusion flames of LPG-air mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shahad, Haroun A.K.; Mohammed, Yassar K.A. [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Israel)

    2000-11-01

    Soot formation and burnout were studied at atmospheric pressure in co-flowing, axisymmetric buoyant laminar diffusion flames and double flames of liquefied petroleum gases (LPG)-air mixtures. In diffusion flames, two different fuel flow rates were examined. In double flames, three different primary air flow rates were examined. A soot sampling probe and a thermocouple were used to measure the local soot mass concentration and flame temperature, respectively. Flame residence time was predicted using a uniformly accelerated motion model as function of axial distance of the flame. The increase of primary air flow rate was found to suppress the energy transfer from the annular region, at which the soot is produced, to the flame axis. The time required to initiate soot formation at the flame axis becomes longer as the primary air is increased. The trend rate of soot formation was found to be similar along the flame axis in all tested diffusion flames. The increase of primary air by 10% of the stoichiometric air requirement of the fuel results in a 70% reduction in maximum soot concentration. The final exhaust of soot, which is determined by the net effect of soot formation and burnout, is much lower in double flames than that in diffusion flames. (Author)

  12. Effect of air preheat temperature on the MILD combustion of syngas

    International Nuclear Information System (INIS)

    Huang, Mingming; Zhang, Zhedian; Shao, Weiwei; Xiong, Yan; Liu, Yan; Lei, Fulin; Xiao, Yunhan

    2014-01-01

    Highlights: • MILD combustion is achieved with reaction zone covering the entire combustion chamber. • Critical equivalence ratio for the occurrence of MILD combustion is identified. • MILD regime can be established for syngas fuel under air preheating conditions. - Abstract: The effect of air preheat temperature on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using numerical simulations and on global flame signatures, OH ∗ radicals distribution and exhaust emissions using experiments. The discrete and high speed air/fuel injections into the combustor is necessary for the establishment of MILD conditions, because they cause strong gas recirculation and form large mixing region between the air and fuel jets. The critical equivalence ratio above which MILD combustion occurred was identified. The MILD regime was established for syngas fuel under air preheating conditions with lean operational limit and suppressed NO x and CO emissions. In the MILD combustion regime, the air preheating resulted in higher NO x but lower CO emissions, while the increase of equivalence ratio led to the increase of NO x and the decrease of CO emissions

  13. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    Science.gov (United States)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  14. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  15. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  16. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    Science.gov (United States)

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  17. A Comprehensive Real-Time Indoor Air-Quality Level Indicator

    Directory of Open Access Journals (Sweden)

    Jungho Kang

    2016-09-01

    Full Text Available The growing concern about Indoor Air-Quality has accelerated the development of small, low-cost air-quality monitoring systems. These systems are capable of monitoring various indoor air pollutants in real time, notifying users about the current air-quality status and gathering the information to the central server. However, most Internet of Things (IoT-based air-quality monitoring systems numerically present the sensed value per pollutant, making it difficult for general users to identify how polluted the air is. Therefore, in this paper, we first introduce a tiny air-quality monitoring system that we developed and, based on the system, we also test the applicability of the comprehensive Air-Quality Index (AQI, which is widely used all over the world, in terms of its capacity for a comprehensive indoor air-quality indication. We also develop design considerations for an IoT-based air-quality monitoring system and propose a real-time comprehensive indoor air-quality level indication method, which effectively copes with dynamic changes and is efficient in terms of processing and memory overhead.

  18. Factors Affecting Parent's Perception on Air Quality-From the Individual to the Community Level.

    Science.gov (United States)

    Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao

    2016-05-12

    The perception of air quality significantly affects the acceptance of the public of the government's environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents' perceptions. Scientific data of air quality were obtained from Wuhan's environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170-9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244-25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212-21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents' perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public's perception and expectation of air quality and the benefits to the environmental policy completing and enforcing.

  19. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    Science.gov (United States)

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  20. A Novel Method making direct use of AIRS and IASI Calibrated Radiances for Measuring Trends in Surface Temperatures

    Science.gov (United States)

    Aumann, H. H.; Ruzmaikin, A.

    2014-12-01

    Making unbiased measurements of trends in the surface temperatures, particularly on a gobal scale, is challenging: While the non-frozen oceans temperature measurements are plentiful and accurate, land and polar areas are much less accurately or fairly sampled. Surface temperature deduced from infrared radiometers on polar orbiting satellites (e.g. the Atmospheric Infrared Sounder (AIRS) at 1:30PM, the Interferometer Atmosphere Sounding Interferometer (IASI) at 9:30 AM and the MODerate resolution Imaging Spectro-radiometer (MODIS) at 1:30PM), can produce what appear to be well sampled data, but dealing with clouds either by cloud filtering (MODIS, IASI) or cloud-clearing (AIRS) can create sampling bias. We use a novel method: Random Nadir Sampling (RNS) combined with Probability Density Function (PDF) analysis. We analyze the trend in the PDF of st1231, the water vapor absorption corrected brightness temperatures measured in the 1231 cm-1 atmospheric window channel. The advantage of this method is that trends can be directly traced to the known, less than 3 mK/yr trend for AIRS, in st1231. For this study we created PDFs from 22,000 daily RNS from the AIRS and IASI data. We characterized the PDFs by its daily 90%tile value, st1231p90, and analysed the statistical properties of the this time series between 2002 and 2014. The method was validated using the daily NOAA SST (RTGSST) from the non-frozen oceans: The mean, seasonal variability and anomaly trend of st1231p90 agree with the corrsponding values from the RTGSST and the anomaly correlation is larger than 0.9. Preliminary results (August 2014) confirm the global hiatus in the increase of the globally averaged surface temperatures between 2002 and 2014, with a change of less than 10 mK/yr. This uncertainty is dominated by the large interannual variability related to El Niño events. Further insite is gained by analyzing land/ocean, day/night, artic and antarctic trends. We observe a massive warming trend in the

  1. Maximum surface level and temperature histories for Hanford waste tanks

    International Nuclear Information System (INIS)

    Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

    1994-01-01

    Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data

  2. The impact of temperature on mean local air age and thermal comfort in a stratum ventilated office

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lin; Lin, Zhang; Yao, Ting [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Hong Kong SAR (China); Liu, Jing; Wang, Qiuwang [State Key Lab of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China)

    2011-02-15

    The influence of the supply air temperature on the mean local air age and thermal comfort of a typical individual office under stratum ventilation is investigated by a numerical method, which is validated by an experiment carried out by the authors. The results show that for an office, when the supply air temperature is increased from 19 C to 21 C, the corresponding mean occupied zone temperature rises from 24.5 C to 26.5 C. The inhaled air quality for the occupant is improved when supply air temperature rises from 19 C to 21 C. Also, the thermal comfort indices (predicted mean vote or PMV, predicted percentage of dissatisfied or PPD and predicted dissatisfied or PD) fulfill the requirements of ISO 7730 and CR 175 1998. For summer cooling operation, stratum ventilation may offer a feasible solution to elevated indoor temperatures, which are recommended by several governments in East Asia. (author)

  3. Association of indoor air pollution with rhinitis symptoms, atopy and nitric oxide levels in exhaled air

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise Lotte N; Thomsen, Simon Francis

    2010-01-01

    Exposure to particulate matter (PM) outdoors can induce airway inflammation and exacerbation of asthma in adults. However, there is limited knowledge about the effects of exposure to indoor PM. The aim of this study was to investigate the association of exposure to indoor sources of PM...... with rhinitis symptoms, atopy and nitric oxide in exhaled air (FeNO) as a measure of airway inflammation....

  4. Indoor air quality in Portuguese schools: levels and sources of pollutants.

    Science.gov (United States)

    Madureira, J; Paciência, I; Pereira, C; Teixeira, J P; Fernandes, E de O

    2016-08-01

    Indoor air quality (IAQ) parameters in 73 primary classrooms in Porto were examined for the purpose of assessing levels of volatile organic compounds (VOCs), aldehydes, particulate matter, ventilation rates and bioaerosols within and between schools, and potential sources. Levels of VOCs, aldehydes, PM2.5 , PM10 , bacteria and fungi, carbon dioxide (CO2 ), carbon monoxide, temperature and relative humidity were measured indoors and outdoors and a walkthrough survey was performed concurrently. Ventilation rates were derived from CO2 and occupancy data. Concentrations of CO2 exceeding 1000 ppm were often encountered, indicating poor ventilation. Most VOCs had low concentrations (median of individual species <5 μg/m(3) ) and were below the respective WHO guidelines. Concentrations of particulate matter and culturable bacteria were frequently higher than guidelines/reference values. The variability of VOCs, aldehydes, bioaerosol concentrations, and CO2 levels between schools exceeded the variability within schools. These findings indicate that IAQ problems may persist in classrooms where pollutant sources exist and classrooms are poorly ventilated; source control strategies (related to building location, occupant behavior, maintenance/cleaning activities) are deemed to be the most reliable for the prevention of adverse health consequences in children in schools. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Short-Term Impacts of the Air Temperature on Greening and Senescence in Alaskan Arctic Plant Tundra Habitats

    Directory of Open Access Journals (Sweden)

    Jeremy L. May

    2017-12-01

    Full Text Available Climate change is warming the temperatures and lengthening the Arctic growing season with potentially important effects on plant phenology. The ability of plant species to acclimate to changing climatic conditions will dictate the level to which their spatial coverage and habitat-type dominance is different in the future. While the effect of changes in temperature on phenology and species composition have been observed at the plot and at the regional scale, a systematic assessment at medium spatial scales using new noninvasive sensor techniques has not been performed yet. At four sites across the North Slope of Alaska, changes in the Normalized Difference Vegetation Index (NDVI signal were observed by Mobile Instrumented Sensor Platforms (MISP that are suspended over 50 m transects spanning local moisture gradients. The rates of greening (measured in June and senescence (measured in August in response to the air temperature was estimated by changes in NDVI measured as the difference between the NDVI on a specific date and three days later. In June, graminoid- and shrub-dominated habitats showed the greatest rates of NDVI increase in response to the high air temperatures, while forb- and lichen-dominated habitats were less responsive. In August, the NDVI was more responsive to variations in the daily average temperature than spring greening at all sites. For graminoid- and shrub-dominated habitats, we observed a delayed decrease of the NDVI, reflecting a prolonged growing season, in response to high August temperatures. Consequently, the annual C assimilation capacity of these habitats is increased, which in turn may be partially responsible for shrub expansion and further increases in net summer CO2 fixation. Strong interannual differences highlight that long-term and noninvasive measurements of such complex feedback mechanisms in arctic ecosystems are critical to fully articulate the net effects of climate variability and climate change on

  6. Synchronous NDVI and Surface Air Temperature Trends in Newfoundland: 1982 to 2003

    Science.gov (United States)

    Neigh, C. S. R.; Tucker, C. J.; Townshend, J. R. G.

    2007-01-01

    The northern regions of the earth are currently experiencing rapid change in temperature and precipitation. This region contains -40% of carbon stored in the world's soil which has accumulated from the last ice age (over 10,000 years ago). The carbon has remained to this point due to reduced decomposition from the short growing seasons and subfreezing temperatures. The influence of climate upon plant growth can have significant consequences to the carbon cycle balance in this region and could potentially alter and release this long term store of carbon to the atmosphere, resulting in a negative feedback enhancing climate warming. These changes have the potential to alter ecosystems processes, which impact human well being. This paper investigated a global satellite record of increases in vegetation growth from 1982 to 2003 developed at GSFC. It was found that, Newfoundland's vegetation growth during the 1990s exceeded global measurements. A number of potential causes were investigated to understand the mechanistic environmental drivers that could alter the productivity of this ecosystem. Possible drivers of change included: human influence of land use change on vegetation cover; changes in precipitation; temperature; cloud cover; snow cover; and growing season length. We found that humans had a minimal influence on vegetation growth in Newfoundland. Less than 6% of the island was logged during the investigation. We found a strong correlation of vegetation growth to a lengthening of the growing season of -9 and -17 days from 1982-1990 and 1991-1999. A distinct drop in plant growth and air temperature was found in 1990 to 1991 from the volcanic eruption of Mt. Pinatubo that reduced global surface air temperatures. These results document the influences of air temperature upon northern forest plant growth and the cooling effects of major volcanic eruptions in this ecological system.

  7. Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.

    Science.gov (United States)

    Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.

    2000-12-01

    The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air

  8. Effects of Northern Hemisphere Sea Surface Temperature Changes on the Global Air Quality

    Science.gov (United States)

    Yi, K.; Liu, J.

    2017-12-01

    The roles of regional sea surface temperature (SST) variability on modulating the climate system and consequently the air quality are investigated using the Community Earth System Model (CESM). Idealized, spatially uniform SST anomalies of +/- 1 °C are superimposed onto the North Pacific, North Atlantic, and North Indian Oceans individually. Ignoring the response of natural emissions, our simulations suggest large seasonal and regional variability of surface O3 and PM2.5 concentrations in response to SST anomalies, especially during boreal summers. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv while increases the anthropogenic PM2.5 concentrations from 0.5 to 3 µg m-3. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological transport in response to SST changes is the key process causing air pollutant perturbations in most cases. During boreal summers, the increase in tropical SST over different ocean basins enhances deep convection, which significantly increases the air temperature over the upper troposphere and trigger large-scale subsidence over nearby and remote regions. These processes tend to increase tropospheric stability and suppress rainfall at lower mid-latitudes. Consequently, it reduces the vertical transport of O3 to the surface while facilitating the accumulation of PM2.5 concentrations over most regions. In addition, this regional SST warming may also considerably suppress intercontinental transport of air pollution as confirmed with idealized CO-like tracers. Our findings indicate a robust linkage between basin-scale SST variability and regional air quality, which can help local air quality management.

  9. Oxidation of graphites for core support post in air at high temperatures

    International Nuclear Information System (INIS)

    Imai, Hisashi; Fujii, Kimio; Kurosawa, Takeshi

    1982-07-01

    Oxidation reactions of candidate graphites for core support post with atmospheric air were studied in a temperature range between 550 0 C and 1000 0 C. The reaction rates, temperature dependence of the rates and distribution of bulk density in the oxidized graphites were measured and the characters obtained were compared between the brand of graphites. On the basis of the experimental results, dimension and strength of the post after corrosion with air, which might be introduced in rupture accident of primary coolant tube, were discussed. In the case of IG-11 graphite, it was proved that the strength of post is still sufficient even 100 hours after the beginning of the accident and that, however, it is necessary to insert more deeply the post against graphite blocks. (author)

  10. House Owners’ Interests and Actions in Relation to Indoor Temperature, Air Quality and Energy Use

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Andersen, Rune Korsholm; Hansen, Anders Rhiger

    2016-01-01

    in saving energy for the sake of the environment and for their own economy, and quite a lot of households indicate that they know their own energy consumption, though only few follow it closely. Thus being concerned about energy is not necessarily related to an interest in detailed feedback on one’s own......In order to make better and more realistic predictions of energy consumption in dwellings, more knowledge is needed about how individuals and households control the indoor environment. A questionnaire survey was conducted with the objective of studying the interest and actions taken in relation...... to indoor temperature, air quality and energy consumption by Danish house owners living in single-family detached houses with district heating. The house owners state that they are interested in, and concerned about, the indoor temperature and air quality and that it is an important element in caring...

  11. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    Science.gov (United States)

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  12. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Science.gov (United States)

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  13. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    OpenAIRE

    Santos, Roberta Machado; Voltolini, Tadeu Vinhas; Angelotti, Francislene; Aidar, Saulo de Tarso; Chaves, Agnaldo Rodrigues de Melo

    2014-01-01

    The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian) were compared. Cultivars were grown in growth chambers at three temperatures (day/night): 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × ...

  14. Simultaneous measurements of temperature and density in air flows using UV laser spectroscopy

    Science.gov (United States)

    Fletcher, D. G.; Mckenzie, R. L.

    1991-01-01

    The simultaneous measurement of temperature and density using laser-induced fluorescence of oxygen in combination with Q-branch Raman scattering of nitrogen and oxygen is demonstrated in a low-speed air flow. The lowest density and temperature measured in the experiment correspond to the freestream values at Mach 5 in the Ames 3.5-Foot Hypersonic Wind Tunnel for stagnation conditions of 100 atm and 1000 K. The experimental results demonstrate the viability of the optical technique for measurements that support the study of compressible turbulence and the validation of numerical codes in supersonic and hypersonic wind tunnel flows.

  15. Bonding to dentin as a function of air-stream temperatures for solvent evaporation

    Directory of Open Access Journals (Sweden)

    Andréia Aquino Marsiglio

    2012-06-01

    Full Text Available This study evaluated the influence of solvent evaporation conditions of acid-etching adhesives. The medium dentin of thirty extracted human third molars was exposed and bonded to different types of etch-and-rinse adhesives: 1 Scotchbond Multi-Purpose (SBMP ; water-based; 2 Adper Single Bond 2 (SB ; ethanol/water-based, and 3 Prime & Bond 2.1 (PB ; acetone-based. Solvents were evaporated at air-drying temperatures of 21ºC or 38ºC. Composite buildups were incrementally constructed. After storage in water for 24 h at 37ºC, the specimens were prepared for bond strength testing. Data were analyzed by two-way ANOVA and Tukey's test (5%. SBMP performed better when the solvents were evaporated at a higher temperature (p < 0.05. Higher temperatures did not affect the performance of SB or PB. Bond strength at room temperature was material-dependent, and air-drying temperatures affected bonding of the water-based, acid-etching adhesive.

  16. Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air

    International Nuclear Information System (INIS)

    Thiyagarajan, Magesh; Scharer, John

    2008-01-01

    We present measurements and analysis of laser induced plasma neutral densities and temperatures in dry air by focusing 200 mJ, 10 MW high power, 193 nm ultraviolet ArF (argon fluoride) laser radiation to a 30 μm radius spot size. We examine these properties that result from multiphoton and collisional cascade processes for pressures ranging from 40 Torr to 5 atm. A laser shadowgraphy diagnostic technique is used to obtain the plasma electron temperature just after the shock front and this is compared with optical emission spectroscopic measurements of nitrogen rotational and vibrational temperatures. Two-color laser interferometry is employed to measure time resolved spatial electron and neutral density decay in initial local thermodynamic equilibrium (LTE) and non-LTE conditions. The radiating species and thermodynamic characteristics of the plasma are analyzed by means of optical emission spectroscopy (OES) supported by SPECAIR, a special OES program for air constituent plasmas. Core plasma rotational and vibrational temperatures are obtained from the emission spectra from the N 2 C-B(2+) transitions by matching the experimental spectrum results with the SPECAIR simulation results and the results are compared with the electron temperature just behind the shock wave. The plasma density decay measurements are compared with a simplified electron density decay model that illustrates the dominant three-and two-body recombination terms with good correlation

  17. Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States

    Directory of Open Access Journals (Sweden)

    Somsubhra Chattopadhyay

    2016-02-01

    Full Text Available Variation in quantities such as precipitation and temperature is often assessed by detecting and characterizing trends in available meteorological data. The objective of this study was to determine the long-term trends in annual precipitation and mean annual air temperature for the state of Kentucky. Non-parametric statistical tests were applied to homogenized and (as needed pre-whitened annual series of precipitation and mean air temperature during 1950–2010. Significant trends in annual precipitation were detected (both positive, averaging 4.1 mm/year for only two of the 60 precipitation-homogenous weather stations (Calloway and Carlisle counties in rural western Kentucky. Only three of the 42 temperature-homogenous stations demonstrated trends (all positive, averaging 0.01 °C/year in mean annual temperature: Calloway County, Allen County in southern-central Kentucky, and urbanized Jefferson County in northern-central Kentucky. In view of the locations of the stations demonstrating positive trends, similar work in adjacent states will be required to better understand the processes responsible for those trends and to properly place them in their larger context, if any.

  18. The impact of air-tightness in the retrofitting practice of low temperature heating

    OpenAIRE

    Wang, Qian; Holmberg, Sture

    2014-01-01

    In Sweden, the energy usage in existing residential buildings amounted to 147 TWh in 2012, equivalent to almost 40 % of the final overall national energy usage. Among all the end users in building service sectors, 60 % of the final energy in Sweden is used for space heating and domestic hot water (DHW) production in 2013. In order to reduce the supply temperature for space heating in existing buildings, combined approaches are favorably adopted: to reduce the net energy demand by air-tightnes...

  19. Optimization of BSCF-SDC composite air electrode for intermediate temperature solid oxide electrolyzer cell

    International Nuclear Information System (INIS)

    Heidari, Dorna; Javadpour, Sirus; Chan, Siew Hwa

    2017-01-01

    Highlights: • Effect of BSCF-SDC composite air electrode on SOEC electrochemical performance. • Effects on performance of BSCF-SDC air electrode, fuel humidity and temperature. • Desired IT-SOEC performance by compositing the BSCF air electrode with SDC. - Abstract: Solid oxide electrolyzer cells (SOECs) are devises which recently have attracted lots of attention due to their advantages. Their high operating temperature leads to mechanical compatibility issues such as thermal expansion mismatch between layers of material in the cell. The aim of this study is to mitigate the issue of thermal expansion mismatch between Ba_0_._5Sr_0_._5Co_0_._8Fe_0_._2O_3_−_δ (BSCF) and samaria doped ceria, Sm_0_._2Ce_0_._8O_1_._9 (SDC), enhance the triple-phase boundaries and improve the adhesion of the electrode to the electrolytes, hence improve the cell performance. To make BSCF more thermo-mechanically compatible with the SDC electrolyte, the formation of a composite electrode by introducing SDC as the compositing material is proposed. In this study, 10 wt.%, 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% of commercial SDC powder was mixed with BSCF powder, prepared by sol-gel method, to make the composite air electrode. After successfully synthesizing the BSCF-SDC/YSZ-SDC/Ni-YSZ electrolyzer cell, the electrochemical performance was tested for the intermediate-temperature SOEC (IT-SOEC), over the temperature range of 650–800 °C. The microstructure of each sample was studied by field emission electron microscopy (FESEM, JEOL, JSM 6340F) for possible pin holes. The result of this study proves that the sample with 20% SDC-80% BSCF shows the highest performance among the investigated cells.

  20. Response of surface air temperature to small-scale land clearing across latitudes

    International Nuclear Information System (INIS)

    Zhang, Mi; Wang, Wei; Lee, Xuhui; Yu, Guirui; Wang, Huimin; Han, Shijie; Yan, Junhua; Zhang, Yiping; Li, Yide; Ohta, Takeshi; Hirano, Takashi; Kim, Joon; Yoshifuji, Natsuko

    2014-01-01

    Climate models simulating continental scale deforestation suggest a warming effect of land clearing on the surface air temperature in the tropical zone and a cooling effect in the boreal zone due to different control of biogeochemical and biophysical processes. Ongoing land-use/cover changes mostly occur at local scales (hectares), and it is not clear whether the local-scale deforestation will generate temperature patterns consistent with the climate model results. Here we paired 40 and 12 flux sites with nearby weather stations in North and South America and in Eastern Asia, respectively, and quantified the temperature difference between these paired sites. Our goal was to investigate the response of the surface air temperature to local-scale (hectares) land clearing across latitudes using the surface weather stations as proxies for localized land clearing. The results show that north of 10°N, the annual mean temperature difference (open land minus forest) decreases with increasing latitude, but the temperature difference shrinks with latitude at a faster rate in the Americas [−0.079 (±0.010) °C per degree] than in Asia [−0.046 (±0.011) °C per degree]. Regression of the combined data suggests a transitional latitude of about 35.5°N that demarks deforestation warming to the south and cooling to the north. The warming in latitudes south of 35°N is associated with increase in the daily maximum temperature, with little change in the daily minimum temperature while the reverse is true in the boreal latitudes. (paper)

  1. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  2. Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism

    International Nuclear Information System (INIS)

    Yang, Weihong; Blasiak, Wlodzimierz

    2005-01-01

    A study of the mathematical modelling of NO formation and emissions in a gas-fired regenerative furnace with high-preheated air was performed. The model of NO formation via N 2 O-intermediate mechanism was proposed because of the lower flame temperature in this case. The reaction rates of this new model were calculated basing on the eddy-dissipation-concept. This model accompanied with thermal-NO, prompt-NO and NO reburning models were used to predict NO emissions and formations. The sensitivity of the furnace temperature and the oxygen availability on NO generation rate has been investigated. The predicted results were compared with experimental values. The results show that NO emission formed by N 2 O-intermediate mechanism is of outstanding importance during the high-temperature air combustion (HiTAC) condition. Furthermore, it shows that NO models with N 2 O-route model can give more reasonable profile of NO formation. Additionally, increasing excess air ratio leads to increasing of NO emission in the regenerative furnace. (author)

  3. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  4. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    Science.gov (United States)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  5. Water loss at normal enamel histological points during air drying at room temperature.

    Science.gov (United States)

    De Medeiros, R C G; De Lima, T A S; Gouveia, C R; De Sousa, F B

    2013-06-01

    This in vitro study aimed to quantify water loss at histological points in ground sections of normal enamel during air drying at room temperature (25°C) and relative humidity of 50%. From each of 10 ground sections of erupted permanent human normal enamel, three histological points (n = 30) located at 100, 300 and 500 μm from enamel surface and along a transversal following prisms paths were characterized regarding the mineral, organic and water volumes. Water loss during air drying was from 0 to 48 h. Drying occurred with both falling and constant-drying rates, and drying stabilization times (Teq ) ranged from 0.5 to 11 h with a mean 0.26 (±0.12)% weight loss. In some samples (n = 5; 15 points), Teq increased as a function of the distance from the enamel surface, and drying occurred at an apparent diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹. Our data provide evidence of air drying resulting in air replacing enamel's loosely bound water in prisms sheaths following a unidirectional water diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹ (from the original enamel surface inward), not necessarily resulting in water evaporating directly into air, with important implications for transport processes and optical and mechanical properties. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  6. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Mernild, Sebastian Haugard [Los Alamos National Laboratory; Liston, Glen [COLORADO STATE UNIV.

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  7. Experimental temperature analysis of simple & hybrid earth air tunnel heat exchanger in series connection at Bikaner Rajasthan India

    Science.gov (United States)

    Jakhar, O. P.; Sharma, Chandra Shekhar; Kukana, Rajendra

    2018-05-01

    The Earth Air Tunnel Heat Exchanger System is a passive air-conditioning system which has no side effect on earth climate and produces better cooling effect and heating effect comfortable to human body. It produces heating effect in winter and cooling effect in summer with the minimum power consumption of energy as compare to other air-conditioning devices. In this research paper Temperature Analysis was done on the two systems of Earth Air Tunnel Heat Exchanger experimentally for summer cooling purpose. Both the system was installed at Mechanical Engineering Department Government Engineering College Bikaner Rajasthan India. Experimental results concludes that the Average Air Temperature Difference was found as 11.00° C and 16.27° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Maximum Air Temperature Difference was found as 18.10° C and 23.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Minimum Air Temperature Difference was found as 5.20° C and 11.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively.

  8. Processes of energy recovery / energy valorization at low temperature levels. State of the art. Extended abstract

    International Nuclear Information System (INIS)

    Manificat, A.; Megret, O.

    2012-09-01

    This study aims to realize a state of art of the processes of energy recovery at low level of temperature and their valorizations. The information provided will target particularly the thermal systems of waste and biomass treatment. After reminding the adequate context of development with these solutions and define the scope of the current work, the study begins with the definition of different concepts such as low-grade heat (fatal energy) and exergy, and also the presentation of the fiscal environment as well as the economic and regulatory situation, with information about the TGAP, prices of energy and energy efficiency. The second chapter focuses on the different sources of energy at low temperature level that can be recoverable in order to assess their potentials and their characteristics. The Determination of the temperature range of these energy sources will be put in relation with the needs and demands of users from different industrial sectors. The third part of the study is a review of various technologies for energy recovery and valorization at low temperature. It is useful to distinguish different types of heat exchangers interesting to implement. Moreover, innovative processes allow us to consider new perspectives other than a direct use of heat recovered. For example, we can take into account systems for producing electricity (ORC cycle, hot air engines, thermoelectric conversion), or cold generation (sorption refrigeration machine, Thermo-ejector refrigeration machine) or techniques for energy storage with PCM (Phase Change Material). The last chapter deals to the achievement of four study cases written in the form of sheet and aimed at assess the applicability of the processes previously considered, concerning the field of waste. (authors)

  9. Water-level sensor and temperature-profile detector

    Science.gov (United States)

    Not Available

    1981-01-29

    A temperature profile detector is described which comprises a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material are positioned at spaced locations along a length of the conductors. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  10. Tolerance Levels of Roadside Trees to Air Pollutants Based on Relative Growth Rate and Air Pollution Tolerance Index

    Directory of Open Access Journals (Sweden)

    SULISTIJORINI

    2008-09-01

    Full Text Available Motor vehicles release carbon monoxide, nitrogen dioxide, sulphur dioxide, and particulate matters to the air as pollutants. Vegetation can absorb these pollutants through gas exchange processes. The objective of this study was to examine the combination of the relative growth rate (RGR and physiological responses in determining tolerance levels of plant species to air pollutants. Physiological responses were calculated as air pollution tolerance index (APTI. Eight roadside tree species were placed at polluted (Jagorawi highway and unpolluted (Sindangbarang field area. Growth and physiological parameters of the trees were recorded, including plant height, leaf area, total ascorbate, total chlorophyll, leaf-extract pH, and relative water content. Scoring criteria for the combination of RGR and APTI method was given based on means of the two areas based on two-sample t test. Based on the total score of RGR and APTI, Lagerstroemia speciosa was categorized as a tolerant species; and Pterocarpus indicus, Delonix regia, Swietenia macrophylla were categorized as moderately tolerant species. Gmelina arborea, Cinnamomum burmanii, and Mimusops elengi were categorized as intermediate tolerant species. Lagerstroemia speciosa could be potentially used as roadside tree. The combination of RGR and APTI value was better to determinate tolerance level of plant to air pollutant than merely APTI method.

  11. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    Science.gov (United States)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm

  12. Modeling the dependency of radon concentration levels inside ancient Egyptian tombs on the ambient temperature variations

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, S M; Abo-Elmagdb, M [Faculty of Science, Department of Physics, Ain Shams University, P. O. Box 11566, Cairo (Egypt); Salamaa, E [National Institute for Standard, Radiation Measurements Department, Cairo (Egypt)

    2007-06-15

    Radon concentration inside partially closed places like dwellings, caves and tombs, depends on many parameters. Some parameters are known quantitatively as radon exhalation rate for walls, decay constant, surface to volume ratio and outdoor concentration while other parameters as ventilation rate is in common known qualitatively due to useless of traditional methods (tracer gases) in many places as ancient Egyptian tombs. This work introduces a derived mathematical model to evaluate the sensitivity of radon concentration levels inside single sided opening places as ancient Egyptian tombs on the ambient temperature differences. The obtained formula for the natural ventilation rate depends on the indoor and outdoor temperature difference and the geometrical dimensions of the doorway. The effects of in and out flow mixing, air viscosity, streamline contraction, swirling flow and turbulence, were taken into consideration in terms of an empirical correction factor. According UNSCEAR reports, the exhalation rate {phi}=C{sub ra}{lambda}{sub rn} f{rho}{sub s}(1-{epsilon})L; C{sub ra} the effective radium content, {lambda}{sub rn} decay constant, f emanation fraction, {rho}{sub s} soil grain density, {epsilon} porosity and L diffusion length, these are approximately static parameters but the variability of ambient temperature introduces a source of energy of fluctuating strength to radon atoms in rocks which controls the flow rate and the ambient content of radon. Therefore, the change of outdoor and indoor temperature difference causes fluctuation of value and direction of volume flow rate in such places consequently causes the daily variation and on average the seasonal variation of radon concentration. Therefore according to the present model, the daily accurate expectation of radon concentrations inside ancient Egyptian tombs, require precise measurements of indoor and outdoor temperatures.

  13. Modeling the dependency of radon concentration levels inside ancient Egyptian tombs on the ambient temperature variations

    International Nuclear Information System (INIS)

    Metwally, S.M.; Abo-Elmagdb, M.; Salamaa, E.

    2007-01-01

    Radon concentration inside partially closed places like dwellings, caves and tombs, depends on many parameters. Some parameters are known quantitatively as radon exhalation rate for walls, decay constant, surface to volume ratio and outdoor concentration while other parameters as ventilation rate is in common known qualitatively due to useless of traditional methods (tracer gases) in many places as ancient Egyptian tombs. This work introduces a derived mathematical model to evaluate the sensitivity of radon concentration levels inside single sided opening places as ancient Egyptian tombs on the ambient temperature differences. The obtained formula for the natural ventilation rate depends on the indoor and outdoor temperature difference and the geometrical dimensions of the doorway. The effects of in and out flow mixing, air viscosity, streamline contraction, swirling flow and turbulence, were taken into consideration in terms of an empirical correction factor. According UNSCEAR reports, the exhalation rate Φ=C ra λ rn fρ s (1-ε)L; C ra the effective radium content, λ rn decay constant, f emanation fraction, ρ s soil grain density, ε porosity and L diffusion length, these are approximately static parameters but the variability of ambient temperature introduces a source of energy of fluctuating strength to radon atoms in rocks which controls the flow rate and the ambient content of radon. Therefore, the change of outdoor and indoor temperature difference causes fluctuation of value and direction of volume flow rate in such places consequently causes the daily variation and on average the seasonal variation of radon concentration. Therefore according to the present model, the daily accurate expectation of radon concentrations inside ancient Egyptian tombs, require precise measurements of indoor and outdoor temperatures

  14. Temperature, air pollution, and mortality from myocardial infarction in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Sharovsky R.

    2004-01-01

    Full Text Available An increase in daily mortality from myocardial infarction has been observed in association with meteorological factors and air pollution in several cities in the world, mainly in the northern hemisphere. The objective of the present study was to analyze the independent effects of environmental variables on daily counts of death from myocardial infarction in a subtropical region in South America. We used the robust Poisson regression to investigate associations between weather (temperature, humidity and barometric pressure, air pollution (sulfur dioxide, carbon monoxide, and inhalable particulate, and the daily death counts attributed to myocardial infarction in the city of São Paulo in Brazil, where 12,007 fatal events were observed from 1996 to 1998. The model was adjusted in a linear fashion for relative humidity and day-of-week, while nonparametric smoothing factors were used for seasonal trend and temperature. We found a significant association of daily temperature with deaths due to myocardial infarction (P < 0.001, with the lowest mortality being observed at temperatures between 21.6 and 22.6ºC. Relative humidity appeared to exert a protective effect. Sulfur dioxide concentrations correlated linearly with myocardial infarction deaths, increasing the number of fatal events by 3.4% (relative risk of 1.03; 95% confidence interval = 1.02-1.05 for each 10 µg/m³ increase. In conclusion, this study provides evidence of important associations between daily temperature and air pollution and mortality from myocardial infarction in a subtropical region, even after a comprehensive control for confounding factors.

  15. Integration of thermal insulation coating and moving-air-cavity in a cool roof system for attic temperature reduction

    International Nuclear Information System (INIS)

    Yew, M.C.; Ramli Sulong, N.H.; Chong, W.T.; Poh, S.C.; Ang, B.C.; Tan, K.H.

    2013-01-01

    Highlights: • A novel integrated cool roof system for attic temperature reduction is introduced. • 13 °C temperature reduction achieved due to its efficient heat transfer mechanism. • Aluminium tube cavity of the roof is able to reduce the attic temperature. • This positive result is due to its efficient heat reflection and hot air rejection. • Thermal insulation coating incorporates the usage of eggshell waste as bio-filler. - Abstract: Cool roof systems play a significant role in enhancing the comfort level of occupants by reducing the attic temperature of the building. Heat transmission through the roof can be reduced by applying thermal insulation coating (TIC) on the roof and/or installing insulation under the roof of the attic. This paper focuses on a TIC integrated with a series of aluminium tubes that are installed on the underside of the metal roof. In this study, the recycled aluminium cans were arranged into tubes that act as a moving-air-cavity (MAC). The TIC was formulated using titanium dioxide pigment with chicken eggshell (CES) waste as bio-filler bound together by a polyurethane resin binder. The thermal conductivity of the thermal insulation paint was measured using KD2 Pro Thermal Properties Analyzer. Four types of cool roof systems were designed and the performances were evaluated. The experimental works were carried out indoors by using halogen light bulbs followed by comparison of the roof and attic temperatures. The temperature of the surrounding air during testing was approximately 27.5 °C. The cool roof that incorporated both TIC and MAC with opened attic inlet showed a significant improvement with a reduction of up to 13 °C (from 42.4 °C to 29.6 °C) in the attic temperature compared to the conventional roof system. The significant difference in the results is due to the low thermal conductivity of the thermal insulation paint (0.107 W/mK) as well as the usage of aluminium tubes in the roof cavity that was able to transfer

  16. Porphyrin pattern and methemoglobin levels in Columba livia applied to assess toxicological risk by air pollution in urban areas.

    Science.gov (United States)

    Sicolo, Matteo; Tringali, Maria; Orsi, Federica; Santagostino, Angela

    2009-11-01

    The study has explored two conservative biomarkers, porphyrin pattern in guano and methemoglobin levels in blood of Columba livia, in order to assay their potential use for monitoring toxic effects induced by exposure to urban air pollution. Fieldwork was conducted between October 2003 and June 2005 in the city of Milan, Italy, by sampling the pigeons in different areas almost twice a week. Six air contaminants, CO, PM10, NO(2), O(3), SO(2), and C(6)H(6), plus polycyclic aromatic hydrocarbons (PAHs) in fine particles, temperature, and UV index, were considered. Protoporphyrins from pigeon excreta sampled outdoors were always higher than in indoor animals, particularly in winter. A positive correlation (p urban air showed significant differences from season to season but only in summer and autumn did the outdoor pigeons show higher values than indoor animals. In summer, a regression model with a positive correlation between O(3) and benzene was determined (p urban air pollution as well as for detecting complex interactions between contaminants in the urban air pollutant mixture was discussed.

  17. A three-dimensional mathematical model to predict air-cooling flow and temperature distribution of wire loops in the Stelmor air-cooling system

    International Nuclear Information System (INIS)

    Hong, Lingxiang; Wang, Bo; Feng, Shuai; Yang, Zhiliang; Yu, Yaowei; Peng, Wangjun; Zhang, Jieyu

    2017-01-01

    Highlights: • A 3-dimentioanl mathematical models for complex wire loops was set up in Stelmor. • The air flow field in the cooling process was simulated. • The convective heat transfer coefficient was simulated coupled with air flow field. • The temperature distribution with distances was predicted. - Abstract: Controlling the forced air cooling conditions in the Stelmor conveyor line is important for improving the microstructure and mechanical properties of steel wire rods. A three-dimensional mathematical model incorporating the turbulent flow of the cooling air and heat transfer of the wire rods was developed to predict the cooling process in the Stelmor air-cooling line of wire rolling mills. The distribution of cooling air from the plenum chamber and the forced convective heat transfer coefficient for the wire loops were simulated at the different locations over the conveyor. The temperature profiles and cooling curves of the wire loops in Stelmor conveyor lines were also calculated by considering the convective heat transfer, radiative heat transfer as well as the latent heat during transformation. The calculated temperature results using this model agreed well with the available measured results in the industrial tests. Thus, it was demonstrated that this model can be useful for studying the air-cooling process and predicting the temperature profile and microstructure evolution of the wire rods.

  18. An analysis of surface air temperature trends and variability along the Andes

    Science.gov (United States)

    Franquist, Eric S.

    Climate change is difficult to study in mountainous regions such as the Andes since steep changes in elevation cannot always be resolved by climate models. However, it is important to examine temperature trends in this region as rises in surface air temperature are leading to the melting of tropical glaciers. Local communities rely on the glacier-fed streamflow to get their water for drinking, irrigation, and livestock. Moreover, communities also rely on the tourism of hikers who come to the region to view the glaciers. As the temperatures increase, these glaciers are no longer in equilibrium with their current climate and are receding rapidly and decreasing the streamflow. This thesis examines surface air temperature from 858 weather stations across Ecuador, Peru, and Chile in order to analyze changes in trends and variability. Three time periods were studied: 1961--1990, 1971--2000, and 1981--2010. The greatest warming occurred during the period of 1971--2000 with 92% of the stations experiencing positive trends with a mean of 0.24°C/decade. There was a clear shift toward cooler temperatures at all latitudes and below elevations of 500 m during the most recent time period studied (1981--2010). Station temperatures were more strongly correlated with the El Nino Southern Oscillation (ENSO), than the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). A principal component analysis confirmed ENSO as the main contributor of variability with the most influence in the lower latitudes. There were clear multidecadal changes in correlation strength for the PDO. The PDO contributed the most to the increases in station temperature trends during the 1961--1990 period, consistent with the PDO shift to the positive phase in the middle of this period. There were many strong positive trends at individual stations during the 1971--2000 period; however, these trends could not fully be attributed to ENSO, PDO, or SAM, indicating anthropogenic effects of

  19. Chronic air pollution and social deprivation as modifiers of the association between high temperature and daily mortality.

    Science.gov (United States)

    Benmarhnia, Tarik; Oulhote, Youssef; Petit, Claire; Lapostolle, Annabelle; Chauvin, Pierre; Zmirou-Navier, Denis; Deguen, Séverine

    2014-06-18

    Heat and air pollution are both associated with increases in mortality. However, the interactive effect of temperature and air pollution on mortality remains unsettled. Similarly, the relationship between air pollution, air temperature, and social deprivation has never been explored. We used daily mortality data from 2004 to 2009, daily mean temperature variables and relative humidity, for Paris, France. Estimates of chronic exposure to air pollution and social deprivation at a small spatial scale were calculated and split into three strata. We developed a stratified Poisson regression models to assess daily temperature and mortality associations, and tested the heterogeneity of the regression coefficients of the different strata. Deaths due to ambient temperature were calculated from attributable fractions and mortality rates were estimated. We found that chronic air pollution exposure and social deprivation are effect modifiers of the association between daily temperature and mortality. We found a potential interactive effect between social deprivation and chronic exposure with regards to air pollution in the mortality-temperature relationship. Our results may have implications in considering chronically polluted areas as vulnerable in heat action plans and in the long-term measures to reduce the burden of heat stress especially in the context of climate change.

  20. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    Science.gov (United States)

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  1. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac catheterization

    International Nuclear Information System (INIS)

    Hampel, Regina; Breitner, Susanne; Kraus, William E.; Hauser, Elizabeth; Shah, Svati; Ward-Caviness, Cavin K.; Devlin, Robert; Diaz-Sanchez, David; Neas, Lucas; Cascio, Wayne; Peters, Annette; Schneider, Alexandra

    2016-01-01

    Background: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease. Objectives: To investigate short-term temperature effects on metabolites related to cardiovascular disease. Methods: Concentrations of 45 acylcarnitines, 15 amino acids, ketone bodies and total free fatty acids were available in 2869 participants from the CATHeterization GENetics cohort recruited at the Duke University Cardiac Catheterization Clinic (Durham, NC) between 2001 and 2007. Ten metabolites were selected based on quality criteria and cluster analysis. Daily averages of meteorological variables were obtained from the North American Regional Reanalysis project. Immediate, lagged, and cumulative temperature effects on metabolite concentrations were analyzed using (piecewise) linear regression models. Results: Linear temperature effects were found for glycine, C16-OH:C14:1-DC, and aspartic acid/asparagine. A 5 °C increase in temperature was associated with a 1.8% [95%-confidence interval: 0.3%; 3.3%] increase in glycine (5-day average), a 3.2% [0.1%; 6.3%] increase in C16-OH:C14:1-DC (lag of four days), and a −1.4% [−2.4%; −0.3%] decrease in aspartic acid/asparagine (lag of two days). Non-linear temperature effects were observed for alanine and total ketone bodies with breakpoint of 4 °C and 20 °C, respectively. Both a 5 °C decrease in temperature on colder days (<4 °C)and a 5 °C increase in temperature on warmer days (≥4 °C) were associated with a four day delayed increase in alanine by 6.6% [11.7; 1.8%] and 1.9% [0.3%; 3.4%], respectively. For ketone bodies we found immediate (0-day lag) increases of 4.2% [−0.5%; 9.1%] and 12.3% [0.1%; 26.0%] associated with 5 °C decreases on colder (<20 °C) days and 5 °C increases on warmer days (≥20 °C), respectively. Conclusions: We observed multiple effects of air temperature on

  2. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac catheterization

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Regina, E-mail: regina.hampel@helmholtz-muenchen.de [Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg (Germany); Breitner, Susanne [Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg (Germany); Kraus, William E. [School of Medicine, Duke University, Durham, NC 27701 (United States); Hauser, Elizabeth [School of Medicine, Duke University, Durham, NC 27701 (United States); Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701 (United States); Cooperative Studies Program Epidemiology Center-Durham, Veterans Affairs Medical Center, Durham, NC 27701 (United States); Shah, Svati [School of Medicine, Duke University, Durham, NC 27701 (United States); Ward-Caviness, Cavin K. [Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg (Germany); Devlin, Robert; Diaz-Sanchez, David; Neas, Lucas; Cascio, Wayne [National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, 109 T.W. Alexander Drive, Durham, NC 27709 (United States); Peters, Annette; Schneider, Alexandra [Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg (Germany)

    2016-11-15

    Background: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease. Objectives: To investigate short-term temperature effects on metabolites related to cardiovascular disease. Methods: Concentrations of 45 acylcarnitines, 15 amino acids, ketone bodies and total free fatty acids were available in 2869 participants from the CATHeterization GENetics cohort recruited at the Duke University Cardiac Catheterization Clinic (Durham, NC) between 2001 and 2007. Ten metabolites were selected based on quality criteria and cluster analysis. Daily averages of meteorological variables were obtained from the North American Regional Reanalysis project. Immediate, lagged, and cumulative temperature effects on metabolite concentrations were analyzed using (piecewise) linear regression models. Results: Linear temperature effects were found for glycine, C16-OH:C14:1-DC, and aspartic acid/asparagine. A 5 °C increase in temperature was associated with a 1.8% [95%-confidence interval: 0.3%; 3.3%] increase in glycine (5-day average), a 3.2% [0.1%; 6.3%] increase in C16-OH:C14:1-DC (lag of four days), and a −1.4% [−2.4%; −0.3%] decrease in aspartic acid/asparagine (lag of two days). Non-linear temperature effects were observed for alanine and total ketone bodies with breakpoint of 4 °C and 20 °C, respectively. Both a 5 °C decrease in temperature on colder days (<4 °C)and a 5 °C increase in temperature on warmer days (≥4 °C) were associated with a four day delayed increase in alanine by 6.6% [11.7; 1.8%] and 1.9% [0.3%; 3.4%], respectively. For ketone bodies we found immediate (0-day lag) increases of 4.2% [−0.5%; 9.1%] and 12.3% [0.1%; 26.0%] associated with 5 °C decreases on colder (<20 °C) days and 5 °C increases on warmer days (≥20 °C), respectively. Conclusions: We observed multiple effects of air temperature on

  3. Influence of climate on emergency department visits for syncope: role of air temperature variability.

    Directory of Open Access Journals (Sweden)

    Andrea Galli

    Full Text Available BACKGROUND: Syncope is a clinical event characterized by a transient loss of consciousness, estimated to affect 6.2/1000 person-years, resulting in remarkable health care and social costs. Human pathophysiology suggests that heat may promote syncope during standing. We tested the hypothesis that the increase of air temperatures from January to July would be accompanied by an increased rate of syncope resulting in a higher frequency of Emergency Department (ED visits. We also evaluated the role of maximal temperature variability in affecting ED visits for syncope. METHODOLOGY/PRINCIPAL FINDINGS: We included 770 of 2775 consecutive subjects who were seen for syncope at four EDs between January and July 2004. This period was subdivided into three epochs of similar length: 23 January-31 March, 1 April-31 May and 1 June-31 July. Spectral techniques were used to analyze oscillatory components of day by day maximal temperature and syncope variability and assess their linear relationship. There was no correlation between daily maximum temperatures and number of syncope. ED visits for syncope were lower in June and July when maximal temperature variability declined although the maximal temperatures themselves were higher. Frequency analysis of day by day maximal temperature variability showed a major non-random fluctuation characterized by a ∼23-day period and two minor oscillations with ∼3- and ∼7-day periods. This latter oscillation was correlated with a similar ∼7-day fluctuation in ED visits for syncope. CONCLUSIONS/SIGNIFICANCE: We conclude that ED visits for syncope were not predicted by daily maximal temperature but were associated with increased temperature variability. A ∼7-day rhythm characterized both maximal temperatures and ED visits for syncope variability suggesting that climate changes may have a significant effect on the mode of syncope occurrence.

  4. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    Science.gov (United States)

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation

  5. THE DEPENDENCE OF HEAT CONSUMPTION ON THE DYNAMICS OF EXTERNAL AIR TEMPERATURE DURING COLD SNAP PERIODS

    Directory of Open Access Journals (Sweden)

    Rymarov Andrey Georgievich

    2014-09-01

    Full Text Available The dynamics of outdoor temperature variations during the cold period of the year influences the operation of the systems providing the required microclimate in the premises, which may be subject to automation systems that affects the IQ of a building, it is important to note that in the last decade there has been a growth in the participation of intelligent technologies in the formation of a microclimate of buildings. Studying the microclimate quality in terms of energy consumption of the premises and the building considers climate variability and outdoor air pollution, which is connected with the economic aspects of energy efficiency and productivity, and health of workers, as a short-term temperature fall in the premises has harmful consequences. Low outdoor temperatures dry the air in the premises that requires accounting for climate control equipment and, if necessary, the personal account of its work. Excess heat in the premises, including office equipment, corrects the temperature conditions, which reduces the adverse effect of cold snap.

  6. An updated global grid point surface air temperature anomaly data set: 1851--1990

    Energy Technology Data Exchange (ETDEWEB)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  7. Research on Vehicle Temperature Regulation System Based on Air Convection Principle

    Science.gov (United States)

    Zhuge, Muzi; Li, Xiang; Liang, Caifeng

    2018-03-01

    The long time parking outdoors in the summer will lead to too high temperature in the car, and the harmful gas produced by the vehicle engine will stay in the confined space for a long time during the parking process, which will do great harm to the human body. If the air conditioning system is turned on before driving, the cooling rate is slow and the battery loss is large. To solve the above problems, we designed a temperature adjusting system based on the principle of air convection. We can choose the automatic mode or manual mode to achieve control of a convection window. In the automatic mode, the system will automatically detect the environmental temperature, through the sensor to complete the detection, and the signal is transmitted to the microcontroller to control the window open or close, in manual mode, the remote control of the window can be realized by Bluetooth. Therefore, the system has important practical significance to effectively regulate temperature, prolong battery life, and improve the safety and comfort of traffic vehicles.

  8. Corresponding Relation between Warm Season Precipitation Extremes and Surface Air Temperature in South China

    Institute of Scientific and Technical Information of China (English)

    SUN; Wei; LI; Jian; YU; Ru-Cong

    2013-01-01

    Hourly data of 42 rain gauges over South China during 1966–2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season(May to October).The results show that below 25℃,both daily and hourly precipitation extremes in South China increase with rising temperature.More extreme events transit to the two-time Clausius-Clapeyron(CC)relationship at lower temperatures.Daily as well as hourly precipitation extremes have a decreasing tendency nearly above 25℃,among which the decrease of hourly extremes is much more significant.In order to investigate the efects of rainfall durations,hourly precipitation extremes are presented by short duration and long duration precipitation,respectively.Results show that the dramatic decrease of hourly rainfall intensities above 25℃ is mainly caused by short duration precipitation,and long duration precipitation extremes rarely occur in South China when surface air temperature surpasses 28℃.

  9. The effect of compressed air massage on skin blood flow and temperature.

    Science.gov (United States)

    Mars, Maurice; Maharaj, Sunil S; Tufts, Mark

    2005-01-01

    Compressed air massage is a new treatment modality that uses air under pressure to massage skin and muscle. It is claimed to improve skin blood flow but this has not been verified. Several pilot studies were undertaken to determine the effects of compressed air massage on skin blood flow and temperature. Skin blood flow (SBF), measured using laser Doppler fluxmetry and skin temperature was recorded under several different situations: (i) treatment, at 1 Bar pressure using a single-hole (5-mm) applicator head, for 1 min at each of several sites on the right and left lower legs, with SBF measured on the dorsum of the left foot; (ii) at the same treatment pressure, SBF was measured over the left tibialis anterior when treatment was performed at different distances from the probe; (iii) SBF and skin temperature of the lower leg were measured with treatment at 0 or 1 Bar for 45 min, using two different applicator heads; (iv) SBF was measured on the dorsum of the foot of 10 subjects with treatment for 1 min at 0, 0.5, 1, 1.5 and 2 Bar using three different applicator heads. (i) SBF of the left foot was not altered by treatment of the right leg or chest, but was significantly increased during treatment of the left sole and first web, p Compressed air massage causes an immediate increase in SBF, and an immediate fall in SBF when treatment is stopped. The effect appears to be locally and not centrally mediated and is related to the pressure used. Treatment cools the skin for at least 15 min after a 45-min treatment.

  10. Sea Surface Temperature from MODIS during Saharan Air Layer outbreaks: Multichannel vs Optimal Estimation.

    Science.gov (United States)

    Szczodrak, G.; Minnett, P. J.

    2017-12-01

    The current Sea-Surface Temperature (SST) retrieval algorithms applied to MODIS and VIIRS data are build on the Non-Linear SST algorithm (NLSST Walton et al., 1998). This algorithm is based on combination of top-of-atmosphere brightness temperatures, T11 and T12 measured at λ= 11µm and 12µm. The algorithm has a set of coefficients derived using collocated measurements of SST temperature from drifting buoys (Match-Up Data Base - MUDB). NLSST produces accurate SST retrievals in conditions that are similar to those of the represented in the MUDB. When conditions deviate from typical, the errors are larger. An alternative approach of estimating the SST from radiance measurements is based on the Optimal Estimation (OE). The OE approach is not tied to a MUDB so OESST should be free of the systematic biases seen in NLSST retrievals in anomalous conditions. OE uses prior knowledge or estimation of a system as an input of a forward model to simulate `observations' and seeks to minimize the difference between these simulated observation and actual measurements in the space of the state variables. One situation that leads to significant bias in NLSST occurs in Northern Atlantic near the African coast during Saharan Air Layer (SAL) outbreaks. Typically, the atmosphere in this region is moist and these conditions are represented in the coefficients of the NLSST algorithm. During SAL events, moist air is replaced by a layer of very dry air; the established coefficients are no longer representative. During a number of research cruises in the North Atlantic affected by the SAL, we have collected radiometric SST measurements from ships using the Marine Atmosphere Emitted Radiance Interferometer (M-AERI), and frequent measurements of the atmospheric state with radiosondes launched from the ships. Using these data, we investigate if the OE approach is capable of improving the accuracy of the SST retrieval from MODIS under the conditions of the dry air outbreak from the Sahara.

  11. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Mamede, Anne-Sophie, E-mail: anne-sophie.mamede@ensc-lille.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Nuns, Nicolas, E-mail: nicolas.nuns@univ-lille1.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Cristol, Anne-Lise, E-mail: anne-lise.cristol@ec-lille.fr [University Lille, CNRS, Centrale Lille, Arts et Métiers Paris Tech, FRE 3723 – LML – Laboratoire de Mécanique de Lille, F-59000 Lille (France); Cantrel, Laurent, E-mail: laurent.cantrel@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); Souvi, Sidi, E-mail: sidi.souvi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); and others

    2016-04-30

    Graphical abstract: - Highlights: • Mutitechnique characterisation of oxidised 304L. • Oxidation at high temperature under steam and air conditions of 304L stainless steel. • Chromium and manganese oxides formed in the outer layer. • Oxide profiles differ in air or steam atmosphere. - Abstract: In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8–12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe{sub 2}O{sub 3} oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  12. A note on the correlation between circular and linear variables with an application to wind direction and air temperature data in a Mediterranean climate

    Science.gov (United States)

    Lototzis, M.; Papadopoulos, G. K.; Droulia, F.; Tseliou, A.; Tsiros, I. X.

    2018-04-01

    There are several cases where a circular variable is associated with a linear one. A typical example is wind direction that is often associated with linear quantities such as air temperature and air humidity. The analysis of a statistical relationship of this kind can be tested by the use of parametric and non-parametric methods, each of which has its own advantages and drawbacks. This work deals with correlation analysis using both the parametric and the non-parametric procedure on a small set of meteorological data of air temperature and wind direction during a summer period in a Mediterranean climate. Correlations were examined between hourly, daily and maximum-prevailing values, under typical and non-typical meteorological conditions. Both tests indicated a strong correlation between mean hourly wind directions and mean hourly air temperature, whereas mean daily wind direction and mean daily air temperature do not seem to be correlated. In some cases, however, the two procedures were found to give quite dissimilar levels of significance on the rejection or not of the null hypothesis of no correlation. The simple statistical analysis presented in this study, appropriately extended in large sets of meteorological data, may be a useful tool for estimating effects of wind on local climate studies.

  13. Kriged and modeled ambient air levels of benzene in an urban environment: an exposure assessment study

    Directory of Open Access Journals (Sweden)

    Lai Dejian

    2011-03-01

    Full Text Available Abstract Background There is increasing concern regarding the potential adverse health effects of air pollution, particularly hazardous air pollutants (HAPs. However, quantifying exposure to these pollutants is problematic. Objective Our goal was to explore the utility of kriging, a spatial interpolation method, for exposure assessment in epidemiologic studies of HAPs. We used benzene as an example and compared census tract-level kriged predictions to estimates obtained from the 1999 U.S. EPA National Air Toxics Assessment (NATA, Assessment System for Population Exposure Nationwide (ASPEN model. Methods Kriged predictions were generated for 649 census tracts in Harris County, Texas using estimates of annual benzene air concentrations from 17 monitoring sites operating in Harris and surrounding counties from 1998 to 2000. Year 1999 ASPEN modeled estimates were also obtained for each census tract. Spearman rank correlation analyses were performed on the modeled and kriged benzene levels. Weighted kappa statistics were computed to assess agreement between discretized kriged and modeled estimates of ambient air levels of benzene. Results There was modest correlation between the predicted and modeled values across census tracts. Overall, 56.2%, 40.7%, 31.5% and 28.2% of census tracts were classified as having 'low', 'medium-low', 'medium-high' and 'high' ambient air levels of benzene, respectively, comparing predicted and modeled benzene levels. The weighted kappa statistic was 0.26 (95% confidence interval (CI = 0.20, 0.31, indicating poor agreement between the two methods. Conclusions There was a lack of concordance between predicted and modeled ambient air levels of benzene. Applying methods of spatial interpolation for assessing exposure to ambient air pollutants in health effect studies is hindered by the placement and number of existing stationary monitors collecting HAP data. Routine monitoring needs to be expanded if we are to use these data

  14. Temperature and humidity dependence of air fluorescence yield measured by AIRFLY

    International Nuclear Information System (INIS)

    Ave, M.; Bohacova, M.; Buonomo, B.; Busca, N.; Cazon, L.; Chemerisov, S.D.; Conde, M.E.; Crowell, R.A.; Di Carlo, P.; Di Giulio, C.; Doubrava, M.; Esposito, A.; Facal, P.; Franchini, F.J.; Hoerandel, J.; Hrabovsky, M.; Iarlori, M.; Kasprzyk, T.E.; Keilhauer, B.

    2008-01-01

    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6, 337.1, 353.7 and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20% for the temperature dependence in the 391.4 nm band) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.

  15. BOREAS TE-6 1994 Soil and Air Temperatures in the NSA

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Norman, John; Wilson, Tim

    2000-01-01

    The BOREAS TE-6 team collected several data sets to examine the influence of vegetation, climate, and their interactions on the major carbon fluxes for boreal forest species. This data set contains measurements of the air temperature at a single height and soil temperature at several depths in the NSA from 25-May to 08-Oct- 1994. Chromel-Constantan thermocouple wires run by a miniprogrammable data logger (Model 21X, Campbell Scientific, Inc., Logan, UT) provided direct measurements of temperature. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  16. Low-temperature baseboard heaters with integrated air supply - An analytical and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ploskic, Adnan; Holmberg, Sture [Fluid and Climate Technology, School of Architecture and Built Environment, KTH, Marinens vaeg 30, SE-13640 Handen, Stockholm (Sweden)

    2011-01-15

    The functioning of a hydronic baseboard heating system with integrated air supply was analyzed. The aim was to investigate thermal performance of the system when cold outdoor (ventilation) airflow was forced through the baseboard heater. The performance of the system was evaluated for different ventilation rates at typical outdoor temperatures during the Swedish winter season. Three different analytical models and Computational Fluid Dynamics (CFD) were used to predict the temperature rise of the airflow inside the baseboard heater. Good agreement between numerical (CFD) and analytical calculations was obtained. Calculations showed that it was fully possible to pre-heat the incoming airflow to the indoor temperature and to cover transmission losses, using 45 C supply water flow. The analytical calculations also showed that the airflow per supply opening in the baseboard heater needed to be limited to 7.0 l/s due to pressure losses inside the channel. At this ventilation rate, the integrated system with one air supply gave about 2.1 more heat output than a conventional baseboard heating system. CFD simulations also showed that the integrated system was capable of countering downdraught created by 2.0 m high glazed areas and a cold outdoor environment. Draught discomfort in the case with the conventional system was slightly above the recommended upper limit, but heat distribution across whole analyzed office space was uniform for both heating systems. It was concluded that low-temperature baseboard heating systems with integrated air supply can meet both international comfort requirements, and lead to energy savings in cold climates. (author)

  17. Zircaloy-4 and M5 high temperature oxidation and nitriding in air

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C. [Institut de Radioprotection et Surete Nucleaire, Direction de Prevention des Accidents Majeurs, Centre de Cadarache, 13115 St Paul Lez Durance (France)], E-mail: christian.duriez@irsn.fr; Dupont, T.; Schmet, B.; Enoch, F. [Universite Technologique de Troyes, BP 2060, 10010 Troyes (France)

    2008-10-15

    For the purpose of nuclear power plant severe accident analysis, degradation of Zircaloy-4 and M5 cladding tubes in air at high temperature was investigated by thermo-gravimetric analysis, in isothermal conditions, in a 600-1200 deg. C temperature range. Alloys were investigated either in a 'as received' bare state, or after steam pre-oxidation at 500 {sup o}C to simulate in-reactor corrosion. At the beginning of air exposure, the oxidation rate obeys a parabolic law, characteristic of solid-state diffusion limited regime. Parabolic rate constants compare, for Zircaloy-4 as well as for M5, with recently assessed correlations for high temperature Zircaloy-4 steam-oxidation. A thick layer of dense protective zirconia having a columnar structure forms during this diffusion-limited regime. Then, a kinetic transition (breakaway type) occurs, due to radial cracking along the columnar grain boundaries of this protective dense oxide scale. The breakaway is observed for a scale thickness that strongly increases with temperature. At the lowest temperatures, the M5 alloy appears to be breakaway-resistant, showing a delayed transition compared to Zircaloy-4. However, for both alloys, a pre-existing corrosion scale favours the transition, which occurs much earlier. The post transition kinetic regime is linear only for the lowest temperatures investigated. From 800 deg. C, a continuously accelerated regime is observed and is associated with formation of a strongly porous non-protective oxide. A mechanism of nitrogen-assisted oxide growth, involving formation and re-oxidation of ZrN particles, as well as nitrogen associated zirconia phase transformations, is proposed to be responsible for this accelerated degradation.

  18. Air oxidation of Zircaloy-4, M5 (registered) and ZIRLOTM cladding alloys at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Boettcher, M.

    2011-01-01

    The paper presents the results of isothermal and transient oxidation experiments of the advanced cladding alloys M5 (registered) and ZIRLO TM in comparison to Zircaloy-4 in air at temperatures from 973 to 1853 K. Generally, oxidation in air leads to a strong degradation of the cladding material. The main mechanism of this process is the formation of zirconium nitride and its re-oxidation. From the point of view of safety, the barrier effect of the fuel cladding is lost much earlier than during accident transients with a steam atmosphere only. Comparison of the three alloys investigated reveals a qualitatively similar, but quantitatively varying oxidation behavior in air. The mainly parabolic oxidation kinetics, where applicable, is comparable for the three alloys. Strong differences of up to 500% in oxidation rates were observed after transition to linear kinetics at temperatures below 1300 K. The paper presents kinetic rate constants as well as critical times and oxide scale thicknesses at the point of transition from parabolic to linear kinetics.

  19. Relationship between alpine tourism demand and hot summer air temperatures associated with climate change

    Science.gov (United States)

    Rebetez, M.; Serquet, G.

    2010-09-01

    We quantified the impacts of hot summer air temperatures on tourism in the Swiss Alps by analyzing the relationship between temperature and overnight stays in 40 Alpine resorts. Several temperature and insolation thresholds were tested to detect their relationship to summer tourism. Our results reveal significant correlations between the number of nights spent in mountain resorts and hot temperatures at lower elevations. Alpine resorts nearest to cities are most sensitive to hot temperatures. This is probably because reactions to hot episodes take place on a short-term basis as heat waves remain relatively rare. The correlation in June is stronger compared to the other months, probably because school holidays and the peak domestic tourist demand in summer usually takes place in July and August. Our results suggest that alpine tourist resorts could benefit from hotter temperatures at lower elevations under future climates. Tourists already react on a short-term basis to hot days and spend more nights in hotels in mountain resorts. If heat waves become more regular, it seems likely that tourists choose to stay at alpine resorts more frequently and for longer periods.

  20. [Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China].

    Science.gov (United States)

    Chu, Xiao-jing; Han, Guang-xuan

    2015-10-01

    Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 exchange over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 exchange of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of air temperature and precipitation effects on net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature. The results showed that there were significant responses (P0.05). Across different Chinese wetlands, both precipitation and temperature had no significant effect on apparent quantum yield (α) or ecosystem respiration in the daytime (Reco,day, P>0.05). The maximum photosynthesis rate (Amax) was remarkably correlated with precipitation (P 0.05). Precipitation was negatively correlated with temperature sensitivity of Reco (Q10, P<0.05). Furthermore, temperature accounted for 35% and 46% of the variations in temperature sensitivity of Reco (Q10) and basal respiration (Rref P<0.05), respectively.

  1. What is felt temperature? Air conditioning with felt temperature in buildings and vehicles?; Was ist gefuehlte Temperatur? Klimaregelung mit gefuehlter Temperatur in Gebaeuden und Fahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Eigel, Franz [Technology Marketing Support, St. Georgen (Germany); Rengshausen, Detlef [Vereta GmbH, Einbeck (Germany)

    2010-11-15

    The term 'felt temperature' reaches back to a long series of medical, empirical-sociological and meteorological studies accomplished world-wide for human temperature feeling. The consideration of the felt temperature at the regulation of refrigerators meets not only the comfort feeling of humans, but also saves cash money at the same time.

  2. effects of temperature levels and concrete cover thickness

    African Journals Online (AJOL)

    HP USER

    With the knowledge of the temperature of the fire, thickness of concrete cover, residual strength of ... the structural behavior during fires by a careful inspection of the ... visual or physical damage is negligible; and Alonso[9] in the same vein said ...

  3. Measurement of polyurethane foam - air partition coefficients for semivolatile organic compounds as a function of temperature: Application to passive air sampler monitoring.

    Science.gov (United States)

    Francisco, Ana Paula; Harner, Tom; Eng, Anita

    2017-05-01

    Polyurethane foam - air partition coefficients (K PUF-air ) for 9 polycyclic aromatic hydrocarbons (PAHs), 10 alkyl-substituted PAHs, 4 organochlorine pesticides (OCPs) and dibenzothiophene were measured as a function of temperature over the range 5 °C-35 °C, using a generator column approach. Enthalpies of PUF-to-air transfer (ΔH PUF-air , kJ/mol) were determined from the slopes of log K PUF-air versus 1000/T (K), and have an average value of 81.2 ± 7.03 kJ/mol. The log K PUF-air values at 22 °C ranged from 4.99 to 7.25. A relationship for log K PUF-air versus log K OA was shown to agree with a previous relationship based on only polychlorinated biphenyls (PCBs) and derived from long-term indoor uptake study experiments. The results also confirm that the existing K OA -based model for predicting log K PUF-air values is accurate. This new information is important in the derivation of uptake profiles and effective air sampling volumes for PUF disk samplers so that results can be reported in units of concentration in air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic

    Directory of Open Access Journals (Sweden)

    Dobrovolný Petr

    2015-09-01

    Full Text Available This study seeks to quantify the effects of a number of factors on the nocturnal air temperature field in a medium-sized central European city located in complex terrain. The main data sources consist of mobile air temperature measurements and a geographical database. Temperature measurements were taken along several profiles through the city centre and were made under a clear sky with no advection. Altogether nine sets of detailed measurements, in all seasons, were assembled. Altitude, quantity of vegetation, density of buildings and the structure of the transportation (road system were considered as explanatory variables. The result is that the normalized difference vegetation index (NDVI and the density of buildings were the most important factors, each of them explaining a substantial part (more than 50% of overall air temperature variability. Mobile measurements with NDVI values as a covariate were used for interpolation of air temperature for the entire study area. The spatial variability of nocturnal air temperature and UHI intensity in Brno is the main output presented. Air temperatures interpolated from mobile measurements and NDVI values indicate that the mean urban heat island (UHI intensity in the early night in summer is at its highest (approximately 5 °C in the city centre and decreases towards the suburban areas.

  5. An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia

    International Nuclear Information System (INIS)

    Park, Hotaek; Sherstiukov, Artem B; Fedorov, Alexander N; Polyakov, Igor V; Walsh, John E

    2014-01-01

    This study assessed trends in the variability of soil temperature (T SOIL ) using spatially averaged observation records from Russian meteorological land stations. The contributions of surface air temperature (SAT) and snow depth (SND) to T SOIL variation were quantitatively evaluated. Composite time series of these data revealed positive trends during the period of 1921–2011, with accelerated increases since the 1970s. The T SOIL warming rate over the entire period was faster than the SAT warming rate in both permafrost and non-permafrost regions, suggesting that SND contributes to T SOIL warming. Statistical analysis revealed that the highest correlation between SND and T SOIL was in eastern Siberia, which is underlain by permafrost. SND in this region accounted for 50% or more of the observed variation in T SOIL . T SOIL in the non-permafrost region of western Siberia was significantly correlated with changes in SAT. Thus, the main factors associated with T SOIL variation differed between permafrost and non-permafrost regions. This finding underscores the importance of including SND data when assessing historical and future variations and trends of permafrost in the Northern Hemisphere. (letter)

  6. Potential for reducing air-pollutants while achieving 2 °C global temperature change limit target.

    Science.gov (United States)

    Hanaoka, Tatsuya; Akashi, Osamu; Fujiwara, Kazuya; Motoki, Yuko; Hibino, Go

    2014-12-01

    This study analyzes the potential to reduce air pollutants while achieving the 2 °C global temperature change limit target above pre-industrial levels, by using the bottom-up optimization model, AIM/Enduse[Global]. This study focuses on; 1) estimating mitigation potentials and costs for achieving 2 °C, 2.5 °C, and 3 °C target scenarios, 2) assessing co-benefits of reducing air pollutants such as NOx, SO2, BC, PM, and 3) analyzing features of sectoral attributions in Annex I and Non-Annex I groups of countries. The carbon tax scenario at 50 US$/tCO2-eq in 2050 can reduce GHG emissions more than the 3 °C target scenario, but a higher carbon price around 400 US$/tCO2-eq in 2050 is required to achieve the 2 °C target scenario. However, there is also a co-benefit of large reduction potential of air pollutants, in the range of 60-80% reductions in 2050 from the reference scenario while achieving the 2 °C target. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A long-term ultrahigh temperature application of layered silicide coated Nb alloy in air

    Science.gov (United States)

    Sun, Jia; Fu, Qian-Gang; Li, Tao; Wang, Chen; Huo, Cai-Xia; Zhou, Hong; Yang, Guan-Jun; Sun, Le

    2018-05-01

    Nb-based alloy possessed limited application service life at ultrahigh temperature (>1400 °C) in air even taking the effective protective coating strategy into consideration for last decades. In this work a long duration of above 128 h at 1500 °C in air was successfully achieved on Nb-based alloy thanked to multi-layered silicide coating. Through optimizing interfaces, the MoSi2/NbSi2 silicide coating with Al2O3-adsorbed-particles layer exhibited three-times higher of oxidation resistance capacity than the one without it. In MoSi2-Al2O3-NbSi2 multilayer coating, the Al2O3-adsorbed-particles layer playing as an element-diffusion barrier role, as well as the formed porous Nb5Si3 layer as a stress transition zone, contributed to the significant improvement.

  8. Statistical Correction of Air Temperature Forecasts for City and Road Weather Applications

    Science.gov (United States)

    Mahura, Alexander; Petersen, Claus; Sass, Bent; Gilet, Nicolas

    2014-05-01

    The method for statistical correction of air /road surface temperatures forecasts was developed based on analysis of long-term time-series of meteorological observations and forecasts (from HIgh Resolution Limited Area Model & Road Conditions Model; 3 km horizontal resolution). It has been tested for May-Aug 2012 & Oct 2012 - Mar 2013, respectively. The developed method is based mostly on forecasted meteorological parameters with a minimal inclusion of observations (covering only a pre-history period). Although the st iteration correction is based taking into account relevant temperature observations, but the further adjustment of air and road temperature forecasts is based purely on forecasted meteorological parameters. The method is model independent, e.g. it can be applied for temperature correction with other types of models having different horizontal resolutions. It is relatively fast due to application of the singular value decomposition method for matrix solution to find coefficients. Moreover, there is always a possibility for additional improvement due to extra tuning of the temperature forecasts for some locations (stations), and in particular, where for example, the MAEs are generally higher compared with others (see Gilet et al., 2014). For the city weather applications, new operationalized procedure for statistical correction of the air temperature forecasts has been elaborated and implemented for the HIRLAM-SKA model runs at 00, 06, 12, and 18 UTCs covering forecast lengths up to 48 hours. The procedure includes segments for extraction of observations and forecast data, assigning these to forecast lengths, statistical correction of temperature, one-&multi-days statistical evaluation of model performance, decision-making on using corrections by stations, interpolation, visualisation and storage/backup. Pre-operational air temperature correction runs were performed for the mainland Denmark since mid-April 2013 and shown good results. Tests also showed

  9. Air temperature changes and their impact on permafrost ecosystems in eastern Siberia

    Directory of Open Access Journals (Sweden)

    Desyatkin Roman

    2015-01-01

    Full Text Available Significant increasing of mean annual air temperatures, freezing index and thawing index - have exerted a considerable impact on the state of permafrost landscapes and ecosystems in Eastern Siberia on the last few decades. Many animals and plants have shifted their ranges and this may be the precursor of northward shifts of the landscape zones. Landscapes that contain ground ice bodies in the underlying permafrost are especially sensitive to climate warming. Increase of mean annual air temperature for 2-3°C over the last three decades has resulted an increase in ground temperature by 0.4-1.3°C in the upper part of permafrost, which in turn has led intensification of negative cryogenic processes. Previous year’s measurements of greenhouses gases emission in the Middle Taiga forest of central Yakutia were found to show high values and spatial variability. The wet meadow soils and shallow lakes have highest methane fluxes, almost comparable with emissions from tropical peatlands. Permafrost ecosystems respond to global warming quite rapidly. This makes the study of their changes somewhat easier, but still requires meticulous attention to observations, research, and analysis of the processes under way.

  10. Adsorption of multilamellar tubes with a temperature tunable diameter at the air/water interface.

    Science.gov (United States)

    Fameau, Anne-Laure; Douliez, Jean-Paul; Boué, François; Ott, Frédéric; Cousin, Fabrice

    2011-10-15

    The ethanolamine salt of 12-hydroxy stearic acid is known to form tubes having a temperature tunable diameter. Here, we study the behavior of those tubes at the air/water interface by using Neutron Reflectivity. We observed that tubes indeed adsorbed at this interface below a fatty acid monolayer and exhibit the same temperature behavior as in bulk. There is however a peculiar behavior at around 50 °C for which the increase of the diameter of the tubes at the interface yields an unfolding of those tubes into a multilamellar layer. Upon further heating, the tubes re-fold and their diameter re-decreases after which they melt into micelles as observed in the bulk. All structural transitions at the interface are nevertheless reversible. This provides to the system a high interest for its interfacial properties because the structure at the air/water interface can be tuned easily by the temperature. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. High temperature oxidation characteristics of developed Ni-Cr-W superalloys in air

    International Nuclear Information System (INIS)

    Suzuki, Tomio; Shindo, Masami

    1996-11-01

    For expanding utilization of the Ni-Cr-W superalloy, which has been developed as one of new high temperature structural materials used in the advanced High Temperature Gas-cooled Reactors (HTGRs), in various engineering fields including the structural material for heat utilization system, the oxidation behavior of this alloy in air as one of high oxidizing environments becomes one of key factors. The oxidation tests for the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition and five kinds of experimental Ni-Cr-W alloys with different Cr/W ratio were carried out at high temperatures in the air compared with Hastelloy XR. The conclusions were obtained as follows. (1) The oxidation resistance of the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition was superior to that of Hastelloy XR. (2) The most excellent oxidation resistance was obtained in an alloy with 19% Cr of the industrial scale heat of Ni-Cr-W superalloy. (author)

  12. Estimating Causal Effects of Local Air Pollution on Daily Deaths: Effect of Low Levels.

    Science.gov (United States)

    Schwartz, Joel; Bind, Marie-Abele; Koutrakis, Petros

    2017-01-01

    Although many time-series studies have established associations of daily pollution variations with daily deaths, there are fewer at low concentrations, or focused on locally generated pollution, which is becoming more important as regulations reduce regional transport. Causal modeling approaches are also lacking. We used causal modeling to estimate the impact of local air pollution on mortality at low concentrations. Using an instrumental variable approach, we developed an instrument for variations in local pollution concentrations that is unlikely to be correlated with other causes of death, and examined its association with daily deaths in the Boston, Massachusetts, area. We combined height of the planetary boundary layer and wind speed, which affect concentrations of local emissions, to develop the instrument for particulate matter ≤ 2.5 μm (PM2.5), black carbon (BC), or nitrogen dioxide (NO2) variations that were independent of year, month, and temperature. We also used Granger causality to assess whether omitted variable confounding existed. We estimated that an interquartile range increase in the instrument for local PM2.5 was associated with a 0.90% increase in daily deaths (95% CI: 0.25, 1.56). A similar result was found for BC, and a weaker association with NO2. The Granger test found no evidence of omitted variable confounding for the instrument. A separate test confirmed the instrument was not associated with mortality independent of pollution. Furthermore, the association remained when all days with PM2.5 concentrations > 30 μg/m3 were excluded from the analysis (0.84% increase in daily deaths; 95% CI: 0.19, 1.50). We conclude that there is a causal association of local air pollution with daily deaths at concentrations below U.S. EPA standards. The estimated attributable risk in Boston exceeded 1,800 deaths during the study period, indicating that important public health benefits can follow from further control efforts. Citation: Schwartz J, Bind MA

  13. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    DEFF Research Database (Denmark)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael

    2012-01-01

    with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total...... inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor...... of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly...

  14. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    Science.gov (United States)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  15. Effects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wiswall, J.T.; Li, J.; Wooldridge, M.S.; Im, H.G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States)

    2011-01-15

    A stagnation flow reactor was used to study the effects of platinum on the lean flammability limits of atmospheric pressure premixed methane/air flames at moderate stagnation surface temperatures. Experimental and computational methods were used to quantify the equivalence ratio at the lean extinction limit ({phi}{sub ext}) and the corresponding stagnation surface temperature (T{sub s}). A range of flow rates (57-90 cm/s) and corresponding strain rates were considered. The results indicate that the gas-phase methane/air flames are sufficiently strong relative to the heterogeneous chemistry for T{sub s} conditions less than 750 K that the platinum does not affect {phi}{sub ext}. The computational results are in good agreement with the experimentally observed trends and further indicate that higher reactant flow rates (>139 cm/s) and levels of dilution (>{proportional_to}10% N{sub 2}) are required to weaken the gas-phase flame sufficiently for surface reaction to play a positive role on extending the lean flammability limits. (author)

  16. Low-level NOx removal in ambient air by pulsed corona technology

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although removal of NOx by (pulsed) corona discharges has been thoroughly investigated for high concentrations of NOx in flue gas, removal of low levels in ambient air proves to be a difficult task. (Sub) ppm NOx levels exist in traffic tunnels due to accumulation of exhaust gases. The application

  17. Effect of forced-air heaters on perfusion and temperature distribution during and after open-heart surgery

    NARCIS (Netherlands)

    Severens, Natascha M. W.; van Marken Lichtenbelt, Wouter D.; van Leeuwen, Gerard M. J.; Frijns, Arjan J. H.; van Steenhoven, Anton A.; de Mol, Bas A. J. M.; van Wezel, Harry B.; Veldman, Dirk J.

    2007-01-01

    OBJECTIVES: After cardiopulmonary bypass, patients often show redistribution hypothermia, also called afterdrop. Forced-air blankets help to reduce afterdrop. This study explores the effect of forced-air blankets on temperature distribution and peripheral perfusion. The blood perfusion data is used

  18. Effect of forced-air heaters on perfusion and and temperature distribution during and after open-heart surgery

    NARCIS (Netherlands)

    Severens, N.M.W.; Marken Lichtenbelt, van W.; Leeuwen, van G.M.J.; Frijns, A.J.H.; Steenhoven, van A.A.; Mol, de B.A.J.M.; Wezel, H.B.; Veldman, D.J.

    2007-01-01

    Objectives: After cardiopulmonary bypass, patients often show redistribution hypothermia, also called afterdrop. Forced-air blankets help to reduce afterdrop. This study explores the effect of forced-air blankets on temperature distribution and peripheral perfusion. The blood perfusion data is used

  19. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    Science.gov (United States)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  20. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions.

    Science.gov (United States)

    Jing, Liquan; Wang, Juan; Shen, Shibo; Wang, Yunxia; Zhu, Jianguo; Wang, Yulong; Yang, Lianxin

    2016-08-01

    Rising atmospheric CO2 is accompanied by global warming. However, interactive effects of elevated CO2 and temperature have not been well studied on grain quality of rice. A japonica cultivar was grown in the field using a free-air CO2 enrichment facility in combination with a canopy air temperature increase system in 2014. The gas fumigation (200 µmol mol(-1) above ambient CO2 ) and temperature increase (1 °C above ambient air temperature) were performed from tillering until maturity. Compared with the control (ambient CO2 and air temperature), elevated CO2 increased grain length and width as well as grain chalkiness but decreased protein concentrations. In contrast, the increase in canopy air temperature had less effect on these parameters except for grain chalkiness. The starch pasting properties of rice flour and taste analysis of cooked rice indicated that the palatability of rice was improved by CO2 and/or temperature elevation, with the combination of the two treatments showing the most significant changes compared with ambient rice. It is concluded that projected CO2 in 2050 may have larger effects on rice grain quality than the projected temperature increase. Although deterioration in milling suitability, grain appearance and nutritional quality can be expected, the taste of cooked rice might be better in the future environment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Statistical Modelling of Temperature and Moisture Uptake of Biochars Exposed to Selected Relative Humidity of Air

    Directory of Open Access Journals (Sweden)

    Luciane Bastistella

    2018-02-01

    Full Text Available New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens, Cyclobalanopsis glauca, Trigonostemon huangmosun, and Bambusa vulgaris, and involved five relative humidity conditions (22, 43, 75, 84, and 90%, two mass samples (0.1 and 1 g, and two particle sizes (powder and piece. Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.

  2. Impact of Air Temperature on London Ambulance Call-Out Incidents and Response Times

    Directory of Open Access Journals (Sweden)

    Marliyyah A. Mahmood

    2017-08-01

    Full Text Available Ambulance services are in operation around the world and yet, until recently, ambulance data has only been used for operational purposes rather than for assessing public health. Ambulance call-out data offers new and valuable (near real-time information that can be used to assess the impact of environmental conditions, such as temperature, upon human health. A detailed analysis of London ambulance data at a selection of dates between 2003 and 2015 is presented and compared to London temperature data. In London, the speed of ambulance response begins to suffer when the mean daily air temperature drops below 2 °C or rises above 20 °C. This is explained largely by the increased number of calls past these threshold temperatures. The baseline relationships established in this work will inform the prediction of likely changes in ambulance demand (and illness types that may be caused by seasonal temperature changes and the increased frequency and intensity of extreme/severe weather events, exacerbated by climate change, in the future.

  3. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    Science.gov (United States)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via

  4. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.; Kinoshita, M.

    1994-08-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  5. Empirical equation to let reproducing the temperature field of air around a horizontal isothermal cylinder in natural convection case

    International Nuclear Information System (INIS)

    Diez Gonzalez, R.; Dolz, M.; Belsa, R.; Herraez, J.V.

    1988-01-01

    The analysis of 7.000 measured pairs of values, distance-temperature, of air around a horizontal isothermal cylinder has made possible to obtain an empirical simple equation to let reproducing the temperature field of air in the natural convection case. The experimental and calculated results for a cylinder of 1 cm diameter and 10.5 cm length are compared with the same given for other authors. (Author)

  6. Empirical equation to let reproducing the temperature field of air around a horizontal isothermal cylinder in natural convection case

    Energy Technology Data Exchange (ETDEWEB)

    Diez Gonzalez, R.; Dolz, M.; Belsa, R.; Herraez, J.V.

    1988-01-01

    The analysis of more or 7.000 measured pairs of values, diatance-temperature, of air around a horizontal isothermal cylinder has made it possible to obtain a empirical simple equation to let reproducing the temperature field of air in the natural convection case. The experimental and calculated results for a cylinder of 1 cm diameter and 10.5 cm length are compared with the same fiven for others authors

  7. Neuro-PID tracking control of a discharge air temperature system

    International Nuclear Information System (INIS)

    Zaheer-uddin, M.; Tudoroiu, N.

    2004-01-01

    In this paper, the problem of improving the performance of a discharge air temperature (DAT) system using a PID controller and augmenting it with neural network based tuning and tracking functions is explored. The DAT system is modeled as a SISO (single input single output) system. The architecture of the real time neuro-PID controller and simulation results obtained under realistic operating conditions are presented. The neural network assisted PID tuning method is simple to implement. Results show that the network assisted PID controller is able to track both constant and variable set point trajectories efficiently in the presence of disturbances acting on the DAT system

  8. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  9. Prediction of lake surface temperature using the air2water model: guidelines, challenges, and future perspectives

    Directory of Open Access Journals (Sweden)

    Sebastiano Piccolroaz

    2016-04-01

    Full Text Available Water temperature plays a primary role in controlling a wide range of physical, geochemical and ecological processes in lakes, with considerable influences on lake water quality and ecosystem functioning. Being able to reliably predict water temperature is therefore a desired goal, which stimulated the development of models of different type and complexity, ranging from simple regression-based models to more sophisticated process-based numerical models. However, both types of models suffer of some limitations: the first are not able to address some fundamental physical processes as e.g., thermal stratification, while the latter generally require a large amount of data in input, which are not always available. In this work, lake surface temperature is simulated by means of air2water, a hybrid physically-based/statistical model, which is able to provide a robust, predictive understanding of LST dynamics knowing air temperature only. This model showed performances that are comparable with those obtained by using process based models (a root mean square error on the order of 1°C, at daily scale, while retaining the simplicity and parsimony of regression-based models, thus making it a good candidate for long-term applications.The aim of the present work is to provide the reader with useful and practical guidelines for proper use of the air2water model and for critical analysis of results. Two case studies have been selected for the analysis: Lake Superior and Lake Erie. These are clear and emblematic examples of a deep and a shallow temperate lake characterized by markedly different thermal responses to external forcing, thus are ideal for making the results of the analysis the most general and comprehensive. Particular attention is paid to assessing the influence of missing data on model performance, and to evaluating when an observed time series is sufficiently informative for proper model calibration or, conversely, data are too scarce thus

  10. Impact of Air Temperature and SST Variability on Cholera Incidence in Southeastern Africa, 1971-2006

    Science.gov (United States)

    Paz, Shlomit

    2010-05-01

    The most important climatic parameter related to cholera outbreaks is the temperature, especially of the water bodies and the aquatic environment. This factor governs the survival and growth of V. cholerae, since it has a direct influence on its abundance in the environment, or alternatively, through its indirect influence on other aquatic organisms to which the pathogen is found to attach. Thus, the potential for cholera outbreaks may rise, parallel to the increase in ocean surface temperature. Indeed, recent studies indicate that global warming might create a favorable environment for V. cholerae and increase its incidence in vulnerable areas. Africa is vulnerable to climate variability. According to the recent IPCC report on Africa, the air temperature has indicated a significant warming trend since the 1960s. In recent years, most of the research into disease vectors in Africa related to climate variability has focused on malaria. The IPCC indicated that the need exists to examine the vulnerabilities and impacts of climatic factors on cholera in Africa. In light of this, the study uses a Poisson Regression Model to analyze the possible association between the cholera rates in southeastern Africa and the annual variability of air temperature and sea surface temperature (SST) at regional and hemispheric scales, for the period 1971-2006. Data description is as follows: Number of cholera cases per year in Uganda, Kenya, Rwanda, Burundi, Tanzania, Malawi, Zambia and Mozambique. Source: WHO Global Health Atlas - cholera. Seasonal and annual temperature time series: Regional scale: a) Air temperature for southeastern Africa (30° E-36° E, 5° S-17° S), source: NOAA NCEP-NCAR; b) Sea surface temperature, for the western Indian Ocean (0-20° S, 40° E-45° E), source: NOAA, Kaplan SST dataset. Hemispheric scale (for the whole Southern Hemisphere): a) Air temperature anomaly; b) Sea surface temperature anomaly. Source: CRU, University of East Anglia. The following

  11. GHRSST Level 4 DMI_OI Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  12. GHRSST Level 4 MUR North America Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset at the JPL Physical...

  13. GHRSST Level 4 OSPO Global Nighttime Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  14. GHRSST Level 4 AVHRR_AMSR_OI Global Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA...

  15. GHRSST Level 4 ODYSSEA Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  16. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean...

  17. Nimbus-5/THIR Level 1 Brightness Temperature at 11.5 microns V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-5 Temperature-Humidity Infrared Radiometer (THIR) Level 1 Brightness Temperature at 11.5 microns data product contains radiances expressed in units of...

  18. GHRSST Level 4 MW_OI Global Foundation Sea Surface Temperature analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at Remote Sensing...

  19. GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Naval...

  20. GHRSST Level 4 EUR Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily by Ifremer/CERSAT (France) using optimal...

  1. GHRSST Level 4 ODYSSEA Eastern Central Pacific Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  2. GHRSST Level 4 ODYSSEA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  3. GHRSST Level 4 OSPO Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  4. GHRSST Level 4 GAMSSA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  5. GHRSST Level 4 RAMSSA Australian Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  6. GHRSST Level 4 OSTIA Global Foundation Sea Surface Temperature Analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the UK Met Office...

  7. Stable superconducting magnet. [high current levels below critical temperature

    Science.gov (United States)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  8. Applications of satellite data to the studies of agricultural meteorology, 2: Relationship between air temperature and surface temperature measured by infrared thermal radiometer

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Morikawa, S.

    1985-01-01

    Experiments were performed in order to establish interpretation keys for estimation of air temperature from satellite IR data. Field measurements were carried out over four kinds of land surfaces including seven different field crops on the university campus at Sapporo. The air temperature was compared with the surface temperature measured by infrared thermal radiometer (National ER2007, 8.5-12.5μm) and, also with other meteorological parameters (solar radiation, humidity and wind speed). Also perpendicular vegetation index (PVI) was measured to know vegetation density of lands by ho radio-spectralmeter (Figs. 1 & 2). Table 1 summarizes the measurements taken in these experiments.The correlation coefficients between air temperature and other meteorological parameters for each area are shown in Table 2. The best correlation coefficient for total data was obtained with surface temperature, and it suggests the possibility that air temperature may be estimated by satellite IR data since they are related to earth surface temperatures.Further analyses were done between air temperature and surface temperature measured with thermal infrared radiometer.The following conclusions may be drawn:(1) Air temperature from meteorological site was well correlated to surface temperature of lands that were covered with dense plant and water, for example, grass land, paddy field and rye field (Table 2).(2) The correlation coefficients and the regression equations on grass land, paddy field and rye field were almost the same (Fig. 3). The mean correlation coefficient for these three lands was 0.88 and the regression equation is given in Eq. (2).(3) There was good correlation on bare soil land also, but had large variations (Fig. 3).(4) The correlations on crop fields depend on the density of plant cover. Good correlation is obtained on dense vegetative fields.(5) Small variations about correlation coefficients were obtained for the time of day (Table 3).(6) On the other hand, large

  9. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    across the city center from June to September confirming that, in Milan, urban heating is not an occasional phenomenon. Furthermore, this study shows the utility of space missions to monitor the metropolis heat islands if they are able to provide nighttime observations when CLHI peaks are generally......In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...... 2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape...

  10. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Directory of Open Access Journals (Sweden)

    Nicolas Craquelin

    2010-12-01

    Full Text Available We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  11. Wear Behavior of Selected Nuclear Grade Graphites at Room Temperature in Ambient Air Environment

    International Nuclear Information System (INIS)

    Kim, Eung-Seon; Park, Kwang-Seok; Kim, Yong-Wan

    2008-01-01

    In a very high temperature reactor (VHTR), graphite will be used not only for as a moderator and reflector but also as a major structural component due to its excellent neutronic, thermal and mechanical properties. In the VHTR, wear of graphite components is inevitable due to a neutron irradiation-induced dimensional change, thermal gradient, relative motions of graphite components and a shock load such as an earthquake. Large wear particles accumulated at the bottom of a reactor can influence the cooling of the lower part and small wear particles accumulated on the primary circuit and heat exchanger tube can make it difficult to inspect the equipment, and also decrease the heat exchange rate. In the present work, preliminary wear tests were performed at room temperature in ambient air environment to understand the basic wear characteristics of selected nuclear grade graphites for the VHTR

  12. High-Temperature Air-Cooled Power Electronics Thermal Design: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  13. Spatiotemporal influence of temperature, air quality, and urban environment on cause-specific mortality during hazy days.

    Science.gov (United States)

    Ho, Hung Chak; Wong, Man Sing; Yang, Lin; Shi, Wenzhong; Yang, Jinxin; Bilal, Muhammad; Chan, Ta-Chien

    2018-03-01

    Haze is an extreme weather event that can severely increase air pollution exposure, resulting in higher burdens on human health. Few studies have explored the health effects of haze, and none have investigated the spatiotemporal interaction between temperature, air quality and urban environment that may exacerbate the adverse health effects of haze. We investigated the spatiotemporal pattern of haze effects and explored the additional effects of temperature, air pollution and urban environment on the short-term mortality risk during hazy days. We applied a Poisson regression model to daily mortality data from 2007 through 2014, to analyze the short-term mortality risk during haze events in Hong Kong. We evaluated the adverse effect on five types of cause-specific mortality after four types of haze event. We also analyzed the additional effect contributed by the spatial variability of urban environment on each type of cause-specific mortality during a specific haze event. A regular hazy day (lag 0) has higher all-cause mortality risk than a day without haze (odds ratio: 1.029 [1.009, 1.049]). We have also observed high mortality risks associated with mental disorders and diseases of the nervous system during hazy days. In addition, extreme weather and air quality contributed to haze-related mortality, while cold weather and higher ground-level ozone had stronger influences on mortality risk. Areas with a high-density environment, lower vegetation, higher anthropogenic heat, and higher PM 2.5 featured stronger effects of haze on mortality than the others. A combined influence of haze, extreme weather/air quality, and urban environment can result in extremely high mortality due to mental/behavioral disorders or diseases of the nervous system. In conclusion, we developed a data-driven technique to analyze the effects of haze on mortality. Our results target the specific dates and areas with higher mortality during haze events, which can be used for development of

  14. Determination of radionuclide concentrations in ground level air using the ASS-500 high volume sampler

    International Nuclear Information System (INIS)

    Frenzel, E.; Arnold, D.; Wershofen, H.

    1996-01-01

    A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m 3 (sampling period 1 wk) or of about 250,000 m 3 (sampling period 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 μBq m -3 and 0.2 μBq m -3 for 137 Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m 3 per week and lowers the detection limit to -3 for 137 Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine)

  15. Influence of sample temperature and environmental humidity on measurements of benzene in ambient air by transportable GC-PID

    Directory of Open Access Journals (Sweden)

    C. Romero-Trigueros

    2017-10-01

    Full Text Available Calibration of in situ analysers of air pollutants is usually done with dry standards. In this paper, the influence of sample temperature and environmental humidity on benzene measurements by gas chromatography coupled with a photoionisation detector (GC-PID is studied. Two reference gas mixtures (40 and 5 µg m−3 nominal concentration benzene in air were subjected to two temperature cycles (20/5/20 °C and 20/35/20 °C and measured with two identical GC-PIDs. The change in sample temperature did not produce any significant change in readings. Regarding ambient humidity, the chromatographs were calibrated for benzene with dry gases and subjected to measure reference standards with humidity (20 and 80 % at 20 °C. When measuring a concentration of 0.5 µg m−3 benzene in air, the levels of humidity tested did not produce any significant interference in measurements taken with any of the analysers. However, when measuring a concentration of 40 µg m−3, biases in measurements of 18 and 21 % for each respective analyser were obtained when the relative humidity of the sample was 80 % at 20 °C. Further tests were carried out to study the nature of this interference. Results show that humidity interference depends on both the amount fractions of water vapour and benzene. If benzene concentrations in an area are close to its annual limit value (5 µg m−3, biases of 2.2 % can be expected when the absolute humidity is 8.6 g cm−3 – corresponding to a relative humidity of 50 % at 20 °C. This can be accounted for in the uncertainty budget of measurements with no need for corrections. If benzene concentrations are above the annual limit value, biases become higher. Thus, in these cases, actions should be taken to reduce the humidity interference, as an underestimation of benzene concentrations may cause a mismanagement of air quality in these situations.

  16. [Temperature that modifies the effect of air pollution on emergency room visits for circulatory and respiratory diseases in Beijing, China].

    Science.gov (United States)

    Wang, L L; Zhang, Q; Bai, R H; Mi, B B; Yan, H

    2017-08-10

    Objective: To analyze the temperature modification effect on emergency room visits for circulatory and respiratory diseases caused by air pollution, in Beijing. Methods: Data on both circulatory and respiratory diseases in 2010 and 2011 were collected, Both meteorological and air pollutants related data were obtained from the National Scientific Data Sharing Platform for Population and Health. By using the stratified time-series models, we analyzed the effects of air pollution on emergency room visits for circulatory and respiratory diseases under different temperature zones, from 2010 to 2011, in Beijing. Results: Low temperature (daily average temperatureeffect of air pollution index (API) on emergency room visits for circulatory diseases, Under 10 units of API, the relative risks and confidence interval appeared as 1.067 (1.054-1.080). However, high (daily average temperature between 24.4 ℃ and 28.5 ℃) and extra-high temperature (daily average temperature >28.5 ℃) could enhance the effect of API on emergency room visits for respiratory diseases, Under 10 units of API, the relative risks and confidence interval were 1.021 (1.015-1.028) and 1.006 (1.003-1.008), respectively. Conclusion: Temperature seemed to have modified the association between air pollution and both circulatory and respiratory diseases.

  17. An Integrated Approach to Estimate Instantaneous Near-Surface Air Temperature and Sensible Heat Flux Fields during the SEMAPHORE Experiment.

    Science.gov (United States)

    Bourras, Denis; Eymard, Laurence; Liu, W. Timothy; Dupuis, Hélène

    2002-03-01

    A new technique was developed to retrieve near-surface instantaneous air temperatures and turbulent sensible heat fluxes using satellite data during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, which was conducted in 1993 under mainly anticyclonic conditions. The method is based on a regional, horizontal atmospheric temperature advection model whose inputs are wind vectors, sea surface temperature fields, air temperatures around the region under study, and several constants derived from in situ measurements. The intrinsic rms error of the method is 0.7°C in terms of air temperature and 9 W m2 for the fluxes, both at 0.16° × 0.16° and 1.125° × 1.125° resolution. The retrieved air temperature and flux horizontal structures are in good agreement with fields from two operational general circulation models. The application to SEMAPHORE data involves the First European Remote Sensing Satellite (ERS-1) wind fields, Advanced Very High Resolution Radiometer (AVHRR) SST fields, and European Centre for Medium-Range Weather Forecasts (ECMWF) air temperature boundary conditions. The rms errors obtained by comparing the estimations with research vessel measurements are 0.3°C and 5 W m2.

  18. Temperature-related mortality estimates after accounting for the cumulative effects of air pollution in an urban area.

    Science.gov (United States)

    Stanišić Stojić, Svetlana; Stanišić, Nemanja; Stojić, Andreja

    2016-07-11

    To propose a new method for including the cumulative mid-term effects of air pollution in the traditional Poisson regression model and compare the temperature-related mortality risk estimates, before and after including air pollution data. The analysis comprised a total of 56,920 residents aged 65 years or older who died from circulatory and respiratory diseases in Belgrade, Serbia, and daily mean PM10, NO2, SO2 and soot concentrations obtained for the period 2009-2014. After accounting for the cumulative effects of air pollutants, the risk associated with cold temperatures was significantly lower and the overall temperature-attributable risk decreased from 8.80 to 3.00 %. Furthermore, the optimum range of temperature, within which no excess temperature-related mortality is expected to occur, was very broad, between -5 and 21 °C, which differs from the previous findings that most of the attributable deaths were associated with mild temperatures. These results suggest that, in polluted areas of developing countries, most of the mortality risk, previously attributed to cold temperatures, can be explained by the mid-term effects of air pollution. The results also showed that the estimated relative importance of PM10 was the smallest of four examined pollutant species, and thus, including PM10 data only is clearly not the most effective way to control for the effects of air pollution.

  19. The effect of fan speed control system on the inlet air temperature uniformity in a solar dryer

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2015-09-01

    Full Text Available Introduction: Drying process of agricultural products, fruits and vegetables are highly energy demanding and hence are the most expensive postharvest operation. Nowadays, the application of control systems in different area of science and engineering plays a key role and is considered as the important and inseparable parts of any industrial process. The review of literature indicates that enormous efforts have been donefor the intelligent control of solar driers and in this regard some simulation models are used through computer programming. However, because of the effect of air velocity on the inlet air temperature in dryers, efforts have been made to control the fan speed based ont he temperature of the absorber plate in this study, and the behavior of this system was compared with an ordinary dryer without such a control system. Materials and methods: In this study, acabinet type solar dryer with forced convection and 5kg capacity of fresh herbs was used. The dryer was equipped with a fan in the outlet chamber (the chimney for creating air flow through the dryer. For the purpose of research methods and automatic control of fan speed and for adjusting the temperature of the drying inlet air, a control system consisting of a series of temperature and humidity sensors and a microcontroller was designed. To evaluatethe effect of the system with fan speed control on the uniformity of air temperature in the drying chamber and hence the trend of drying process in the solar dryer, the dryer has been used with two different modes: with and without the control of fan speed, each in twodays (to minimize the errors of almost the same ambient temperature. The ambient air temperature during the four days of experiments was obtained from the regional Meteorological Office. Some fresh mint plants (Mentha longifolia directly harvested from the farm in the morning of the experiment days were used as the drying materials. Each experimental run continued for 9

  20. Effects of air transportation cause physiological and biochemical changes indicative of stress leading to regulation of chaperone expression levels and corticosterone concentration.

    Science.gov (United States)

    Shim, SunBo; Lee, SeHyun; Kim, ChuelKyu; Kim, ByoungGuk; Jee, SeungWan; Lee, SuHae; Sin, JiSoon; Bae, ChangJoon; Woo, Jong-Min; Cho, JungSik; Lee, EonPil; Choi, HaeWook; Kim, HongSung; Lee, JaeHo; Jung, YoungJin; Cho, ByungWook; Chae, KabRyong; Hwang, DaeYoun

    2009-01-01

    Laboratory animals generally experience numerous unfamiliar environmental and psychological influences such as noises, temperatures, handling, shaking, and smells during the process of air transportation. To investigate whether stress induced by air transportation affects stress-related factors in animals, the levels of hormone and chaperone protein were measured in several tissues of F344 rats transported for 13 h and not transported. Herein, we conclude that the levels of corticosterone, HSP70, and GRP78 were significantly increased in the transported group compare to not transported group, but they were rapidly restored to the not transported group level after a recovery period of one week. However, the magnitude of induction and restoration levels of these factors varied depending on the tissue type. Thus, these results suggest that air transportation should be considered for the improvement of laboratory animal health and to reduce the incidence of laboratory animal stress.