Kudryashov, Nikolai A.
2009-01-01
Using Exp-function method Ozis and Koroglu [T. Ozis, C. Koroglu, Phys. Lett. A 372 (2008) 3836] have found exact "solutions" of the Fisher equation. In this comment we demonstrate that all these solutions do not satisfy the Fisher equation. The efficiency of application of Exp-function method to
Yau, H. -F.; Liu, J. -P.; Ke, B.; Kuo, C. -H.; Ye, Z.
2003-01-01
Recently, Zhang et al. (Phys. Rev. Lett. 91, 157404 (2003)) have demonstrated that an amphoteric refraction, i. e. both positive and negative refraction, may prevail at the interface of two uniaxial anisotropic crystals when their optical axes are in different directions. The authors subsequently made a correspondence between such a refraction with the negative refraction expected for Left Handed Materials (LHMs). Here we comment that the amphoteric refraction can be observed even with one un...
International Nuclear Information System (INIS)
Lee, S.; Saw, S. H.
2009-01-01
The main point of the comment [Appl. Phys. Lett. 94, 076101 (2009)] is that Eq. (2) and consequentially Eq. (3) of the commented paper [Appl. Phys. Lett. 92, 021503 (2008)] require correction. The alternative equation suggested in the comment is derived using Kirchhoff's voltage rule. The comment consider only the energy distribution in the inductive components and the resultant equation confirms a progressive lowering of the I pinch /I peak ratio as the static inductance L 0 is reduced, lowering from 0.87 to 0.31 as L 0 is reduced from 100 to 5 nH according to the revised formula corresponding to Eq. (3), compared to 0.63-0.25 according to Eq. (3). This progressive lowering of the ratio I pinch /I peak due to the inductive energy distribution is one of two factors responsible for the pinch current limitation. The other factor is the progressive reduction in the L-C interaction time compared to the current dip duration denoted by δ cap in Eq. (2). The comment does not deal with δ cap at all; hence, its conclusion based on inductive energy distribution only is not useful, since in the low L 0 region when pinch current limitation begins to manifest, δ cap becomes more and more the dominant factor. In any case, the results of the paper do not depend on Eqs. (2) and (3), which are used in the paper only for illustrative purposes
International Nuclear Information System (INIS)
Chaudhary, K.; Rosalan, S.; Aziz, M. S.; Bahadoran, M.; Ali, J; Bidin, N.; Saktioto; Yupapin, P. P.
2015-01-01
There is a typewriting mistake in our previous report [Chin. Phys. Lett. 32, 4 (2015) 043201], the name of the fourth author M. Bohadoran should be M. Bahadoran. We note that this mistake does not affect the conclusion of our report, and apologize for any inconvenience for readers caused by our oversight. (paper)
Directory of Open Access Journals (Sweden)
M.A. Shalchi
2017-08-01
Full Text Available Numerical results for the function (1−EK/E0kcotδ0R, as given in Phys. Lett. B 764 (2017 196, are revised. Fig. 2 and Tables 2 and 3 should be replaced by the following corresponding figure and tables. The conclusions of the original paper remain unchanged.
Bountis, Tassos; Vanhaecke, Pol
2017-12-01
The comment made after the proof of Proposition 3.3, in our paper [T. Bountis, P. Vanhaecke, Lotka-Volterra systems satisfying a strong Pailevé property, Phys. Lett. A 380 (47) (2016) 3977-3982], saying that the proposition can be generalized when linear terms are added to the Lotka-Volterra systems considered in the paper, is wrong. In general such deformed systems are not even Hamiltonian.
International Nuclear Information System (INIS)
Pascoli, S.; Petcov, S.T.
2004-01-01
We update our earlier study [Phys. Lett. B 544 (2002) 239], which was inspired by the 2002 SNO data, on the implications of the results of the solar neutrino experiments for the predictions of the effective Majorana mass in neutrinoless double beta-decay, vertical bar vertical bar. We obtain predictions for vertical bar vertical bar using the values of the neutrino oscillation parameters, obtained in the analyzes of the presently available solar neutrino data, including the just published data from the salt phase of the SNO experiment, the atmospheric neutrino and CHOOZ data and the first data from the KamLAND experiment. The main conclusion reached in the previous study [Phys. Lett. B 544 (2002) 239] of the existence of significant lower bounds on vertical bar vertical bar in the cases of neutrino mass spectrum of inverted hierarchical (IH) and quasi-degenerate (QD) type is strongly reinforced by fact that combined solar neutrino data (i) exclude the possibility of cos2θ o =0 at more than 5 s.d., (ii) determine as a best fit value cos2θ o =0.40, and (iii) imply at 95% C.L. that cos2θ o ∼>0.22, θ o being the solar neutrino mixing angle. For the IH and QD spectra we get using, e.g., the 90% C.L. allowed ranges of values of the oscillation parameters, vertical bar vertical bar ∼>0.010 eV and vertical bar vertical bar ∼>0.043 eV, respectively. We also comment on the possibility to get information on the neutrino mass spectrum and on the CP-violation in the lepton sector due to Majorana CP-violating phases
Directory of Open Access Journals (Sweden)
W. von Oertzen
2017-02-01
Full Text Available The scale of the ordinate axis of Fig. 4 on page 226 of PLB 746 (2015 223 was incorrect. The new version of Fig. 4 (which is “Fig. 1” in the present note with the correct ordinate axis is given here (upper part. The lower part shows the previous version. Five potential wells and barriers are shown. Considering a sequential process, two barriers are relevant for the sequential decay, with equal barriers for the symmetric cases with a smaller fragment at the center (in these cases only one barrier is shown. For the asymmetric case of 70Ni + 50Ca + 132Sn, two different barriers appear, denoted as (B1 and (B2, which correspond to the interactions of the middle cluster 50Ca with the outer nuclei 70Ni and 132Sn, respectively. In a sequential mechanism the separation of 132Sn from the other part via the barrier B2 has the smaller height, thus it is favored for the first step. For the second step the barrier (B1 between Ni and Ca, appears at smaller distances (dot-dashed curve and is higher. The order of the barriers of the five channels is unchanged, compared to the figure in Ref. W. von Oertzen et al., Phys. Lett. B 746 (2015 223.
International Nuclear Information System (INIS)
Rabei, Eqab M.; Al-Jamel, A.; Widyan, H.; Baleanu, D.
2014-01-01
In a recent paper, Jaradat et al. [J. Math. Phys. 53, 033505 (2012)] have presented the fractional form of the electromagnetic Lagrangian density within the Riemann-Liouville fractional derivative. They claimed that the Agrawal procedure [O. P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002)] is used to obtain Maxwell's equations in the fractional form, and the Hamilton's equations of motion together with the conserved quantities obtained from fractional Noether's theorem are reported. In this comment, we draw the attention that there are some serious steps of the procedure used in their work are not applicable even though their final results are correct. Their work should have been done based on a formulation as reported by Baleanu and Muslih [Phys. Scr. 72, 119 (2005)
International Nuclear Information System (INIS)
Castro, L. B.; Castro, A. S. de
2010-01-01
It is shown that the paper 'Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential' by Merad and Bensaid [J. Math. Phys. 48, 073515 (2007)] is not correct in using inadvertently a non-Hermitian Hamiltonian in a formalism that does require Hermitian Hamiltonians.
International Nuclear Information System (INIS)
Wurm, A.; LaChapelle, J.
1997-01-01
The authors comment on the paper by J. LaChapelle, J. Math. Phys. 37, 4310 (1996), and give explicit expressions for the parametrization, its solution, and the Lie derivatives of the Schroedinger equation for the case of n-dimensional spherical coordinates
International Nuclear Information System (INIS)
Tyson, Jon
2009-01-01
Matrix monotonicity is used to obtain upper bounds on minimum-error distinguishability of arbitrary ensembles of mixed quantum states. This generalizes one direction of a two-sided bound recently obtained by the author [J. Tyson, J. Math. Phys. 50, 032106 (2009)]. It is shown that the previously obtained special case has unique properties.
DEFF Research Database (Denmark)
Albertsen, Niels Christian
1989-01-01
A new system of poles for the Green's function for a dielectric-coated cylinder has been found. In general, these poles correspond to creeping waves, which are strongly attenuated except for very thick coatings. For radii below a critical value, one of the new poles replaces one of those previous...
Kundu, Prasun K.
2017-11-01
In a comment published several years ago in this journal, Mitra [J. Math. Phys. 50, 042502 (2009)] has claimed to prove that a neutral point particle in general relativity as described by the Schwarzschild metric must have zero gravitational mass, i.e., the mass parameter M0 of a Schwarzschild black hole necessarily vanishes. It is shown that the purported proof is incorrect. The error stems from a basic misunderstanding of the mathematical description of coordinate volume element in a differentiable manifold.
Robertson, William C
2006-01-01
Flummoxed by formulas? Queasy about equations? Perturbed by pi? Now you can stop cursing over calculus and start cackling over Math, the newest volume in Bill Robertson's accurate but amusing Stop Faking It! best sellers. As Robertson sees it, too many people view mathematics as a set of rules to be followed, procedures to memorize, and theorems to apply. This book focuses on the reasoning behind the rules, from math basics all the way up to a brief introduction to calculus.
DEFF Research Database (Denmark)
Vester-Petersen, Joakim; Christiansen, Rasmus Ellebæk; Julsgaard, Brian
2017-01-01
This article was originally published online on 25 September 2017. Due to a production error, in the originally published version the heading of the third column of Table I appeared as "φ/[O]" (i.e., with an open circle). Tφhe correct expression is "φ/[º]" (i.e., with a degree sign). AIP Publishi...... apologizes for this error. All online versions of the article were corrected on 29 September 2017 and it appears correctly in print....
Energy Technology Data Exchange (ETDEWEB)
Stöhr, J.; Scherz, A.
2016-01-06
X-ray absorption by matter has long been described by the famous Beer-Lambert law. Here we show how this fundamental law needs to be modified for high-intensity coherent x-ray pulses, now available at x-ray free electron lasers, due to the onset of stimulated elastic forward scattering. We present an analytical expression for the modified polarization-dependent Beer-Lambert law for the case of resonant core-to-valence electronic transitions and incident transform limited x-ray pulses. Upon transmission through a solid, the absorption and dichroic contrasts are found to vanish with increasing x-ray intensity, with the stimulation threshold lowered by orders of magnitude through a super-radiative coherent effect. Our results have broad implications for the study of matter with x-ray lasers.
Mathews, Linda Marie
2009-01-01
Talking Math, Blogging Math is a curriculum designed to aid middle school Pre- Algebra students' mathematical problem-solving through the use of academic language instruction, explanatory proofs, and online technology (blogging). Talking Math, Blogging Math was implemented over a period of ten weeks during the 2008 - 2009 school year. The school where the curriculum was implemented is a non-traditional classroom-based charter school. The 7th, 8th and 9th grade students attended class twice a ...
Thom,R
1974-01-01
Le Prof. R. Thom expose ses vues sur l'enseignement des mathématiques modernes et des mathémathiques de toujours. Il est un grand mathématicien et était professeur à Strasbourg; maintenant il est professeur de hautes études scientifiques et était invité par le Prof. Piaget à Genève
International Nuclear Information System (INIS)
Tan, Michael L. P.; Arora, Vijay K.
2014-01-01
In a recent article, Serov et al. [J. Appl. Phys. 116, 034507 (2014)] claim: “This study represents the first time that the high-field behavior in graphene on a substrate was investigated taking into account intrinsic graphene properties,” ignoring the most recent anisotropic distribution function [V. K. Arora et al., J. Appl. Phys. 112, 114330 (2012)] also published in J. Appl. Phys., targeting the same experimental data [V. E. Dorgan et al., Appl. Phys. Lett. 97, 082112 (2010)]. The claim of Serov et al. of being first is refuted and many shortcomings of the hydrodynamic model for a highly quantum and degenerate graphene nanolayer are pointed out
Nelson, Vaunda; Stanko, Anne
1992-01-01
Describes Math Safari, a mathematical, scientific, geographic, informational adventure for fourth grade students. It integrates all curriculum areas and other skills by using information children must find in books to pose math problems about animals. It encourages cooperative learning, critical reading, analysis, and use of research skills. (SM)
Larranaga, Alexis; Cardenas-Avendano, Alejandro; Torres, Daniel Alexdy
2015-07-01
This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editor-in-Chief. The authors have plagiarized part of a paper that had already appeared in Adv. High Energy Physics, P. Nicolini, A. Orlandi, E. Spallucci, The Final Stage of Gravitationally Collapsed Thick Matter Layers, Vol 2013 (2013), Article ID 812084 http://dx.doi.org/10.1155/2013/812084. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Lechner, Christoph; Baranek, Philippe; Vach, Holger
2018-04-01
In their article, Xu et al. (2006) present the adsorption energies for the chemisorption of the three halogens F2 , Cl2 , and Br2 on the active sites of graphite. The three investigated systems are the three most stable surfaces, (0 0 1), (1 0 0), and (1 1 0); the latter two are also called zigzag and armchair surface, respectively. Due to some inconsistencies in their article, we re-evaluated the results of Xu et al. in order to investigate the impact on the adsorption energies of the halogens. For the (0 0 1) surface, our results agree with Xu et al. However, for the other two surfaces we find major differences. Contrary to Xu et al., we find that the halogens adsorb the strongest on the zigzag surface. The second strongest adsorption is found on the armchair surface for the symmetric configurations, the third strongest for the asymmetric configurations. Several reasons are given which explain this discrepancy. The most striking source of error in the work of Xu et al. is due to the fact that they did not choose the correct spin multiplicities for the model systems which means that they performed the calculations in excited states. This leads to errors between 50 and 600% for the zigzag surface and 3-42% for the armchair surface.
Directory of Open Access Journals (Sweden)
Alexis Larranaga
2015-07-01
The authors have plagiarized part of a paper that had already appeared in Adv. High Energy Physics, P. Nicolini, A. Orlandi, E. Spallucci, The Final Stage of Gravitationally Collapsed Thick Matter Layers, Vol 2013 (2013, Article ID 812084 http://dx.doi.org/10.1155/2013/812084. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Hwang, J. W.; Kim, S.; Satou, Y.; Orr, N. A.; Kondo, Y.; Nakamura, T.; Gibelin, J.; Achouri, N. L.; Aumann, T.; Baba, H.; Delaunay, F.; Doornenbal, P.; Fukuda, N.; Inabe, N.; Isobe, T.; Kameda, D.; Kanno, D.; Kobayashi, N.; Kobayashi, T.; Kubo, T.; Leblond, S.; Lee, J.; Marqués, F. M.; Minakata, R.; Motobayashi, T.; Murai, D.; Murakami, T.; Muto, K.; Nakashima, T.; Nakatsuka, N.; Navin, A.; Nishi, S.; Ogoshi, S.; Otsu, H.; Sato, H.; Shimizu, Y.; Suzuki, H.; Takahashi, K.; Takeda, H.; Takeuchi, S.; Tanaka, R.; Togano, Y.; Tuff, A. G.; Vandebrouck, M.; Yoneda, K.
2017-11-01
The units of the ordinate axis of Fig. 2 on page 506 were given incorrectly as [mb/(GeV/c)]. They should be [mb/(MeV/c)]. This change does not affect any of the results in Table 1, including the cross sections, nor the subsequent discussion.
Pappas, Theoni
2002-01-01
Whether it's stuff in your kitchen or garden, stuff that powers your car or your body, stuff that helps you work, communicate or play, or stuff that you've never heard of you can bet that mathematics is there. MATH STUFF brings it all in the open in the Pappas style. Not many people think of mathematics as fascinating, exciting and invaluable. Yet Pappas writes about math ideas in such a way that conveys its often overlooked fascination, excitement, and worth. MATH STUFF deals with 38 topics in an non-threatening way that piques our curiosities. Open the book at random, and learn about such to
Murray, Jenny
2006-01-01
Discussion in maths lessons has always been something encouraged by ATM but can be difficult to initiate for non-specialist and inexperienced teachers who may feel they need material in books to get them going. In this article, the author describes resources aimed at encouraging discussion among primary mathematicians. These resources include: (1)…
Green, Daniel; Kearney, Thomas
2015-01-01
Emperor penguins, the largest of all the penguin species, attain heights of nearly four feet and weigh up to 99 pounds. Many students are not motivated to learn mathematics when textbook examples contain largely nonexistent contexts or when the math is not used to solve significant problems found in real life. This article's project explores how…
Scarlatos, Lori L.
2006-01-01
Educators recognize that group work and physical involvement with learning materials can greatly enhance the understanding and retention of difficult concepts. As a result, math manipulatives--such as pattern blocks and number lines--have increasingly been making their way into classrooms and children's museums. Yet without the constant guidance…
Oguntoyinbo, Lekan
2012-01-01
Many experts give the nation's schools a poor grade for their approach to teaching mathematics and for their preparation of mathematics teachers. While many policymakers make much of data that suggest children in the United States lag behind many other advanced countries in math, many experts call for a change in mathematics education,…
Working memory, math performance, and math anxiety.
Ashcraft, Mark H; Krause, Jeremy A
2007-04-01
The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.
Tobias, Sheila; Donady, Bonnie
1977-01-01
Describes the rationale and mode of operations for a Math Clinic at Wellesley University and Wesleyan College where counselors and math specialists work together to combat "math anxiety," particularly in female students. (HMV)
Taking Math Anxiety out of Math Instruction
Shields, Darla J.
2007-01-01
To take math anxiety out of math instruction, teachers need to first know how to easily diagnose it in their students and second, how to analyze causes. Results of a recent study revealed that while students believed that their math anxiety was largely related to a lack of mathematical understanding, they often blamed their teachers for causing…
PhysLink Physics and Astronomy online education and reference
The PhysLink.com is a comprehensive physics and astronomy online education, research and reference web site. In addition to providing high-quality content, PhysLink.com is a meeting place for professionals, students and other curious minds.
Kelly, Gerard W
1984-01-01
Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method. No special math ability needed.
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes
Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.
2015-01-01
Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math de...
Advanced Math Equals Career Readiness. Math Works
Achieve, Inc., 2013
2013-01-01
The equation is simple: No matter their background, students who take challenging math courses in high school get better jobs and earn more money throughout their entire lives. This paper stresses that: (1) Higher-level math opens doors for any and all postsecondary programs and keeps it open for advancement beyond entry-level jobs; and (2)…
Tankersley, Karen
1993-01-01
Teachers at a K-8 urban school in Phoenix, Arizona, worked to develop an effective math program that generated student interest and positive self-esteem. They eventually set aside classroom and large enclosed porch area to house math manipulative lab, where children could learn new concepts at concrete level. Results are excitement about math and…
Solving America's Math Problem
Vigdor, Jacob
2013-01-01
Concern about students' math achievement is nothing new, and debates about the mathematical training of the nation's youth date back a century or more. In the early 20th century, American high-school students were starkly divided, with rigorous math courses restricted to a college-bound elite. At midcentury, the "new math" movement sought,…
Directory of Open Access Journals (Sweden)
Catherine Patricia Byrne
2015-08-01
Full Text Available I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT. This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a prison maths teacher.
College Math Assessment: SAT Scores vs. College Math Placement Scores
Foley-Peres, Kathleen; Poirier, Dawn
2008-01-01
Many colleges and university's use SAT math scores or math placement tests to place students in the appropriate math course. This study compares the use of math placement scores and SAT scores for 188 freshman students. The student's grades and faculty observations were analyzed to determine if the SAT scores and/or college math assessment scores…
Female teachers' math anxiety affects girls' math achievement.
Beilock, Sian L; Gunderson, Elizabeth A; Ramirez, Gerardo; Levine, Susan C
2010-02-02
People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.
Catherine Patricia Byrne
2015-01-01
I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a ...
Byrne, Catherine; Carr, Michael
2015-01-01
I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a p...
Getting Manipulative about Math.
Scheer, Janet K.; And Others
1984-01-01
Math manipulatives that are made from inexpensive, common items help students understand basic mathematics concepts. Learning activities using Cheerios, jellybeans, and clay as teaching materials are suggested. (DF)
Kolby, Jeff
2014-01-01
Twenty-three GRE Math Tests! The GRE math section is not easy. There is no quick fix that will allow you to ""beat"" the section. But GRE math is very learnable. If you study hard and master the techniques in this book, your math score will improve--significantly! The GRE cannot be ""beaten."" But it can be mastered--through hard work, analytical thought, and by training yourself to think like a test writer. Many of the problems in this book are designed to prompt you to think like a test writer. For example, you will find ""Duals."" These are pairs of similar problems in which only one prop
CSIR Research Space (South Africa)
Butgereit, L
2012-10-01
Full Text Available In this presentation the author explains how the Dr Math service works; how tutors are recruited to act as Dr Math; and how school pupils can reach Dr Math for help with their mathematics homework....
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes
Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000
Parent-Child Math Anxiety and Math-Gender Stereotypes Predict Adolescents’ Math Education Outcomes
Directory of Open Access Journals (Sweden)
Bettina J Casad
2015-11-01
Full Text Available Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children’s math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa for performance beliefs and outcomes (self-efficacy and GPA. Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and for boys, and for boys with GPA. These findings address gaps in the literature on the role of parents’ math anxiety in the effects of children’s math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents’ math anxiety and dispelling gender stereotypes in math classrooms.
Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.
Casad, Bettina J; Hale, Patricia; Wachs, Faye L
2015-01-01
Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.
Jansen, B.R.J.; Louwerse, J.; Straatemeier, M.; van der Ven, S.H.G.; Klinkenberg, S.; van der Maas, H.L.J.
2013-01-01
It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a
Leff MS, Lawrence S
2016-01-01
This completely revised edition reflects all of the new questions and question types that will appear on the new SAT, scheduled to be administered in Spring 2016. Includes hundreds of revised math questions and answer explanations, math strategies, test-taking tips, and much more.
The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.
Jansen, Brenda R. J.; Louwerse, Jolien; Straatemeier, Marthe; Van der Ven, Sanne H. G.; Klinkenberg, Sharon; Van der Maas, Han L. J.
2013-01-01
It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a computer-adaptive program. A total of 207 children (grades 3-6)…
Madore, Blair
2015-01-01
Reflective of the current GRE, this third edition includes a description of the General Math Exam explaining structure, questions types, and scoring, strategies for problem solving, two full-length math sample sections structured to reflect the actual exam, answers thoroughly explained, and more.
McComas, David
2013-01-01
The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.
Exploring Physics with Computer Animation and PhysGL
Bensky, T. J.
2016-10-01
This book shows how the web-based PhysGL programming environment (http://physgl.org) can be used to teach and learn elementary mechanics (physics) using simple coding exercises. The book's theme is that the lessons encountered in such a course can be used to generate physics-based animations, providing students with compelling and self-made visuals to aid their learning. Topics presented are parallel to those found in a traditional physics text, making for straightforward integration into a typical lecture-based physics course. Users will appreciate the ease at which compelling OpenGL-based graphics and animations can be produced using PhysGL, as well as its clean, simple language constructs. The author argues that coding should be a standard part of lower-division STEM courses, and provides many anecdotal experiences and observations, that include observed benefits of the coding work.
Motivation and Math Anxiety for Ability Grouped College Math Students
Helming, Luralyn
2013-01-01
The author studied how math anxiety, motivation, and ability group interact to affect performance in college math courses. This clarified the effects of math anxiety and ability grouping on performance. It clarified the interrelationships between math anxiety, motivation, and ability grouping by considering them in a single analysis. It introduces…
Directory of Open Access Journals (Sweden)
Ipsita Mandal
2016-09-01
Full Text Available In this addendum, we consider the connection between certain 2d super-GCA, obtained from the parametric contractions of 2d SCFTs, which can describe the constraint algebra of null spinning strings.
Andrews, Amanda; Brown, Jennifer
2015-01-01
Math anxiety is a reoccurring problem for many students, and the effects of this anxiety on college students are increasing. The purpose of this study was to examine the association between pre-enrollment math anxiety, standardized test scores, math placement scores, and academic success during freshman math coursework (i.e., pre-algebra, college…
Kolby, Jeff
2011-01-01
Comprehensive Prep for SAT Math Every year, students pay 1,000 and more to test prep companies to prepare for the math section of the new SAT. Now you can get the same preparation in a book. Features: * Comprehensive Review: Twenty-three chapters provide complete review of SAT math. * Practice: Includes 164 examples and more than 500 exercises! Arranged from easy to medium to hard to very hard. * Diagnostic Test: The diagnostic test measures your strengths and weaknesses and directs you to areas you need to study more. * Performance: If your target is a 700+ score, this is the book!
Grätzer, George
2007-01-01
For close to two decades, Math into Latex has been the standard introduction and complete reference for writing articles and books containing mathematical formulas. In this fourth edition, the reader is provided with important updates on articles and books. An important new topic is discussed: transparencies (computer projections). Key features of More Math into Latex, 4th edition: Installation instructions for PC and Mac users; An example-based, visual approach and a gentle introduction with the Short Course; A detailed exposition of multiline math formulas with a Visual Guide; A unified appr
Principals in Partnership with Math Coaches
Grant, Catherine Miles; Davenport, Linda Ruiz
2009-01-01
One of the most promising developments in math education is the fact that many districts are hiring math coaches--also called math resource teachers, math facilitators, math lead teachers, or math specialists--to assist elementary-level teachers with math instruction. What must not be lost, however, is that principals play an essential role in…
Phys FilmMakers: teaching science students how to make YouTube-style videos
Coates, Rebecca L.; Kuhai, Alvina; Turlej, Laurence Z. J.; Rivlin, Tom; McKemmish, Laura K.
2018-01-01
Phys FilmMakers (PFM) is a new type of course in which a science expert and science communicator partner teach physics students how to make YouTube-style videos on cutting-edge scientific research within the university department. Here, we describe this new course, outline its key components and provide recommendations for others considering implementing a similar FilmMakers-style course using feedback from course tutors and students. We discuss successful and less successful teaching techniques as well as use our experience to identify areas that science students in particular often have difficulties: finding an interesting ‘hook’ for the video, imagining creative B-roll and making a succinct video by removing extraneous (though usually correct and often interesting) material. The course has two major components: workshop sessions in which students learn the key elements of film-making and independent video production where PFM students partner with senior PhD or post-doc researchers to produce a video on their research. This partnership with the department means that the videos produced serve not only as interesting ‘edutainment’ to encourage teenagers and young adults into Science, Technology, Engineering and Maths subjects, but also provide valuable outreach for the academic department.
A Study of Perceptions of Math Mindset, Math Anxiety, and View of Math by Young Adults
Hocker, Tami
2017-01-01
This study's purpose was to determine whether instruction in growth math mindset led to change in perceptions of 18-22-year-old at-risk students in math mindset, math anxiety, and view of math. The experimental curriculum was created by the researcher with the guidance of experts in mathematics and education and focused on the impact of brain…
Math Anxiety and Math Ability in Early Primary School Years
Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus
2010-01-01
Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa—contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development. PMID:20401159
Math in Action. Hands-On, Minds-On Math.
Waite-Stupiansky, Sandra; Stupiansky, Nicholas G.
1998-01-01
Hands-on math must also involve students' minds in creative thinking. Math manipulatives must be used for uncovering, not just discovering. This paper presents guidelines for planning hands-on, minds-on math for elementary students. Suggestions include dialoging, questioning, integrating manipulatives and other tools, writing, and evaluating. (SM)
An Annotated Math Lab Inventory.
Schussheim, Joan Yares
1980-01-01
A listing of mathematics laboratory material is organized as follows: learning kits, tape programs, manipulative learning materials, publications, math games, math lab library, and an alphabetized listing of publishers and/or companies offering materials. (MP)
Tcheang, Lili
2014-01-01
Cultural differences have been shown across a number of different cognitive domains from vision, language, and music. Mathematical cognition is another domain that is an integral part of modern society and because there are a fixed number of ways in which many math operations can be performed, it is also an apposite tool for cultural comparisons. This discussion examines the literature on mathematical processing in accordance with culture, summarizing the brain regions involved across various mathematical tasks. In doing so, we provide a clear picture of the anatomical similarities and differences between cultures when performing different math tasks. This information is useful to explore the possibility of enhancement of mathematical skills, where different strategies may be applicable in accordance with culture. It also contributes to the evolutionary development of different math skills and the growing theory that anatomical and behavioral studies must account for the cultural identity of their sample.
Sterling, Mary Jane
2008-01-01
Now, it is easier than ever before to understand complex mathematical concepts and formulas and how they relate to real-world business situations. All you have to do it apply the handy information you will find in Business Math For Dummies. Featuring practical practice problems to help you expand your skills, this book covers topics like using percents to calculate increases and decreases, applying basic algebra to solve proportions, and working with basic statistics to analyze raw data. Find solutions for finance and payroll applications, including reading financial statements, calculating wages and commissions, and strategic salary planning. Navigate fractions, decimals, and percents in business and real estate transactions, and take fancy math skills to work. You'll be able to read graphs and tables and apply statistics and data analysis. You'll discover ways you can use math in finance and payroll investments, banking and payroll, goods and services, and business facilities and operations. You'll learn ho...
When math hurts: math anxiety predicts pain network activation in anticipation of doing math.
Directory of Open Access Journals (Sweden)
Ian M Lyons
Full Text Available Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs, math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula. Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.
When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math
Lyons, Ian M.; Beilock, Sian L.
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929
When math hurts: math anxiety predicts pain network activation in anticipation of doing math.
Lyons, Ian M; Beilock, Sian L
2012-01-01
Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.
Group Activities for Math Enthusiasts
Holdener, J.; Milnikel, R.
2016-01-01
In this article we present three group activities designed for math students: a balloon-twisting workshop, a group proof of the irrationality of p, and a game of Math Bingo. These activities have been particularly successful in building enthusiasm for mathematics and camaraderie among math faculty and students at Kenyon College.
Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.
Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A
2015-12-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.
Merchant, Ronald
1980-01-01
Describes a new course at Spokane Falls Community College which builds on and reviews basic business math and electronic calculator skills. Material is self-paced and includes work with metrics. Discusses student evaluation of the course and type of equipment used. (CT)
Texas Child Care, 2003
2003-01-01
Offers examples of materials and activities that promote and guide math-learning opportunities in all areas of the classroom. Materials and activities relate to: (1) art center; (2) science and discovery center; (3) blocks; (4) library and writing centers; (5) music and movement; (6) manipulatives; (7) dramatic play; (8) outdoor play; and (9)…
Understand electrical and electronics maths
Bishop, Owen
1993-01-01
Understand Electrical and Electronics Maths covers elementary maths and the aspects of electronics. The book discusses basic maths including quotients, algebraic fractions, logarithms, types of equations and balancing of equations. The text also describes the main features and functions of graphs and the solutions to simpler types of electronics problems. The book then tackles the applications of polar coordinates in electronics, limits, differentiation and integration, and the applications of maths of rates of change in electronics. The activities of an electronic circuit; techniques of math
Comment on “Diffusion of n-type dopants in germanium” [Appl. Phys. Rev. 1, 011301 (2014)
International Nuclear Information System (INIS)
Cowern, N. E. B.; Simdyankin, S.; Goss, J. P.; Napolitani, E.; De Salvador, D.; Bruno, E.; Mirabella, S.; Ahn, C.; Bennett, N. S.
2015-01-01
The authors of the above paper call into question recent evidence on the properties of self-interstitials, I, in Ge [Cowern et al., Phys. Rev. Lett. 110, 155501 (2013)]. We show that this judgment stems from invalid model assumptions during analysis of data on B marker-layer diffusion during proton irradiation, and that a corrected analysis fully supports the reported evidence. As previously stated, I-mediated self-diffusion in Ge exhibits two distinct regimes of temperature, T: high-T, dominated by amorphous-like mono-interstitial clusters—i-morphs—with self-diffusion entropy ≈30 k, and low-T, where transport is dominated by simple self-interstitials. In a transitional range centered on 475 °C both mechanisms contribute. The experimental I migration energy of 1.84 ± 0.26 eV reported by the Münster group based on measurements of self-diffusion during irradiation at 550 °C < T < 680 °C further establishes our proposed i-morph mechanism
Attentional Bias in Math Anxiety
Directory of Open Access Journals (Sweden)
Orly eRubinsten
2015-10-01
Full Text Available Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety as well (i.e., a persistent negative reaction to math. Twenty seven participants (14 with high levels of math anxiety and 13 with low levels of math anxiety were presented with a novel computerized numerical version of the well established dot probe task. One of 6 types of prime stimuli, either math related or typically neutral, were presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks. Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in math anxiety. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words. These findings suggest that attentional bias is linked to unduly intense math anxiety symptoms.
Katz, Sheldon; Klemm, Albrecht; Morrison, David R
2015-01-01
This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.
Schoenborn, Barry
2010-01-01
Technical Math For Dummies is your one-stop, hands-on guide to acing the math courses youâ€™ll encounter as you work toward getting your degree, certifacation, or�license in the skilled trades. Youâ€™ll get easy-to-follow, plain-English guidance on mathematical formulas and methods that professionals use every day in the automotive, health, construction, licensed trades, maintenance, and other trades. Youâ€™ll learn how to apply concepts of algebra, geometry, and trigonometry and their formulas related to occupational areas of study. Plus, youâ€™ll find out how to perform basic arithmetic
Glaese, John R.; Tobbe, Patrick A.
1986-01-01
The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.
All Students Need Advanced Mathematics. Math Works
Achieve, Inc., 2013
2013-01-01
This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…
2007-01-01
game tool Game Tool Interactive Media Element The purpose of this interactive exercise is to help you understand the math in the income statement and balance sheet., Give the proper mathematical computations in order to correctly prepare the income statement and the balance sheet.The exercise is divided into 3 parts: The income Statement, The Balance Sheet - Assets, The Balance Sheet - Liabilities, GB3050 Financial Reporting and Analysis
De Robbio, Antonella
1997-01-01
This paper shows the prestigious mathematics database MathSci, produced by American Mathematical Society (AMS). It is an indexing resource that deals with the whole literature about mathematics. The subject involved in referred to mathematical sciences and others relating such as Statistics, Information science, Operative research and Mathematics Physics. Moreover it indexes sciences related to applied mathematics such as Astronomy, Astrophysics, Biology, Compartmental Sciences, Thermodyn...
Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.
Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID
Directory of Open Access Journals (Sweden)
Elizabeth A Necka
2015-10-01
Full Text Available Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap to assess individuals’ self-math overlap. This nonverbal single-item measure showed that identifying oneself with math (having higher self-math overlap was strongly associated with lower math anxiety (r=-.610. We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be
Advanced Math: Closing the Equity Gap. Math Works
Achieve, Inc., 2013
2013-01-01
Minority and low-income students are less likely to have access to, enroll in and succeed in higher-level math courses in high school than their more advantaged peers. Under these circumstances, higher-level math courses function not as the intellectual and practical boost they should be, but as a filter that screens students out of the pathway to…
Early Math Interest and the Development of Math Skills
Fisher, Paige H.; Dobbs-Oates, Jennifer; Doctoroff, Greta L.; Arnold, David H.
2012-01-01
Prior models suggest that math attitudes and ability might strengthen each other over time in a reciprocal fashion (Ma, 1997). The current study investigated the relationship between math interest and skill both concurrently and over time in a preschool sample. Analyses of concurrent relationships indicated that high levels of interest were…
Math Anxiety and Math Ability in Early Primary School Years
Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus
2009-01-01
Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported…
Preface: phys. stat. sol. (a) 202/12
Neumann, Wolfgang; Stutzmann, Martin; Hildebrandt, Stefan
2005-09-01
The present special issue contains a collection of Original Papers dedicated to Professor Johannes Heydenreich on the occasion of his 75th birthday.Johannes Heydenreich, born on 20 June 1930 in Plauen/Vogtland near Dresden, studied physics at the Pädagogische Hochschule Potsdam, where he obtained his first academic degree Dipl. Phys. in 1958. He received his doctoral degree at the Martin Luther University in Halle in 1961 and the Habilitation degree in 1969. Already during his studies in Potsdam, he showed an interest in electron microscopy due to the influence of his teacher and supervisor Prof. Picht, one of the pioneers in electron optics. His interests were strengthened when Johannes Heydenreich did the experimental work for his Diploma degree at the Institute for Experimental Physics of the University of Halle, where he met Prof. Heinz Bethge for the first time. This was the beginning of a fruitful and longstanding collaboration. In 1962 Johannes Heydenreich joined the team of the later Institute for Solid State Physics and Electron Microscopy of the Academy of Sciences of the GDR, in Halle, for which the basis was laid by Prof. Bethge in 1960.Heydenreich has been working as Assistant Director for many years and played a decisive role in introducing and organising the various techniques of electron microscopy in the institute.The research activities of Prof. Heydenreich covered a broad spectrum over the years. At the beginning of his career he made significant contributions in the field of electron mirror microscopy. After that, his main interests were focused on transmission electron microscopy, ranging from diffraction contrast analysis of crystal defects to high-resolution electron microscopy and image processing. His favourite field was studies of defect-induced phenomena in advanced materials. The so-called Bethge-Heydenreich, the book Electron Microscopy in Solid State Physics, published at first in a German edition in 1982 and later in a revised
Cryer, CW
2014-01-01
Mathematics and engineering are inevitably interrelated, and this interaction will steadily increase as the use of mathematical modelling grows. Although mathematicians and engineers often misunderstand one another, their basic approach is quite similar, as is the historical development of their respective disciplines. The purpose of this Math Primer is to provide a brief introduction to those parts of mathematics which are, or could be, useful in engineering, especially bioengineering. The aim is to summarize the ideas covered in each subject area without going into exhaustive detail. Formula
Math Education at a Crossroads
DEFF Research Database (Denmark)
Markvorsen, Steen
With an enrollment of 550 students once a year the first year course Math1 at the Technical University of Denmark is one of the largest courses at university level in Denmark. Since its re-formation 6 years ago a number of interesting valuable assets concerning undergraduate math education...
Eason, Sarah H.; Levine, Susan C.
2017-01-01
Children demonstrate gaps in the math knowledge that they possess by the time they begin school, and these gaps have been found to predict long-term outcomes not only in math but also in reading. Consequently, it is important to identify what accounts for these early differences and how they can be addressed to ensure that all children enter…
CSIR Research Space (South Africa)
Botha, Adèle
2013-02-01
Full Text Available In 2007, Laurie Butgereit, a researcher at the CSIR Meraka Institute, started to use Mxit as a communication channel to tutor her son in mathematics. Her son and a number of his friends logged in, and Dr Math was born. At the inception of Dr Math...
Nelson, Barbara Scott; Sassi, Annette
2007-01-01
The combination of new instructional methods and new accountability pressures puts many in a quandary in evaluating math instruction. There is much for principals to learn about how and under what conditions new instructional methods work in math classrooms, how to support teachers as they develop new instructional skills, and how to integrate a…
"Math Anxiety" Explored in Studies
Sparks, Sarah D.
2011-01-01
Math problems make more than a few students--and even teachers--sweat, but new brain research is providing insights into the earliest causes of the anxiety so often associated with mathematics. Experts argue that "math anxiety" can bring about widespread, intergenerational discomfort with the subject, which could lead to anything from fewer…
Math Fact Strategies Research Project
Boso, Annie
2011-01-01
An action research project was conducted in order to determine effective math fact strategies for first graders. The traditional way of teaching math facts included using timed tests and flashcards, with most students counting on their fingers or a number line. Six new research-based strategies were taught and analyzed to decide which methods…
International Nuclear Information System (INIS)
Lasser, Susan J.S.; Snelsire, Robert W.
1992-01-01
This paper describes the first two years of the Clemson University College of Engineering's Math Excellence Workshop, a program administered by Westinghouse Electric Corporation, Savannah River Site, and funded by the Department of Energy. The objective of the program is to prepare minority students for technical/scientific study, with the goal of increasing minority retention in the College of Engineering, Twenty-three African American students, all of whom had been accepted into the College of Engineering Fall 1990 freshman class, took part in the first year of the program. The contract paid for room, board, tuition, fees, books, and supplies for the students to live on campus and take a precalculus math course. In addition, the students attended a special honors workshop designed to prepare them to study technical material effectively. Twenty of the 23 students earned As or Bs in the precalculus class. All participants indicated that they felt confident of their ability to succeed academically at Clemson. At the end of the session, twenty of the students were still planning to major in engineering. The program was repeated the following summer with 24 students from the 1991 freshman class. Twelve of the students earned A's or B's in the precalculus class. (author)
Energy Technology Data Exchange (ETDEWEB)
Lasser, Susan J.S.; Snelsire, Robert W [College of Engineering, Clemson University, Clemson, SC (United States)
1992-07-01
This paper describes the first two years of the Clemson University College of Engineering's Math Excellence Workshop, a program administered by Westinghouse Electric Corporation, Savannah River Site, and funded by the Department of Energy. The objective of the program is to prepare minority students for technical/scientific study, with the goal of increasing minority retention in the College of Engineering, Twenty-three African American students, all of whom had been accepted into the College of Engineering Fall 1990 freshman class, took part in the first year of the program. The contract paid for room, board, tuition, fees, books, and supplies for the students to live on campus and take a precalculus math course. In addition, the students attended a special honors workshop designed to prepare them to study technical material effectively. Twenty of the 23 students earned As or Bs in the precalculus class. All participants indicated that they felt confident of their ability to succeed academically at Clemson. At the end of the session, twenty of the students were still planning to major in engineering. The program was repeated the following summer with 24 students from the 1991 freshman class. Twelve of the students earned A's or B's in the precalculus class. (author)
The Role of Parental Math Anxiety and Math Attitude in Their Children's Math Achievement
Soni, Akanksha; Kumari, Santha
2017-01-01
The present study investigated the antecedents and consequences of children's math anxiety and math attitude. A total of 595 students aged 10 to 15 years (5th to 10th grades) and 1 parent of each (mother or father) participated in the study. The study was conducted in India, with the study sample drawn from schools in South-West Punjab. Math…
Justicia-Galiano, M José; Martín-Puga, M Eva; Linares, Rocío; Pelegrina, Santiago
2017-12-01
Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. This study aimed to investigate the role of two possible mediational mechanisms between math anxiety and math performance. Specifically, we sought to test the simultaneous mediating role of working memory and math self-concept. A total of 167 children aged 8-12 years participated in this study. Children completed a set of questionnaires used to assess math and trait anxiety, math self-concept as well as measures of math fluency and math problem-solving. Teachers were asked to rate each student's math achievement. As measures of working memory, two backward span tasks were administered to the children. A series of multiple mediation analyses were conducted. Results indicated that both mediators (working memory and math self-concept) contributed to explaining the relationship between math anxiety and math achievement. Results suggest that working memory and self-concept could be worth considering when designing interventions aimed at helping students with math anxiety. Longitudinal designs could also be used to better understand the mediational mechanisms that may explain the relationship between math anxiety and math performance. © 2017 The British Psychological Society.
Addressing Math Anxiety in the Classroom
Finlayson, Maureen
2014-01-01
In today's educational systems, students of all levels of education experience math anxiety. Furthermore, math anxiety is frequently linked to poor achievement in mathematics. The purpose of this study is to examine the causes of math anxiety and to explore strategies which pre-service teachers have identified to overcome math anxiety. The…
Enhancing Mathematical Communication for Virtual Math Teams
Stahl, Gerry; Çakir, Murat Perit; Weimar, Stephen; Weusijana, Baba Kofi; Ou, Jimmy Xiantong
2010-01-01
The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT) service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies…
Helping Students Get Past Math Anxiety
Scarpello, Gary
2007-01-01
Math anxiety can begin as early as the fourth grade and peaks in middle school and high school. It can be caused by past classroom experiences, parental influences, and remembering poor past math performance. Math anxiety can cause students to avoid challenging math courses and may limit their career choices. It is important for teachers, parents…
2015-01-01
Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...
Zegarelli, Mark
2015-01-01
Der schnelle Überblick für Schüler und jeden, den es sonst noch interessiert Müssen Sie sich in der Schule oder im Beruf mit Mathematik beschäftigen und es hapert schon an den Grundlagen? Frei nach dem Motto »Einst gelernt, doch längst vergessen« bereiten oft gerade die einfachen Fragestellungen Probleme. Wie viel Prozent sind das nochmal? Wie war das doch gleich mit der Bruchrechnung und wie berechnet man eigentlich den Flächeninhalt eines Dreiecks? Keine Sorge, Mark Zegarelli erklärt es Ihnen einfach, aber zugleich amüsant, und hilft Ihnen so, Ihre Wissenslücken zu schließen. Damit ist Mathe
Timmerman, H.L.; Toll, S.W.M.; van Luit, J.E.H.
2017-01-01
:This study examines the relation between math self-concept, test and math anxiety, achievement motivation, and math achievement in typically developing 12 to 14-year-old adolescents (N = 108) from a school for secondary education in the Netherlands. Data was obtained using a math speed test, achievement motivation test, and the math experience questionnaire. A significant positive correlation was found between math self-concept and math achievement in all four math domains (measurement, rela...
Students as Math Level Designers
DEFF Research Database (Denmark)
Jensen, Erik Ottar; Hanghøj, Thorkild; Schoenau-Fog, Henrik
The short paper presents preliminary findings from a pilot study on how students become motivated through design of learning games in math. The research is carried out in a Danish public school with two classes of 5th graders (N = 42 students). Over the course of two weeks, the students work...... with a design template for a runner game in the Unity 3D game design engine. The students are introduced to the concept of “flow” (Csikszentmihalyi, 1991) as a game design principle and are asked to design levels for a math runner game, which are both engaging as well as a meaningful way of learning math....... In this way, the students are positioned as “math level designers”, which means that they both have to redesign the difficulty of the runner game as well as the difficulty of the mathematical questions and possible answers....
Parents' Beliefs about Children's Math Development and Children's Participation in Math Activities
Susan Sonnenschein; Claudia Galindo; Shari R. Metzger; Joy A. Thompson; Hui Chih Huang; Heather Lewis
2012-01-01
This study explored associations between parents’ beliefs about children’s development and children’s reported math activities at home. Seventy-three parents were interviewed about the frequency of their children’s participation in a broad array of math activities, the importance of children doing math activities at home, how children learn math, parents’ role in their children’s math learning, and parents’ own math skills. Although the sample consisted of African Americans, Chinese, Latino, ...
Math Anxiety Is Related to Some, but Not All, Experiences with Math
Krystle O'Leary; Cheryll L. Fitzpatrick; Darcy Hallett
2017-01-01
Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through...
Lee, Jihyun
2009-01-01
The overarching goal of the present study is to investigate the factorial structure of three closely related constructs: math self-concept, math self-efficacy, and math anxiety. The factorial structure consisting of three factors, each representing math self-concept, math self-efficacy, and math anxiety, is supported in all 41 countries employed…
Attentional bias in math anxiety.
Rubinsten, Orly; Eidlin, Hili; Wohl, Hadas; Akibli, Orly
2015-01-01
Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms.
Intergenerational Effects of Parents' Math Anxiety on Children's Math Achievement and Anxiety.
Maloney, Erin A; Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L
2015-09-01
A large field study of children in first and second grade explored how parents' anxiety about math relates to their children's math achievement. The goal of the study was to better understand why some students perform worse in math than others. We tested whether parents' math anxiety predicts their children's math achievement across the school year. We found that when parents are more math anxious, their children learn significantly less math over the school year and have more math anxiety by the school year's end-but only if math-anxious parents report providing frequent help with math homework. Notably, when parents reported helping with math homework less often, children's math achievement and attitudes were not related to parents' math anxiety. Parents' math anxiety did not predict children's reading achievement, which suggests that the effects of parents' math anxiety are specific to children's math achievement. These findings provide evidence of a mechanism for intergenerational transmission of low math achievement and high math anxiety. © The Author(s) 2015.
Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individual...
Comment on 'Nonlinear gyrokinetic theory with polarization drift' [Phys. Plasmas 17, 082304 (2010)
International Nuclear Information System (INIS)
Leerink, S.; Parra, F. I.; Heikkinen, J. A.
2010-01-01
In this comment, we show that by using the discrete particle distribution function the changes of the phase-space volume of gyrocenter coordinates due to the fluctuating ExB velocity do not explicitly appear in the Poisson equation and the [Sosenko et al., Phys. Scr. 64, 264 (2001)] result is recovered. It is demonstrated that there is no contradiction between the work presented by Sosenko et al. and the work presented by [Wang et al., Phys. Plasmas 17, 082304 (2010)].
When approximate number acuity predicts math performance: The moderating role of math anxiety
Libertus, Melissa E.
2018-01-01
Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments. PMID:29718939
Measurement of math beliefs and their associations with math behaviors in college students.
Hendy, Helen M; Schorschinsky, Nancy; Wade, Barbara
2014-12-01
Our purpose in the present study was to expand understanding of math beliefs in college students by developing 3 new psychometrically tested scales as guided by expectancy-value theory, self-efficacy theory, and health belief model. Additionally, we identified which math beliefs (and which theory) best explained variance in math behaviors and performance by college students and which students were most likely to have problematic math beliefs. Study participants included 368 college math students who completed questionnaires to report math behaviors (attending class, doing homework, reading textbooks, asking for help) and used a 5-point rating scale to indicate a variety of math beliefs. For a subset of 84 students, math professors provided final math grades. Factor analyses produced a 10-item Math Value Scale with 2 subscales (Class Devaluation, No Future Value), a 7-item single-dimension Math Confidence Scale, and an 11-item Math Barriers Scale with 2 subscales (Math Anxiety, Discouraging Words). Hierarchical multiple regression revealed that high levels of the newly discovered class devaluation belief (guided by expectancy-value theory) were most consistently associated with poor math behaviors in college students, with high math anxiety (guided by health belief model) and low math confidence (guided by self-efficacy theory) also found to be significant. Analyses of covariance revealed that younger and male students were at increased risk for class devaluation and older students were at increased risk for poor math confidence. (c) 2014 APA, all rights reserved.
When approximate number acuity predicts math performance: The moderating role of math anxiety.
Braham, Emily J; Libertus, Melissa E
2018-01-01
Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.
When approximate number acuity predicts math performance: The moderating role of math anxiety.
Directory of Open Access Journals (Sweden)
Emily J Braham
Full Text Available Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.
Kimura, Taro; Pestun, Vasily
2018-04-01
We introduce quiver gauge theory associated with the non-simply laced type fractional quiver and define fractional quiver W-algebras by using construction of Kimura and Pestun (Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1072-1; Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1073-0) with representation of fractional quivers.
Identifying Maths Anxiety in Student Nurses and Focusing Remedial Work
Bull, Heather
2009-01-01
Maths anxiety interferes with maths cognition and thereby increases the risk of maths errors. To initiate strategies for preventing anxiety-related errors progressing into nursing practice, this study explored the hypothesis that student nurses experience high maths anxiety in association with poor maths performance, and that high maths anxiety is…
A Motivational Technique for Business Math
Voelker, Pamela
1977-01-01
The author suggests the use of simulation and role playing as a method of motivating students in business math. Examples of career-oriented business math simulation games are counting change, banking, payrolls, selling, and shopping. (MF)
Math Anxiety, Working Memory, and Math Achievement in Early Elementary School
Ramirez, Gerardo; Gunderson, Elizabeth A.; Levine, Susan C.; Beilock, Sian L.
2013-01-01
Although math anxiety is associated with poor mathematical knowledge and low course grades (Ashcraft & Krause, 2007), research establishing a connection between math anxiety and math achievement has generally been conducted with young adults, ignoring the emergence of math anxiety in young children. In the current study, we explored whether…
A Latent Profile Analysis of Math Achievement, Numerosity, and Math Anxiety in Twins
Hart, Sara A.; Logan, Jessica A. R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.
2016-01-01
Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity, and math anxiety. Latent profile analysis indicated 5 groupings of…
Gunderson, Elizabeth A.; Park, Daeun; Maloney, Erin A.; Beilock, Sian L.; Levine, Susan C.
2018-01-01
School-entry math achievement is a strong predictor of math achievement through high school. We asked whether reciprocal relations among math achievement, math anxiety, and entity motivational frameworks (believing that ability is fixed and a focus on performance) can help explain these persistent individual differences. We assessed 1st and 2nd…
Math word problems for dummies
Sterling, Mary Jane
2008-01-01
Covers percentages, probability, proportions, and moreGet a grip on all types of word problems by applying them to real lifeAre you mystified by math word problems? This easy-to-understand guide shows you how to conquer these tricky questions with a step-by-step plan for finding the right solution each and every time, no matter the kind or level of problem. From learning math lingo and performing operations to calculating formulas and writing equations, you''ll get all the skills you need to succeed!Discover how to: * Translate word problems into plain English* Brush up on basic math skills* Plug in the right operation or formula* Tackle algebraic and geometric problems* Check your answers to see if they work
Response to intervention in math
Riccomini, Paul J
2010-01-01
Boost academic achievement for all students in your mathematics classroom! This timely resource leads the way in applying RTI to mathematics instruction. The authors describe how the three tiers can be implemented in specific math areas and illustrate RTI procedures through case studies. Aligned with the NMAP final report and IES practice guide, this book includes: Intervention strategies for number sense, fractions, problem solving, and more Procedures for teaching math using systematic and explicit instruction for assessment, instructional planning, and evaluation Essential components to con
Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal
2015-01-01
The Effects of the Elevate Math summer program on math achievement and algebra readiness: This randomized trial examined the effects of the Elevate Math summer program on math achievement and algebra readiness, as well as math interest and self-efficacy, among rising 8th grade students in California's Silicon Valley. The Elevate Math summer math…
Math Branding in a Community College Library
Brantz, Malcolm; Sadowski, Edward B.
2010-01-01
As a strategy to promote the Arapahoe Community College Library's collections and services, the Library undertook to brand itself as a math resource center. In promoting one area of expertise, math was selected to help address the problem of a large portion of high school graduates' inability to work at college-level math. A "Math…
Saxon Math. What Works Clearinghouse Intervention Report
What Works Clearinghouse, 2017
2017-01-01
"Saxon Math" is a curriculum for students in grades K-12. The amount of new math content students receive each day is limited and students practice concepts every day. New concepts are developed, reviewed, and practiced cumulatively rather than in discrete chapters or units. This review focuses on studies of "Saxon Math"'s…
Math Game(s) - an alternative (approach) to teaching math?
Ruttkay, Z.M.; Eliens, A.P.W.; Breitlauch, L.
2009-01-01
Getting students to read, digest and practice material is diﬃcult in any discipline, but even more so for math, since many students have to cope with motivational problems and feelings of inadequacy, often due to prior unsuccesful training and teaching methods. In this paper we look at the
Taking Math Outside of the Classroom: Math in the City
Radu, Petronela
2013-01-01
Math in the City is an interdisciplinary mathematics course offered at University of Nebraska-Lincoln in which students engage in a real-world experience to understand current major societal issues of local and national interest. The course is run in collaboration with local businesses, research centers, and government organizations, that provide…
Americans Need Advanced Math to Stay Globally Competitive. Math Works
Achieve, Inc., 2013
2013-01-01
No student who hopes to compete in today's rapidly evolving global economy and job market can afford to graduate from high school with weak mathematical skills, which include the ability to use logic, reason, and solve problems. The benefits associated with improving the math performance of American students also extend to the larger U.S. economy.…
Hart, Sara A; Ganley, Colleen M; Purpura, David J
2016-01-01
There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.
Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation
Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.
2015-01-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438
Directory of Open Access Journals (Sweden)
Sara A Hart
Full Text Available There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.
van de Craats, J.; Bosch, R.
2014-01-01
All You Need in Maths! covers the basic mathematics you need to successfully embark on a university or college career in technology, natural sciences, computer and information science, economics, business and management studies, and related disciplines. By basic mathematics we mean elementary
Meeting a Math Achievement Crisis
Jennings, Lenora; Likis, Lori
2005-01-01
An urban community spotlighted declining mathematics achievement and took some measures, in which the students' performance increased substantially. The Benjamin Banneker Charter Public School in Cambridge, Massachusetts, engaged the entire community and launched the campaign called "Math Everywhere", which changed Benjamin Banneker's…
Hanushek, Eric A.; Peterson, Paul E.; Woessmann, Ludger
2011-01-01
Maintaining America's productivity as a nation depends importantly on developing a highly qualified cadre of scientists, engineers, entrepreneurs, and other professionals. To realize that objective requires a system of schooling that produces students with advanced math and science skills. To see how well schools in the United States do at…
Greenes, Carole; Ginsburg, Herbert P.; Balfanz, Robert
2004-01-01
"Big Math for Little Kids," a comprehensive program for 4- and 5-year-olds, develops and expands on the mathematics that children know and are capable of doing. The program uses activities and stories to develop ideas about number, shape, pattern, logical reasoning, measurement, operations on numbers, and space. The activities introduce the…
Basic Maths Practice Problems For Dummies
Beveridge, Colin
2012-01-01
Fun, friendly coaching and all the practice you need to tackle maths problems with confidence and ease In his popular Basic Maths For Dummies, professional maths tutor Colin Beveridge proved that he could turn anyone - even the most maths-phobic person - into a natural-born number cruncher. In this book he supplies more of his unique brand of maths-made- easy coaching, plus 2,000 practice problems to help you master what you learn. Whether you're prepping for a numeracy test or an employability exam, thinking of returning to school, or you'd just like to be one of those know-it-alls who says
Three brief assessments of math achievement.
Steiner, Eric T; Ashcraft, Mark H
2012-12-01
Because of wide disparities in college students' math knowledge-that is, their math achievement-studies of cognitive processing in math tasks also need to assess their individual level of math achievement. For many research settings, however, using existing math achievement tests is either too costly or too time consuming. To solve this dilemma, we present three brief tests of math achievement here, two drawn from the Wide Range Achievement Test and one composed of noncopyrighted items. All three correlated substantially with the full achievement test and with math anxiety, our original focus, and all show acceptable to excellent reliability. When lengthy testing is not feasible, one of these brief tests can be substituted.
Jansen, Brenda R. J.; Schmitz, Eva A.; van der Maas, Han L. J.
2016-01-01
This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life. PMID:27148122
Directory of Open Access Journals (Sweden)
Brenda RJ Jansen
2016-04-01
Full Text Available This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations. Data from a Dutch nation-wide research on math among adults (N = 521 were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life.
Strengthening maths learning dispositions through ‘math clubs’
Mellony Graven
2016-01-01
In this paper, I argue that the establishment of after-school mathematics clubs in early grades holds rich potential for supporting the development of increasingly participatory and sense-making maths learning dispositions. Within the South African Numeracy Chair project, lead by the author, multiple after-school mathematics clubs have been set up for learners in Grades 3-6 across Eastern Cape schools. These clubs are a complementary initiative to teacher development, aimed at improving low l...
Math Game(s) - an alternative (approach) to teaching math?
Ruttkay, Z.M.; Eliens, A.P.W.; Breitlauch, L.
2009-01-01
Getting students to read, digest and practice material is diﬃcult in any discipline, but even more so for math, since many students have to cope with motivational problems and feelings of inadequacy, often due to prior unsuccesful training and teaching methods. In this paper we look at the opportunities oﬀered by computer graphics, visual programming and game design as an alternative for traditional methods of teaching mathemathics. In particular, games may be deployed both as intruments to d...
Nurses' maths: researching a practical approach.
Wilson, Ann
To compare a new practical maths test with a written maths test. The tests were undertaken by qualified nurses training for intravenous drug administration, a skill dependent on maths accuracy. The literature showed that the higher education institutes (HEIs) that provide nurse training use traditional maths tests, a practical way of testing maths had not been described. Fifty five nurses undertook two maths tests based on intravenous drug calculations. One was a traditional written test. The second was a new type of test using a simulated clinical environment. All participants were also interviewed one week later to ascertain their thoughts and feelings about the tests. There was a significant improvement in maths test scores for those nurses who took the practical maths test first. It is suggested that this is because it improved their conceptualisation skills and thus helped them to achieve accuracy in their calculations. Written maths tests are not the best way to help and support nurses in acquiring and improving their maths skills and should be replaced by a more practical approach.
Family Maths and Complexity Theory
Webb, Paul; Austin, Pam
2012-01-01
The importance of family involvement is highlighted by findings that parents’ behaviours, beliefs and attitudes affect children’s behaviour in a major way. The Family Maths programme, which is the focus of this study, provides support for the transformative education practices targeted by the South African Department of Education by offering an intervention which includes teachers, learners and their families in an affirming learning community. In this study participating parents were intervi...
Pierpont, Katherine
2006-01-01
Greg Tang has a resume that could get his foot in the door to a lot of places. A graduate of Harvard with both a B.A. and M.A. in economics, Tang has found success as a business executive, a speechwriter, a software designer and owner of a Tae Kwon Do school. After the publication of his first best-selling book for children, "The Grapes of Math"…
Maths4Stats: Educating teachers
Directory of Open Access Journals (Sweden)
Renette J. Blignaut
2013-02-01
Full Text Available The inadequate nature of the education infrastructure in South Africa has led to poor academic performance at public schools. Problems within schools such as under-qualified teachers and poor teacher performance arise due to the poorly constructed education system in our country. The implementation in 2012 of the Curriculum and Assessment Policy Statement (CAPS at public schools in South Africa saw the further crippling of some teachers, as they were unfamiliar with parts of the CAPS subject content. The Statistics and Population Studies department at the University of the Western Cape was asked to join the Maths4Stats project in 2012. This project was launched by Statistics South Africa in an effort to assist in training the teachers in statistical content within the CAPS Mathematics curricula. The University of the Western Cape’s team would like to share their experience of being part of the Maths4Stats training in the Western Cape. This article focuses on how the training sessions were planned and what the outcomes were. With the knowledge gained from our first Maths4Stats experience, it is recommended that future interventions are still needed to ensure that mathematics teachers become well-informed and confident to teach topics such as data handling, probability and regression analysis.
Productive failure in learning math.
Kapur, Manu
2014-06-01
When learning a new math concept, should learners be first taught the concept and its associated procedures and then solve problems, or solve problems first even if it leads to failure and then be taught the concept and the procedures? Two randomized-controlled studies found that both methods lead to high levels of procedural knowledge. However, students who engaged in problem solving before being taught demonstrated significantly greater conceptual understanding and ability to transfer to novel problems than those who were taught first. The second study further showed that when given an opportunity to learn from the failed problem-solving attempts of their peers, students outperformed those who were taught first, but not those who engaged in problem solving first. Process findings showed that the number of student-generated solutions significantly predicted learning outcomes. These results challenge the conventional practice of direct instruction to teach new math concepts and procedures, and propose the possibility of learning from one's own failed problem-solving attempts or those of others before receiving instruction as alternatives for better math learning. © 2014 Cognitive Science Society, Inc.
Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs
Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel
2013-03-01
Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.
Jeffrey J. Green; Courtenay C. Stone; Abera Zegeye; Thomas A. Charles
2007-01-01
We use a binary probit model to assess the impact of several changes in math prerequisites on student performance in an undergraduate business statistics course. While the initial prerequisites did not necessarily provide students with the necessary math skills, our study, the first to examine the effect of math prerequisite changes, shows that these changes were deleterious to student performance. Our results helped convince the College of Business to change the math prerequisite again begin...
Inhibition Performance in Children with Math Disabilities
Winegar, Kathryn Lileth
2013-01-01
This study examined the inhibition deficit hypothesis in children with math disabilities (MD). Children with and without MD were compared on two inhibition tasks that included the random generation of numbers and letters. The results addressed three hypotheses. Weak support was found for the first hypothesis which stated difficulties related to inhibition are significantly related to math performance. I found partial support for this hypothesis in that inhibition was related to math problem s...
Briefing paper for universities on Core Maths
Glaister, Paul
2015-01-01
This briefing paper outlines the rationale for and development of the new Core Maths qualifications, the characteristics of Core Maths, and why Core Maths is important for higher education. It is part of a communication to university vice-chancellors from the Department for Business, Innovation and Skills (BIS) comprising this paper and a joint Ministerial letter from Jo Johnson, Minister of State for Universities and Science in BIS, and Nick Gibb, Minister of State for Schools in the Departm...
Teachers’ ability in using math learning media
Masniladevi; Prahmana, R. C. I.; Helsa, Y.; Dalais, M.
2017-12-01
The studies aim to enhance teachers’ knowledge and skill in making math instructional media, develop math instructional media, train and assist the use of instructional media in learning math in the classroom. The method used in the activities adopted the pattern of preventive implementation, planning stage, program implementation, observation and evaluation and reflection. The research results show that the evaluation of teachers’ ability is still in average category. The result required more intensive training.
Numbers and other math ideas come alive
Pappas, Theoni
2012-01-01
Most people don't think about numbers, or take them for granted. For the average person numbers are looked upon as cold, clinical, inanimate objects. Math ideas are viewed as something to get a job done or a problem solved. Get ready for a big surprise with Numbers and Other Math Ideas Come Alive. Pappas explores mathematical ideas by looking behind the scenes of what numbers, points, lines, and other concepts are saying and thinking. In each story, properties and characteristics of math ideas are entertainingly uncovered and explained through the dialogues and actions of its math
The Impact of MOVE IT Math(TM) and Traditional Textbook Instruction on Math Achievement Scores
Bennett, Angela Stephens
2010-01-01
One recommendation of government, education, and business leaders is an increased emphasis on math and science instruction in public schools. The purpose of this quantitative study using a posttest, quasi-experimental design was to determine if the Math Opportunities, Valuable Experiences, and Innovative Teaching (MOVE IT Math(TM)) program…
The Effectiveness of Using STAR Math to Improve PSSA Math Scores
Holub, Sherry L.
2017-01-01
This is a quantitative study examining whether STAR Math, a student monitoring system, can improve PSSA Math scores. The experimental school used STAR Math during the 2015-2016 school year in grouping students for remediation and intervention. The control school used traditional curriculum measures to group students for remediation and…
Using Brief Guided Imagery to Reduce Math Anxiety and Improve Math Performance: A Pilot Study
Henslee, Amber M.; Klein, Brandi A.
2017-01-01
The objective of this study was to investigate whether brief guided imagery could provide a short-term reduction in math anxiety and improve math performance. Undergraduates (N = 581) were screened for math anxiety, and the highest and lowest quartiles were recruited to participate in a lab-based study. Participants were assigned to a brief guided…
Advanced Math Course Taking: Effects on Math Achievement and College Enrollment
Byun, Soo-yong; Irvin, Matthew J.; Bell, Bethany A.
2015-01-01
Using data from the Educational Longitudinal Study of 2002-2006, the authors investigated the effects of advanced math course taking on math achievement and college enrollment and how such effects varied by socioeconomic status and race/ethnicity. Results from propensity score matching and sensitivity analyses showed that advanced math course…
Using an Intelligent Tutor and Math Fluency Training to Improve Math Performance
Arroyo, Ivon; Royer, James M.; Woolf, Beverly P.
2011-01-01
This article integrates research in intelligent tutors with psychology studies of memory and math fluency (the speed to retrieve or calculate answers to basic math operations). It describes the impact of computer software designed to improve either strategic behavior or math fluency. Both competencies are key to improved performance and both…
Math Performance as a Function of Math Anxiety and Arousal Performance Theory
Farnsworth, Donald M., Jr.
2009-01-01
While research continues to link increased math anxiety with reduced working memory, the exact nature of the relationship remains elusive. In addition, research regarding the extent of the impact math anxiety has on working memory is contradictory. This research clarifies the directional nature of math anxiety as it pertains to working memory, and…
Justicia-Galiano, M. José; Martín-Puga, M. Eva; Linares, Rocío; Pelegrina, Santiago
2017-01-01
Background: Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. Aims: This study aimed to investigate the role of two possible…
Timmerman, H.L.; Toll, S.W.M.; van Luit, J.E.H.
2017-01-01
:This study examines the relation between math self-concept, test and math anxiety, achievement motivation, and math achievement in typically developing 12 to 14-year-old adolescents (N = 108) from a school for secondary education in the Netherlands. Data was obtained using a math speed test,
Ramirez, Gerardo; Chang, Hyesang; Maloney, Erin A; Levine, Susan C; Beilock, Sian L
2016-01-01
Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers. Copyright © 2015 Elsevier Inc. All rights reserved.
Mathematics anxiety: separating the math from the anxiety.
Lyons, Ian M; Beilock, Sian L
2012-09-01
Anxiety about math is tied to low math grades and standardized test scores, yet not all math-anxious individuals perform equally poorly in math. We used functional magnetic resonance imaging to separate neural activity during the anticipation of doing math from activity during math performance itself. For higher (but not lower) math-anxious individuals, increased activity in frontoparietal regions when simply anticipating doing math mitigated math-specific performance deficits. This network included bilateral inferior frontal junction, a region involved in cognitive control and reappraisal of negative emotional responses. Furthermore, the relation between frontoparietal anticipatory activity and highly math-anxious individuals' math deficits was fully mediated (or accounted for) by activity in caudate, nucleus accumbens, and hippocampus during math performance. These subcortical regions are important for coordinating task demands and motivational factors during skill execution. Individual differences in how math-anxious individuals recruit cognitive control resources prior to doing math and motivational resources during math performance predict the extent of their math deficits. This work suggests that educational interventions emphasizing control of negative emotional responses to math stimuli (rather than merely additional math training) will be most effective in revealing a population of mathematically competent individuals, who might otherwise go undiscovered.
Girls Talk Math - Engaging Girls Through Math Media
Bernardi, Francesca; Morgan, Katrina
2017-11-01
``Girls Talk Math: Engaging Girls through Math Media'' is a free two-week long summer day camp for high-school girls in the Triangle area of NC. This past June the camp had its second run thanks to renewed funding from the Mathematical Association of America Tensor Women and Mathematics Grant. The camp involved 35 local high-school students who identify as female. Campers complete challenging problem sets and research the life of a female scientist who worked on similar problems. They report their work in a blog post and record a podcast about the scientist they researched. The curriculum has been developed by Mathematics graduate students at UNC from an inquiry based learning perspective; problem sets topics include some theoretical mathematics, but also more applied physics-based material. Campers worked on fluid dynamics, special relativity, and quantum mechanics problem sets which included experiments. The camp has received positive feedback from the local community and the second run saw a large increase in the number of participants. The program is evaluated using pre and post surveys, which measure campers' confidence and interest in pursuing higher level courses in STEM. The results from the past two summers have been encouraging. Mathematical Association of America Tensor Women and Mathematics Grant.
Teschke, Olaf; Werner, Dirk
2011-01-01
Founded in 1931 by Otto Neugebauer as the printed documentation service "Zentralblatt fur Mathematik und ihre Grenzgebiete", Zentralblatt MATH (ZBMATH) celebrates its 80th anniversary in 2011. Today it is the most comprehensive and active reference database in pure and applied mathematics worldwide. Many prominent mathematicians have been involved in this service as reviewers or editors and have, like all mathematicians, left their footprints in ZBMATH, in a long list of entries describing all of their research publications in mathematics. This book provides one review from each of t
Kidd, Jim
2014-01-01
Maths for the Building Trades provides students of all ages with an easy-to-understand guide to the fundamental mathematics that is required in their area of study and beyond. It can be used as a learning programme on its own or in conjunction with the textbooks associated with their chosen trade. The book assumes only a minimum level of mathematical knowledge and thoroughly covers the basic rules. It then goes on to fully explain some of the more complex areas in which the student will be required to demonstrate competence.
Combining Basic Business Math and Electronic Calculators.
Merchant, Ronald
As a means of alleviating math anxiety among business students and of improving their business machine skills, Spokane Falls Community College offers a course in which basic business math skills are mastered through the use of desk top calculators. The self-paced course, which accommodates varying student skill levels, requires students to: (1)…
Explaining Math Achievement: Personality, Motivation, and Trust
Kilic-Bebek, Ebru
2009-01-01
This study investigated the statistical significance of student trust next to the well-tested constructs of personality and motivation to determine whether trust is a significant predictor of course achievement in college math courses. Participants were 175 students who were taking undergraduate math courses in an urban public university. The…
Childcare Quality and Preschoolers' Math Development
Choi, Ji Young; Dobbs-Oates, Jennifer
2014-01-01
This study examined the associations between four types of childcare quality (i.e. teacher-child closeness, frequency of math-related activities, and teacher education and experience) and preschoolers' residualised gain in math over the course of six months. Additionally, potential interactions between teacher-child closeness and other indicators…
Football to Improve Math and Reading Performance
Van Klaveren, Chris; De Witte, Kristof
2015-01-01
Schools frequently increase the instructional time to improve primary school children's math and reading skills. There is, however, little evidence that math and reading skills are effectively improved by these instruction-time increases. This study evaluates "Playing for Success" (PfS), an extended school day program for underachieving…
Five Keys for Teaching Mental Math
Olsen, James R.
2015-01-01
After studying the Common Core State Standards for Mathematics (CCSSM) and brain-based learning research, James Olsen believes mental math instruction in secondary school mathematics (grades 7-12) and in teacher education programs needs increased attention. The purpose of this article is to share some keys for teaching mental math. Olsen also…
Mini-Portfolio on Math and Science.
Teaching PreK-8, 1996
1996-01-01
Presents six articles dealing with math and science education: "Sneaker Geometry" (Jack George), "Fairs with a Flair" (Diane McCarty), "Generating Excitement with Math Projects" (Jeffrey Kostecky and Louis Roe), "Playing with Numbers" (Diana Smith), "When Student Teachers Want to Do Hands-On Science" (Betsy Feldkamp-Price), and "Science ala Carte"…
Football to improve math and reading performance
Van Klaveren, Chris; De Witte, Kristof
2015-01-01
Schools frequently increase the instructional time to improve primary school children's math and reading skills. There is, however, little evidence that math and reading skills are effectively improved by these instruction-time increases. This study evaluates ‘Playing for Success’ (PfS), an extended
Decreasing Math Anxiety in College Students
Perry, Andrew B.
2004-01-01
This paper examines the phenomenon of mathematics anxiety in contemporary college and university students. Forms of math anxiety range from moderate test anxiety to extreme anxiety including physiological symptoms such as nausea. For each of several types of math anxiety, one or more case studies is analyzed. Selected strategies for coping with…
A virtual test of screening technology based on the AGEIA PhysX
Energy Technology Data Exchange (ETDEWEB)
Ai-min Li; Rui-ling Lv; Chu-sheng Liu [China University of Mining and Technology, Xuzhou (China). School of Mechanical and Electrical Engineering
2008-06-15
The authors have created a virtual test of vibration particle-screening using Autodesk's 3ds Max software, the MAXScript scripting language and the AGEIA PhysX physics processing unit (PPU). The affect of various parameters on screening efficiency were modeled. The parameters included vibration amplitude, frequency and direction. The length and inclination of the vibrating surface were also varied. The virtual experiment is in basic agreement with results predicted from screening theory. This shows that the virtual screener can be used for preliminary investigations and the results used to evaluate screen design. In addition it can help with theoretical research. 11 refs., 7 figs., 7 tabs.
Mercer, Gary J.
This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.
Phylogeny of the TRAF/MATH domain.
Zapata, Juan M; Martínez-García, Vanesa; Lefebvre, Sophie
2007-01-01
The TNF-receptor associated factor (TRAF) domain (TD), also known as the meprin and TRAF-C homology (MATH) domain is a fold of seven anti-parallel p-helices that participates in protein-protein interactions. This fold is broadly represented among eukaryotes, where it is found associated with a discrete set of protein-domains. Virtually all protein families encompassing a TRAF/MATH domain seem to be involved in the regulation of protein processing and ubiquitination, strongly suggesting a parallel evolution of the TRAF/MATH domain and certain proteolysis pathways in eukaryotes. The restricted number of living organisms for which we have information of their genetic and protein make-up limits the scope and analysis of the MATH domain in evolution. However, the available information allows us to get a glimpse on the origins, distribution and evolution of the TRAF/MATH domain, which will be overviewed in this chapter.
Engaging Math-Avoidant College Students
Directory of Open Access Journals (Sweden)
M. Paul Latiolais
2009-07-01
Full Text Available This paper is an informal, personal account of how we, as two college teachers, became interested in math anxiety, decided to explore it amongst students at our institution in order to inform our teaching, and became convinced that the massive problem is math avoidance. We tried discussion groups, but few students attended, although those that did made useful suggestions. Thus informed, we designed an innovative course, Confronting College Mathematics as a Humanities course with the possibility of credit toward the math requirement, but it was undersubscribed in its first offering and had to be canceled. How can we get college students who avoid math to break through the barrier of math avoidance? We have now begun to explore a new approach: Second Life, where students can engage math—and quantitative literacy—virtually, and anonymously.
Directory of Open Access Journals (Sweden)
Srinivas Jangili
2016-09-01
Full Text Available The present study investigates the entropy generation in magnetized-micropolar fluid flow in between two vertical concentric rotating cylinders of infinite length. The surface of the inner cylinder is heated while the surface of the outer cylinder is cooled. Internal heat generation is incorporated. The Eringen thermo-micropolar fluid model is used to simulate the micro-structural rheological flow characteristics in the annulus region. The flow is subjected to a constant, static, axial magnetic field. The surface of the inner cylinder is prescribed to be isothermal whereas the surface of the outer cylinder was exposed to convection cooling. The conservation equations are normalized and closed-form solutions are obtained for the velocity, microrotation, temperature, entropy generation number, Bejan number and total entropy generation rate. The effects of the relevant parameters are displayed graphically. It is observed that the external magnetic force enhances the entropy production rate and it is maximum in the proximity of the inner cylinder. This causes more wear and tear at the surface of the inner cylinder. Greater Hartmann number also elevates microrotation values in the entire annulus region. The study is relevant to optimization of chemical engineering processes, nuclear engineering cooling systems and propulsion systems utilizing non-Newtonian fluids and magnetohydrodynamics.
Strengthening maths learning dispositions through ‘math clubs’
Directory of Open Access Journals (Sweden)
Mellony Graven
2016-02-01
Full Text Available In this paper, I argue that the establishment of after-school mathematics clubs in early grades holds rich potential for supporting the development of increasingly participatory and sensemaking maths learning dispositions. Within the South African Numeracy Chair project, lead by the author, multiple after-school mathematics clubs have been set up for learners in Grades 3–6 across Eastern Cape schools. These clubs are a complementary initiative to teacher development, aimed at improving low levels of numeracy learning across the majority of schools in the province. Two sources of data, learner interviews and teacher questionnaires, from one case study club, are shared in this article to illuminate the potential such clubs hold in developing increasingly participatory mathematics learning dispositions.
Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School
Daches Cohen, Lital; Rubinsten, Orly
2017-01-01
Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother’s math anxiety and maternal behaviors (environmental factors); (b) children’s arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed. PMID:29180973
Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School.
Daches Cohen, Lital; Rubinsten, Orly
2017-01-01
Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother's math anxiety and maternal behaviors (environmental factors); (b) children's arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children's math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers' attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children's skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.
Math Anxiety Is Related to Some, but Not All, Experiences with Math.
O'Leary, Krystle; Fitzpatrick, Cheryll L; Hallett, Darcy
2017-01-01
Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples) were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.
Math Anxiety Is Related to Some, but Not All, Experiences with Math
Directory of Open Access Journals (Sweden)
Krystle O'Leary
2017-12-01
Full Text Available Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.
Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School
Directory of Open Access Journals (Sweden)
Lital Daches Cohen
2017-11-01
Full Text Available Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a mother’s math anxiety and maternal behaviors (environmental factors; (b children’s arithmetic skills (cognitive factors; and (c intrinsic math motivation (personal factor. A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.
Enhancing Mathematical Communication for Virtual Math Teams
Directory of Open Access Journals (Sweden)
Gerry Stahl
2010-06-01
Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies the online math discourse that takes place during sessions of virtual math teams working on open-ended problem-solving tasks. In particular, it investigates methods of group cognition that are employed by teams in this setting. The VMT environment currently integrates social networking, synchronous text chat, a shared whiteboard for drawing, web browsers and an asynchronous wiki for exchanging findings within the larger community. A simple version of MathML is supported in the whiteboard, chat and wiki for displaying mathematical expressions. The VMT Project is currently integrating the dynamic mathematics application, GeoGebra, into its collaboration environment. This will create a multi-user version of GeoGebra, which can be used in concert with the chat, web browsers, curricular topics and wiki repository.
Villani, Cédric; Moncorgé, Vincent
2014-01-01
Comment travaillent les mathématiciens ? C'est peut-être en se promenant dans les couloirs de la première des " maisons des mathématiques " de France, l'institut Henri Poincaré, que l'on trouvera quelques réponses. Le mathématicien Cédric Villani et le physicien Jean-Philippe Uzan nous invitent à découvrir cette discipline et ses acteurs. Au fil des pages on suit, à travers de superbes images signées du photographe Vincent Moncorgé, la façon dont se fabrique cette science qui reste souvent mystérieuse. Toutes les dimensions, scientifique, esthétique et poétique, des mathématiques sont convoquées grâce à des regards croisés : la diversité des inspirations des chercheurs, la source de leur créativité, l'imaginaire littéraire et artistique des mathématiques, la drôle de tribu des mathématiciens. Un voyage au cœur de cette " auberge espagnole " des mathématiques, campus " à la française " accueillant des centaines de chercheurs du monde entier, devenu un lieu d'émulation et d'éc...
The neurodevelopmental basis of math anxiety.
Young, Christina B; Wu, Sarah S; Menon, Vinod
2012-05-01
Math anxiety is a negative emotional reaction to situations involving mathematical problem solving. Math anxiety has a detrimental impact on an individual's long-term professional success, but its neurodevelopmental origins are unknown. In a functional MRI study on 7- to 9-year-old children, we showed that math anxiety was associated with hyperactivity in right amygdala regions that are important for processing negative emotions. In addition, we found that math anxiety was associated with reduced activity in posterior parietal and dorsolateral prefrontal cortex regions involved in mathematical reasoning. Multivariate classification analysis revealed distinct multivoxel activity patterns, which were independent of overall activation levels in the right amygdala. Furthermore, effective connectivity between the amygdala and ventromedial prefrontal cortex regions that regulate negative emotions was elevated in children with math anxiety. These effects were specific to math anxiety and unrelated to general anxiety, intelligence, working memory, or reading ability. Our study identified the neural correlates of math anxiety for the first time, and our findings have significant implications for its early identification and treatment.
Math-Gender Stereotypes in Elementary School Children
Cvencek, Dario; Meltzoff, Andrew N.; Greenwald, Anthony G.
2011-01-01
A total of 247 American children between 6 and 10 years of age (126 girls and 121 boys) completed Implicit Association Tests and explicit self-report measures assessing the association of (a) "me" with "male" (gender identity), (b) "male" with "math" (math-gender stereotype), and (c) "me" with "math" (math self-concept). Two findings emerged.…
More than Counting: Whole Math Activities for Preschool and Kindergarten.
Moomaw, Sally; Hieronymus, Brenda
This book presents extensive sampling of a "whole math" curriculum for preschool and kindergarten children ages 3 and older. An introductory chapter is followed by seven curriculum chapters that discuss math manipulatives, collections, grid games, path games, graphing, math and gross-motor play, and the "math suitcase." Each chapter is divided…
Math and Gender: Is Math a Route to a High-Powered Career?
DEFF Research Database (Denmark)
Joensen, Juanna Schrøter; Nielsen, Helena Skyt
There is a large gender gap in advanced math coursework in high school that many believe exists because girls are discouraged from taking math courses. In this paper, we exploit an institutional change that reduced the costs of acquiring advanced high school math to determine if access is, in fact......, the mechanism - in particular for girls at the top of the math ability distribution. By estimating marginal treatment effects of acquiring advanced math qualifications, we document substantial beneficial wage effects from encouraging even more females to opt for these qualifications. Our analysis suggests...... that the beneficial effect comes from accelerating graduation and attracting females to high-paid or traditionally male-dominated career tracks and to CEO positions. Our results may be reconciled with experimental and empirical evidence suggesting there is a pool of unexploited math talent among high ability girls...
Jansen, B.R.J.; Schmitz, E.A.; van der Maas, H.L.J.
2016-01-01
This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence
Looney, Lisa; Perry, David; Steck, Andy
2017-01-01
Teachers' beliefs about mathematics can play a role in their teaching effectiveness (Bandura, 1993). Negative attitudes toward math (e.g., math anxiety) or low self-efficacy beliefs for teaching math can act as barriers to the teaching process, impacting the achievement and math beliefs of students (Beilock, Gunderson, Ramirez, & Levine, 2010;…
Erturan, Selin; Jansen, Brenda
2015-01-01
Gender differences in children's emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages 7-15 years). In Study 2, perceived math…
Erturan, S; Jansen, B.
2015-01-01
GGender differences in children’s emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages
Jansen, Brenda R. J.; De Lange, Eva; Van der Molen, Mariet J.
2013-01-01
Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an…
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Uday Narayan, E-mail: unghosh1@rediffmail.com; Chatterjee, Prasanta; Roychoudhury, Rajkumar [Department of Mathematics, Siksha Bhavana, Visva Bharati, Santiniketan 731235 (India)
2015-07-15
Recently Gun Li et al. discussed “Effects of damping solitary wave in a viscosity bounded plasma” [Phys. Plasmas 21, 022118 (2014)]. The paper contains some serious errors which have been pointed out in this Comment.
Neural correlates of math anxiety – an overview and implications
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that pr...
An absence theorem for static wave maps in the Schwarzschild-AdS spacetime
International Nuclear Information System (INIS)
Xie Naqing
2005-01-01
In this Letter, we obtain an absence theorem for static wave maps defined from the Schwarzschild-anti de Sitter spacetime into any Riemannian manifold. This work extends the results in [Chinese Ann. Math. B 5 (1984) 737, Lett. Math. Phys. 14 (1987) 343
Symbolic math for computation of radiation shielding
International Nuclear Information System (INIS)
Suman, Vitisha; Datta, D.; Sarkar, P.K.; Kushwaha, H.S.
2010-01-01
Radiation transport calculations for shielding studies in the field of accelerator technology often involve intensive numerical computations. Traditionally, radiation transport equation is solved using finite difference scheme or advanced finite element method with respect to specific initial and boundary conditions suitable for the geometry of the problem. All these computations need CPU intensive computer codes for accurate calculation of scalar and angular fluxes. Computation using symbols of the analytical expression representing the transport equation as objects is an enhanced numerical technique in which the computation is completely algorithm and data oriented. Algorithm on the basis of symbolic math architecture is developed using Symbolic math toolbox of MATLAB software. Present paper describes the symbolic math algorithm and its application as a case study in which shielding calculation of rectangular slab geometry is studied for a line source of specific activity. Study of application of symbolic math in this domain evolves a new paradigm compared to the existing computer code such as DORT. (author)
Math: The Gateway to Great Careers
Ploutz-Snyder, Robert
2010-01-01
This slide presentation examines the role of mathematical proficiency and how it relates to advantages in careers. It emphasises the role of math in attaining entrance to college, graduate schools, and a career that is interesting and well paying.
Developing Mathematical Resilience of Prospective Math Teachers
Ariyanto, L.; Herman, T.; Sumarmo, U.; Suryadi, D.
2017-09-01
Prospective math teachers need to develop positive adaptive attitudes toward mathematics that will enable them to continue learning despite having to deal with obstacles and difficulties. This research focuses on the resilience improvement of the prospective mathematic teachers after being treated using problem-based learning based on their basic knowledge on mathematic and their overall knowledge on math. This research used only one group for pre-test and post-test. The result of this research shows that there is improvement on prospective teachers’ resilience after they were given treatment using problem-based learning. One of the factors causing the resilience improvement of the prospective mathematic teachers is the instructions on students’ work sheet. In the instructions, stud ents were asked to write difficulties in solving math problems as well as write down the solution they take to overcome them. This research can be used as a reference for other researchers who want to do the same research related on students’ resiliency o n math and or math lecturers to improve the resilience of prospective teachers to be resilient teachers on math in the future.
Ganley, Colleen M.; Purpura, David J.
2016-01-01
There is a growing literature concerning the role of the home math environment in children’s math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children’s math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children’s skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills. PMID:28005925
Steffens, Melanie C.; Jelenec, Petra; Noack, Peter
2010-01-01
Many models assume that habitual human behavior is guided by spontaneous, automatic, or implicit processes rather than by deliberate, rule-based, or explicit processes. Thus, math-ability self-concepts and math performance could be related to implicit math-gender stereotypes in addition to explicit stereotypes. Two studies assessed at what age…
Bahr, Peter Riley
2013-01-01
Nationally, a majority of community college students require remedial assistance with mathematics, but comparatively few students who begin the remedial math sequence ultimately complete it and achieve college-level math competency. The academic outcomes of students who begin the sequence but do not complete it are disproportionately unfavorable:…
Math Tracks: What Pace in Math Is Best for the Middle School Child?
Morrison, Michelle
2011-01-01
Mathematics is a critical part of academic preparation of the middle school child, or, as Dr. Maria Montessori would refer to them, children in the third plane of development. Montessori educators are sincere in their endeavors not only to prepare young students for further studies of math and the application of math in their world and careers,…
Investigating Validity of Math 105 as Prerequisite to Math 201 among Undergraduate Students, Nigeria
Zakariya, Yusuf F.
2016-01-01
In this study, the author examined the validity of MATH 105 as a prerequisite to MATH 201. The data for this study was extracted directly from the examination results logic of the university. Descriptive statistics in form of correlations and linear regressions were used to analyze the obtained data. Three research questions were formulated and…
Math and Movement: Practical Ways to Incorporate Math into Physical Education
Wade, Marcia
2016-01-01
Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…
The Effects of the Elevate Math Summer Program on Math Achievement and Algebra Readiness
Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal
2016-01-01
To raise math success rates in middle school, many schools and districts have implemented summer math programs designed to improve student preparation for algebra content in grade 8. However, little is known about the effectiveness of these programs. While students who participate typically experience learning gains, there is little rigorous…
Gender compatibility, math-gender stereotypes, and self-concepts in math and physics
Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.
Evaluation of the MIND Research Institute's Spatial-Temporal Math (ST Math) Program in California
Wendt, Staci; Rice, John; Nakamoto, Jonathan
2014-01-01
The MIND Research Institute contracted with the Evaluation Research Program at WestEd to conduct an independent assessment of mathematics outcomes in elementary school grades across California that were provided with the ST Math program. Spatial-Temporal (ST) Math is a game-based instructional software designed to boost K-5 and secondary-level…
Literacy Specialists in Math Class! Closing the Achievement Gap on State Math Assessments
DiGisi, Lori L.; Fleming, Dianne
2005-01-01
Sixth and eighth grade students who are English language learners must be able to read and interpret 39 math word problems in order to successfully calculate the answers on the Massachusetts state math assessment (MCAS). The first year that MCAS was administered, many ELL students read the questions, found them confusing, and left them blank,…
Math Academy: Are You Game? Explorations in Probability. Supplemental Math Materials for Grades 3-6
Rimbey, Kimberly
2007-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the themed program "Are You Game? Math Academy--Explorations in Probability," which teachers can use to…
Gender Compatibility, Math-Gender Stereotypes, and Self-Concepts in Math and Physics
Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut
2016-01-01
Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and…
Geist, Eugene
2015-01-01
This study was conducted to examine the attitudes of Head Start teachers toward mathematics and how it may influence how and what they teach in the classroom. In general, the findings of this study can be summarized as this: 1) Math anxiety affects how teachers assess their ability at mathematics. The more math anxiety they report, the lower they…
Math Is Like a Scary Movie? Helping Young People Overcome Math Anxiety
Kulkin, Margaret
2016-01-01
Afterschool teachers who tutor students or provide homework help have a unique opportunity to help students overcome the social or emotional barriers that so often block learning. They can embrace a creative and investigative approach to math learning. Margaret Kulkin's interest in being a math attitude "myth-buster" led her to apply to…
PyDecay/GraphPhys: A Unified Language and Storage System for Particle Decay Process Descriptions
Energy Technology Data Exchange (ETDEWEB)
Dunietz, Jesse N.; /MIT /SLAC
2011-06-22
To ease the tasks of Monte Carlo (MC) simulation and event reconstruction (i.e. inferring particle-decay events from experimental data) for long-term BaBar data preservation and analysis, the following software components have been designed: a language ('GraphPhys') for specifying decay processes, common to both simulation and data analysis, allowing arbitrary parameters on particles, decays, and entire processes; an automated visualization tool to show graphically what decays have been specified; and a searchable database storage mechanism for decay specifications. Unlike HepML, a proposed XML standard for HEP metadata, the specification language is designed not for data interchange between computer systems, but rather for direct manipulation by human beings as well as computers. The components are interoperable: the information parsed from files in the specification language can easily be rendered as an image by the visualization package, and conversion between decay representations was implemented. Several proof-of-concept command-line tools were built based on this framework. Applications include building easier and more efficient interfaces to existing analysis tools for current projects (e.g. BaBar/BESII), providing a framework for analyses in future experimental settings (e.g. LHC/SuperB), and outreach programs that involve giving students access to BaBar data and analysis tools to give them a hands-on feel for scientific analysis.
Improving Student Achievement in Math and Science
Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.
1998-01-01
As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order
The role of expressive writing in math anxiety.
Park, Daeun; Ramirez, Gerardo; Beilock, Sian L
2014-06-01
Math anxiety is a negative affective reaction to situations involving math. Previous work demonstrates that math anxiety can negatively impact math problem solving by creating performance-related worries that disrupt the working memory needed for the task at hand. By leveraging knowledge about the mechanism underlying the math anxiety-performance relationship, we tested the effectiveness of a short expressive writing intervention that has been shown to reduce intrusive thoughts and improve working memory availability. Students (N = 80) varying in math anxiety were asked to sit quietly (control group) prior to completing difficulty-matched math and word problems or to write about their thoughts and feelings regarding the exam they were about to take (expressive writing group). For the control group, high math-anxious individuals (HMAs) performed significantly worse on the math problems than low math-anxious students (LMAs). In the expressive writing group, however, this difference in math performance across HMAs and LMAs was significantly reduced. Among HMAs, the use of words related to anxiety, cause, and insight in their writing was positively related to math performance. Expressive writing boosts the performance of anxious students in math-testing situations. PsycINFO Database Record (c) 2014 APA, all rights reserved.
‘PhysTrack’: a Matlab based environment for video tracking of kinematics in the physics laboratory
Umar Hassan, Muhammad; Sabieh Anwar, Muhammad
2017-07-01
In the past two decades, several computer software tools have been developed to investigate the motion of moving bodies in physics laboratories. In this article we report a Matlab based video tracking library, PhysTrack, primarily designed to investigate kinematics. We compare PhysTrack with other commonly available video tracking tools and outline its salient features. The general methodology of the whole video tracking process is described with a step by step explanation of several functionalities. Furthermore, results of some real physics experiments are also provided to demonstrate the working of the automated video tracking, data extraction, data analysis and presentation tools that come with this development environment. We believe that PhysTrack will be valuable for the large community of physics teachers and students already employing Matlab.
Gross, B
1998-01-01
In 1994, when the software maker Knowledge Adventure decided to spin out a new venture--Worlds, Incorporated--founder Bill Gross expected the worst. He had argued with the board that it was in KA's best interests to maintain a controlling ownership stake in Worlds, whose powerful new software technology had enormous revenue potential. But the board prevailed, and KA took only a 20% ownership in the new company, giving the rest to Worlds' employees. Within a year, the company's performance had surpassed all expectations, and instead of owning 80% of a $5 million business, KA owned 20% of a $77 million business. The arithmetic may have been counterintuitive, but the lesson was clear. When KA let go of Worlds and gave its employees near total ownership, the company unleashed a new level of employee performance. That, in turn, led to the creation of economic value that more than made up for the equity KA had surrendered. So compelling was this "new math of ownership" that Gross founded a new company, Idealab, on this principle. The company, which develops ideas for Internet-based businesses and seeds the most promising ones, takes no more than a 49% equity stake in the new ventures and gives at least 1% of ownership to each employee. For Gross, this radical approach to ownership is the key to inspiring stellar performances. In part, employee-owners are motivated by their potential to earn great financial reward. But the drama of ownership, he argues, is even more important. In that drama, employees become personally involved in the struggle to outdo the competition and emerge victorious.
International Nuclear Information System (INIS)
Susi, T.; Kotakoski, J.
2016-01-01
In an interesting recent study [Allen et al., J. Appl. Phys. 118, 074302 (2015)] (see also their Erratum [Allen et al., J. Appl. Phys. 118, 159902 (2015)]), Allen and co-workers measured the mean square amplitudes of graphene lattice vibrations between 100 and 1300 K and used a simplified theoretical approximation for the acoustic phonon modes to evaluate the maximum phonon wavelengths supported by the lattice. By fitting their data using the smallest wave-vector as the fitting parameter, they found this to be significantly smaller than the physical size of the graphene crystallites
Jansen, Brenda R J; De Lange, Eva; Van der Molen, Mariët J
2013-05-01
Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an MBID-sample using computerized math training. Also, it was investigated whether EF and math performance were related and whether computerized math training had beneficial effects on EF. The sample consisted of a total of 58 adolescents (12-15 years) from special education. Participants were randomly assigned to either the experimental group or a treatment as usual (TAU) group. In the experimental condition, participants received 5 weeks of training. Math performance and EF were assessed before and after the training period. Math performance improved equally in both groups. However, frequently practicing participants improved more than participants in the control group. Visuo-spatial memory skills were positively related to addition and subtraction skills. Transfer effects from math training to EF were absent. It is concluded that math skills may increase if a reasonable effort in practicing math skills is made. The relation between visuo-spatial memory skills provides opportunities for improving math performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Math at home adds up to achievement in school.
Berkowitz, Talia; Schaeffer, Marjorie W; Maloney, Erin A; Peterson, Lori; Gregor, Courtney; Levine, Susan C; Beilock, Sian L
2015-10-09
With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement. Copyright © 2015, American Association for the Advancement of Science.
Elementary School Math Instruction: Can Reading Specialists Assist?
Heinrichs, Audrey S.
1987-01-01
Discusses the contradictions found in recommendations for direction instruction or informal math language development, and some suggestions for practical resolution of disagreements, to enable school reading specialists to provide both background and practical help to classroom instructors teaching math. (HTH)
Minimum-complexity helicopter simulation math model
Heffley, Robert K.; Mnich, Marc A.
1988-01-01
An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.
Essential math and calculations for pharmacy technicians
Reddy, Indra K
2003-01-01
Working with Roman and Arabic NumeralsUsing Fractions and Decimals in Pharmacy MathUsing Ratios, Proportions and Percentages in Dosage CalculationsApplying Systems of MeasurementsInterpreting Medication OrdersIdentifying Prescription Errors and OmissionsWorking with Liquid Dosage FormsWorking with Solid Dosage FormsAdjusting IsotonicityWorking with Buffer and Ionization ValuesDealing with ReconstitutionsDetermining Milliequivalent StrengthsCalculating Caloric Values Determining IV Flow RatesWorking with Insulin and Heparin ProductsAppendices: A: Working with Temperature ConversionsB: Working with Capsule Dosage FormsC: Dealing with Pediatric Dosages D: Understanding Essential Business Math.
The "Parrot Math" Attack on Memorization
Directory of Open Access Journals (Sweden)
Bill Quirk
2013-01-01
Full Text Available Constructivist math educators regularly cite Parrot Math by Thomas C. O'Brien. Although this paper promotes constructivist "activity-based" learning over direct instruction, it's primary claim to fame is the open hostility to memorization. Professor O'Brien rejects "memorization and parrot-like drill " in favor of "children's invented strategies." He references a paper by Kamii and Dominick as evidence of "considerable research" showing that mastery of the standard algorithms of arithmetic is harmful for children. [See The Bogus Research in Kamii and Dominick's Harmful Algorithms Papers
Strategies for Reducing Math Anxiety. Information Capsule. Volume 1102
Blazer, Christie
2011-01-01
Approximately 93 percent of Americans indicate that they experience some level of math anxiety. Math anxiety is defined as negative emotions that interfere with the solving of mathematical problems. Studies have found that some students who perform poorly on math assessments actually have a full understanding of the concepts being tested; however,…
Supporting English Language Learners in Math Class, Grades K-2
Bresser, Rusty; Melanese, Kathy; Sphar, Christine
2009-01-01
More than 10 percent of the students in our nation's public schools are English language learners, and this number grows each year. Many of these students are falling behind in math. "Supporting English Language Learners in Math Class, Grades K-2" outlines the challenges ELL students face when learning math and provides a wealth of specific…
Firefighter Math - a web-based learning tool
Dan Jimenez
2010-01-01
Firefighter Math is a web based interactive resource that was developed to help prepare wildland fire personnel for math based training courses. The website can also be used as a refresher for fire calculations including slope, flame length, relative humidity, flow rates, unit conversion, etc. The website is designed to start with basic math refresher skills and...
Specific Cognitive Predictors of Early Math Problem Solving
Decker, Scott L.; Roberts, Alycia M.
2015-01-01
Development of early math skill depends on a prerequisite level of cognitive development. Identification of specific cognitive skills that are important for math development may not only inform instructional approaches but also inform assessment approaches to identifying children with specific learning problems in math. This study investigated the…
Mathematizing: An Emergent Math Curriculum Approach for Young Children
Rosales, Allen C.
2015-01-01
Based on years of research with early childhood teachers, author Allen Rosales provides an approach to create an emergent math curriculum that integrates children's interests with math concepts. The mathematizing approach is different from traditional math curriculums, as it immerses children in a process that is designed to develop their…
Learning to Be a Math Teacher: What Knowledge Is Essential?
Reid, Mary; Reid, Steven
2017-01-01
This study critically examined the math content knowledge (MCK) of teacher candidates (TCs) enrolled in a two-year Master of Teaching (MT) degree. Teachers require a solid math knowledge base in order to support students' achievement. Provincial and international math assessments have been of major concern in Ontario, Canada, due to declining…
Formula for Success: Engaging Families in Early Math Learning
Global Family Research Project, 2017
2017-01-01
Early math ability is one of the best predictors of children's later success in school. Because children's learning begins in the home, families are fundamental in shaping children's interest and skills in math. The experience of learning and doing math, however, looks different from the instruction that was offered when most adults were in…
How to Make the Most of Math Manipulatives.
Burns, Marilyn
1996-01-01
A discussion of how to use math manipulatives to teach elementary students focuses on essential program elements: what math manipulatives are and why they are used, common questions about math manipulatives, how one teacher introduced the geoboard into the classroom, and pattern block activities. (SM)
District Finds the Right Equation to Improve Math Instruction
Holmstrom, Annette
2010-01-01
The math problem is common to most U.S. school districts, and education leaders are well aware that U.S. math achievement lags far behind many other countries in the world. University Place (Washington) School District Superintendent Patti Banks found the conspicuous income gap for math scores even more disturbing. In her school district, only 23%…
Impact of Math Snacks Games on Students' Conceptual Understanding
Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.
2016-01-01
This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…
Adib, Artur B.
2009-06-01
It has recently been argued that a self-consistency condition involving the Jarzynski equality (JE) and the Crooks fluctuation theorem (CFT) is violated for a simple Brownian process [L. Y. Chen, J. Chem. Phys.129, 091101 (2008)]. This note adopts the definitions in the original formulation of the JE and CFT and demonstrates the contrary.
International Nuclear Information System (INIS)
Krommes, J.A.
1985-11-01
The author critiques the model of tokamak edge turbulence by P.W. Terry and P.H. Diamond (Phys. Fluids 28, 1419, 1985). The critique includes a discussion of the physical basis, consistency and quantitative accuracy of the Terry-Diamond model. 19 refs
Istiyono, Edi
2017-08-01
The purpose of this research is to describe the results of higher order thinking skills in physics (PhysHOTS) measurement including: (1) percentage of PhysHOTS level and (2) percentage of the domination of response in the category of students in each analyzing, evaluating, and creating skill. There were 404 10th grade students in Bantul District as the respondents of this research. The instrument used for measurement was PhysReMChoTHOTS. It was divided into two sets consisting of 44 items and including 8 anchor items stated valid by a Physicist, Physics Education Expert, and Physics Education Measurement Expert. The instrument was fit to PCM. The reliability coefficient of this test is 0.71, while the difficulty index of the items ranges from -0.61 to 0.51. The results of the measurement show that: (1) The percentage of each category of PhysHOTS for the 10th grade students in Bantul District for the very low, low, medium, high, and very high category is 4.75 %, 40.30 %, 33.45 %, 19.50 %, and 2.00 %, respectively; and (2) The order in analyzing skills, starts from the weakest, is attributing, differentiating and organizing. The order in evaluating skills, starts from the weakest, is critiquing and checking. Meanwhile, the order in creating skills, starts from the weakest, is producing, planning, and generating.
Ruff, Sarah E.; Boes, Susan R.
2014-01-01
Low math achievement is a recurring weakness in many students. Math anxiety is a persistent and significant theme to math avoidance and low achievement. Causes for math anxiety include social, cognitive, and academic factors. Interventions to reduce math anxiety are limited as they exclude the expert skills of professional school counselors to…
Jansen, B.R.J.; Lange, E.; van der Molen, M.J.
2013-01-01
Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this
Bachman, Heather J.; Votruba-Drzal, Elizabeth; El Nokali, Nermeen E.; Castle Heatly, Melissa
2015-01-01
The present study examined whether multiple opportunities to learn math were associated with smaller socioeconomic status (SES) disparities in fifth-grade math achievement using data from the NICHD Study of Early Child Care and Youth Development (SECCYD; N = 1,364). High amounts of procedural math instruction were associated with higher…
Powell, Torence J.
2017-01-01
The California Community College system, as an open access institution, is tasked with helping students who possess math skills far below college-level complete math course requirements for obtaining an associate degree or transfer to a university. Colleges have created various developmental math programs to achieve this mission; this paper…
Smeding, Annique; Dumas, Florence; Loose, Florence; Régner, Isabelle
2013-01-01
In 2 field experiments, we relied on the very features of real testing situations--where both math and verbal tests are administered--to examine whether order of test administration can, by itself, create vs. alleviate stereotype threat (ST) effects on girls' math performance. We predicted that taking the math test before the verbal test would be…
Tsui, Joanne M.; Mazzocco, Michele M. M.
2006-01-01
This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition…
Interactive geometry inside MathDox
Cuypers, H.; Hendriks, M.; Knopper, J.W.
2010-01-01
In this paper we describe how we envision using interactive geometry inside MathDox pages. In particular, by some examples we discuss how users and mathematical services (offered by various mathematical software packages) can interact with the geometric objects available. This not only includes
What Adds Up?: Math Enrollment and Graduation
Utah System of Higher Education, 2015
2015-01-01
College students struggling to pass a college level math course required for Quantitative Literacy (QL) credit1 has been a common issue facing many institutions in higher education. In the fall of 2014, the Utah State Board of Regents solidified a statewide initiative that set goals for each of the Utah System of Higher Education institutions (UU,…
ADP Security Plan, Math Building, Room 1139
Energy Technology Data Exchange (ETDEWEB)
Melton, R.
1985-08-27
This document provides the draft copy of an updated (ADP) Security Plan for an IBM Personal Computer to be used in the Math Building at PNL for classified data base management. Using the equipment specified in this document and implementing the administrative and physical procedures as outlined will provide the secure environment necessary for this work to proceed.
Admission Math Level and Student Performance
DEFF Research Database (Denmark)
la Cour, Lisbeth
2015-01-01
In this paper we analyze the study performance data for three cohorts of students for the course in Economics at the Business Diploma (herafter HD) study program at Copenhagen Business School. Out main findings are 1) that students with the lowest level of math from high school are performing worse...
Confessions of a Dr Math tutor
CSIR Research Space (South Africa)
Butgereit, L
2015-06-01
Full Text Available Mathematics look different on a small 3-inch screen of an inexpensive cell phone when compared to a 3-meter whiteboard in a mathematics classroom. Dr Math uses cell phone or mobile data "chat" technologies to assist primary and secondary school...
Early math intervention for marginalized students
DEFF Research Database (Denmark)
Overgaard, Steffen; Tonnesen, Pia Beck
2016-01-01
This study is one of more substudies in the project Early Math Intervention for Marginalized Students (TMTM2014). The paper presents the initial process of this substudy that will be carried out fall 2015. In the TMTM2014 project, 80 teachers, who completed a one week course in the idea of TMTM...
Fold in Origami and Unfold Math
Georgeson, Joseph
2011-01-01
Students enjoy origami and like making everything from paper cranes to footballs out of small, colorful squares of paper. They can invent their own shapes and are intrigued by the polyhedrons that they can construct. Paper folding is fun, but where is the math? Unless teachers develop lessons that address mathematical objectives, origami could be…
Math on the Job. Metal Product Assembler.
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This booklet is intended to help mainstreamed mentally retarded, emotionally disturbed, or learning disabled high school students acquire a basic understanding of the responsibilities and working conditions of metal product assemblers and to practice basic math skills necessary in the occupation. The first section provides a brief introduction to…
Ideas on Manipulative Math for Young Children.
Murray, Anne
2001-01-01
Presents a case study of one kindergarten class in which the mathematics center is the popular area in the room. Focuses on how math is best understood if activities follow the five-C formula: collaborative, concrete, comprehensive, connecting, and cavorting. Describes how children used manipulatives to construct mathematics concepts…
The Demise of the Asian Math Gene.
Bracey, Gerald W.
1999-01-01
The 1996 National Assessment of Educational Progress math scores for eighth-graders show that when socioeconomic status is considered, English-proficient Asian students have no achievement advantage over other ethnic groups. However, Chinese sixth-graders, using abstract reasoning skills, outperformed American students on 12 open-ended math…
MIT professor wins major international math prize
Allen, S
2004-01-01
Mathematicians Isadore Singer of MIT and Sir Michael Francis Atiyah of the University of Edinburgh will share an $875,000 award as winners of the second Abel Prize, which some hope will come to be seen as a Nobel Prize for math.
Online Options for Math-Advanced Students
Wessling, Suki
2012-01-01
Once upon a time, a student well advanced past grade level in math would have had few choices. Advanced students would invariably outpace the skills of their elementary teachers, and due to age wouldn't have options such as going to the middle school or community college for classes. Soon thereafter, students would enter middle school only to find…
Relationship between Affective Dimension and Math Learning
Directory of Open Access Journals (Sweden)
Ronny Gamboa Araya
2014-05-01
Full Text Available Math has become an obstacle to achieve educational goals for a large number of students; thus it has transcended the academic world and has become a cognitive and emotional impairment. What students feel, perceive, believe, and how they act directly influences this. In addition, what teachers feel and perceive, their expectations, beliefs and attitudes towards the discipline also play an important role in how they teach and in the affective dimension of their students. Based on theoretical aspects from various authors, this paper is aimed at addressing some elements regarding the affective dimension, and at showing elements pertaining to teachers and students, and their relationship with math learning and teaching. It was concluded that the role of the affective dimension in math learning must be addressed by math educators in order to understand the process from the perspective of the actors associated with it, both students and teachers, as well as to achieve a change in the discipline by improving the beliefs and attitudes of students and teachers.
New Mexico Math Pathways Taskforce Report
New Mexico Higher Education Department, 2016
2016-01-01
In April 2015 New Mexico faculty, Dana Center staff, and New Mexico Higher Education (NMHED) co-presented the need for better math pathways statewide. Faculty from 6 institutions (New Mexico State University, New Mexico Highlands University, Dine College, Eastern New Mexico University, El Paso Community College, and San Juan College) participated…
Tic Tac Toe Math. Train the Trainer.
Center for Alternative Learning, Bryn Mawr, PA.
This report describes a project that developed a "Train the Trainer" program that would enable individuals to learn and teach the alternative instructional technique, Tic Tac Toe Math, developed by Richard Cooper for adult basic education students. The pilot workshop conducted as part of the project identified problems that traditional…
Basic math and pre-algebra practice problems for dummies
Zegarelli, Mark
2013-01-01
1001 Basic Math & Pre- Algebra Practice Problems For Dummies Practice makes perfect-and helps deepen your understanding of basic math and pre-algebra 1001 Basic Math & Pre-Algebra Practice Problems For Dummies, with free access to online practice problems, takes you beyond the instruction and guidance offered in Basic Math & Pre-Algebra For Dummies, giving you 1,001 opportunities to practice solving problems from the major topics in your math course. You begin with some basic arithmetic practice, move on to fractions, decimals, and per
Avoiding math on a rapid timescale: Emotional responsivity and anxious attention in math anxiety.
Pizzie, Rachel G; Kraemer, David J M
2017-11-01
Math anxiety (MA) is characterized by negative feelings towards mathematics, resulting in avoidance of math classes and of careers that rely on mathematical skills. Focused on a long timescale, this research may miss important cognitive and affective processes that operate moment-to-moment, changing rapid reactions even when a student simply sees a math problem. Here, using fMRI with an attentional deployment paradigm, we show that MA influences rapid spontaneous emotional and attentional responses to mathematical stimuli upon brief presentation. Critically, participants viewed but did not attempt to solve the problems. Indicating increased threat reactivity to even brief presentations of math problems, increased MA was associated with increased amygdala response during math viewing trials. Functionally and anatomically defined amygdala ROIs yielded similar results, indicating robustness of the finding. Similar to the pattern of vigilance and avoidance observed in specific phobia, behavioral results of the attentional paradigm demonstrated that MA is associated with attentional disengagement for mathematical symbols. This attentional avoidance is specific to math stimuli; when viewing negatively-valenced images, MA is correlated with attentional engagement, similar to other forms of anxiety. These results indicate that even brief exposure to mathematics triggers a neural response related to threat avoidance in highly MA individuals. Copyright © 2017 Elsevier Inc. All rights reserved.
Neural correlates of math anxiety – an overview and implications
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824
Neural correlates of math anxiety - an overview and implications.
Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph
2015-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.
Neural correlates of math anxiety – An overview and implications
Directory of Open Access Journals (Sweden)
Christina eArtemenko
2015-09-01
Full Text Available Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i math anxiety elicits emotion- and pain-related activation during and before math activities, (ii that the negative emotional response to math anxiety impairs processing efficiency, and (iii that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.
Tsui, Joanne M.; Mazzocco, Michèle M. M.
2009-01-01
This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition preceded the untimed condition. We also found that children with higher levels of either math anxiety or perfectionism had a smaller performance discrepancy during timed versus untimed testing, relative to children with lower levels of math anxiety or perfectionism. There were no statistically significant gender differences in overall test performance, nor in levels of math anxiety or perfectionism; however, the difference between performance on timed and untimed math testing was statistically significant for girls, but not for boys. Implications for educators are discussed. PMID:20084180
International Nuclear Information System (INIS)
Siwick, Bradley J.; Dwyer, Jason R.; Jordan, Robert E.; Miller, R. J. Dwayne
2003-01-01
In this reply, we address the main issues raised by Qian et al. regarding our recent article [J. Appl. Phys. 92, 1643 (2002)]. In particular, we reiterate the approximations used in the development of the mean-field model and demonstrate how the form used for the on-axis potential is applicable to the study of femtosecond electron packet propagation and is not in need of correction. We also repeat our assertion that the one-dimensional (1-D) fluid model developed by Qian et al. [J. Appl. Phys. 91, 462 (2002)] overestimates space-charge-induced pulse broadening and is in qualitative disagreement with femtosecond electron packet propagation dynamics. The key differences between the mean-field and 1-D fluid model are discussed and their range of applicability is clarified
International Nuclear Information System (INIS)
Richter, J.L.
1985-01-01
A. W. Love points out three alleged errors in our paper [J. Appl. Phys. 54, 3528 (1983)]. We agree that he is correct with regard to the second and third issues, but the first and perhaps most important point is correct. This regards the inequality of transmit and receive patterns of microwave antennas. The standard proof of equality of the patterns, cited by A. W. Love, is shown to be incorrect
Directory of Open Access Journals (Sweden)
Editorial Board
2014-03-01
Full Text Available The article Condens. Matter Phys., 2013, vol. 16, 43802 ( DOI:10.5488/CMP.16.43802 has been retracted by the decision of the Editorial Board. There is a significant overlap with an article: Phys. Rev. E, 2006, vol. 74, 036120 ( DOI:10.1103/PhysRevE.74.036120. Appologies are offered to readers of the journal that this was not detected during the submission process.
Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.
Shi, Zhan; Liu, Peiru
2016-01-01
Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.
Simple arithmetic: not so simple for highly math anxious individuals.
Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G
2017-12-01
Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.
Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.
Directory of Open Access Journals (Sweden)
Zhan Shi
Full Text Available Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.
Central extensions of cotangent universal hierarchy: (2+1)-dimensional bi-Hamiltonian systems
International Nuclear Information System (INIS)
Sergyeyev, Artur; Szablikowski, Blazej M.
2008-01-01
We introduce the cotangent universal hierarchy that extends the universal hierarchy from [L. Martinez Alonso, A.B. Shabat, Phys. Lett. A 300 (1) (2002) 58, (nlin.SI/0202008); A.B. Shabat, Theor. Math. Phys. 136 (2003) 1066; L. Martinez Alonso, A.B. Shabat, J. Nonlinear Math. Phys. 10 (2) (2003) 229, (nlin.SI/0310036); L. Martinez Alonso, A.B. Shabat, Theor. Math. Phys. 140 (2) (2004) 1073, (nlin.SI/0312043); A. Shabat, J. Nonlinear Math. Phys. 12 (Suppl. 1) (2005) 614]. Then we construct a (2+1)-dimensional double central extension of the cotangent universal hierarchy and show that this extension is bi-Hamiltonian. This yields, as a byproduct, the central extension of the original universal hierarchy
Deacon, Mary M.
2011-01-01
Despite initiatives to increase and broaden participation in science, technology, engineering, and mathematics (STEM) fields, women remain underrepresented in STEM. While U.S. girls and women perform as well as, if not better, than boys and men in math, research results indicate that there are significant declines in girls' math self-efficacy,…
Stacy, Sara T; Cartwright, Macey; Arwood, Zjanya; Canfield, James P; Kloos, Heidi
2017-01-01
Students rarely practice math outside of school requirements, which we refer to as the "math-practice gap". This gap might be the reason why students struggle with math, making it urgent to develop means by which to address it. In the current paper, we propose that math apps offer a viable solution to the math-practice gap: Online apps can provide access to a large number of problems, tied to immediate feedback, and delivered in an engaging way. To substantiate this conversation, we looked at whether tablets are sufficiently engaging to motivate children's informal math practice. Our approach was to partner with education agencies via a community-based participatory research design. The three participating education agencies serve elementary-school students from low-SES communities, allowing us to look at tablet use by children who are unlikely to have extensive access to online math enrichment programs. At the same time, the agencies differed in several structural details, including whether our intervention took place during school time, after school, or during the summer. This allowed us to shed light on tablet feasibility under different organizational constraints. Our findings show that tablet-based math practice is engaging for young children, independent of the setting, the student's age, or the math concept that was tackled. At the same time, we found that student engagement was a function of the presence of caring adults to facilitate their online math practice.
Math Description Engine Software Development Kit
Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.
2010-01-01
The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.
Learning Math With My Father: A Memoir
Directory of Open Access Journals (Sweden)
Yolanda De La CRUZ
2012-07-01
Full Text Available If he is indeed wise he does not bid you enter the house of his wisdom, but rather leads you to the threshold of your own mind. Kahlil Gibran. We all build our own houses of wisdom, each of us; we cannot build them for each other. Teachers cannot simply invite students into their houses of wisdom, but can often find ways to help learners to enter and explore their own minds. While Constructivism has had a positive impact on the teaching and learning of literacy mathematics instruction continues to rely heavily on rote memorization and drills. As a young child, I learned to love math. My love of math stems from learning math with my father. He did not focus on rote memorization and drills. The primary emphasis was for a real purpose. My self-confidence was enforced when he started me out with problems that were less difficult and had many different solutions. These solutions were valued and respected, which allowed me to trust in my own problem solving abilities. How can we hope to lead children to the thresholds of their own minds when we remain intent on forcing them into our houses of wisdom? What alternative ways can we devise of interacting with children that respect their confidence and leave intact their levels of understanding, that lead them to the thresholds of their own minds excited about entering?
Primary maths anyone can feed skittles to sharks
Tiley-Nunn, Nick
2014-01-01
Primary maths is stereotypically loved by a few hairy oddballs, tolerated by most sane primary practitioners; loathed by many. With the right approach, however; the right mindset and sense of the impossible being achievable, maths can be moulded into the diamond in the rough of the primary curriculum. Enter Nick Tiley-Nunn: Britain's most imaginative, most exciting primary maths specialist. Over years of practice he has generated ideas about the teaching of maths that are so distinct, so far out and so utterly brilliant that any primary teacher struggling to grasp the nettle of teaching long division will emerge from communing with his ideas not just with some clichéd sense that maths can be fun', but that it can be brilliant, life-enhancing and truly hilarious. This book presents ideas for primary maths teaching so wildly creative and so full of the joy of life that any classroom of kids will be grateful you read it.
Metacognition and Confidence: Comparing Math to Other Academic Subjects
Directory of Open Access Journals (Sweden)
Shanna eErickson
2015-06-01
Full Text Available Two studies addressed student metacognition in math, measuring confidence accuracy about math performance. Underconfidence would be expected in light of pervasive math anxiety. However, one might alternatively expect overconfidence based on previous results showing overconfidence in other subject domains. Metacognitive judgments and performance were assessed for biology, literature, and mathematics tests. In Study 1, high school students took three different tests and provided estimates of their performance both before and after taking each test. In Study 2, undergraduates similarly took three shortened SAT II Subject Tests. Students were overconfident in predicting math performance, indeed showing greater overconfidence compared to other academic subjects. It appears that both overconfidence and anxiety can adversely affect metacognitive ability and can lead to math avoidance. The results have implications for educational practice and other environments that require extensive use of math.
Metacognitive awareness and math anxiety in gifted students
Hakan Sarıcam; Üzeyir Ogurlu
2015-01-01
The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students’ metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted) volunteer secondary school students in Turkey. The mean age of the participants was 12.56 years ranging from 12 to 13 years. For gathering data, the Maths Anxiety Scale for Elementary S...
Insecure attachment is associated with math anxiety in middle childhood
Bosmans, Guy; De Smedt, Bert
2015-01-01
Children?s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hy...
What to Do About Canada's Declining Math Scores?
Anna Stokke
2015-01-01
The declining performance of Canadian students on international math assessments should worry Canadians and their provincial governments. Strong mathematics knowledge is required for success in the workforce, and early achievement in math is one of the best predictors of later academic success and future career options. Between 2003 and 2012, all but two Canadian provinces showed statistically significant declines in math scores on international exams administered by the Organization for Econ...
Rodriguez Flecha, Samuel
The purpose of this study was to examine high school students' math values, perceived math achievement, and STEM career choice. Participants (N=515) were rural high school students from the U.S. Northwest. Data was collected by administering the "To Do or Not to Do:" STEM pilot survey. Most participants (n=294) were Latinos, followed by Caucasians (n=142). Fifty-three percent of the students rated their math achievement as C or below. Of high math students, 57% were male. Females were 53% of low math students. Caucasians (61%) rated themselves as high in math in a greater proportion than Latinos (39%). Latinos (58%) rated themselves as low in math in a greater proportion than Caucasians (39%). Math Values play a significant role in students' perceived math achievement. Internal math values (r =.68, R2 =.46, p =.001) influenced perceived math achievement regardless of gender (males: r =.70, R2 =.49, p =.001; females: r =.65, R2 =.43, p =.001), for Latinos (r =.66, R2 =.44, p =.001), and Caucasians (r =.72, R2 =.51, p =.001). External math values (r =.53, R2 =.28, p =.001) influenced perceived math achievement regardless of gender (males: r =.54, R2 =.30, p =.001; females: r =.49, R2 =.24, p =.001), for Latinos (r =.47, R2 =.22, p =.001), and Caucasians (r =.58, R2 =.33, p =.001). Most high-math students indicated an awareness of being good at math at around 11 years old. Low-math students said that they realized that math was difficult for them at approximately 13 years of age. The influence of parents, teachers, and peers may vary at different academic stages. Approximately half of the participants said there was not a person who had significantly impacted their career choice; only a minority said their parents and teachers were influencing them to a STEM career. Parents and teachers are the most influential relationships in students' career choice. More exposure to STEM role models and in a variety of professions is needed. Possible strategies to impact students
Cognitive consistency and math-gender stereotypes in Singaporean children.
Cvencek, Dario; Meltzoff, Andrew N; Kapur, Manu
2014-01-01
In social psychology, cognitive consistency is a powerful principle for organizing psychological concepts. There have been few tests of cognitive consistency in children and no research about cognitive consistency in children from Asian cultures, who pose an interesting developmental case. A sample of 172 Singaporean elementary school children completed implicit and explicit measures of math-gender stereotype (male=math), gender identity (me=male), and math self-concept (me=math). Results showed strong evidence for cognitive consistency; the strength of children's math-gender stereotypes, together with their gender identity, significantly predicted their math self-concepts. Cognitive consistency may be culturally universal and a key mechanism for developmental change in social cognition. We also discovered that Singaporean children's math-gender stereotypes increased as a function of age and that boys identified with math more strongly than did girls despite Singaporean girls' excelling in math. The results reveal both cultural universals and cultural variation in developing social cognition. Copyright © 2013 Elsevier Inc. All rights reserved.
A Correlation of Community College Math Readiness and Student Success
Brown, Jayna Nicole
Although traditional college students are more prepared for college-level math based on college admissions tests, little data have been collected on nontraditional adult learners. The purpose of this study was to investigate relationships between math placement tests and community college students' success in math courses and persistence to degree or certificate completion. Guided by Tinto's theory of departure and student retention, the research questions addressed relationships and predictability of math Computer-adaptive Placement Assessment and Support System (COMPASS) test scores and students' performance in math courses, persistence in college, and degree completion. After conducting correlation and regression analyses, no significant relationships were identified between COMPASS Math test scores and students' performance (n = 234) in math courses, persistence in college, or degree completion. However, independent t test and chi-squared analyses of the achievements of college students who tested into Basic Math (n = 138) vs. Introduction to Algebra (n = 96) yielded statistically significant differences in persistence (p = .039), degree completion (p college students' math competencies and degree achievement.
Chingos, Matthew M.; Griffiths, Rebecca J.; Mulhern, Christine
2017-01-01
Every year many students enter college without the math preparation needed to succeed in their desired programs of study. Many of these students struggle to catch up, especially those who are required to take remedial math courses before entering college-level math. Increasing the number of students who begin at the appropriate level of math has…
Petersen, Jennifer Lee; Hyde, Janet Shibley
2017-01-01
Although many studies have documented developmental change in mathematics motivation, little is known about how these trends predict math performance. A sample of 288 participants from the United States reported their perceived math ability, math utility value and math interest in 5th, 7th and 9th grades. Latent growth curve models estimated…
Directory of Open Access Journals (Sweden)
Krzysztof eCipora
2015-11-01
Full Text Available Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS, known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations.We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857 was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety.The current study shows transcultural validity of math anxiety assessment with the AMAS.
Math starters 5- to 10-minute activities aligned with the common core math standards, grades 6-12
Muschla, Judith A; Muschla, Erin
2013-01-01
A revised edition of the bestselling activities guide for math teachers Now updated with new math activities for computers and mobile devices-and now organized by the Common Core State Standards-this book includes more than 650 ready-to-use math starter activities that get kids quickly focused and working as soon as they enter the classroom. Ideally suited for any math curriculum, these high-interest problems spark involvement in the day's lesson, help students build skills, and allow teachers to handle daily management tasks without wasting valuable instructional time. A newly updated edit
Cipora, Krzysztof; Szczygieł, Monika; Willmes, Klaus; Nuerk, Hans-Christoph
2015-01-01
Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS), known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations. We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857) was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance, and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety. The current study shows transcultural validity of math anxiety assessment with the AMAS.
Exposing the Myth: Advanced Math Does Not Increase Drop out Rates. Math Works
Achieve, Inc., 2013
2013-01-01
A common argument against raising math course-taking requirements for all students is that it will cause more students to drop out of high school. But most students who drop out for academic reasons do so not because they are being "too challenged," but rather because they are not being challenged enough. It is important to raise the rigor and…
How Effective Are Community College Remedial Math Courses for Students with the Lowest Math Skills?
Xu, Di; Dadgar, Mina
2018-01-01
Objective: This article examines the effectiveness of remediation for community college students who are identified as having the lowest skills in math. Method: We use transcript data from a state community college system and take advantage of a regression discontinuity design that compares statistically identical students who are assigned to the…
Hamadneh, Iyad M.; Al-Masaeed, Aslan
2015-01-01
This study aimed at finding out mathematics teachers' attitudes towards photo math application in solving mathematical problems using mobile camera; it also aim to identify significant differences in their attitudes according to their stage of teaching, educational qualifications, and teaching experience. The study used judgmental/purposive…
Placing Math Reform: Locating Latino English Learners in Math Classrooms and Communities
Erbstein, Nancy
2015-01-01
This article explores how place matters in public school reform efforts intended to promote more equitable opportunities and outcomes. Qualitative case studies of three California middle schools' eighth grade math reforms and the resulting opportunities for Latino English learners are presented, using the conceptual frameworks of critical human…
Essential maths for geoscientists an introduction
Palmer, Paul I
2014-01-01
Maths for Geoscientists is an accessible, student-friendly introduction to the essential mathematics required by those students taking degree courses within the Geosciences. Clearly structured throughout, this book carefully guides the student step by step through the mathematics they will encounter and will provide numerous applied examples throughout to enhance students understanding and to place each technique into context. Opening with a chapter explaining the need for studying mathematics within geosciences the book then moves on to cover algebra, equations, solutions, logarithms and ex
Thornton, Liam
2016-01-01
This is a feminist re-imagining of the Supreme Court decision MhicMathúna v Ireland [1995] 1 I.R. 454. The actual Supreme Court decision in this case continues to have a profound impact upon how the Irish superior courts view constitutional socio-economic rights claims. This feminist judgment seeks to re-situate the legal analysis of constitutionalised socio-economic rights claims. However, this, as is seen from the feminist judgment, has not been an easy task. The plaintiffs' in this case at...
Evaluating Number Sense in Community College Developmental Math Students
Steinke, Dorothea A.
2017-01-01
Community college developmental math students (N = 657) from three math levels were asked to place five whole numbers on a line that had only endpoints 0 and 20 marked. How the students placed the numbers revealed the same three stages of behavior that Steffe and Cobb (1988) documented in determining young children's number sense. 23% of the…
Do the Math: Course Redesign's Impact on Learning and Scheduling
Squires, John; Faulkner, Jerry; Hite, Carl
2009-01-01
The math department at Cleveland State Community College embarked upon course redesign in 2008. As a result of this project, student engagement, learning, and success rates have increased dramatically. By including both developmental and college level math courses in the redesign, the department has been able to implement innovative scheduling and…
Classroom Environment, Achievement Goals and Maths Performance: Gender Differences
Gherasim, Loredana Ruxandra; Butnaru, Simona; Mairean, Cornelia
2013-01-01
This study investigated how gender shapes the relationships between classroom environment, achievement goals and maths performance. Seventh-grade students ("N"?=?498) from five urban secondary schools filled in achievement goal orientations and classroom environment scales at the beginning of the second semester. Maths performance was…
Math and Economics: Implementing Authentic Instruction in Grades K-5
Althauser, Krista; Harter, Cynthia
2016-01-01
The purpose of this study is to outline a partnership program that involved a local elementary school district, an institution of higher education, the local business community, and a state economic education advocacy group to integrate economics into math in grades K-5. The "Economics: Math in Real Life" program was provided in…
Math on MXit: the medium is the message
CSIR Research Space (South Africa)
Butgereit, L
2007-07-01
Full Text Available Homework is a necessary evil in the path of learning mathematics at school. Mathematics homework is traditionally seen as difficult and boring. In the case of difficult homework, “math clubs” and “math extra lessons” are often perceived as even more...
Determinants of Grades in Maths for Students in Economics
DEFF Research Database (Denmark)
Cappellari, Lorenzo; Lucifora, Claudio; Pozzoli, Dario
attended are signi cantly associated with maths grades. Ceteris paribus, females typically do better than males. Since students can postpone the exam or repeat it when they fail, we also analyze the determinants of the elapsed time to pass the exam using survival analysis. Modeling simultaneously maths...
How Math Anxiety Relates to Number–Space Associations
Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine
2016-01-01
Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number–space associations constitute a potential risk factor of math anxiety. PMID:27683570
Brief Report: Gum Chewing Affects Standardized Math Scores in Adolescents
Johnston, Craig A.; Tyler, Chermaine; Stansberry, Sandra A.; Moreno, Jennette P.; Foreyt, John P.
2012-01-01
Gum chewing has been shown to improve cognitive performance in adults; however, gum chewing has not been evaluated in children. This study examined the effects of gum chewing on standardized test scores and class grades of eighth grade math students. Math classes were randomized to a gum chewing (GC) condition that provided students with gum…
The Math Promise: Celebrating at Home and School
Legnard, Danielle; Austin, Susan
2014-01-01
The Math Promise is a contract that family members make with one another. They commit to spending mathematical time together; getting to know each other's mathematical thinking and understanding; and finding time to play math games, solve problems, and notice mathematics in their daily lives. Whether parents and children are cooking in the…
Feedback Design Patterns for Math Online Learning Systems
Inventado, Paul Salvador; Scupelli, Peter; Heffernan, Cristina; Heffernan, Neil
2017-01-01
Increasingly, computer-based learning systems are used by educators to facilitate learning. Evaluations of several math learning systems show that they result in significant student learning improvements. Feedback provision is one of the key features in math learning systems that contribute to its success. We have recently been uncovering feedback…
An Integration of Math with Auto Technician Courses
Valenzuela, Hector
2012-01-01
This article describes the development of the contextualized math, the course design, student teaching and daily interaction with the students, and the implementation aspects of the research project designed to develop contextualized mathematics and integrate it into the Auto Technician courses. The applied math curriculum was integrated into…
HeartMath and Ubuntu integral healing approaches for social ...
African Journals Online (AJOL)
HeartMath and Ubuntu integral healing approaches for social coherence and physical activity. Stephen D. Edwards. Abstract. This research was motivated by many social health problems confronting planet earth. Its aim is to introduce HeartMath and Ubuntu as complimentary, integral healing approaches for promoting ...
Science and Math in the Library Media Center Using GLOBE.
Aquino, Teresa L.; Levine, Elissa R.
2003-01-01
Describes the Global Learning and Observations to Benefit the Environment (GLOBE) program which helps school library media specialists and science and math teachers bring earth science, math, information literacy, information technology, and student inquiry into the classroom. Discusses use of the Internet to create a global network to study the…
Restructuring Schools To Be Math Friendly to Females.
Karp, Karen; Shakeshaft, Charol
1997-01-01
The gender gap in math Scholastic Aptitude Test scores, attributable to course avoidance, lack of confidence, and unbalanced classroom instruction, can have serious consequences for young women, such as limited university selection, limited career choices, and lower lifetime salaries. Solutions include hiring math specialists, establishing role…
Math Garden: A new educational and scientific instrument
Straatemeier, M.
2014-01-01
This dissertation describes the research concerning the construction of a new educational and scientific instrument. This instrument, Math Garden, is a web application in which children can practice arithmetic by playing math games in which items are tailored to their ability level. At the same
Basic Math Skills and Performance in an Introductory Economics Class
Ballard, Charles L.; Johnson, Marianne F.
2004-01-01
The authors measure math skills with a broader set of explanatory variables than have been used in previous studies. To identify what math skills are important for student success in introductory microeconomics, they examine (1) the student's score on the mathematics portion of the ACT Assessment Test, (2) whether the student has taken calculus,…
Why Aren't More Minorities Taking Advanced Math?
Walker, Erica N.
2007-01-01
Black and Latino students are still underepresented in upper-level math classes in the United States, a fact which has serious implications for their academic achievement and futures. Walker provides six suggestions for how educators can encourage more black and Latino students to successfully take higher level math courses: (1) Expand our…
How math anxiety relates to number-space associations
Directory of Open Access Journals (Sweden)
Carrie Georges
2016-09-01
Full Text Available Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioural evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.
Effects of Math Anxiety on Student Success in Higher Education
Nunez-Pena, M. I.; Suarez-Pellicioni, M.; Bono, R.
2013-01-01
This study examines whether math anxiety and negative attitudes toward mathematics have an effect on university students' academic achievement in a methodological course forming part of their degree. A total of 193 students were presented with a math anxiety test and some questions about their enjoyment, self-confidence and motivation regarding…
The Effect of Cooperative Groups on Math Anxiety
Batton, Melissa
2010-01-01
Research indicates that many students have difficulty with mathematics, which can be attributed to many factors including math anxiety. Students who experience math anxiety have poor attitudes towards mathematics and perform below grade level based on class and statewide assessments. The purpose of this quasi-experimental quantitative study was to…
How Math Anxiety Relates to Number-Space Associations.
Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine
2016-01-01
Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.
Metacognitive Awareness and Math Anxiety in Gifted Students
Saricam, Hakan; Ogurlu, Üzeyir
2015-01-01
The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students' metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted) volunteer secondary school students…
Remediation of Math Anxiety in Preservice Elementary School Teachers
Dunkle, Susan M.
2010-01-01
The purpose of this study was to measure the level of math anxiety in preservice elementary teachers, and then to determine if remediation methods would lower the measured level of anxiety in these same preservice teachers. The 10-day study provided an intense remediation using a time-series design to measure change on the Revised Math Anxiety…
Cognitive and Academic Profiles Associated with Math Disability Subtypes
Kubas, Hanna A.; Schmid, Amy D.; Drefs, Michelle A.; Poole, Jennifer M.; Holland, Sara; Fiorello, Catherine A.
2014-01-01
Children with math disabilities (MD) represent a heterogeneous group and often display deficits in one or more cognitive domains. Math proficiency requires a number of different cognitive processes, including quantitative knowledge, working memory, processing speed, fluid reasoning, and executive functions. Assessment practices that do not address…
The Reliability of Randomly Generated Math Curriculum-Based Measurements
Strait, Gerald G.; Smith, Bradley H.; Pender, Carolyn; Malone, Patrick S.; Roberts, Jarod; Hall, John D.
2015-01-01
"Curriculum-Based Measurement" (CBM) is a direct method of academic assessment used to screen and evaluate students' skills and monitor their responses to academic instruction and intervention. Interventioncentral.org offers a math worksheet generator at no cost that creates randomly generated "math curriculum-based measures"…
Impact of University Lecturers' Intervention in School MathTeaching
Indian Academy of Sciences (India)
Some schools in the neighbourhood of Sefako MakgathoHealth Sciences University (SMU) in South Africa persistentlyyielded poor mathematics results in the past years. Thiswas of concern since maths is the main subject for manyopportunities, including admissiontoSMUstudy programmes.Some SMU maths lecturers ...
Math and Science Gateways to California's Fastest Growing Careers
EdSource, 2008
2008-01-01
Some students--and parents--think math and science are not too important for their future. As everyday life becomes more dependent on technology, most people will need a better background in math and science to succeed in today's global economy. To get high-paying jobs in some of California's fastest-growing occupations, a strong background in…
International Nuclear Information System (INIS)
Habibi, M.; Ghamari, F.
2014-01-01
Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)
Membangun Karakter Anak Usia Dini melalui Pembelajaran Math Character
Directory of Open Access Journals (Sweden)
Titin Faridatun Nisa’
2016-09-01
Full Text Available Penelitian ini bertujuan untuk mengetahui penerapan pembelajaran math character untuk membangun karakter Anak Usia Dini (AUD dan kesulitan-kesulitan yang dialami guru dalam penerapan pembelajaran math character. Target penelitian ini adalah terbentuknya karakter anak usia dini melalui pembelajaran math character. Jenis penelitian ini adalah penelitian deskriptif dengan metode penelitian kualitatif. Teknik pengumpulan informasi penelitian ini dengan metode observasi dan wawancara. Analisis data penelitian ini menggunakan analisis deskriptif. Hasil penelitian menunjukkan bahwa penerapan pembelajaran math character dapat membangun delapan belas nilai-nilai karakter AUD. Kesulitan-kesulitan yang dialami guru dalam pembentukan karakter AUD melalui pembelajaran math character meliputi tema yang digunakan termasuk tema baru, siswa belum terbiasa dengan pembelajaran berbasis sentra, usia siswa bervariasi, dan adanya ikut campur wali siswa dalam kegiatan pembelajaran di kelas sehingga siswa menjadi kurang mandiri.
Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.
Buelow, Melissa T; Frakey, Laura L
2013-06-01
Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.
Math for scientists refreshing the essentials
Maurits, Natasha
2017-01-01
Accessible and comprehensive, this guide is an indispensable tool for anyone in the sciences – new and established researchers, students and scientists – looking either to refresh their math skills or to prepare for the broad range of math, statistical and data-related challenges they are likely to encounter in their work or studies. In addition to helping scientists improve their knowledge of key mathematical concepts, this unique book will help readers: · Read mathematical symbols · Understand formulas, data or statistical information · Determine medication equivalents · Analyze neuroimaging Mathematical concepts are presented alongside illustrative and useful real-world scientific examples and are further clarified through practical pen-and-paper exercises. Whether you are a student encountering high-level mathematics in your research or...
PUMAS: Practical Uses of Math And Science
Kahn, R. A.
2009-12-01
For more than ten years, PUMAS has provided a forum for disseminating peer-reviewed examples of Practical Uses of Math And Science, aimed at helping pre-college teachers enrich their presentation of math and science topics. Contributors include scientists, engineers, and content experts from many disciplines. The innovative ideas in PUMAS examples tend to be treasures, containing the ‘sparks’ of understanding that comes only from having real-life experience with the material. Examples can be essays, anecdotes, problems, demonstrations, or activities, and can be written in any style that serves the material well. They are keyed to the National Standards and Benchmarks, which provide the critical connection to K-12 curriculum guidelines, and the peer-review process involves at least one scientist with a relevant background, and at least one teacher at an appropriate grade level. The PUMAS Web Site has recently been upgraded. It is now a NASA-wide facility, recognized by both the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM). This presentation will describe and illustrate the operation of PUMAS, will highlight a few of our many treasures, and will appeal to scientists interested in contributing meaningfully to pre-college education to consider submitting examples to PUMAS.
Imagine math 3 between culture and mathematics
2015-01-01
Imagine mathematics, imagine with the help of mathematics, imagine new worlds, new geometries, new forms. This volume in the series “Imagine Math” casts light on what is new and interesting in the relationships between mathematics, imagination, and culture. The book opens by examining the connections between modern and contemporary art and mathematics, including Linda D. Henderson’s contribution. Several further papers are devoted to mathematical models and their influence on modern and contemporary art, including the work of Henry Moore and Hiroshi Sugimoto. Among the many other interesting contributions are an homage to Benoît Mandelbrot with reference to the exhibition held in New York in 2013 and the thoughts of Jean-Pierre Bourguignon on the art and math exhibition at the Fondation Cartier in Paris. An interesting part is dedicated to the connections between math, computer science and theatre with the papers by C. Bardainne and A. Mondot. The topics are treated in a way that is rigorous but capt...
Maths and physics, a love story
CERN Bulletin
Denis Guedj brings one of his plays to CERN. The writer and mathematician is working on a new novel in which LHC research figures prominently. In Denis Guedj’s plays, the number One is a self-absorbed character, Zero is not to be underestimated, and the Line Segment wants the Curve to straighten out. In his novels, mathematical entities come to life—and turn out to have exciting stories to tell. Denis Guedj is a mathematician and professor of the history of science and epistemology at the University of Paris VIII; over the years he has also indulged a personal passion for bringing maths to the stage. His novels and plays reach a broad public. Among his notable successes is a crime thriller called “The Parrot’s Theorem”, which has been translated into 20 languages. The popularity of his work owes much to the author’s refusal to be didactic. “If it works, it’s because I don’t try to teach maths,” he explains....
Preschool Math Exposure in Private Center-Based Care and Low-SES Children's Math Development
Bachman, Heather J.; Degol, Jessica L.; Elliott, Leanne; Scharphorn, Laura; El Nokali, Nermeen E.; Palmer, Kalani M.
2018-01-01
Research Findings: The present study examined the amount of exposure to math activities that children of low socioeconomic status (SES) encounter in private community-based preschool classrooms and whether greater time in these activities predicted higher math skills. Three cohorts of 4- to 5-year-old children were recruited from 30 private…
Spann, Mary Beth
This book contains 18 reproducible Math Storymats which can be a refreshing addition to any early elementary math program. Each storymat is accompanied by two separate read-aloud story selections that guide children in using plastic disk-shaped markers to interact with the mats in specific and open-ended ways. Together the mats and the…
Hoang, Hai; Huang, Melrose; Sulcer, Brian; Yesilyurt, Suleyman
2017-01-01
College math is a gateway course that has become a constraining gatekeeper for tens of thousands of students annually. Every year, over 500,000 students fail developmental mathematics, preventing them from achieving their college and career goals. The Carnegie Math Pathways initiative offers students an alternative. It comprises two Pathways…
Rimbey, Kimberly
2008-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Play Ball! Explorations in Data Analysis & Statistics," which teachers can use to…
Rimbey, Kimberly
2008-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Let's Go to the Mall! Explorations in Combinatorics," which teachers can use to enhance…
Rimbey, Kimberly
2007-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Dining Out! Explorations in Fractions, Decimals, and Percents," which teachers can use…
Building a Math-Positive Culture: How to Support Great Math Teaching in Your School (ASCD Arias)
Seeley, Cathy L.
2016-01-01
Cathy L. Seeley, former president of the National Council of Teachers of Mathematics, turns the spotlight on administrative leaders who are seeking to improve their math programs, offering an overview of what an effective program looks like and examples of actions to take to achieve that goal. "Building a Math-Positive Culture" addresses…
Silk, Kami J; Parrott, Roxanne L
2014-01-01
Health risks are often communicated to the lay public in statistical formats even though low math skills, or innumeracy, have been found to be prevalent among lay individuals. Although numeracy has been a topic of much research investigation, the role of math self-efficacy and math anxiety on health and risk communication processing has received scant attention from health communication researchers. To advance theoretical and applied understanding regarding health message processing, the authors consider the role of math anxiety, including the effects of math self-efficacy, numeracy, and form of presenting statistics on math anxiety, and the potential effects for comprehension, yielding, and behavioral intentions. The authors also examine math anxiety in a health risk context through an evaluation of the effects of exposure to a message about genetically modified foods on levels of math anxiety. Participants (N = 323) were randomly assigned to read a message that varied the presentation of statistical evidence about potential risks associated with genetically modified foods. Findings reveal that exposure increased levels of math anxiety, with increases in math anxiety limiting yielding. Moreover, math anxiety impaired comprehension but was mediated by perceivers' math confidence and skills. Last, math anxiety facilitated behavioral intentions. Participants who received a text-based message with percentages were more likely to yield than participants who received either a bar graph with percentages or a combined form. Implications are discussed as they relate to math competence and its role in processing health and risk messages.
Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong
2018-02-01
On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.
News from the Library: Zentralblatt MATH: it's not all about maths
CERN Library
2011-01-01
The CERN Library provides access to numerous and diverse information services of interest to the CERN community. Among them, Zentralblatt MATH stands out from our offer of online databases. Zentralblatt MATH covers more than 3 million articles published in about 3500 journals, from 1826 to the present. Most bibliographic records are linked to the online published article. It covers all areas of pure and applied mathematics and also theoretical computer science, mathematical quantum and statistical physics, classical, solid and fluid mechanics, and general relativity and astronomy. Therefore, this database is useful in many disciplines beyond mathematics. It is daily updated and allows advanced search functionalities. Among others things, it includes the content of the Electronic Research Archive for Mathematics, the European Mathematical Information Service, and the Mathematics Preprint Search System. Please note the "Online Ordering" button next to every bibliographic recor...
Math anxiety in second and third graders and its relation to mathematics achievement
Directory of Open Access Journals (Sweden)
Sarah eWu
2012-06-01
Full Text Available Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in 2nd and 3rd graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA, a new measure for assessing math anxiety in 2nd and 3rd graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Wechsler Individual Achievement Test (WIAT-II. Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were significantly correlated with scores on the Math Reasoning subtest, which involves more complex verbal problem solving, but not with the Numerical Operations subtest which assesses basic computation skills. Our results suggest that math anxiety has a pronounced effect on more demanding calculations. Our results further suggest that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children.
Tutoring math platform accessible for visually impaired people.
Maćkowski, Michał Sebastian; Brzoza, Piotr Franciszek; Spinczyk, Dominik Roland
2018-04-01
There are many problems with teaching and assessing impaired students in higher education, especially in technical science, where the knowledge is represented mostly by structural information like: math formulae, charts, graphs, etc. Developing e-learning platform for distance education solves this problem only partially due to the lack of accessibility for the blind. The proposed method is based on the decomposition of the typical mathematical exercise into a sequence of elementary sub-exercises. This allows for interactive resolving of math exercises and assessment of the correctness of exercise solutions at every stage. The presented methods were prepared and evaluated by visually impaired people and students. The article presents the accessible interactive tutoring platform for math teaching and assessment, and experience in exploring it. The results of conducted research confirm good understanding of math formulae described according to elaborated rules. Regardless of the level of complexity of the math formulae the level of math formulae understanding is higher for alternative structural description. The proposed solution enables alternative descriptions of math formulae. Based on the research results, the tool for computer-aided interactive learning of mathematics adapted to the needs of the blind has been designed, implemented and deployed as a platform for on-site and online and distance learning. The designed solution can be very helpful in overcoming many barriers that occur while teaching impaired students. Copyright © 2017 Elsevier Ltd. All rights reserved.
Insecure attachment is associated with math anxiety in middle childhood.
Bosmans, Guy; De Smedt, Bert
2015-01-01
Children's anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (M age = 10.34 years; SD age = 0.63) filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex, and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.
Insecure attachment is associated with math anxiety in middle childhood
Directory of Open Access Journals (Sweden)
Guy eBosmans
2015-10-01
Full Text Available Children’s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect-regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (Mage = 10.34 years; SDage = 0.63 filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.
Using the Intel Math Kernel Library on Peregrine | High-Performance
Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier
Contextual Factors Related to Math Anxiety in Second-Grade Children
Jameson, Molly M.
2014-01-01
As the United States falls farther behind other countries in standardized math assessments, the author seeks to understand why U.S. students perform so poorly. One of the possible explanations to U.S. students' poor math performance may be math anxiety. However, math anxiety in elementary school children is a neglected area in the research. The…
Supporting English Language Learners in Math Class, Grades 6-8
Melanese, Kathy; Chung, Luz; Forbes, Cheryl
2011-01-01
This new addition to Math Solutions "Supporting English Language Learners in Math Class series" offers a wealth of lessons and strategies for modifying grades 6-8 instruction. Section I presents an overview of teaching math to English learners: the research, the challenges, the linguistic demands of a math lesson, and specific strategies and…
Is There a Causal Effect of High School Math on Labor Market Outcomes?
Joensen, Juanna Schroter; Nielsen, Helena Skyt
2009-01-01
In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear evidence of a causal relationship between math and…
Math Clock: Perangkat Penunjuk Waktu Kreatif untuk Olahraga Otak
Directory of Open Access Journals (Sweden)
Galuh Boy Hertantyo
2014-11-01
Full Text Available Brain is one of the most vital parts for humans, with the number of brain function that is needed for the body, the brain becomes a very important part of the human body. If there is damage to the brain will certainly cause the performance of the human body will not run properly. Because of that, it’s very important to maintain brain health. There is a way to maintain brain health, for example is by doing brain exercise. Examples of brain exercise is to do simple math calculations or doing brain games like sudoku. Because of that, created a tool that can help the brain to maintain brain exercise. The tool is called math clock. Making math clock tool consists of hardware and software. The hardware consists of RTC as real time data input, ATmega328 as microcontroller and dot matrix 32x16 as a tool to display the output that has been processed by the microcontroller. The software is built using C with Arduino IDE. Math clock will process the data from RTC then processed it, in microcontroller so when output displayed on dot matrix, output will be simple mathematical operation with real time clock data on it. Test results show that, math clock is capable of displaying a simple mathematical calculation operations such as addition, subtraction, multiplication and division. The mathematical operation that display on math clock, appears to be random, so it’s not triggered by same mathematical operation. In math clock the display will change every 20 second, so in 1 minute there are 3 different kinds of mathematical operations. The results of questionnaires of 10 different students, showed 9 out of 10 students said math clock is a tool that easy to use as a clock. Math clock will be alternative for doing brain exercise every day.
Project TIMS (Teaching Integrated Math/Science)
Edwards, Leo, Jr.
1993-01-01
The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.
Broadbridge, Philip; Fukumoto, Yasuhide; Kamiyama, Naoyuki; Mizoguchi, Yoshihiro; Polthier, Konrad; Saeki, Osamu
2017-01-01
This book is a collection of papers presented at the “Forum Math-for-Industry 2015” for which the unifying theme was “The Role and Importance of Mathematics in Innovation”, held at the Institute of Mathematics for Industry, Kyushu University, October 26–30, 2015. The theme highlights two key roles that mathematics plays in supporting innovation in science, technology, and daily life, namely, needs-based and idea-based. For the former, mathematics assists with sorting through the possibilities and putting matters on a more rigorous foundation, and for the latter, mathematical models of the possible implementations play a key role. The book gives excellent examples of how mathematics assists with stimulating innovation and, thereby, highlights the importance and relevance of the concept Mathematics_FOR_Industry. The contents of this volume address productive and successful interaction between industry and mathematicians, as well as the cross-fertilization and collaboration that result when mathematics...
Math Machines: Using Actuators in Physics Classes
Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta
2018-01-01
Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.
Gesturing Gives Children New Ideas About Math
Goldin-Meadow, Susan; Cook, Susan Wagner; Mitchell, Zachary A.
2009-01-01
How does gesturing help children learn? Gesturing might encourage children to extract meaning implicit in their hand movements. If so, children should be sensitive to the particular movements they produce and learn accordingly. Alternatively, all that may matter is that children move their hands. If so, they should learn regardless of which movements they produce. To investigate these alternatives, we manipulated gesturing during a math lesson. We found that children required to produce correct gestures learned more than children required to produce partially correct gestures, who learned more than children required to produce no gestures. This effect was mediated by whether children took information conveyed solely in their gestures and added it to their speech. The findings suggest that body movements are involved not only in processing old ideas, but also in creating new ones. We may be able to lay foundations for new knowledge simply by telling learners how to move their hands. PMID:19222810
MATH: A Scientific Tool for Numerical Methods Calculation and Visualization
Directory of Open Access Journals (Sweden)
Henrich Glaser-Opitz
2016-02-01
Full Text Available MATH is an easy to use application for various numerical methods calculations with graphical user interface and integrated plotting tool written in Qt with extensive use of Qwt library for plotting options and use of Gsl and MuParser libraries as a numerical and parser helping libraries. It can be found at http://sourceforge.net/projects/nummath. MATH is a convenient tool for use in education process because of its capability of showing every important step in solution process to better understand how it is done. MATH also enables fast comparison of similar method speed and precision.
Das habt ihr schon im Mathe gelernt! Stimmt das wirklich?
DEFF Research Database (Denmark)
Avelar Sotomaior Karam, Ricardo; Uhden, Olaf; Höttecke, Dietmar
2016-01-01
Mathematics is widely considered to be a prerequisite for learning physics. However, it is quite naive to believe that learning basic math is sufficient to use mathematics as a reasoning tool to think about the physical world. The main reason is that using mathematics in physics is substantially...... different than in math. In this paper we show how the way physicists make use of some basic mathematical concepts (e.g. multiplication, division and functions) is specific to physics by identifying their historical genesis and contrasting with the way these concepts are usually taught in math lessons. We...
Social Capital, Information, and Socioeconomic Disparities in Math Coursework
Crosnoe, Robert; Schneider, Barbara
2011-01-01
Analysis of the National Education Longitudinal Study revealed that socioeconomically advantaged students persist in high school math at higher rates than their disadvantaged peers, even when they have the same initial placements and skill levels. These disparities are larger among students with prior records of low academic status because students from more privileged backgrounds persist in math coursework even when their prior performance predicts they will not. Among students with low middle school math performance, those from socioeconomically disadvantaged families appear to benefit from having consultants for coursework decisions, so that they make up ground with their socioeconomically advantaged peers. PMID:21743762
Basic math and pre-algebra for dummies
Zegarelli, Mark
2014-01-01
Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methodsRelevant cultural vernacular and referencesStandard For Dummies materials that
Quantum chaos on discrete graphs
International Nuclear Information System (INIS)
Smilansky, Uzy
2007-01-01
Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)
Liew, Jeffrey; Lench, Heather C; Kao, Grace; Yeh, Yu-Chen; Kwok, Oi-man
2014-01-01
Standardized testing has become a common form of student evaluation with high stakes, and limited research exists on understanding the roles of students' personality traits and social-evaluative threat on their academic performance. This study examined the roles of avoidance temperament (i.e., fear and behavioral inhibition) and evaluative threat (i.e., fear of failure and being viewed as unintelligent) in standardized math test and course grades in college students. Undergraduate students (N=184) from a large public university were assessed on temperamental fear and behavioral inhibition. They were then given 15 minutes to complete a standardized math test. After the test, students provided data on evaluative threat and their math performance (scores on standardized college entrance exam and average grades in college math courses). Results indicate that avoidance temperament was linked to social-evaluative threat and low standardized math test scores. Furthermore, evaluative threat mediated the influence of avoidance temperament on both types of math performance. Results have educational and clinical implications, particularly for students at risk for test anxiety and underperformance. Interventions targeting emotion regulation and stress management skills may help individuals reduce their math and test anxieties.
Some recursive formulas for Selberg-type integrals
Energy Technology Data Exchange (ETDEWEB)
Iguri, Sergio [Instituto de AstronomIa y Fisica del Espacio (CONICET-UBA). C. C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Mansour, Toufik, E-mail: siguri@iafe.uba.a, E-mail: toufik@math.haifa.ac.i [Department of Mathematics, University of Haifa, Haifa 31905 (Israel)
2010-02-12
A set of recursive relations satisfied by Selberg-type integrals involving monomial symmetric polynomials are derived, generalizing previous results in Aomoto (1987) SIAM J. Math. Anal. 18 545-49 and Iguri (2009) Lett. Math. Phys. 89 141-58. These formulas provide a well-defined algorithm for computing Selberg-Schur integrals whenever the Kostka numbers relating Schur functions and the corresponding monomial polynomials are explicitly known. We illustrate the usefulness of our results discussing some interesting examples.
Math anxiety in second and third graders and its relation to mathematics achievement.
Wu, Sarah S; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod
2012-01-01
Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement
Teachers Awareness of Students’ Anxiety in Math Classroom: Teachers’ Treatment VS Students’ Anxiety
Wanda Nugroho Yanuarto
2016-01-01
Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that pr...
Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement
Wu, Sarah S.; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod
2012-01-01
Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure f...
Les grands problèmes mathématiques ils orientent l'avenir des maths
2012-01-01
Les mathématiques ont leurs sept merveilles ! Il s’agit des sept problèmes du millénaire, mis à prix à un million de dollars chacun par l’Institut Clay de mathématiques en 2000. Mais l’intelligence des mathématiciens est aussi mise à l’épreuve par bien d’autres problèmes, tels ceux de Hilbert. Découvrez dans ce numéro comment ces énigmes orientent l’avenir de la discipline ouvrant la voie à de nouvelles connaissances fondamentales.
International Nuclear Information System (INIS)
Swanekamp, S. B.; Schumer, J. W.
2007-01-01
In Phys Plasmas 13, 073101 (2006), the drop in the space-charge-limited (SCL) current for a beam injected into a space with an open boundary is analyzed with an electromagnetic particle-in-cell code. The authors explained the power loss observed at the open boundary as the loss of electromagnetic radiation created from the deceleration of electrons in the gap, and they developed an effective voltage theory to predict the drop in the SCL current observed in the simulations. In this Comment, we show that, provided the current remains below the SCL value, the electric and magnetic fields are constant in time so that power loss from the open boundary is a dc phenomenon with no rf power leaving through the boundary. We show that the electric and magnetic fields are static in time and static fields DO NOT RADIATE. Instead, the electron beam charges the collector plate, which causes a real electrostatic electric field to develop. The electron energy loss is not due to radiation but rather to the work done by this electrostatic field on the electrons as they move across the gap. This is precisely the energy dissipated in the matched resistance across the open boundary, which is a consequence of the boundary condition. Furthermore, since a real electrostatic potential develops, the voltage drop is real and there is no need to call the voltage drop an effective voltage
Mattarella-Micke, Andrew; Mateo, Jill; Kozak, Megan N; Foster, Katherine; Beilock, Sian L
2011-08-01
In the current study, we explored how a person's physiological arousal relates to their performance in a challenging math situation as a function of individual differences in working memory (WM) capacity and math-anxiety. Participants completed demanding math problems before and after which salivary cortisol, an index of arousal, was measured. The performance of lower WM individuals did not depend on cortisol concentration or math-anxiety. For higher WM individuals high in math-anxiety, the higher their concentration of salivary cortisol following the math task, the worse their performance. In contrast, for higher WM individuals lower in math-anxiety, the higher their salivary cortisol concentrations, the better their performance. For individuals who have the capacity to perform at a high-level (higher WMs), whether physiological arousal will lead an individual to choke or thrive depends on math-anxiety. 2011 APA, all rights reserved
Is Discrete Mathematics the New Math of the Eighties?
Hart, Eric W.
1985-01-01
Considered are what discrete mathematics includes, some parallels and differences between new math and discrete mathematics (listed in a table), and lessons to be learned. A list of references is included. (MNS)
Change Vocational Funding to Acquire Qualified Math/Science Teachers.
Heron, Bill
1985-01-01
Gives a brief overview of the problems occurring at the high school level due to inadequately paid personnel in the math and science areas, summarizes the current bureaucratic structure surrounding vocational funding, and suggests an alternative. (FL)
Math and science illiteracy: Social and economic impacts
Energy Technology Data Exchange (ETDEWEB)
Williams, J.L.
1994-05-01
Today`s highly competitive global economy is being driven by increasingly rapid technological development. This paper explores the problems of math and science illiteracy in the United States and the potential impact on our economic survival in this environment during the next century. Established educational methods that reward task performance, emphasize passive lecture, and fail to demonstrate relevance to real life are partly to blame. Social norms, stereotypes, and race and gender bias also have an impact. To address this crisis, we need to question the philosophy of an educational system that values task over concept. Many schools have already initiated programs at all grade levels to make math and science learning more relevant, stimulating, and fun. Teaching methods that integrate math and science learning with teamwork, social context, and other academic subjects promote the development of higher-order thinking skills and help students see math and science as necessary skills.
Solar Imagery - Photosphere - Sunspot Drawings - McMath-Hulbert Observatory
National Oceanic and Atmospheric Administration, Department of Commerce — The McMath-Hulbert Observatory is a decommissioned solar observatory in Lake Angelus, Michigan, USA. It was established in 1929 as a private observatory by father...
Positive Feedback From Male Authority Figures Boosts Women's Math Outcomes.
Park, Lora E; Kondrak, Cheryl L; Ward, Deborah E; Streamer, Lindsey
2018-03-01
People often search for cues in the environment to determine whether or not they will be judged or treated negatively based on their social identities. Accordingly, feedback from gatekeepers-members of majority groups who hold authority and power in a field-may be an especially important cue for those at risk of experiencing social identity threat, such as women in math settings. Across a series of studies, women who received positive ("Good job!") versus objective (score only) feedback from a male (vs. female) authority figure in math reported greater confidence; belonging; self-efficacy; more favorable Science, Technology, Engineering, and Mathematics (STEM) attitudes/identification/interest; and greater implicit identification with math. Men were affected only by the type of math feedback they received, not by the source of feedback. A meta-analysis across studies confirmed results. Together, these findings suggest that positive feedback from gatekeepers is an important situational cue that can improve the outcomes of negatively stereotyped groups.
Threats and Supports to Female Students' Math Beliefs and Achievement.
McKellar, Sarah E; Marchand, Aixa D; Diemer, Matthew A; Malanchuk, Oksana; Eccles, Jacquelynne S
2018-03-23
This study examines how student perceptions of teacher practices contribute to female high school students' math beliefs and achievement. Guided by the expectancy-value framework, we hypothesized that students' motivation beliefs and achievement outcomes in mathematics are fostered by teachers' emphasis on the relevance of mathematics and constrained by gender-based differential treatment. To examine these questions, structural equation modeling was applied to a longitudinal panel of 518 female students from the Maryland Adolescent Development in Context Study. While controlling for prior achievement and race, gendered differential treatment was negatively associated with math beliefs and achievement, whereas relevant math instruction was positively associated with these outcomes. These findings suggest inroads that may foster positive math motivational beliefs and achievement among young women. © 2018 Society for Research on Adolescence.
Research on Quantum Algorithms at the Institute for Quantum Information and Matter
2016-05-29
Spyridon_Michalakis. Quantization of Hall Conductance For Interacting Electrons on a Torus, Commun. Math . Phys., (09 2014): 433. doi: I. H. Kim...Long-range entanglement is necessary for a topological storage of quantum information, Phys. Rev. Lett. (accepted), (08 2013): 80503. doi...John_Preskill, Sumit_Sijher. Protected gates for topological quantum field theories, Journal of Mathematical Physics, (01 2016): 22201. doi
Multi-User GeoGebra for Virtual Math Teams
Directory of Open Access Journals (Sweden)
Gerry Stahl
2010-05-01
Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams to discuss mathematics. The VMT collaboration environment now includes the dynamic mathematics application, GeoGebra. It offers a multi-user version of GeoGebra, which can be used in concert with VMT’s chat, web browsers, curricula and wiki repository.
Metacognitive awareness and math anxiety in gifted students
Directory of Open Access Journals (Sweden)
Hakan Sarıcam
2015-12-01
Full Text Available The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students’ metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted volunteer secondary school students in Turkey. The mean age of the participants was 12.56 years ranging from 12 to 13 years. For gathering data, the Maths Anxiety Scale for Elementary School Students and The Metacognitive Awareness Inventory for Children were used. For analysing the data, Spearman correlation analysis, the Mann Whitney U test, and linear regression analysis were used. According to the findings: firstly, gifted students’ metacognitive awareness scores were higher than those of non-gifted students. On the other hand, non-gifted students’ maths anxiety levels were higher than those of gifted students. Secondly, there was negative correlation between metacognitive awareness and math anxiety. Finally, the findings of linear regression analysis indicated that metacognitive awareness is explained by 48% total variance of maths anxiety in gifted students.
Math you can really use--every day
Herzog, David Alan
2007-01-01
Math You Can Really Use--Every Day skips mind-numbing theory and tiresome drills and gets right down to basic math that helps you do real-world stuff like figuring how much to tip, getting the best deals shopping, computing your gas mileage, and more. This is not your typical, dry math textbook. With a comfortable, easygoing approach, it: Covers math you''ll need for balancing your checkbook, choosing or managing credit cards, comparing options for mortgages, insurance, and investments, and moreIncludes the basics on fractions, decimals, percentages, measurements, and geometric mathClues you in on simple shortcutsIncludes examples plus pop quizzes with answers to help you solidify your understanding Features tear-out guides you can take with you for tipping and converting measurements Want to know how much 20% off is in dollars and cents? Want to figure out how much gas is going to cost for your road trip? This is the math book you''ll really use!
Training the approximate number system improves math proficiency.
Park, Joonkoo; Brannon, Elizabeth M
2013-10-01
Humans and nonhuman animals share an approximate number system (ANS) that permits estimation and rough calculation of quantities without symbols. Recent studies show a correlation between the acuity of the ANS and performance in symbolic math throughout development and into adulthood, which suggests that the ANS may serve as a cognitive foundation for the uniquely human capacity for symbolic math. Such a proposition leads to the untested prediction that training aimed at improving ANS performance will transfer to improvement in symbolic-math ability. In the two experiments reported here, we showed that ANS training on approximate addition and subtraction of arrays of dots selectively improved symbolic addition and subtraction. This finding strongly supports the hypothesis that complex math skills are fundamentally linked to rudimentary preverbal quantitative abilities and provides the first direct evidence that the ANS and symbolic math may be causally related. It also raises the possibility that interventions aimed at the ANS could benefit children and adults who struggle with math.
Teachers and Counselors: Building Math Confidence in Schools
Directory of Open Access Journals (Sweden)
Joseph M. Furner
2017-08-01
Full Text Available Mathematics teachers need to take on the role of counselors in addressing the math anxious in today's math classrooms. This paper looks at the impact math anxiety has on the future of young adults in our high-tech society. Teachers and professional school counselors are encouraged to work together to prevent and reduce math anxiety. It is important that all students feel confident in their ability to do mathematics in an age that relies so heavily on problem solving, technology, science, and mathematics. It really is a school's obligation to see that their students value and feel confident in their ability to do math, because ultimately a child's life: all decisions they will make and careers choices may be determined based on their disposition toward mathematics. This paper raises some interesting questions and provides some strategies (See Appendix A for teachers and counselors for addressing the issue of math anxiety while discussing the importance of developing mathematically confident young people for a high-tech world of STEM.
Wu, Li-Chen; Chao, Li-ling; Cheng, Pi-Yun; Tuan, Hsiao-Lin; Guo, Chorng-Jee
2018-01-01
The purpose of this study was to probe the differences of perceived professional teaching competence between elementary school math/science teachers in Taiwan who are majored in math/science and those who are not. A researcher-developed Math/Science Teachers' Professional Development Questionnaire was used in a nationwide survey, using a two-stage…
Jones, Martin H.; Irvin, Matthew J.; Kibe, Grace W.
2012-01-01
The study is one of few to examine how living in rural, suburban, or urban settings may alter factors supporting African Americans adolescents' math performance. The study examines the relationship of math self-concept and perceptions of friends' academic behaviors to African American students' math performance. Participants (N = 1,049) are…
International Nuclear Information System (INIS)
Parra, Felix I.; Catto, Peter J.
2009-01-01
A recent publication [F. I. Parra and P. J. Catto, Plasma Phys. Controlled Fusion 50, 065014 (2008)] warned against the use of the lower order gyrokinetic Poisson equation at long wavelengths because the long wavelength, radial electric field must remain undetermined to the order the equation is obtained. Another reference [W. W. Lee and R. A. Kolesnikov, Phys. Plasmas 16, 044506 (2009)] criticizes these results by arguing that the higher order terms neglected in the most common gyrokinetic Poisson equation are formally smaller than the terms that are retained. This argument is flawed and ignores that the lower order terms, although formally larger, must cancel without determining the long wavelength, radial electric field. The reason for this cancellation is discussed. In addition, the origin of a nonlinear term present in the gyrokinetic Poisson equation [F. I. Parra and P. J. Catto, Plasma Phys. Controlled Fusion 50, 065014 (2008)] is explained.
Neurocognitive and Behavioral Predictors of Math Performance in Children With and Without ADHD.
Antonini, Tanya N; Kingery, Kathleen M; Narad, Megan E; Langberg, Joshua M; Tamm, Leanne; Epstein, Jeffery N
2016-02-01
This study examined neurocognitive and behavioral predictors of math performance in children with and without ADHD. Neurocognitive and behavioral variables were examined as predictors of (a) standardized mathematics achievement scores, (b) productivity on an analog math task, and (c) accuracy on an analog math task. Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the attentional network task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. © The Author(s) 2013.
Promotive and Corrosive Factors in African American Students' Math Beliefs and Achievement.
Diemer, Matthew A; Marchand, Aixa D; McKellar, Sarah E; Malanchuk, Oksana
2016-06-01
Framed by expectancy-value theory (which posits that beliefs about and the subjective valuation of a domain predict achievement and decision-making in that domain), this study examined the relationships among teacher differential treatment and relevant math instruction on African American students' self-concept of math ability, math task value, and math achievement. These questions were examined by applying structural equation modeling to 618 African American youth (45.6 % female) followed from 7th to 11th grade in the Maryland Adolescent Development in Context Study. While controlling for gender and prior math achievement, relevant math instruction promoted and teacher differential treatment corroded students' math beliefs and achievement over time. Further, teacher discrimination undermined students' perceptions of their teachers, a mediating process under-examined in previous inquiry. These findings suggest policy and practice levers to narrow opportunity gaps, as well as foster math achievement and science, technology, engineering and math success.
Number-specific and general cognitive markers of preschoolers' math ability profiles.
Gray, Sarah A; Reeve, Robert A
2016-07-01
Different number-specific and general cognitive markers have been claimed to underlie preschoolers' math ability. It is unclear, however, whether similar/different cognitive markers, or combinations of them, are associated with different patterns of emerging math abilities (i.e., different patterns of strength and weakness). To examine this question, 103 preschoolers (40-60 months of age) completed six math tasks (count sequence, object counting, give a number, naming numbers, ordinal relations, and arithmetic), three number-specific markers of math ability (dot enumeration, magnitude comparison, and spontaneous focusing on numerosity), and four general markers (working memory, response inhibition, attention, and vocabulary). A three-step latent profile modeling procedure identified five math ability profiles that differed in their patterns of math strengths and weaknesses; specifically, the profiles were characterized by (a) excellent math ability on all math tasks, (b) good arithmetic ability, (c) good math ability but relatively poor count sequence recitation ability, (d) average ability on all math tasks, and (e) poor ability on all math tasks. After controlling for age, only dot enumeration and spontaneous focusing on numerosity were associated with the math ability profiles, whereas vocabulary was also marginally significant, and these markers were differentially associated with different profiles; that is, different cognitive markers were associated with different patterns of strengths and weaknesses in math abilities. Findings are discussed in terms of their implications for the development of math cognition. Copyright © 2016 Elsevier Inc. All rights reserved.
Math anxiety in Thai early adolescents: a cognitive-behavioral perspective.
Wangsiriwech, Tawatchai; Pisitsungkagarn, Kullaya; Jarukasemthawee, Somboon
2017-08-29
With its high prevalence and debilitating impact on students, math anxiety is well studied within the educational context. However, the problem has yet to be examined from the psychological perspective, which is necessary in order to produce a more comprehensive perspective and to pave the way for therapeutic intervention. The current study, therefore, was conducted to identify cognitive and behavioral factors relevant to the occurrence and maintenance of math anxiety. Data were collected from 300 grade 9 students (150 females and 150 males) from public and private schools in Bangkok, Thailand. Participants responded to the measures of math anxiety, negative math beliefs, negative math appraisals and math avoidance. Structural equation modeling was conducted. Model fit indices obtained consistently suggested the good fitness of the model to the data [e.g. χ2/df = 0.42, root mean square error of approximation (RMSEA) = 0.00]. Negative math beliefs, negative math appraisals and math avoidance had a significant direct effect on math anxiety. Additionally, the indirect effect of negative math appraisal was observed between negative math beliefs and math anxiety. In summary, the proposed model accounted for 84.5% of the variance in the anxiety. The findings are discussed with particular focus on implications for therapeutic intervention for math anxiety.
Is there a Causal Effect of High School Math on Labor Market Outcomes?
DEFF Research Database (Denmark)
Joensen, Juanna Schrøter; Nielsen, Helena Skyt
Outsourcing of jobs to low-wage countries has increased the focus onthe accumulation of skills - such as Math skills - in high-wage countries.In this paper, we exploit a high school pilot scheme to identify the causaleffect of advanced high school Math on labor market outcomes. The pilotscheme...... reduced the costs of choosing advanced Math because it allowedfor at more flexible combination of Math with other courses. We findclear evidence of a causal relationship between Math and earnings for thestudents who are induced to choose Math after being exposed to the pilotscheme. The effect partly stems...
The Relationship between Cognitive Reserve and Math Abilities
Directory of Open Access Journals (Sweden)
Giorgio Arcara
2017-12-01
Full Text Available Cognitive Reserve is the capital of knowledge and experiences that an individual acquires over their life-span. Cognitive Reserve is strictly related to Brain Reserve, which is the ability of the brain to cope with damage. These two concepts could explain many phenomena such as the modality of onset in dementia or the different degree of impairment in cognitive abilities in aging. The aim of this study is to verify the effect of Cognitive Reserve, as measured by a questionnaire, on a variety of numerical abilities (number comprehension, reading and writing numbers, rules and principles, mental calculations and written calculations, in a group of healthy older people (aged 65–98 years. Sixty older individuals were interviewed with the Cognitive Reserve Index questionnaire (CRIq, and assessed with the Numerical Activities of Daily Living battery (NADL, which included formal tasks on math abilities, an informal test on math, one interview with the participant, and one interview with a relative on the perceived math abilities. We also took into account the years of education, as another proxy for Cognitive Reserve. In the multiple regression analyses on all formal tests, CRIq scores did not significantly predict math performance. Other variables, i.e., years of education and Mini-Mental State Examination score, accounted better for math performance on NADL. Only a subsection of CRIq, CRIq-Working-activity, was found to predict performance on a NADL subtest assessing informal use of math in daily life. These results show that education might better explain abstract math functions in late life than other aspects related to Cognitive Reserve, such as lifestyle or occupational attainment.
The Relationship between Cognitive Reserve and Math Abilities.
Arcara, Giorgio; Mondini, Sara; Bisso, Alice; Palmer, Katie; Meneghello, Francesca; Semenza, Carlo
2017-01-01
Cognitive Reserve is the capital of knowledge and experiences that an individual acquires over their life-span. Cognitive Reserve is strictly related to Brain Reserve, which is the ability of the brain to cope with damage. These two concepts could explain many phenomena such as the modality of onset in dementia or the different degree of impairment in cognitive abilities in aging. The aim of this study is to verify the effect of Cognitive Reserve, as measured by a questionnaire, on a variety of numerical abilities (number comprehension, reading and writing numbers, rules and principles, mental calculations and written calculations), in a group of healthy older people (aged 65-98 years). Sixty older individuals were interviewed with the Cognitive Reserve Index questionnaire (CRIq), and assessed with the Numerical Activities of Daily Living battery (NADL), which included formal tasks on math abilities, an informal test on math, one interview with the participant, and one interview with a relative on the perceived math abilities. We also took into account the years of education, as another proxy for Cognitive Reserve. In the multiple regression analyses on all formal tests, CRIq scores did not significantly predict math performance. Other variables, i.e., years of education and Mini-Mental State Examination score, accounted better for math performance on NADL. Only a subsection of CRIq, CRIq-Working-activity, was found to predict performance on a NADL subtest assessing informal use of math in daily life. These results show that education might better explain abstract math functions in late life than other aspects related to Cognitive Reserve, such as lifestyle or occupational attainment.
A deformation quantization theory for noncommutative quantum mechanics
International Nuclear Information System (INIS)
Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz
2010-01-01
We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].
International Nuclear Information System (INIS)
Segre, S.E.
1998-01-01
Errors in the main text, the appendix and two curves are corrected in this corrigendum to the paper entitled ''On the use of polarization modulation in combined interferometry and polarimetry'', written by S.E. Segre and published in 1998 Plasma Phys. Control. Fusion, v. 40 p. 153-161
International Nuclear Information System (INIS)
Riemann, K.U.; Meyer, P.
1996-01-01
Recently, Valentini [Phys. Plasmas 3, 1459 (1996)] investigated the influence of collisions on the space charge formation and derived a modified Bohm criterion accounting for collisions in the sheath. It is shown that this derivation is wrong and is based on a misinterpretation of the plasma sheath concept. copyright 1996 American Institute of Physics
Experiences of Visually Impaired Students in Community College Math Courses
Swan, S. Tomeka
Blind and visually impaired students who attend community colleges face challenges in learning mathematics (Forrest, 2010). Scoy, McLaughlin, Walls, and Zuppuhaur (2006) claim these students are at a disadvantage in studying mathematics due to the visual and interactive nature of the subject, and by the way mathematics is taught. In this qualitative study six blind and visually impaired students attended three community colleges in one Mid-Atlantic state. They shared their experiences inside the mathematics classroom. Five of the students were enrolled in developmental level math, and one student was enrolled in college level math. The conceptual framework used to explore how blind and visually impaired students persist and succeed in math courses was Piaget's theory on constructivism. The data from this qualitative study was obtained through personal interviews. Based on the findings of this study, blind and visually impaired students need the following accommodations in order to succeed in community college math courses: Accommodating instructors who help to keep blind and visually impaired students motivated and facilitate their academic progress towards math completion, tutorial support, assistive technology, and a positive and inclusive learning environment.
A meta-analysis of math performance in Turner syndrome.
Baker, Joseph M; Reiss, Allan L
2016-02-01
Studies investigating the relationship between Turner syndrome and math learning disability have used a wide variation of tasks designed to test various aspects of mathematical competencies. Although these studies have revealed much about the math deficits common to Turner syndrome, their diversity makes comparisons between individual studies difficult. As a result, the consistency of outcomes among these diverse measures remains unknown. The overarching aim of this review is to provide a systematic meta-analysis of the differences in math and number performance between females with Turner syndrome and age-matched neurotypical peers. We provide a meta-analysis of behavioral performance in Turner syndrome relative to age-matched neurotypical populations on assessments of math and number aptitude. In total, 112 comparisons collected across 17 studies were included. Although 54% of all statistical comparisons in our analyses failed to reject the null hypothesis, our results indicate that meaningful group differences exist on all comparisons except those that do not require explicit calculation. Taken together, these results help elucidate our current understanding of math and number weaknesses in Turner syndrome, while highlighting specific topics that require further investigation. © 2015 Mac Keith Press.
Impaired math achievement in patients with acute vestibular neuritis.
Moser, Ivan; Vibert, Dominique; Caversaccio, Marco D; Mast, Fred W
2017-12-01
Broad cognitive difficulties have been reported in patients with peripheral vestibular deficit, especially in the domain of spatial cognition. Processing and manipulating numbers relies on the ability to use the inherent spatial features of numbers. It is thus conceivable that patients with acute peripheral vestibular deficit show impaired numerical cognition. Using the number Stroop task and a short math achievement test, we tested 20 patients with acute vestibular neuritis and 20 healthy, age-matched controls. On the one hand, patients showed normal congruency and distance effects in the number Stroop task, which is indicative of normal number magnitude processing. On the other hand, patients scored lower than healthy controls in the math achievement test. We provide evidence that the lower performance cannot be explained by either differences in prior math knowledge (i.e., education) or slower processing speed. Our results suggest that peripheral vestibular deficit negatively affects numerical cognition in terms of the efficient manipulation of numbers. We discuss the role of executive functions in math performance and argue that previously reported executive deficits in patients with peripheral vestibular deficit provide a plausible explanation for the lower math achievement scores. In light of the handicapping effects of impaired numerical cognition in daily living, it is crucial to further investigate the mechanisms that cause mathematical deficits in acute PVD and eventually develop adequate means for cognitive interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Representation of numerical magnitude in math-anxious individuals.
Colomé, Àngels
2018-01-01
Larger distance effects in high math-anxious individuals (HMA) performing comparison tasks have previously been interpreted as indicating less precise magnitude representation in this population. A recent study by Dietrich, Huber, Moeller, and Klein limited the effects of math anxiety to symbolic comparison, in which they found larger distance effects for HMA, despite equivalent size effects. However, the question of whether distance effects in symbolic comparison reflect the properties of the magnitude representation or decisional processes is currently under debate. This study was designed to further explore the relation between math anxiety and magnitude representation through three different tasks. HMA and low math-anxious individuals (LMA) performed a non-symbolic comparison, in which no group differences were found. Furthermore, we did not replicate previous findings in an Arabic digit comparison, in which HMA individuals showed equivalent distance effects to their LMA peers. Lastly, there were no group differences in a counting Stroop task. Altogether, an explanation of math anxiety differences in terms of less precise magnitude representation is not supported.
Solving Math Problems Approximately: A Developmental Perspective.
Directory of Open Access Journals (Sweden)
Dana Ganor-Stern
Full Text Available Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults' ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger than the exact answer and when it was far (vs. close from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner.
Archambeault, Betty
1993-01-01
Holistic math focuses on problem solving with numbers and concepts. Whole math activities for adults include shopping for groceries, eating in restaurants, buying gas, taking medicine, measuring a room, estimating servings, and compiling a family cookbook. (SK)
Shall we introduce narrative investigation practices in math teaching?
Directory of Open Access Journals (Sweden)
Rosália Maria Ribeiro de Aragão
2005-06-01
Full Text Available This is a discussion of epistemological, methodological and theoretical elements of research in current Math Education and that of the teacher-reflective-researcher practice in contemporary society. The objectives of such discussion are: a to introduce basic notions to understand the relation between researcher and the object of investigation; and b to direct Math teachers to undertake research from the very beginning of their trawling. In order to achieve research goals, teachers in trainning can both study classroom dynamics through the testimony of the students as well as analyze meanings in practices of narrative investigation. It is recommended that such practices are incorporated to daily Math teaching and learning processes
Preschool children's mathematical knowledge: The effect of teacher "math talk.".
Klibanoff, Raquel S; Levine, Susan C; Huttenlocher, Janellen; Vasilyeva, Marina; Hedges, Larry V
2006-01-01
This study examined the relation between the amount of mathematical input in the speech of preschool or day-care teachers and the growth of children's conventional mathematical knowledge over the school year. Three main findings emerged. First, there were marked individual differences in children's conventional mathematical knowledge by 4 years of age that were associated with socioeconomic status. Second, there were dramatic differences in the amount of math-related talk teachers provided. Third, and most important, the amount of teachers' math-related talk was significantly related to the growth of preschoolers' conventional mathematical knowledge over the school year but was unrelated to their math knowledge at the start of the school year. Copyright 2006 APA, all rights reserved.
Do high school students with different styles have different level of math anxiety?
Shirvani, Hosin; Guerra, Federico
2015-01-01
This study included 240 mostly Hispanic students from one high school. The study used a learning style survey and a math anxiety survey to find students’ learning styles and level of math anxiety. The study examined whether students with three learning styles (auditory, visual, and kinesthetic) had a different level of math anxiety. The study found that children with kinesthetic learning style had higher math anxiety than the other two types. The study also examined whether there were differe...
Math anxiety and its relationship with basic arithmetic skills among primary school children
Sorvo, Riikka; Koponen, Tuire; Viholainen, Helena; Aro, Tuija; Räikkönen, Eija; Peura, Pilvi; Dowker, Ann; Aro, Mikko
2017-01-01
Background Children have been found to report and demonstrate math anxiety as early as the first grade. However, previous results concerning the relationship between math anxiety and performance are contradictory, with some studies establishing a correlation between them while others do not. These contradictory results might be related to varying operationalizations of math anxiety. Aims In this study, we aimed to examine the prevalence of math anxiety and its relationship with bas...
Maintaining Students’ Involvement in a Math Lecture Using Countdown Timers
Directory of Open Access Journals (Sweden)
Ann Krizzel A. Aban
2015-12-01
Full Text Available Involving students in a lecture is an important but not an easy task that every lecturer must encourage. This task becomes even greater in a math class that is composed of eighty to a hundred sixty students. In 2007, the University of the Philippines Los Baños (UPLB started offering some of its basic math courses in lecture-recitation set-up. This shift and many other factors drove most math instructors of UPLB to widely use presentation software, such as the PowerPoint (PPT, to deliver their lectures. The non-stop use of these softwares, however, seems to have negative effects on the students when it comes to maintaining their involvement in a lecture discussion for they tend to be more passive spectators. On the other hand, adding countdown timers strategically on some parts of the discussion seems to lessen such negative effects. This study determined the effectiveness of using countdown timers in maintaining students’ involvement in a lecture of MATH 27 (Analytic Geometry and Calculus II, a course in UPLB commonly taken by sophomore students. Results show that the effectiveness of countdown timers, as perceived by the students, is independent to students’ genders and degree programs, but is dependent to the colleges where the students belong to. Also, some effects of countdown timers are significantly correlated to various data from students’ profiles. It was concluded in the study that the use of countdown timers is effective in maintaining student’s involvement in MATH 27 lectures and might also be useful in other math lecture classes
Everyday calculus discovering the hidden math all around us
Fernandez, Oscar E
2014-01-01
Calculus. For some of us, the word conjures up memories of ten-pound textbooks and visions of tedious abstract equations. And yet, in reality, calculus is fun, accessible, and surrounds us everywhere we go. In Everyday Calculus, Oscar Fernandez shows us how to see the math in our coffee, on the highway, and even in the night sky. Fernandez uses our everyday experiences to skillfully reveal the hidden calculus behind a typical day's events. He guides us through how math naturally emerges from simple observations-how hot coffee cools down, for example-and in discussions of over fifty familia
TEACHER TRAINING: How to Produce Better Math and Science Teachers.
Mervis, J
2000-09-01
Two National Research Council panels have released new reports on improving science and math education in the United States. One panel says that the best way to improve teacher education is to make it a continuum, with school districts taking more responsibility for the initial preparation of new teachers and university faculty playing a bigger role in ongoing professional development. The other panel says that more recent science Ph.D.s would be willing to teach high school science and math if the government helped with the transition, if the certification process were compressed, and if they could retain ties to research.
Math in plain english literacy strategies for the mathematics classroom
Benjamin, Amy
2013-01-01
Do word problems and math vocabulary confuse students in your mathematics classes? Do simple keywords like ""value"" and ""portion"" seem to mislead them? Many words that students already know can have a different meaning in mathematics. To grasp that difference, students need to connect English literacy skills to math. Successful students speak, read, write, and listen to each other so they can understand, retain, and apply mathematics concepts. This book explains how to use 10 classroom-ready literacy strategies in concert with your mathematics instruction. You'll learn how to develop stude
Gesture Recognition for Educational Games: Magic Touch Math
Kye, Neo Wen; Mustapha, Aida; Azah Samsudin, Noor
2017-08-01
Children nowadays are having problem learning and understanding basic mathematical operations because they are not interested in studying or learning mathematics. This project proposes an educational game called Magic Touch Math that focuses on basic mathematical operations targeted to children between the age of three to five years old using gesture recognition to interact with the game. Magic Touch Math was developed in accordance to the Game Development Life Cycle (GDLC) methodology. The prototype developed has helped children to learn basic mathematical operations via intuitive gestures. It is hoped that the application is able to get the children motivated and interested in mathematics.
Supporting English Language Learners in Math Class, Grades 3-5
Bresser, Rusty; Melanese, Kathy; Sphar, Christine
2009-01-01
More than 10 percent of the students in our nation's public schools are English language learners, and this number grows each year. Many of these students are falling behind in math. "Supporting English Language Learners in Math Class, Grades 3-5" outlines the challenges ELL students face when learning math and provides a wealth of specific…
Assessing the Effect of Language Demand in Bundles of Math Word Problems
Banks, Kathleen; Jeddeeni, Ahmad; Walker, Cindy M.
2016-01-01
Differential bundle functioning (DBF) analyses were conducted to determine whether seventh and eighth grade second language learners (SLLs) had lower probabilities of answering bundles of math word problems correctly that had heavy language demands, when compared to non-SLLs of equal math proficiency. Math word problems on each of four test forms…
Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology
Redish, Edward F.; Kuo, Eric
2015-01-01
Mathematics is a critical part of much scientific research. Physics in particular weaves math extensively into its instruction beginning in high school. Despite much research on the learning of both physics and math, the problem of how to effectively include math in physics in a way that reaches most students remains unsolved. In this paper, we…
Launching Kindergarten Math Clubs: The Implementation of High 5s in New York City
Jacob, Robin; Erickison, Anna; Mattera, Shira K.
2018-01-01
Early math has been shown to predict not only longer-term math achievement, but also future reading achievement, high school completion, and college attendance. Yet effects from early math programs often fade out as children move into more varied instructional contexts in elementary school. This fade-out suggests the need for an alignment of math…
Singapore Math®. What Works Clearinghouse Intervention Report. Updated December 2015
What Works Clearinghouse, 2015
2015-01-01
This report on "Singapore Math®" updates the 2009 WWC review of the curriculum to include seven new studies. Despite the additional research, no studies meet WWC design standards and therefore, no conclusions can be made about the effectiveness of "Singapore Math®." [For the 2009 report, "Singapore Math," see…
Grizenko, Natalie; Cai, Emmy; Jolicoeur, Claude; Ter-Stepanian, Mariam; Joober, Ridha
2013-11-01
Examine the short-term (acute) effects of methylphenidate (MPH) on math performance in children with attention-deficit hyperactivity disorder (ADHD) and what factors predict improvement in math performance. One hundred ninety-eight children with ADHD participated in a double-blind, placebo-controlled, randomized crossover MPH trial. Math response to MPH was determined through administration of math problems adjusted to their academic level during the Restricted Academic Situation Scale (RASS). Student t tests were conducted to assess change in math performance with psychostimulants. Correlation between change on the RASS and change on the math performance was also examined. Linear regression was performed to determine predictor variables. Children with ADHD improved significantly in their math with MPH (P math performance on MPH was highly correlated. A child's age at baseline and Wechsler Individual Achievement Test (WIAT)-Numerical Operations standard scores at baseline accounted for 15% of variances for acute math improvement. MPH improves acute math performance in children with ADHD. Younger children with lower math scores (as assessed by the WIAT) improved most on math scores when given psychostimulants. NCT00483106.
2013-01-11
...; Comment Request; Impact Evaluation of Math Professional Development AGENCY: IES/NCES, Department of... of Math Professional Development. OMB Control Number: 1850-NEW. Type of Review: New information... requests clearance to recruit and collect data from districts, schools, and teachers for a study of math...
2013-03-26
...; Comment Request; Upward Bound and Upward Bound Math Science Annual Performance Report AGENCY: The Office... considered public records. Title of Collection: Upward Bound and Upward Bound Math Science Annual Performance...) and Upward Bound Math and Science (UBMS) Programs. The Department is requesting a new APR because of...
Investigating the Effects of a Structured Writing Program in a Math Classroom: A Quantitative Study
Girsa, Heather
2016-01-01
In a northeastern state eighth grade math students are struggling with meeting adequate yearly progress in math. The state's math proficiency in the school year 2013-2014 for eighth grade students showed that only 56% scored at grade level or above. The local problem addressed in this study is that 44% of a northeastern state's eighth graders are…
The Groove of Growth: How Early Gains in Math Ability Influence Adolescent Achievement
Watts, Tyler W.; Duncan, Greg J.; Siegler, Robert S.; Davis-Kean, Pamela E.
2014-01-01
A number of studies, both small scale and of nationally-representative student samples, have reported substantial associations between school entry math ability and later elementary school achievement. However, questions remain regarding the persistence of the association between early growth in math ability and later math achievement due to the…
77 FR 37016 - Applications for New Awards: Upward Bound Math and Science Program
2012-06-20
... DEPARTMENT OF EDUCATION Applications for New Awards: Upward Bound Math and Science Program AGENCY... Bound Math and Science Program. Notice inviting applications for new awards for fiscal year (FY) 2012.... There are three types of grants under the UB Program: regular UB grants, Veterans UB grants, and UB Math...
Lachance, Jennifer A.; Mazzocco, Michèle M.M.
2009-01-01
We report on a longitudinal study designed to assess possible sex differences in math achievement, math ability, and math-related tasks during the primary school age years. Participants included over 200 children from one public school district. Annual assessments included measures of math ability, math calculation achievement scores, rapid naming and decoding tasks, visual perception tests, visual motor tasks, and reading skills. During select years of the study we also administered tests of counting and math facts skills. We examined whether girls or boys were overrepresented among the bottom or top performers on any of these tasks, relative to their peers, and whether growth rates or predictors of math-related skills differed for boys and girls. Our findings support the notion that sex differences in math are minimal or nonexistent on standardized psychometric tests routinely given in assessments of primary school age children. There was no persistent finding suggesting a male or female advantage in math performance overall, during any single year of the study, or in any one area of math or spatial skills. Growth rates for all skills, and early correlates of later math performance, were comparable for boys and girls. The findings fail to support either persistent or emerging sex differences on non-specialized math ability measures during the primary school age years. PMID:20463851
The Value of the Math Circle for Gifted Middle School Students
Burns, Barbara; Henry, Julie; McCarthy, Dianne; Tripp, Jennifer
2017-01-01
Math Circles are designed to allow students to explore mathematics using a problem-solving/inquiry approach. Many of the students attending our Math Circle are mathematically talented and curious. This study examines the perspectives of the students and their families in determining why students attend Math Circle, what they enjoy about Math…
Supporting Early Math--Rationales and Requirements for High Quality Software
Haake, Magnus; Husain, Layla; Gulz, Agneta
2015-01-01
There is substantial evidence that preschooler's performance in early math is highly correlated to math performance throughout school as well as academic skills in general. One way to help children attain early math skills is by using targeted educational software and the paper discusses potential gains of using such software to support early math…
Relation of Opportunity to Learn Advanced Math to the Educational Attainment of Rural Youth
Irvin, Matthew; Byun, Soo-yong; Smiley, Whitney S.; Hutchins, Bryan C.
2017-01-01
Our study examined the relation of advanced math course taking to the educational attainment of rural youth. We used data from the Educational Longitudinal Study of 2002. Regression analyses demonstrated that when previous math achievement is accounted for, rural students take advanced math at a significantly lower rate than urban students.…
Integrating Music into Math in a Virtual Reality Game: Learning Fractions
Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng
2016-01-01
The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…
The Effect of an Educator's Teaching Style on the Math Anxiety of Adult Learners
Hosch, Mary L.
2014-01-01
Many adults are obstructed from specialized professions based on their anxiety of math. Math anxiety has been extensively researched for over 3 decades. Scholars have attempted to define its origins as well as the means to eliminate its often-debilitating effect on learners. Research indicates that learners with math anxiety often give up career…
Math anxiety: who has it, why it develops, and how to guard against it.
Maloney, Erin A; Beilock, Sian L
2012-08-01
Basic math skills are important for success in school and everyday life. Yet many people experience apprehension and fear when dealing with numerical information, termed math anxiety. Recently, researchers have started to probe the antecedents of math anxiety, revealing some surprising insights into its onset, risk factors, and remediation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Xuan Xiao
Full Text Available Nuclear receptors (NRs form a family of ligand-activated transcription factors that regulate a wide variety of biological processes, such as homeostasis, reproduction, development, and metabolism. Human genome contains 48 genes encoding NRs. These receptors have become one of the most important targets for therapeutic drug development. According to their different action mechanisms or functions, NRs have been classified into seven subfamilies. With the avalanche of protein sequences generated in the postgenomic age, we are facing the following challenging problems. Given an uncharacterized protein sequence, how can we identify whether it is a nuclear receptor? If it is, what subfamily it belongs to? To address these problems, we developed a predictor called iNR-PhysChem in which the protein samples were expressed by a novel mode of pseudo amino acid composition (PseAAC whose components were derived from a physical-chemical matrix via a series of auto-covariance and cross-covariance transformations. It was observed that the overall success rate achieved by iNR-PhysChem was over 98% in identifying NRs or non-NRs, and over 92% in identifying NRs among the following seven subfamilies: NR1--thyroid hormone like, NR2--HNF4-like, NR3--estrogen like, NR4--nerve growth factor IB-like, NR5--fushi tarazu-F1 like, NR6--germ cell nuclear factor like, and NR0--knirps like. These rates were derived by the jackknife tests on a stringent benchmark dataset in which none of protein sequences included has ≥60% pairwise sequence identity to any other in a same subset. As a user-friendly web-server, iNR-PhysChem is freely accessible to the public at either http://www.jci-bioinfo.cn/iNR-PhysChem or http://icpr.jci.edu.cn/bioinfo/iNR-PhysChem. Also a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics involved in developing the predictor. It is anticipated that iNR-PhysChem may
Lambert, Katharina; Spinath, Birgit
The aim of the present study was to investigate the associations between elementary school children's mathematical achievement and their conservation abilities, visuospatial skills, and numerosity processing speed. We also assessed differences in these abilities between children with different types of learning problems. In Study 1 ( N = 229), we investigated second to fourth graders and in Study 2 ( N = 120), third and fourth graders. Analyses revealed significant contributions of numerosity processing speed and visuospatial skills to math achievement beyond IQ. Conservation abilities were predictive in Study 1 only. Children with math difficulties showed lower visuospatial skills and conservation abilities than children with typical achievement levels and children with reading and/or spelling difficulties, whereas children with combined difficulties explicitly showed low conservation abilities. These findings provide further evidence for the relations between children's math skills and their visuospatial skills, conservation abilities, and processing speed and contribute to the understanding of deficits that are specific to mathematical difficulties.
International Nuclear Information System (INIS)
Lee, W.W.; Kolesnikov, R.A.
2009-01-01
We show in this Response that the nonlinear Poisson's equation in our original paper derived from the drift kinetic approach can be verified by using the nonlinear gyrokinetic Poisson's equation of Dubin et al. (Phys. Fluids 26, 3524 (1983)). This nonlinear contribution in φ 2 is indeed of the order of k # perpendicular# 4 in the long wavelength limit and remains finite for zero ion temperature, in contrast to the nonlinear term by Parra and Catto (Plasma Phys. Control. Fusion 50, 065014 (2008)), which is of the order of k # perpendicular# 2 and diverges for T i → 0. For comparison, the leading term for the gyrokinetic Poisson's equation in this limit is of the order of k # perpendicular# 2 φ.
An Inquiry into Flipped Learning in Fourth Grade Math Instruction
D'addato, Teresa; Miller, Libbi R.
2016-01-01
The objective of this action research project was to better understand the impact of flipped learning on fourth grade math students in a socioeconomically disadvantaged setting. A flipped instructional model was implemented with the group of students enrolled in the researcher's class. Data was collected in the form of classroom observations,…
Motivation and Learning Engagement through Playing Math Video Games
Barreto, Daisyane; Vasconcelos, Lucas; Orey, Michael
2017-01-01
Purpose: With video games being a source of leisure and learning, educators and researchers alike are interested in understanding children's motivation for playing video games as a way to learn. This study explores student motivation and engagement levels in playing two math video games in the game "Club Penguin." Method: This is a…
Predictive model for early math skills based on structural equations.
Aragón, Estíbaliz; Navarro, José I; Aguilar, Manuel; Cerda, Gamal; García-Sedeño, Manuel
2016-12-01
Early math skills are determined by higher cognitive processes that are particularly important for acquiring and developing skills during a child's early education. Such processes could be a critical target for identifying students at risk for math learning difficulties. Few studies have considered the use of a structural equation method to rationalize these relations. Participating in this study were 207 preschool students ages 59 to 72 months, 108 boys and 99 girls. Performance with respect to early math skills, early literacy, general intelligence, working memory, and short-term memory was assessed. A structural equation model explaining 64.3% of the variance in early math skills was applied. Early literacy exhibited the highest statistical significance (β = 0.443, p < 0.05), followed by intelligence (β = 0.286, p < 0.05), working memory (β = 0.220, p < 0.05), and short-term memory (β = 0.213, p < 0.05). Correlations between the independent variables were also significant (p < 0.05). According to the results, cognitive variables should be included in remedial intervention programs. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Dale Chihuly: An Inspiration in Art, Science, and Math!
Hubbert, Beth
2009-01-01
Connecting students to the arts in a concrete way can be an effective teaching tool. In this article, the author describes how Dale Chihuly's "Hart Window," which features hand-blown glass disks affixed to the framework of the window, can be an inspiration for interdisciplinary connections in art, science and math. (Contains 4 online resources.)
Manufacturing Math Classes: An Instructional Program Guide for Manufacturing Workers.
McBride, Pamela G.; And Others
This program guide documents a manufacturing job family curriculum that develops competence in generic work force education skills through three courses: Reading Rulers, Charts, and Gauges and Math for Manufacturing Workers I and II. An annotated table of contents lists a brief description of the questions answered in each section. An introduction…
Evaluation of HeartMath Training Programme for Improving ...
African Journals Online (AJOL)
The goal of this study was to evaluate the influence of a HeartMath training apparatus on personal resilience and physiological coherence. A within group, pre-test and post-test, outcome evaluative design was employed to assess changes in dependent variables. A small convenience sample of 6 participants, 4 women and ...
Marvels of Math: Fascinating Reads and Awesome Activities.
Haven, Kendall F.
Any topic, math included, becomes more accessible and understandable when human stories are related about the development of the subject. Stories make subjects real and purposeful. They provide a foundation from which students can understand and appreciate mathematics rather than merely memorize a series of rote exercises. This book presents 16…
Evaluating Math Recovery: Implications for Policy and Practice
Smith, Thomas
2010-01-01
This presentation focuses on an initial evaluation study of Math Recovery (MR), a pullout, one-to-one tutoring program that has been designed to increase mathematics achievement among low-performing first graders, thereby closing the school-entry achievement gap and enabling participants to achieve at the level of their higher-performing peers in…
Social Capital, Information, and Socioeconomic Disparities in Math Course Work
Crosnoe, Robert; Schneider, Barbara
2010-01-01
Analysis of the National Education Longitudinal Study revealed that socioeconomically advantaged students persist in high school math at higher rates than their disadvantaged peers even when they have the same initial placements and skill levels. These disparities are larger among students with prior records of low academic status because students…
The Ethnic Context and Attitudes toward 9th Grade Math
Graham, Sandra; Morales-Chicas, Jessica
2015-01-01
The present study examined the relations between ethnic context and attitudes about 9th grade math in youth from different ethnic groups who had recently transitioned to high school. The large sample comprised African American, Latino, White, and Asian youth (n = 2,265, 55% girls, M[subscript age] = 14.6 yrs.) A new questionnaire was developed…
Math Disabilities: A Selective Meta-Analysis of the Literature
Swanson, H. Lee; Jerman, Olga
2006-01-01
This article synthesizes published literature comparing the cognitive functioning of children who have math disabilities (MD) with that of (a) average-achieving children; (b) children who have reading disabilities (RD); and (c) children who have co-morbid disabilities (MD+RD). Average achievers outperformed children with MD on measures of verbal…
Track Placement and the Motivational Predictors of Math Course Enrollment
Reyes, Marcela; Domina, Thurston
2017-01-01
Background: Virtually all high schools offer a range of courses to allow students to enroll in four years of high school mathematics. However, only two thirds of U.S. high school graduates took mathematics courses each school year. Purpose/Research Question: This study addresses three research questions: First, how do students' math course…
Math and ELA Meet at the Common Core
Gardner, Nancy S.; Smith, Nicole
2016-01-01
Math and English language arts seem such disparate content areas but the Common Core State Standards actually draw out their similarities in the teaching and learning process. Both require students to learn grit and perseverance; both ask students to use reasons or evidence to support arguments; both require precision; both require structures to…
Five Easy Principles to Make Math Moments Count
Cutler, Carrie S.
2011-01-01
Preschool children are learning so many skills--how to cut with scissors, zip zippers, recognize the alphabet and their names, and share toys with others. A strong academic curriculum also requires that children learn more about math (National Council of Teachers of Mathematics [NCTM], 2000). By following the five easy principles outlined here,…
Math Anxiety and How It Affects High School Students.
Murr, Kathleen A.
2001-01-01
Studies the role that math anxiety played in the poor performance of students, what promoted such feelings, and what teachers can do to lessen this anxiety. Students and adults sense the urgency to understand the mathematical material, and that urgency often leads to anxiety when they cannot arrive at a solution. (ASK)
Validation Study of the Abbreviated Math Anxiety Scale: Spanish Adaptation
Brown, Jennifer L.; Sifuentes, Lucía Macías
2016-01-01
With growing numbers of Hispanic students enrolling in post-secondary school, there is a need to increase retention and graduation rates. The purpose of this study was to validate the Spanish adaptation of the Abbreviated Math Anxiety Scale (AMAS). The AMAS was translated and administered to 804 freshman students at a post-secondary institution in…
Integrating Literacy, Math, and Science to Make Learning Come Alive
Bintz, William P.; Moore, Sara D.; Hayhurst, Elaine; Jones, Rubin; Tuttle, Sherry
2006-01-01
In this article, the authors who are an interdisciplinary team of middle school educators collaboratively developed and implemented an interdisciplinary unit designed to help middle school students: (1) think like mathematicians and scientists; (2) develop specific areas of expertise in math and science; and (3) use literature as a tool to learn…
Music: Highly Engaged Students Connect Music to Math
Jones, Shelly M.; Pearson, Dunn, Jr.
2013-01-01
A musician and a mathematics educator create and implement a set of elementary school lessons integrating music and math. Students learn the basics of music theory including identifying notes and learning their fractional values. They learn about time signatures and how to determine correct note values per measure. Students are motivated by…
Math CAMMP: A Constructivist Summer Camp for Teachers and Students
Green, Michael; Piel, John A.
2012-01-01
A summer session, math methods course for elementary teachers incorporates 30 hours of instruction that emphasizes (1) developmentally appropriate instructional strategies, (2) hierarchical levels of increasingly abstract manipulatives, (3) ongoing assessment of student learning, (4) integrated thematic instructional modules, (5) team planning and…
Math Manipulatives to Increase 4th Grade Student Achievement
Couture, Katie
2012-01-01
This research project was completed with twenty-nine fourth grade students from Shawnee Elementary, a school in the Chippewa Valley School District. It began in April 2012 and the data collection was completed by June 2012. The purpose of this project was to see if utilizing math manipulatives in an elementary classroom will increase student…
Concrete Math Manipulatives in Upper Elementary Mathematics Classrooms
Graham, Janina Maria
2013-01-01
Today's mathematics standards require teachers to use concrete math manipulatives (CMM) to increase the proficiency of students, but many upper elementary teachers fail to use these resources. The effects of this resource disuse may decrease student learning potential and impede successful standardized test results. This case study allows leaders…
Fostering Early Math Comprehension: Experimental Evidence from Paraguay
Naslund-Hadley, Emma; Parker, Susan W.; Hernandez-Agramonte, Juan Manuel
2014-01-01
Research indicates that preschool children need to learn pre-math skills to build a foundation for primary- and secondary-level mathematics. This paper presents the results from the early stages of a pilot mathematics program implemented in Cordillera, Paraguay. In a context of significant gaps in teacher preparation and pedagogy, the program uses…
Mathematicians in Schools: Uncovering Maths' Beautiful Secrets
Welch, Bronwyn
2016-01-01
Mathematics professionals are working with teachers revealing the reality and beauty that happens in the world of math and to show that this is essentially a "human endeavour," embedded in much of what people do and the ways in which they think. In this article, the author shares vignettes of primary classes working with mathematicians…
Rural Math Excel Partnership (RMEP) Project Final Performance Report
Harmon, Hobart; Tate, Veronica; Stevens, Jennifer; Wilborn, Sandy; Adams, Sue
2018-01-01
The goal of the Rural Math Excel Partnership (RMEP) project, a development project funded by the U.S. Department of Education Investing in Innovation (i3) grant program, was to develop a model of shared responsibility among families, teachers, and communities in rural areas as collective support for student success in and preparation for advanced…
Motivation for Math in Rural Schools: Student and Teacher Perspectives
Hardre, Patricia L.
2011-01-01
Rural schools, students, teachers, administrators, families and community leaders face unique challenges from those of their urban and suburban counterparts. This paper investigates motivation in rural secondary schools, with a particular focus on mathematics, from teacher and student perspectives. It integrates recent research on math learning…
From Exam to Education: The Math Exam/Education Resources
Bruni, Carmen; Koch, Christina; Konrad, Bernhard; Lindstrom, Michael; Moyles, Iain; Thompson, Will
2016-01-01
The Math Exam/Education Resources (MER) is an open online learning resource hosted at The University of British Columbia (UBC), aimed at providing mathematics education resources for students and instructors at UBC. In this paper, there will be a discussion of the motivation for creating this resource on the MediaWiki platform, key features of the…
Self-adapting the success rate when practicing math
Jansen, B.R.J.; Hofman, A.D.; Savi, A.; Visser, I.; van der Maas, H.L.J.
2016-01-01
Use and benefits of the possibility to choose a success rate are studied in a math-practice application that is used by a considerable percentage of Dutch primary school children. Study 1 uses data that were collected with the application, using children's practice data (N = 40,329; grades 1–6).
Detecting Math Anxiety with a Mixture Partial Credit Model
Ölmez, Ibrahim Burak; Cohen, Allan S.
2017-01-01
The purpose of this study was to investigate a new methodology for detection of differences in middle grades students' math anxiety. A mixture partial credit model analysis revealed two distinct latent classes based on homogeneities in response patterns within each latent class. Students in Class 1 had less anxiety about apprehension of math…
Review of Math for Life by Jeffrey Bennett
Directory of Open Access Journals (Sweden)
Eric Gaze
2012-07-01
Full Text Available Math for Life: Crucial Ideas You Didn’t Learn in School by Jeffrey Bennett is a general interest mathematics book focused on the topic of innumeracy, the mathematics required to be numerate and why quantitative literacy is important for an educated citizenry. This book raises the very important question of why the mathematics we need to navigate our daily world is given such short shrift in our K-12 math education system. Math for Life is directed at multiple constituencies. For those wishing to develop their quantitative literacy, it provides a primer of the crucial topics, explained with compelling examples in an accessible easy-to-read style. For educators, it provides a valuable synopsis of what the math education curriculum should have at its core. I conclude the review with an analysis of the book’s contributions to these varied domains. In particular, I call into question the algebra-centric high school curriculum and explore possible alternatives to the current myopic focus on calculus in our broken mathematics education system.
Designing a Virtual-Reality-Based, Gamelike Math Learning Environment
Xu, Xinhao; Ke, Fengfeng
2016-01-01
This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…
Math on the Job. Accounting Clerk/Bookkeeper.
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This booklet is intended to help mainstreamed mentally retarded, emotionally disturbed, or learning disabled high school students acquire a basic understanding of the responsibilities and working conditions of accounting clerks and bookkeepers and to practice basic math skills necessary in the occupation. The first section provides a brief…
Factors That Promote Anxiety toward Math on High School Students
Escalera-Chávez, Milka Elena; Moreno-García, Elena; García-Santillán, Arturo; Rojas-Kramer, Carlos Alberto
2017-01-01
Regardless of the social or economic status of a student, it is a fact that math is always present. This discipline is considered as a competitive tool for achieving a more productive life. However, the gap in academic achievement is big. Consequently, in the last decades the research on education has set attention on this point. Therefore, this…
"Lettuce" Learn Math: Teaching Mathematics with Seeds and Centimeters
Rickard, Laura N.; Wilson, Colette
2006-01-01
"Lettuce Learn Math" is an interdisciplinary program that has effectively linked a small-scale agricultural production system to a sixth-grade mathematics and science curriculum. The mathematical concepts and skills, including measurement and geometry, taught in this project met and often exceeded the standards set by New York state for…
Differential and Long-Term Language Impact on Math
Chen, Fang; Chalhoub-Deville, Micheline
2016-01-01
Literature provides consistent evidence that there is a strong relationship between language proficiency and math achievement. However, research results show conflicts supporting either an increasing or a decreasing longitudinal relationship between the two. This study explored a longitudinal data and adopted quantile regression analyses to…
Learning Math at Home. Making the Parent Connection! Leader Guide.
Moke, Susan, Ed.; Shermis, Michael, Ed.
This manual is a resource book for organizers and leaders and parent groups who want to explore specific strategies to use to encourage children to view math as a "user-friendly" subject. The guide contains material necessary to conduct a 1- or 1.5-hour session to help parents see the importance of: showing their children how problem-solving math…
Architecture: A Nexus of Creativity, Math, and Spatial Ability
Senne, Jessica; Coxon, Steve V.
2016-01-01
The United States is dependent on innovations in science, technology, engineering, and math (STEM) fields for the growth of its economy and improvements to quality of life, but too few students are prepared for them. To help meet the challenges in filling the STEM pipeline, teachers of gifted elementary students can nurture important talents,…
Five Ideas for 21st Century Math Classrooms
Gasser, Kenneth W.
2011-01-01
This article draws on the 21st Century Skills Movement and the successful teaching practices of Asian schools in order to provide five suggestions that secondary math teachers can incorporate into their classrooms in order to promote the skill set necessary for an ever-changing global economy. Problem-based instruction, student-led solutions, risk…
Is there a Causal Effect of High School Math on Labor Market Outcomes?
DEFF Research Database (Denmark)
Joensen, E. Juanna Schröter; Nielsen, Helena Skyt
2009-01-01
In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear...... evidence of a causal relationship between math and earnings for students who are induced to choose math after being exposed to the pilot scheme. The effect partly stems from the fact that these students end up with a higher education....
Not Just Numbers: Creating a Partnership Climate to Improve Math Proficiency in Schools
Sheldon, Steven B.; Epstein, Joyce L.; Galindo, Claudia L.
2009-01-01
Although we know that family involvement is associated with stronger math performance, little is known about what educators are doing to effectively involve families and community members, and whether this measurably improves math achievement at their schools. This study used data from 39 schools to assess the effects of family and community involvement activities on school levels of math achievement. The study found that better implementation of math-related practices of family and community involvement predicted stronger support from parents for schools’ partnership programs, which, in turn, helped estimate the percentage of students scoring proficient on math achievement tests. PMID:20200592
Mattera, Shira; Morris, Pamela
2017-01-01
Early math ability is one of the best predictors of children's math and reading skills into late elementary school. Children with stronger math proficiency in elementary school, in turn, are more likely to graduate from high school and attend college. However, early math skills have not historically been a major focus of instruction in preschool…
Hübner, Nicolas; Wille, Eike; Cambria, Jenna; Oschatz, Kerstin; Nagengast, Benjamin; Trautwein, Ulrich
2017-01-01
Math achievement, math self-concept, and vocational interests are critical predictors of STEM careers and are closely linked to high school coursework. Young women are less likely to choose advanced math courses in high school, and encouraging young women to enroll in advanced math courses may therefore bring more women into STEM careers. We…
International Nuclear Information System (INIS)
Rudakov, Leonid
2004-01-01
It is shown that the oscillation named by Shukla as the 'Shukla mode' is well known in the plasma physics literature as the magnetic drift wave. In addition, the instability of these modes in a cold plasma as claimed by Shukla et al. [Phys. Plasmas 11, 1732 (2004)] does not exist and is due to a mathematical error in their analysis. Also the 'new' resonance and new cutoff frequencies claimed by Shukla et al. and Mamum et al. [Phys Plasmas 11, 2307 (2004)] have been known in the published literature for decades
Maths anxiety and medication dosage calculation errors: A scoping review.
Williams, Brett; Davis, Samantha
2016-09-01
A student's accuracy on drug calculation tests may be influenced by maths anxiety, which can impede one's ability to understand and complete mathematic problems. It is important for healthcare students to overcome this barrier when calculating drug dosages in order to avoid administering the incorrect dose to a patient when in the clinical setting. The aim of this study was to examine the effects of maths anxiety on healthcare students' ability to accurately calculate drug dosages by performing a scoping review of the existing literature. This review utilised a six-stage methodology using the following databases; CINAHL, Embase, Medline, Scopus, PsycINFO, Google Scholar, Trip database (http://www.tripdatabase.com/) and Grey Literature report (http://www.greylit.org/). After an initial title/abstract review of relevant papers, and then full text review of the remaining papers, six articles were selected for inclusion in this study. Of the six articles included, there were three experimental studies, two quantitative studies and one mixed method study. All studies addressed nursing students and the presence of maths anxiety. No relevant studies from other disciplines were identified in the existing literature. Three studies took place in the U.S, the remainder in Canada, Australia and United Kingdom. Upon analysis of these studies, four factors including maths anxiety were identified as having an influence on a student's drug dosage calculation abilities. Ultimately, the results from this review suggest more research is required in nursing and other relevant healthcare disciplines regarding the effects of maths anxiety on drug dosage calculations. This additional knowledge will be important to further inform development of strategies to decrease the potentially serious effects of errors in drug dosage calculation to patient safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
Promoting children's health through physically active math classes: a pilot study.
Erwin, Heather E; Abel, Mark G; Beighle, Aaron; Beets, Michael W
2011-03-01
School-based interventions are encouraged to support youth physical activity (PA). Classroom-based PA has been incorporated as one component of school wellness policies. The purpose of this pilot study is to examine the effects of integrating PA with mathematics content on math class and school day PA levels of elementary students. Participants include four teachers and 75 students. Five math classes are taught without PA integration (i.e., baseline) followed by 13 math classes that integrate PA. Students wear pedometers and accelerometers to track PA during math class and throughout the school day. Students perform significantly more PA on school days and in math classes during the intervention. In addition, students perform higher intensity (step min(-1)) PA during PA integration math classes compared with baseline math classes. Integrating PA into the classroom is an effective alternative approach to improving PA levels among youth and is an important component of school-based wellness policies.
Teachers Awareness of Students’ Anxiety in Math Classroom: Teachers’ Treatment VS Students’ Anxiety
Directory of Open Access Journals (Sweden)
Wanda Nugroho Yanuarto
2016-08-01
Full Text Available Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. The purpose of this study is to provide some treatments to overcome students’ anxiety in math classroom at The University of Muhammadiyah Purwokerto, Indonesia especially in Math Department, but before it has attempted to investigate the factors that students’ anxiety can possibly stem from, both within the classroom environment and out of classroom in the wilder social context.
Mazzocco, Michele M. M.
2001-01-01
This study examined whether indicators of math learning disability were observed in 35 5- and 6-year-olds with either neurofibromatosis, Turner Syndrome, or fragile X syndrome and compared to controls. Findings indicate that girls with fragile X or Turner syndrome but not neurofibromatosis are significantly more likely to have specific math…
Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers
Directory of Open Access Journals (Sweden)
Emily Szkudlarek
2018-05-01
Full Text Available Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1 compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2 to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children (n = 158 were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that
Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers.
Szkudlarek, Emily; Brannon, Elizabeth M
2018-01-01
Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children ( n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic
The influence of math anxiety on symbolic and non-symbolic magnitude processing.
Dietrich, Julia F; Huber, Stefan; Moeller, Korbinian; Klein, Elise
2015-01-01
Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.
The influence of math anxiety on symbolic and non-symbolic magnitude processing
Directory of Open Access Journals (Sweden)
Julia Felicitas Dietrich
2015-10-01
Full Text Available Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS, which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.
Asymptotics of quantum weighted Hurwitz numbers
Harnad, J.; Ortmann, Janosch
2018-06-01
This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.
The role of early language abilities on math skills among Chinese children.
Directory of Open Access Journals (Sweden)
Juan Zhang
Full Text Available The present study investigated the role of early language abilities in the development of math skills among Chinese K-3 students. About 2000 children in China, who were on average aged 6 years, were assessed for both informal math (e.g., basic number concepts such as counting objects and formal math (calculations including addition and subtraction skills, language abilities and nonverbal intelligence.Correlation analysis showed that language abilities were more strongly associated with informal than formal math skills, and regression analyses revealed that children's language abilities could uniquely predict both informal and formal math skills with age, gender, and nonverbal intelligence controlled. Mediation analyses demonstrated that the relationship between children's language abilities and formal math skills was partially mediated by informal math skills.The current findings indicate 1 Children's language abilities are of strong predictive values for both informal and formal math skills; 2 Language abilities impacts formal math skills partially through the mediation of informal math skills.
Acosta, Diane; North, Teresa Lynn; Avella, John
2016-01-01
This study considered whether delivery modality, student GPA, or time since high school affected whether 290 students who had completed a developmental math series as a community college were able to successfully complete college-level math. The data used in the study was comprised of a 4-year period historical student data from Odessa College…
Carpenter, Thomas P.; Kirk, Roger E.
2017-01-01
Statistics is an important subject in psychology and social science education. However, inadequate mathematical skills can pose a barrier to learning statistics. Some educators have suggested that students' math skills are declining. The present research examined trends in the math skills of psychology undergraduates across 21 years. Students…
Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.
2017-01-01
In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory,…
Rimbey, Kimberly
2007-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to students. This booklet contains the "Math Academy--Can You See It in Nature? Explorations in Patterns & Functions," which a teacher can use to…
Orabuchi, Nkechi
2013-01-01
This study reported the results of a 3-month quasi-experimental study that determined the effectiveness of an online visual and interactive technological tool on sixth grade students' mathematics performance, math anxiety and attitudes towards math. There were 155 sixth grade students from a middle school in the North Texas area who participated…
Energy Technology Data Exchange (ETDEWEB)
Vassilev, Vassil M., E-mail: vasilvas@imbm.bas.bg; Djondjorov, Peter A., E-mail: padjon@imbm.bas.bg [Institute of Mechanics, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Block 4, Sofia 1113 (Bulgaria); Mladenov, Ivaïlo M., E-mail: mladenov@bio21.bas.bg [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Block 21, Sofia 1113 (Bulgaria)
2015-05-21
Recently, Mu et al. [J. Appl. Phys. 115, 044512 (2014)] have developed an analytic approach to describe some special shapes of a single-wall carbon nanotube (SWCNT) under hydrostatic pressure. These authors have found approximate analytic expressions for the parametric equations of the tube cross section profile and its curvature at the convex-to-concave transition pressure using a shell-like 2D continuum model describing the shapes of such nanotubes. In this comment, we provide additional insight into this problem taking into account the exact analytic representation of the shapes that a SWCNT attains when subjected to hydrostatic pressure according to the very same continuum model.
Energy Technology Data Exchange (ETDEWEB)
Demidova, M. V. [Department of Chemistry, Wright State University, Dayton, Ohio 45435 (United States); Division of NLP Technology, INTEPH Technology LLC, Dayton, Ohio 45066 (United States); Kudryavtsev, A. A. [Division of NLP Technology, INTEPH Technology LLC, Dayton, Ohio 45066 (United States); International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Kurlyandskaya, I. P. [International Laboratory “Nonlocal Plasma in Nanotechnology and Medicine”, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Department of Optics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Saifutdinov, A. I.; Stepanova, O. M. [Department of Optics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)
2015-09-15
Zobnin et al. have published a paper [Phys. Plasmas, 21, 113503 (2014)] on a topic of discharge physics in the presence of a sharp change in cylindrical discharge geometry. In the comment it is pointed out that for untrapped electrons a full kinetic equation, which includes dependences on spatial coordinates and energies, has to be used for the electron velocity distribution function determination. It is also unclear what probe theories Zobnin et al. have used in their paper for the calculation of electron current to the discharge tube wall.
Buelow, Melissa T; Barnhart, Wesley R
2017-01-01
Multiple studies have shown that performance on behavioral decision-making tasks, such as the Iowa Gambling Task (IGT) and Balloon Analogue Risk Task (BART), is influenced by external factors, such as mood. However, the research regarding the influence of worry is mixed, and no research has examined the effect of math or test anxiety on these tasks. The present study investigated the effects of anxiety (including math anxiety) and math performance on the IGT and BART in a sample of 137 undergraduate students. Math performance and worry were not correlated with performance on the IGT, and no variables were correlated with BART performance. Linear regressions indicated math anxiety, physiological anxiety, social concerns/stress, and test anxiety significantly predicted disadvantageous selections on the IGT during the transition from decision making under ambiguity to decision making under risk. Implications for clinical evaluation of decision making are discussed. © The Author(s) 2015.
Determinants of Grades in Maths for Students in Economics
Cappellari, Lorenzo; Lucifora, Claudio; Pozzoli, Dario
2009-01-01
This paper investigates the determinants of grades achieved in mathematics by rst-year students in Economics. We use individual administrative data from 1993 to 2005 to t an educational production function. Our main ndings suggest that good secondary school achievements and the type of school attended are signi cantly associated with maths grades. Ceteris paribus, females typically do better than males. Since students can postpone the exam or repeat it when they fail, we also analyze the dete...
Five strands of math tasks big book : grades pk-2
Reed, Nat; Forest, Chris
2009-01-01
For grades PK-2, our Common Core State Standards-based resource meets the five strands of math concepts addressed by the NCTM standards and encourages the students to learn and review the concepts in unique ways. Included are challenging problem-solving tasks which will push the boundaries of critical thought and demonstrate to students the importance of mathematical problems in Number & Operations, Geometry, Measurement, Data Analysis & Probability and Algebra using real world situations.
Five strands of math drills big book : grades PK-2
Reed, Nat; Forest, Chris
2011-01-01
For grades PK-2, our Common Core State Standards-based resource meets the five strands of math concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. Included are warm-up and timed drill activities which will push the boundaries of critical thought and demonstrate to students the importance of mathematical problems in Number & Operations, Geometry, Measurement, Data Analysis & Probability and Algebra using real world situations.
User interface to an ICAI system that teaches discrete math
Calcote, Roy Keith.; Howard, Richard Anthony
1990-01-01
Approved for public release; distribution is unlimited. The main thrust of this thesis is the design of a usable Intelligent Computer Aided Instruction (ICAI) user interface that does not use a natural language processor and runs on a personal computer. Discrete Mathematics is the knowledge domain for this project and the Discrete Math Tutor (DMT) is the name of the tutoring system. The DMT will allow the average student to benefit from a tutoring system now and not have to wait until the ...